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ABSTRACT

The Martian moons pose one of the many unanswered questions regarding the bodies found
in the Solar System. In particular, the currently available data does not enable a complete
understanding of the origin and composition of the moons. As a result, the Martian Moons
eXploration mission (MMX) is currently being developed by the Japanese Space Agency
JAXA, with the objective of landing in Phobos to retrieve a sample and bring it back to Earth.
This would then provide scientists with information regarding the composition of the body
and hence enable to determine whether Phobos is a captured asteroid or whether it formed
through an accretion process.

In order for a probe to land, the spacecraft must first orbit the moon so as to deter-
mine the best landing location. Doing so presents a complicated problem due to the rich
dynamical environment found, where gravitational perturbations from Mars, the irregu-
lar shape of Phobos or the Sun are found among others. Preliminary studies have been
already performed to determine possible orbits suitable for the mission and, in particular,
Quasi-Satellite Orbits (QSO’s) have been found.

As a result, the objective of this thesis is to carry out an analysis of the effect that the per-
turbations would have on the evolution of these orbits. To that end, a high fidelity propagator
has been developed for the Phobos environment, and the following perturbations have been
taken into account: a complete spherical harmonic model (GMM3) for the Martian gravity, a
polyhedral model for Phobos, solar radiation pressure and solar gravitational attraction.

In this thesis the reader will find the coordinate systems, equations of motion and
perturbation models used to simulate the MMX orbit around Phobos. The results will show
the effect that each of the perturbations considered has on a selected QSO.
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1
INTRODUCTION

Context

Space has, since the appearance of the first civilizations in Mesopotamia, Persia and Greece,

fascinated and intrigued mankind. This has caused that, throughout history, a large number

of people have dedicated their lives to the study of the apparently inert sea that laid above

their heads.

The beginners, with their basic equipment, first dedicated themselves to the study of

what could be observed, that is, the stars, to discover new planets, to pose the first theories

about planetary motion (Eratosthenes, Ptolemy), to calculate the Earth-Moon distance

(Hipparcos) etc. Eventually, as the centuries passed, scientific progress was made and more

sophisticated instruments were developed, with more and more discoveries about the

Universe and its components being made.

However, it was not until approximately 75 years ago that the first technology to grant

access to space was developed. In September 1944, the V2 rocket constructed by Germany

became operative and started devastating London [12]. Although the objective was to destroy

the enemy, it would later become the precursor of the launchers that enabled access to

space. Since then, many missions have been conducted, and humans have been able to not

only place hundreds of satellites into orbit but also to step on the Moon.
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Despite the huge progress made, not only in discovering celestial bodies and their

characteristics but also in understanding the physics that moves the Universe, plenty of

unanswered questions still remain. One of them is posed by Phobos and Deimos, the two

martian moons, since the current data available about these two bodies does not enable a

complete understanding of their origin and characteristics.

As a result, the Japanese Space Agency, JAXA, is developing the so-called Martian Moons

eXploration (MMX ) mission, with the objective of sending a spacecraft to the martian system,

so as to study the bodies and land on Phobos to perform in-situ experiments and collect

samples to bring back to Earth.

1.1 The Martian System

Considering that the focus of this thesis is placed on Phobos and on the MMX mission, a brief

review of the Martian system must be performed to provide some historical background as

well as information regarding the characteristics of the three bodies that form part of it.

1.1.1 Mars

Mars is the fourth planet of the Solar System, as well as the furthest of the so-called telluric

planets. Its name comes from the ancient Romans, who decided to call the planet after their

god of war due to the reddish colour that the surface exhibits, which reminded them of the

blood found on the battlefield [13]. No exact date is known for the discovery of this planet,

although there are proofs which show that the Egyptians already kept track of it around 4000

years ago [13].

Apart from Earth, no other planet in the Solar System has been as intensely studied as

Mars. Since humanity gained access to space, a fleet of orbiters and landers have been sent

to the "Red Planet" with the objective of discovering its properties and characteristics, as

well as with the idea of answering the question regarding life. The interest in Mars is such

that, nowadays, up to six spacecraft from different space agencies are orbiting the planet,

while two rovers are on the surface.

As a consequence of the present and past missions, most of the characteristics which

define Mars are known. For instance, its axis of rotation is tilted approximately 25 ° with

respect to its orbital plane, having therefore seasons just like on Earth. The structure and

composition have also been studied, and hence it is now known that Mars has a core at its
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center or that it is mainly made of nickel, sulfur and iron, being the oxidation of this last

element the reason behind the red coloured surface that it has [13].

Other characteristics include an interesting topography, with many craters, channels

and volcanoes, as well as "weather" conditions such as dust storms [13]. It is also known

that temperature variations are severe, with values ranging from +20°C down to -153 °C. The

planet also has a very thin atmosphere, in which carbon dioxide, argon and nitrogen are

the main components [13]. A summary of the main Martian properties used in this thesis is

found in Table 1.1 below.

R [km] M [kg] Tr ot [days] Tor b [years]
3389.50 6.4185 ×1023 1.02595675 1.8808476

Table 1.1: Physical data of Mars, where R represents the mean equatorial radius, Tr ot is the
sidereal rotation period and Tor b corresponds to the sidereal orbital period. Data
taken from reference [1]

.

1.1.2 Phobos & Deimos

By the beginning of the 19th century, the Copernican model for the Solar System had been

accepted, the so-called Galilean moons of Jupiter were known and the recently discovered

planet Uranus had been found to have two moons [14]. By 1870, not only new satellites for

Uranus and Saturn had been identified, but another planet (Neptune) had been discovered

[14]. However, Mars continued to apparently have no satellites orbiting around it.

This fact was indeed in contradiction with the predictions carried out by the German

astronomer Johannes Kepler in the 17th century, who had suggested that Mars would have

two satellites [4]. As a result, astronomers and scientists of the time such as William Herschel

or Heinrich Louis d’Arrest started searching [14]. However, it was not until August 12,1877

that Deimos was found by Asaph Hall, an American astronomer who worked at the U.S

Naval Observatory. Six days later, Phobos was discovered.

The difficulty in finding the moons was due to the fact that both are located close to

Mars, and hence had been hidden by the Martian glare [4]. The names for both moons were

defined according to Greek mythology, in which Phobos and Deimos were two twin sons of

Ares, the Greek counterpart for the Roman god of war Mars [14]. Images of these bodies can

be seen in Figure 1.1 below.

5



CHAPTER 1. INTRODUCTION

Figure 1.1: Images of Phobos (left) and Deimos (right) taken by the High Resolution Imaging
Science Experiment (HiRISE) camera found in NASA’s Mars Reconnaissance
Orbiter [7].

As can be appreciated, both bodies are characterized by an irregular shape and by a

highly cratered surface, specially in the case of Phobos. In Figure 1.1 the reader can observe,

in the bottom-right corner of the image corresponding to Phobos, the so-called Stickney

crater, a 9.7 km diameter feature whose debris is believed to be responsible for many of the

smaller impacts that can be observed on the surface [15]. In the case of Deimos, the surface

appears to be less cratered because it is thought that there is a dust/regolith layer covering it

and hence filling the impacts [13].

With respect to the dimensions, both moons are amongst the smallest of the ones

known in the Solar System, with Phobos being 7.24 times more massive than Deimos [4].

Furthermore, Phobos is the one closest to Mars and it is approximating the surface at a rate

of 1.8 meters every century, implying that in 50 million years the moon will either impact

Mars or disintegrate and form a ring due to the tidal forces [15]. Table 1.2 below presents the

main characteristics of Phobos, which is the subject of the study conducted in this thesis.

Values for Deimos are also provided as a comparison.
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Parameter Phobos Deimos
Largest semi-major axis [km] 13.4 7.5

Intermediate semi-major axis [km] 11.2 6.1
Smallest semi-major axis [km] 9.2 5.2

Density [g /cm3] 1.872 1.471
Mass [kg] 1.0659 ×1016 1.4762 ×1015

Orbital Period [hours] 7.650 30.298
Spin State s s

Table 1.2: Physical properties of the Martian moons. A spin s corresponds to a synchronous
state, so that the rotational and orbital periods are the same. Data from [2] and [3].

1.1.3 Why are we interested in the Martian Moons?

As already mentioned, Phobos is the body in which the MMX mission will land to retrieve a

sample which will then come back to Earth. Hence, it is also the subject of this thesis, since

this is the moon around which orbits will be later analyzed. Nevertheless, the MMX mission

will also study Deimos.

With this in mind, the reader may now wonder what are the reasons for scientists to be

so interested in the Martian moons while there exist plenty of other celestial bodies to study.

The justification behind is simple: the origin of the Martian moons is unclear. As will be seen

in more detail in Chapter 2, there are different theories which try to explain the particularities

of Phobos and Deimos, although all of the ideas revolve about two main concepts: either

Phobos and Deimos are captured asteroids/bodies or were formed by accretion of particles

from a disk.

Determining the origin of the moons as well as their evolution is important because

this can provide information and answers to some of the questions posed in the Planetary

Science Decadal Survey, which include [14]:

• What were the initial conditions, processes and stages involved in the formation of

the Solar System?

• How did terrestrial planets receive a water supply?

• What were the first sources of organic matter that these planets received?

• What is the explanation behind the evolution of the surfaces of the small bodies?
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For instance. if Phobos and Deimos are captured asteroids with compositions which

include carbon and water, then both would be representative examples of the bodies that

provided this two components to the planets during their formation processes, hence

answering the second and third questions [14]. If, on the other hand, these bodies were two

captured asteroids which did not have a rich carbon composition but rather were ordinary

chondrites, then valuable information about the effects of space weathering on the surface

would be obtained, since there is a current mismatch between known meteorites and the

available D-type asteroid spectroscopy of Phobos [14].

Finally, the first question would be addressed if it is found that the moons were formed

through an accretion process. Indeed, there is also the possibility that the origin and evo-

lution of the two Martian moons is different and independent with respect to each other,

in which case even more information would be obtained to answer the questions listed

previously.

1.2 Previous missions to Phobos

The interest in the Martian moons, and in particular in Phobos, is not new. Prior to the MMX

mission, other spacecraft have performed studies of the bodies or have failed while trying to

do so. In this section, a brief review of some of these missions is presented.

In 1970, almost 93 years after the discovery of Phobos, the Mariner 7 spacecraft took the

first image of this moon. However, due to its poor quality, it was not until Mariner 9 that

the first surface features of the two Martian moons could be observed. Later in the decade,

lower-altitude flybys were performed by the Viking 1 and Viking 2 spacecrafts, enabling the

acquisition of valuable data which led to the discovery of the grooves in Phobos, the first

mass estimations, the first spectroscopy studies and the first digital terrain model [16].

This exploration phase ended up with the decade, and it was not until 1988 that another

spacecraft was sent to the Martian moons. In this case, it was the Soviet Phobos 1 and Phobos

2 missions the ones involved, which were planned to orbit Mars and deposit a lander on

the moon. However, this project faced many problems, since Phobos 1 was lost during its

journey to the "Red Planet" and the second spacecraft failed three months after entering into

its Martian orbit [16]. Despite its short lifetime, this second orbiter was able to perform three

encounters with Phobos, and the data retrieved would yield the most accurate estimate of

the density up to that date [14].
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After 1988, several attempts were made to reach Mars and its moons with missions

such as NASA’s Mars Observer or the Russian Mars 94, although both failed. Eventually, in

1996 NASA’s Mars Pathfinder was able to perform new measurements and confirm several

spectral characteristics of the moons [14]. In any case, it would not be until the missions

Mars Express from ESA (2004) and Mars Reconnaissance Orbiter (2005) from NASA that the

knowledge about the Martian moons, and in particular Phobos, was revolutionized, with

values from these orbiters defining the currently known composition data [14].

The most recent attempt to deepen the understanding of the Martian moons has been

the so-called Phobos-Grunt mission, a project which formed part of the Russian Federal

Space Program and in which China also collaborated. The objectives of the mission were

almost identical to the ones pursued by the previous Phobos 2, being the return of a sample

to Earth the ultimate one [17]. The mission was launched in November 2011 but failed to

enter its interplanetary trajectory, re-entering Earth on January 2012 [18]. A summary of the

missions and their main outputs is presented in Table 1.3 below.

Mission
Agency &

Launch Date
Output Status

Mariner’s 7 & 9
NASA

1970 & 71
Surface features

observed
Deactivated

Viking’s 1 & 2
NASA
1976

Grooves, mass,
spectroscopy

Deactivated

Phobos 1 & 2
Rosaviakosmos

1988
Density Failed

Mars Observer
NASA
1992

- Failed

Mars 94
Roscosmos

1996
- Failed

Mars Express
ESA
2003

High resolution
images, spectroscopy

Active

Mars Reconaissance
Orbiter

NASA
2005

High resolution
images

Active

Phobos - Grunt
Roscosmos

2011
- Failed

Table 1.3: Summary of the missions which have studied the Martian moons, including main
discoveries and current status [4].
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1.3 Current Initiative: MMX

After having reviewed the past missions to the Martian moons two things have become clear:

the data available has been provided by Martian orbiters or by flyby missions and all of the

spacecraft which specifically targeted Phobos have failed. With this preamble, the future of

the exploration of the Martian moons relies on the MMX mission. This section will therefore

provide a brief review of the objectives and spacecraft characteristics.

1.3.1 Objectives & Timeline

The MMX mission has different scientific and engineering objectives. With respect to the

former, the mission aims to perform the studies which would provide sufficient data to

answer the questions presented previously in Section 1.1.3. A sample analysis would indeed

determine the origin of the moon, which in turn could explain the transport of water and

organic compounds, the primordial composition of Mars, the evolution of the surfaces of

the moons or the atmospheric processes in Mars [19].

On the other hand, from the engineering point of view, the mission aims to develop

and test new technologies which will shape the future exploration missions conducted by

the Japanese Space Agency, JAXA. For instance, MMX will use one of the most complicated

and advanced chemical propulsion system ever designed. Similarly, the complete sample

retrieval technology will be redesigned, since the objective of achieving a 10 kg sample

requires a system with a higher performance than the one used in previous missions such as

Hayabusa and Hayabusa II [19].

With respect to the mission timeline, launch is planned for 2024, followed by a one

year outbound flight to Mars, with insertion into quasi-satellites orbits around the moon

occurring in 2025. Observations will then be performed for an estimated 3 year period,

although the actual duration of this phase will depend on the on-going measurements.

During this period, the sample will be retrieved. Finally, the inbound flight to Earth would

take place, with arrival being expected by 2029 [5]. An schematic representation of the MMX

timeline is shown in Figure 1.2 below.
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September
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MMX MISSION TIMELINE

Figure 1.2: Schematic representation of the different mission phases and the corresponding
planned dates.

1.3.2 Spacecraft characteristics

Although the MMX spacecraft is still being designed and hence undergoes modifications

with each iteration of the design process, the overall structure, mass properties and charac-

teristics are already bounded and known. This section will therefore provide a brief review

of these values.

To begin with, the MMX probe consists of two major components: the propulsion module

and the so-called return module. The prior corresponds to the one responsible for the

acceleration/deceleration of the spacecraft as well as for attitude control, while the later is

the part of the spacecraft in which the main subsystems such as the sampler, the AOCS 1 or

the instruments are located.

Although the type of engine has not been yet determined, it has been decided that the

spacecraft will use chemical propulsion, with the propellant being a mixture of a fuel (to be

defined) and oxygen. Since the propellant tanks are heavy and the MMX mission will carry

the greatest amount of propellant of the Japanese missions up to date, spherical tanks have

been selected and placed around a conical main frame [8].

With respect to the return module, it will be equipped with a rigid structure and a landing

gear to withstand the impact with the surface of Phobos, which is estimated to produce

a force of up to 0.3 G 2 [8]. As for the instruments on-board, the spacecraft will have the

1Attitude and Orbit Control Subsystem
21 G corresponds to Earth’s gravity at its surface
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following [20]:

• TENGOO, which stands for “TElescopic Nadir imager for GeOmOrphology” and is a

camera intended to take images of the Phobos surface.

• OROCHI, which corresponds to “Optical RadiOmeter composed of CHromatic Im-

agers” and is a camera to observe the topography and composition of the surface.

• LIDAR, that stands for “Light Detection And Ranging" and which aims to studying the

shape of Phobos.

• MacrOmega, which stands for “Macroscopique Observatoire pour la Minéralogie,

l’Eau, le Glaces et l’Activité (Observatory for Mineralogy, Water, Ice and Activity)”, a

near infrared observation instrument developed by the French CNES.

• MEGANE, which stands for "Mars-moon Exploration with GAmma rays and NEutrons"

and aims to determine the elements forming the moon.

• CMDM, the “Circum-Martian Dust Monitor”, that aims at studying the environment

around Phobos.

• MSA, a “Mass Spectrum Analyzer” to study the ion environment around Phobos.

With respect to the mass properties, the reader can find in Table 1.4 the distribution

between the two modules. Finally, Figure 1.3 presents the design of the MMX spacecraft as it

is nowadays, with some of the components mentioned previously identified.

Launch Mass [kg] Return Module [kg] Propulsion Module [kg]
3400 1500 1900

Table 1.4: Mass properties for the MMX spacecraft [5].
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Figure 1.3: CAD model of the actual design of MMX, with several components labelled.
Original image from [8].
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2
PHOBOS

As has been mentioned in Chapter 1, the Martian moons present several unanswered

questions which the mission MMX will try to address by performing observations of both

moons and retrieving a sample from Phobos. This chapter therefore aims to deepen the

understanding of the reader in the "why" behind the Martian Moons eXploration mission

by presenting and explaining the mysteries surrounding the formation and evolution of

Phobos, being the ideas also applicable to Deimos.

2.1 The capture scenario

While the Earth’s moon has a rounded shape, Phobos is characterized by having an irregular

morphology. In addition, the albedo, that is, the amount of radiation that the surface reflects

with respect to the radiation it receives, is only of a few percent. As was mentioned in

Chapter 1 the surface is heavily cratered and has grooves and, according to the crater

counter technique, Phobos would be at least 1 billion years old, although this estimate is

believed to not be precise since many of the craters on the surface appear to have been

caused by ejected parts resulting from the impact that originated the Stickney crater [9].

With respect to the composition of Phobos, observations were performed by the space-

crafts mentioned in Table 1.3 in the visible and near-infrared wavelengths, and contradictory

results were achieved. On the one hand, the reflectance spectra measured by Viking-1 was

found to resemble that of a C-type carbonaceous asteroid such as the ones found in the
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main asteroid belt [9]. On the other hand, measurements from Phobos 2 and Hubble Space

Telescope present greater accordance with the spectra of carbonaceous D or T-type asteroids,

which are found in the outer belt and in the Trojans around Jupiter respectively [9].

As a consequence of this characteristics, scientists have proposed that Phobos and

Deimos are asteroids which were captured by Mars. Determining which type of asteroid

(either C,D or T) is of importance since the last two represent asteroids which are believed

to have been formed in the outer region of the Solar System and then moved inwards. If this

was the case, Phobos would indeed provide valuable information for dynamical models of

the primitive Solar System.

2.1.1 The ambiguities of the capture scenario

Although there are reasons to believe that Phobos is a captured asteroid, this scenario also

presents some characteristics which have not yet been explained. To begin with, although the

reflectance spectra from Viking 1 partially matches the one obtained from C-type asteroids,

the truth is that there is no coincidence with any low-albedo carbonaceous meteoritic

samples available on Earth [9]. In addition, a similar problem appears with the Tagish Lake

meteorite, which is believed to be an example of a D-type asteroid. A comparison between

the spectra of Phobos and of this sample matches almost perfectly except for the existence

of a 3 µm absorption band [9].

With the objective of explaining these differences, scientists have proposed that the

surface of Phobos has undergone significant space weathering effects, which, if true, would

provide valuable information to understand this phenomena. On the other hand, another

possibility is that there are no current meteoritic samples of the type of material that forms

the moon.

A similar situation is found when analyzing the density and the internal composition of

Phobos. Measurements from the Mars Express spacecraft have improved the density estima-

tions of the moon, but, as can be appreciated in Figure 2.1 below, the mismatch with the

meteoritic analogs is still existing. In addition, a considerable amount of porosity is expected

to be present, since this is the only reasonable explanation to account for the low density

presented by Phobos. Nevertheless, such porosity also introduces an uncertainty, since a low

density value would better correspond to material that has undergone an accretion process

rather than to a solid monolithic body [9].
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Figure 2.1: Comparison of the density of Phobos and Deimos with several asteroids and
meteoritic samples. Graph from [9].

Further doubts in the capture scenario are raised by the orbital characteristics. In particu-

lar, Phobos exhibits a near-circular and near-equatorial orbit as well as a secular acceleration

which causes the moon to drift towards the Martian surface at an approximate rate of 20

cm per year [9]. This raises controversy because a captured asteroid would initially have an

orbit with a high eccentricity in an almost heliocentric plane, meaning that Phobos would

have had to experience a circularization and change of inclination process which current

models struggle to explain.
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2.2 The in-situ formation scenario

As a consequence of the ambiguities presented by the capture scenario, several studies have

presented models suggesting that Phobos was formed in orbit around Mars.

In particular, one model suggests that Phobos and Deimos are the remains of a larger

moon which disintegrated when it entered into the Roche limit (found at 2.5 Martian ra-

diuses). This would explain the orbital characteristics, since the circularization and change

of inclination process would be easier in the case of a large captured body, and the carbona-

ceous composition can be explained if it is assumed that the "parent" moon had it. In any

case, a challenge is raised in this model by the current position of Deimos, which is too far

away (4 Martian radiuses) from the Roche limit 1 and makes it difficult to explain how could

remains from the larger moon reach that current position [9].

On the other hand, a second model proposes that Phobos was formed by the accretion

of debris resulting from an impact between Mars and another body of approximately the

size of Ceres or Vesta. Such impact would have generated a disk around Mars from which

the moon would have been born. With this theory, the near-equatorial and near-circular

orbit of Phobos would be explained, and the carbonaceous composition of the moon would

be justified if it is assumed that the impactor body was of this same composition [21]. The

challenge raised in this scenario is once again the formation of Deimos, which would imply

that the disk extended outwards a long distance.

Finally, some authors have suggested that Phobos formed from debris left after the

formation of Mars. Such idea does indeed explain the orbital characteristics of the Martian

moons, but it implies that the composition of the moons would be similar to that of Mars,

and this is something which does not agree with the carbonaceous compositions that the

moons have [9].

1The Roche limit is the distance at which a body, held up together by its own gravitational force, would
disintegrate due to gravity forces exerted by a second body.
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3
PROJECT DESCRIPTION

3.1 Project Objectives

In the previous chapters the reader has been able to gain insight into the characteristics

of the Martian moons. As has been explained, understanding the origin and evolution of

Phobos presents an interesting challenge and the only way in which the uncertainties can be

solved is by means of a robotic mission. To that end, the Japanese Space Agency is developing

the Martian Moons eXploration mission (MMX), which is planned to be launched in 2024.

The objective of this project is therefore to develop a high fidelity propagator for the MMX

spacecraft. In particular, the aim is placed on studying the effect that perturbations have

on the Quasi-Satellite Orbits (QSO) which have already been selected from the preliminary

design phase of the mission. Previous work by Zamaro showed, as can be seen in Figure 3.1,

that the main perturbations in the vicinity of Phobos are the gravity harmonics of Mars and

Phobos, the eccentricity of the moon’s orbit and its angular velocity, with radiation pressures

and third body gravities playing a less relevant role.
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Figure 3.1: Differential analysis of the perturbations being found in the Phobos environment,
where ap is the magnitude of the perturbing acceleration and is shown divided by
g , which is the magnitude of Phobos’s keplerian gravity acceleration at that point.
Graph reproduced from the study conducted by Zamaro, found in reference [10].

Therefore, to study the motion of the MMX spacecraft the propagator is developed so

as to consider the perturbations due to the non-uniform gravity of Mars and Phobos, the

solar radiation pressure and the third body attraction of the Sun. An analysis is performed

with the objective of determining the effect of these accelerations on the spacecraft orbit

and special focus is placed in the implementation of precise models for the gravities caused

by the two bodies. In particular, Martian gravity is modeled using spherical harmonics by

means of NASA’s Goddard Mars Model 3 (GMM3) and the gravity of Phobos is introduced by

considering a constant density polyhedron.

3.2 Thesis Structure

To fulfill the objectives described in the previous section this thesis has been structured into

three different parts: an introduction to the Martian moons, methodology and description

of the propagator and, finally, results and conclusion.
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The first part, which finishes with this chapter, has been devoted to presenting the

Martian system particularities and history, the mysteries and challenges raised by both

moons and the objectives and characteristics of the MMX mission.

The second part of this thesis will be focused on explaining coordinate systems, equa-

tions of motion and models used in the propagator for the analysis of the MMX trajectory.

In particular, reference frames are defined, equations of relative motion are derived for

the perturbed case being considered and all the perturbation models are explained. The

second part ends up with a thorough validation of the propagator developed, which uses

several test cases such as the circular and elliptical three body problems to verify its correct

implementation.

Finally, the last section of this thesis will present the results obtained. A detailed analysis

will be made of the impact of the perturbations in a low-altitude Quasi-Satellite Orbit and

this will be followed by the concluding remarks of the project.
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4
COORDINATE SYSTEMS

As has been explained in Chapter 3, the aim of this thesis is to develop an orbital propagator

for Phobos and the MMX spacecraft so as to study the effect that several perturbations

would have on the Quasi-Satellite Orbits. Solving the problem presented requires the use of

coordinate systems with respect to which the positions, velocities and accelerations will be

defined. In particular, the topic on coordinate systems for Astrodynamics is complex, since

there exists a wide variety of options that can be used and selecting the most appropriate

ones is not always simple.

The situation is further complicated when taking into account the perturbations defined

later in Chapter 6 since, for instance, solar radiation pressure and solar third body attraction

are caused by a body which does not belong to the Martian system. In addition, in the case

of the gravity acceleration caused by Phobos, the polyhedron model requires the position

vector to be expressed in the principal axes directions, complicating the problem further. As a

result, this chapter will first present the basic information regarding coordinate systems so as

to then define the reference frames and the rotation matrices being used in the propagator.

Please note that for this chapter and the ones that follow, vectors will be denoted with a

superscript arrow (~a), vector norms will be written as ||~a|| and unit vectors will be specified

by means of a superscript hat (x̂). In addition, a rotation matrix from frame A to frame B will

be expressed as [R]B
A.
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CHAPTER 4. COORDINATE SYSTEMS

4.1 Basic Definitions

In general, a coordinate system is just a way of expressing the position and motion of bodies

in three dimensional space. For these systems to be defined, three characteristics have to

be specified: the frame, the center and the type of coordinates. The information explained

below is based on the notation and concepts used in reference [22].

4.1.1 Frames

Coordinate frames refer to a set of Cartesian axes that are specified by four other characteris-

tics, which are:

• Reference Body

It can be any body in the solar system. Furthermore, the definition of the reference

body does not necessarily imply that the center of the frame is also found in that body.

For instance, as will be seen later, one can have an Earth equator frame that is centered

at the Sun.

• Reference Plane

The reference plane defines the X-Y plane of the frame. In general, such plane will be

defined by the Z-axis, since it is perpendicular to it. Hence, if the reference plane is

considered to be the equator plane of the body, then the Z-axis will correspond with

the axis of rotation of the body. If, on the other hand, the reference plane is considered

to be the orbital plane, then the Z-axis will be parallel to the vector of the orbital

angular momentum.

• Reference Direction

It is the direction in which the X-axis of the coordinate frame points. In general, two

main cases are considered: either the X-axis points in the direction of the line of nodes

produced by the intersection of two orbital planes, or, if the frame has a body-fixed

X-axis that rotates with the body, then it points in the direction of the intersection

between the Prime Meridian of the body and its equator plane.

• Reference Time

Specifying a reference time is required since, in general, the reference planes expe-

rience motion conditions due to the existence of perturbations. Similarly to what

happens with Earth, the Mars orbital plane is affected by the gravity perturbations
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of other bodies in the solar system, leading to what is known as planetary precession.

In addition, the equator of Mars experiences what is known as lunisolar precession

due to the effect of the torque generated by the Sun and the Martian satellites on the

equatorial bulge [23]. The addition of planetary precession and lunisolar precession

yields what is known as general precession, which is a long period motion. On the other

hand, the pole of Mars also undergoes a short period oscillation known as nutation. As

a result, when both precession and nutation are taken into account, the true motion of

the reference plane is represented. On the other hand, if only precession is considered

then the mean motion of the plane is described.

To define an inertial reference frame, what is usually done is to consider a mean

reference plane and take a snapshot at a particular time, being this time known as the

epoch. The standard epoch corresponds to the 1st of January of 2000 at 12:00:00 ET, and

is commonly referred to as the J2000 epoch. For the case of non-inertial frames, the

reference time that is considered for the definition of the axes is the time at which the

position, velocities and accelerations are defined. When this is the case, the notation

of date is used [22].

4.1.2 Center and Type of Coordinates

The second element that defines a coordinate system is the center, that is, the location of the

origin. There is a wide variety of possible locations, including any body in the solar system,

planet system barycenters, locations at the surface of a body or even at the spacecraft itself.

Finally, the last variable that has to be defined in order to fully characterize a coordinate

system is the type of coordinates that it employs to express the state vectors of the bodies

and spacecrafts. In general, the most frequently used are Cartesian coordinates, charac-

terized by the typical X,Y,Z axes and which are very useful for the numerical integration

of the trajectories, or Spherical coordinates, in which the position is given by means of a

distance and two angles, typically known as right ascension and declination or as latitude

and longitude [22].

4.2 Heliocentric Coordinate Systems

Having defined the basic concepts related to the definition of coordinate systems and

reference frames, it is now turn to explain which ones are used in the MMX High Fidelity
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propagator. To begin with, the two heliocentric frames and the rotation matrices used to

transform vectors between them are presented.

4.2.1 Sun Centered Earth Mean Equator and Equinox of J2000

The Sun Centered Earth Mean Equator and Equinox of the J2000 epoch, commonly denoted

as EME2000, is an inertial reference system based on a right-handed X,Y,Z Cartesian set of

vectors. In particular, the X-axis (XE ME ) points in the direction of the vernal equinox of the

mean orbit of Earth at J2000, the Z-axis (ZE ME ) is normal to the mean equator of the Earth

at J2000 and the Y-axis completes the triad [22].

In the propagator, this coordinate system is used in order to obtain the direction of

the Mars pole and of the IAU vector, since the equations provided by the International

Astronomical Union are expressed with respect to the EME2000 reference frame.

4.2.2 Sun Centered Ecliptic and Mean Equinox of J2000

The Sun Centered Ecliptic and Mean Equinox of Epoch J2000 is another inertial coordinate

system used in the propagator. As indicated by its name, it is a right-handed Cartesian set of

vectors centered at the Sun and oriented such that the X-axis (X I ) points in the direction of

the vernal equinox of the Earth’s mean orbit at J2000, the Z-axis (ZI ) is perpendicular to the

ecliptic plane and the Y-axis (YI ) completes the triad [22].

This coordinate system is used in the MMX High Fidelity propagator to describe the

orbit that Mars has around the Sun, as this is required in order to be able to model the solar

radiation pressure and the third body gravitational attraction exerted by the Sun on the MMX

spacecraft. Taking into account that this system and the EME2000 frame share the same

X-axis, the transformation of coordinates from one frame to another can be carried out by

means of a simple rotation through the obliquity ε of the ecliptic. Hence, the transformation

from coordinates in this frame to coordinates in the EME2000 is given by

[R]E ME
I =


1 0 0

0 cosε −sinε

0 sinε cosε

 (4.1)

where the obliquity of the ecliptic at the J2000 epoch is equal to ε= 23.4392794444444°

according to the Astronomical Almanac [24].
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4.2.3 Heliocentric Perifocal frame

Describing the orbit of Mars around the Sun can be easily done by means of the so-called

heliocentric perifocal frame, which is no other than a Cartesian frame centered at the focus

of the orbit and with the X-Y plane corresponding to the orbital plane. The X-axis (XP ) is

directed along the apse line, that is, from the focus to the periapsis of the orbit, while the

Z-axis (ZP ) is perpendicular to the orbital angular momentum vector and the Y-axis (YP )

forms a 90° true anomaly angle with the X-axis.

The main functionality of this frame is to enable a rapid computation of the Mars-Sun

distance, since this can be done using the orbit equation. The transformation from the

heliocentric perifocal frame P to the Sun centered ecliptic and Mean Equinox of J2000 can

be done using the following matrix, where i ,Ω and ω are the heliocentric inclination, right

ascension of the ascending node and argument of perigee of Mars, respectively.

[R]I
P =


−sinΩcos i sinω+cosΩcosω −sinΩcos i cosω−cosΩsinω sinΩsin i

cosΩcos i sinω+ sinΩcosω cosΩcos i cosω− sinΩsinω −cosΩsin i

sin i sinω sin i cosω cos i


(4.2)

4.3 Coordinate Systems for the Mars-Phobos environment

After having introduced the coordinate systems being used to describe the orbit of Mars

around the Sun, it is now time to characterize the coordinate systems used for the orbit of

Phobos around Mars and for the orbit of the spacecraft around Phobos.

4.3.1 Mars-Centered Mars Mean Equator and IAU-vector of Date

The Mars-centered Mars Mean Equator and IAU-vector of Date is a coordinate system

centered in Mars in which the reference plane is the Mars mean equator of date and the

reference direction is the IAU vector of date. Under a strict definition, this frame is not

inertial since it accounts for the precession of Mars. However, since precession is a long

period motion, it is considered as a pseudo-inertial frame, being this the reason why it is

commonly known as the Mars Centered Inertial (MCI) frame.
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In this frame, the X-axis (XMC I ) points in the direction of the IAU vector, which is defined

as the intersection of the Mars Mean Equator of Date and the Earth Mean Equator of J2000,

being positive in the direction of the ascending node. The Z-axis points in the direction of the

Martian North pole (hence perpendicular to the equator plane) and the Y-axis completes the

right-handed system [22]. It is the reference frame in which the orbit of Phobos is propagated,

and is therefore used to express the Cartesian position and velocity of the moon.

This frame can be related to the EME2000 reference frame (EME) by means of the

right ascension α0 and declination δ0 of the north pole, which can be obtained using the

equations provided by the IAU in reference [25], which are

α0 = 317.68143−0.1061T

δ0 = 52.88650−0.0609T
(4.3)

where T represents the interval in Julian centuries (of 365.25 days) from the standard

epoch (J2000). The rotation matrix from EME to MCI can then be defined as:

[R]MC I
E ME =


−sinα0 cosα0 0

−cosα0 sinδ0 −sinα0 sinδ0 cosδ0

cosα0 cosδ0 sinα0 cosδ0 sinδ0

 (4.4)

4.3.2 Mars-Centered Mars Mean Equator and Prime Meridian of Date

This is a rotating (hence non-inertial) coordinate system that is centered in and fixed with

Mars. In particular, the reference plane is the Mars mean equator, while the reference

direction in which the X-axis points corresponds to the direction of the Martian Prime

Meridian, which is defined to be the Airy-0 crater. The Z-axis is parallel to the Martian

rotation axis and the Y-axis completes the right-handed set [22].

It is also known as the Mars Centered Mars Fixed (MCMF) frame and in the propagator it

is used to compute the gravity accelerations caused by Mars on both Phobos and MMX. Since

the Z-axis is parallel to that of the MCI frame, the orientation of the X-Y axes is specified

by a rotation defined by the angle W , which is the angle measured along the equator from

the IAU-vector to the point where the Prime Meridian intersects the equator. A graphical

representation of the relation between both frames can be seen in Figure 4.1.

27



CHAPTER 4. COORDINATE SYSTEMS

ZMCI =

Mars North Pole

b

IAU Vector
Ascending

Node

Earth Mean Equator
of J2000

Prime
Meridian

W

Mars Mean
Equator of Date

(XMCI) XMCMF

ZMCMF

Figure 4.1: Representation of the Mars Centered Inertial (in black) and Mars Centered Mars
Fixed frames (in red). The angle W is shown in green.

Computing the value of W can be done by means of Equation 4.5 below, where d repre-

sents the time interval in days from the standard epoch, which corresponds to 2000 January

1, 12 hours Barycentric Dynamical Time (TDB). In Equation 4.5, the first term to the right of

the equal corresponds to the angle at the reference epoch while 350.89198226 is the angular

velocity of Mars in degrees per day.

W = 176.630+350.89198226d (4.5)

Once the angle has been defined, the rotation matrix which enables the transformation

from MCI to MCMF is given by Equation 4.6, being the transformation from MCMF to MCI

performed with the transpose:
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RMC MF
MC I =


cosW sinW 0

−sinW cosW 0

0 0 1

 (4.6)

4.3.3 Phobos Centered Phobos Fixed

The Phobos Centered Phobos Fixed coordinate system (PCPF) is similar to the previously

described MCMF, but in this case defined for Phobos following the IAU convention. As a

result, it is characterized by having the origin at the barycenter of Phobos, the Z-axis parallel

to the spin axis of the moon, the X-axis pointing in the direction of its Prime Meridian and

the Y-axis completing the righ-handed system. According to the IAU criteria, the Prime

Meridian of Phobos is defined as the point which always points towards Mars on the moon’s

equator. As will be explained in Chapter 6, it is used as the substitute of the Principal Axes

frame, which is required in order to retrieve the gravitational acceleration caused by the

moon using the polyhedron model.

4.4 Local Vertical Local Horizontal frame

As the reader will see in Chapter 5, the equations of relative motion are usually expressed in

the so-called Local Vertical Local Horizontal (LVLH) frame, also known as the Hill frame. In

the case of this thesis, since the trajectory being propagated is that of the MMX spacecraft

around Phobos, the frame is characterized by having the origin at the barycenter of Phobos

with the X-axis pointing away from Mars in the line joining the centers of Mars and Phobos.

The Z-axis is parallel to the angular momentum vector (hence perpendicular to the orbital

plane) and the Y-axis completes the right-handed triad. In vector notation these axes are

defined as shown below, where ~rp is the position vector of Phobos and ~̇rp is the velocity

vector of the moon. As mentioned, the LVLH frame is used to express the Cartesian position

and velocity of the MMX spacecraft and a graphical representation can be found in Figure

4.2.

x̂ = ~rp

||~rp ||
; ẑ = ~rp × ~̇rp

||~rp × ~̇rp ||
=

~h

||~h||
; ŷ = ẑ × x̂ (4.7)
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b

b

~rp

Mars

Phobos

XLV LH

YLV LH

Spacecraft
MMX

Figure 4.2: Schematic representation of the Local Vertical Local Horizontal frame as seen
from its Z-axis, which points outwards of the paper. Diagram not to scale.

Since the LVLH frame is used to integrate the trajectory of MMX, it is necessary to express

all the accelerations that the spacecraft experiences in this frame, which implies defining

the corresponding rotation matrices. In particular, the following two rotations involving the

LVLH frame have to be defined:

MCI - LVLH Transformation

Carrying out the transformation of vectors from the MCI to the LVLH frame and vice-versa

is a straightforward operation. In general, the rotation matrix enabling the transformation

from a frame A to a frame B corresponds to the matrix whose columns are the vectors

defining frame A expressed in frame B.

As a result, the rotation matrix characterizing the transformation from LVLH to MCI,

denoted as RMC I
LV LH and given in Equation 4.8 below, can be constructed using the definitions

given in Equation 4.7, provided that the vectors ~rp and ~̇rp are expressed in the MCI frame.

Similarly, passing from MCI to LVLH can be achieved by means of the transpose of RMC I
LV LH .
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RMC I
LV LH = [

x̂ ; ŷ ; ẑ
]

(4.8)

LVLH - PCPF Transformation

As was mentioned in Section 4.3.3, the Phobos Centered Phobos Fixed reference frame

is used as an approximation to the Principal Axis frame of the moon, which is used to

retrieve the gravity acceleration caused by the Phobos polyhedron model. The reader will

find the details and justification involving this approximation later in Chapter 6, while this

sub-section will explain how to perform the LVLH - PCPF transformations.

From the definitions provided in Section 4.3.3 it is known that both PCPF and LVLH have

their origin at the Phobos barycenter. Further insight into the transformation is gained when

taking into account that Phobos is tidally locked, meaning that it exhibits a synchronous

rotation, so that the time period required for one orbit around Mars coincides with the time

period required by the moon to rotate once about its spin axis [26].

Such property not only implies that Phobos always shows the same face to Mars, but,

most importantly, that the Z-axis of the LVLH and PCPF frames are coincident, with the X-

axis differing just by the definition of the moon’s Prime Meridian, which, in turn, corresponds

to the point that constantly points towards Mars in the moon’s equator. As a result, the PCPF

and LVLH frames difference is found in the fact that their X and Y axis are rotated 180 degrees.

In reality, an oscillation ranging between 0.3 and 1.9 degrees is also present, but the 2.26

terrestrial years period characterizing this libration is considerably longer than the time for

which the MMX mission will be propagated in this thesis [26]. Therefore, it is not taken into

consideration and the rotation matrix enabling the transformation of vectors from PCPF to

LVLH and vice-versa is given by:

RLV LH
PC PF =


−1 0 0

0 −1 0

0 0 1

 (4.9)
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5
RELATIVE PERTURBED MOTION IN THE MARS - PHOBOS

SYSTEM

Having defined the coordinate systems in Chapter 4, the next step is to present the Equations

of Motion (EoMs) that the MMX High Fidelity Propagator integrates to obtain the orbit of

Phobos around Mars as well as the spacecraft trajectory. As a result, the reader will find in

this chapter all the information regarding the equations of relative motion for the case being

considered, together with the derivations of the expressions for the angular velocity, angular

acceleration and dynamical perturbation. Details regarding the initial conditions of both

Phobos and MMX will also be provided in the last section.

Finally, in addition to the notation convention defined at the beginning of Chapter 4,

please consider also that vector components will be written without a superscript arrow but

with a subscript indicating which component it is (for example, the Z-component of~h is

written as hz), and that time derivatives of the vectors or of their components will have a

superscript dot or double dot.

5.1 Perturbed General Equations of Relative Motion

In general, to model relative motion dynamics two approaches can be followed: either

Cartesian states are considered or either orbital elements are used. There is a extensive

literature with derivations of these two models but, in most of the cases, the equations are
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obtained under the assumption that there is only one primary body. This is however not the

case in the Mars-Phobos system, where the gravitational attraction of both bodies must be

taken into account. As a result, the well-known relative motion models such as the Clohessy -

Wiltshire or Tschauner - Hempel equations cannot be used for the problem at hand.

Therefore, a new set of equations of relative motion has to be derived. For this thesis,

the approach using Cartesian states has been followed and relative motion equations have

been obtained in the Local Vertical Local Horizontal frame (presented previously in Section

4.4) following the reasoning found in reference [27]. In this frame, motion along the x̂ and

ŷ directions is known as in-plane motion, while motion in the ẑ direction is out-of-plane

motion. As shown in Figure 5.1 below, lets denote the position and velocity vectors of

MMX with respect to Phobos as ~ρ and ~̇ρ, while the position and velocity vectors of Phobos

with respect to Mars will be ~rp and ~̇rp . Also, denote by ~ω and ~̇ω the angular velocity and

acceleration of the LVLH frame with respect to the Mars Centered Inertial frame.

b

b

~rp

Mars

Phobos

XLV LH

YLV LH

Spacecraft
MMX

~ρ

Figure 5.1: Graphical representation of the relative motion problem being considered.

As can be inferred from Figure 5.1, the absolute position of the spacecraft with respect to

Mars can be defined as

~rtot =~rp +~ρ (5.1)
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from where the derivative with respect to time can be taken. Using d
d t to denote the time

derivative of a vector with respect to the inertial frame (MCI), and applying the Coriolis

theorem yields:

d

d t
~rtot = d

d t
~rp + d

d t
~ρ = d

d t
~rp + ~̇ρ + ~ω×~ρ (5.2)

Differentiating Equation 5.2 and operating gives the equations of motion of the MMX

spacecraft as follows:

d 2

d t 2
~rtot = d 2

d t 2
~rp + d

d t

(
~̇ρ + ~ω×~ρ) = d 2

d t 2
~rp + d

d t
~̇ρ + d

d t
~ω×~ρ + ~ω× d

d t
~ρ

= d 2

d t 2
~rp + ~̈ρ + ~ω× ~̇ρ + ~̇ω×~ρ + ~ω× (

~̇ρ + ~ω×~ρ)
= d 2

d t 2
~rp + ~̈ρ + 2~ω× ~̇ρ + ~̇ω×~ρ + ~ω× (

~ω×~ρ)
(5.3)

In Equation 5.3, there are still two terms that can be operated further. In particular,
d 2

d t 2~rtot and d 2

d t 2~rp represent the absolute acceleration of the spacecraft and of Phobos in the

inertial frame (MCI). Introducing the assumption that the mass of the spacecraft is very

small compared to the mass of the primaries (hence we are now considering the restricted

three body problem), allows the aforementioned terms to be written as

d 2

d t 2
~rtot =− µM

||~rtot ||3
~rtot − µP

||~ρ||3 ~ρ + ~Pmmx (5.4)

d 2

d t 2
~rp =− µM

||~rp ||3
~rp + ~Pp (5.5)

where µM and µP are the gravitational parameters of Mars and Phobos respectively and

the vectors ~Pmmx and ~Pp represent the generic perturbing accelerations experienced by

the spacecraft and Phobos. Substituting Equations 5.4 and 5.5 into Equation 5.3 gives the

general nonlinear equations of perturbed relative motion in the LVLH frame.

~̈ρ = − µM

||~rtot ||3
~rtot − µP

||~ρ||3 ~ρ + µM

||~rp ||3
~rp − 2~ω× ~̇ρ − ~̇ω×~ρ − ~ω× (

~ω×~ρ) + ∆~P (5.6)

34



CHAPTER 5. RELATIVE PERTURBED MOTION IN THE MARS - PHOBOS SYSTEM

In order to apply Equation 5.6, several terms such as the angular velocity, angular accel-

eration and the perturbation difference vector ∆~P have to be defined. Similarly, the type of

orbit of Phobos around Mars has to be specified, as it can be circular (circular restricted three

body problem), elliptical (elliptic restricted three body problem) or non-keplerian.

In this thesis, the perturbations being considered for the spacecraft are: spherical har-

monics for the gravity of Mars, a polyhedron model for the gravity of Phobos, solar radiation

pressure and solar third body gravitational attraction. On the other hand, non-keplerian

motion will be considered for Phobos, since the spherical harmonics of Mars will be taken

into account. The reader will find the equations for the angular velocity and acceleration

of the LVLH frame in the upcoming sections. Finally, it must be noted that the MMX High

Fidelity propagator integrates the equations of motion using the MATLAB solver ode113 and

that dimensionless quantities are used in the propagator, with lengths being normalized

with the semi-major axis of Phobos and time with the inverse of the mean motion n. Table

5.1 below shows the values for the length and time units being used.

Magnitude
Length Unit [m] 9377200

Time Unit [s] 4387.77138693593

Table 5.1: Values for the length and time units used to normalize variables in the MMX High
Fidelity Propagator.

5.2 Time derivatives of the LVLH frame unit vectors

In order to derive the expressions for ~ω and ~̇ω, it is necessary to obtain first the time deriva-

tives of the unit vectors of the Local Vertical Local Horizontal frame.

Time derivative of the unit vector x̂

Starting with the X-direction and applying the corresponding derivation rule to the

definition of vector x̂ gives the following:

x̂ = ~rp

||~rp ||
−→ ˙̂x = ~̇rp

||~rp ||
−

d
d t

(||~rp ||
)
~rp

||~rp ||2
(5.7)
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The term d
d t

(||~rp ||
)

can be expressed in a more convenient way by making use of the

relation for the time derivative of a modulus, which characterized for the X-direction yields

the following:

d

d t

(
||~rp ||

)
= ~rp

||~rp ||
· d~rp

d t
= x̂ · ~̇rp (5.8)

Substituting the above expression into Equation 5.7 and taking into account that the

position vector can be expressed as ~rp = ||~rp || x̂ yields:

˙̂x = ~̇rp

||~rp ||
−

(
~̇rp · x̂

)
~rp

||~rp ||2
= ~̇rp

||~rp ||
−

(
~̇rp · x̂

)
x̂

||~rp ||
(5.9)

The numerator of the last term of Equation 5.9 can be simplified by transposing the

vectors and making use of the associative property of matrices, with the term becoming(
x̂ x̂T

)
~̇rp . Therefore, the final expression, where I is the identity matrix, is:

˙̂x = ~̇rp

||~rp ||
−

(
x̂ x̂T

)
~̇rp

||~rp ||
−→ ˙̂x = 1

||~rp ||
(
I − x̂ x̂T

)
~̇rp (5.10)

Time derivative of the unit vector ẑ

Similarly, one can also compute the time derivative of the ẑ unit vector. Starting from the

definition of ẑ given in Section 4.4 and following a similar procedure to the one described

above yields the following:

ẑ = ~rp × ~vp

||~rp × ~vp ||
=

~h

||~h||
−→ ˙̂z = 1

||~h||
(
I − ẑ ẑT

)
~̇h (5.11)

Equation 5.11 can be modified by recalling the definition of the angular momentum and

computing its corresponding time derivative, in which an acceleration term denoted as ~f

appears, so that ~̇h = ~rp ×~̈rp = ~rp ×~f . Hence, the final expression for the time derivative of

the ẑ vector is:
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˙̂z = 1

||~h||
(
I − ẑ ẑT

)(
~rp ×~f

)
(5.12)

Time derivative of the unit vector ŷ

Finally, the time derivative of the ŷ vector can be obtained by deriving its definition and

then substituting the expressions for ˙̂x and ˙̂z, found in Equations 5.10 and 5.12 respectively.

This gives:

˙̂y = = 1

||~h||

((
~rp ×~f )× x̂ − ẑ ẑT (

~rp ×~f )× x̂

)
+ ẑ × ~̇rp

||~rp ||
+ ẑ × 1

||~rp ||
(− x̂ x̂T )

~̇rp (5.13)

The obtained equation contains the term ẑ ẑT
(
~rp ×~f )

, which is the component of the

vector resulting from the cross-product in the Z-direction. The associative property can be

applied to the last term of Equation 5.13, retrieving that x̂T ~̇rp = ṙp x . Substituting and using

the triple product rule yields:

˙̂y = 1

||~h||

((
~rp · x̂

)
~f − (

~rp ·~f )
x̂ −

(
ẑT · (~rp ×~f ))

ŷ

)
+ ẑ × ~̇rp

||~rp ||
−

(
ṙp x

||~rp ||

)
ŷ (5.14)

Equation 5.14 can be further simplified using that ~rp = ||~rp || x̂. Hence, the term
(
~rp · x̂

)
simplifies to ||~rp ||, and the term

(
~rp ·~f )

x̂ converts into an expression with the projection of

the force in the X-direction, namely
(||~rp || fx

)
x̂. Substituting these results and simplifying

gives the final expression for ˙̂y :

˙̂y = 1

||~h||

(
||~rp ||

(
~f − fx x̂

)− (
ẑT · (~rp ×~f ))

ŷ

)
+ ẑ × ~̇rp

||~rp ||
−

(
ṙp x

||~rp ||

)
ŷ (5.15)

5.3 Angular velocity of the LVLH Frame

To obtain the expression for the angular velocity of the Local Vertical Local Horizontal frame

one can use the so-called Poisson formula, which is no other than:
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~ω= 1

2

[
x̂ × ˙̂x + ŷ × ˙̂y + ẑ × ˙̂z

]
(5.16)

To re-write it, consider the three terms of Equation 5.16. Starting with x̂ × ˙̂x, the position

vector and the definition of angular momentum can be used, obtaining:

x̂ × ˙̂x = x̂ × ~̇rp

||~rp ||
=

~h

||~rp ||2
(5.17)

With respect to the second term, ŷ × ˙̂y , the expression can be developed by substituting

first the definition of ˙̂y and then using the vector triple product rule. Since the scalar product

of two perpendicular vectors is zero, the result is:

ŷ × ˙̂y = ŷ × (
ẑ × ˙̂x

)+ ŷ × (
˙̂z × x̂

)= (
˙̂x · ŷ

)
ẑ − (

˙̂z · ŷ
)
x̂ (5.18)

The last two terms of Equation 5.18 can be further developed. In particular,
(

˙̂x · ŷ
)
ẑ

can be simplified by substituting ˙̂x by the velocity vector. Also, the scalar product ~̇rp · ŷ is

equivalent to the cross product x̂ × ~̇rp (because the angle between vectors ~̇rp and ŷ and the

angle between ~̇rp and x̂ are complementary). Hence:

(
˙̂x · ŷ

)
ẑ = ~̇rp · ŷ

||~rp ||
ẑ =

~h

||~rp ||2
(5.19)

On the other hand, the term −(
˙̂z · ŷ

)
x̂ from Equation 5.18 can be re-written, since it

represents the component of the time derivative of vector ẑ on the direction of ŷ , so that

−(
˙̂z · ŷ

)
x̂ =− ˙̂zy x̂. Substituting the definition of ˙̂z (given by Equation 5.12) yields:

− (
˙̂z · ŷ

)
x̂ =−

[
1

||~h||
((
~rp ×~f )− (

ẑT · (~rp ×~f ))
ẑ
)
· ŷ

]
x̂ (5.20)
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Since ẑ is perpendicular to ŷ , the second term of Equation 5.20 cancels out when doing

the dot product. To the remaining term,
(
~rp ×~f ) · ŷ , the so-called circular shift property can

be applied to express it in a more convenient way, giving:

− (
˙̂z · ŷ

)
x̂ =−

(
1

||~h||
(
~rp ×~f

)
· ŷ

)
x̂ =−

(
1

||~h||
(

ŷ × ~rp

)
·~f

)
x̂ (5.21)

Introducing into Equation 5.21 the definition of ~rp , taking into account that the resulting

cross product is ŷ× x̂ =−ẑ and that then ẑ ·~f is the component of the force in the Z-direction

( fz), yields the final expression for the second term of Equation 5.18, which is:

− (
˙̂z · ŷ

)
x̂ =

(
||~rp ||
||~h||

ẑ ·~f
)

x̂ = fz
||~rp ||
||~h||

x̂ (5.22)

Finally, the third term of Equation 5.16, that is, ẑ × ˙̂z, can also expressed more con-

veniently. Recalling the definition of ˙̂z and then using the triple product rule leaves only(
ẑ ·~f )

~rp , which is no other than the projection of vector ~f on vector ẑ:

ẑ × ˙̂z = ẑ ×
(
~rp ×~f )
||~h||

=
(
ẑ ·~f )

~rp

||~h||
= fz

||~rp ||
||~h||

x̂ (5.23)

Hence, one can now substitute back into Equation 5.16 the derived terms, given in

Equations 5.17, 5.19, 5.22 and 5.23, yielding the following:

~ω= 1

2

[
~h

||~rp ||2
+

~h

||~rp ||2
+ fz

||~rp ||
||~h||

x̂ + fz
||~rp ||
||~h||

x̂

]
(5.24)

Simplifying, the expression for the angular velocity of the Local Vertical Local Horizontal

frame finally is:

~ω=
~h

||~rp ||2
+ fz

||~h||
~rp (5.25)
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5.4 Angular Acceleration of the LVLH frame

With respect to the angular acceleration, the expression can be obtained by deriving Equa-

tion 5.25. This yields:

~̇ω=
~̇h

||~rp ||2
−

2 ||~rp ||
(

d
d t ||~rp ||

)
~h

||~rp ||4
+ 1

||~h||
(

ḟz~rp + fz ~̇rp

)
−

(
d

d t ||~h||
)

fz~rp

||~h||2
(5.26)

The formula obtained above can be simplified by making use of the definition provided

previously in Equation 5.8 for the time derivative of the modulus of a vector, so that ∂
∂t ||~rp || =

x̂ · ~̇rp and ∂
∂t ||~h|| = ẑ ·~̇h. Hence, the time derivative of the angular velocity is:

~̇ω=
~̇h

||~rp ||2
− 2

(
~rp · ~̇rp

)
~h

||~rp ||4
+ ḟz~rp + fz ~̇rp

||~h||
− ḣz fz ~rp

||~h||2
(5.27)

5.5 Dynamical Perturbation and its Time Derivative

In Section 5.2, a new term denoted as ~f was introduced, which then appears in the expres-

sions for the angular velocity and acceleration given in Equations 5.25 and 5.27. Such term

can be defined as the dynamical perturbation that the LVLH frame experiences, which, at

the same time, corresponds to the perturbation affecting Phobos, since the LVLH frame is

attached to the moon and its orientation depends on its orbit.

As was mentioned in Section 5.1, Phobos is affected by the spherical harmonic model

considered for the gravity of Mars. As a result, the dynamical perturbation vector ~f can be

defined as the difference that the Phobos acceleration experiences with respect to the Keple-

rian case. As will be explained later in Chapter 6, the dynamical perturbation is obtained in

the MCMF frame. Hence, in order to substitute the vector into the expressions for ~ω and ~̇ω it

has to be transformed into the LVLH frame. This can be done as follows, where the rotation

matrices used have already been defined in Chapter 4 and the reference frame in which the

vectors are expressed is denoted with a superscript notation:

~f LV LH = [R]LV LH
MC I [R]MC I

MC MF
~f MC MF (5.28)
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Computing the time derivative of the dynamical perturbation can then be done by

differentiating Equation 5.28, which yields:

~̇f LV LH =
(
[Ṙ]LV LH

MC I [R]MC I
MC MF + [R]LV LH

MC I [Ṙ]MC I
MC MF

)
~f MC MF

+ [R]LV LH
MC I [R]MC I

MC MF
~̇f MC MF

(5.29)

In the first term of Equation 5.29 there are derivatives with respect to time of two different

rotation matrices, namely [Ṙ]LV LH
MC I and [Ṙ]MC I

MC MF . To compute their value, one must recall

that direction cosine matrices satisfy the following kinematic differential equation [28]

[Ṙ] =−[ω̃][R] (5.30)

where [ω̃] represents the skew symmetric matrix tilde operator of the angular velocity.

Hence, the first time derivative of the rotation matrix found in Equation 5.29 is given by

[Ṙ]LV LH
MC I =−[ω̃]LV LH [R]LV LH

MC I (5.31)

where [ω̃]LV LH is the tilde matrix operator of the angular velocity vector of the LVLH

frame with respect to the MCI expressed in the LVLH base vectors. Hence, recalling the

definition of the angular velocity of the LVLH frame given in Equation 5.25, the term [ω̃]LV LH

is written as

[ω̃] =


0 −~hLV LH

||~rp ||2 0

~hLV LH

||~rp ||2 0 − fz ~r LV LH
p

||~h||
0

fz ~r LV LH
p

||~h|| 0

 (5.32)

Similarly, for the other time derivative of the rotation matrix the expression is

[Ṙ]MC I
MC MF =−[ω̃]MC I [R]MC I

MC MF (5.33)

with [ω̃]MC I being the tilde operator of the angular velocity vector between the MCMF

and MCI frames expressed in the MCI base. This vector is characterized by the fact that it
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only has one component in the Z direction, with the magnitude being equal to the time

derivative of the angle W defined previously in Section 4.3.2. Hence, the component is

simply the angular velocity of Mars (2π divided by the sidereal rotation period of the planet).

Finally, the term ~̇fMC MF in Equation 5.29 can be computed using the gradient of the

perturbation, so that the resulting expression is

~̇f MC MF = ∇ f MC MF ~̇r MC MF
p (5.34)

where ~̇r MC MF
p can be obtained in a similar way as the one described above with the

following expression:

~̇r MC MF
p = [Ṙ]MC MF

MC I ~r MC I
p + [R]MC MF

MC I ~̇r MC I
p (5.35)

5.6 Initial Conditions

Propagating the orbits of Phobos and of the MMX spacecraft using the equations defined in

the previous section requires a set of initial conditions. For the problem being considered,

twelve initial conditions have to be provided, since twelve states are being integrated. In the

following subsections the reader will find a detailed explanation of how were these initial

positions and velocities retrieved.

5.6.1 Phobos Initial Conditions

To obtain the initial conditions for the orbit of Phobos around Mars, the simplest approach

is to use the Horizons System developed by the Jet Propulsion Laboratory, which is available

through an online interface. To do so, two things have to be taken into account: on the one

hand, there is the need to specify an epoch at which the state vector is retrieved and, on the

other hand, the JPL Horizons system has to be configured so as to retrieve the resulting state

vector in the Mars Centered Inertial frame, as this is where the Phobos orbit is propagated.

With respect to specifying the initial epoch, two things are known:

• From the timeline shown in Figure 1.2, it is expected that MMX will enter the Quasi-

Satellite Orbits around the 1st of August 2025, so the initial epoch should be close to

that date.
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• From the MMX initial conditions data provided by Nicola Baresi, it is known that the

value of the true anomaly of Phobos at the epoch which corresponds with the initial

conditions of the spacecraft is θ0 = 5.67019161867426 rad.

Hence, the objective is to define an initial epoch which is close to August 1, 2025 and at

which the true anomaly of Phobos is the value given. This can be done by using

M = M1 +n
(
t − t1

)−→ t = M −M1

n
+ t1 (5.36)

where M is the mean anomaly that corresponds to θ0 and which can be computed via

the eccentric anomaly, M1 is the Phobos mean anomaly at the reference epoch 01-Aug-

2025 (with the value being obtained from JPL Horizons) and n is the mean angular motion.

Equation 5.36 will therefore give the date at which the Phobos true anomaly is θ0, which

will then be the initial epoch that is considered in the propagator. This date is found to be

July 31st , 2025 at 19:46:41 UT, which corresponds to the Julian Date JD0 = 2460888.32407819.

With this initial epoch, the JPL Horizons System can then be used to retrieve the state vector

of the Martian moon in the MCI frame, with the values being given in Table 5.2 below.

State Magnitude
X [km] -1.115940288793653 ×103

Y [km] 9.190589512217197 ×103

Z []km] 1.085752281853547 ×102

Vx [km/s] -2.146065723009760
Vy [km/s] -2.797005274171575 ×10−1

Vz [km/s] 3.102479521763912 ×10−2

Table 5.2: Phobos initial state vector expressed in the Mars Centered Inertial frame. Values
with no rounding off, as retrieved from the Horizons system. The initial epoch
corresponds to July 31st ,2025 at 19:46:41 UT.

5.6.2 Initial Conditions for MMX

With respect to the initial conditions of the Quasi-Satellite Orbits of the MMX spacecraft,

two different sets were provided by Nicola Baresi: one for a low-altitude 30 × 50 km orbit

and another set for a mid-altitude 100 × 200 km orbit. Both had the particularity of being

were expressed in a pulsating reference frame (denoted as S). As a result, a transformation

from S to the LVLH frame had to be performed in order for these initial conditions to be

used in the MMX propagator.
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The synodic frame is characterized by being centered at Phobos, with the X-direction

being defined by the separatrix between the Mars and Phobos barycenters, the Z-axis

being parallel to the orbital angular momentum and the Y-axis completing the right-handed

system [29]. Furthermore, in this frame the spacecraft position is scaled by the Mars - Phobos

distance d , time is substituted by the true anomaly θ of the Martian moon and the constant

ζ= ( µP
µM

)1/3 is used, where µP and µM are the Phobos and Mars mass parameters respectively.

With these definitions, converting the initial conditions from the S frame to the Local Vertical

Local Horizontal can be achieved by means of the expressions provided by reference [30],

namely

~r = ζd~rS

~̇r = ζθ̇
(

d ′~rS + d~r ′
S

) (5.37)

where~rS is the spacecraft position vector in the synodic frame,~r ′
S is the derivative of this

vector with respect to the Phobos true anomaly, θ̇ is the rate of change of the true anomaly

and d ′ is the derivative of d with respect to θ. Computing these parameters can be done

using the following equations

d = p

1+e cosθ
(5.38)

d ′ = d 2

p
e sinθ (5.39)

θ̇ =
p
µM p

d 2
(5.40)

where p = a (1− e2) is the moons orbital parameter or semi-latus rectum, being a the

semi-major axis and e the eccentricity. Using the above expressions and the values for µP ,

µM , p and θ0 provided by Nicola Baresi yielded the initial conditions for the MMX spacecraft

expressed in the LVLH frame, found in Table 5.3 below.
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State 30 × 50 km QSO 100 × 200 km QSO
X [km] 29.3237881750688 99.8014771706819
Y [km] -9.01301842442985 ×10−2 -1.92352019971823
Z [km] -9.52716782326782 -7.49367543330828

Vx [km/s] 2.79525006230658 ×10−6 -1.12847704407331 ×10−5

Vy [km/s] -1.52183121555763 ×10−2 -4.65043626913888 ×10−2

Vz [km/s] 6.74255893460753 ×10−4 7.83657113033875 ×10−4

Table 5.3: Cartesian initial conditions expressed in the Local Vertical Local Horizontal frame
for two Quasi-Satellite Orbits. Values have not been rounded up so as to provide
highest possible accuracy.
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6
PERTURBATIONS

The equations of motion defined previously in Chapter 5 contain terms which represent

the different perturbations which are being considered in the propagation of the orbits.

Therefore, this chapter will now explain the models used for these perturbations as well as

the corresponding assumptions and simplifications followed for their implementation.

6.1 Mars Gravity

As was shown in Tables 1.1 and 1.2 of Chapter 1, Mars is by far the most massive body of

the Martian system and, as a result, is responsible for the biggest gravitational acceleration.

Hence, modelling this perturbation with a great accuracy is a must.

The gravity field generated by Mars is indeed non-uniform, since the body has an irregu-

lar shape. When this is the case, the actual discrepancy from the perfect spherical geometry

can be taken into account by means of the spherical harmonic approach.

This approach is based on the fact that gravity is a conservative force and, as such, can be

written as the gradient of a potential function V . The complete derivation of the expression

for the gravitational potential can be found in reference [31], and only a brief summary will

be provided here. Hence, considering the mass of the planet to be composed of infinitesimal

masses, the potential at a point P due to the whole mass of Mars can be written as
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V =G
∫

M

1

|~r −~s|dM (6.1)

where |~r −~s| is the magnitude of the vector between a differential mass element dM and

point P, G is the gravitational constant and M is the total mass of the planet, as is shown

below in Figure 6.1.

Z

X

Y

MARS

b

b

~r

dM

~s

~r − ~s

γ

P

Figure 6.1: Schematic representation of a differential element of mass and the geometric
parameters involved in the derivation of the gravitational potential at a point P.

Solving the expression above is simplified if the fraction 1
|~r−~s| is written in terms of a series

of spherical harmonics, known as Legendre polynomials, so that the result is as follows, with

Pi being the polynomial of degree i :

1

|r − s| =
1

r

[
1+

(
s

r

)2

−2

(
s

r

)
cosγ

]− 1
2

= 1

r

∞∑
i=0

(
s

r

)i

Pi (cosγ) (6.2)
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Substituting Equation 6.2 and integrating over the distribution of mass gives the expres-

sion for the gravity potential that a planet generates at point P, being the position of such

point expressed in spherical coordinates r , λ and θ:

V(r,λ,θ) =
(
µ

r

) ∞∑
n=0

n∑
m=0

(
Re

r

)n [
Cnm cos(mλ)+Snm sin(mλ)

]
Pnm(cosθ) (6.3)

In the above equation, µ is the gravitational parameter, Pnm are the Legendre functions

of degree n and order m, Re is the planet’s mean equatorial radius and Cnm and Snm are the

so-called Stokes coefficients, whose values are determined from satellite measurements and

terrestrial observations and which account for the irregular mass distribution of the planet.

Whenever m = 0, the Stokes coefficients are denoted as zonal coefficients, while they are

called tesseral coefficients when m < n and sectorial if m = n.

As a result, modelling the gravity of a planet by means of the spherical harmonic ap-

proach requires having values for the Stokes coefficients, being this set of values the ones

that define and distinguish one model from another. For instance, in the case of Mars, there

are up to 10 different models, ranging from the first one developed in 1982 and available in

reference [32] to the latest one, GMM3, published in 2016.

6.1.1 The GMM3 Model

The Goddard Mars Model 3, (GMM3), is a gravity model for Mars which provides a spherical

harmonic solution of up to degree and order 120. As has been mentioned, it is the most recent

one and has been created based on the data retrieved by three different NASA spacecraft

over the last sixteen years: Mars Global Surveyor, Mars Odyssey and Mars Reconaissance

Orbiter [11].

The measurements used to develop this model were acquired by observing the small

perturbations that those spacecraft experienced as they orbited Mars, something which

was achieved via the ground stations of NASA’s Deep Space Network, and the GMM3 model

was presented in the paper available in reference [33]. With respect to the data used in this

thesis, it is publicly available on NASA’s Planetary Data System, where the user can download

the files which contain the normalized Stokes coefficients. These values provide the most
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accurate model of the Martian gravity up to date and Figure 6.2 below shows a graphical

representation of this gravity as defined by this model.

Figure 6.2: Free-air gravity map according to the GMM3 model. It shows the variations with
respect to the mean gravity of Mars, measured in milligals. Red and white are the
regions were the departure is greatest, while blue and purple represent the areas
where the gravity is lower than average. Image taken from [11].

6.1.2 Implementation

Once the data had been retrieved, it had to be treated in order for it to be useful to the

MATLAB function which computed the gravity acceleration as well as its gradient, which

was required for Equation 5.27. In particular, these two values were obtained by applying

the method developed by Leland E. Cunningham in 1969 and available in reference [34],

and the MATLAB routine which implemented the aforementioned procedure was provided

by Nicola Baresi.

As a result, after the coefficients have been organized into the corresponding matrix

arrangements, it is necessary to perform an un-normalization process, since the method

developed by Cunningham uses un-normalized coefficients. The relation between the

normalized coefficients, denoted as C nm and Snm , and the un-normalized values (without

bar) is given by the following expression, where δ0m is the Kronecker delta function, which

gives a value of one if m = 0 or zero in the rest of cases:
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 Cnm

Snm

=
[

(n −m)!(2n +1)
(
2−δ0m

)
(n +m)!

]1/2
 C nm

Snm

 (6.4)

The usage of unnormalized coefficients presents a small drawback, which is caused

by the fact that the normalization factor shown in Equation 6.4 gets smaller as the degree

and order are increased due to the presence of the term (n +m)! in the denominator. As

a result, after degree and order 80, MATLAB rounds up the factor to zero, hence causing

that the spherical harmonic solution to be considered in the propagator only reaches the

mentioned order and degree. Indeed, this causes a loss of accuracy in comparison to the

solution reaching degree and order 120 but, for the scope of this thesis, this is not a problem

since the major effects of the Martian gravity are contained in the lower degrees and orders,

being 80 more than sufficient for the accuracy desired.

The last practical remark that the reader must consider is that the Cunningham proce-

dure requires the position vectors to be introduced in the Mars Centered Mars Fixed frame.

Therefore, the position vectors of Phobos and of the MMX spacecraft have to undergo a

transformation process in order to express them in the desired frame. Similarly, the resulting

acceleration and gravity gradient are obtained in the MCMF frame.

6.2 Phobos Gravity

Having explained the details behind the gravitational model used for Mars, it is now turn to

address the one used for Phobos. In the case of the Martian moon, modelling the gravity

acceleration is more complicated, since the degree of inaccuracy is greater due to the fact

that the available measurements concerning Phobos are scarce and, in some cases, old.

Furthermore, the moon is characterized by a highly irregular shape and the mass and density

estimates are still subject to modifications as new studies are performed.

Dealing with bodies which present these difficulties, such as asteroids and comets, is

therefore not simple. However, good accuracy levels can be achieved by means of polyhedron

models, as was the case for the Rosetta mission to the 67P/Churyumov-Gerasimenko comet

[35]. This section will therefore present the polyhedron model being used for Phobos as well

as some characteristics involving its implementation in the MATLAB propagator.
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6.2.1 The Polyhedron Model

In the case of irregular bodies, a longitudinal dependence is normally found in the expression

for the gravity potential, since there is no axisymmetric shape as in the case of planets [35].

Thus, obtaining an equation using a spherical harmonic model is complicated and not

practical, as the convergence of the harmonic expansion is no longer guaranteed due to the

mass distribution changes and also there is no information regarding whether a field point

is inside or outside the body [36]. Overcoming the problems posed by a spherical harmonic

model can be achieved by means of the polyhedron model, which obtains an expression for

the gravity field by approximating the shape of the body with a constant density polyhedron.

This approach presents several advantages: on the one hand, the geometry of the body

is divided into smaller pieces of polyhedral shape, thus permitting craters, peaks, grooves

and other surface features to be considered. In addition, the gravity field obtained is exact,

and errors are only produced by inaccuracies inherent to the shape determination, so there

are no convergence issues. Finally, and although this will not be used in this thesis, such

model enables to obtain the gravitational accelerations at the surface of the body, therefore

being useful for further studies of the MMX mission [36]. This section will now provide a

brief review of the equations and mathematics behind such model, with the reader being

able to find the complete formulae and derivations in reference [36].

Constructing a polyhedron model implies dividing the body being characterized into

polygons (usually triangles or parallelepipeds, although other configurations can be used).

These polygons have surfaces (known as faces, subscript f ) that will meet each other at

either edges (subscript e) or vertices (V ), and it is required to define the connective sequence

so as to correctly build the model. Once this is done, each polyhedron face will have a vector

normal to it and pointing outwards from the body (~n f ), and a face dyad F f =~n f ~n f , while

each edge of each face will have another outward-pointing normal vector ~n f
e , which is

perpendicular to both the edge and~n f . For the edge connecting two vertices (for instance Vi

and V j , see Figure 6.3), an edge dyad also exists, given by Ei j =~nA~n A
i j +~nB~nB

j i , where~nA and

~nB are the normal vectors of faces A and B, and ~n A
i j and ~nB

j i are the previously mentioned

edge normal vectors.
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Face B

Face A

Vi

Vj

~nA

~nB

~nA
ij

~nB
ji

Figure 6.3: Graphical representation of the normal vectors associated to two faces which
join at an edge defined by two vertices.

Consider now~ri to be the vector from a point from the field to vertex Vi and ri to be its

magnitude. Each edge connecting two vertices (such as Vi and V j ) will have associated a

dimensionless factor Le defined as

Le = ln
ri + r j +ei j

ri + r j −ei j
(6.5)

where ei j is the length of the edge. Similarly, for each face f defined by three vectices Vi ,

V j and Vk , there exists a dimensionless face factor ω f given by:

ω f = 2arctan

 ~ri ·
(
~r j ×~rk

)
ri r j rk + ri

(
~r j ·~rk

)
+ r j

(
~rk ·~ri

)+ rk

(
~ri ·~r j

)
 (6.6)

With these definitions, and considering G and σp to be the gravitational constant and

the polyhedrons constant density respectively, the gravitational potential can be expressed

as

U = 1

2
Gσp

[ ∑
e∈ edges

~re Ee~re Le − ∑
f ∈ faces

~r f F f ~r f ω f

]
(6.7)
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from where the expression for the gravity acceleration can be easily obtained recalling

that ~g =−∇U , so that

~g =−GσP

 ∑
e∈ edges

Ee~re Le − ∑
f ∈ faces

F f ~r f ω f

 (6.8)

where~re is the position vector (relative) of the spacecraft with respect to the e-th edge

and~r f is the relative position vector with respect to a point on the f-th face [36].

6.2.2 Implementation

The first step in the implementation of the polyhedron model for Phobos is to select which

one to use. Currently, only two models are available to the public in NASA’s Planetary Data

System (PDS) Small Bodies Node, and both were developed by R. W. Gaskell in 2006 and

2012 respectively. Although these two models could be used without problem, this thesis has

instead implemented one provided by Nicola Baresi, which is characterized by having 40962

vertices and 81920 triangular faces, connected between each other by means of 122880

edges. Figure 6.4 below shows a view of the mentioned model.

Figure 6.4: Three dimensional view of the polyhedral model used for Phobos.
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In order to compute the gravitational acceleration caused by Phobos on the MMX space-

craft, the position vector has to be expressed in a body-fixed frame oriented such that the

X,Y and Z axis correspond with the minimum, medium and maximum axes of inertia [37]

[38]. As a result, the MMX position vector has to be transformed from the LVLH frame to the

one just mentioned.

This can be simplified by taking into account that studies, such as the ones provided in

reference [39] and [40], have shown that the misalignment between the principal axes of

inertia frame and the body fixed frame defined according to the IAU convention (PCPF) is

very small, of approximately 1.2 ° . Therefore, it can be considered that the Principal Axes

frame and the PCPF frame are coincident. With this simplification, the transformation of

the spacecraft position vector from the LVLH frame to the one required by the polyhedron

model reduces to a rotation from LVLH to PCPF which, as explained before in Section 4.4,

consists on a 180 °rotation of the X-Y axes. Looking at Figure 6.4, the reader can notice how

the direction pointing to Mars is along the positive X-axis, while in the LVLH frame the

positive X-axis points away from Mars.

6.3 Solar Radiation Pressure

Once the two main gravitational perturbations involved in the dynamical environment have

been presented, it is turn for this section to address the first and only non-gravitational

perturbation considered in the MMX High Fidelity propagator. In particular, the propaga-

tor takes into account the perturbing acceleration caused by the solar radiation pressure

(commonly denoted as SRP) on the spacecraft. This force would also act on the small body

(Phobos) through the Yarkosvky and YORP effects, but both are not taken into account since

the spacecraft orbit time is much smaller than the time scale of the effects [41]. As a result,

the reader will find in the subsequent sections information regarding the model used as well

as details concerning its implementation in the propagator.

6.3.1 SRP Model

Solar radiation pressure is the force that results from the impact of particles emitted by the

Sun on the surface of the spacecraft. In particular, one of the outer layers of the Sun, known

as the photosphere, acts as a black-body and hence emits radiation that spans throughout

most of the electromagnetic spectrum, from radiowaves to X-rays [6]. The emitted photons,

which are massless particles, then travel at the speed of light and eventually impinge on the
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spacecraft, which experiences a perturbing acceleration due to the fact that the energy and

momemtum of the photons is not zero. For high-precision orbit propagation it is therefore

necessary to include the SRP effect, which also depends on the ballistic properties of the

spacecraft.

Several models of diverse complexity have been proposed in the past, from the simplest

cannonball model, in which the spacecraft is considered to be a sphere, to box-wing models

such as the one in reference [42] where solar panels and the main structure are considered

separately, to others much more complex in which the satellite and its position with respect

to the Sun are modelled by means of Fourier series, such as the one in reference [43].

For the scope of this thesis, it is sufficient to consider a cannonball model as the ones

provided in references [41] and [44]. In such case, the perturbing acceleration that has to be

included in the MMX equations of motion is given by

~aSRP =−ηCR

(
Asc

Msc

)(
S

c

)(
1AU

||~rsun −~ro ||
)2 ~rsun −~ro

||~rsun −~ro ||
(6.9)

where the minus sign denotes that it is directed away from the Sun, η is the shadow

function, which is 0 if the spacecraft is under eclipse conditions and 1 otherwise, Cr is the

radiation pressure coefficient with values between 1 (the body behaves as a black body and

absorbs all the incoming radiation) or 2 (the body reflects all the incident radiation), Asc and

Msc are the area and mass of the spacecraft respectively, S is the radiation intensity, c is the

speed of light, AU is the astronomical unit in meters and~rsun and~ro are the vectors from

the body to the Sun and from the body to the spacecraft respectively. In addition, the third

bracketed term comes from the modeling of the body’s orbit around the Sun, which causes

changes in the incident solar radiation. For instance, for the case of Earth, such changes are

known as the Milankovitch cycles [45].

In order to apply Equation 6.9, it is necessary to determine the values of the radiation

intensity S, of the shadow function η and of the position vector~rsun . The former can be

obtained by considering that electromagnetic radiation follows an inverse squared relation

with distance [6]. Hence,

S = S0

(
Rph

||~rsun ||

)2

(6.10)
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where S0 = σT 4 is the Sun’s radiated power intensity at its surface and is computed

following the Stefan-Boltzmann law, Rph is the radius of the photosphere and ||~rsun || is the

distance between the Sun and the body. The values used to determine the radiation intensity

S are provided in Table 6.1 below.

Constant Magnitude Units
σ 5.67 ×10−8 W /m2 K 4

T 5777 K
Rph 696000 km

Table 6.1: Magnitude of the different constants involved in the computation of the radiated
power intensity at a certain distance. Values taken from reference [6].

On the other hand, determining the value of the shadow function can be done by consid-

ering a simple eclipse model such as the one proposed in references [6] and [46], which is

mainly based on geometrical relationships. In particular, consider Figure 6.5 below, where

the Sun and the spacecraft are located at two different points and their corresponding posi-

tion vectors define the plane shown. The central body (Mars) is assumed to be circular. In

that case, the angle between the two vectors can be obtained as:

ψ= cos−1

(
~rsun ·~ro

||~rsun || ||~ro ||

)
(6.11)

To determine whether the spacecraft is in shadow or not, it is then necessary to compute

the angles ψsun and ψo , which are no other than the angles between the vectors~rsun and

~ro with the tangent points T1 and T2 respectively. Both angles can be obtained using the

following expressions, where Re is the mean radius of Mars:

ψsun = cos−1
(

Re

||~rsun ||
)

and ψo = cos−1
(

Re

||~ro ||
)

(6.12)

Once this values are obtained, it is straightforward to determine if the spacecraft is in

eclipse or not. If ψsun +ψo < ψ, then the spacecraft is in eclipse conditions since there

is no line of sight with the Sun and the shadow function η is zero. If, on the other hand,

ψsun +ψo ≥ψ, then the spacecraft is in full illumination and η= 1. It must be noted that this

model neglects the existence of the so-called penumbra region, where the shadow function

would have a value between 0 and 1, and therefore overestimates the eclipse duration.
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Figure 6.5: Graphical representation of the eclipse model, showing shadow conditions (up-
per image) and the limit case that establishes the transition between eclipse and
full illumination conditions (lower image).

Finally, the position vector~rsun is assumed to be the vector from Mars to the Sun. This

implies that, due to the small dimensions of Phobos, the eclipses that could be caused by

the moon are not taken into account.

6.3.2 Implementation

The first step that has to be taken for the implementation of the solar radiation pressure

model is the computation of the~rsun vector. This can be done by assuming that the orbit

of Mars around the Sun is Keplerian. In that case, the orbit equation (defined previously

in Equation 5.38) applies, and the value of the heliocentric true anomaly (denoted as θH )

can be determined by first finding the mean anomaly and then using a Newton-Raphson
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method to retrieve the eccentric anomaly, from where the value of θH follows. Once the true

anomaly is known, the magnitude of~rsun is obtained and the vector can be expressed in the

Heliocentric Perifocal frame defined in Section 4.2.3 as

~r P
sun = ||~rsun ||


cosθH

sinθH

0

 (6.13)

Since the solar radiation pressure has to be expressed in the LVLH frame, the vector has to

be transformed. This is done following the sequence shown below, where the corresponding

rotation matrices have already been defined in Chapter 4 and the minus sign is introduced

to change the direction so that it points from Mars to the Sun:

~r LV LH
sun =− [R]LV LH

MC I [R]MC I
E ME [R]E ME

I [R]I
P ~r

P
sun (6.14)

With respect to the ballistic properties of the spacecraft, provisional values regarding the

spacecraft mass are available in Table 1.4. However, the author has not been able to find

values for the spacecraft area Asc , so determining a precise mass-to-area ratio is not possible.

Hence, the values provided in reference [41] have been used and the mass-to-area ratio has

been considered to be equal to 40. Similarly, the Cr coefficient has been assumed to be equal

to 1.5. With respect to the radiation intensity, the computed value at the initial epoch is

S = 525.625
(

W
m2

)
, being found inside the range provided by the JPL Horizons System, which

indicates that this parameter has a value of 717
(

W
m2

)
at perihelion and 493

(
W
m2

)
at aphelion.

6.4 Third-Body Gravitational Perturbation of the Sun

The last perturbation that is included in the MMX High Precision propagator, and which at

the same time has the smallest magnitude of the ones being considered, is the gravitational

perturbation caused by the Sun. Although the Martian system is found at an average distance

of 227,940,000 km, the star is the most massive body in the Solar System and hence produces

a gravitational attraction force that has to be taken into account. The reader will find in the

next section a description of the model used.

58



CHAPTER 6. PERTURBATIONS

6.4.1 Model

As was explained in the previous section, in the MMX High Fidelity propagator the Sun -

Body position vectors used in the equations are obtained considering that the body is Mars.

Hence, accounting for the gravitational attraction exerted by the Sun on the spacecraft can

be done in a simple way if it is assumed that Mars exhibits a two-body orbit relative to the

Sun. Therefore, the model proposed in reference [41] is introduced into the propagator,

since it enables to capture the relevant effects of the perturbation. The expression for the

perturbing gravitational acceleration is

~a3r d sun = −G Msun

[
(~ro −~rsun)

||~ro −~rsun ||3
+ ~rsun

||~rsun ||3
]

(6.15)

where G is the gravitational constant, Msun is the mass of the Sun and the vectors~rsun

and~ro were defined in the previous section.
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7
VALIDATION OF THE MMX HIGH FIDELITY PROPAGATOR

After having presented the Equations of Motion, the reference frames and the perturbation

models being used in the MMX High Fidelity Propagator, it is necessary to verify that ev-

erything has been derived and coded correctly and that the propagator does produce valid

results. To that end, it was decided that several test cases would be analyzed and the results

compared with those obtained with AGEX, a propagator developed by Lamberto Dell’Elce

which was used to obtain the results available in reference [38]. The reader will now find

information regarding how the AGEX propagator was modified to model the Mars-Phobos

system and the comparison of the results obtained for the different cases.

7.1 Modifications introduced in the AGEX propagator

The AGEX propagator was originally developed with the objective of modelling the perturbed

dynamics that a mission such as AIDA would encounter in the environment of the Didymos

system, a binary asteroid composed of a primary body (Didymos) and a small moon (Didy-

moon). In order to do so, the perturbed restricted three body problem is considered, and the

spacecraft dynamics are modelled in a Co-rotating frame (denoted as CO −ROT ) centered

at the barycenter of the system, with the Z-axis parallel to the pole of the system, the X-axis

pointing outwards and the Y-axis completing the triad, as shown in Figure 7.1 below.
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b b

Primary

Secondary

b
System

Barycenter

YCO−ROT

XCO−ROT

µd (1− µ)d

Figure 7.1: Graphical representation of the Co-rotating frame used in the AGEX propagator.
The Z-axis points out of the paper.

In such frame, the spacecraft trajectory can be obtained using the following set of equa-

tions [38]

ẍ − üy −2u̇ ẏ = u̇2x − (1−µ)(x+µd)
r 3

1
− µ[x−(1−µ)d ]

r 3
2

+Px

ÿ + üx +2u̇ẋ = u̇2 y − (1−µ)y
r 3

1
− µy

r 3
2
+Py

z̈ =− (1−µ)z
r 3

1
− µz

r 3
2
+Pz

(7.1)

where u denotes the argument of latitude, d , r1 and r2 are the distances between the

barycenters of the two bodies and between the spacecraft and each body respectively and

P is the perturbation vector [38]. For the dynamics of the two bodies, AGEX considers a

two-body model developed by McMahon and Scheeres (available in reference [47]) which

assumes that the spin of the bodies is parallel to the orbital momentum and that d ,u and φ

(the libration of the secondary) are the three parameters describing their relative orbits, so

that the EoMs are [38] :
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d̈ =
(

K−I2,z φ̇

I2,z+µd 2

)2

d − 1
µ
∂V
∂d

φ̈= 2
K−I2,z φ̇

I2,z+µd 2
ḋ
d −

(
1
µd 2 + 1

I2,z

)
∂V
∂φ

u̇ = K−I2,z φ̇

I2,z+µd 2

(7.2)

As can be seen in Equation 7.2, the expressions depend on terms involving moments

of inertia and a libration angle which are not found in the MMX High Fidelity propagator.

Therefore, in order to consider the dynamics but at the same time be as close as possible to

the model being used in the MMX High Fidelity propagator, it was decided that the equations

of motion of both the spacecraft and the bodies were to be changed. In particular, the orbit

of Phobos was simplified to use the well-known two-body orbit formulas, namely

d = p

1+e cosθ
(7.3)

ḋ = d 2

p
e sinθ θ̇ (7.4)

d̈ = e

p

(
2dḋ sinθ θ̇ + d 2 cosθ θ̇2 + d 2 sinθ θ̈

)
(7.5)

where the first and second time derivatives of the true anomaly are the angular velocity

and acceleration of the body respectively. These two variables can be obtained by means of

θ̇ = h

d 2
and θ̈ = −2θ̇ḋ

d
(7.6)

where the angular momentum is constant and equal to h =p
µM p . With respect to the

equations of motion of the spacecraft, they were modified in order to change the dependence

on the argument of latitude for a dependence on the true anomaly. Also, since the MMX

High Fidelity propagator uses the LVLH frame for the integration of the spacecraft trajectory,

it is convenient to introduce this frame into AGEX and define the new EoMs in it. Note that

the difference between the CO-ROT and LVLH frames reduces to their origins and to the

direction of their Z-axes, since ZLV LH is perpendicular to the orbital angular momentum
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and ZCO−ROT is assumed to be parallel to the pole of the primary. A procedure similar to the

one found in reference [28] can be followed in order to derive the new expressions for the

spacecraft EoMs in the LVLH frame, which are

ẍ −2θ̇

(
ẏ − y

ḋ

d

)
−xθ̇2 − µM

d 2
=−µM

r 3
1

(
x +d

)− µP

r 3
2

x +Px

ÿ +2θ̇

(
ẋ −x

ḋ

d

)
− y θ̇2 =−µM

r 3
1

y − µP

r 3
2

y + Py

z̈ =−µM

r 3
1

z − µP

r 3
2

z +Pz

(7.7)

where all the variables have been defined previously in this section and throughout

Equations 7.3 to 7.6. The expressions derived above are generic and therefore allow several

cases to be analysed, from the simplest circular/elliptical restricted three body problems

(CR3BP/ER3BP) to more complex models in which perturbations are included. As a result,

the validation process has been carried out in several stages, complicating the dynamical

environment at each step. In the next sections the reader will find the corresponding results.

Please note that in this chapter, for the sake of clarity, plots related to the spacecraft will be

shown in blue while those related to Phobos will be plotted in black.

7.2 Circular Restricted Three Body Problem

The simplest case to start with is the CR3BP, a restricted three body problem characterized

by being unperturbed (hence f = 0 ) and by the fact that the orbit of the secondary is circular,

which therefore implies that the angular velocity of Phobos is equal to its mean motion and

that the angular acceleration is zero. To carry out the corresponding simulations a new set

of MMX initial conditions was provided by Nicola Baresi for the CR3BP framework, from

where a QSO of approximately 30 × 50 km was selected. In addition, the propagation time

was set to be equal to 15 orbital periods of the spacecraft, which for the QSO being used

corresponds to approximately 88 hours. Many plots can be obtained regarding different

variables but, for simplicity, in the CR3BP case only the position differences and the Jacobi

constant will be provided. Hence, Figure 7.2 below shows the norm of the error in the orbit

of the spacecraft around Phobos and of the moon around Mars.
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Figure 7.2: Norm, in meters, of the error in the orbits of MMX (top) and Phobos (bottom).

As can be appreciated in Figure 7.2 the accuracy desired for the propagation is satisfied

in both orbits, since after 15 spacecraft orbital periods the norms of the separation are of

the order of 0.3 micrometers for MMX and 60 nanometers for Phobos, meaning that the

difference reduces to numerical errors. With respect to the Jacobi integral, it is known that

for the CR3BP it should be conserved throughout the integration, a result which can be

observed in Figure 7.3 below.
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Figure 7.3: Plot of the Jacobi integral obtained in the MMX High Fidelity propagator.

7.3 Unperturbed Elliptical Restricted Three Body Problem

Having validated the CR3BP the next test case to consider is the elliptical restricted three

body problem (ER3BP), where the motion of Phobos around Mars is now assumed to be

an unperturbed elliptical orbit. To carry out the simulations, the 30 × 50 km QSO was

considered and the initial true anomaly was defined to be θ0, having been both values

provided previously in Section 5.6. In addition, the integration time was defined to be equal

to 10 orbital periods of Phobos around Mars. Figure 7.4 below presents the error obtained

for the propagation of the spacecraft and the moon’s orbit.
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Figure 7.4: Error, in meters, in the orbits of MMX (top, in blue) and Phobos (bottom, in black)
for the ER3BP case.

Similarly to the CR3BP, the error at the end of the propagation is of the order of 0.3

micrometers for MMX. In contrast, the difference in the orbit of Phobos does increase, being

now of 0.4 micrometers. The reason behind this is simply that the numerical errors intrinsic

to the MATLAB computations become greater when the orbit is shaped as an ellipse, since

the distance between the primaries (d) and the angular velocity are no longer equal to 1 (in

normalized units). In any case, the angular velocity and acceleration should satisfy that both

are perpendicular to the Phobos orbital plane (hence directed in the ZLV LH direction) and
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that their magnitude is equal to that given by Equation 7.6. This result can be observed in

Figure 7.5 below.
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Figure 7.5: Normalized errors in the angular velocity (left plot) and angular acceleration
(right plot). The components are expressed in the LVLH frame and correspond to
the X direction (top), Y direction (middle) and Z direction (bottom).

In particular, in the XLV LH and YLV LH directions it is clear that the errors are simply

numerical, being caused by the fact that in the MMX High Fidelity propagator the vectors

involved in the computations (recall Equations 5.25 and 5.27), are expressed originally in the

MCI frame and have to be transformed to the LVLH, being this rotation the one inducing the

differences. With respect to the components in the Z-axis, the error is very small, of the order

of 10−14, and it is caused by the definitions of the angular momentum and its time derivative.

In AGEX, the former is a constant value that depends only in µM and p while the latter is

directly set to zero, since there is no out of plane motion in the ER3BP. On the other hand, in

the MMX High Fidelity propagator the values are computed at each time step as~h =~rp ×~̇rp

and ~̇h =~rp ×~̈rp , causing a dependence on time-varying vectors which are obtained after a

series of rotations and mathematical operations which induce very small errors in those

terms, as can be seen in Figure 7.6 below.
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Figure 7.6: Normalized errors in the norm of the angular momentum (left) and its time
derivative (right).

To further justify the idea explained above, the dynamical perturbation and its time

derivative can be verified, since both appear in the expressions for the angular velocity and

acceleration. For the ER3BP, both vectors should be zero and this is the case with the values

obtained in the MMX High Fidelity Propagator, as can be seen in Figure 7.7 below. Hence, it

can be concluded that the propagator is accurate under the ER3BP conditions.
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Figure 7.7: Normalized magnitude of the dynamical perturbation (left) and its time deriva-
tive (right) obtained in the MMX High Fidelity propagator for the ER3BP case.

7.4 Perturbed Elliptical Restricted Three Body Problem

Having proved that the MMX propagator yields consistent results in the unperturbed cases,

the next stage in the validation process is the inclusion of the perturbations described

previously in Chapter 6. First, the polyhedron model is introduced into the propagator to

account for the irregular geometry of Phobos, and afterwards solar radiation pressure and

gravitational attraction are taken into account.
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7.4.1 Polyhedral Phobos

To obtain the results shown in this section, the propagators were provided with the same set

of initial conditions as the ones used for the unperturbed ER3BP case. Similarly, the inte-

gration time was kept equal to 10 orbital periods of Phobos. However,to use the polyhedral

model in AGEX a small adaptation had to be performed.

In particular, as the reader can find in the appendix of reference [38], the rotation matrix

to express vectors in the secondary body frame (denoted as B2 and which is considered to

point in the direction of the minimum, medium and maximum moments of inertia of the

tri-axial ellipsoid originally used in AGEX) depends on the libration angle φ, which here is

assumed to be equal to zero. Hence, setting φ= 0 causes the B2 frame to be coincident with

the CO-ROT frame, so that it points as shown in Figure 7.1. However, this causes a conflict

since the spacecraft position vector has to be introduced into the polyhedral model in the

PCPF frame, as explained in Section 6.2.2, implying that the rotation matrix defined in AGEX

has to be modified. This can be done by noticing that the CO-ROT frame and the LVLH frame

have parallel X and Y axes. Hence, rotating from CO-ROT to PCPF is the same as rotating

from LVLH to PCPF. As a result, the modification to be introduced is simply a 180°rotation

about the Z axis, as explained in Section 4.4. The results for the error in the Phobos and

MMX trajectories are found in Figure 7.8 below.
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Figure 7.8: Error, in meters, for MMX (top, in blue) and Phobos (bottom, in black) for the
case in which Phobos is modelled as a constant density polyhedron.

As can be appreciated in Figure 7.8, for the Phobos orbit the same error as in the ER3BP

case is obtained, with the difference in the oscillatory behaviour being caused by the numer-

ical errors intrinsic to the computation. This is indeed expected, since in this case what is

being perturbed is the spacecraft trajectory and not the Phobos orbit. With respect to the

trajectory of MMX, the error is approximately 0.1 micrometers during the first 60 hours of

propagation, and eventually experiences a peak at the end. However, the maximum mag-

nitude is approximately 0.34 micrometers, so the trajectory is obtained precisely. Further
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verifications can be conducted by looking at the gravity acceleration that Phobos exerts on

the spacecraft, shown in Figure 7.9.
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Figure 7.9: Left plot: normalized error between AGEX and the MMX High Fidelity propagator
in the gravity acceleration caused by Phobos on the spacecraft. Right: normalized
error in the Phobos to MMX vector. Top, middle and bottom represent the X,Y
and Z components respectively in both graphs.

In particular, the left plot shows that the error in the gravity components is very small

throughout the propagation, and by considering the right plot it can be seen that those oscil-

lations are produced by small differences found in the Phobos to MMX vector. Furthermore,

the gravity yielded by the polyhedron model can be compared with the acceleration that

would be obtained if the same Phobos - MMX position vectors were used and Keplerian

gravity was considered. It is found that the mean relative errors in the X,Y and Z directions

expressed as a percentage are 1.48%, 2.92% and 11.94% respectively. Although the value for

the percentage difference in the Z direction is considerable, it can be justified by recalling

that Phobos is an oblate ellipsoid and that therefore the flattening at the poles causes a

divergence with respect to the perfect sphere considered when obtaining Keplerian gravities.

Figure 7.10 below shows the mentioned oblateness, where it is visible that the poles of

Phobos present a divergence of up to 2.5 km from the perfect sphere. Hence, with these

results it can be concluded that the polyhedron model has been correctly implemented in

the MMX High Fidelity propagator.
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Figure 7.10: Graphical representation of the geometry and dimensions of the polyhedral
Phobos compared to a perfect sphere of radius equal to the intermediate semi-
major axis of the moon (11.2 km), represented in light grey.

7.4.2 Solar Radiation Pressure

The second perturbation to introduce is the solar radiation pressure. For this validation,

the same initial conditions and propagation time as the ones used in the previous test case

are considered. Similarly to what happened with the introduction of the polyhedron, small

adaptations have to be configured in the propagators. In particular, in the MMX High Fidelity

propagator the value of the radiation intensity S and of the latitude and longitude of the

pole of the MCI frame must be set constant, as that is how they are considered in AGEX.

With these changes, the error in the SRP perturbing acceleration that is obtained is shown in

Figure 7.11 below, together with the value of the perturbation as obtained in the MMX High

Fidelity propagator.
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Figure 7.11: Top: Perturbing acceleration due to solar radiation as obtained in the MMX High
Fidelity propagator. Bottom: Normalized error in the components of the SRP
when compared with the results from AGEX.

As can be seen in Figure 7.11, the error between the values yielded by the MMX propaga-

tor and those coming from AGEX is negligible, since it is of the order of 10−17 in normalized

units. Furthermore, the top plot shows the expected behaviour for the SRP, as the eclipses

can be distinguished every 7.65 hours, which is the time corresponding to the orbital period

of Phobos around Mars. The duration of the eclipses, approximately 22 minutes, is in ac-

cordance with the values found in reference [48]. The bottom plot also shows that the error

73



CHAPTER 7. VALIDATION OF THE MMX HIGH FIDELITY PROPAGATOR

between the SRP accelerations is zero whenever eclipse conditions are found, therefore

proving that the eclipse model described in Section 6.3 has been correctly implemented.

7.4.3 Solar Gravitational Perturbation

Finally, the perturbing acceleration caused by the gravitational attraction of the Sun is

introduced. Using the same initial conditions, integration time and modifications as in the

SRP case, the error in this perturbing acceleration is given in Figure 7.12. As the reader can

observe, it is of the order of 10−15 in normalized units, therefore proving that the model has

been correctly implemented in the propagator.
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Figure 7.12: Error in the perturbing acceleration caused by the gravitational attraction of the
Sun. Top plot for the X-component, middle for Y and bottom for Z.

7.5 Spherical Harmonics

Finally, the spherical harmonic model characterizing the Martian gravity is the last perturba-

tion to be included in the propagator. Validating this acceleration cannot be done with the

AGEX model, and hence a different alternative has to be considered. In particular, a useful

approach would be to compare the orbit of Phobos around Mars with the trajectory that

can be retrieved from JPL software such as Horizon’s or SPICE, which are characterized by

providing high precision ephemerides for bodies through the so-called JPL Development

Ephemeris. The latter is used, since it is available in the MATLAB environment, thus facilitat-

ing the implementation. The reader can find information about the SPICE software and the

functions and kernels (sets of data) used in Appendix A.
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To compare the results as accurately as possible with those obtained from SPICE the

complete spherical harmonics are considered, hence accounting for degree and order up to

80. Figure 7.13 below shows the evolution of the norm of the error in the Phobos position.
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Figure 7.13: Error in the Phobos orbit between SPICE and the MMX High Fidelity propagator.

As can be appreciated, after 10 orbital periods of Phobos around Mars the maximum

divergence between SPICE and the MMX High Fidelity propagator is of 0.04 km. Although

the initial error is zero because the same state vector for the initial epoch is considered,

the difference in the dynamical models used for obtaining the orbit of Phobos becomes

evident as the propagation advances. In particular, SPICE not only considers the spherical

harmonics of Mars but also takes into account the effect of all the other perturbing forces

acting of Phobos, which are responsible for the mentioned drift. In any case, this result

shows that the GMM3 model coefficients were organized and introduced correctly and that

the Martian gravity is accurately obtained in the MMX High Fidelity Propagator.
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8
RESULTS FOR A LOW-ALTITUDE QSO

This chapter is now dedicated to the presentation and analysis of the results yielded by the

MMX High Fidelity propagator for the 30 × 50 km Quasi-Satellite Orbit, which is charac-

terized by having an orbital period of 5.803 hours. In particular, an analysis of the effect

that the perturbations have on the orbit has been carried out. To do so, the elliptical three

body problem values are taken as base case, and then perturbations are added gradually.

Firstly, polyhedral Phobos is included, followed by SRP, solar gravity and finally the spherical

harmonics of Mars.

The simulations were carried out considering a propagation time of 50 orbital periods of

Phobos around Mars until spherical harmonics were introduced, when the time was reduced

to 25 orbital periods due to the large computation time required for each simulation. In

addition, an events function was used in order to stop the simulation if failure occurred,

being this considered to take place whenever the spacecraft impacted Phobos or drifted

away excessively.

8.1 Effect of non-spherical Phobos

As was shown in Figure 7.10, Phobos is an oblate body with a highly irregular shape and

morphology. As a result, accounting for its non-sphericity is a must. Doing so, and comparing

the results to the ER3BP case where it is considered as a perfect sphere yields valuable insight.

To begin with, Figure 8.1 below presents a comparison in the position difference.

77



CHAPTER 8. RESULTS FOR A LOW-ALTITUDE QSO

0 2 4 6 8 10 12 14 16

-50

0

50

0 2 4 6 8 10 12 14 16

-100

-50

0

50

100

0 2 4 6 8 10 12 14 16

-20

-10

0

10

20

0 1 2 3 4 5 6

-40

-20

0

20

40

0 1 2 3 4 5 6

-50

0

50

0 1 2 3 4 5 6

-10

-5

0

5

10

Figure 8.1: Difference in the MMX position components caused by the introduction of the
polyhedral Phobos compared to when it is considered as a point mass. The
left graph spans all the integration time, while the right one is a zoomed view
accounting for 1/3 of that time. In each graph, the top, middle and bottom plots
correspond to the X,Y and Z components respectively. The orange arrows are
used to indicate rate of increase.

From Figure 8.1 one can observe how the introduction of the polyhedral Phobos causes

a periodic variation in the MMX trajectory. In particular, the right plot shows that for the

X and Y directions these variations have a period of approximately 5.8 - 6 hours, which

corresponds with the orbital period of the spacecraft, and that the rate of increase of the

oscillation is almost constant. These results vary in the case of the Z direction, where the

oscillation period is of approximately 7 hours and the rate appears to change. In any case,

as the propagation time increases (left graph) it can be observed that the magnitude of

the oscillations grows slower than at the initial stages. Furthermore, it is noticeable that

the difference produced along the Y-direction is bigger than in the X axis, with the ratio

at the end of the propagation being ∆= ∆Y
∆X = 96.27

58.22 = 1.654. The variations therefore seem

to correspond with the ratio between the major and minor axes of the epicycle, which is

50/30 = 1.667.

The analysis of the effect of a polyhedral Phobos can continue by considering Figure 8.2

below, where the norm of the position vector is plotted for one third of the total propagation

time with the objective of facilitating the visualization of the result.
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Figure 8.2: Plot of the norm of the MMX position vector in the LVLH frame. Continuous line
represents the trajectory obtained with Phobos modelled as a point mass, while
the dotted line corresponds to the trajectory obtained with the polyhedron.

As can be appreciated, distance to Phobos experiences big oscillations, with what appears

to be periodic cycles contained in between two maximum amplitude oscillations. These

cycles, as the one specified with the orange arrows, are characterized by having a period

of 3 complete orbits of MMX around Phobos, so approximately occur every 17 hours. The

results obtained in Figure 8.2 resemble those of reference [49], and hence it is possible that

the variations observed in the magnitude of the oscillations are caused by the eccentricity

of Phobos, as suggested by [49]. Similarly, the polyhedral Phobos appears to produce a

"smoothing" effect on the drift of the epicycles, causing the spacecraft to be closer to the

moon. In particular, the lower and upper bounds of the separation tend to be smaller for

the case of a polyhedral Phobos in most of the MMX orbits. As a consequence of this, the

distance covered by the spacecraft is reduced and this produces a shift in the graph which

becomes very visible at the end of the propagation, where it can be seen that MMX has

completed more orbits in the same amount of time. The aforementioned "smoothing" effect

can also be seen in Figure 8.3 below, where it is clear that the passages of the MMX spacecraft

(in red) are more contained and ordered, in contrast with the widely spread situation found

if Phobos is assumed to be a point mass (in blue).
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Figure 8.3: Trajectory of the MMX spacecraft as viewed perpendicular to the XZ plane of the
LVLH frame. The trajectory in blue corresponds to the case in which Phobos is a
point mass, while the red one is obtained with a polyhedral Phobos.

8.2 Effect of Solar Radiation Pressure

The next perturbing acceleration introduced into the propagator is the one caused by the

solar radiation pressure, which is added to the previously introduced polyhedron. The effect

that this term has on the MMX trajectory can be seen in Figure 8.4 below.
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Figure 8.4: Difference in the position of the MMX spacecraft between the model accounting
only for the polyhedral Phobos and the model in which SRP is also included.
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As can be appreciated, the effect of SRP on the trajectory is small. After 16 days, the error

is of the order of 108.11 meters in X and 333.53 meters in Y, which represents a 0.42 % and 1.6

% variation respectively when compared to the trajectory without SRP. This result is based

on the fact that the magnitude of the perturbing acceleration due to SRP is very small. Mean

values of the SRP acceleration components are presented in Table 8.1 below, together with

the average eclipse duration.

aSRP x (m/s2) aSRP y (m/s2) aSRP z (m/s2) Eclipse duration (mins)
Magnitude 9.259 ×10−10 2.507 ×10−10 8.900 ×10−9 21.86

Table 8.1: Mean values of the SRP acceleration expressed in the LVLH frame and mean
eclipse duration.

8.3 Accounting for Sun gravity

Introducing the perturbing acceleration caused by the solar gravity produces an even smaller

impact on the trajectory, as shown in Figure 8.4 below.
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Figure 8.5: Difference in the position of the MMX spacecraft between the model accounting
for non-spherical Phobos and SRP and the model in which Sun gravity is also
included.

In particular, after 16 days the magnitude of the difference is of the order of 10 meters in

the Y direction, and even smaller in X and Z with 5 and 1 meter respectively. Such results is
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indeed expected since the perturbing acceleration caused by the Solar gravity is very small.

Mean values for this term are provided in Table 8.2, along with the mean distance to the Sun.

ag xS (m/s2) ag yS (m/s2) ag zS (m/s2) Mean Sun distance (km)
Magnitude 2.011 ×10−12 3.710 ×10−12 6.622 ×10−12 2.412447788182735 ×108

Table 8.2: Mean values for the solar gravity acceleration expressed in the LVLH frame and
mean Mars-Sun distance.

8.4 Analysis of the effect of Mars Spherical Harmonics

The perturbations analyzed in the previous sections affected the spacecraft but not the

dynamics of Phobos as it orbits Mars. The spherical harmonic model must therefore be

introduced since it is expected to greatly affect the MMX trajectory, as was pointed out in

Figure 3.1. Please note that hereafter the notation used to refer to the spherical harmonics

model will be SHD,O , where D corresponds to the degree and O to the order. For clarity,

the notation SHD,O refers to the spherical harmonics model which has included all the

coefficients up to degree D and order O. To refer to an specific Stokes coefficient, the

notation used will be CD,O or SD,O .

8.4.1 Convergence Study

Since the GMM3 model being considered includes coefficients up to degree and order 80,

it is first necessary to carry out a convergence study so as to determine which orders and

degrees are relevant for the analysis. Once this has been defined, a profound study can be

carried out to determine the effect of those coefficients.

To that end, MMX trajectories were obtained considering different spherical harmonic

combinations. In particular, the following were taken into account: SH2,2, SH3,3, SH4,4, SH5,5,

SH6,6, SH7,7, SH8,8, SH10,10, SH12,12, SH15,15, SH20,20, SH25,25, SH30,30 and SH35,35. Greater

focus was placed in the lower orders and degrees because this is the region where the

differences were expected to be greater. The resulting orbits were then compared to the

"reference" trajectory, which was selected to be the one found with the Perturbed ER3BP

model which included polyhedral Phobos, SRP and Sun gravity (Section 8.3). Doing so, the

mean relative position error (in percentage) with respect to the aforementioned reference

trajectory could be obtained and plotted, showing after which of the above combinations
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the error stopped experiencing important variations. The results are presented in Figure 8.6

below, with Figure 8.7 being a zoomed view to better appreciate the behaviour.
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Figure 8.6: Convergence analysis for the 30 × 50 km QSO. The mean relative error in the
MMX trajectory is obtained for a total of 14 different combinations of spherical
harmonics which have the same order and degree (SH2,2,SH3,3,SH4,4 etc). The
trajectory considered as base case is the one obtained in the perturbed ER3BP
of Section 8.3. Each point corresponds to the mean error between the reference
trajectory and the corresponding SH trajectory. Top plot for X component, middle
for Y and bottom for Z.
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Figure 8.7: Zoomed view of the convergence analysis presented in Figure 8.6. Top for X
component, middle for Y and bottom for Z.

Figure 8.6 shows that the relative error with respect to the reference trajectory experi-

ences a big variation when the spherical harmonics are taken into account, thus confirming

the hypothesis presented earlier in Figure 3.1 that the non-uniform Martian gravity field

causes strong effects on the MMX trajectory. In addition, Figure 8.7 shows that the effect is,

as expected, mainly caused by the lower orders and degrees. In particular, it is possible to

see that after the value corresponding to SH8,8 the error stabilizes and forms a plateau. As a

result, in order to analyse the relevant effects of the Martian non-uniform gravity it appears

that considering spherical harmonics up to degree and order 8 is sufficient. To ensure this

claim, the relative mean error between the trajectory corresponding to SH8,8 and the greater

orders and degrees is computed for each position component, with the results being found

in Figure 8.8.
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Figure 8.8: Position mean relative error in the X (left), Y (middle) and Z (right) components
for the MMX trajectory. The case with degree and order 8 is taken as reference.
The columns in each data set represent, from left to right, the error between SH8,8

with SH10,10 (in blue), SH15,15 (in orange), SH20,20(in grey) and SH30,30 (in green).

As shown in Figure 8.8, the mean relative error obtained when comparing the trajectories

of SH8,8 and SH30,30 is, in the biggest case, equal to 0.0009 %. As a result, in the next sections

a detailed analysis will be made accounting for spherical harmonics up to degree and order

8.

8.4.2 Effect of Zonal Harmonics

Similarly to what happens on Earth, Mars is an oblate planet in which the largest harmonic

coefficient is C2,0, which characterizes the equatorial bulge. However, while on Earth the

C2,0 is almost 1000 times bigger than any other coefficient, in Mars the values of some of the

other first terms are also considerable and only 10 to 100 times smaller than C2,0 [50]. Hence,

this section will present the effect of the C2,0 coefficient alone and then a comparison with

the rest of zonal harmonics up to 8.

8.4.2.1 C2,0 Coefficient

To observe the impact that the addition of the C2,0 coefficient has, two trajectories were

compared: the base case, which corresponds to the most complete perturbed ER3BP orbit
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(hence including polyhedral Phobos, SRP and Sun gravity) and the same model but with the

inclusion of C2,0. The result is presented in Figure 8.9.
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Figure 8.9: Difference in the MMX position between the complete perturbed ER3BP and
the model which includes the C2,0 coefficient. Top plot for X, middle for Y and
bottom for Z.

The importance of the inclusion of spherical harmonics becomes evident since, in con-

trast with other perturbations such as solar radiation pressure or sun gravity, the magnitude

of the variation in the spacecraft position reaches several kilometers, with the oscillations

found taking place every orbital period of the spacecraft. Furthermore, the effect that C2,0

has on the position in the Z-axis is considerable, in contrast with what happened when

SRP (Figure 8.4) or Sun gravity (Figure 8.5) were added. This is an expected result, since the

non-spherical gravity of Mars generates the dynamical perturbation presented in Section 5.5,

which in turn affects the angular velocity and acceleration of Phobos. Changes in ~ω and ~̇ω

imply variations in the coriolis, euler and centrifugal terms of the acceleration experienced

by the spacecraft, hence causing the drift observed. The magnitude of the angular velocity

variation can be seen in Figure 8.10 below, where the oscillations occur every orbital period

of Phobos.
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Figure 8.10: Difference in the norm of the angular velocity of Phobos between the perturbed
ER3BP and the values retrieved with the introduction of C2,0.

8.4.2.2 Rest of Zonal Harmonics

Following the analysis performed above, the rest of the zonal harmonics considered are

included, reaching up to C8,0, and the resulting orbits are compared to determine what

is the individual effect of these coefficients. Doing so is not a straightforward operation

due to the nature of Equation 6.3. Hence, if for example the effect of the C4,0 coefficient

wants to be studied, it is necessary to obtain the trajectory with SH4,0 (which includes all

the coefficients with order 0 and up to degree 4) and compare it to that of SH3,0, the one

immediately before. To quantify the effect that each of the zonal harmonics has, Figure

8.11 below has been obtained. Please note that, as mentioned, the values being provided

represent mean difference with respect to the previous zonal harmonic coefficient and that,

in the case of zonal coefficients the values for SD,0 are all zero.
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Figure 8.11: Mean difference in the MMX orbit caused by each of the zonal harmonic coeffi-
cients being considered. Left plot shows difference in the X-axis, middle in the Y
and right in the Z.

The effect of each of the zonal harmonic coefficients is as expected, being most notice-

able and important in the cases of C3,0 and C4,0. To understand how the MMX trajectory

changes with respect to that obtained only considering C2,0, Figure 8.12 below is presented.
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Figure 8.12: Difference in the MMX position along X in between the trajectory obtained with
C2,0 and the rest of trajectories in which bigger consecutive zonal harmonic
coefficients are introduced. The right plot provides a zoomed view at the last of
the oscillation peaks shown in the left graph. The color corresponds as follows:
black for C3,0, red for C4,0, blue for C5,0, green for C6,0, purple for C7,0 and brown
for C8,0.

As can be seen, the difference in between the models with respect to C2,0 shows the same

type of oscillatory behaviour, with the magnitudes experiencing a greater divergence at the

peaks of the oscillations. This is a reasonable result since the mentioned oscillation peaks

correspond MMX orbits and, in particular, to the apogee of the epicycles, where differences

in velocity have a more visible effect on the position of the spacecraft. For the components in

the Y-direction, the behaviour found is the same as the one described by Figure 8.12, so it will

not be reproduced again. For the case of the Z-axis it does change as can be seen in Figure

8.13, although the magnitude of these variations is very small. Values for the maximum

differences between the C2,0 trajectory and the rest are provided in Table 8.3.
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Figure 8.13: Error along Z in between the trajectory obtained with C2,0 and the rest of orbits.
The right plot provides a zoomed view at the last of the oscillation peaks shown
in the left graph. The color corresponds to: black for C3,0, red for C4,0, blue for
C5,0, green for C6,0, purple for C7,0 and brown for C8,0.

C3,0 C4,0 C5,0 C6,0 C7,0 C8,0

∆Xmax [m] 21.94 24.40 23.38 23.35 23.21 23.22
∆Ymax [m] 37.51 41.79 40.05 39.99 39.73 39.74
∆Zmax [m] 2.96 5.64 5.51 5.35 5.33 5.34

Table 8.3: Maximum differences in the position components of the MMX spacecraft be-
tween the orbit taken as reference which was computed using C2,0 and the orbits
obtained with the inclusion of upper zonal harmonics coefficients.

Hence, from the analysis carried out in this section it is clear that the major effects

are caused by the coefficients C3,0 and C4,0, although this last one appears to overestimate

the changes in the X and Y components, as shown in Table 8.3. After that, the rest of the

coefficients have a small effect and convergence is eventually reached after C7,0.

8.4.2.3 Sectorial Coefficients

Following the analysis carried out in the previous section, it is also possible to study the

effect that sectorial coefficients have on the MMX trajectory. In particular, these coefficients

represent bands of longitude and are obtained whenever the degree and order are the same.

In this case, both C and S coefficients are present. To find the effect that, for example, secto-

rial coefficients of degree and order 3 have, the procedure followed has been to determine

the MMX orbit using SH3,3 and then find the difference with the trajectory obtained using

SH3,2, since this yields the effect of C3,3 and S3,3. Doing so for sectorial coefficients up to

degree and order 8 yields Figure 8.14 below.
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Figure 8.14: Mean difference caused by each of the sectorial coefficients being analyzed in
the MMX trajectory. Left plot shows difference in the X-axis, middle in the Y and
right in the Z.

As can be appreciated, the zonal coefficients of degrees and orders 2 and 3 present very

important effects that must be taken into account, with those of degree and order 4 also

appearing relevant. To quantify the magnitude of their effects on the MMX orbit, Table

8.4 has been obtained, where the maximum position difference introduced by each of the

coefficients during a propagation time spanning 8 days (25 orbital periods of Phobos) has

been computed.

SH2,2 SH3,3 SH 4,4 SH5,5 SH6,6 SH7,7 SH8,8

∆Xmax [m] 109.42 182.61 20.68 2.54 1.24 0.26 0.021
∆Ymax [m] 190.07 316.36 35.95 4.37 2.13 0.45 0.037
∆Zmax [m] 27.45 43.52 4.80 0.59 0.29 0.06 0.0047

Table 8.4: Maximum differences in the position components of the MMX spacecraft intro-
duced by the sectorial coefficients being considered.

As provided in Table 8.4, the sectorial coefficients of degree and order 2 and 3 are respon-

sible for important variations in the spacecraft position. This is expected, since looking at

the values of the GMM3 model these sectorial coefficients are only 10 orders of magnitude

smaller than C2,0.

8.4.3 Tesseral Coefficients

Finally, the analysis can be completed by studying the tesseral coefficients of the GMM3

model, which correspond to specific regions of Mars. To that end, a similar analysis as the

one conducted in the previous section for the sectorial coefficients can be carried out. Figure

8.15 below shows the mean of the position difference introduced by these coefficients.
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Figure 8.15: Mean difference caused by each of the tesseral coefficients being considered.
Left plot shows difference in the X-axis, middle in the Y and right in the Z. Each
of the columns in the plots correspond to the combined effect of the tesseral
coefficients of a certain degree, specified as D .

Once again, it is visible that tesseral coefficients up to at least degree and order 4 should

be taken into account. It is worth noting that the effect of C2,1 and S2,1 is of the order of 10−3

meters. Furthermore, the maximum position differences introduced by tesseral coefficients

is found in Table 8.5 below. Please note that, as for Figure 8.15, the values represent the effect

of all the tesseral coefficients that have the same degree. Hence, a column corresponding

to D4 gives information about the effect caused by C4,1, C4,2, C4,3 and the corresponding S

coefficients.

D2 D3 D4 D5 D6 D7 D8
∆Xmax [m] 0.00145 84.538 17.0326 1.162 0.293 0.320 0.268
∆Ymax [m] 0.00262 145.514 31.393 2.136 0.634 0.572 0.476
∆Zmax [m] 0.000203 19.886 1.598 0.212 0.175 0.0579 0.0564

Table 8.5: Maximum differences in the position components of the MMX spacecraft intro-
duced by the tesseral coefficients being considered, ordered by degree groups.
Values have been rounded up to three significant figures after the decimal point.

8.5 Sensitivity to Injection Errors

In order for the MMX spacecraft to start orbiting Phobos, an injection maneuver will have

to be performed. Ideally, such maneuver should enable the spacecraft to start orbiting

the moon with the initial conditions provided in Table 5.3 but, in reality, small injection

errors appear, affecting the position and/or the velocity of the spacecraft. For the case of the

MMX mission, Nicola Baresi provided values for the accuracy desired, specifying that the

maximum injection error in position should be of 50 meters. In the case of the velocity, an

error of up to 3 cm/s is acceptable.

Therefore, an analysis was carried out to determine the effect that this injection errors
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would have on the MMX orbit, with spherical harmonics being considered up to degree

and order 8. No information was available regarding the injection azimuth and elevation

angles, a simple approach was taken: injection errors were introduced one by one assuming

they were found only in one axis of the LVLH frame. The twelve cases considered are found

in Table 8.6, together with the value of the position difference with respect to the nominal

trajectory, that is, the one in which no injections errors are present.

Injection Error Error Norm at t f [km]
Case 1 + 50 m in X 17.8123
Case 2 - 50 m in X 18.2195
Case 3 + 50 m in Y 0.1106
Case 4 - 50 m in Y 0.1137
Case 5 + 50 m in Z 2.1456
Case 6 - 50 m in Z 2.1638
Case 7 + 3 cm/s in X 0.2692
Case 8 - 3cm/s in X 0.2400
Case 9 + 3 cm/s in Y 46.5881

Case 10 - 3cm/s in Y 47.1144
Case 11 + 3cm/s in Z 0.7265
Case 12 - 3cm/s in Z 0.6934

Table 8.6: Summary of cases analyzed regarding the introduction of injection errors. Values
for the norm of the position difference at the end of the propagation with respect
to the trajectory with no injection errors are also given. The propagation time was
considered to be 25 orbits of Phobos around Mars.

The results retrieved show that whenever injection errors are found in the X-axis position

components or in the Y-axis velocity components the trajectory of the spacecraft is severely

modified. For Cases 1 and 2, the explanation behind such sensitivity can be found in the fact

that X is the radial direction to Mars in the LVLH frame, so changes here imply modifying

the Mars-MMX radial separation and hence the value of the gravity acceleration exerted by

the planet. With respect to cases 9 and 10, the Y direction of the LVLH frame corresponds

to the direction in which the azimuthal orbital velocity of Phobos is found. In addition, the

initial position of the MMX spacecraft corresponds to the perigee of the epicycle, and hence

this injection error in the velocity acts as a perigee kick, provoking the apogee of the orbit to

drift away from the nominal value and causing an error which then propagates. In Figure

8.16 below this can be clearly seen by looking at the beginning of the propagation time and

observing how the Y position coordinate diverges. After one spacecraft orbital period the

error in Y is already 3.14 km. Similarly, the different epicycle drift along the Y axis is clearly
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appreciable in Figure 8.17.
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Figure 8.16: Position difference in each component caused by an injection error of 3 cm/s in
the YLV LH direction. The black line is position error in XLV LH , the blue line in
YLV LH and the red line in ZLV LH .
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Figure 8.17: View from the ZLV LH axis of the orbit obtained with nominal initial conditions
(left) and of the orbit which included a 3cm/s injection error in the Y-component
of the velocity (right).

Despite the differences in some of the analyzed cases being considerable, none of the

orbits presented in Table 8.6 failed after 25 orbital periods of Phobos around Mars. The

error in the spacecraft velocities for the cases in which the injection errors caused greater

differences (cases 1,2,9 and 10) was also obtained, and is shown in Figures 8.18 and 8.19

below.
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Figure 8.18: Error in the spacecraft velocities with respect to the trajectory with nominal
initial conditions. Left plot for Case 1 and right for Case 2.
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Figure 8.19: Error in the spacecraft velocities with respect to the trajectory with nominal
initial conditions. Left plot for Case 9 and right for Case 10.

Although the velocity components experience considerable differences, there is no clear

sign of a possible escape or crash into Phobos, since there is no sudden change in the velocity.

This was verified by propagating the QSO with a 3 cm/s error in the Vy component for a total

of 125 orbital periods of Phobos arounds Mars, which corresponds to almost 48 days. The

orbit survived as can be seen in Figure 8.20, proving that this QSO is robust and well-suited

for long term operations around Phobos.
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Figure 8.20: 3D plot of the MMX trajectory for the 30×50 km QSO subjected to an injection
error of 3 cm/s in Vy . The propagation time spans 125 orbital periods of Phobos
around Mars. The magenta and green circular markers represent initial and
final position of the spacecraft respectively.
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9
CONCLUSION

9.1 Summary and Results Overview

One of the many unanswered questions regarding the Solar System and its bodies is posed

by Phobos and Deimos, the two moons of Mars. In particular, understanding their origin

and evolution presents a difficult problem, since the the two main theories being considered

have aspects which scientists have not been able to explain yet.

Solving the uncertainties related to this moons could be possible by means of a robotic

exploration mission. As a result, the Japanese Space Agency is developing the so-called MMX

project to study both moons and retrieve a sample from Phobos. Doing so implies that the

spacecraft will first have to orbit around the moon, and this poses a technical challenge due

to the rich dynamical environment found.

Previous studies have shown that it is possible to orbit Phobos using Quasi-Satellite

Orbits, and that the perturbations which have a bigger effect on the spacecraft motion are

the non-uniform gravity field of Mars, centrifugal forces and the gravitational field of Phobos.

This thesis has therefore aimed to the study of the impact that these perturbations would

have.
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To that end, a perturbed relative motion problem has been considered. An orbital propa-

gator has been developed in the MATLAB environment with the objective of integrating the

equations of motion and detailed models have been used to introduce the perturbations.

In particular, the gravity of Mars is taken into account by means of a spherical harmonics

model which can reach degree and order 80, a constant density polyhedron has been used

for Phobos and solar radiation pressure and sun gravity have been taken into account.

Before carrying out the analysis of the effect of the perturbations, the propagator de-

veloped has been verified by using several test cases. In particular, AGEX, a propagator

developed by Lamberto Dell’Elce, has been used to compare the circular restricted three

body problem, the elliptical restricted three body problem, the correct introduction of a

polyhedral Phobos and the models for solar radiation pressure and gravitational attraction

of the Sun. For the validation of the spherical harmonic model NASA’s SPICE software has

been used.

Once it had been demostrated that the MMX High Fidelity Propagator yielded accurate

results, the analysis has been carried out for a low-altitude 30×50 km QSO. Results have

shown that the gravitational field of Phobos is very important, and hence a precise modelling

has to be used. Furthermore, after a thorough analysis of the spherical harmonics of Mars, it

has been determined that the major effects on the MMX orbit are caused by the coefficients

up to degree and order 4, and that in order to have a high precision propagator coefficients

up to degree and order 8 must be considered. In contrast, the analysis has proven that the

effects of solar radiation pressure and sun’s gravity are very small.

Finally, a study has been carried out to determine the effect that injection errors could

have on the stability and life of the orbit. Results have shown that the greater divergences

are created by injection errors in the velocity component directed along the Y axis of the

Local Vertical Local Horizontal frame. Also, injection errors in the position along X cause

significant divergence. In any case, the Vy injection error case has been propagated for 48

days and no failure event has occurred, showing that the 30×50 km QSO is robust.
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9.2 Future Work

This thesis performs a detailed analysis the perturbations affecting a 30×50 km QSO around

Phobos. The results obtained open a wide variety of options and improvements which can

be studied in the future. Examples of these are:

• In this work, the eccentricity of Phobos is considered to be constant and equal to

0.0151. Future works should perform a profound analysis of the effect of eccentricity

variations, since it appears to be an important parameter affecting the spacecraft

trajectory.

• Future models could introduce more perturbations such as the gravitational attraction

of Jupiter or the Mars radiation pressure (MRP). Furthermore, a non-keplerian orbit of

Mars around the Sun could be considered to obtain more accurate values for SRP and

the Sun’s gravity.

• The injection error analysis carried out in this thesis should be extended to more

complicated and complete cases.

• Future works could also introduce a Monte-Carlo analysis of different uncertainties

such as eccentricity, spacecraft ballistic properties and injection errors.
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APPENDIX A

As was mentioned previously in Section 7.5, this Appendix will provide a brief description

of the SPICE software, as well as the main functions and kernels used in the validation of

the spherical harmonics model of Mars. For further information, the reader is referred to

the NAIF JPL webpage and to the SPICE documents, available in references [51] and [52]

respectively.

A.1 The SPICE software

SPICE is a software developed by the Navigation and Ancillary Information Facility (NAIF), a

team established at the Jet Propulsion Laboratory (JPL), and was created with the objective

of enabling scientists and engineers to design and plan the operations of space missions.

The concept is based on the usage of what is known as ancillary data, which is stored in the

so-called kernel files with which SPICE works [53].

The content of the mentioned files is no other than information regarding positions,

velocities, orientations, physical parameters, reference systems and time conversions. The

acronym of the software is directly related to the type of kernel that can be found, as those

files provide information regarding Spacecrafts, Planets, Instruments, Cameras and Events.

Figure A.1 below presents an schematic summary of the types of kernels available and the

information they contain.
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Figure A.1: Summary of the different types of existing kernels and the information that each
one contains.

Both the SPICE software and the kernel files are free and can be downloaded from

the corresponding NAIF web pages, found in references [54] and [55] respectively. For the

MATLAB environment the software is known as the Mice Toolkit.

A.2 List of Kernels

To carry out the validation of the spherical harmonics of Mars, the following kernel files were

used:

• de430 bsp : Planet ephemeris kernel containing position and velocity of celestial

bodies.
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• naif0012.tls.pc : Leapseconds kernel with information required for time conversions.

• pck00010.tpc : Kernel containing the physical parameters of celestial bodies.

• gm de431.tpc : Kernel containing gravitational information.

• mar097.bsp : Mars satellites kernel

A.3 List of SPICE functions

To use the files listed above, several SPICE functions had to be used. They are listed here

together with a brief description of the function itself.

• cspice bodvrd: retrieves parameters from an specified body, such as radius, gravita-

tional parameter, pole right ascension and declination etc.

• cspice furnsh: loads the downloaded kernel files into the so-called kernel pool, so that

the mentioned kernels can be accesed later in the code.

• cspice oscelt: computes the osculating orbital elements that correspond to the state

vector provided as input.

• cspice pxform: yields the matrix that transforms vectors from an specified frame to

another at the defined epoch.

• cspice spkezr: retrieves the state vector of an specified target body with respect to an

observing body at an specified epoch.

• cspice str2et: converts an specified epoch to seconds TDB past the J2000 epoch.

• cspice unload: unloads the specified kernel file from the kernel pool to avoid satura-

tion.
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