
Fake News Detection Using Machine
Learning

Author: Simon Lorent
Supervisor: Ashwin Itoo

A thesis presented for the degree of
Master in Data Science

University Of Liège

Faculty Of Applied Science

Belgium

Accademic Year 2018-2019

Contents

1 Introduction 7
1.1 What are fake news? . 7

1.1.1 Definition . 7
1.1.2 Fake News Characterization . 7

1.2 Feature Extraction . 8
1.2.1 News Content Features . 8
1.2.2 Social Context Features . 8

1.3 News Content Models . 10
1.3.1 Knowledge-based models . 10
1.3.2 Style-Based Model . 10

1.4 Social Context Models . 11
1.5 Related Works . 11

1.5.1 Fake news detection . 11
1.5.2 State of the Art Text classification 12

1.6 Conclusion . 12

2 Related Work 13
2.1 Introduction . 13
2.2 Supervised Learning for Fake News Detection[12] 13
2.3 CSI: A Hybrid Deep Model for Fake News Detection 14
2.4 Some Like it Hoax: Automated Fake News Detection in Social Networks [16] 15
2.5 Fake News Detection using Stacked Ensemble of Classifiers 16
2.6 Convolutional Neural Networks for Fake News Detection[19] 17
2.7 Conclusion . 17

3 Data Exploration 20
3.1 Introduction . 20
3.2 Datasets . 20

3.2.1 Fake News Corpus . 20
3.2.2 Liar, Liar Pants on Fire . 21

3.3 Dataset statistics . 21
3.3.1 Fake News Corpus . 21
3.3.2 Liar-Liar Corpus . 27

3.4 Visualization With t-SNE . 27
3.5 Conclusion . 29

1

CONTENTS 2

4 Machine Learning techniques 34
4.1 Introduction . 34
4.2 Text to vectors . 34
4.3 Methodology . 35

4.3.1 Evaluation Metrics . 35
4.4 Models . 36

4.4.1 Näıve-Bayes[7] . 36
4.4.2 Linear SVM . 36
4.4.3 Decision Tree[36] . 37
4.4.4 Ridge Classifier . 37

4.5 Models on liar-liar dataset . 37
4.5.1 Linear SVC . 37
4.5.2 Decision Tree . 37
4.5.3 Ridge Classifier . 37
4.5.4 Max Feature Number . 39

4.6 Models on fake corpus dataset . 40
4.6.1 SMOTE: Synthetic Minority Over-sampling Technique[37] 40
4.6.2 Model selection without using SMOTE 41
4.6.3 Model selection with SMOTE . 44

4.7 Results on testing set . 44
4.7.1 Methodology . 44
4.7.2 Results . 47

4.8 Conclusion . 47

5 Attention Mechanism 59
5.1 Introduction . 59
5.2 Text to Vectors . 59

5.2.1 Word2Vec . 59
5.3 LSTM . 61
5.4 Attention Mechanism . 61
5.5 Results . 64

5.5.1 Methodology . 64
5.5.2 Liar-Liar dataset results . 64
5.5.3 Attention Mechanism . 66
5.5.4 Result Analysis . 68
5.5.5 Testing . 73

5.6 Attention Mechanism on fake news corpus 73
5.6.1 Model Selection . 73

5.7 Conclusion . 77

6 Conclusion 79
6.1 Result analysis . 79
6.2 Future works . 79

A 84
A.1 TF-IDF max features row results on liar-liar corpus 84

A.1.1 Weighted Average Metrics . 84
A.1.2 Per Class Metrics . 86

A.2 TF-IDF max features row results for fake news corpus without SMOTE . . 88

CONTENTS 3

B 89
B.1 Training plot for attention mechanism . 89

Master thesis

Fake news detection using machine learning

Simon Lorent

Acknowledgement

I would start by saying thanks to my family, who have always been supportive and who
have always believed in me.
I would also thanks Professor Itoo for his help and the opportunity he gave me to works
on this very interesting subject.
In addition I would also thank all the professors of the faculty of applied science for what
they taught me during these five years at the University of Liège.

4

Master thesis

Fake news detection using machine learning

Simon Lorent

Abstract

For some years, mostly since the rise of social media, fake news have become a society
problem, in some occasion spreading more and faster than the true information. In this
paper I evaluate the performance of Attention Mechanism for fake news detection on
two datasets, one containing traditional online news articles and the second one news
from various sources. I compare results on both dataset and the results of Attention
Mechanism against LSTMs and traditional machine learning methods. It shows that
Attention Mechanism does not work as well as expected. In addition, I made changes
to original Attention Mechanism paper[1], by using word2vec embedding, that proves to
works better on this particular case.

5

CONTENTS 6

Chapter 1

Introduction

1.1 What are fake news?

1.1.1 Definition

Fake news has quickly become a society problem, being used to propagate false or rumour
information in order to change peoples behaviour. It has been shown that propagation of
fake news has had a non-negligible influence of 2016 US presidential elections[2]. A few
facts on fake news in the United States:

• 62% of US citizens get their news for social medias[3]

• Fake news had more share on Facebook than mainstream news[4].

Fake news has also been used in order to influence the referendum in the United Kingdom
for the ”Brexit”.

In this paper I experiment the possibility to detect fake news based only on textual infor-
mation by applying traditional machine learning techniques[5, 6, 7] as well as bidirectional-
LSTM[8] and attention mechanism[1] on two different datasets that contain different kinds
of news.

In order to work on fake news detection, it is important to understand what is fake news
and how they are characterized. The following is based on Fake News Detection on Social
Media: A Data Mining Perspective[9].

The first is characterization or what is fake news and the second is detection. In order
to build detection models, it is need to start by characterization, indeed, it is need to
understand what is fake news before trying to detect them.

1.1.2 Fake News Characterization

Fake news definition is made of two parts: authenticity and intent. Authenticity means
that fake news content false information that can be verified as such, which means that
conspiracy theory is not included in fake news as there are difficult to be proven true or
false in most cases. The second part, intent, means that the false information has been
written with the goal of misleading the reader.

7

CHAPTER 1. INTRODUCTION 8

Figure 1.1: Fake news on social media: from characterization to detection.[9]

Definition 1 Fake news is a news article that is intentionally and verifiable false

1.2 Feature Extraction

1.2.1 News Content Features

Now that fake news has been defined and the target has been set, it is needed to analyse
what features can be used in order to classify fake news. Starting by looking at news
content, it can be seen that it is made of four principal raw components:

• Source: Where does the news come from, who wrote it, is this source reliable or
not.

• Headline: Short summary of the news content that try to attract the reader.

• Body Text: The actual text content of the news.

• Image/Video: Usualy, textual information is agremented with visual information
such as images, videos or audio.

Features will be extracted from these four basic components, with the mains features
being linguistic-based and visual-based. As explained before, fake news is used to influ-
ence the consumer, and in order to do that, they often use a specific language in order
to attract the readers. On the other hand, non-fake news will mostly stick to a different
language register, being more formal. This is linguistic-based features, to which can be
added lexical features such as the total number of words, frequency of large words or
unique words.

The second features that need to be taken into account are visual features. Indeed,
modified images are often used to add more weight to the textual information. For
example, the Figure 1.2 is supposed to show the progress of deforestation, but the two
images are actually from the same original one, and in addition the WWF logo makes it
look like to be from a trusted source.

1.2.2 Social Context Features

In the context of news sharing on social media, multiple aspect can be taken into account,
such as user aspect, post aspect and group aspect. For instance, it is possible to analyse
the behaviour of specific users and use their metadata in order to find if a user is at risk

CHAPTER 1. INTRODUCTION 9

Figure 1.2: The two images provided to show deforestation between two dates are from
the same image taken at the same time. [10]

CHAPTER 1. INTRODUCTION 10

of trusting or sharing false information. For instance, this metadata can be its centre of
interest, its number of followers, or anything that relates to it.

Post-based aspect is in a sense similar to users based: it can use post metadata in order to
provide useful information, but in addition to metadata, the actual content can be used.
It is also possible to extract features from the content using latent Dirichlet allocation
(LDA)[11].

1.3 News Content Models

1.3.1 Knowledge-based models

Now that the different kinds of features available for the news have been defined, it is
possible to start to explain what kinds of models can be built using these features. The
first model that relates to the news content is based on knowledge: the goal of this model
is to check the truthfulness of the news content and can be achieved in three different
ways (or a mixture of them):

• Expert-oriented: relies on experts, such as journalists or scientists, to assess the
news content.

• Crowdsourcing-oriented: relies on the wisdom of crowd that says that if a suf-
ficiently large number of persons say that something is false or true then it should
be.

• Computational-oriented: relies on automatic fact checking, that could be based
on external resources such as DBpedia.

These methods all have pros and cons, hiring experts might be costly, and expert are
limited in number and might not be able to treat all the news that is produced. In the
case of crowdsourcing, it can easily be fooled if enough bad annotators break the system
and automatic fact checking might not have the necessary accuracy.

1.3.2 Style-Based Model

As explained earlier, fake news usually tries to influence consumer behaviour, and thus
generally use a specific style in order to play on the emotion. These methods are called
deception-oriented stylometric methods.

The second method is called objectivity-oriented approaches and tries to capture the
objectivity of the texts or headlines. These kind of style is mostly used by partisan
articles or yellow journalism, that is, websites that rely on eye-catching headlines without
reporting any useful information. An example of these kind of headline could be

You will never believe what he did !!!!!!

This kind of headline plays on the curiosity of the reader that would click to read the
news.

CHAPTER 1. INTRODUCTION 11

1.4 Social Context Models

The last features that have not been used yet are social media features. There are two
approaches to use these features: stance-based and propagation-based.

Stance-based approaches use implicit or explicit representation. For instance, explicit
representation might be positive or negative votes on social media. Implicit representation
needs to be extracted from the post itself.

Propagation-based approaches use features related to sharing such as the number of
retweet on twitter.

1.5 Related Works

1.5.1 Fake news detection

There are two main categories of state of the art that are interesting for this work: pre-
vious work on fake news detection and on general text classification. Works on fake news
detection is almost inexistent and mainly focus in 2016 US presidential elections or does
not use the same features. That is, when this work focus on automatic features extrac-
tion using machine learning and deep learning, other works make use of hand-crafted
features[12, 13] such as psycholinguistic features[14] which are not the goal here.

Current research focus mostly on using social features and speaker information in order
to improve the quality of classifications.

Ruchansky et al.[15] proposed a hybrid deep model for fake news detection making use
of multiple kinds of feature such as temporal engagement between n users and m news
articles over time and produce a label for fake news categorization but as well a score for
suspicious users.

Tacchini et al.[16] proposed a method based on social network information such as likes
and users in order to find hoax information.

Thorne et al.[17] proposed a stacked ensemble classifier in order to address a subproblem
of fake news detection which is stance classification. It is the fact of finding if an article
agree, disagree or simply discus a fact.

Granik and Mesyura[18] used Näıve-Bayes classifier in order to classify news from buz-
zfeed datasets.

In addition to texts and social features, Yang et al.[19] used visual features such as images
with a convolutional neural network.

Wang et al.[20] also used visual features for classifying fake news but uses adversarial
neural networks to do so.

CHAPTER 1. INTRODUCTION 12

Figure 1.3: Different approaches to fake news detection.

1.5.2 State of the Art Text classification

When it comes to state of the art for text classification, it includes Long short-term
memory (LSTM)[8], Attention Mechanism[21], IndRNN[22], Attention-Based Bidirec-
tion LSTM[1], Hierarchical Attention Networks for Text Classification[23], Adversar-
ial Training Methods For Supervised Text Classification[24], Convolutional Neural Net-
works for Sentence Classification[25] and RMDL: Random Multimodel Deep Learning for
Classification[26]. All of these models have comparable performances.

1.6 Conclusion

As it has been shown in Section 1.2 and Section 1.3 multiple approaches can be used
in order to extract features and use them in models. This works focus on textual news
content features. Indeed, other features related to social media are difficult to acquire.
For example, users information is difficult to obtain on Facebook, as well as post infor-
mation. In addition, the different datasets that have been presented at Section 3.2 does
not provide any other information than textual ones.

Looking at Figure 1.3 it can be seen that the main focus will be made on unsupervised
and supervised learning models using textual news content. It should be noted that
machine learning models usually comes with a trade-off between precision and recall and
thus that a model which is very good at detected fake news might have a high false positive
rate as opposite to a model with a low false positive rate which might not be good at
detecting them. This cause ethical questions such as automatic censorship that will not
be discussed here.

Chapter 2

Related Work

2.1 Introduction

In this chapter I will detail a bit more, some related works that are worth investigating.

2.2 Supervised Learning for Fake News Detection[12]

Reis et al. use machine learning techniques on buzzfeed article related to US election.
The evaluated algorithm are k-Nearest Neighbours, Näıve-Bayes, Random Forests, SVM
with RBF kernel and XGBoost.

In order to feed this network, they used a lot of hand-crafted features such as

• Language Features: bag-of-words, POS tagging and others for a total of 31 different
features,

• Lexical Features: number of unique words and their frequencies, pronouns, etc,

• Pyschological Features[14]: build using Linguistic Inquiry and Word Count which
is a specific dictionary build by a text mining software,

• Semantic Features: Toxic score from Google’s API,

• Engagement: Number of comments within several time interval.

Many other features were also used, based on the source and social metadata.

Their results is shown at Figure 2.1.
They also show that XGBoost is good for selecting texts that need to be hand-verified,
this means that the texts classified as reliable are indeed reliable, and thus reducing the
amount of texts the be checked manualy. This model is limited by the fact they do use
metadata that is not always available.
Pérez-Rosas et al.[13] used almost the same set of features but used linear SVM as a
model and worked on a different dataset.

13

CHAPTER 2. RELATED WORK 14

Figure 2.1: Results by Reis et al.

2.3 CSI: A Hybrid Deep Model for Fake News De-

tection

Ruchansky et al.[15] used an hybrid network, merging news content features and meta-
data such as social engagement in a single network. To do so, they used an RNN for
extracting temporal features of news content and a fully connected network in the case of
social features. The results of the two networks are then concatenated and use for final
classification.

As textual features they used doc2vec[27].

Network’s architecture is shown at Figure 2.2.

Figure 2.2: CSI model

They did test their model on two datasets, one from Twitter and the other one from Weibo,
which a Chinese equivalent of Twitter. Compared to simpler models, CSI performs better,
with 6% improvement over simple GRU networks (Figure 2.3).

CHAPTER 2. RELATED WORK 15

Figure 2.3: Results by Ruchansky et al.

2.4 Some Like it Hoax: Automated Fake News De-

tection in Social Networks [16]

Here, Tacchini et al. focus on using social network features in order to improve the relia-
bility of their detector. The dataset was collected using Facebook Graph API, collection
pages from two main categories: scientific news and conspiracy news. They used logistic
regression and harmonic algorithm[28] to classify news in categories hoax and non-hoax.
Harmonic Algorithm is a method that allows transferring information across users who
liked some common posts.

For the training they used cross-validation, dividing the dataset into 80% for training and
20% for testing and performing 5-fold cross-validation, reaching 99% of accuracy in both
cases.

In addition they used one-page out, using posts from a single page as test data or using
half of the page as training and the other half as testing. This still leads to good results,
harmonic algorithm outperforming logistic regression. Results are shown at Figures 2.4
and 2.5.

Figure 2.4: Results by tacchnini et al.

CHAPTER 2. RELATED WORK 16

Figure 2.5: Results by tacchnini et al.

2.5 Fake News Detection using Stacked Ensemble of

Classifiers

Thorne et al.[17] worked on Fake News Challenge by proposing a stack of different clas-
sifiers: a multilayer perceptron with relu activation on average of word2vec for headline
and tf-idf vectors for the article body, average word2vec for headlines and article body,
tf-idf bigrams and unigram on article body, logistic regression with L2 regularization and
concatenation of word2vec for headlines and article body with MLP and dropout.

Finally, a gradient boosted tree is used for the final classification.

Figure 2.6: Results by Thorne et al.

CHAPTER 2. RELATED WORK 17

2.6 Convolutional Neural Networks for Fake News

Detection[19]

Yang et al. used a CNN with images contained in article in order to make the classifi-
cation. They used kaggle fake news dataset1, in addition they scrapped real news from
trusted source such as New York Times and Washington Post.

Their network is made of two branches: one text branch and one image branch (Figure
2.7). The textual branch is then divided of two subbranch: textual explicit: derived
information from text such as length of the news and the text latent subbranch, which is
the embedding of the text, limited to 1000 words.

Figure 2.7: TI-CNN

The image branch is also made of two subbranch, one containing information such as
image resolution or the number of people present on the image, the second subbranch use
a CNN on the image itself. The full details of the network are at Figure 2.8. And the
results are at Figure 2.9 and show that indeed using images works better.

2.7 Conclusion

We have seen in the previous sections that most of the related works focus on improving
the prediction quality by adding additional features. The fact is that these features are
not always available, for instance some article may not contain images. There is also the
fact that using social media information is problematic because it is easy to create a new
account on these media and fool the detection system. That’s why I chose to focus on
the article body only and see if it is possible to accurately detect fake news.

1https://www.kaggle.com/mrisdal/fake-news

https://www.kaggle.com/mrisdal/fake-news

CHAPTER 2. RELATED WORK 18

Figure 2.8: TI-CNN

Figure 2.9: TI-CNN, results

CHAPTER 2. RELATED WORK 19

Chapter 3

Data Exploration

3.1 Introduction

A good starting point for the analysis is to make some data exploration of the data set.
The first thing to be done is statistical analysis such as counting the number of texts per
class or counting the number of words per sentence. Then it is possible to try to get an
insight of the data distribution by making dimensionality reduction and plotting data in
2D.

3.2 Datasets

3.2.1 Fake News Corpus

This works uses multiple corpus in order to train and test different models. The main
corpus used for training is called Fake News Corpus[29]. This corpus has been automati-
cally crawled using opensources.co labels. In other words, domains have been labelled
with one or more labels in

• Fake News

• Satire

• Extreme Bias

• Conspiracy Theory

• Junk Science

• Hate News

• Clickbait

• Proceed With Caution

• Political

• Credible

20

opensources.co

CHAPTER 3. DATA EXPLORATION 21

These annotations have been provided by crowdsourcing, which means that they might
not be exactly accurate, but are expected to be close to the reality. Because this works
focus on fake news detection against reliable news, only the news labels as fake and
credible have been used.

3.2.2 Liar, Liar Pants on Fire

The second dataset is Liar, Liar Pants on Fire dataset[30], which is a collection of
twelve thousand small sentences collected from various sources and hand labelled. They
are divided in six classes:

• pants-fire

• false

• barely-true

• half-true

• mostly-true

• true

This set will be used a second test set. Because in this case there are six classes against
two in the other cases, a threshold should be used in order to fix which one will be con-
sidered as true or false in order to be compared with the other dataset.

It should be noted that this one differs from the two other datasets is it is composed only
on short sentences, and thus it should not be expected to have very good results on this
dataset for models trained on Fake News Corpus which is made of full texts. In addition,
the texts from the latest dataset are more politically oriented than the ones from the first
one.

3.3 Dataset statistics

3.3.1 Fake News Corpus

General Analysis

Because Fake News Corpus is the main dataset, the data exploration will start with
this dataset. And the first thing is to count the number of items per class. Before starting
the analysis, it is needed to clean up the dataset. As it is originally given in a large 30GB
CSV file, the first step is to put everything in a database in order to be able to retrieve
only wanted a piece of information. In order to do so, the file has been red line by line.
It appears that some of the lines are badly formated, preventing them from being read
correctly, in this case they are dropped without being put in the database. Also, each
line that is a duplicate of a line already red is also dropped. The second step in cleaning
the set consists of some more duplicate removal. Indeed, dropping same lines remove
only exact duplicate. It appears that some news does have the same content, with slight
variation in the title, or a different author. In order to remove the duplicate, each text is
hashed using SHA256 and those hash a compared, removing duplicates and keeping only

CHAPTER 3. DATA EXPLORATION 22

one.

Because the dataset has been cleaned, numbers provided by the dataset creators and
number computed after cleaning will be provided. We found the values given at Table
3.1. It shows that the number of fake news is smaller by a small factor with respect to
the number of reliable news, but given the total number of items it should not cause any
problems. But it will still be taken into account later on.

Type Provided Computed
Fake News 928, 083 770, 287
Satire 146, 080 855, 23
Extreme Bias 1, 300, 444 771, 407
Conspiracy Theory 905, 981 495, 402
Junk Science 144, 939 79, 342
Hate News 117, 374 65, 264
Clickbait 292, 201 176, 403
Proceed With Caution 319, 830 104, 657
Political 2, 435, 471 972, 283
Credible 1, 920, 139 1, 811, 644

Table 3.1: Number of texts per categories

In addition to the numbers provided at Table 3.1, there are also two more categories
that are in the dataset but for which no description is provided:

• Unknown: 231301

• Rumour: 376815

To have a better view of the distribution of categories, a histogram is provided at Figure
3.1.

In addition, the number of words per text and the average number of words per sentences
have been computed for each text categories. Figure 3.2 shows the boxplots for these
values. It can be seen that there is no significative difference that might be used in order
to make class prediction.

Before counting the number of words and sentences, the texts are preprocessed using
gensim[31] and NLTK[32]. The first step consists of splitting text into an array of sen-
tences on stop punctuation such as dots or questions mark, but not on commas. The
second step consists of filtering words that are contained in these sentences, to do so,
stop words (words such as ’a’, ’an’, ’the’), punctuation, words or size less or equal to
tree, non-alphanumeric words, numeric values and tags (such as html tags) are removed.
Finally, the number of words still present is used.

An interesting feature to look at is the distribution of news sources with respect to their
categories. It shows that in some case some source a predominant. For instance, looking
at Figure 3.3 shows that most of the reliable news are from nytimes.com and in the
same way, most of the fake news is coming from beforeitsnews.com. That has to be taken

CHAPTER 3. DATA EXPLORATION 23

b
ia
s

cl
ic
kb

a
it

co
n
sp
ir
a
cy

fa
ke

h
a
te

ju
n
ks
ci

p
o
lit
ic
a
l

re
lia
b
le

ru
m
o
r

sa
ti
re

u
n
kn

o
w
n

u
n
re
lia
b
le

type

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

C
o
u
n
t

Figure 3.1: Histogram of text distribution along their categories on the computed num-
bers.

(a) Boxplot of average sentence length
for each category.

(b) Boxplot of number of sentences for
each category.

Figure 3.2: Summary statistics

CHAPTER 3. DATA EXPLORATION 24

a
d
d
ic
t
in
g
in
f
o
.
o
r
g

b
ip
a
r
t
is
a
n
r
e
p
o
r
t
.
c
o
m

b
la
c
k
li
s
t
e
d
n
e
w
s
.
c
o
m

b
lu
e
n
a
t
io
n
r
e
v
ie
w
.
c
o
m

b
r
e
a
k
in
g
9
1
1
.
c
o
m

e
li
t
e
r
e
a
d
e
r
s
.
c
o
m

li
b
e
r
a
la
m
e
r
ic
a
.
o
r
g

li
f
e
s
it
e
n
e
w
s
.
c
o
m

li
f
e
z
e
t
t
e
.
c
o
m

lo
v
e
t
h
is
p
ic
.
c
o
m

n
o
t
a
ll
o
w
e
d
t
o
.
c
o
m

o
c
c
u
p
y
d
e
m
o
c
r
a
t
s
.
c
o
m

o
t
h
e
r
9
8
.
c
o
m

p
o
li
t
ic
u
s
u
s
a
.
c
o
m

r
e
m
e
d
y
d
a
il
y
.
c
o
m

t
w
it
c
h
y
.
c
o
m

v
ir
a
lt
u
b
e
.
n
l

y
o
u
r
n
a
t
io
n
n
e
w
s
.
c
o
m

y
o
u
r
n
e
w
s
w
ir
e
.
c
o
m

domains

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000
C
o
u
n
t

(a) Clickbaits

a
m
e
ri
c
a
n
b
o
rd
e
rp
a
tr
o
l.
c
o
m

a
m
re
n
.c
o
m

b
a
re
n
a
k
e
d
is
la
m
.c
o
m

b
a
rn
e
s
re
v
ie
w
.o
rg

c
re
a
ti
v
it
y
m
o
v
e
m
e
n
t.
n
e
t/
c
a
te
g
o
ry
/n
e
w
s
/

d
a
rk
m
o
o
n
.m

e

d
a
v
id
d
u
k
e
.c
o
m

d
rr
ic
h
s
w
ie
r.
c
o
m

g
la
ri
n
g
h
y
p
o
c
ri
s
y
.c
o
m

ih
r.
o
rg

n
a
ti
o
n
a
lv
a
n
g
u
a
rd
.o
rg

re
tu
rn
o
fk
in
g
s
.c
o
m

th
e
m
u
s
li
m
is
s
u
e
.w
o
rd
p
re
s
s
.c
o
m

th
e
ri
g
h
ts
tu

�

.b
iz

tr
u
th
fe
e
d
.c
o
m

domains

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

C
o
u
n
t

(b) Hate

a
n
c
i
e
n
t
-
c
o
d
e
.
c
o
m

c
o
l
l
e
c
t
i
v
e
-
e
v
o
l
u
t
i
o
n
.
c
o
m

c
o
l
l
e
c
t
i
v
e
l
y
c
o
n
s
c
i
o
u
s
.
n
e
t

d
i
n
e
a
l
.
c
o
m

e
w
a
o
.
c
o
m

f
o
o
d
b
a
b
e
.
c
o
m

g
a
l
a
c
t
i
c
c
o
n
n
e
c
t
i
o
n
.
c
o
m

g
e
o
e
n
g
i
n
e
e
r
i
n
g
w
a
t
c
h
.
o
r
g

h
e
a
l
t
h
i
m
p
a
c
t
n
e
w
s
.
c
o
m

h
e
a
l
t
h
n
u
t
n
e
w
s
.
c
o
m

h
e
a
l
t
h
y
-
h
o
l
i
s
t
i
c
-
l
i
v
i
n
g
.
c
o
m

i
c
r
.
o
r
g

i
n
5
d
.
c
o
m

n
a
t
u
r
a
l
b
l
a
z
e
.
c
o
m

n
a
t
u
r
a
l
n
e
w
s
.
c
o
m

n
a
t
u
r
a
l
n
e
w
s
b
l
o
g
s
.
c
o
m

r
e
a
l
f
a
r
m
a
c
y
.
c
o
m

r
e
s
p
o
n
s
i
b
l
e
t
e
c
h
n
o
l
o
g
y
.
o
r
g

r
e
v
o
l
u
t
i
o
n
s
2
0
4
0
.
c
o
m

t
h
e
t
r
u
t
h
a
b
o
u
t
c
a
n
c
e
r
.
c
o
m

w
a
k
i
n
g
t
i
m
e
s
.
c
o
m

w
h
y
d
o
n
t
y
o
u
t
r
y
t
h
i
s
.
c
o
m

w
o
r
l
d
w
i
d
e
h
e
a
l
t
h
y
.
c
o
m

domains

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

C
o
u
n
t

(c) Junk sience

7
0
n
e
w
s
.w
o
rd
p
re
s
s
.c
o
m

a
m
e
ri
c
a
n
n
e
w
s
.c
o
m

a
m
e
ri
c
a
n
o
v
e
rl
o
o
k
.c
o
m

a
n
o
n
je
k
lo
y.
tk

a
u
ro
ra
-n
e
w
s
.u
s

b
e
fo
re
it
s
n
e
w
s
.c
o
m

b
ig
h
a
ir
y
n
e
w
s
.c
o
m

b
o
s
to
n
le
a
d
e
r.
c
o
m

c
h
a
n
n
e
l1
8
n
e
w
s
.c
o
m

c
iv
ic
tr
ib
u
n
e
.c
o
m

c
la
s
h
d
a
il
y.
c
o
m

c
o
e
d
.c
o
m

c
o
n
s
e
rv
a
ti
v
e
b
y
te
.c
o
m

c
o
n
s
e
rv
a
ti
v
e
d
a
il
y
p
o
s
t.
c
o
m

c
o
n
s
e
rv
a
ti
v
e

�

g
h
te
rs
.c
o
m

d
a
il
y
b
u
z
z
li
v
e
.c
o
m

d
a
il
y
h
e
a
d
li
n
e
s
.c
o
m

d
a
il
y
h
e
a
d
li
n
e
s
.n
e
t

d
a
il
y
s
u
rg
e
.c
o
m

d
c
g
a
z
e
tt
e
.c
o
m

d
o
n
a
ld
tr
u
m
p
n
e
w
s
.c
o

d
o
w
n
tr
e
n
d
.c
o
m

e
m
p
ir
e
h
e
ra
ld
.c
o
m

e
m
p
ir
e
n
e
w
s
.n
e
t

e
n
d
u
ri
n
g
v
is
io
n
.c
o
m

e
n
h
li
v
e
.c
o
m

�

a
s
h
n
e
w
s
c
o
rn
e
r.
c
o
m

fr
e
e
d
o
m
d
a
il
y.
c
o
m

g
lo
b
a
lp
o
li
ti
c
s
n
o
w
.c
o
m

g
o
n
e
le
ft
.c
o
m

g
o
p
th
e
d
a
il
y
d
o
s
e
.c
o
m

h
e
a
lt
h
y
c
a
re
a
n
d
b
e
a
u
ty
.c
o
m

in
tr
e
n
d
to
d
a
y.
c
o
m

it
a
g
li
v
e
.c
o
m

k
rb
c
n
e
w
s
.c
o
m

le
a
rn
p
ro
g
re
s
s
.o
rg

li
b
e
rt
y
a
ll
ia
n
c
e
.c
o
m

m
e
tr
o
p
o
li
ta
n
w
o
rl
d
s
.c
o
m

n
e
w
s
4
k
tl
a
.c
o
m

n
e
w
s
b
re
a
k
s
h
e
re
.c
o
m

n
e
w
s
fr
o
m
p
o
li
ti
c
s
.c
o
m

n
e
w
s
lo
.c
o
m

n
e
w
s
m
a
g
a
z
in
e
.c
o
m

n
e
w
s
w
it
h
v
ie
w
s
.c
o
m

n
o
w
8
n
e
w
s
.c
o
m

o
n
e
p
o
li
ti
c
a
lp
la
z
a
.c
o
m

o
n
li
n
e
c
o
n
s
e
rv
a
ti
v
e
p
re
s
s
.c
o
m

o
p
e
n
m
a
g
a
z
in
e
s
.c
o
m

p
o
li
ti
c
a
ls
it
e
n
e
w
s
.c
o
m

p
re
s
id
e
n
t4
5
d
o
n
a
ld
tr
u
m
p
.c
o
m

p
rn
tl
y.
c
o
m

p
ro
a
m
e
ri
c
a
n
e
w
s
.c
o
m

p
ro
u
d
c
o
n
s
.c
o
m

re
a
ln
e
w
s
ri
g
h
tn
o
w
.c
o
m

re
d
c
o
u
n
tr
y.
u
s

re
d
ro
c
k
tr
ib
u
n
e
.c
o
m

re
li
g
io
n
m
in
d
.c
o
m

rh
o
tv
.c
o
m

ri
c
k
w
e
ll
s
.u
s

ro
g
u
e
-n
a
ti
o
n
3
.c
o
m

s
m
a
g
3
1
.c
o
m

s
to
rm

c
lo
u
d
s
g
a
th
e
ri
n
g
.c
o
m

s
u
b
je
c
tp
o
li
ti
c
s
.c
o
m

s
u
c
c
e
s
s
-s
tr
e
e
t.
c
o
m

te
a
p
a
rt
y.
o
rg

th
e
b
ig
ri
d
d
le
.c
o
m

th
e
c
o
m
m
o
n
s
e
n
s
e
s
h
o
w
.c
o
m

th
e
fr
e
e
p
a
tr
io
t.
o
rg

th
e
in
te
rn
e
tp
o
s
t.
n
e
t

th
e
la
s
tg
re
a
ts
ta
n
d
.c
o
m

th
e
n
e
t2
4
h
.c
o
m

th
e
n
e
w
y
o
rk
e
v
e
n
in
g
.c
o
m

th
e
ri
g
h
ts
c
o
o
p
.c
o
m

th
e
tr
u
th
d
iv
is
io
n
.c
o
m

th
e
tr
u
th
s
e
e
k
e
r.
c
o
.u
k

th
e
w
a
s
h
in
g
to
n
p
re
s
s
.c
o
m

th
re
e
p
e
rc
e
n
te
rn
a
ti
o
n
.c
o
m

u
n
iv
e
rs
e
p
o
li
ti
c
s
.c
o
m

u
s
a
-t
e
le
v
is
io
n
.c
o
m

u
s
a
d
a
il
y
ti
m
e
.c
o
m

u
s
a
d
o
s
e
n
e
w
s
.c
o
m

u
s
a

�

rs
ti
n
fo
rm

a
ti
o
n
.c
o
m

u
s
a
n
e
w
s

�

a
s
h
.c
o
m

u
s
a
p
h
a
s
e
.c
o
m

u
s
a
p
o
li
ti
c
s
z
o
n
e
.c
o
m

u
s
a
s
u
p
re
m
e
.c
o
m

u
s
a
to
d
a
y.
c
o
m
.c
o

u
s
a
tw

e
n
ty
fo
u
r.
c
o
m

u
s
h
e
a
lt
h
y
a
d
v
is
o
r.
c
o
m

u
s
in
fo
n
e
w
s
.c
o
m

u
s
p
o
li
ti
c
s
li
v
e
.c
o
m

u
s
p
o
ln
.c
o
m

v
ig
il
a
n
tc
it
iz
e
n
.c
o
m

v
ir
a
la
c
ti
o
n
s
.c
o
m

v
ir
a
ll
ib
e
rt
y.
c
o
m

w
e
e
k
ly
w
o
rl
d
n
e
w
s
.c
o
m

w
o
rl
d
p
o
li
ti
c
s
n
o
w
.c
o
m

w
to
e
5
n
e
w
s
.c
o
m

y
e
s
im

ri
g
h
t.
c
o
m

domains

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

C
o
u
n
t

(d) Fake

a
b
c
n
e
w
s
.g
o
.c
o
m

a
f.
re
u
te
rs
.c
o
m

a
u
.b
e
.y
a
h
o
o
.c
o
m

a
u
.�

n
a
n
c
e
.y
a
h
o
o
.c
o
m

a
u
.n
e
w
s
.y
a
h
o
o
.c
o
m

b
le
a
c
h
e
rr
e
p
o
rt
.c
o
m

c
a
.n
e
w
s
.y
a
h
o
o
.c
o
m

c
a
.r
e
u
te
rs
.c
o
m

c
h
ri
s
ti
a
n
p
o
s
t.
c
o
m

c
o
n
s
o
rt
iu
m
n
e
w
s
.c
o
m

d
e
. �

n
a
n
c
e
.y
a
h
o
o
.c
o
m

d
is
n
e
y
w
o
rl
d
.d
is
n
e
y.
g
o
.c
o
m

e
d
it
io
n
.c
n
n
.c
o
m

fe
e
d
s
.r
e
u
te
rs
.c
o
m

�

n
a
n
c
e
.y
a
h
o
o
.c
o
m

in
.r
e
u
te
rs
.c
o
m

in
d
ia
n
e
x
p
re
s
s
.c
o
m

la
ti
n
o
.f
o
x
n
e
w
s
.c
o
m

m
.m

lb
.c
o
m

m
o
n
e
y.
c
n
n
.c
o
m

m
o
th
e
rb
o
a
rd
.v
ic
e
.c
o
m

m
u
s
ic
.y
a
h
o
o
.c
o
m

n
e
w
s
.a
b
s
-c
b
n
.c
o
m

n
e
w
s
.y
a
h
o
o
.c
o
m

n
e
w
s
in
fo
.i
n
q
u
ir
e
r.
n
e
t

n
u
tr
it
io
n
fa
c
ts
.o
rg

n
y
p
o
s
t.
c
o
m

n
y
ti
m
e
s
.c
o
m

n
z
.n
e
w
s
.y
a
h
o
o
.c
o
m

n
z
.s
p
o
rt
s
.y
a
h
o
o
.c
o
m

o
n
li
n
e
.w
s
j.
c
o
m

p
e
o
p
le
.c
o
m

p
ro

�

t.
n
d
tv
.c
o
m

s
p
o
rt
s
.y
a
h
o
o
.c
o
m

u
k
. �

n
a
n
c
e
.y
a
h
o
o
.c
o
m

u
k
.n
e
w
s
.y
a
h
o
o
.c
o
m

u
k
.r
e
u
te
rs
.c
o
m

v
id
e
o
.f
o
x
n
e
w
s
.c
o
m

w
a
s
h
p
o
s
t.
b
lo
o
m
b
e
rg
.c
o
m

w
ik
i.
m
o
z
il
la
.o
rg

w
w
w
.b
lo
o
m
b
e
rg
.c
o
m

w
w
w
.b
u
s
in
e
s
s
in
s
id
e
r.
c
o
m

w
w
w
.b
u
z
z
fe
e
d
.c
o
m

w
w
w
.c
b
s
n
e
w
s
.c
o
m

w
w
w
.c
b
s
s
p
o
rt
s
.c
o
m

w
w
w
.c
h
ro
n
.c
o
m

w
w
w
.c
n
b
c
.c
o
m

w
w
w
.c
n
e
t.
c
o
m

w
w
w
.c
n
n
.c
o
m

w
w
w
.e
n
g
a
d
g
e
t.
c
o
m

w
w
w
.e
o
n
li
n
e
.c
o
m

w
w
w
.f
o
rb
e
s
.c
o
m

w
w
w
.f
o
x
n
e
w
s
.c
o
m

w
w
w
.h
u

�

n
g
to
n
p
o
s
t.
c
o
m

w
w
w
.i
n
v
e
s
ti
n
g
.c
o
m

w
w
w
.l
a
ti
m
e
s
.c
o
m

w
w
w
.l
e
g
a
c
y.
c
o
m

w
w
w
.m

a
rk
e
tw

a
tc
h
.c
o
m

w
w
w
.m

s
n
.c
o
m

w
w
w
.n
b
a
.c
o
m

w
w
w
.n
b
c
n
e
w
s
.c
o
m

w
w
w
.n
d
tv
.c
o
m

w
w
w
.n

�

.c
o
m

w
w
w
.n
h
l.
c
o
m

w
w
w
.n
p
r.
o
rg

w
w
w
.n
y
d
a
il
y
n
e
w
s
.c
o
m

w
w
w
.n
y
ti
m
e
s
.c
o
m

w
w
w
.p
o
li
ti
c
o
.c
o
m

w
w
w
.r
e
a
lc
le
a
rp
o
li
ti
c
s
.c
o
m

w
w
w
.r
e
u
te
rs
.c
o
m

w
w
w
.s
fg
a
te
.c
o
m

w
w
w
.t
h
e
a
tl
a
n
ti
c
.c
o
m

w
w
w
.t
h
e
g
u
a
rd
ia
n
.c
o
m

w
w
w
.u
s
a
to
d
a
y.
c
o
m

w
w
w
.v
ic
e
.c
o
m

w
w
w
.w
a
s
h
in
g
to
n
p
o
s
t.
c
o
m

w
w
w
.w
ik
ih
o
w
.c
o
m

w
w
w
.w
s
j.
c
o
m

w
w
w
.y
a
h
o
o
.c
o
m

z
e
e
n
e
w
s
.i
n
d
ia
.c
o
m

domains

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

C
o
u
n
t

(e) Reliable

into account when training and testing models as the goal is not to distinguish between
these two sources but between fake news and reliable news.

Another import feature to look at is the distribution of the number of words in the text.
Indeed, at some point it will be needed to fix a constant length for the texts and using to
small length would mean a lot of cutting and using too long size would mean too much
padding. It is thus needed to investigate the length of the texts in order to choose the
right one. It can be seen at Figure 3.4 that reliable news has slightly more words than
fake news, but the difference is minimal.

CHAPTER 3. DATA EXPLORATION 25

a
d
v
o
c
a
te
.c
o
m

a
lt
e
rn
e
t.
o
rg

a
m
e
ri
c
a
n
n
e
w
s
x
.c
o
m

a
m
e
ri
c
a
n
p
ro
g
re
s
s
.o
rg

a
tt
n
.c
o
m

b
a
p
ti
s
tn
e
w
s
.c
o
m

b
re
it
b
a
rt
.c
o
m

c
h
ro
n
ic
le
s
m
a
g
a
z
in
e
.o
rg

c
it
y
-j
o
u
rn
a
l.
o
rg

c
o
m
m
e
n
ta
ry
m
a
g
a
z
in
e
.c
o
m

c
o
m
m
o
n
d
re
a
m
s
.o
rg

c
o
n
s
e
rv
a
ti
v
e
re
v
ie
w
.c
o
m

c
o
u
n
te
rc
u
rr
e
n
ts
.o
rg

c
o
u
n
te
ri
n
fo
rm

a
ti
o
n
.w
o
rd
p
re
s
s
.c
o
m

c
o
u
n
te
rp
u
n
c
h
.o
rg

d
a
il
y
c
a
ll
e
r.
c
o
m

d
a
il
y
k
o
s
.c
o
m

d
e
n
n
is
m
ic
h
a
e
ll
y
n
c
h
.c
o
m

d
is
s
e
n
tm

a
g
a
z
in
e
.o
rg

d
ru
d
g
e
re
p
o
rt
.c
o
m

e
c
o
n
o
m
ic
n
o
is
e
.c
o
m

e
c
o
w
a
tc
h
.c
o
m

�

lm
s
fo
ra
c
ti
o
n
.o
rg

fo
re
ig
n
p
o
li
c
y
jo
u
rn
a
l.
c
o
m

fr
e
e
d
o
m
w
o
rk
s
.o
rg

fu
s
io
n
.n
e
t

g
e
o
p
o
lm

o
n
it
o
r.
c
o
m

g
u
a
rd
ia
n
lv
.c
o
m

h
e
ri
ta
g
e
.o
rg

ij
r.
c
o
m

ja
c
k
p
in
e
ra
d
ic
a
ls
.c
o
m

ja
c
o
b
in
m
a
g
.c
o
m

ju
d
ic
ia
lw
a
tc
h
.o
rg

m
in
tp
re
s
s
n
e
w
s
.c
o
m

m
rc
.o
rg

n
a
k
e
d
c
a
p
it
a
li
s
m
.c
o
m

n
a
ti
o
n
a
lr
e
v
ie
w
.c
o
m

n
e
w
c
o
ld
w
a
r.
o
rg

o
a
n
n
.c
o
m

o
b
s
e
rv
e
r.
c
o
m

p
jm

e
d
ia
.c
o
m

p
ro
u
d
e
m
o
c
ra
t.
c
o
m

ra
w
s
to
ry
.c
o
m

re
d
s
ta
te
.c
o
m

re
s
is
ta
n
c
e
re
p
o
rt
.c
o
m

ri
n
f.
c
o
m

ro
n
p
a
u
li
n
s
ti
tu
te
.o
rg

th
e
b
la
z
e
.c
o
m

th
e
d
a
il
y
b
e
a
s
t.
c
o
m

th
e

�

ft
h
c
o
lu
m
n
n
e
w
s
.c
o
m

th
e
in
te
rc
e
p
t.
c
o
m

th
in
k
p
ro
g
re
s
s
.o
rg

w
a
s
h
in
g
to
n
e
x
a
m
in
e
r.
c
o
m

w
e
e
k
ly
s
ta
n
d
a
rd
.c
o
m

y
e
ll
o
w
h
a
m
m
e
rn
e
w
s
.c
o
m

domains

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

C
o
u
n
t

(f) Political

a
b
ri
lu
n
o
.c
o
m

a
c
e

�

a
s
h
m
a
n
.w
o
rd
p
re
s
s
.c
o
m

a
c
tu
a
li
d
a
d
p
a
n
a
m
e
ri
c
a
n
a
.c
o
m

a
d
o
b
o
c
h
ro
n
ic
le
s
.c
o
m

a
w
a
z
e
tr
ib
u
n
e
.c
o
m

b
e
e
h
iv
e
b
u
g
le
.c
o
m

b
e
to
o
ta
a
d
v
o
c
a
te
.c
o
m

b
ig
a
m
e
ri
c
a
n
n
e
w
s
.c
o
m

b
u
rr
a
rd
s
tr
e
e
tj
o
u
rn
a
l.
c
o
m

c
a
ll
th
e
c
o
p
s
.n
e
t

c
e
le
b
tr
ic
it
y.
c
o
m

c
h
a
s
e
r.
c
o
m
.a
u

c
h
ri
s
tw

ir
e
.o
rg

c
h
ro
n
ic
le
.s
u

c
li
c
k
h
o
le
.c
o
m

c
re
a
m
b
m
p
.c
o
m

d
a
il
y
c
u
rr
a
n
t.
c
o
m

d
a
il
y
le
a
k
.o
rg

d
a
il
y
s
n
a
rk
.c
o
m

d
a
il
y
s
q
u
ib
.c
o
.u
k

d
a
n
d
y
g
o
a
t.
c
o
m

d
e
r-
p
o
s
ti
ll
o
n
.c
o
m

d
e
rf
m
a
g
a
z
in
e
.c
o
m

d
is
c
lo
s
e
.t
v

d
iv
e
rs
it
y
c
h
ro
n
ic
le
.w
o
rd
p
re
s
s
.c
o
m

d
u
h
p
ro
g
re
s
s
iv
e
.c
o
m

e
lk
o
s
h
a
ry
.c
o
m

e
lm

u
n
d
o
to
d
a
y.
c
o
m

e
m
p
ir
e
s
p
o
rt
s
.c
o

fo
g
n
e
w
s
.r
u

fr
e
e
w
o
o
d
p
o
s
t.
c
o
m

fr
id
a
y
m
a
s
h
.c
o
m

g
lo
s
s
y
n
e
w
s
.c
o
m

g
o
m
e
rb
lo
g
.c
o
m

h
u
m
o
rt
im

e
s
.c
o
m

h
u
z
le
rs
.c
o
m

is
la
m
ic
a
n
e
w
s
.c
o
m

jo
h
n
n
y
ro
b
is
h
.c
o
m

la
n
d
o
v
e
rb
a
p
ti
s
t.
o
rg

li
b
e
ra
lb
ia
s
.c
o
m

li
b
e
ra
ld
a
rk
n
e
s
s
.c
o
m

lu
s
h
fo
rl
if
e
.c
o
m

n
a
ti
o
n
a
lr
e
p
o
rt
.n
e
t

n
c
s
c
o
o
p
e
r.
c
o
m

n
e
w
s
b
is
c
u
it
.c
o
m

n
e
w
s
b
re
a
k
e
rs
.o
rg

n
e
w
s
m
u
ti
n
y.
c
o
m

n
e
w
s
th
u
m
p
.c
o
m

n
e
w
s
to
a
d
.n
e
t

o
b
je
c
ti
v
e
m
in
is
tr
ie
s
.o
rg

p
a
tr
io
tn
e
w
s
d
a
il
y.
c
o
m

p
o
li
ti
c
o
p
s
.c
o
m

p
o
li
ti
c
o
t.
c
o
m

re
d
u
c
tr
e
s
s
.c
o
m

ro
c
k
c
it
y
ti
m
e
s
.c
o
m

s
c
ra
p
p
le
fa
c
e
.c
o
m

s
e
n
s
a
ti
o
n
a
li
s
tt
im

e
s
.c
o
m

s
p
e
ld
.n
l

s
p
o
rt
s
p
ic
k
le
.c
o
m

s
tn
e
o
ts
c
it
iz
e
n
.c
o
m

s
tu
p
p
id
.c
o
m

th
e
d
a
il
y
m
a
s
h
.c
o
.u
k

th
e
d
a
il
y
w
tf
.c
o
m

th
e
h
a
rd
ti
m
e
s
.n
e
t

th
e
in
e
p
to
w
l.
c
o
m

th
e
m
id
e
a
s
tb
e
a
s
t.
c
o
m

th
e
o
n
io
n
.c
o
m

th
e
p
o
k
e
.c
o
.u
k

th
e
ri
g
h
ti
s
ts
.c
o
m

th
e
s
h
o
v
e
l.
c
o
m
.a
u

th
e
s
p
o
o
f.
c
o
m

th
e
s
ta
te
ly
h
a
ro
ld
.c
o
m

th
e
v
a
ll
e
y
re
p
o
rt
.c
o
m

u
n
c
o
n

�

rm
e
d
s
o
u
rc
e
s
.c
o
m

u
s
.b
la
s
ti
n
g
n
e
w
s
.c
o
m

w
a
te
rf
o
rd
w
h
is
p
e
rs
n
e
w
s
.c
o
m

w
o
rl
d
n
e
w
s
d
a
il
y
re
p
o
rt
.c
o
m

w
u
n
d
e
rg
ro
u
n
d
m
u
s
ic
.c
o
m

domains

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

C
o
u
n
t

(g) Satire

Z
e
n
g
a
rd
n
e
r.
c
o
m

fa
n
ta
s
ti
c
w
o
rd
.c
o
m

�

y
h
e
ig
h
t.
c
o
m

k
a
u
il
a
p
e
le
.w
o
rd
p
re
s
s
.c
o
m

k
in
g
w
o
rl
d
n
e
w
s
.c
o
m

le
g
o
ra

�

.f
r

li
g
h
tl
y
b
ra
is
e
d
tu
rn
ip
.c
o
m

li
v
e
fr
e
e
li
v
e
n
a
tu
ra
l.
c
o
m

o
b
s
e
rv
a
to
ri
a
l.
c
o
m

o
p
e
d
n
e
w
s
.c
o
m

p
a
tr
io
ta
rc
h
iv
e
s
.b
lo
g
s
p
o
t.
c
o
m

p
o
li
c
e
s
ta
te
u
s
a
.c
o
m

p
o
li
c
y
re
v
ie
w
.i
n
fo

p
o
li
ti
c
s
in
fo
rm

a
ti
o
n
.c
o
m

p
o
li
ti
c
s
in
u
s
a
.c
o
m

p
o
w
e
rl
in
e
b
lo
g
.c
o
m

ra
n
d
p
a
u
lr
e
v
ie
w
.c
o
m

rb
th
.c
o
m

re
a
d
y
n
u
tr
it
io
n
.c
o
m

ru
s
s
ia
-d
ir
e
c
t.
o
rg

s
h
a
d
o
w
p
ro
o
f.
c
o
m

s
h
if
tf
re
q
u
e
n
c
y.
c
o
m

s
h
tf
p
la
n
.c
o
m

s
il
e
n
tm

a
jo
ri
ty
p
a
tr
io
ts
.c
o
m

s
o
tt
.n
e
t

s
o
u
th
fr
o
n
t.
o
rg

s
tr
a
te
g
ic
-c
u
lt
u
re
.o
rg

s
u
re
n
e
w
s
.c
o
m

s
u
rv
iv
o
p
e
d
ia
.c
o
m

te
a
p
a
rt
y
e
c
o
n
o
m
is
t.
c
o
m

te
a
p
a
rt
y
tr
ib
u
n
e
.c
o
m

th
e
-n
e
w
s
p
a
p
e
rs
.c
o
m

th
e
a
m
e
ri
c
a
n
c
a
u
s
e
.o
rg

th
e
a
m
e
ri
c
a
n
m
ir
ro
r.
c
o
m

th
e
c
iv
il
ia
n
.c
o
.n
z

th
e
c
o
n
s
e
rv
a
ti
v
e
tr
e
e
h
o
u
s
e
.c
o
m

th
e
d
a
il
y
b
e
ll
.c
o
m

th
e
g
o
ld
w
a
te
r.
c
o
m

th
e
n
e
w
in
q
u
ir
y.
c
o
m

th
e
o
p
e
n
s
c
ro
ll
.b
lo
g
s
p
o
t.
c
o
m

th
e
o
rg
a
n
ic
p
re
p
p
e
r.
c
a

th
e
p
e
o
p
le
s
c
u
b
e
.c
o
m

th
e
p
o
s
te
m
a
il
.c
o
m

th
e
re
b
e
l.
m
e
d
ia

th
e
ru
n
d
o
w
n
li
v
e
.c
o
m

th
e
ru
s
s
o
p
h
il
e
.o
rg

th
e
s
a
k
e
r.
is

th
e
s
le
u
th
jo
u
rn
a
l.
c
o
m

th
ir
d
w
o
rl
d
tr
a
v
e
le
r.
c
o
m

th
ri
v
e
m
o
v
e
m
e
n
t.
c
o
m

to
p
ri
g
h
tn
e
w
s
.c
o
m

tr
ib
u
n
e
h
e
ra
ld
.n
e
t

tr
ib
u
n
is
t.
c
o
m

tr
u
e
e
c
o
n
o
m
ic
s
.b
lo
g
s
p
o
t.
c
o
m

tr
u
n
e
w
s
.c
o
m

tr
u
th
in
g
o
ld
.c
o
m

tr
u
th
n
e
tw

o
rk
.c
o
m

ty
ro
n
e
tr
ib
u
la
ti
o
n
s
.c
o
m

u
n
d
e
rg
ro
u
n
d
h
e
a
lt
h
.c
o
m

u
n
io
n
le
a
d
e
r.
c
o
m

w
e
a
lt
h
w
ir
e
.c
o
m

w
o
rl
d
2
4
m
o
n
it
o
r.
c
o
m

w
o
rl
d
d
a
il
y.
in
fo

domains

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

C
o
u
n
t

(h) Unknown

Figure 3.3: Histogram of news origin for each category.

CHAPTER 3. DATA EXPLORATION 26

rumor hate unreliable conspiracy clickbait satire fake reliable bias political junksci unknown
type

0

200

400

600

800

1000

W
or

d
Co

un
t

Boxplots of word counts for each type

0 2500 5000 7500 10000 12500 15000 17500
Word Count

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Distribution of word count per texts

0 200 400 600 800 1000 1200
Word Count

0

100000

200000

300000

400000

500000
Distribution of word count per texts, limited to less than 1250 words

Figure 3.4: Distribution of the number of words per text

Fake News analysis

In this section, the analysis will focus on fake news and reliable news. Because of what
shows Figure 3.3, that is, some categories are almost all from the same source, an anal-
ysis of what happens when dropping these sources. First, lets compare the amount of
news while and while not taking into account major sources.

Comparing Figure 3.5 and Figure 3.6 shows that even by removing nytimes.com and
beforeitsnews.com news from the dataset still leave enough texts to train the different
models without the risk of learning something unwanted such as only separating these
two sources. But one drawback is that the ratio between fake news and reliable news is
going from around one half to around one fourth.

CHAPTER 3. DATA EXPLORATION 27

fa
k
e

re
li
a
b
le

type

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

C
o
u
n
t

Figure 3.5: Summary statistics for not downsampled fake and reliable news.

3.3.2 Liar-Liar Corpus

As said in Chapter 1, this dataset is made of small text of one or two sentences at most.
Which means that they are smaller than the ones in fake news corpus. The distribution
of words length can be seen at Figure 3.7. In addition, this dataset is not unbalanced
as the other corpus is, which means that precautions do not have to be taken.

3.4 Visualization With t-SNE

In order to visualize the data, it is needed to transform text in a numerical way and even-
tually reduce the dimension in order to allow it to be plotted on a 2D or 3D plot. Here
TF-IDF (term frequency, inverse document frequency[6, 33]) is used. How it works will be
details later on. This produces a sparse matrix with each document being represented as
an array, each value of the array being a value for one term. That is, the more term in the
corpus, the longer the array becomes. For example, a corpus of 10.000 text with 20.000
unique words would be represented as a 10000×20000 sparse matrix. As said before, plot-
ting in 20000 dimension is not possible. In order to do so, the number of dimensions needs
to be reduced. Here, principal component analysis before t-SNE[34] will be used together.

What is t-SNE? It stands for t-distributed stochastic neighbour embedding.
The goal of this method is that two points to are closed in RQ should be close in RS, S �
Q. In order to do so, the algorithm starts by fitting a probability distribution on the

CHAPTER 3. DATA EXPLORATION 28

fa
k
e

re
li
a
b
le

type

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

C
o
u
n
t

Figure 3.6: Summary statistics for downsampled dataset on fake and reliable news

input points. It starts by computing.

pi|j =

exp(−||xi−xj ||2)
2σ2

i∑
k 6=i

exp(−||xi−xk||2)
2σ2

i

Each of there yi, i ∈ 0 . . . N being a point of dimensions Q.
Then

pij =
pi|j + pj|i

2N

is computed.
The probability distribution for the low density map is given by

qij =
(1 + ||yi − yj||2)−1∑
k 6=l(1 + ||yk − xl||2)−1

And in order to have a low dimension probability distribution as close as possible to the
high dimension one, it minimizes the KullbackLeibler divergence of the two distributions.

KL(P ||Q) =
∑
i 6=j

pij ∗ log(
pij
qij

)

The minimization of KL divergence is achieved by gradient descent. The documentation
of the module of scikit-learn[35] used for computing this value recommends applying PCA
first in order to reduce the original dimension and speedup computation. The result of
these computations can be seen at Figure 3.8. These firsts 500 PCA components explain
around 47% of the total variance. The figure shows that there is no clear clustering of
the classes.

CHAPTER 3. DATA EXPLORATION 29

reliable fake
Type

2.5

5.0

7.5

10.0

12.5

15.0

17.5

W
or

d
Co

un
t

Boxplot

0 50 100 150 200 250 300
Word Count

0.00

0.02

0.04

0.06

0.08

0.10

Pr
op

or
tio

n

Word Count Distribution

0 10 20 30 40
Word Count

0.00

0.02

0.04

0.06

0.08

0.10

Pr
op

or
tio

n

Word Count Distribution, removed outliers

Figure 3.7: Number of words distributions for liar-liar datasets. On the first and the third
plots, a few outliers with length greater than 50 have been removed in order to make the
plots more readable.

Increasing the number of PCA components to 1750 gives the results at Figure 3.9 and
does not show more clustering, even if it explains 75% of the variance. This shows that
classifying the dots might not be easy, but it should be reminded that it is a dimensional-
ity reduction and that there is a loss of information. Some of the original data dimensions
can have a better separation of the classes.

It is not possible to use t-SNE on the Fake News Corpus because the algorithm is quadratic
with respect to the number of samples. Which makes it impossible to compute for that
corpus which is larger than the liar-liar corpus. But it is still possible to try to make
some visualization using truncated singular value decomposition.
In this case, only with a 2D projection, we can already see some kind of separation between
the two classes, thus we can think that the Fake News Corpus will be easier to deal
with.

3.5 Conclusion

Data exploration has shown that there is no real statistical differences between text meta-
data for fake and reliable news, and thus make it not interesting for using it for classifying
new texts. In addition, dimensionality reduction does not show any sign of helpfulness
for the classification.

CHAPTER 3. DATA EXPLORATION 30

40 20 0 20 40

40

20

0

20

40

T-SNE plot with 500 firsts PCA components
fake
reliable

Figure 3.8: t-SNE plot for liar-liar dataset.

CHAPTER 3. DATA EXPLORATION 31

40 20 0 20 40

40

20

0

20

40

T-SNE plot with 1750 firsts PCA components
fake
reliable

Figure 3.9: t-SNE plot for liar-liar dataset.

CHAPTER 3. DATA EXPLORATION 32

Figure 3.10: First two LSA components for fake news corpus

CHAPTER 3. DATA EXPLORATION 33

Chapter 4

Machine Learning techniques

4.1 Introduction

In this chapter, we will focus on the more traditional methods used in natural language
processing such as Näıve-Bayes, decision trees, linear SVM and others. These will serve as
a baseline for comparing the performances of the more two advanced models that will be
analysed later on: LSTM and Attention Mechanism. The first thing to do when working
with text is the do words and texts embedding, indeed, in order to use machine learning
algorithms on texts, a mathematical representation of these texts is required.

4.2 Text to vectors

As explained before, text needs to be represented in a way that gives more meaningful
information than a simple sequence of bits, which have additional drawbacks such that
for a given word, the sequence of bits representing it depends on the coding. The first and
simplest coding that comes to mind is a one-hot encoding: a matrix M of size number of
texts × number of words where Mij = 1 if the word j is present in the text i and 0 in the
other case. But this is still not enough as each word is given the same weight, no matter
how often it appears in the text.

In order to overcome this problem, term-frequency might be used, that is, rather than
setting Mij to 0 or 1 we set it to the amount of time it appears in the text.

It is possible to use even better text embedding. It is called term-frequency, inverse doc-
ument frequency. The main idea is that a word that appears often in all the documents is
not helpful in order to classify the documents. For example, if the task is to classify books
of biology and physics, words atoms, cells or light are more useful than today or tomorrow.

In order to compute tf-idf, it is separated in two parts, the first one being term frequency
and the second one inverse document frequency. We have that

tfij = #(Wj|Wj ∈ Di) (4.1)

That it tfij is the number of times the word j appears in the document i. Secondly, we
have that

idfj = log(
#D

#(Di|Wj ∈ Di)
)

34

CHAPTER 4. MACHINE LEARNING TECHNIQUES 35

this is the log of the total number of documents, over the number of documents that
contains the word j. Finally, the value tfidf value is computed by

tf − idfij = tfij ∗ idfj (4.2)

This the text embedding methods that will be used in this section.

4.3 Methodology

All the methods presented will be tested in two different ways:

• On the liar-liar dataset

• On the fake corpus dataset, excluding the news from beforeitsnews.com and ny-
times.com

To be more precise, in the first case, the models will be trained on a training set, tuned
using validation set and finally tested using test set. In the second case, the same method-
ology will be used, the dataset has been split be choosing 60% of the text from each domain
for training, and 20% for validation and testing. This way of splitting has been chosen
because of the uneven representation of each domain in the dataset in order to ensure
representation of all the domains in the tree subsets.

4.3.1 Evaluation Metrics

In order to evaluate each model, multiple evaluation metrics have been used. There are
recall, precision and f1-score. It is needed to use multiple metrics because they don’t all
account for the same values. For instance, it is possible to have a model with a recall of
1 that behave extremely bad because it simply classifies all the inputs in the same single
class. Remember That Precision Is Defined As

Precision =
TP

TP + FP
(4.3)

Which means that we can have two different precision, depending on which classes is
considered as being positive. This is the proportion of correctly classified positive elements
over the number of elements classified as positive. It is equals to 1 when there is no false
positive, but it does not mean that all the positive elements are correctly classified as it
might be some false negative. The recall helps to solve this problem. It Is Defined As

recall =
TP

TP + FN
(4.4)

The f1-score combines the recall and the precision. It is defined by

f1− score =
2 ∗ precision ∗ recall
precision+ recall

(4.5)

It is also possible to look at the weighted average of all these values. For instance, it
is possible to compute the global recall by averaging the recall for both classes by the
respective class ratio.

CHAPTER 4. MACHINE LEARNING TECHNIQUES 36

Finally, raw output can be used by looking at the confusion matrix.

The first parameter to tune is the max number of features used by tf-idf. This is the
maximum number of words that will be kept to create the text encoding. The words that
are kept are the most frequent words.

4.4 Models

Four models have been used in order to classify texts represented as a TF-IDF matrix.
These are Multinomial Näıve-Bayes, Linear SVM, Ridge Classifier and Decision Tree. I
will start by a very brief recap of each model and how they work.

4.4.1 Näıve-Bayes[7]

The basic idea of Näıve-Bayes model is that all features are independent of each other.
This is a particularly strong hypothesis in the case of text classification because it supposes
that words are not related to each other. But it knows to work well given this hypothesis.
Given an element of class y and vector of features X = (x1, ..., xn). The probability of
the class given that vector is defined as

P (y|X) =
P (y) ∗ P (X|y)

P (X)
(4.6)

Thanks to the assumption of conditional independence, we have that

P (xi|y, x1, ..., xi−1, xi+1, ..., xn) = P (xi|y) (4.7)

Using Bayes rules we have that

P (y|x1, ..., xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, ..., xn)
(4.8)

Because P (x1, ..., xn) is constant, we have the classification rule

ŷ = argmax
y

P (y)
n∏
i=1

P (xi|y) (4.9)

4.4.2 Linear SVM

Linear SVM is a method for large linear classification. Given pairs of features-label
(xi, yi), yi ∈ {−1, 1}, it solves the following unconstrained optimization problem.

min
w

1

2
wTw + C

l∑
i=1

ξ(w; xi, yu) (4.10)

Where ξ is a loss function, in this case L2 loss function has been used, and C > 0 a
penalty parameter. Class of new examples are assigned by looking at the value of wTw.
The class 1 is assigned if wTw ≥ 0 and the class −1 if wTw < 0.

CHAPTER 4. MACHINE LEARNING TECHNIQUES 37

4.4.3 Decision Tree[36]

Decision tree works by recursively selecting features and splitting the dataset on those
features. These features can either be nominal or continuous.

In order to find the best split, it uses gini impurity.

G =
C∑
i=1

p(i) ∗ (1− p(i)) (4.11)

Where p(i) is the probability of class i in the current branch. The best split is chosen as
the one that decreases the most the impurity. For instance, beginning from the root, the
gini impurity is computed on the complete dataset, then the impurity of each branch is
computed over all features, weighting it by the number of elements in each branch. The
chosen feature is the one that has the highest impurity.

4.4.4 Ridge Classifier

Ridge classifier works the same way as ridge regression. It states the problem as a mini-
mization of the sum of square errors with penalization. It can be expressed as in Equation
4.12.

min
w
||Xw − y||22 + α||w||22 (4.12)

The predicted class if positive if Xw is positive and negative otherwise.

4.5 Models on liar-liar dataset

4.5.1 Linear SVC

In the case of linear SVC there is one parameter to tune up, which is the penalty param-
eters for the error term. Figure 4.1 shows the three main metrics with respect to the
penalty parameter. This show that a parameter of around 0.1 is the best one.

4.5.2 Decision Tree

With decision trees, it is possible to reduce overfitting by pruning the tree. It is possible
to do pre-pruning or post pruning. Pre-pruning means that a stopping criterion is used
to stop tree growth earlier and post pruning cut the tree once it has been fully grown.
It this case pre-pruning is done by limiting the maximum depth of the tree. Figure 4.2
shows metrics values for different depths. It seems that tree of depth 1000 are the best
ones.

4.5.3 Ridge Classifier

With the ridge classifier model, it is also possible to tweak the penalty value of the
optimization problem. At Figure 4.3 we can see that the optimal parameter is around
10 or 20, depending of the metrics that we want to maximize. Later on, the value of 10 will
be chosen as a compromise between precision and recall. It is the value that maximizes
the f1-score.

CHAPTER 4. MACHINE LEARNING TECHNIQUES 38

10
4

10
3

10
2

10
1

10
0

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Average recall, precision and f1-score

Average Recall
Average precision
Average f1-score

Figure 4.1: Tuning linearSVC parameters

10
1

10
2

10
3

10
4

10
5

0.50

0.52

0.54

0.56

0.58

Average metrics with respect to the maximum depth of the tree.

Average Recall
Average precision
Average f1-score

Figure 4.2: Tuning Decision Tree Parameters

CHAPTER 4. MACHINE LEARNING TECHNIQUES 39

10 4 10 3 10 2 10 1 100 101

0.56

0.58

0.60

0.62

0.64
Average of precision, recall and f1score

Average Recall
Average precision
Average f1score

Figure 4.3: Average metrics for ridge classifiers with respect to the penalty parameter.

101 102 103 104

0.50

0.52

0.54

0.56

0.58

0.60

Weighted average F1score

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 2000 4000 6000 8000 10000

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

Weighted average precision

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 2000 4000 6000 8000 10000

0.54

0.55

0.56

0.57

0.58

0.59

0.60

Weighted average recall

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.4: Weighted average of f1-score, precision and recall of each class.

4.5.4 Max Feature Number

Starting with the maximum number of features, the precision of each model can be anal-
ysed when limiting the maximum number of words. The results for each model can be
seen at Figure 4.4, 4.5 and 4.6. Shows that depending on the metrics we want to
optimize it is better to choose different parameters. For instance, in order to maximize
F1-score, it is better to use a maximum number of features of 1000.

The results are slightly different if the goal is to optimize the precision because if the best
value stays the same for Linear SVM and Ridge Classifier, the Näıve-Bayes work better
when using the maximum number of features and it goes the same way for recall. Based
on Figure 4.4 we can say that when it comes to precision and recall, Näıve-Bayes is the
one that performs the best.

Row results for max features selection are available at Appendix A. It goes differently
when we focus on a single class. For example, the precision for fake detection is at its
maximum for Linear SVM and Ridge Classifier when only 10 features are used. But at the
same time, it is at its minium for reliable class. It shows that when trying to optimize the

CHAPTER 4. MACHINE LEARNING TECHNIQUES 40

101 102 103 104
0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

Precision for positive class : fake

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

101 102 103 104

0.54

0.55

0.56

0.57

0.58

0.59

0.60

Precision for positive class : reliable

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.5: Precision of the model for each class, the x axes is log scale of the number of
features

101 102 103 104

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Recall for positive class : fake

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

101 102 103 104

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Recall for positive class : reliable

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.6: Precision of the model for each class, the x axes is log scale of the number of
features

overall model and not only for a single class, it is better to look at the weighted average
than at the value for a single class. But it is still important to look at the metrics for a
single class because it indicates how it behaves for this class. For instance, in the case of
automatic fake news detection, it is important to minimize the number of reliable news
misclassified in order to avoid what could be called censorship.

4.6 Models on fake corpus dataset

4.6.1 SMOTE: Synthetic Minority Over-sampling Technique[37]

As it has been shown in Chapter 3, the fake news corpus is unbalanced. Synthetic
minority oversampling is a technique that allows generating fake samples from the minor
class. It works by randomly choosing one or many nearest neighbours in the minority
class. For instance, if the algorithm is set to use 5 nearest neighbours, for each sample
it will choose one of its nearest neighbours, and generate a new sample on the segment

CHAPTER 4. MACHINE LEARNING TECHNIQUES 41

10 4 10 3 10 2 10 1 100 101

0.87

0.88

0.89

0.90

0.91

0.92

0.93

0.94

Average of precision, recall and f1score

Average Recall
Average precision
Average f1score

Figure 4.7: Metrics value with respect to the penalty parameter for ridge classifier

joining the sample and its neighbour. Algorithm 1 and 2 shows how it works. The first

Data: k = Number of nearest neighbours
Data: T = number of minority class samples
for i← 1...T do

Compute k-nearest neighbours of sample i;
Populate(knn, i);

end
Algorithm 1: SMOTE

Data: knn = the k-nearest neighbour of sample i
Data: s = ith sample
nn = random choice(knn);
newSample = s + rand(0, 1) * (nn - s);

Algorithm 2: Populate

one computes the k-nearest neighbours and the second one computes a new element by
randomly choosing one of these neighbours.

4.6.2 Model selection without using SMOTE

Hyperparameters tuning

As for the models trained on the liar-liar corpus, hyper-parameters can be optimized
the same way. The average metric for each model with respect to their parameters are
shown at Figure 4.7, 4.8 and 4.9.

The optimal parameter for the ridge classifier is clearly 1. As well as for the decision tree
trained on liar-liar dataset, the optimal maximum depth is of 1000. And finally, the
optimal value for the penalty parameter of the svm is also 1.

By looking at Figure 4.5, 4.6 and 4.4 we can find optimal parameters for the number of
features used in TF-IDF. It shows that linear svm and ridge classifiers are the ones that

CHAPTER 4. MACHINE LEARNING TECHNIQUES 42

10
1

10
2

10
3

10
4

10
5

0.84

0.85

0.86

0.87

0.88

0.89

Recall for positive class : fake

Average Recall
Average precision
Average f1-score

Figure 4.8: Optimal depth of decision tree.

10
4

10
3

10
2

10
1

10
0

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Average recall, precision and f1-score

Average Recall
Average precision
Average f1-score

Figure 4.9: Optimal penalty parameters for linear svm

CHAPTER 4. MACHINE LEARNING TECHNIQUES 43

0 50000 100000 150000 200000 250000 300000 350000

0.75

0.80

0.85

0.90

0.95

Weighted average F1-score

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 50000 100000 150000 200000 250000 300000 350000
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Weighted average precision

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 50000 100000 150000 200000 250000 300000 350000

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Weighted average recall

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.10: Average recall, precision and f1-score wti respect to the maximum number
of features.

0 50000 100000 150000 200000 250000 300000 350000

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Precision for positive class : fake

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 50000 100000 150000 200000 250000 300000 350000
0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Precision for positive class : reliable

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.11: Precision for fake and reliable class for each model with respect to the
maximum number of features

perform the best, having an average precision of sligtly more than 94% for the linear svm
and 94% for the ridge classifier. They achieve these performances from 50, 000 features
and does not decrease. On the other hand, Näıve-Bayes reaches a pike at 100, 000 features
and greatly decrease afterward.

Figure 4.4 shows why it is important to look at all the metrics, because Näıve-Bayes
reaches a recall of 1 for the reliable class and close to 0 for the fake class, which means
that almost all texts are classified as reliable. This can be verified by looking at Figure
4.21, only a small proportion of true fake is actually classified as it.

10
4

10
5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Recall for positive class : fake

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

10
4

10
5

0.92

0.94

0.96

0.98

1.00

Recall for positive class : reliable

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.12: Recall for fake and reliable class for each model with respect to the maximum
number of features

CHAPTER 4. MACHINE LEARNING TECHNIQUES 44

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

15067 2169

1513 50575

Model : LinearSVC

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

2822 14414

44 52044

Model : MultinomialNB

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

13130 4106

3596 48492

Model : DecisionTreeClassifier

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

14250 2986

1215 50873

Model : RidgeClassifier

10000

20000

30000

40000

50000

10000

20000

30000

40000

50000

8000

16000

24000

32000

40000

48000

10000

20000

30000

40000

50000

Using max features : 364070

Figure 4.13: Confusion matrix for each model using 364, 070 features

4.6.3 Model selection with SMOTE

The first thing that can be noticed at Figure 4.14, 4.15, 4.16, 4.17, 4.18 and 4.19 is
that the two models that worked the best without applying SMOTE method, linear SVM
and ridge classifiers are still the ones that perform the best. By comparing Figure 4.9
and Figure 4.16 we can see that it works better when applying a smaller regularization
parameter. It goes from 0.66% of accuracy to 0.86% of accuracy thus acting as a regular-
ization. The same does not apply to ridge classifiers.

It also has a huge impact on how Näıve-Bayes behaves as it removes overfitting when using
a larger number of features in TF-IDF, leading to a few percent of accuracy increase.

It conclusion for SMOTE method we can say that it does help models that do not have a
regularization parameter or when the regularization parameter is low. Thus it does help
prevent overfitting.

4.7 Results on testing set

4.7.1 Methodology

Now that all the models have been tuned, they need to be tested independently on testing
set. Each dataset contains a testing set.
For the liar-liar dataset the following parameters will be used:

• Linear SVM with regularization parameters of 0.1 of a max TF-IDF features of 500,

• Ridge Classifier with α = 10 and also max TF-IDF features of 500,

• Decision Tree with maximum depth of 1000 and the maximum number of features
for TF-IDF,

CHAPTER 4. MACHINE LEARNING TECHNIQUES 45

10 4 10 3 10 2 10 1 100 101

0.86

0.88

0.90

0.92

0.94

Average of precision, recall and f1score

Average Recall
Average precision
Average f1score

Figure 4.14: Metrics value with respect to the penalty parameter for ridge classifiers when
using SMOTE.

10
1

10
2

10
3

10
4

10
5

0.80

0.82

0.84

0.86

0.88

Average metrics with respect to the maximum depth of the tre

Average Recall
Average precision
Average f1-score

Figure 4.15: Optimal depth of decision tree when using SMOTE.

10
4

10
3

10
2

10
1

10
0

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Average recall, precision and f1-score

Average Recall
Average precision
Average f1-score

Figure 4.16: Optimal penalty parameters for linear svm when using SMOTE

CHAPTER 4. MACHINE LEARNING TECHNIQUES 46

0 50000 100000 150000 200000 250000 300000 350000

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Weighted average F1-score

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 50000 100000 150000 200000 250000 300000 350000

0.84

0.86

0.88

0.90

0.92

0.94

Weighted average precision

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 50000 100000 150000 200000 250000 300000 350000

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950
Weighted average recall

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.17: Average recall, precision and f1-score wti respect to the maximum number
of features.

0 50000 100000 150000 200000 250000 300000 350000

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Precision for positive class : fake

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 50000 100000 150000 200000 250000 300000 350000

0.92

0.93

0.94

0.95

0.96

0.97

Precision for positive class : reliable

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.18: Precision for fake and reliable class for each model with respect to the
maximum number of features

0 50000 100000 150000 200000 250000 300000 350000

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Recall for positive class : fake

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

0 50000 100000 150000 200000 250000 300000 350000

0.75

0.80

0.85

0.90

0.95

Recall for positive class : reliable

DecisionTreeClassifier
LinearSVC
MultinomialNB
RidgeClassifier

Figure 4.19: Recall for fake and reliable class for each model with respect to the maximum
number of features

CHAPTER 4. MACHINE LEARNING TECHNIQUES 47

• Näıve-Bayes will also use the maximum number of features for TF-IDF.

For the Fake News Corpus, the following setting will be used:

• Linear SVM with regularization parameters of 1,

• Ridge Classifier with α = 1,

• Decision Tree with maximum depth of 100.

They will all be trained using 100, 000 features for TF-IDF. For the Fake News Corpus
with SMOTE, the same parameters will be used, but the maximum number of features
for TF-IDF will be used.
All the models will be trained on train and validation set and tested on test set.

4.7.2 Results

Liar-Liar Corpus

By looking at the row results, based on average accuracy Näıve-Bayes, Linear SVM and
ridge classifiers perform very close, but when looking at the recall per class it shows that
Näıve-Bayes is bad at detecting fake news and classifies most of the text as reliable, when
Linear SVM and Ridge classifiers are more balanced. Finally, it is possible to look at the
ROC curve at Figure 4.20. One more time, it shows that Näıve-Bayes, linear svm and
ridge classifier have similar performance, but in this case it shows that NB has a little
advantage, with a slightly larger AUC. There is only one point for the decision tree as it
does not output probabilities for each class.

When it comes to the Fake news corpus, linear models are still the ones that perform
the best, with linear svm reaching an accuracy of 94.7% and ridge classifiers 93.98%. Sur-
prisingly, decision tree outperform Näıve-Bayes in this case, with an accuracy of 89.4%
when Näıve-Bayes only gets 85.3%.

In this case, the ROC curve (Figure 4.22) shows almost the same ranking of models,
except for Decision Tree that is the last one, and Näıve-Bayes being juste above it. Con-
fusion matrix (Figure 4.23) shows that Näıve-Bayes has a tendency of classifying fake
news as being reliable. And the other hand, ridge classifier is the one that makes the least
misclassification for reliable news, which is a good point.

Finally, there is the results of the models trained with SMOTE data augmentation. Using
it shows little to no improvements. The only benefit is to balance a little bit the recall
for Näıve-Bayes on fake and reliable news.

4.8 Conclusion

In this chapter we have analysed how traditional machine learning algorithms words on
two different datasets, the second being imbalanced a data augmentation technique, called
SMOTE, has been used in order to see if it improves the results.

CHAPTER 4. MACHINE LEARNING TECHNIQUES 48

fake reliable accuracy macro avg weighted avg

f1-score 0.514399 0.679764 0.614049 0.597082 0.607588
precision 0.570485 0.638376 0.614049 0.604430 0.608744
recall 0.468354 0.726891 0.614049 0.597623 0.614049
support 1106.000000 1428.000000 0.614049 2534.000000 2534.000000

(a) Raw results for Linear SVM

fake reliable accuracy macro avg weighted avg

f1-score 0.412107 0.698507 0.601421 0.555307 0.573504
precision 0.578431 0.608741 0.601421 0.593586 0.595512
recall 0.320072 0.819328 0.601421 0.569700 0.601421
support 1106.000000 1428.000000 0.601421 2534.000000 2534.000000

(b) Raw results for Näıve-Bayes

fake reliable accuracy macro avg weighted avg

f1-score 0.496366 0.691279 0.617206 0.593822 0.606207
precision 0.582927 0.633606 0.617206 0.608266 0.611486
recall 0.432188 0.760504 0.617206 0.596346 0.617206
support 1106.000000 1428.000000 0.617206 2534.000000 2534.000000

(c) Raw results for Ridge Classifer.

fake reliable accuracy macro avg weighted avg

f1-score 0.479354 0.591549 0.542226 0.535451 0.542580
precision 0.475936 0.594901 0.542226 0.535418 0.542977
recall 0.482821 0.588235 0.542226 0.535528 0.542226
support 1106.000000 1428.000000 0.542226 2534.000000 2534.000000

(d) Raw results for Decision Tree

Table 4.1: Raw results on Liar-Liar Corpus.

CHAPTER 4. MACHINE LEARNING TECHNIQUES 49

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

Linear SVC, AUC : 0.622406
Decision Tree, AUC : 0.545509
Ridge Classifier, AUC : 0.625501
NaïveBayes, AUC : 0.637815

Figure 4.20: ROC curve for each model

CHAPTER 4. MACHINE LEARNING TECHNIQUES 50

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

518 588

390 1038

Model : Linear SVM

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

354 752

258 1170

Model : NaïveBayes

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

478 628

342 1086

Model : Ridge Classifier

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

536 570

558 870

Model : Decision Tree

450

600

750

900

400

600

800

1000

450

600

750

900

1050

540

600

660

720

780

840

Figure 4.21: Confusion Matrix for each models

CHAPTER 4. MACHINE LEARNING TECHNIQUES 51

fake reliable accuracy macro avg weighted avg

f1-score 0.894700 0.965364 0.947874 0.930032 0.947620
precision 0.907861 0.960783 0.947874 0.934322 0.947494
recall 0.881916 0.969989 0.947874 0.925952 0.947874
support 17496.000000 52181.000000 0.947874 69677.000000 69677.000000

(a) Raw results for Linear SVM on Fake News Corpus

fake reliable accuracy macro avg weighted avg

f1-score 0.674458 0.905634 0.853682 0.790046 0.847585
precision 0.764127 0.875841 0.853682 0.819984 0.847790
recall 0.603624 0.937525 0.853682 0.770574 0.853682
support 17496.000000 52181.000000 0.853682 69677.000000 69677.000000

(b) Raw results for Näıve-Bayes on Fake News Corpus

fake reliable accuracy macro avg weighted avg

f1-score 0.874220 0.960438 0.939808 0.917329 0.938788
precision 0.919674 0.945736 0.939808 0.932705 0.939192
recall 0.833048 0.975604 0.939808 0.904326 0.939808
support 17496.000000 52181.000000 0.939808 69677.000000 69677.000000

(c) Raw results for Ridge Classifier on Fake News Corpus

fake reliable accuracy macro avg weighted avg

f1-score 0.791687 0.929799 0.894987 0.860743 0.895119
precision 0.788700 0.930987 0.894987 0.859844 0.895258
recall 0.794696 0.928614 0.894987 0.861655 0.894987
support 17496.000000 52181.000000 0.894987 69677.000000 69677.000000

(d) Raw results for Decision Tree on Fake News Corpus

Table 4.2: Results on Fake News Corpus without using SMOTE.

CHAPTER 4. MACHINE LEARNING TECHNIQUES 52

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

Linear SVC, AUC : 0.983538
Decision Tree, AUC : 0.839026
Ridge Classifier, AUC : 0.981112
NaïveBayes, AUC : 0.919392

Figure 4.22: ROC curve for each model

CHAPTER 4. MACHINE LEARNING TECHNIQUES 53

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

15430 2066

1566 50615

Model : Linear SVM

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

10561 6935

3260 48921

Model : NaïveBayes

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

14575 2921

1273 50908

Model : Ridge Classifier

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

13904 3592

3725 48456

Model : Decision Tree

10000

20000

30000

40000

50000

8000

16000

24000

32000

40000

48000

10000

20000

30000

40000

50000

8000

16000

24000

32000

40000

48000

Figure 4.23: Confusion Matrix for Each models

CHAPTER 4. MACHINE LEARNING TECHNIQUES 54

fake reliable accuracy macro avg weighted avg

f1-score 0.891373 0.962340 0.94407 0.926857 0.944520
precision 0.869960 0.970623 0.94407 0.920291 0.945346
recall 0.913866 0.954198 0.94407 0.934032 0.944070
support 17496.000000 52181.000000 0.94407 69677.000000 69677.000000

(a) Raw results of linear svm on Fake News Corpus when training using SMOTE

fake reliable accuracy macro avg weighted avg

f1-score 0.714816 0.873538 0.824777 0.794177 0.833683
precision 0.604424 0.950521 0.824777 0.777472 0.863615
recall 0.874543 0.808091 0.824777 0.841317 0.824777
support 17496.000000 52181.000000 0.824777 69677.000000 69677.000000

(b) Raw results of Näıve-Bayes on Fake News Corpus when training using SMOTE

fake reliable accuracy macro avg weighted avg

f1-score 0.877755 0.956129 0.935431 0.916942 0.936449
precision 0.836588 0.973317 0.935431 0.904953 0.938984
recall 0.923182 0.939537 0.935431 0.931360 0.935431
support 17496.000000 52181.000000 0.935431 69677.000000 69677.000000

(c) Raw results of Ridge Classifier on Fake News Corpus when training using SMOTE

fake reliable accuracy macro avg weighted avg

f1-score 0.787226 0.921178 0.884969 0.854202 0.887542
precision 0.734992 0.946085 0.884969 0.840539 0.893079
recall 0.847451 0.897549 0.884969 0.872500 0.884969
support 17496.000000 52181.000000 0.884969 69677.000000 69677.000000

(d) Raw results of Decision tree on Fake News Corpus when training using SMOTE

Table 4.3: Results on Fake News Corpus when training with SMOTE.

CHAPTER 4. MACHINE LEARNING TECHNIQUES 55

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
iti

ve
 R

at
e

Linear SVC, AUC : 0.982912
Decision Tree, AUC : 0.840983
Ridge Classifier, AUC : 0.980182
NaïveBayes, AUC : 0.919660

Figure 4.24: ROC curve for each model

CHAPTER 4. MACHINE LEARNING TECHNIQUES 56

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

15989 1507

2390 49791

Model : Linear SVM

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

15301 2195

10014 42167

Model : NaïveBayes

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

16152 1344

3155 49026

Model : Ridge Classifier

Fake Reliable
Predicted Class

F
ak

e
R

el
ia

bl
e

T
ru

e
C

la
ss

14827 2669

5346 46835

Model : Decision Tree

10000

20000

30000

40000

8000

16000

24000

32000

40000

8000

16000

24000

32000

40000

48000

8000

16000

24000

32000

40000

Figure 4.25: Confusion Matrix for each models

CHAPTER 4. MACHINE LEARNING TECHNIQUES 57

We can conclude that in all the cases linear models are the ones that work the best, with a
top accuracy of 61.7% on the liar-liar corpus using Ridge Classifier, and a top accuracy
of 94.7% on the Fake News Corpus using linear svm. At the end, the result obtains on
the second data set are really good, when those obtain on the first when are mitigated.

As explained earlier, it might be important to choose to model that makes the smaller
misclassification rate on reliable news in order to avoid possible censorship and confusion
matrix shows that in both case Ridge Classifiers is the ones that make the fewer errors in
that case.

In addition, we have shown that Synthectic Minority Over Sampling Techniques acts as
a regularizers, as it does improve performance when the penalization term in small on
linear models.

In the next section, the focus will be put on trying to improve results on the Liar-Liar
corpus as there is room for improvement and that the second dataset already as very
good results. But models will still be trying on it for comparison.

CHAPTER 4. MACHINE LEARNING TECHNIQUES 58

Chapter 5

Attention Mechanism

5.1 Introduction

In this section, we will focus on the deep learning models, the first one being a bidirectional
LSTM and the second one an attention layer is added to this LSTM. But it is need to use
another text embedding in order to work with LSTM. Indeed, tf-idf create a sparse matrix
with each row corresponding to a value for a given word. This means that the order of
the words are lost. In order to solve this, word2vec[38] is used. It allows matching words
to continuous vectors of a given size with interesting properties. Another method, which
consists in making word embedding as tuning parameters will be used.

5.2 Text to Vectors

5.2.1 Word2Vec

Word2Vec comes in two fashions: continuous bag of words (CBOW) and skip gram. It
is originally designed to predict a word given a context. For instance, given two previ-
ous words and the next two words, which word is the most likely to take place between
them. But it appears that the hidden representation of these words works well as word
embedding and has very interesting properties such that words with similar meaning have
similar vector representation. It is also possible to perform arithmetic that captures in-
formation such as singular, plural or even capital and countries. For example, we have
that dog − dogs ≈ cat− cats but also Paris− France ≈ Berlin−Germany.

It is possible to visualize these relationships by using t-SNE for projecting high dimensions
word vectors in 2D space. The results of various relationships can be seen at Figure 5.1.

How does it work?

As the original authors did not intend this kind of result, Xin Rong[39] did a good job
explaining how it works. Let V be the size of the vocabulary and that there is only one
word in the CBOW model, it give Figure 5.2 models. Each word is encoded as a one-hot
vector of size V. That means that it is a sparse vector full of zeros except for the position
assigned to that word which is one. The hidden layer is computed as

h = WTx (5.1)

59

CHAPTER 5. ATTENTION MECHANISM 60

Figure 5.1: Relationships between different words with t-SNE dimensionality reduction.

Figure 5.2: A simple CBOW model with only one word in the context

CHAPTER 5. ATTENTION MECHANISM 61

Where WV×N is the weight matrix to optimize over. The output layer values are com-
puted as

Y = W′Th (5.2)

As before W′N×V is also a weight matrix to optimize. The loss can be computed as
softmax cross entropy.

It is also possible to make the opposite: predicting the context given a single input word.
This is the skip-gram model. In this case the loss becomes Equation 5.3.

E = −
C∑
c=1

uj∗c + C ·
V∑
j′=1

exp(uj′) (5.3)

j∗c is the index of the cth output context word and uj∗c is the score of the jth word in the
vocabulary for the cth context word. Finally, the embedding that is used are the value of
the hidden layers produced for a given word.

5.3 LSTM

LSTM or Long Short Term Memory[8] is a kind of recurrent neural network that fits well
to temporal or sequential input such as texts. A RNN is a type of neural network where
the hidden state is fed in a loop with the sequential inputs. There are usually shown as
unrolled version of it (Figure 5.4). Each of the Xi being one value in the sequence.

In this case, Xi values are word vectors. There are two possibilities, either use pre-trained
vector with word2vec or make Xi inputs a parameter to learn in the same way as it
works for the Word2Vec algorithm, having a one-hot encoding of the word and a matrix
of weights to tune. Each method will be used.

Recurrent Neural Networks do not works very well with long-term dependencies, that is
why LSTM have been introduced. It is made of an input gate, an output gate and a
forget gate that are combined in Equation 5.4.

ft = σg(Wfxt + Ufht−1 + bf) (5.4)

it = σg(Wixt + Uiht−1 + bi) (5.5)

ot = σg(Woxt + Uoht−1 + bo) (5.6)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (5.7)

ht = ot ◦ σh(ct) (5.8)

Figure 5.5 shows how it works. A bidirectional LSTM works the same way, but the
input is fed in the two directions, from the start to the end and from the end to the start.

5.4 Attention Mechanism

Attention mechanism[1, 21] adds an extra layer between LSTM outputs and the final
output of the network. It merges word-level features into sentence features using a weight
vector.

CHAPTER 5. ATTENTION MECHANISM 62

Figure 5.3: Skip-gram model with multiple outputs.

Figure 5.4: Unrolled RNN (Understanding LSTM Networks, https://colah.github.i
o/posts/2015-08-Understanding-LSTMs/)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
https://colah.github.io/posts/2015-08-Understanding-LSTMs/)

CHAPTER 5. ATTENTION MECHANISM 63

Figure 5.5: LSTM gates,
https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scra

tch-with-code-8da40f0b71f4)

Figure 5.6: Bidirectional LSTM Model With Attention

https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4)
https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4)

CHAPTER 5. ATTENTION MECHANISM 64

Outputs sequence of the LSTM is summed element-wise in order to merge them. We have

that hi = [
−→
hi +

←−
hi],
−→
hi and

←−
hi begin the outputs i of sequence in each direction as show

at Figure 5.6.
Lets H be a matrix of the concatenation of all the hi,

H = [h1, h2, ..., hT] (5.9)

Where T is the sequence length. Then we define

M = tanh(H) (5.10)

α = softmax(wTM) (5.11)

r = HαT (5.12)

Finally, we compute h∗ = tanh(r). For the classification, it uses a softmax classifier as
p̂(y|S) = softmax(W Sh∗ + b). Originally the loss function is the negative log likelihood,
but as in this case it is a binary classification I used binary cross entropy.

5.5 Results

5.5.1 Methodology

In order to train the models and perform hyper parameters optimization grid search have
been used when it was possible (on the liar-liar dataset) and knwoleadge acquired there
have been used in order to tune parameters for the networks on the Fake News Corpus.
In addition, in order to find the best parameters among all tested with gird search, for
each metric, the training epochs having the highest validation value for those metrics have
been chosen.

All the models have been trained using adam optimizer and initialized using a normal
distribution for the weights.

As SMOTE cannot be used on the Fake News Corpus dues to the size of the corpus,
in order to rebalance the dataset the minority class have been over sampled by feeding
multiple times the same input by looping through them.

5.5.2 Liar-Liar dataset results

As explained earlier, both models have been trained using different embedding: the first
one being pre-trained word2vec vectors of size 300 and the second one being a tunable
parameter with different embedding size.

LSTM

When it comes to LSTM trained on liar-liar dataset, it simply does not works. It classi-
fies almost all the texts as being from the same class. Although, it reaches a good score
on the training data, it does not manage to generalize correctly. Figure 5.7 shows the
recall, precision and f1-score and loss for training and testing set of the best models for
the LSTM using word2vec. We can see that even if the training score increase, the testing

CHAPTER 5. ATTENTION MECHANISM 65

0 25 50 75 100 125 150 175 200
epoch

20000

40000

60000

80000

100000

Lo
ss

Loss with respect to the epoch

loss

0 25 50 75 100 125 150 175 200
epoch

0.50

0.55

0.60

0.65

0.70

0.75

Recall metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.3

0.4

0.5

0.6

0.7

F1score metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.3

0.4

0.5

0.6

0.7

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure 5.7: Best LSTM With word2vec

CHAPTER 5. ATTENTION MECHANISM 66

0 25 50 75 100 125 150 175 200
epoch

20000

40000

60000

80000

100000

120000

Lo
ss

Loss with respect to the epoch

loss

0 25 50 75 100 125 150 175 200
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Recall metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.5

0.6

0.7

0.8

F1score metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure 5.8: Best LSTM with word embedding as tunable parameters.

values oscillate.

When training the models with word embedding as tunable parameters, the results slightly
improve, with an average precision between 55% and 60%. This can be seen at Figure
5.8.
The training was stopped after 200 iterations because the validation score was not im-
proving anymore.

5.5.3 Attention Mechanism

We could think that adding an extra layer to such a bad model would not make any im-
provement and be useless, but adding an attention layer does improve a little the results.
When using word2vec embedding, the best epoch reaches up to 62.9595% of average ac-
curacy, which is better than the simple LSTM. Because there are a lot of models with

CHAPTER 5. ATTENTION MECHANISM 67

10.0 15.0 20.0
SEQ_LENGTH

0.5725

0.5750

0.5775

0.5800

0.5825

0.5850

0.5875

0.5900

0.5925

pr
ec

is
io

n

5.0 10.0 25.0 50.0 100.0 200.0 300.0
HIDDEN

0.55

0.56

0.57

0.58

0.59

0.60

0.61

pr
ec

is
io

n

1.0 3.0
LAYERS

0.570

0.575

0.580

0.585

0.590

pr
ec

is
io

n

0.0 0.25 0.5 0.75
DROPOUT

0.575

0.580

0.585

0.590

pr
ec

is
io

n

Figure 5.9: Confidence Interval of Precision for Each Parameter Value

different parameters, it is interesting to look at the distribution of the results for the best
epochs by fixing parameters one by one. Figure 5.9 shows the 95% confidence interval
for precision for a fixed parameter.
It shows that it is better to use fewer hidden units in the model, and only a single layer.

The sequence length has a very small impact on the precision. Actually, the best model
uses a sequence length of 20.
The precision of the different models range from 53% to 63% (Figure 5.10.) The training
plot of the model that reaches the maximum precision can be seen at figure 5.11. It
shows that after the 25th iteration, the validation values start to decrease, which is a sign
of overfitting.

Finally, there is the models where the embedding is a tunable parameter. The Figure
5.12 shows that in this case, the longer the sequence the better, and that as before using
few hidden units perform better. In this case, variation has a wider range than when

CHAPTER 5. ATTENTION MECHANISM 68

0.54 0.56 0.58 0.60 0.62
precision

0

2

4

6

8

10

12

14

16

Figure 5.10: Distribution of the precision of best epochs for all the models trained with
word2vec embedding.

using word2vec. There are a few models that have top precision higher than 75%, but
looking at the training plot (Appendix B, Figure B.1) shows that the model does not
perform well. Because in particular case precision in not a good indicator of how well
a model perform, f1-score will be used instead, as it is a balance between precision and
recall.
And the best f1-score obtained is 0.55384, which is quite smaller than the 0.63 for the
model using word2vec. The training plot is at Figure 5.13. We can see that there is still
room for improvement, the next step is to see what happens when training on more epochs.

Training on 1000 epochs rather than 200 does not improve validation score, but it does
for training (Figure 5.14).

5.5.4 Result Analysis

The previous section shows a few things

• LSTMs do not work well,

• Adding attention layer improve LSTM results,

• Using word2vec rather than training the embedding gives better results.

It also shows that despite reaching a very good precision, recall and f1-score on the train-
ing set it does not perform well on the validation set. This is a sign of overfitting. In order

CHAPTER 5. ATTENTION MECHANISM 69

0 25 50 75 100 125 150 175 200
epoch

3000

4000

5000

6000

7000

Lo
ss

Loss with respect to the epoch

loss

0 25 50 75 100 125 150 175 200
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
Recall metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.4

0.5

0.6

0.7

0.8

0.9

F1score metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure 5.11: Training and validation of the model with top precision trained with word2vec
embedding.

CHAPTER 5. ATTENTION MECHANISM 70

10.0 15.0 20.0
SEQ_LENGTH

0.55

0.56

0.57

0.58

0.59

pr
ec

is
io

n

5.0 10.0 25.0 50.0 100.0 200.0
HIDDEN

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

pr
ec

is
io

n

5.0 10.0 25.0 50.0 100.0 200.0 300.0
EMBEDDING_DIM

0.54

0.56

0.58

0.60

0.62

0.64

0.66

pr
ec

is
io

n

0.0 0.25 0.5 0.75
DROPOUT

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61

pr
ec

is
io

n

Figure 5.12: Training and Validation of the Model With top Precision

CHAPTER 5. ATTENTION MECHANISM 71

0 25 50 75 100 125 150 175 200
epoch

6200

6400

6600

6800

7000

7200

7400

7600

Lo
ss

Loss with respect to the epoch

loss

0 25 50 75 100 125 150 175 200
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Recall metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80
F1score metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure 5.13: Training and validation of the model with top f1-score

CHAPTER 5. ATTENTION MECHANISM 72

0 200 400 600 800 1000
epoch

5500

6000

6500

7000

7500

Lo
ss

Loss with respect to the epoch

loss

0 200 400 600 800 1000
epoch

0.5

0.6

0.7

0.8

0.9

1.0

Recall metrics for train and validation set with respect to the epoch

train
valid

0 200 400 600 800 1000
epoch

0.5

0.6

0.7

0.8

0.9

1.0

F1score metrics for train and validation set with respect to the epoch

train
valid

0 200 400 600 800 1000
epoch

0.5

0.6

0.7

0.8

0.9

1.0

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure 5.14: Training on 1000 epochs rather than 200

CHAPTER 5. ATTENTION MECHANISM 73

to avoid this, multiple methods have been applied without showing any improvement.

The following methods have been applied:

• Dropout[40],

• batch-normlaziation[41],

• reducing network capacity (fewer hidden layers, lower embedding dimensions, less
training parameters with word2vec),

• Early stopping of training.

The highest gain was from using word2vec embedding. This significantly reduces the
amount of training parameters, secondly dropout also helped a little.

5.5.5 Testing

The same way as in Chapter 4, the models will be trained on the parameters that
produced the best results on the training set, and trained on training and validation set,
and tested on testing set.
The parameters used for training are given at Table 5.1. The results for all four models

model embedding size Sequence Length num hiddens dropout Early Stop
LSTM 300 10 50 0.75 126

LSTM + word2vec 300 10 50 0.0 160
Attention 10 20 10 0.75 400

Attention + word2vec 300 20 5 0.75 25

Table 5.1: Parameters used for training

are given at Table 5.2. It shows that the model that works the best is attention network
using word2vec embedding, with an accuracy of 61%, which is equivalent to ridge classifiers
and linear svm. The three other models do not perform well, all having a average precision
around 55%, which is close to being a random classifier.

5.6 Attention Mechanism on fake news corpus

5.6.1 Model Selection

The two models using word2vec embedding have shown to work better than their coun-
terparts, this why only these two methods will be tested on Fake News Corpus for
comparison as very good results have already been obtained.

It shows out that in this case LSTMs works better than Attention Mechanism, but as in
previous section does not reach machine learning results.

The best LSTM obtained use sequence of 200 words and 200 hidden layers, with an
average precision of 0.929376 on the validation set. The training plots of this particular

CHAPTER 5. ATTENTION MECHANISM 74

fake reliable accuracy macro avg weighted avg

f1-score 0.440574 0.649551 0.569061 0.545062 0.558340
precision 0.508274 0.599526 0.569061 0.553900 0.559698
recall 0.388788 0.708683 0.569061 0.548736 0.569061
support 1106.000000 1428.000000 0.569061 2534.000000 2534.000000

(a) Simple LSTM

fake reliable accuracy macro avg weighted avg

f1-score 0.481724 0.623040 0.563536 0.552382 0.561361
precision 0.500000 0.606906 0.563536 0.553453 0.560245
recall 0.464738 0.640056 0.563536 0.552397 0.563536
support 1106.000000 1428.000000 0.563536 2534.000000 2534.000000

(b) LSTM + word2vec

fake reliable accuracy macro avg weighted avg

f1-score 0.486636 0.615597 0.560379 0.551116 0.559310
precision 0.496241 0.606803 0.560379 0.551522 0.558546
recall 0.477396 0.624650 0.560379 0.551023 0.560379
support 1106.000000 1428.000000 0.560379 2534.000000 2534.000000

(c) Attention network

fake reliable accuracy macro avg weighted avg

f1-score 0.511397 0.676721 0.610892 0.594059 0.604563
precision 0.565789 0.636252 0.610892 0.601021 0.605497
recall 0.466546 0.722689 0.610892 0.594618 0.610892
support 1106.000000 1428.000000 0.610892 2534.000000 2534.000000

(d) Attention Network + word2vec

Table 5.2: Results for the differents models trained with parameters given at Table 5.1.

CHAPTER 5. ATTENTION MECHANISM 75

0 5 10 15 20 25
epoch

30000

40000

50000

60000

70000

80000

90000

Lo
ss

Loss with respect to the epoch

loss

0 5 10 15 20 25
epoch

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Recall metrics for train and validation set with respect to the epoch

train
valid

0 5 10 15 20 25
epoch

0.800

0.825

0.850

0.875

0.900

0.925

0.950

F1score metrics for train and validation set with respect to the epoch

train
valid

0 5 10 15 20 25
epoch

0.86

0.88

0.90

0.92

0.94

0.96

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure 5.15: Training plots of the best LSTM using word2vec embedding.

CHAPTER 5. ATTENTION MECHANISM 76

0 5 10 15 20 25
epoch

140000

160000

180000

200000

Lo
ss

Loss with respect to the epoch

loss

0 5 10 15 20 25
epoch

0.65

0.70

0.75

0.80

0.85
Recall metrics for train and validation set with respect to the epoch

train
valid

0 5 10 15 20 25
epoch

0.60

0.65

0.70

0.75

0.80

0.85

F1score metrics for train and validation set with respect to the epoch

train
valid

0 5 10 15 20 25
epoch

0.72

0.74

0.76

0.78

0.80

0.82

0.84

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure 5.16: Training plots of the best attention network using word2vec embedding.

model are shown at Figure 5.15.

In the case of attention mechanism, training on the Fake News Corpus has shown to
be harder than on the Liar-Liar Corpus as using too large learning rate would lead to
oscillating loss and too small learning rate lead to halting the loss decrease. This can be
seen at Appendix B.2.

The same parameters as for the LSTM will be used for training the Attention Network.
Its training plot is available at Figure 5.16. The final results are given at Table 5.3. It
shows that for the same parameters LSTM works better than Attention Network on this
particular dataset. It shows that LSTM place below Linear SVM and Ridge Classifier
and above Decision Tree and Näıve-Bayes in terms of accuracy. It is likely to be possible
to reach results as well as LSTM or even better for the Attention Network, but due to
technical and time constraints I was not able to experiment further. For instance, using

CHAPTER 5. ATTENTION MECHANISM 77

fake reliable accuracy macro avg weighted avg

f1-score 0.856568 0.947577 0.923217 0.902073 0.924724
precision 0.806655 0.969503 0.923217 0.888079 0.928611
recall 0.913066 0.926621 0.923217 0.919843 0.923217
support 17496.000000 52181.000000 0.923217 69677.000000 69677.000000

(a) LSTM + word2vec results on Fake News Corpus

reliable fake accuracy macro avg weighted avg

f1-score 0.850296 0.687493 0.797566 0.768894 0.809416
precision 0.952876 0.561344 0.797566 0.757110 0.854562
recall 0.767655 0.886774 0.797566 0.827215 0.797566
support 52181.000000 17496.000000 0.797566 69677.000000 69677.000000

(b) Attention Network + word2vec on Fake News Corpus

Table 5.3: Final result on testing set for LSTM and attention network using word2vec.

longer sequence length and more hidden units with a smaller learning rate might have
overcome this problem.

5.7 Conclusion

In this chapter I have investigated how state-of-the-art deep learning models work on fake
news detection, and it shows that for the particular case of fake news detection it does
not outperform traditional machine learning methods. I have also made some addition
to the original model that improves the performances by a few percent by replacing the
tunable word embedding by constant one using word2vec. It shows out that it helps re-
duce overfitting and increase result on the testing set.

A hypothesis to explain why these two deep learning methods do not works as well as
machine learning methods is the fact that in this case text are required to be the same
size. Which means that some of them require some padding and the other are srunk. In
the second case, information is lost.

In addition, it shows that Liar-Liar Corpus is hard to work on, with 60% precision,
when Fake News Corpus still have good results.

CHAPTER 5. ATTENTION MECHANISM 78

Chapter 6

Conclusion

6.1 Result analysis

Some hypotheses can be made on why same models works very well on one dataset
and does not work well on the other one. The first thing we can think of is that the
original hypothesis on different styles of writing between fake and reliable news is only
verified in one dataset, the Fake News Corpus, and it is the most logical one, as these
texts are coming from online newspapers (or pretending to be), and thus capitalize on
advertisements for making money. The second dataset, Liar-Liar Corpus is described by
its authors as a collection a short sentence coming from various contexts such as political
debate, interviews, TV ads and so on, thus it induces a lot of variety in writing style. For
instance, it contains a transcription of vocal messages, which have in essence a different
style from written one.
The data exploration chapter had already given an insight about this fact, as 2D data
projection of the Liar-Liar Corpus shows no clear sign of separation, when Fake News
Corpus shows one at the first look.

6.2 Future works

Basing fake news detection only on supervised models on text have shown not to be
enough in all the cases. In order to solve this problem, most of the research focus on
additional information such as author information. I think the most successful approach
would be automatic fact checking model, that is, compelling the model with some kind of
knowledge base, the purpose of the model would then be to extract information for the
text and verify the information in the database. The problem with this approach would
be that the knowledge base would need to be constantly and manually update to stay up
to date.

79

Bibliography

[1] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, Hongwei Hao, and Bo Xu.
Attention-based bidirectional long short-term memory networks for relation classi-
fication. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), pages 207–212, Berlin, Germany,
August 2016. Association for Computational Linguistics.

[2] Hunt Allcott and Matthew Gentzkow. Social media and fake news in the 2016 elec-
tion. In Journal of Economic Perspective, volume 31, 2017.

[3] Jeffrey Gottfried and Elisa Shearer. News Use Across Social Medial Platforms 2016.
Pew Research Center, 2016.

[4] Craig Silverman and Lawrence Alexander. How teens in the balkans are duping
trump supporters with fake news. Buzzfeed News, 3, 2016.

[5] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin.
Liblinear: A library for large linear classification. J. Mach. Learn. Res., 9:1871–1874,
2008.

[6] Stephen Robertson. Understanding inverse document frequency: On theoretical ar-
guments for idf, 2004.

[7] Harry Zhang. The Optimality of Naive Bayes. page 6.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
putation, 9:1735–1780, 1997.

[9] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. Fake news detection
on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter,
19(1):22–36, 2017.

[10] WWF. Wwf 10yearschallenge, 2019.

[11] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993–1022, 2003.

[12] Julio CS Reis, André Correia, Fabŕıcio Murai, Adriano Veloso, Fabŕıcio Benevenuto,
and Erik Cambria. Supervised learning for fake news detection. IEEE Intelligent
Systems, 34(2):76–81, 2019.

[13] Vernica Prez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihalcea. Au-
tomatic detection of fake news.

80

BIBLIOGRAPHY 81

[14] James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry
and word count: Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001,
2001.

[15] Natali Ruchansky, Sungyong Seo, and Yan Liu. Csi: A hybrid deep model for fake
news detection. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 797–806. ACM, 2017.

[16] Eugenio Tacchini, Gabriele Ballarin, Marco L. Della Vedova, Stefano Moret, and Luca
de Alfaro. Some like it hoax: Automated fake news detection in social networks.

[17] James Thorne, Mingjie Chen, Giorgos Myrianthous, Jiashu Pu, Xiaoxuan Wang, and
Andreas Vlachos. Fake news stance detection using stacked ensemble of classifiers.
In Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets
Journalism, pages 80–83, 2017.

[18] Mykhailo Granik and Volodymyr Mesyura. Fake news detection using naive bayes
classifier. In 2017 IEEE First Ukraine Conference on Electrical and Computer En-
gineering (UKRCON), pages 900–903. IEEE, 2017.

[19] Yang Yang, Lei Zheng, Jiawei Zhang, Qingcai Cui, Zhoujun Li, and Philip S. Yu.
Ti-cnn: Convolutional neural networks for fake news detection.

[20] Yaqing Wang, Fenglong Ma, Zhiwei Jin, Ye Yuan, Guangxu Xun, Kishlay Jha, Lu Su,
and Jing Gao. Eann: Event adversarial neural networks for multi-modal fake news
detection. In Proceedings of the 24th acm sigkdd international conference on knowl-
edge discovery & data mining, pages 849–857. ACM, 2018.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[22] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent
neural network (indrnn): Building a longer and deeper rnn.

[23] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.
Hierarchical Attention Networks for Document Classification. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 1480–1489, San Diego, Cal-
ifornia, 2016. Association for Computational Linguistics.

[24] Takeru Miyato, Andrew M. Dai, and Ian Goodfellow. Adversarial Training Meth-
ods for Semi-Supervised Text Classification. arXiv:1605.07725 [cs, stat], May 2016.
arXiv: 1605.07725.

[25] Yoon Kim. Convolutional Neural Networks for Sentence Classification.
arXiv:1408.5882 [cs], August 2014. arXiv: 1408.5882.

[26] Kamran Kowsari, Mojtaba Heidarysafa, Donald E. Brown, Kiana Jafari Meimandi,
and Laura E. Barnes. RMDL: Random Multimodel Deep Learning for Classification.
Proceedings of the 2nd International Conference on Information System and Data
Mining - ICISDM ’18, pages 19–28, 2018. arXiv: 1805.01890.

BIBLIOGRAPHY 82

[27] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments.

[28] David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable
crowdsourcing systems. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
24, pages 1953–1961. Curran Associates, Inc., 2011.

[29] Maciej Szpakowski. Fake news corpus. https://github.com/several27/FakeNew

sCorpus. Accessed: 2018-10.

[30] William Yang Wang. ”liar, liar pants on fire”: A new benchmark dataset for fake
news detection.

[31] Radim Řeh̊uřek and Petr Sojka. Software Framework for Topic Modelling with Large
Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz

/publication/884893/en.

[32] Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with
Python. O’Reilly Media, 2009.

[33] Karen Spärck Jones. A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation, 2004.

[34] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, (9):2579–2605, 2008.

[35] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[36] Lior Rokach and Oded Maimon. Data Mining With Decision Trees: Theory and
Applications. World Scientific Publishing Co., Inc., River Edge, NJ, USA, 2nd edition,
2014.

[37] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique.

[38] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space.

[39] Xin Rong. word2vec parameter learning explained.

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[41] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift.

https://github.com/several27/FakeNewsCorpus
https://github.com/several27/FakeNewsCorpus
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

BIBLIOGRAPHY 83

Appendix A

A.1 TF-IDF max features row results on liar-liar cor-

pus

A.1.1 Weighted Average Metrics

model max features recall precision f1

0 LinearSVC 10 0.558411 0.590855 0.490108
1 MultinomialNB 10 0.559969 0.596418 0.489844
2 DecisionTreeClassifier 10 0.545171 0.554105 0.492387
3 RidgeClassifier 10 0.558411 0.590855 0.490108
4 LinearSVC 100 0.580997 0.586645 0.562808
5 MultinomialNB 100 0.579439 0.592686 0.549533
6 DecisionTreeClassifier 100 0.539720 0.537812 0.536041
7 RidgeClassifier 100 0.580997 0.586645 0.562808
8 LinearSVC 250 0.603583 0.605262 0.596719
9 MultinomialNB 250 0.596573 0.608079 0.575478
10 DecisionTreeClassifier 250 0.565421 0.565966 0.565582
11 RidgeClassifier 250 0.603583 0.605262 0.596719
12 LinearSVC 1000 0.600467 0.600183 0.597274
13 MultinomialNB 1000 0.594237 0.598593 0.581692
14 DecisionTreeClassifier 1000 0.550623 0.550539 0.550578
15 RidgeClassifier 1000 0.599688 0.599731 0.595559
16 LinearSVC 2500 0.575545 0.574544 0.573173
17 MultinomialNB 2500 0.592679 0.598169 0.578113
18 DecisionTreeClassifier 2500 0.568536 0.568482 0.568508
19 RidgeClassifier 2500 0.584891 0.584169 0.581693
20 LinearSVC 5000 0.571651 0.570574 0.568765
21 MultinomialNB 5000 0.592679 0.600539 0.574854
22 DecisionTreeClassifier 5000 0.552960 0.551400 0.549321
23 RidgeClassifier 5000 0.572430 0.571418 0.568760
24 LinearSVC 10000 0.566978 0.565837 0.564715
25 MultinomialNB 10000 0.598131 0.614854 0.572109
26 DecisionTreeClassifier 10000 0.560748 0.559664 0.559212
27 RidgeClassifier 10000 0.580218 0.579376 0.576984
28 LinearSVC 11222 0.566978 0.565860 0.564915
29 MultinomialNB 11222 0.597352 0.615925 0.569280

84

APPENDIX A. 85

30 DecisionTreeClassifier 11222 0.556854 0.555689 0.555171
31 RidgeClassifier 11222 0.582555 0.581782 0.579279

APPENDIX A. 86

A.1.2 Per Class Metrics

model max features type recall precision f1

0 LinearSVC 10 fake 0.181818 0.640000 0.283186
1 LinearSVC 10 reliable 0.905689 0.545537 0.680923
2 MultinomialNB 10 fake 0.178571 0.650888 0.280255
3 MultinomialNB 10 reliable 0.911677 0.546188 0.683118
4 DecisionTreeClassifier 10 fake 0.212662 0.569565 0.309693
5 DecisionTreeClassifier 10 reliable 0.851796 0.539848 0.660859
6 RidgeClassifier 10 fake 0.181818 0.640000 0.283186
7 RidgeClassifier 10 reliable 0.905689 0.545537 0.680923
8 LinearSVC 100 fake 0.371753 0.602632 0.459839
9 LinearSVC 100 reliable 0.773952 0.571903 0.657761
10 MultinomialNB 100 fake 0.314935 0.621795 0.418103
11 MultinomialNB 100 reliable 0.823353 0.565844 0.670732
12 DecisionTreeClassifier 100 fake 0.446429 0.523810 0.482033
13 DecisionTreeClassifier 100 reliable 0.625749 0.550725 0.585844
14 RidgeClassifier 100 fake 0.371753 0.602632 0.459839
15 RidgeClassifier 100 reliable 0.773952 0.571903 0.657761
16 LinearSVC 250 fake 0.470779 0.613108 0.532599
17 LinearSVC 250 reliable 0.726048 0.598027 0.655849
18 MultinomialNB 250 fake 0.368506 0.637640 0.467078
19 MultinomialNB 250 reliable 0.806886 0.580819 0.675439
20 DecisionTreeClassifier 250 fake 0.561688 0.545741 0.553600
21 DecisionTreeClassifier 250 reliable 0.568862 0.584615 0.576631
22 RidgeClassifier 250 fake 0.470779 0.613108 0.532599
23 RidgeClassifier 250 reliable 0.726048 0.598027 0.655849
24 LinearSVC 1000 fake 0.509740 0.598095 0.550394
25 LinearSVC 1000 reliable 0.684132 0.602108 0.640505
26 MultinomialNB 1000 fake 0.417208 0.613365 0.496618
27 MultinomialNB 1000 reliable 0.757485 0.584971 0.660144
28 DecisionTreeClassifier 1000 fake 0.529221 0.531811 0.530513
29 DecisionTreeClassifier 1000 reliable 0.570359 0.567809 0.569081
30 RidgeClassifier 1000 fake 0.496753 0.600000 0.543517
31 RidgeClassifier 1000 reliable 0.694611 0.599483 0.643551
32 LinearSVC 2500 fake 0.498377 0.565378 0.529767
33 LinearSVC 2500 reliable 0.646707 0.582996 0.613201
34 MultinomialNB 2500 fake 0.402597 0.615385 0.486752
35 MultinomialNB 2500 reliable 0.767964 0.582293 0.662363
36 DecisionTreeClassifier 2500 fake 0.548701 0.550489 0.549593
37 DecisionTreeClassifier 2500 reliable 0.586826 0.585075 0.585949
38 RidgeClassifier 2500 fake 0.495130 0.578748 0.533683
39 RidgeClassifier 2500 reliable 0.667665 0.589168 0.625965
40 LinearSVC 5000 fake 0.487013 0.561798 0.521739
41 LinearSVC 5000 reliable 0.649701 0.578667 0.612130
42 MultinomialNB 5000 fake 0.383117 0.622691 0.474372
43 MultinomialNB 5000 reliable 0.785928 0.580110 0.667514
44 DecisionTreeClassifier 5000 fake 0.459416 0.540076 0.496491

APPENDIX A. 87

45 DecisionTreeClassifier 5000 reliable 0.639222 0.561842 0.598039
46 RidgeClassifier 5000 fake 0.477273 0.564299 0.517150
47 RidgeClassifier 5000 reliable 0.660180 0.577982 0.616352
48 LinearSVC 10000 fake 0.491883 0.554945 0.521515
49 LinearSVC 10000 reliable 0.636228 0.575881 0.604552
50 MultinomialNB 10000 fake 0.345779 0.653374 0.452229
51 MultinomialNB 10000 reliable 0.830838 0.579332 0.682657
52 DecisionTreeClassifier 10000 fake 0.498377 0.546263 0.521222
53 DecisionTreeClassifier 10000 reliable 0.618263 0.572022 0.594245
54 RidgeClassifier 10000 fake 0.490260 0.573055 0.528434
55 RidgeClassifier 10000 reliable 0.663174 0.585205 0.621754
56 LinearSVC 11222 fake 0.495130 0.554545 0.523156
57 LinearSVC 11222 reliable 0.633234 0.576294 0.603424
58 MultinomialNB 11222 fake 0.336039 0.657143 0.444683
59 MultinomialNB 11222 reliable 0.838323 0.577915 0.684178
60 DecisionTreeClassifier 11222 fake 0.491883 0.542039 0.515745
61 DecisionTreeClassifier 11222 reliable 0.616766 0.568276 0.591529
62 RidgeClassifier 11222 fake 0.491883 0.576046 0.530648
63 RidgeClassifier 11222 reliable 0.666168 0.587071 0.624123

APPENDIX A. 88

A.2 TF-IDF max features row results for fake news

corpus without SMOTE

model recall precision max features f1

0 LinearSVC 0.744278 0.741135 10000 0.742519
1 MultinomialNB 0.638690 0.666131 10000 0.647986
2 DecisionTreeClassifier 0.649834 0.664873 10000 0.655847
3 RidgeClassifier 0.730762 0.739152 10000 0.734125
4 LinearSVC 0.757846 0.758336 50000 0.758086
5 MultinomialNB 0.658424 0.680365 50000 0.666197
6 DecisionTreeClassifier 0.668170 0.685830 50000 0.674751
7 RidgeClassifier 0.742044 0.756513 50000 0.746957
8 LinearSVC 0.757589 0.757112 100000 0.757346
9 MultinomialNB 0.657282 0.681421 100000 0.665562
10 DecisionTreeClassifier 0.669952 0.685943 100000 0.676058
11 RidgeClassifier 0.742437 0.754869 100000 0.746859
12 LinearSVC 0.757935 0.756228 250000 0.757021
13 MultinomialNB 0.660640 0.683517 250000 0.668590
14 DecisionTreeClassifier 0.668623 0.685926 250000 0.675103
15 RidgeClassifier 0.744877 0.754769 250000 0.748600
16 LinearSVC 0.753187 0.750750 500000 0.751847
17 MultinomialNB 0.672800 0.687760 500000 0.678584
18 DecisionTreeClassifier 0.673318 0.690695 500000 0.679764
19 RidgeClassifier 0.742800 0.751770 500000 0.746270
20 LinearSVC 0.753156 0.750642 1000000 0.751769
21 MultinomialNB 0.673599 0.688095 1000000 0.679241
22 DecisionTreeClassifier 0.673084 0.688515 1000000 0.679001
23 RidgeClassifier 0.742725 0.751611 1000000 0.746170

Appendix B

B.1 Training plot for attention mechanism

0 25 50 75 100 125 150 175 200
epoch

7400

7500

7600

7700

7800

Lo
ss

Loss with respect to the epoch

loss

0 25 50 75 100 125 150 175 200
epoch

0.0

0.2

0.4

0.6

0.8

Recall metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

F1score metrics for train and validation set with respect to the epoch

train
valid

0 25 50 75 100 125 150 175 200
epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure B.1: There is a spike for the precision, but that does not means that the model
performs well.

89

APPENDIX B. 90

0 10 20 30 40 50
epoch

0

50000

100000

150000

200000

Lo
ss

Loss with respect to the epoch

loss

0 10 20 30 40 50
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall metrics for train and validation set with respect to the epoch

train
valid

0 10 20 30 40 50
epoch

0.2

0.4

0.6

0.8

1.0

F1score metrics for train and validation set with respect to the epoch

train
valid

0 10 20 30 40 50
epoch

0.2

0.4

0.6

0.8

1.0

Precision metrics for train and validation set with respect to the epoch

train
valid

Figure B.2: Oscillation of the Loss

	Introduction
	What are fake news?
	Definition
	Fake News Characterization

	Feature Extraction
	News Content Features
	Social Context Features

	News Content Models
	Knowledge-based models
	Style-Based Model

	Social Context Models
	Related Works
	Fake news detection
	State of the Art Text classification

	Conclusion

	Related Work
	Introduction
	Supervised Learning for Fake News DetectionReis2019
	CSI: A Hybrid Deep Model for Fake News Detection
	Some Like it Hoax: Automated Fake News Detection in Social Networks Tacchini2017
	Fake News Detection using Stacked Ensemble of Classifiers
	Convolutional Neural Networks for Fake News DetectionYang2018
	Conclusion

	Data Exploration
	Introduction
	Datasets
	Fake News Corpus
	Liar, Liar Pants on Fire

	Dataset statistics
	Fake News Corpus
	Liar-Liar Corpus

	Visualization With t-SNE
	Conclusion

	Machine Learning techniques
	Introduction
	Text to vectors
	Methodology
	Evaluation Metrics

	Models
	Naïve-Bayeszhangoptimalitynodate
	Linear SVM
	Decision TreeRokach:2014:DMD:2755359
	Ridge Classifier

	Models on liar-liar dataset
	Linear SVC
	Decision Tree
	Ridge Classifier
	Max Feature Number

	Models on fake corpus dataset
	SMOTE: Synthetic Minority Over-sampling TechniqueChawla2011
	Model selection without using SMOTE
	Model selection with SMOTE

	Results on testing set
	Methodology
	Results

	Conclusion

	Attention Mechanism
	Introduction
	Text to Vectors
	Word2Vec

	LSTM
	Attention Mechanism
	Results
	Methodology
	Liar-Liar dataset results
	Attention Mechanism
	Result Analysis
	Testing

	Attention Mechanism on fake news corpus
	Model Selection

	Conclusion

	Conclusion
	Result analysis
	Future works

	
	TF-IDF max features row results on liar-liar corpus
	Weighted Average Metrics
	Per Class Metrics

	TF-IDF max features row results for fake news corpus without SMOTE

	
	Training plot for attention mechanism

