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Abstract
An overview of the creep behaviour of an aeronautical-type single crystal turbine

blade is analyzed by means of two methodologies: a fully-optimized second order ho-
mogenization method and a Finite Element numerical approach. Micro-structure, i.e
porosity level, is shown to have an important role in creep behaviour of porous FCC
single crystals.

The homogenization-based constitutive model developed by Ponte-Castaneda makes
use of the fully optimized second order variational approach of (Ponte Castañeda, 2015),
along with the iterated homogenization method of (Agoras and Ponte Castañeda, 2013)
to define a constitutive model for the finite-strain macroscopic response of porous sin-
gle crystal in the sense of visco-plasticity. For the computations (Song and Ponte
Castañeda, 2017a), Song et al. implemented a numerical implementation in Fortran
language.

The numerical finite element calculations are carried out using a three dimensional
Finite element code of a Unit Cell.The single crystal matrix is defined by a simple
power law viscous crystal plasticity constitutive relation. The Unit Cell is initially
cubic with a sphere or ellipsoid located in the center, constituting the inclusion phase.
Fully periodic boundary conditions are imposed in the Unit Cell Finite element model
by means of the MPC capability of ABAQUS and the "dummy node" technique.

The effect of crystal orientation and loading conditions on the micro-structure evolu-
tion in a face center cubic (FCC) single crystal is analyzed. Two different initial crystal
orientations are considered. The calculations are carried out for six different values of
stress triaxiality and for three different Lode parameter. Additionally, the effect of an
initial ellipsoidal void shape and the effect of the initial porosity level is addressed.

Micro-structure evolution in an FCC single crystal may produce a softening or hard-
ening effect related to the void growth or collapse, setting the base for further research in
terms of enhancement of creep properties of FCC single crystals. Strain rates along de-
formation were analysed allowing to understand the physics behind micro-structure evo-
lution and its consequence in creep properties. Moreover, stress concentration around
the inclusion phase depends highly on the crystal orientation and loading conditions.
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1 Introduction
High pressure turbine blades entitles one of the most loading-demanding harsh envi-

ronments any material may face. Finding a material able to withstand highly unsteady
unsymmetrical loading, at more than 1600oC within a turbulent flow coming at high
velocities, containing the corrosive agents, resulting of the combustion between kerosene
and oxygen, is not an easy task. All the mentioned above set the stage for creep to
occur. Creep is the progressive time-dependent non-elastic deformation under constant
mechanical load and high temperatures. Additionally, creep has been proven to be ac-
companied by micro-structural evolution such as dislocation motion or grain boundary
diffusion. In fact, creep failure is one of the most critical failure modes in turbine blades.

In the early 40’s, the development of nickel super-alloys such Inconel (Akca and
Gürsel, 2015) was mainly conceived towards the mentioned high performance that en-
gines in aviation started to demand. The nickel-based super-alloys are known to be
corrosion and oxidation-resistant materials, having nickel as predominant component,
followed by chromium. The election of Nickel as the main alloy element is not an ar-
bitrary decision. Nickel performs a face-centre cubic (FCC) crystalline structure. FCC
structures (Jin et al., 2019) are known to provide a high toughness and ductility proper-
ties. Additionally, stability at high temperatures is ensured for this super-alloys, as well
as promising properties in the creep behaviour. The initial approach for engine turbine
blade made use of the aforementioned nickel-based super-alloys with a poly-crystalline
micro-structure. However, the presence of many grain boundaries played a detrimental
role in creep and corrosion mechanisms (Joshi and Stein, 1972).

Later, in the 1970’s, directional solidification manufacturing techniques have been
used for turbine blades (Galantucci and Tricarico, 1998). In turn, the grain boundaries
are aligned in one direction, normally the most stressed direction, i.e. along the blade.
Creep resistance and stiffness were proven to increase substantially with respect to its
predecessors, the classical poly-crystals nickel super-alloys (Kermanpur et al., 2000).
But it was not until 1980 when the idea of manufacturing a turbine blade as a single
crystal aroused. Early researches confirmed the benefits of single crystal in engines: the
fatigue life and creep behaviour was increased more than an order of magnitude with
respect to the classical poly-crystalline super-alloys.
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A lot of effort was made in recent years to understand the suitability of single crys-
tal for aviation engines. The complexity behind a single crystal resides in its inner
deformation behaviour. It is known that the main deformation mechanism of a single
crystal involves slip phenomena (Staroselsky and Cassenti, 2011)(Gell and Duhl, 1986).
Additionally, some studies have been carried out recently regarding the porosity distri-
bution and its effects in the creep life of the single crystal (Bokstein et al., 2007)(Anton
and Giamei, 1985)(Caron and Lavigne, 2011). A big concern raised in this matter in
the aviation industry and further techniques are in need of development to characterize
the mechanical behaviour of single crystal avoiding expensive complex experimental
tests. In fact, it has been proven that the presence of microscopic inclusions has a big
impact on the macroscopic constitute response of solids in general. Failure in ductile
solids takes place by nucleation, growth and coalescence of microscopic voids (Tver-
gaard, 1989). As a consequence, one of the main lines of work in solid mechanics
has been the development of constitutive model that accounts for the aforementioned
micro-structure evolution.

The main goal of this work is to provide an overview of the creep response of a classi-
cal aviation porous single crystal turbine blade nickel-based super-alloy, the PWA1484
Ni-based single crystal super-alloy (Srivastava and Needleman, 2012) under dif-
ferent loading states. Two approaches will be addressed for this purpose: an analytical
homogenization method for porous visco-plastic single crystal and a numerical approach
involving Finite Element computations of a Unit Cell using a commercial software.

While the analytical homogenization method provides a reduced-cost solution, its
development process is complex and sometimes involves a loose of the physics behind
it. Its accuracy is not always optimal and needs to be checked against experimental or
numerical finite element computations. In the other hand, the computational homoge-
nization approaches can accommodate a wider range of cases and physical behaviours,
although it is more expensive to be conducted.
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It is important to recall that metals, where our line of work focuses, consist of
aggregates of porous single-crystals, forming a poly-crystalline structure. Initial ho-
mogenization approaches assumed isotropicity of the material as in (Gurson, 1977).
More sophisticated models started to use non-linear homogenization techniques. A
Variational Homogenization (VH) approach, that made use of a Linear Comparison
Composite (LCC), was employed by (P. Castañeda, 1991) to pioneer in the definition
of the bounds of the Hashin-Shritkman type for porous isotropic visco-plastic materials.
Similar approaches, which made use of this innovative Variational method, led to other
similar constitutive models (Willis, 1991) (P. P. Castañeda and Suquet, 1997) (P. Cas-
tañeda and Zaidman, 1994a). All the above mentioned accounted for the simplest case
of micro-structure evolution, i.e. no void rotation, and isotropic visco-plastic matrix
phases. The complex phenomena associated with the rotation of the inclusion phase
was taken into account in latter works (Kailasam et al., 1997) (Aravas and Castañeda,
2004).

However, the innovative Variational Homogenization (VH) bounds were not able to
predict the micro-structure evolution of low porosity visco-plastic materials for purely
deviatoric loadings, leading to a over-stiff response. As a consequence, the homogeniza-
tion approach needed to evolve. Authors started to include the so called second-order
approaches (SO) in their constitutive models.

One of the first authors to propose an improved finite-strain constitutive model for
porous single-crystal materials was Ponte-Castaneda in (Danas and Castañeda], 2009a)
(Danas and Castañeda], 2009b). In spite of providing an accurate result for a wide
range of loading configurations and porosity levels while comparing with available nu-
merical results, it required some fitting parameters, not being entirely predictive. In the
search for the fully predictive homogenization model, (Agoras and Ponte Castañeda,
2013) proposed an iterated variational homogenization approach as accurate as its pre-
vious version (Danas and Castañeda], 2009a)(Danas and Castañeda], 2009b), but not
involving any ad-hoc modifications. Further improvements of this iterative approach
were developed in (Song et al., 2015), where void rotation was taken into account for
general shearing loads.
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The upcoming improvements in homogenization techniques considered heteroge-
neous materials with crystalline visco-plastic phases. (DeBotton and Ponte Castaneda,
1995) and (Idiart and Ponte Castañeda, 2007) proposed an extension of the classi-
cal Variatinal Homogenization (VH) bounds to account for general anisotropicity of the
phases. Additionally, in (Mbiakop et al., 2015) an ad-hoc modification of the VH bounds
of (DeBotton and Ponte Castaneda, 1995) to obtain macroscopic accurate flow poten-
tials for porous single crystal with general ellipsoidal inclusion phases under general
loading was implemented. This method is the so called Modified Variational (MVAR).

Last achievements in homogenization methodologies were achieved in (Song and
Ponte Castañeda, 2017b). A more general implementation was detailed in (Song and
Ponte Castañeda, 2017b), where the VH bounds described in (DeBotton and Ponte
Castaneda, 1995) were generalised for porous visco-plastic single crystal under large
deformations. Moreover, this homogenization methodology was further improved by
making use of the iterative second order approach (ISO), pioneered in (Agoras and
Ponte Castañeda, 2013); allowing for improved accuracy for low porosities conditions
and purely hydrostatic loadings. In fact, this homogenization approach will be used in
this work.

Nevertheless, the accuracy of new second order variational homogenization ap-
proaches needs to be assessed. Computational homogenization techniques allow to
simulate in a general manner the micro-structure evolution and the macroscopic re-
sponse for the desired conditions. Pioneers in Finite Element Unit Cell computations
succeeded in obtaining results for highly symmetric single crystals, such as FCC crystal
with 100 initial crystal orientation (Srivastava and Needleman, 2012) (Srivastava and
Needleman, 2015) (Gan et al., 2006). On the other hand, for highly anisotropic phases
such the case of HCP single crystals, no available numerical results were found.

Recent achievements in Crystal Plasticity Finite Element Methods (CPFEM). CPFEM
are suitable to represent the isothermal, anisotropic, large deformation of polycyrstalline
metals for FCC, BCC and HCP structures (Marin, 2006).

However, the available results in literature are limited to a few values of loading
conditions; and analysis of such important quantities in solid mechanics as the Strain

4



Rate, D is not considered. As a consequence, this work has its aim on filling this gap in
porous visco-plastic FCC single crystal with an application in aerospace turbine blades.
These FEM results will compared with the innovative homogenization approach pro-
posed in (Song and Ponte Castañeda, 2017b).

In summary, this work will be divided in five sections. Firstly, the problem to
address will be fully described by setting up the single crystal plasticity constitutive
model as well as the details of the turbine blade specimen to model. Then, the Fully-
Optimized Second Order (FOSO) together with the Iterative Second Order (ISO) ap-
proach of Ponte-Casteñeda will be detailed, paying special attention to the finite strain
response and the description of the micro-structure evolution. Once the homogenization
approach was presented, a Finite Element model of a Unit Cell with Periodic Bound-
ary Conditions (PBC) will be implemented by using ABAQUS commercial software.
This FEM model will be compared with the presented FOSO homogenization approach
(Ponte Castañeda, 2015). The comparison of both approaches will be held for a range
of loading configurations. For brevity, further analysis in initial crystal orientations,
porosity levels, initial inclusion shape and creep properties will be exposed solely for
the Unit Cell Finite Element approach. At the end of this chapter, the reader will have
a complete overview of the creep behaviour in term of single crystal visco-plasticity for
an FCC crystal. Future work and some conclusions in terms of numerical simulations
and homogenization techniques will be drawn in a last instance.

In this work, in terms of notation, scalars quantities will be denoted by italic Roman,
a , or Greek letters, β; vectorial values by italic boldface Roman letters, l; second-order
tensors by boldface Roman letters or Greek letters, Z; and fourth order tensors by
barred letters, M.
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2 Problem Description

2.1 Single Crystal Plasticity

Large deformation kinematics theory is considered in this work. Large finite-deformations
consider the deformation of a initial or reference configuration, into a deformed or cur-
rent configuration. Illustration 2.1 shows the framework of finite-deformation kinemat-
ics.

Figure 2.1: Initial and current configurations framework in large finite-deformation
kinematics (Roters et al., 2010).

In that sense, the deformation gradient can be defined as:

F =
∂y

∂x
= ∇y⇔ Fij =

∂yi
∂xj

= yi,j (2.1)

Flow of dislocations along crystallographic slip systems is the main mechanism of
plastic deformation in metal crystal plasticity. In fact, dislocation motion is volume
preserving, as it involves neither expansion nor compression of the crystallographic
lattice of the single crystal. As a consequence, the crystal lattice remains undistorted
once the dislocations have gotten past.

Additionally, a slip system is defined as a close packed atomic direction on a closed
packed atomic plane, so that, the smallest Burgers Vector magnitude is achieved. As
a consequence, the most favourable direction for dislocation motion through slip is
found. In the case of concern, FCC single crystal, the slips systems are characterized
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by [111][110], with 12 activated slip systems through deformation.

To understand deformation mechanisms in single crystals, it is important to interpret
the concept of crystallographic lattice rotation. An example, where only one slip system
is activated, is illustrated in Figure 2.2.

An out-of-balance moment is generated in the specimen as a consequence of the
finite deformation nature of slip. In order to achieve equilibrium, the crystal lattice
must rotate. It is important to note that this crystal lattice rotation is generally not
uniform through the single crystal, having local behaviour.

Figure 2.2: Tensile test in a single crystal specimen (Bohm, 2004)

Thus, the goal is to relate dislocation motion due to slip phenomena and plastic
deformation in a continuum mechanics framework. For that purpose, a plastic shear
strain, denoted as γ, is defined to represent dislocation flow in the single crystal. A
sketch of the defined plastic shear strain is represented in Figure 2.3.

Figure 2.3: Plastic shear strain, γ for a given slip system (Bohm, 2004).
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The deformation gradient in the framework of single crystal plasticity theory, F can
be then written as:

F = F∗ · FP (2.2)

FP accounts for the plastic crystallographic slip and F∗ for the stretching and rota-
tion of the lattice of the single crystal. An illustrative representation can be found in
Figure 2.4.

Figure 2.4: Initial and current configurations framework in large finite-deformation
kinematics (Segurado et al., 2018).

In the reference configuration, the slip plane normal and slip direction unit vectors
along a specific α slip system of the single crystal are denoted by m(α) and s(α).

In the current configuration, these quantities can be described as:

s(α)∗ = F∗ · s(α) m(α)∗ = m(α) · F∗−1 (2.3)

Taking the time derivative of Eq. (2.2):

Ḟ · F−1 = D + Ω = (D∗ + Ω∗) + (Dp + Ωp) (2.4)

where D∗ denotes the elastic part of the stretching and Ω∗ is the so called "elastic"
spin tensor. Additionally, the plastic part of the deformation is described by Ωp and
Dp as follows:

Dp =
∑
α

γ̇(α)P(α); Ωp =
∑
α

γ̇(α)W(α) (2.5)

In Eq. (2.5), γ̇(α) denotes the shear rate on a given slip system (α). A comment in
this magnitude will be detailed in Eq. (2.8).
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Moreover, the quantities P(α) and W(α) are given by:

P(α) =
1

2

(
s(α)∗ ⊗m(α)∗ + m(α)∗ ⊗ s(α)∗) (2.6)

W(α) =
1

2

(
s(α)∗ ⊗m(α)∗ −m(α)∗ ⊗ s(α)∗) (2.7)

For the case of concern, all twelve primary octahedral slip systems characterizing the
FCC single crystal undergo slip phenomena that obey Schimd’s law. As a consequence,
the slip rate, γ̇(α) only depends on the resolved shear stress or Schmid stress, τ (α).
Furthermore, the creep relation for the porous FCC single crystal is assumed to follow
the power law secondary creep form, as follows:

γ̇(α) =

{
γ̇0

∣∣∣∣τ (α)

τ0

∣∣∣∣n} sgn
(
τ (α)

)
(2.8)

where γ̇0 denotes the initial shear strain rate, τ0 corresponds to the reference shear
stress, and n to the "empirical" creep exponent.

Furthermore, it is of interest to have constitutive equations which are frame indif-
ferent, i.e. objective. The Jaumann rate of Cauchy stress is one of most used objective
stress rates due to its implementation simplicity.

Elastic strains are assumed to be small compared with plastic deformation. Besides,
the Jaumann derivate of Cauchy stress with respect to the lattice, σ̂∗ (Srivastava and
Needleman, 2012), can be written as:

σ̂∗ = σ̇+ σ ·Ω∗ −Ω∗ · σ = L : D∗ − σ (I : D∗) (2.9)

where L denotes the elastic moduli tensor. Moreover, the Jaumann derivative with
respect to the material may be given by:

σ̂ = σ̇−Ω · σ+ σ ·Ω (2.10)
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If now, the difference between both corotationals is computed:

σ̂∗ − σ̂ =
∑
α

γ̇(α)W(α) · σ−
∑
α

γ̇(α)σ ·W(α) (2.11)

Then, by introducing:

ψ(α) = W(α) · σ− σ ·W(α) (2.12)

and making use of Eq. (2.4), (2.5), (2.9) and (2.10), the Jaumann derivative with
respect to the material:

σ̂ = (L− σ⊗ I) : D−
∑
α

γ̇(α)R(α) (2.13)

having R(α) = L : P(α) +ψ(α).

Finally, the Schmid or shear resolved stress is defined by:

τ (α) = m(α)∗ · σ · s(α)∗ = σ : P(α) (2.14)

The kinematics and the constitutive laws for the single crystal plasticity problem
have been described.

The specimen of concern is the PWA1484 Ni-based single crystal super-alloy
which has been shown to contain coherent FCC-based ordered L12 precipitates in a
FCC matrix (Anton and Giamei, 1985). In this work, the nickel-based super-alloy will
be modelled as an porous FCC single crystal. The FCC crystal will be modelled with
the twelve primary octahedral slip systems (111) (110) active during deformation.

The PWA1484 Ni-based single crystal super-alloy is characterised by the
following elastic constants: C11 = 283.3GPa , C12 = 197.5GPa and C44 = 112GPa

(Srivastava and Needleman, 2012). The creep parameters of the specimen are: n = 5,
τ0 = 245MPa and γ̇

(α)
0 = 1.53 · 10−9s−1. The complete description of the mentioned

variables will be addressed in detail in the next chapters.

The single crystal plasticity constitutive model is based on (R. Asaro and Needle-
man, 1985) and implemented in a User-defined Material Subroutine by (Huang, 1991).
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3 Analytical Model
Structural mechanics finite element simulations need to take into account the micro-

structure evolution as its contribution has been proven to be crucial in the material
macroscopic response of highly heterogeneous materials. However, the computational
expense related to this approach would be over-demanding, new analytical "multi-scale"
approaches are of interest. This chapter will focus in the line of homogenization meth-
ods.

In the line of homogenization methods, the macroscopic structure, Ω defines a
Boundary-value problem (BVP) which is solved by assuming homogenized material
properties in a specific material point at a macroscopic scale. These homogenized ma-
terial properties come from the resolution of a meso-scale Boundary-value (BVP), ω.
The aforementioned meso-scale structure will be denoted from this point as Represen-
tative Volume Element (RVE). An illustrative representation can be found in Figure
3.1.

Figure 3.1: Schema of Homogenization approached in multi-scale problems (Wu et al.,
2017).

By solving the RVE problem, an estimate of the average macroscopic strains and
stress may be obtained. As depicted in the introductory chapter, homogenization-based
approaches have been extensively developed in recent years. The interest in this work
is for FCC porous single crystal, which presents non-linear material behaviour. As a
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consequence, and in order to capture non-linear properties, it is necessary to use the so
called Linear Comparison Composite (LCC).

The Linear Comparison Composite (LCC) is considered as a virtual composite mate-
rial, containing the same micro-structural properties as the non-linear porous material,
which behaves in a similar fashion as the linearized properties of the real phases for a
certain strain/stress state. In fact, the LCC is the key component on obtaining accu-
rate estimates of the macroscopic material properties in many homogenization-based
approaches.

Additionally, important concepts in homogenization-based approaches are the first
and second statistical moments of the stress and strains field.

The first and second statistical moments of the stress and strains fields are defined,
respectively as follow:

σ(r) = 〈σ〉(r); ε(r) = 〈ε〉(r) (3.1)

〈σ⊗ σ〉(r); 〈ε⊗ ε〉(r) (3.2)

From this point the triangular brackets denote volume averages over a Representa-
tive Volume Element (RVE) of porous material.

The majority of the homogenization methods briefly discussed in the introductory
chapter of this work accounted only for the so called first statistical moment values
for the phases when considering the visco-plastic behaviour. Nevertheless, in order to
capture non-linear material properties accurately, the variations of the first moment
estimates, such as ∆σ and ∆ε need to be accounted for. This is achieved thanks to
the second order statistical moments defined in Eq. (3.2).

From the use of these second order statistical moments of the stress field the Fully
Optimized Second Order (FOSO) takes its last name.

As introduced in the previous chapters, a general finite-strain constitutive model for
porous visco-plastic single crystals has been developed in (Song and Ponte Castañeda,
2017a). This homogenization approach provides, in a first instance, the instantaneous
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response of the porous medium for a given initial micro-structure state; added to the
capability of accounting for the micro-structure evolution, i.e. the evolution of the
average void shape and size as well as the crystal anisotropicity caused by the lattice
rotation during deformation. This method will be shown to be predictive (Agoras and
Ponte Castañeda, 2013).

This method makes use of the fully optimised second-order (FOSO) variational
approach in (Ponte Castañeda, 2015), together with the iterated variational homoge-
nization procedure presented in (Agoras and Ponte Castañeda, 2013). A further devel-
opment of this approach will be detailed later in the chapter, allowing to understand
the need of using concepts such as Second order variational approach or iterated ho-
mogenization.

Furthermore, in (Song and Ponte Castañeda, 2017a) estimates for the average strain
rate and spin fields in both phases of the porous single crystal were used to write evo-
lution equations for the micro-structure change of the single crystal, i.e. porosity, void
orientation and shape, and lattice rotation.

This homogenization approach will be compared with Finite Element Unit Cell
computations and some conclusions will be drawn in the following chapters.

3.1 Theoretical Background

In (Song and Ponte Castañeda, 2017a) the porous visco-plastic single crystals are
idealized as two-phase materials: void phase embedded in the single crystal matrix.
The single crystal matrix (phase 1) is assumed to have a crystal lattice fully defined by
three linearly independent crystallographic directions l1, l2 and l3. An illustration of
the mentioned crystallographic axes can be found in Figure 3.2.

Classically, two main deformation mechanisms characterize the single crystal-matrix:
(a) the elastic behaviour of the lattice and (b) the plastic deformation associated with
the motion of dislocations. Many works have already shown that under large defor-
mations, which is the concern of this work, the elastic component of the strains is of
few orders of magnitudes smaller than the plastic strains. For this reason, the elastic
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strains will be considered negligible in this work (Song and Ponte Castañeda, 2017a).
From this point, to alleviate notation, the superscript p referring to plastic component
used in previous sections will be omitted, unless specified.

Figure 3.2: Representation of a porous single crystal consisting of aligned, ellipsoidal
voids which are distributed with the same ellipsoidal symmetry in a single-crystal matrix
(Song and Ponte Castañeda, 2017a).

As a conclusion, the single crystal-matrix will be assumed to deform solely by dis-
location motion along α crystallographic slip systems, taking the local constitute be-
haviour of the matrix phase as visco-plastic.

The single crystal matrix behaviour can be characterized by:

D =
∂u(1)(σ)

∂σ
, u(1)(σ) =

∑
α

φ(α)

(
τ(α)

)
(3.3)

In Eq. (3.3), D denotes the Eulerian strain rate; u(1) is the stress potential for the
crystal matrix and σ the Cauchy stress. Additionally, for purposes of characterizing the
response of the α slip systems, the convex functions φ(α) are defined, being dependent
on the Schmid stresses, τ(α) as follows:

τ(α) = σ : P(α); where P(α) =
1

2

(
s(α)∗ ⊗m(α)∗ +m(α)∗ ⊗ s(α)∗) (3.4)

As specified in Eq. (3.4), the P(α) is a second-order Schmid tensor obtained from
the symmetric part of the dyadic product of the unit vectors characterizing the normal
to the slip plane, m(α)∗, and along the slip direction, s(α)∗, of a specific crystallographic
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slip system.

The previously defined slip potentials, φ(α), have been considered in (Song and Ponte
Castañeda, 2017a) to be of the classic simple power-law type:

φ(α)(τ) =
γ̇0 (τ0)(α)

n+ 1

∣∣∣∣∣ τ

(τ0)(α)

∣∣∣∣∣
n+1

(3.5)

In Eq. (3.5), γ̇0 represents the reference or initial strain rate; τ0 the initial shear
stress of a slip system and n is the so called creep exponent. The same power-law form
will be used for the Finite Element computations. In the past years, it has been shown
how this simple relationship is able to capture the non-linear behaviour for a range of
materials (Lou and Schapery, 1971) (Chen and Argon, 1979).

The phase 2, the voids are taken to be of a general ellipsoidal shape, oriented in a
certain direction and dispersed with a random distribution in the single crystal-matrix.
This behaviour has been detailed in previous work (Agoras and Ponte Castañeda, 2013).
As the concern of this work involves low porosities, it is assumed that the ellipsoidal
shape and orientation of the distribution function are identical to the ellipsoidal shape
and orientation of the voids (Agoras and Ponte Castañeda, 2014).

At this point, a set of micro-structural variables (Eq. (3.6)) may be defined to fully
describe the micro-structure of a porous visco-plastic single-crystal.

s ≡ {l1, l2, l3, f, w1, w2,n1,n2,n3} (3.6)

Thus, 9 variables are needed to describe the micro-structure of a porous single-
crystal:

• l1, l2, l3 : The lattice vectors of the matrix phase.

• f, w1 = a3
a1
, w2 = a3

a2
: Volume fraction and aspect ratios characterizing the void

size and shape.

• n1,n2,n3 : Unit vectors aligned with the three principal directions of the ellipsoid.

In summary, from (Ponte Castañeda and Willis, 1999) the instantaneous macro-
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scopic response of a porous single crystal of the form presented in this chapter can be
completely determined by computing the effective stress potential ũ as follows:

D =
∂ũ(σ)

∂σ
, ũ(σ) = (1− f) min

σ∈S(σ̄)
〈u(x,σ)〉(1) (3.7)

Where ũ is the effective stress potential, S(σ̄) is the set of statistically admissible
stress fields (Song and Ponte Castañeda, 2017a).

Due to the non-linear single crystal plasticity material behaviour, it would be prac-
tically impossible to obtain an exact solution to the resulting set of non-linear partial
differential equations with random oscillating coefficients (Song and Ponte Castañeda,
2017a).

Here it rises the need for the fully optimized second order homogenization-based
approach for computing approximate estimates for the material properties.

Thus, a novel iterative homogenization scheme was developed in (Agoras and Ponte
Castañeda, 2013). This iterative approach will make use of the innovative fully op-
timized second-order (FOSO) variational homogenization method (Ponte Castañeda,
2015) to approximate estimates for the effective potential, ũ.

3.2 FOSO variational estimates

In (Ponte Castañeda, 2015), it was developed a fully optimized second-order varia-
tional method (FOSO) which takes advantage of the effective behaviour of an appropri-
ate selected porous "Linear Comparison Composite" (LCC). The Linear Comparison
Composite has uniform matrix properties and a micro-structure which is identical to
the porous non-liner single crystal of concern.

At this point, it is necessary to describe the porous LCC that concerns the FOSO
approach. The porous LCC will be characterized by a crystal matrix described by a
quadratic stress potential as shown in Eq. (3.8); and a micro-structure identical to the
porous single crystal of concern.

u
(1)
L (σ) =

1

2
σ ·M(1)σ+ η(1) · σ (3.8)
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M(1) represents the fourth order viscous compliance tensor and η(1) is the second
order eigenstrain-rate tensor, both characterizing crystal matrix properties. M(1) and
η(1) have been defined in (Ponte Castañeda, 2015) as follows:

M(1) =
∑
α

1

2µ(α)

P(α) ⊗P(α), and η(1) =
∑
α

η(α)P(α) (3.9)

Further details on how to compute the scalars µ(α) representing the slip viscosities
and η(α), slip eigenstrain rates, will be provided in next sections.

Regarding the constitutive relation for the inclusion phase, it will be also assumed
of the form of Eq. (3.8).

At this point, it is important to introduce the Ponte-Castaneda Willis (PCW) es-
timates. The PCW estimates are new estimates of the Hashin-Shtrikman kind for
composite materials, i.e. different phases, with micro-structure composed of randomly
shaped particles which are distributed in a matrix phase with “ellipsoidal symmetry”.
This new PCW estimate, which were developed in (Castañeda and Willis, 1995), is
of special interest in this work as it allows to account for non-linear composites with
evolving micro-structures.

Thus, the effective potential ũL for a porous LCC will be estimated by means of the
Ponte-Castaneda Willis (PCW) estimates, detailed in (Castañeda and Willis, 1995).

ũL(σ) =
1

2
σ · M̃σ+ η̃ · σ; where: M̃ = M(1) +

f

1− f
Q−1, ; η̃ = η(1) (3.10)

In Eq. (3.10), Q represents the fourth-order micro-structural tensor being dependent
on the matrix property and micro-structure properties, i.e. void shape, size, distribu-
tion and orientation; M̃ denotes the effective compliance tensor and η̃ corresponds to
the effective eigenstrains rate tensor.
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The microstructural tensor, Q is defined as follows (Song and Ponte Castañeda,
2017a):

Q =
1

4πw1w2

∫
|ζ|=1

(
M(1)

)−1 −
(
M(1)

)−1 H(ζ)
(
M(1)

)−1

|Z−1ζ|3
dS (3.11)

In Eq. (3.11) the details in the computation of H(ζ) can be found in (Song and
Ponte Castañeda, 2017a); ζ denotes a unit vector and Z represents a second-order
tensor that includes the micro-structural information in terms of void size, shape and
orientation as well as its distribution in the matrix phase.

The tensor Z may be defined as:

Z = w1n1 ⊗ n1 + w2n2 ⊗ n2 + n3 ⊗ n3 (3.12)

A last step before showing the expression of the FOSO estimate for the effective
stress potential, is to define the first and second moments of the stress field for a matrix
of a porous LCC, applied to the FOSO approach for the non-linear porous material.

σ(1) =
1

1− f
σ, and 〈σ⊗ σ〉(1) =

2

1− f
∂ũL
∂M(1)

(3.13)

Finally, the FOSO estimate for ũ is given by (Ponte Castañeda, 2015):

ũSO(σ) = (1− f)
∑
α

[
αφ(α)

(
τ̌(α)

)
+ (1− α)φ(α)

(
τ̂(α)

)]
(3.14)

In the previous equation, it has been introduced a new parameter, α. α, not to be
confused with (α) related to the activated slip systems, is a user-chosen weight factor
ranging from 0 to 1. Further comments on this weight factor will be exposed in later
sections of this work. Furthermore, τ̌(α) and τ̂(α) are stress variables depending on the
first and second moments (Eq. (3.13)).

The stress variables introduced in Eq. (3.14) satisfy the relations (Ponte Castañeda,
2015):

τ̄(α) = ατ̃(α) + (1− α)τ̂(α) = σ(1) ·P(α) (3.15)
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and
τ̄ (α) = α

(
τ̌(α)

)2
+ (1− α)

(
τ̂(α)

)2
= P(α) · 〈σ⊗ σ〉(1)P(α) (3.16)

τ̄(α) and τ̄ (α) describe the first and second moments of the Schmid stresses over the
α slip system of the porous LCC matrix.

Furthermore, in the FOSO approach, it is imposed that τ̌(α) ≤ τ̂(α). By using Eq.
(3.15) and (3.16), the user may compute in a simple way the quantities τ̌(α) and τ̂(α),
such that:

τ̌(α) = τ̄(α) −
√

1− α
α

√
τ̄ (α) − τ̄ 2

(α) = τ̄(α) −
√

1− α
α

SD(1)
(
τ(α)

)
(3.17)

and

τ̂(α) = τ̄(α) +

√
α

1− α

√
τ̄ (α) − τ̄ 2

(α) = τ̄(α) +

√
α

1− α
SD(1)

(
τ(α)

)
(3.18)

with

SD(1)
(
τ(α)

)
=
√
τ̄ (α) − τ̄ 2

(α) (3.19)

where SD(1) represents the standard deviation of the resolved shear stresses over a
specific slip system in the Linear Comparison Composite matrix.

On the other hand, the material properties of the porous LCC of concern have to be
specified such that µ(α) and η(α) satisfy the linearization conditions defined by (Ponte
Castañeda, 2015):

φ′(α)

(
τ̂(α)

)
− 1

2µ(α)

τ̂(α) = η(α) = φ′(α)

(
τ̌(α)

)
− 1

2µ(α)

τ̌(α) (3.20)

The conditions commented previously in terms of τ̌(α) ≤ τ̂(α) and the specified in
Eq. (3.20) imply:

1

2µ(α)

=
φ′(α)

(
τ̂(α)

)
− φ′(α)

(
τ̌(α)

)
τ̂(α) − τ̌(α)

(3.21)

Eq. (3.21) is known as the "generalized secant" linearization condition. The reader
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is referred to (Song and Ponte Castañeda, 2017a) and (Liu et al., 2003) for a complete
understanding of the linearization approach employed.

Eq. 3.17-3.20 lead to a system of 4K non-linear algebraic equations which can be
solved numerically to obtain the variables of concern, µ(α), η(α), τ̌(α) and τ̂(α).

Once these quantities are known, the FOSO estimate for the macroscopic strain rate
D of the porous single crystal under specific loading conditions σ, can be obtained by:

D =
∂ũS0

∂σ̄
(σ) =

∂ũL
∂σ̄

(σ) = M̃σ+ η̃ (3.22)

As a complement to the FOSO estimate approach, some additional results can be
obtained in terms of average strain rate and spin fields for the inclusion phase. Those
results will be of crucial usefulness while defining the evolution equations of the micro-
structure in a latter section. The reader is referred to (Song and Ponte Castañeda,
2017a) for further details regarding this matter.

In summary, the Fully Optimized Second order (FOSO) estimates are known to be
exact to second order in the heterogeneity contrast as discussed in (Ponte Castañeda,
2015), when used in combination with estimates for the Linear Comparison Composite
(LCC) that are exact to second order in the heterogeneity contrast. In fact, this entitles
the main advantage with previous variational homogenization approaches which were
only accurate to the first order.

However, the described Fully optimized Second Order (FOSO) estimates present
some inaccuracies while dealing with low porosity levels and high non-linear behaviour
for cases of high stress triaxiality, χ. The inaccuracies are related to the initial assump-
tion of uniformity for the LCC matrix phase (Eq. (3.8)). For the reasons commented,
an iterative homogenization-based approach is detailed in the next section, where non-
uniform properties for the LCC matrix phase are considered.

A word must be said regarding the previously introduced weight parameter α. The
results presented in this section are valid for any choice of α. At this moment, there are
no further mathematical analysis available in literature in terms of choosing an optimal
value of the weight parameter. For this work (Song and Ponte Castañeda, 2017a) it
was selected the most symmetric case, α = 1

2
.
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3.3 Iterated Second Order (ISO) estimates

As developed in (Song and Ponte Castañeda, 2017a), the iterative homogenization
approach (ISO) of (Agoras and Ponte Castañeda, 2013) together with the FOSO ap-
proach detailed in previous section provides a further improvement in the estimates for
the effective stress potential of the porous single crystal of concern.

Figure 3.3: Representation of the iterated homogenization approach for a porous single
crystal (Song and Ponte Castañeda, 2017a).

The idea behind the ISO approach is to build the porous micro-structure iteratively.

In the first iteration, the inclusions are dispersed in the single crystal matrix with
a volume fraction c(2)

[1] > f and given shapes and distribution. In the second iteration,
voids of the porous material from the first iteration are distributed in the same matrix
phase with a volume fraction c(2)

|2] and with the identical voids and distribution shapes
as the ones in the first iteration. The procedure, exposed in Figure 3.3, is repeated
N times in such a manner that the resulting composite material (i=N) results in a
non-linear porous material, so that:

f =
N∏
i=1

c
(2)
[i] (3.23)

with c
(2)
[i] (i = 2, . . . , N) as the volume fraction of the “composite inclusion” in the

level-i composite.
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Indeed, the ISO approach makes use of, at each iteration, a Linear Comparison
Composite (LCC) with an identical micro-structure to the non-linear composite of con-
cern, although with linear single-crystal and inclusion phases. Thus, the stress potential
adopts the same form as defined previously in Eq. (3.8) but with a redefinition of M
and η tensors as:

M(1)
[i] =

∑
α

1

2µ
|i]
(α)

P(α) ⊗P(α) , and η
(1)
[i] =

∑
α

η
[i]
(α)P(α) (3.24)

From this point, the label [i ] denotes quantities of the Linear Comparison Compos-
ite (LCC) at level i. Moreover, σ[i] = 〈σ〉[i] denotes the average stress field at the level-i
composite.

Then, a set of equations, as defined for the FOSO estimates in the previous section,
can be rewritten for the lowest iteration to characterize the effective behaviour of the
level-1 porous single crystal:

ũISO[1]

(
σ̄[1]

)
=
(

1− c(2)
[1]

)∑
α

[
αφ(α)

(
τ̌

[1]
(α)

)
+ (1− α)φ(α)

(
τ̂

[1]
(α)

)]
(3.25)

τ̌
[i]
(α) = τ̄

[i]
(α) −

√
1− α
α

√
¯̄τ

[i]
(α) −

(
τ̄

[i]
(α)

)2

= τ̄
[i]
(α) −

√
1− α
α

SD
(1)
[i]

(
τ

[i]
(α)

)
(3.26)

and

τ̂
[i]
(α) = τ̄

[i]
(α) +

√
α

1− α

√
¯̄τ

[i]
(α) −

(
τ̄

[i]
(α)

)2

= τ̄
[i]
(α) +

√
α

1− α
SD

(1)
[i]

(
τ

[i]
(α)

)
(3.27)

Additionally, the slip viscosities and eigenstrains rates of the LCC matrix at the
lowest level may be obtained by setting i=1 in Eq. (3.28):

1

2µ
[i]
(α)

=
φ′(α)

(
τ̂

[i]
(α)

)
− φ′(α)

(
τ̌

[i]
(α)

)
τ̂

[i]
(α) − τ̌

[i]
(α)

, and η
[i]
(α) = φ′(α)

(
τ̃

[i]
(α)

)
− 1

2µ
[i]
(α)

τ̌
[i]
(α) (3.28)
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In the same fashion, the level-2 composite estimates may be obtain. It is important
to remember that the conditions set for the FOSO estimates in the previous section are
kept for the ISO approach, i.e. α = 1

2
and the stress variables τ̌ [i]

(α) and τ̂
[i]
(α)

(
τ̌

[i]
(α) ≤ τ̂

[i]
(α)

)
.

In summary, the Iterated Second-Order (ISO) estimates for the effective stress po-
tential of a porous single crystal at a general iteration i can be written as follows:

ũISO[i]

(
σ̄[i]

)
=
(

1− c(2)
[i]

)∑
α

[
αφ(α)

(
τ̌

[i]
(α)

)
+ (1− α)φ(α)

(
τ̂

[i]
(α)

)]
+ c

(2)
[i] ũ

ISO
[i−1]

(
σ̄

(2)
[i]

)
(3.29)

Leading to the ISO estimate for the final iteration (i=N ) as (Agoras and Ponte
Castañeda, 2013):

ũISO(σ̄) ≡ ũISO[N ]

(
σ̄[N ]

)
=
∑N

i=1

(
1− c(2)

[i]

)(∏N
j=i+1 c

(2)
|j|

) [∑
α

(
αφ(α)

(
τ̌

[i]
(α)

)
+ (1− α)φ(α)

(
τ̂

[i]
(α)

))]
(3.30)

Regarding the M and η tensors for the inclusion phase, the conditions to be specified
to level-i of the LCC are, in a similar fashion as in the FOSO estimates:

M(2)
[1] →∞, η

(2)
[1] = 0 and M(2)

[i] = M̃[i−1], η
(2)
[i] = η̃[i−1], i = 2, . . . , N (3.31)

All in all, the computation of the ISO estimates from Eq. (3.30) involves the solution
of 4K x N non-linear algebraic equations where the unknowns are the stress variables,
slip viscosities and slip eigenstrain rates, as in the FOSO estimates, but at each i -level
of the composite.

A last remark may be said regarding the ISO estimates. It is expected that the
accuracy of the ISO estimates (Eq. (3.30)) increases progressively with the number of
levels, N. For this work, N = 10 is used. This value has shown sufficiently accurate
results in previous works (Song and Ponte Castañeda, 2017a).
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3.4 Equations governing micro-structure evolution

The micro-structural variables which characterize the porous single crystal evolve
with the deformation when the porous single-crystal is subjected to finite-strain defor-
mations. The mentioned micro-structure evolution will have an effect on the macro-
scopic response of the non-linear single-crystal. To account for the change in crystallo-
graphic and morphological levels of the porous single crystal, a set of evolution laws is
developed in (Song and Ponte Castañeda, 2017a).

As it is expected, the presence of inclusions will induce highly heterogeneous de-
formation and stress fields in the single crystal matrix phase. Nevertheless, for the
homogenization matter, it is enough to account, during deformation, for the average
crystallographic orientation of the lattice. As a consequence, the lattice will be taken
to rotate rigidly with the average elastic spin Ω̄

(1)
e in the single crystal matrix. Thus,

the evolution laws characterizing the crystallographic axes l1, l2 and l3 can be written
as:

i1 = Ω̄∗(1)l1, i2 = Ω̄∗(1)l2, i3 = Ω̄∗(1)l3 (3.32)

In Eq. (3.32), the Ω̄∗(1) is the average micro-structural spin defined as the difference
between the average "continuum" spin Ω

(1) and the average "plastic" spin Ω
p(1) in the

matrix phase. For further details in the computation of both spin quantities, the reader
is referred to the appendix of (Song and Ponte Castañeda, 2017a).

At this point, it is important to remember that the spin quantities, Ω
(1) and Ω

p(1)

have been computed using the second moments of the stress field while the evolution
laws use an averaging approach.

Ω
(1)

=
1

1− f

(
Ω− fΩ

(2)
)

(3.33)

Ω
p(1) =

1

2

∑
α

γ̄(α)

(
s(α)∗ ⊗m(α)∗ −m(α)∗ ⊗ s(α)∗) (3.34)

where γ̄(α) denotes the average slip rates, detailed in (Song and Ponte Castañeda,
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2017a).

Recalling the incompressible behaviour of the single crystal matrix, the volume
change of the porous single crystal is equal to the volume change of the inclusion phase.
As a consequence, the porosity evolution law can be defined by (Gurson, 1977):

ḟ = (1− f)D̄kk (3.35)

It is important to mention that void nucleation has not been considered in this work.

Following the work developed during the years in (P. Castañeda and Zaidman,
1994b), (Kailasam and Castañeda, 1998) and (Aravas and Castañeda, 2004), we may
assume that the evolution of average shape and orientation of the voids is fully deter-
mined by the average strain rate and the average spin in the inclusion phase. Thus,
the average shape of the voids remains ellipsoidal (and their distribution), but there is
a change in its orientation and aspect ratios during deformation. In turn, the following
evolution laws for the aspect ratios of the voids can be written:

ẇ1 = w1

(
D̄

(2)′

33 − D̄
(2)′

11

)
, ẇ2 = w2

(
D̄

(2)′

33 − D̄
(2)′

22

)
(3.36)

It is important to recall the definition of the aspect ratios: w1 = a3
a1

and w2 = a2
a1
;

and D̄(2) denotes the average strain rate of the inclusion phase.

Moreover, the evolution law for the orientation vectors may be expressed as:

ṅ1 = Ω
(2)
n1, ṅ2 = Ω

(2)
n2, ṅ3 = Ω

(2)
n3 (3.37)

As a contrast, in Eq. (3.37), the spin Ω̄(2) is the spin of the Eulerian axes of the
average deformation gradient of the void phase as in (Aravas and Castañeda, 2004).
Further details in the computation of the non-zero components of Ω̄(2) can be found in
(Ogden, 1984).

Another comment may be said regarding the evolution laws for shape and orien-
tation of voids. While it could have been considered in a separate manner (Kailasam
et al., 1997), the approach presented in this work considers them in a joint manner.
This is justified since the non-linear single crystal of concern involves low to moderate
porosity levels prior to void coalescence. In this case, the effect of void distribution on
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the macroscopic behaviour is expected to be negligible.

Additionally, the strain hardening due to interaction between slip systems will not
be considered in this homogenization approach, so that, the reference flow stresses or
initial shear stress (τ0)(α) characteristic of all the slip systems will remain fixed during
deformation.

All in all, the macroscopic behaviour of the non-linear single crystal has been fully
described by means of the constitutive relation detailed in Eq. (3.22) along with the
evolution laws described in Eq. (3.32), (3.35)-(3.37). Additionally, the numerical in-
tegration scheme used for the iterative second order (ISO) constitutive approach may
be implemented by making use of an explicit, forward-Euler integration scheme, as de-
tailed in (Liu et al., 2003).

The model described in this chapter allows to account for the evolution of the
micro-structure variables defined in Eq. (3.6), providing a visco-plastic model for the
macroscopic response of a porous non-linear single crystal with general crystallographic
anisotropy, general ellipsoidal voids, subjected to general, finite-strain loading condi-
tions.
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4 Computational Homogenization
The advantage of the variational homogenization-based approaches has been clearly

stated in terms of saving costs; however the physics behind describing the material
properties of a non-linear porous FCC single crystal needs to be tested. Computational
homogenization methods rise to cover this need.

4.1 Theoretical Background

First of all, let’s consider a macro-scale problem, Ω and its corresponding Represen-
tative Volume Element (RVE), ω in a specific material point.

Some basic assumptions need to be made in terms of macroscopic and microscopic
material behaviours. The material of concern should be sufficiently homogeneous in
a macroscopic scale but heterogeneous in the micro-scale, i.e. inclusions in a single
crystal matrix. "Scale separation" must be ensured, such that the characteristic length
at micro-scale must be much smaller than the characteristic length in the macroscopic
level. Additionally, the characteristic size of the heterogeneities must be much smaller
than the size of the Representative Volume Element (RVE).

The RVE must contain a complete information to characterize the micro-structure of
the non-linear FCC single crystal in a reduced size, allowing for computational efficiency.

The equilibrium of the RVE problem will be consistent with the boundary condi-
tions, directly related to the macroscopic fields.

In the context of computational homogenization, the homogenised macroscopic re-
sponse is estimated from the resolution of a meso-scale Boundary Value Problem (BVP)
by using a finite element method approach (Noels, n.d.).

Specifically this chapter tackles a finite-element approach of a Unit Cell. Assuming
that the dynamical effects are negligible, the equilibrium equations in the micro-scale
can be written as follows:

P(x) ·∇0 = 0 ∀x ∈ ω(X)

P(x) · n = T (x) ∀x ∈ ∂ω(X)
(4.1)
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In Eq. (4.1), P refers to the first Piola-Kirchhoff stress tensor, ∇0 to the gradi-
ent operator in the reference configuration and T denotes the surface traction on the
boundary, per unit reference surface.

At this point it is important to remember the relationship between the first Piola-
Kirchoff stress tensor and the Cauchy stress tensor used for the simulation purposes,
as follows:

σ = J−1PFT (4.2)

where J is the determinant of the deformation gradient, F.

Moreover, the local constitute laws of the different phases at the current time t in
the material point of interest need to be defined to complete the formulation of the
micro-scale problem. This behaviour has been already introduced in Chapter 2 -
Problem Statement . under Single Crystal Plasticity.

Jumping to the macro-scale, the linear momentum equation may be written as
follows, in absence of dynamical effects:

P̄(X) ·∇0 + b̄ = 0 ∀X ∈ Ω (4.3)

In Eq. (4.3) b̄ denotes the body forces per unit reference volume. Besides, the
boundary conditions for the macro-scale problem are:

ū(X) = uBC ∀X ∈ ∂DΩ

P̄(X) · n̄ = tBC ∀X ∈ ∂NΩ
(4.4)

where tBC and uBC represent the conditions on the Neumann boundary, ∂NΩ and
Dirichlet boundary, ∂DΩ, respectively.

As specified for the local problem, a constitutive resolution needs to be defined to
complete the macro-scale formulation, as exposed previously in Chapter 2 - Problem
Statement . under Single Crystal Plasticity.

Recovering the homogenization context of the problem, the macroscopic quantities
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may be rewritten as the averages of the micro-scale quantities over the meso-scale
volume element, as follows (Noels, n.d.):

F̄(X) =
1

V (ω)

∫
ω(X)

F(x)dx,

P̄(X) =
1

V (ω)

∫
ω(X)

P(x)dx

(4.5)

Besides, the energy consistency between both scales, i.e. "scale transition", macro
and micro, is stated by means of the Hill-Mandel condition (Noels, n.d.):

P̄(X) : δF̄(X) =
1

V (ω)

∫
ω

P(x) : δF(x)dx (4.6)

A brief description of the theoretical background of the meso-scale BVP problem
has been exposed. The practicalities of implementing a Unit Cell finite element for
solving the aforementioned meso-scale BVP is tackled in the rest of the chapter.
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4.2 A Crystal Plasticity Unit Cell model

This chapter details the construction of the Unit Cell Finite Element Model. For
the purpose of FEM simulations, the commercial software ABAQUS Standard 2018 has
been used.

The efforts to complete the literature content in terms of Finite Element results for
the Unit Cell problem have been increasing in the last years.

Since the pioneers in Finite Element computation for the Unit Cell problem simu-
lated a simple model for single crystal plasticity (Srivastava and Needleman, 2012), the
numerical techniques have evolved substantially.

In (Srivastava and Needleman, 2012) and (Srivastava and Needleman, 2015) a brief
analysis was conducted regarding FCC single crystals for a variety of loading configura-
tions, crystal orientations; and stress triaxiality and Lode parameter values. However,
no calculations were made in terms of negative stress triaxiality values, creep exponent
or initial void shape. Other results, included the analysis for higher porosity values
with a random distribution of inclusions in a mono-disperse and poli-disperse fashion
(Kouchmeshky and Zabaras, 2009) (Zhang et al., 2005) (Roters et al., 2010).

Previous work in the field of Finite Element computation for the creep response of
a porous single crystal constructed a different Finite Element model for each case of
initial crystallographic orientation, by taking advantage of the symmetry properties of
its own lattice or the symmetry of its related slip deformation mechanism (Srivastava
and Needleman, 2012) (Srivastava and Needleman, 2015).

From the author’s point of view, while it is true that the computational time may be
reduced for the simplest cases, i.e the most symmetric cases; this fact adds unnecessary
complexity to the modelling task. For this reason, this work has the aim to build a
unit cell model which can be used for any initial crystal orientation under any general
loading conditions with fully periodic boundary conditions.
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As stated in previous chapters, the aim of this work is to provide a complete overview
of the creep properties of FCC single crystals, characteristic of nickel-based super-alloys
used in aerospace applications, under a range of loading scenarios, in terms of numerical
computations. For this purpose, all the range of stress triaxiality values, from negative
to positive values, Lode parameter, other crystal orientations, different initial ellipsoidal
void shapes and porosity levels will be reviewed.

The notation adopted for the crystal orientation definition is as follows:

• Global crystal orientation given by: [100][010][001].

• Relative initial crystal orientation defined by xi axes. The xi axes will define the
main loading directions for simulation purposes.

One of the parameters to analyse while comparing with the homogenization ap-
proach of Ponte-Castaneda (Song and Ponte Castañeda, 2017b) is the initial crystal
orientation. Two different cases will be computed. An info-graph gathering those cases
can be found in Figure 4.1.

Figure 4.1: Initial crystal orientation. Relative orientation of the porous FCC single
crystal (Srivastava and Needleman, 2015).

It is important to mention that the initial crystal orientation is given as an input
to the User-defined Material subroutine (UMAT) as two pairs of vectors.

Furthermore, the periodic boundary conditions (PBC) need to be imposed. The
periodic boundary conditions will be imposed by making use of the "dummy node"
approach.
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The last step to define completely the Unit Cell problem concerns the description
of the loading parameters: stress triaxiality, χ and Lode parameter, L. The definition
of the loading parameters will be addressed later in this chapter.

4.2.1 Geometry Description

The first step while conducting a Finite Element computation is to define the pa-
rameters that describe the geometry.

In this problem, the geometry is cubic of semi-length, a0. The void is represented
by a sphere or an ellipsoid depending on the case, located in the center of the Unit Cell.

Figure 4.2: 1
8
of the Unit Cell for a spherical inclusion.

The porosity level serves as an input and according to that, the radius of the sphere
is computed as follows:

r0 = a0
3

√
6 · f
π

(4.7)

where f represents the porosity level.

Moreover, some cases will consider an initial ellipsoidal void shape. For this ap-
proach, the input parameters will be the initial porosity level and the asperity, w,
defined as the ratio between the minor axis and the major axis, w = r2

r1
. In this work
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the third semi-axis will be identical as the major axis, meaning r3
r1

= 1.

In that case the computation of the radius, r2 and r1 is given by:

r1 = a0
3

√
6f

πw
; r2 = r1 · w (4.8)

Practically, a cube of length a0 is created. a0 will be fixed to 0.5 mm for the whole
analysis. Then a sphere of r0 is superimposed to the previous cube. A new geometry
is defined then by means of a Boolean cut between the cube and the sphere.

This procedure allows to obtain 1
8
of the Unit Cell. The result of the described ge-

ometrical operations can be seen in Figure 4.2. The next step involves the "extension"
in the appropriate directions until the full Unit Cell of length 2a0 with a full spherical
void is achieved.

Details on the python scripting for the geometry construction can be found in Ap-
pendix A.

On the other hand, in any Finite Element Model, mesh convergence must be ensured
in order to achieve meaningful results. All the details regarding the mesh parameters
considered as well as a complete mesh convergence study is included at the beginning
of next chapter.

4.2.2 Material Behaviour - UMAT Subroutine

The constitutive material law for single crystal plasticity has been implemented
using the User-Material Subroutine (UMAT) developed by Huang (Huang, 1991).

This section will be used additionally as a review for the elasto-plastic constitutive
formulation included in the mentioned UMAT Fortran subroutine.

ABAQUS software allows the possibility of a completely user-defined material. By
using this capability, the stresses, the strains and other solution dependent quantities
are solved in an incremental fashion. The UMAT subroutine is called at the start of
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every time step and it is provided with the initial state of the increment, i.e. stress and
solution dependent variables; and with the strain increments and the time increment.
The UMAT subruoutine makes two computations:

• Update the stress and the solution dependent variables to their correspondent
value at the end of the time increment.

• Provide the material Jacobian matrix. This is used by the constitutive laws as
require for the implemented iterative Newton-Rhapson method.

The kinematics framework included in the mentioned subroutine is based on the
work by (Rice, 1971) and (Hill and Rice, 1972).
In this work, plastic deformation is assumed to be due to crystallographic dislocation
slip. Twinning, diffusion and grain boundary sliding is not considered in this work.
Moreover, the Schmid stress is assumed to be the driving force for slip phenomena.

The kinematics and the constitutive behaviour included in the User-defined Ma-
terial (UMAT) subroutine has been previously detailed in Chapter 2 - Problem
Statement.

Hardening law

The slip rate is considered to depend solely on the current stress state via the
associated Schmid stress. Thus, we may write the slip rate, γ̇(α) as:

γ̇(α) =

{
γ̇0

∣∣∣∣τ (α)

τ0

∣∣∣∣n} sgn
(
τ (α)

)
(4.9)

From Eq. (4.9), it can be concluded that a viscous power law relationship has been
used to characterize the mentioned slip rates in each α plane. It is also important to
notice that only secondary creep behaviour will be considered in this work, as previ-
ously commented in Chapter 3 - Homogenization Model. In Eq. (4.9), γ̇0, τ0 and
n have been already defined in previous chapters.

The capabilities of the mentioned UMAT subroutine allow the user to include two
different hardening of rate-dependent laws: Pierce, Asaro and Needleman’s self hard-
ening moduli and Bassani and Wu’s law. More details regarding the inclusion of self
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and latent hardening behaviour between slip systems can be found in (Peirce et al.,
1982),(R. J. Asaro, 1983) and (Bassani and Wu, 1991). This work will not consider any
self nor latent hardening.

UMAT Forward Gradient Time Scheme

The last step while defining a User-Material subroutine is the time integration
scheme. Huang’s UMAT subroutine makes use of the tangent modulus method first
described by Peirce in (Peirce et al., 1984).

In practice, the Finite Element code needs of 160 inputs parameters, as follows:

• Elastic moduli of the single cyrstal, Cij.

• Number of slip systems to be activated.

• Normal to a slip plane and slip direction for the first set of slip systems.

• Initial orientation of the crystal, given by two pairs of vector defining local and
global directions.

• Slipping rate dependence parameters, given by γ̇0 and n.

• Self and latent hardening parameter, which will depend on the chosen hardening
law for interaction between slip systems.

• Parameters that define the integration scheme and the consideration of finite
strain and finite rotation or not, given by θ and NLGEOM.

• Parameters to define the iterative procedure in terms of absolute error of shear
strains in slip systems, γerr; as well as the maximum number of iterations ITR-
MAX.

For the case of concern, a nickel-based super-alloy has been considered (Srivastava
and Needleman, 2015). A summary of the general inputs for the UMAT single crystal
plasticity model can be found in the Table 4.1.
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Parameter Value
C11 283.3 GPa
C12 197.5 GPa
C44 112 GPa

NSET 12
Slip systems [111][110]

Crystal orientation [100][100];[010][010]
γ̇0 1.53 · 10−9s−1

n 5
τ0 245 MPa
θ 0.5

NLGEOM 1
ITRATN 1
ITRMAX 10

γerr 10−5

Table 4.1: UMAT input parameters for FCC single crystal.

All in all, it has been showed the easiness of changing the material parameters for
a wide range of cases. The capability of implementing HCP crystal plasticity or more
sophisticated hardening law for interaction between slip systems will be addressed at
the end of this work.

4.2.3 Periodic Boundary Conditions (PBC)

As commented in the introduction of this chapter, periodic boundary conditions
need to be applied in the Unit Cell boundaries.

Historically, the implementation of periodic boundary conditions have been a matter
of concern due to its complexity. One of the most used approaches while implementing
PBC in a Finite Element Unit Cell problem is the "dummy node" method (ABAQUS,
2014).

The "dummy node" technique simplifies the PBC problem to three reference points,
RFs. These reference points will be used to link and track the displacement of paired
opposite boundaries; one for each principal direction, RF1, RF2 and RF3.

The conditions to be imposed to achieve a fully-periodic boundary Unit Cell problem
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in the Finite Element model are given by:

u1 (a0, x2, x3) = u1 (−a0, x2, x3) + U ′1(t)

u2 (a0, x2, x3) = u2 (−a0, x2, x3) + U ′2(t)

u3 (a0, x2, x3) = u3 (−a0, x2, x3) + U ′3(t)

u1 (x1, a0, x3) = u1 (x1,−a0, x3) + U ′′1 (t)

u2 (x1, a0, x3) = u2 (x1,−a0, x3) + U ′′2 (t)

u3 (x1, a0, x3) = u3 (x1,−a0, x3) + U ′′3 (t)

u1 (x1, x2, a0) = u1 (x1, x2,−a0) + U ′′′1 (t)

u2 (x1, x2, a0) = u2 (x1, x2,−a0) + U ′′′2 (t)

u3 (x1, x2, a0) = u3 (x1, x2,−a0) + U ′′′3 (t)

(4.10)

In Eq. (4.10), the quantities U ′i , U ′′i and U ′′′i represent the ith displacement degree of
freedom of the dummy nodes. The time histories of these displacements are computed
by the analysis to provide a specific loading condition as in (Srivastava and Needleman,
2015).

ABAQUS software allows to implement the periodic boundary conditions rela-
tions given by Eq. (4.10) by using the so called Multi-Point constraint capability
(MPC)(ABAQUS, 2014). In order to do so, a Python script has been developed. The
python script to apply Periodic Boundary conditions to a cubic Unit Cell can be found
under Appendix B.

The linear multi-point constraint capability is used to enforce Eq. (4.10) and deter-
mine the values of the unknowns U ′i , U ′′i and U ′′′i .

The mentioned script allows to identify pair nodes located in opposite faces. Once
they are detected, it applies the relationships described in Eq. (4.10). In that sense,
nodes corresponding to opposite face will be detected and associated through the de-
scribed periodic relation to specific reference points, RFs.

4.2.4 Loading Conditions in a Unit Cell PBC problem

A typical single crystal turbine blade is subjected to a variety of tests before entering
service. One of the most critical test is the creep test. Typical values of the stresses
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applied during a creep test that classical single crystal turbine blades face, are used in
this work (Seetharaman and Pratt, 2003).

While conducting an experimental creep test it is know that the loading conditions
are said to be Nominal Stress condition, i.e. Dead load experiment.

However, the objective of this work goes beyond that, it focuses on providing a
parametric study in terms of the Lode Parameter, L and Stress triaxiality, χ. It has
been detailed in (Srivastava and Needleman, 2012) how a True Stress Loading case, or
constant Cauchy stress loading is the best option for the analysis of a phenomenological
constitutive relation.

From this point, the true stresses or Cauchy Stresses, Σi , are described by the
following relationships:

Σ1 =
1

a2a3

∫ a2

0

∫ a3

0

σ11 (a1, x2, x3) dx2dx3

Σ2 =
1

a1a3

∫ a1

0

∫ a3

0

σ22 (x1, a2, x3) dx1dx3

Σ3 =
1

a1a2

∫ a1

0

∫ a2

0

σ33 (x1, x2, a3) dx1dx2

(4.11)

In Eq. (4.11), the quantities a1, a2 and a3 are defined as:

a1 = a0 + U1;

a2 = a0 + U2;

a3 = a0 + U3

(4.12)

Quantities defined in Eq. (4.12) represent the deformed length of the cube in the
three principal directions.

a1, a2 and a3 are computed thanks to the "sensor" capability implemented in
ABAQUS software (ABAQUS, 2014). As it has been commented previously, the dis-
placements, U1, U2 and U3 are tracked during the entire simulation.
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Having these quantities available, and taking into account that the faces of the cube
undergo large deformations which lead to a change in the surface; the applied tractions
in the reference points need to be "corrected". This correction is effective at the begin-
ning at each time step and allows to efficiently implement a constant true, or Cauchy
stress state.

The time history of the surface values in the three principal directions is computed
as follows:

S1 = (2a0 + U2) · (2a0 + U3);

S2 = (2a0 + U1) · (2a0 + U3);

S3 = (2a0 + U1) · (2a0 + U2)

(4.13)

The previous relationship (Eq. (4.13)) is valid as far as the boundaries of the unit
cell remain straight.

Once again, the update of applied tractions is possible thanks to a developed
User-defined Amplitude subroutine (UAMP) capability of ABAQUS software
(ABAQUS, 2014). The defined tractions, Σi are prescribed at the beginning of the
simulations. These tractions are associated to a Amplitude Function controlled by the
mentioned UAMP subroutine. This subroutine runs at the beginning at each time step,
modifying the amplitude associated to each traction accordingly to the respective com-
puted surface (current configuration).

Further details of the implementation of the User-defined Amplitude Subroutine can
be found in Appendix E.

At this point, it is important to define the loading parameters, Lode parameter L
and stress triaxiality, χ as:

χ =
Σh

Σe

=

√
2

3

1 + ρ2 + ρ3√
(1− ρ2)2 + (ρ2 − ρ3)2 + (ρ3 − 1)2

(4.14)

L =
2Σ2 − Σ1 − Σ3

Σ1 − Σ3

=
2ρ2 − 1− ρ3

1− ρ3

(4.15)
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where Σe, Σh, ρ2 and ρ3 are given by:

ρ2 =
Σ2

Σ1

; ρ3 =
Σ3

Σ1

(4.16)

Σe =
1√
2

√
(Σ1 − Σ2)2 + (Σ2 − Σ3)2 + (Σ3 − Σ1)2 (4.17)

Σh =
1

3
(Σ1 + Σ2 + Σ3) (4.18)

where Σe denotes the macroscopic effective stress, Σh represents the hydrostatic
stress, and ρ2 and ρ3 are ratios that relate stress state in different loading directions.

Eq. (4.14)-(4.18) lead to a quadratic set of equations to be solved component-wise.
The results are taken to be compatible with the following formulation:

Σ1 ≥ Σ2 ≥ Σ3 (4.19)

Until this point, all the ingredients needed for conducting a Unit Cell with Periodic
Boundaries Finite Element computation have been detailed.

4.2.5 Extracting values from a Unit Cell problem

However one last step is needed in order to be able to extract meaningful results
from the Finite element simulations: the outputs to be computed along the simulation,
per time step.

The quantities to compute and compare with the homogenization approach are:

• Equivalent Creep Strain, Ee.

• Micro-structure evolution, f
f0
.

• Equivalent Strain rate, De.

In order to obtain them, and giving the fact that the unit cell is divided in many
3D mesh elements, the following quantities need to be extracted per time step:
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• Logarithmic strain component in the centroid of the mesh element, εij.

• Volume of each element.

• Strain rate component per mesh element, Dij.

• Stress components per mesh element, σij.

Added to this, and recalling how the true or Cauchy stress state is imposed, it is
also required to track the displacements, Ui of the defined reference points, RFi.

Once all these quantities are computed, they need to be extracted from the result file.
This is achieved in a automatized way thanks to the scripting capability of ABAQUS.
Further details of the output-request Python script can be found in Appendix C.

Finally, a post-processing of the extracted values is conducted using MATLAB soft-
ware. Equivalent Creep strains, porosity evolution and Equivalent Strain rate are com-
puted thanks to the Matlab script in Appendix D.
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5 Results
In this chapter, a full overview of the creep response of a porous FCC single crystal

is presented in terms of finite-strains and micro-structure evolution.

A total of 28 cases will be addressed, having five main topics to analyze: effect of
loading configuration, effect of stress triaxiality, effect of initial porosity level and initial
void shape and effect of the creep exponent.

The results will serve for a double-purpose: Finite Element Unit Cell computations
will serve to assess the accuracy and efficiency of the proposed homogenization ap-
proach (Song and Ponte Castañeda, 2017b) for the initial analysis; and it will serve to
completely understand the effect of crystal orientation and loading configuration in the
creep life of single crystal turbine blades.

5.1 An overview of creep behaviour - Preliminary Con-

siderations

Creep may be defined as a time-dependent material deformation under a constant
stress state well below the material’s yield strength.

As introduced in Chapter 4 - Numerical Approach, this work considers a non-
linear porous face center cubic (FCC) single-crystal which contains a spherical or el-
lipsoidal void located in the center of the unit cell. The initial porosity level, f will
be set to 1% unless it is specified the opposite. Additionally, self and latent hardening
of the single crystal matrix is not considered in this work, so that τ0 = 245MPa along
deformation. The reference shear strain, γ̇0 is fixed to 1.53 · 10−9s−1 and the creep
exponent, n to 5, unless other value is specified.

Regarding loading conditions, a true stress or Cauchy stress state is imposed.
This fact ensures a loading history with a constant stress triaxiality, χ (Srivastava
and Needleman, 2012)(Song and Ponte Castañeda, 2017a). Specifically, Σe is set to
750MPa. Thus, for a chosen Lode parameter value and Stress triaxiality, the tractions,
Σi to be applied to the Unit Cell problem are calculated by solving a set of quadratic
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equations already presented in previous chapter.

At this point it is important to recall the nature of the two methods to be compared.
The Finite Element results accounts for Unit Cell computations of a porous FCC single
crystal with a periodic distribution of voids, while the homogenization approach of
Ponte pertains for non-linear porous FCC single crystal with random micro-structures.
As a consequence, care has to be put in place while analyzing the results as it will be
compared two different micro-structure distributions: periodic vs random.

Another fact to keep in mind, the Finite Element computations accounts for a elasto
visco-plastic constitutive behaviour of the single crystal matrix while the ISO approach
is solely capturing the visco-plastic response of a non-linear porous single crystal. Nev-
ertheless, as commented previously, the effect of elasticity in the creep problem has
been shown to be of few order of magnitude smaller than the visco-plastic response
(Srivastava and Needleman, 2012), and considered negligible.

Taking into account the aforementioned notes, the finite-strain response of the
porous FCC single crystal will be drawn by means of:

• Equivalent Creep Strain, Ee.

• Equivalent Strain Rate, De.

• Porosity evolution, f
f0
.

• Stress contour, σ11
Σe

around the void.

The Equivalent Creep strain, Ee is defined as:

Ee =

√
2

3

√
(ε11 − ε22)2 + (ε22 − ε33)2 + (ε11 − ε33)2 +

3

2
(ε2

12 + ε2
23 + ε2

13) (5.1)

In Eq. (5.1), εij, are the volume average of the current values of the logarithmic
strain components computed at the centroid of each mesh element. The volume average
is computed as follows:

εtij =

∑
i v

iεiij∑
i v

i
(5.2)
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where vi represents the current volume of the mesh element. For comparison pur-
poses, the Equivalent Creep strain, Ee is redefined to account only for the visco-plastic
behaviour of the porous single crystal in the following form:

Ee = Ee − Eelastic
e (5.3)

In Eq. (5.3), Eelastic
e corresponds to the elastic part of the creep strain, considered

to be achieved in the initial time steps, depending on the case of study.

In the same fashion, the Equivalent strain rate, De is computed as:

De =

√
2

3

√
(D11 −D22)2 + (D22 −D33)2 + (D11 −D33)2 +

3

2
(D2

12 +D2
23 +D2

13) (5.4)

where Dij are volume average of current values of the mechanical strain rate com-
ponents computed at each mesh element.

Furthermore, the micro-structure evolution will be characterize in different ways.
First, the porosity evolution, f

f0
will be computed as follows:

f =
Vcell − VMatrix

Vcell
(5.5)

where Vcell is the current volume of the Unit Cell and VMatrix is the current matrix
volume, i.e. the sum of all the current elemental volumes.

In the homogenization (ISO) approach, the aspect ratio is defined as the minimum
aspect ratio. This value will be used only in the first analysis.

w =
amin
amax

(5.6)
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In a last instance, the contour plots of the stress concentrations, σ11
Σe

will be shown
around the void for the different cases simulations.

Moreover, it is important to introduce here the concept of "onset on a rapid increase
in creep strain" or "tertiary creep" as the phenomena where the equivalent creep strain
rate, Ėe, i.e. slope of the creep strain curve versus time, increases rapidly with time.
This fact will be observed in some of the loading cases simulated.

5.2 Mesh Convergence Study

A necessary step while constructing a finite element model is to asses mesh con-
vergence. Having a converged mesh is of crucial importance to obtain meaningful and
accurate numerical results.

In the case of the Unit Cell, as the main concern for this study entitles creep be-
haviour and micro-structure evolution, three output variables will be used to asses the
convergence of the solution:

• Equivalent Creep Strain, Ee versus time, t.

• Porosity Evolution, f
f0

versus Equivalent Creep Strain, Ee.

• Equivalent Strain rate, De versus Equivalent Creep Strain, Ee.

Additionally, due to the nature of the problem and the variety of loading cases to be
simulated, two mesh convergence studies will be conducted: low stress triaxiliaty case
(χ = 1

3
) and high stress triaxiality case (χ = 3).

Before starting with the analysis, some parameters need to be fixed along the sim-
ulation. Table 5.2 summarizes the physical parameters used for the aforementioned
convergence studies.

Case Crystal orientation χ L f n
A 100 1

3
-1 1% 5

B 110O1 3 -1 1% 5

Table 5.1: Physical parameters for mesh convergence studies.
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Figure 5.1: Cut view of the mesh for the Unit Cell problem (f = 1%).

A finite element mesh composed by 20-node hybrid solid elements with quadratic
displacement interpolation and linear pressure interpolation mesh elements, referenced
as C3D20H elements in ABAQUS software will be used for this work.

The C3D20H elements have demonstrated in numerous studies the ability to cap-
ture accurately the physics behind the Unit Cell problem (Srivastava and Needleman,
2015)(Srivastava and Needleman, 2012). An example of a converged mesh can be ob-
served in Figure 5.1.

As one of the objective of the Unit Cell problem is to capture the micro-structure
evolution, i.e. the evolution of the void and its nearest region, it will be shown how
an adequate mesh refinement has to be applied in the inclusion area. A detailed view
of the void phase ares is shown in Figure 5.2. Indeed, the number of mesh elements
in this region and the nearest adjacent area will be the variable to change during the
mesh convergence study.
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Figure 5.2: Zoom view of the mesh refinement near the void.

At the end of the analysis, conclusions in terms of number of elements around the
void and in the ligament necessary for convergence will be drawn.

Table 5.2 gathers the 3 configurations computed to asses convergence.

Mesh Aspect ratio nvoid nlig Nelem

Coarse 0.2 20 5 1968
Intermediate 0.15 32 8 4208

Fine 0.15 40 10 6128

Table 5.2: Different mesh configurations.

In the previous table, nvoid denotes the number of elements in the void circumference
and nlig represents the number of mesh elements in the ligament formed between the
void and the cubic matrix.

Additionally, for validation purposes, the results in terms of creep strain and poros-
ity evolution from (Srivastava and Needleman, 2015) will be included, denoted as red
triangles. A perfect agreement will be clearly observed.
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Stress Triaxiality, χ = 1
3

In Figures 5.3 and 5.4 it can be seen how for the low stress triaxiality case, there
are no visible differences in terms of Equivalent creep strain, nor porosity evolution.
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Figure 5.3: Equivalent creep strain, Ee over time for different mesh configurations with
crystal orientation 100, L = −1 and χ = 1

3
.
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Figure 5.4: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different mesh
configurations with crystal orientation 100, L = −1 and χ = 1

3
.
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However, if we look deeper into the previous curves, it can be observed how the
Intermediate and the Fine mesh have reached convergence. This fact is depicted in
Figures 5.5 and 5.6.
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Figure 5.5: Zoom into the Equivalent creep strain, Ee time evolution for different mesh
configurations with crystal orientation 100, L = −1 and χ = 1
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Figure 5.6: Zoom into the porosity evolution, f
f0

vs Equivalent creep strain, Ee for
different mesh configurations with crystal orientation 100, L = −1 and χ = 1

3
.

If now the attention is focused in the Equivalent strain rate, De, it can be clearly
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seen how the Coarse mesh is not capturing accurately the softening behaviour (slope of
the strain rate) due to the micro-structure evolution for the low stress triaxiality case.
Again, the same conclusion can be drawn, both Intermediate and Fine mesh reached
convergence.
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Figure 5.7: Equivalent Strain rate, De versus Equivalent creep strain, Ee for different
mesh configurations with crystal orientation 100, L = −1 and χ = 1

3
.

Stress Triaxiality, χ = 3

The second case to look into for assessing mesh convergence is a case known for
strong micro-structure evolution. It is known that for the high stress triaxiality case
with Lode parameter, L = −1, the porosity will increase significantly.

The same procedure is followed in this section. Figures 5.8 and 5.9 show the evolu-
tion of the Equivalent Creep strain, Ee and the porosity, f

f0
. It can be observed how a

further detail view is needed to analyse the difference for the different mesh cases.
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Figure 5.8: Equivalent creep strain, Ee over time for different mesh configurations with
crystal orientation 110O1, L = −1 and χ = 3.
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Figure 5.9: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different mesh
configurations with crystal orientation 110O1, L = −1 and χ = 3.

Same conclusions can be achieved after looking into Figures 5.10, 5.11 and 5.12.
Both Intermediate and Fine mesh cases show convergence.
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Figure 5.10: Zoom into the Equivalent creep strain, Ee time evolution for different mesh
configurations with crystal orientation 110O1, L = −1 and χ = 3.
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Figure 5.11: Zoom into the porosity evolution, f
f0

vs Equivalent creep strain, Ee for
different mesh configurations with crystal orientation 110O1, L = −1 and χ = 3.
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Figure 5.12: Equivalent Strain rate, De versus Equivalent creep strain, Ee for different
mesh configurations with crystal orientation 110O1, L = −1 and χ = 3.

The analysis of the strain rates evolution in Figure 5.12 throws the same conclusions:
intermediate and fine mesh are showing converged results.

In summary, it has been observed how both Intermediate with 4208 mesh elements
and Fine mesh cases with 6128 mesh elements ensure convergent results for the simu-
lated cases and under the physical parameters specified in Table 5.2. However, a higher
number of elements in the vicinity of the void is desired for characterizing the strain
and stress concentration around the void, keeping an eye in the CPU time.

Given this fact, and taking into account that the CPU time associated to both In-
termediate and Fine mesh differentiates in few hours (Intermediate Mesh ∼ 14h and
Fine Mesh ∼ 18h; it can be concluded that the Fine Mesh with a global aspect
ratio of 0.15 with 40 elements distributed along the void perimeter and 10
elements in the ligament of the unit cell is necessary to capture accurately the
creep behaviour and the micro-structure evolution a porous single crystal for both low
and high stress triaxiality cases.
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5.3 FCC Single Crystal - Finite strains and micro-

structure evolution

This section gathers the parametric analysis for the FCC single crystal nickel-based
super-alloy of concern.

For all the below cases, a first comment in the creep strain-time curve will be ad-
dressed. Secondly, the micro-structure evolution will be analyzed from different points
of view, i.e. porosity evolution, stress concentration contour plots with void shape.
Additionally, a look into the strain rate evolution will be linked with all the previous
conclusions.

In terms of notation, AXT refers to Axisymmetric Tension, AXC to Axisymmetric
Compression and PS denotes Pure Shear.

5.3.1 Effect of loading configuration

The first parametric analysis to conduct is related to the initial crystal orientation
and Lode parameter, i.e. loading configuration. Two initial crystal orientations will be
addressed: the symmetric [100] and the anisotropic [110O1] orientation, for three Lode
parameter values. Table 5.3 summarises all the cases to consider.

The reader is referred to Figure 4.1 for recalling purposes in identifying the crystal
orientation to be used during this parametric analysis.

At this point it is important to recall that a Lode parameter of L = ±1 reflects
physically an axisymmetric loading, in compression and in tension, respectively. For
the case of L = 0, the physical loading refers to a pure shear loading case.

Loading χ L Σ1 [MPa] Σ2 [MPa] Σ3 [MPa]
AXT [100] 1/3 -1 750 0 0
AXC [100] 1/3 +1 500 500 -250
PS [100] 1/3 0 683.01 250 -183.01
AXT [110] 1/3 -1 750 0 0
AXC [110] 1/3 +1 500 500 -250
PS [110] 1/3 0 683.01 250 -183.01

Table 5.3: FCC Loading Configuration analysis for 100 & 110O1 crystal orientations.
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Figures 5.13, 5.14 and 5.15 show clearly the important effect of the loading con-
figuration on the macroscopic response of the FCC single crystal as well as on the
micro-structure evolution for fixed stress triaxiality value, χ = 1

3
.
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Figure 5.13: Time evolution of the Equivalent creep strain, Ee for different Lode pa-
rameters, stress triaxiality χ = 1

3
and two crystal orientations: 100 & 110O1. The same

results have been included by using the FOSO homogenisation approach (red circles).

From Figure 5.13 it is important to note that some loading cases overlap between
each other, as result of crystal symmetry and slip phenomena. For instance, the red
line for the crystal orientation 100 and L = +1 is overlapping with the green one, corre-
sponding to 110O1 orientation and L = −1. For the FOSO homogenization results, the
same can be said, only three main lines can be observed, but six cases are represented.

In the time histories of the equivalent creep strain, Ee for both crystal orientations,
it can be seen how Ee increases monotonically within time at a constant rate. It is
important to note that the calculations were terminated at Ee = 1 or when mesh
distortion starts to affect the results (Srivastava and Needleman, 2015). As it can
be seen in Figure 5.13 for the symmetric crystal orientation [100], the largest steady
state creep is achieved for L = 0, being slightly greater than for L = ±1. The same
can be said for the 110O1 crystal orientation. Perfect agreement can be observed in
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terms of creep strain evolution with the homogenization approach for all the loading
configuration cases.

The evolution of the porosity strongly depends on the Lode parameter, as it is
depicted in Figures 5.14 and 5.15.
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Figure 5.14: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different Lode
parameter, stress triaxiality χ = 1

3
and crystal orientations 100. The same results have

been included by using the FOSO homogenisation approach (red circles).

The porosity evolution, f
f0

with Ee for the [100] crystal orientation for the three
Lode parameters timidly increases showing a peak ( f

f0
> 1). Specifically, for L = −1,

the pore size saturates to the initial porosity level, while for the L = 0 and L = +1,
the porosity decreases resulting in the collapse of the void.

On the other hand, for the 11O01 crystal orientation and L = 0 and L = −1 the
porosity level remains almost constant to the initial porosity level. However, the case
of L = +1 shows a initial peak in the pore growth to a further monotonic decrease,
i.e. void collapse. Here it can be seen the differences of having a periodic or a random
micro-structure distribution. The differences between both methodologies rise in terms
of micro-structure evolution when the initial crystal orientation is more anisotropic, i.e.
110O1 orientation.
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Figure 5.15: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different Lode
parameter, stress triaxiality χ = 1

3
and crystal orientations 110O1. The same results

have been included by using the FOSO homogenisation approach (red circles).
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Figure 5.16: Equivalent strain rate, De vs Equivalent creep strain, Ee for different Lode
parameters, stress triaxiality χ = 1

3
and two crystal orientations: 100 & 110O1.
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If now the attention is focused in the evolution of the equivalent strain rate, De, it
can be concluded how the loading configuration indeed is playing an important role in
the creep life of the FCC single crystal.

A higher strain rate is related to an earlier tertiary creep and indeed creep failure.
It can be seen how the most detrimental loading cases corresponds to the ones with the
Lode parameter L = 0, as it has been previously exposed in Figure 5.13. Additionally,
the case with the highest creep enhancement is the one corresponding to the 110O1
crystal orientation with L = −1, where the porosity remains constant to its initial
value, as it was observed in Figure 5.15.

In Figures 5.17 and 5.18 it can be seen the stress concentration contours for the unit
cell for the range of loading configurations. The micro-structure evolution in terms of
void shape is highly influenced by the crystal orientation and the Lode parameter.

For the 100 crystal orientation and L = −1, it can be seen how the void evolves
into a stretched spheroidal shape with a circular cross section. This evolution is in
agreement with the results observed in Figure 5.14 and 5.15 where the pore is slightly
growing, just stretching, keeping its initial porosity level. The stress concentrations are
located in the surrounding of the void where the local radius is smaller.

In the case of axisymmetric compression (L = +1) for 100 orientation, the void
evolves into a penny-shape leading to collapse. On the other hand, for the L = 0 case
with the symmetric crystal orientation, the void evolves into an ellipsoidal shape. The
void collapse will also occur, into a ellipsoidal crushed shape but for higher associated
creep strains than the previous case. A compressing stress concentration appears in the
perimeter of the void.
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Figure 5.17: Cross sections of the stress, σ11
Σe

for χ = 1
3
and Ee ∼ 0.7. From top to

bottom: 100 orientation L = −1; 100 orientation L = +1; 100 orientation L = 0.
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Finally, the 110O1 crystal orientation shows two different behaviours in terms of
pore shape evolution: for L = +1, in compression, the pore evolves into the aforemen-
tioned "penny-shape" leading to collapse; and for L = 0; L = −1, the void is stretched
into an ellipsoidal-like void having almost identical cross section for the same equivalent
creep strain. This fact has been observed previously in Figure 5.15.

Figure 5.18: Cross sections of the stress, σ11
Σe

for χ = 1
3
and Ee ∼ 0.7. From top to

bottom: 110O1 orientation L = −1; 110O1 orientation L = +1; 110O1 orientation
L = 0.
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A last comparison can be plotted for the ISO homogenization approach, the void
aspect aspect ratio evolution, in Figure 5.19.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 5.19: Aspect ratio, w vs Equivalent Creep strain, Ee for different Lode param-
eters, stress triaxiality χ = 1

3
and two crystal orientations: 100 & 110O1 (Song and

Ponte Castañeda, 2017a).

In Figure 5.19, the cases corresponding to: 100 orientation and L = 0, 110O1
orientation and L = +1; L = 0 (yellow, green and light blue curves) are overlapping
and the representation reduces to a single curve, denoted in a light blue color.

It is important to remember that the exposed aspect ratio, w, related the minimum
aspect ratio of the void. Comparing with Figures 5.17 and 5.18, it can be seen how
the aspect ratio decreases for all the cases, being more accused for the cases leading
to void collapse, such as 100 and 110O1 crystal orientations and L = +1. No further
information can be extracted from the previous graph as the minimum aspect ratio
values are not available from the Finite Element computations.

61



5.3.2 Effect of stress triaxiality

The loading configuration has been shown to be of crucial importance on creep be-
haviour in a porous FCC single crystal. Another important parameter to account for
is the stress triaxiality, which is related to the loading level.

Two loading configurations will be considered in this analysis: 110O1 crystal ori-
entation with Lode parameters L = −1 and L = +1. Six different stress triaxiality
levels will be computed for each loading case. A summary of the computed cases can
be found in Tables 5.4 and 5.5.

Loading χ L Σ1 [MPa] Σ2 [MPa] Σ3 [MPa]
AXT [110] 1/3 -1 750 0 0
AXT [110] 2/3 -1 1000 250 250
AXT [110] 3 -1 2750 2000 2000
AXT [110] -1/3 -1 -750 0 0
AXT [110] -2/3 -1 -1000 -250 -250
AXT [110] -3 -1 -2750 -2000 -2000

Table 5.4: FCC Stress Triaxiality Analysis (Axisymmetric Tension)

Loading χ L Σ1 [MPa] Σ2 [MPa] Σ3 [MPa]
AXC [110] 1/3 +1 500 500 -250
AXC [110] 2/3 +1 750 750 0
AXC [110] 3 +1 2500 2500 1750
AXC [110] -1/3 +1 -500 -500 250
AXC [110] -2/3 +1 -750 -750 0
AXC [110] -3 +1 -2500 -2500 -1750

Table 5.5: FCC Stress Triaxiality Analysis (Axisymmetric Compression)

Starting with the creep strain evolution for the 110O1 orientation in axisymmetric
tension (L = −1) in Figure 5.20, it can be concluded that the creep strain evolution is
nearly independent of the stress triaxiality level from negative values up to χ = 2

3
. For

the highest stress triaxiality χ = 3, it can be seen how there is an "onset on the creep
strain evolution" (rapid increase of the strain in short time), which will lead to creep
failure.
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Figure 5.20: Time evolution of the Equivalent creep strain, Ee for different stress tri-
axiality values, Lode Parameter L = −1 and crystal orientation 110O1.

Looking now to Figure 5.21, it is clearly observed the strong influence of the stress
triaxiality level on the micro-structure evolution of the single crystal.

For negative values of the stress triaxiality, the porosity level decreases monotoni-
cally leading to void collapse. The decrease is more abrupt as the stress triaxiality value
is smaller, leading to void collapse with an earlier associated equivalent creep strain,
Ee.

In turn, for χ = 1
3
the porosity slightly evolves, remaining constant to its initial

value. Although, for χ = 2
3
, the pore size increases until reaching a porosity level of

f
f0

= 1.5. The highest stress triaxiality case, χ = 3 causes an abrupt increase of the
pore size for relatively low associated creep strains. This fact explains the appearance
of the "onset on the creep evolution" around t = 8 · 106s observed in Figure 5.20.

Figure 5.22 allows once again to confirm the previous conclusions in terms of creep
evolution. For values of stress triaxiality, −2

3
< χ < 2

3
the strain rate keeps an equally

constant value along deformation. For the most negative stress triaxiality value, it
can be seen how the strain rate decreases abruptly due to the accentuated decrease in
porosity level leading to void collapse, for a very low associate creep strain. Moreover,
for the highest value of stress triaxiality, the strain rate experiences an abrupt increase,
having a marked softening effect in the material creep life.
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Figure 5.21: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different stress
triaxiality values, Lode Parameter L = −1 and crystal orientation 110O1.
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Figure 5.22: Equivalent strain rate, De vs Equivalent creep strain, Ee for different stress
triaxiality values, Lode Parameter L = −1 and crystal orientation 110O1.
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Figure 5.23: Cross sections of the stress, σ11
Σe

for 110O1 crystal orientation, L = −1.
From top to bottom: χ = 2

3
and Ee = 0.5; χ = 3 and Ee = 0.15; χ = −1

3
and Ee = 0.5;

χ = −2
3
and Ee = 0.5; χ = −3 and Ee = 0.2.
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The stress triaxiality, χ has a huge influence in the void shape evolution as depicted
in Figure 5.23.

For the highest value of stress triaxiality, χ = 3, the void growth is abrupt, adopting
a final characteristic polygonal shape with rounded corners.

For negative stress triaxiality values up to χ = −2
3
, the void shape is evolving into

a ellipsoidal shape, as described previously but with the characteristic cross-sections
shifted.

For the most negative value, χ = −3, the pore evolves into a "nutshell-like" shape.
For relative low creep strains, the void tends to split in four individual voids. Along
deformation, the pore size is decreasing too.

Additionally, the stress concentration increases as the stress triaxiality does.

Focusing now in the case where the Lode parameters is fixed to L = +1, similar
phenomena can be observed. The history of the creep strain in Figure 5.24 is fairly
independent of the stress triaxiality for χ < 2

3
, while for χ = 3, the onset on the creep

strain appears again. In this case the onset happens around t = 5 · 106s.

0 2 4 6 8 10

10
7

0

0.2

0.4

0.6

0.8

1

Figure 5.24: Time evolution of the Equivalent creep strain, Ee for different stress tri-
axiality values, Lode Parameter L = +1 and crystal orientation 110O1.
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For the micro-structure evolution in Figure 5.25, three effects can be observed. First,
for χ < 1

3
the porosity evolves with different decreasing rates, higher as the stress tri-

axiality is reduced, leading to void collapse. For χ = 2
3
, the micro-structure evolution

is characterized for a pore growth at different rates along deformation, to reach a value
of f

f0
= 2 for Ee = 1. The last behaviour is the aforementioned "abrupt pore growth",

for χ = 3.
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Figure 5.25: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different stress
triaxiality values, Lode Parameter L = +1 and crystal orientation 110O1.

The comments in the evolution equivalent strain rate, De in Figure 5.26 are the
same as for the last case, with 110O1 crystal orientation and L = −1. For brevity, the
void shape analysis is not included for this case as all the needed remarks have been
commented in Figure 5.23.
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Figure 5.26: Equivalent strain rate, De vs Equivalent creep strain, Ee for different stress
triaxiality values, Lode Parameter L = +1 and crystal orientation 110O1.
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5.3.3 Influence of initial porosity level

Another important parameter to look into concerning single crystal turbine blades
is the initial porosity level, f0. Many researchers have focused their efforts recently on
trying to understand better the complex manufacturing behind a single crystal and how
the mentioned initial porosity could be reduced (Yu et al., 2017) (Caron and Lavigne,
2011).

Single crystal turbine blades concerns very low porosity levels, well below the lowest
case represented here, i.e. 0.25%. Four cases will be compared in this section. Table
5.6 gathers a summary of the simulated cases.

Loading χ L Σ1 [MPa] Σ2 [MPa] Σ3 [MPa]
AXT [100] f = 0.25% 1/3 -1 750 0 0
AXT [100] f = 0.5% 1/3 -1 750 0 0
AXT [100]f = 1% 1/3 -1 750 0 0
AXT [100] f = 2% 1/3 -1 750 0 0

Table 5.6: FCC Porosity analysis
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Figure 5.27: Time evolution of the Equivalent creep strain, Ee for different initial
porosity levels, stress triaxiality χ = 1

3
, Lode Parameter L = −1 and crystal orientation

100.
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From Figure 5.27 it can be seen clearly the detrimental effect of a higher initial
porosity level. Higher values of porosity levels leads to a monotonically stepper increase
of the creep strain with time. In fact, as Finite element computation were only carried
out until Ee = 1 for obvious reason of mesh distortion, it is predicted that the onset
for rapid increase in the creep strain, i.e. leading to creep failure, will happen earlier
for the highest level of porosity studied, f = 2%.
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Figure 5.28: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different initial
porosity levels, stress triaxiality χ = 1

3
, Lode Parameter L = −1 and crystal orientation

100.

Analysing now the micro-structure evolution in terms of pore size in Figure 5.28,
it can be concluded that qualitatively the micro-structure evolution is independent of
the porosity level, as far as the porosity levels are kept in the same order of magnitude.
As it has been commented in previous sections, for the initial crystal orientation [100],
χ = 1

3
and L = −1, the porosity level first increases until Ee ∼ 0.35, to decrease for

further deformation levels, below the initial porosity level.

However, it can be seen a small effect linked to the initial porosity: higher values of
initial porosity leads to lower peak in the initial pore growth, and a softer decrease in
the porosity level than for lower initial porosity levels.

70



0 0.2 0.4 0.6 0.8 1

1.55

1.6

1.65

1.7

1.75

1.8

1.85
10

-8

Figure 5.29: Equivalent strain rate, De vs Equivalent creep strain, Ee for different initial
porosity levels, stress triaxiality χ = 1

3
, Lode Parameter L = −1 and crystal orientation

100.

The strain rates in Figure 5.29 for different porosity levels reflect what has been
commented before. The higher the initial porosity level, the higher is the associated
strain rate. A higher strain rate leads to earlier creep failure.

It can be seen how the slope of the strain rate, in turn, shows a slight decreasing
tendency for all the cases. This fact needs to be further analysed, for larger equivalent
creep strain values.

Regarding void shapes and stress concentration in Figure 5.30, it can be clearly seen
how the pore shape evolution is independent of the initial porosity level; and the stress
concentration around the void slightly increase as the porosity level does.

A last word must be said regarding the mesh modification for these cases. As the
initial porosity changes, the size of the spherical inclusion changes and so the number
mesh elements around it. While the author is aware of the need of a new mesh con-
vergence for each case, the porosity levels involved are in the same order of magnitude
and it is assumed that convergence is also achieved.
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Figure 5.30: Cross sections of the stress, σ11
Σe

for χ = 1
3
, L = −1 and Ee ∼ 0.7. From

top to bottom: 100 orientation f = 0.25%; 100 orientation f = 0.5%; 100 orientation
f = 2%.
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5.3.4 Influence of creep parameters

Another parameter to look into regarding creep behaviour is the empirical creep
exponent, n. Here the effect of varying the creep exponent will be exposed for a crystal
orientation [100], χ = 1

3
and L = −1. A summary of the computed cases can be found

in Table 5.7.

Loading χ L Σ1 [MPa] Σ2 [MPa] Σ3 [MPa]
AXT [100] n=1 1/3 -1 750 0 0
AXT [100] n=2 1/3 -1 750 0 0
AXT [100] n=5 1/3 -1 750 0 0
AXT [100] n=10 1/3 -1 750 0 0

Table 5.7: FCC Creep Exponent analysis

An increase in the creep exponent leads to an earlier creep failure. This fact is clearly
depicted in Figure 5.31. The slope of the equivalent creep strain over time multiplies
as the creep exponent rises. A higher n exponent has a big impact in creep life.
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Figure 5.31: Time evolution of the Equivalent creep strain, Ee for different creep ex-
ponents, stress triaxiality χ = 1

3
, Lode Parameter L = −1 and crystal orientation

100.
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Another effect of the creep exponent concerns the micro-structure evolution in Fig-
ure 5.32. A higher creep exponent is linked to higher pore growth until a certain Ee;
and a latter larger decrease in the porosity level, below the initial value. The porosity
evolution curve flattens as the creep exponent decreases.
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Figure 5.32: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different creep
exponents, stress triaxiality χ = 1

3
, Lode Parameter L = −1 and crystal orientation

100.

Additionally, the equivalent strain rate vs Ee does not give any further information
and it is not showed here. Higher creep exponent leads to higher initial equivalent
strain rate. The strain rate curves for all the creep exponent analysed remains constant
during deformation in the range and loading case studied.

From Figure 5.33, it can be observed how the void shape evolution is almost inde-
pendent of the creep exponent, n.
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Figure 5.33: Cross sections of the stress, σ11
Σe

for χ = 1
3
, L = −1 and Ee ∼ 0.4. From

top to bottom: 100 orientation n = 1; 100 orientation n = 2; 100 orientation n = 5;
100 orientation n = 10.
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5.3.5 Effect of initial void shape

The last analysis for FCC single crystal concerns the initial void shape. While many
researchers have focused on understanding how the pores are formed during the casting
of single crystals, others tried to obtain a micro-photography of them.

For this reason, different initial ellipsoidal void shapes will be considered. Here,
w represents the aspect ratio between major and minor axis, so that w = r2

r1
. r1

represents the radius in the X-direction and r2 represents the radius in the Y-direction,
i.e. main loading directions. It is also considered r3 = r1. Axysimmetric tension
and axysimemtric compression for an initial crystal orientation [100], χ = 1

3
will be

conducted. Table 5.8 summarizes the cases where L = −1.

Loading χ L Σ1 [MPa] Σ2 [MPa] Σ3 [MPa]
AXT [100] w = 0.25 1/3 -1 750 0 0
AXT [100] w = 0.5 1/3 -1 750 0 0
AXT [100] w = 1 1/3 -1 750 0 0
AXT [100] w = 2 1/3 -1 750 0 0

Table 5.8: FCC Initial void shape analysis (I).

From Figure 5.34 it can be clearly observed how the initial void shape has no influ-
ence in the creep strain evolution of the porous single crystal for the cases studied.

However, the porosity evolution, depicted in Figure 5.35 shows how the pore growth
is highly affected by the initial void shape. A larger radius in the direction of loading,
r1 or X-direction, is linked to a smaller peak in the porosity evolution, f

f0
. The peak in

the porosity occurs for f
f0
> 1 and higher as the aspect ratio increases. Additionally,

higher aspect ratios retard the peak on pore size to latter equivalent creep strains, i.e.
time.
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Figure 5.34: Time evolution of the Equivalent creep strain, Ee for different initial
ellipsoidal void shapes, stress triaxiality χ = 1

3
, Lode Parameter L = −1 and crystal

orientation 100.
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Figure 5.35: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different initial
ellipsoidal void shapes, stress triaxiality χ = 1

3
, Lode Parameter L = −1 and crystal

orientation 100.
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The strain rates, highly related to the creep life of the material, do not show big
differences between each other. It is important to notice the case of w = 0.25 where
the strain rate shows an abrupt trend. This fact is linked to excessive mesh distortion
achieved during simulation for a certain creep strain.
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Figure 5.36: Equivalent strain rate, De vs Equivalent creep strain, Ee for different initial
ellipsoidal void shape, stress triaxiality χ = 1

3
, Lode Parameter L = −1 and crystal

orientation 100.

If now we have a look into the stress contour plots in Figure 5.37, it may appear
that the void shape evolution strongly depends on the initial void shape. However, the
evolution is the same for all the cases, and equal to the one described in the first analysis
for w = 1: the void is stretching in the main direction of loading, i.e. X-direction. What
it is changing is the initial pore shape, which in fact, will define the pore characteristic
shape at a certain equivalent creep strain to be different for each case.
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Figure 5.37: Cross sections of the stress, σ11
Σe

for χ = 1
3
, L = −1 and Ee ∼ 0.7. From top

to bottom: 100 orientation w = 0.25; 100 orientation w = 0.5; 100 orientation w = 2.

Regarding the axisymmetric compression case (L = +1) in Table 5.9, the conclusions
to be drawn in terms of creep strain history and porosity evolution are equal. The creep
life of the porous single crystal is nearly independent of the initial void shape as it can
be seen in Figure 5.38.

Loading χ L Σ1 [MPa] Σ2 [MPa] Σ3 [MPa]
AXC [100] w = 0.25 1/3 +1 500 500 -250
AXC [100] w = 0.5 1/3 +1 500 500 -250
AXC [100] w = 1 1/3 +1 500 500 -250
AXC [100] w = 2 1/3 +1 500 500 -250

Table 5.9: FCC Initial void shape analysis (II).

In this case, the direction of loading shifts to Y-direction, or r2. Lower values of w
will lead to higher peak in the pore growth as in Figure 5.39.
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If now the attention is shifted to the strain rate evolution, lower aspect ratios shows
a slight detrimental effect in the creep evolution. Nevertheless, the differences are neg-
ligible. Additionally, as expected from a case of void collapse, previously linked to a
"hardening effect". the strain rate evolution shows a decreasing tendency along defor-
mation.

The conclusions in terms of micro-structure for the pore shape evolution are similar
to the one described in previous case, the evolution along a given quantity of creep
strain is the same, although the final pore shape will differ due to the initial different
void aspect ratios. This results in terms of stress concentration are not showed for
brevity.
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Figure 5.38: Time evolution of the Equivalent creep strain, Ee for different initial
ellipsoidal void shapes, stress triaxiality χ = 1

3
, Lode Parameter L = +1 and crystal

orientation 100.
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Figure 5.39: Porosity evolution, f
f0

vs Equivalent creep strain, Ee for different initial
ellipsoidal void shapes, stress triaxiality χ = 1

3
, Lode Parameter L = +1 and crystal

orientation 100.
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Figure 5.40: Equivalent strain rate, De vs Equivalent creep strain, Ee for different initial
ellipsoidal void shapes, stress triaxiality χ = 1

3
, Lode Parameter L = +1 and crystal

orientation 100.
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6 Conclusions
A general Unit Cell with Periodic Boundary conditions (PBC) Finite Element model

has been developed. The Unit Cell Finite Element model allows to compute the finite-
strain and finite-rotations macroscopic response and the porosity evolution of a porous
single crystal with an arbitrary initial crystal orientation under general loading con-
ditions with periodic micro-structure. This works focused on the creep behaviour of
a classical FCC single crystal turbine blade. The capabilities of the Unit Cell model
may be extended to a wide range of engineering applications, where the micro-structure
evolution plays an important role.

A complete overview of the finite-strain macroscopic response and micro-structure
evolution of a non-linear porous FCC single crystal has been presented by making use
of two different approaches: a second order variational homogenization approach and a
numerical three dimensional Finite Element computation.

The strong influence of the micro-structure evolution on a porous FCC single crystal
creep behaviour has been widely proven.

The implementation of the User-defined Amplitude (UAMP) subroutine allows to
define a true stress or Cauchy stress loading condition, such that the values of the Lode
parameter, L and stress triaxiality, χ were kept constant during deformation.

The accuracy of the variational second-order (FOSO) homogenization approach to-
gether with the iterative homogenization method of (Ponte Castañeda, 2015)(Agoras
and Ponte Castañeda, 2013) has been assessed along the extensive creep parametric
study conducted for FCC single crystals in terms of creep strain evolution. Fairly good
agreement in terms of micro-structure evolution was found for the range of loading con-
figurations for the symmetric crystal orientation [100]. The misalignment reflected in
the comparison reminds the reader the fact of the different micro-structure definition in
both methods: periodic array of voids for the Unit Cell Finite Element Results versus
the random distribution considered in the homogenization approach.

82



The 100 crystal orientation show a more symmetric behaviour whereas the initial
crystal orientation 11O01 shows a markedly anisotropic behaviour for different loading
configurations. In turn, for the 110O1 crystal orientation an overall improvement in
the creep strain can be achieved relate to no inclusion growth, or even if void collapse
occurs.

For the 110O1 anisotropic orientation, the stress triaxiality plays an important role
in the micro-structure evolution, specifically in the porosity evolution and the pore
shape. For the same value of Lode parameter, the stress triaxility value will determine
whether the void growth occurs or not; or even if the void evolves leading to collapse.
Moreover, for L = −1 high stress triaxiality test showed how the micro-structure evolve
with a significant increase in size and adopting a polygonal void shape with rounded
corners. In the case of the most negative stress triaxiality case, χ = −3, the void evolves
into a nut-shell shape, leading to void splitting.

The creep exponent has a strong effect in the creep life of the specimen. A higher
value of n has a detrimental effect on the creep strain evolution of the porous single
crystal.

Furthermore, creep strain evolution has been proven to be nearly independent of
the initial porosity level and the initial void shape. Higher effects were found in the
micro-structure evolution in terms of void growth and shape.

Stress concentration around the void has been proven to be highly dependent on
the crystal orientation and loading scenario.
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7 Future work
A complete overview of the creep response of a porous FCC single crystal under

different loading cases has been addressed in this work. Face center cubic (FCC) struc-
ture is characteristic of an aeronautical type single crystal turbine blade, such as the
PWA1484 Ni-based single crystal super-alloy.

However, the constructed Unit Cell Finite Element model with Periodic Boundary
conditions can be exploited for a vast range of applications. Given the capability of
the User-defined Material subroutine (UMAT), it would be interesting to extend it for
Hexagonal Closest Pack (HCP) structures.

This fact can be carefully implemented by solely modifying two subroutines inside
the aforementioned UMAT code, the SLIPSYSTEM and the ROTATION functions, to
account for the effect of aspect ratio of non-cubic crystals and the relative orientation
of the basal vectors for non-orthotropic crystal. It is important to recall that the slip
phenomena associated with Hexagonal Closest Pack (HCP) is more complex that the
Face Center Cubic (FCC) one.

From creep behaviour in big ice plaques located in Antarctica to understand better
the "ice flow" in a long-time scale; to understand the possibility of using HCP single
crystal materials for turbine blade applications.

The capabilities of the Unit Cell PBC problem allow in fact to understand deeply
the physic behind the micro-structure evolution of a porous single crystal.
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Appendix A
1 ### Author : Simon Ca r r i l l o Segura
2 ### Unive r s i ty o f Pennsylvania , Ph i l ade lph ia
3 ### Department o f Mechanical Engineer ing and Applied Mechanics

(MEAM)
4

5 from part import ∗
6 from mate r i a l import ∗
7 from s e c t i o n import ∗
8 from assembly import ∗
9 from step import ∗

10 from i n t e r a c t i o n import ∗
11 from load import ∗
12 from mesh import ∗
13 from opt imiza t i on import ∗
14 from job import ∗
15 from sketch import ∗
16 from v i s u a l i z a t i o n import ∗
17 from connectorBehavior import ∗
18

19 ## Subrout ine f o r 3D Per i od i c Boundary Condit ions to be
supp l i ed

20 Mdb( )
21 e x e c f i l e ( ’ PBC_script . py ’ ) # c a l l i n g the subrout ine f o r the PBC

computation
22

23 #######################
24 #INPUTS ( user de f ined )
25 #######################
26 ODBname = ’AXT_001_w ’ #se t the name f o r the job
27

28 #Micros t ruc ture p r op e r t i e s
29 pi=acos (−1.) # pi number d e f i n i t i o n
30 a_0 = 0 .5 # semi−l ength cube
31 Poros i ty = 0.01 # Poros i ty l e v e l
32

33 e l l i p s o i d = 0 # 1 i f e l l i p s o i d ; 0 i f sphero id
34 a sp e r i t y = 2 # major ax i s
35

36 i f e l l i p s o i d == 1 :
37
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38 r_0 = a_0∗ ( 6 .∗ Poros i ty /( p i ∗ a sp e r i t y ) ) ∗ ∗ ( 1 . / 3 . ) #major ax i s
39 r_1 = r_0 ∗ a sp e r i t y ; # minor ax i s
40

41 e l i f e l l i p s o i d == 0 :
42

43 r_0 = a_0∗ ( 6 .∗ Poros i ty / p i ) ∗ ∗ ( 1 . / 3 . ) ; # rad iu s o f the
i n c l u s i o n

44 r_1 = r_0
45

46 # mesh parameters
47 n_lig = 10 #number o f e lements in the l igament 10
48 n_void = 10 # number o f e lements in a quarte r o f void 10
49 s i d e s = 6 # number o f c e l l s in the semi−cube 6
50

51 #Mater ia l p r op e r t i e s ( s i n g l e c r y s t a l )
52 C11= 283300.
53 C22= 197500.
54 C44= 112000.
55 n = 5 #creep exponent
56 gammadot = 0.00000000153 #gammadot_zero
57 tau_0 = 245 . # i n i t i a l shear s t r e s s
58 c r y s t a l_o r i en t a t i on1= ( 1 . , 0 . , 0 . , 1 . , 0 . , 0 . ) # vec to r r e l a t i n g

l o c a l and g l oba l c r y s t a l o r i e n t a t i o n
59 c r y s t a l_o r i en t a t i on2= ( 0 . , 1 . , 0 . , 0 . , 1 . , 0 . ) # vec to r r e l a t i n g

l o c a l and g l oba l c r y s t a l o r i e n t a t i o n
60

61

62 # Loading parameters
63 F11=750. # sigma11
64 F12=0. # tau12
65 F13=0. # tau13
66

67 F21=0. # tau21
68 F22=2000. # sigma22
69 F23=0. # tau23
70

71 F31=0. # tau31
72 F32=0. # tau32
73 F33=2000. # sigma33
74

75

76 tota l_time = 200000000. # max t o t a l sim time
77
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78

79 ####################################
80 ## DO NOT TOUCH BELOW HERE ! ! ! ! ! ! ###
81 ####################################
82 #CREATE PART
83 ####################################
84 mdb. models [ ’Model−1 ’ ] . Constra inedSketch (name=’__profile__ ’ ,

s h e e tS i z e =200.0) # de f i n e the work−area
85

86 mdb. models [ ’Model−1 ’ ] . s k e t che s [ ’ __profile__ ’ ] . r e c t ang l e ( po int1
=(0.0 , 0 . 0 ) , # c r ea t e the r e c tangu l e ( cub ic f a c e )

87 point2=(a_0 , a_0) )
88 mdb. models [ ’Model−1 ’ ] . Part ( d imens i ona l i t y=THREE_D, name=’ Part

−2−1 ’ , type=
89 DEFORMABLE_BODY)
90 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−1 ’ ] . BaseSol idExtrude ( depth

=a_0 , sketch=
91 mdb. models [ ’Model−1 ’ ] . s k e t che s [ ’ __profile__ ’ ] ) # 3d cube

cons t ructed here
92

93

94 mdb. models [ ’Model−1 ’ ] . Constra inedSketch (name=’__profile2__ ’ ,
s h e e tS i z e =200.0) # de f i n e the work−area

95 g = mdb. models [ ’Model−1 ’ ] . s k e t che s [ ’ __profile2__ ’ ] .
E l l ipseByCenterPer imeter ( c en t e r =(0.0 , 0 . 0 ) , ax i sPo int1=(r_0 ,
0 . 0 ) ,

96 ax i sPo int2 =(0.0 , r_1) ) #e l l i p s e
97 mdb. models [ ’Model−1 ’ ] . s k e t che s [ ’ __profile2__ ’ ] . Line ( po int1

=(0.0 , r_1) , po int2 =(0.0 , −r_1) ) #l i n e to j o i n the arc end
po in t s

98 mdb. models [ ’Model−1 ’ ] . s k e t che s [ ’ __profile2__ ’ ] .
Construct ionLine ( po int1=(0.0 ,−r_1) , po int2 =(0.0 , r_1) ) #
oons t ruc t i on l i n e f o r the ax i s o f r e vo l u t i on

99

100 mdb. models [ ’Model−1 ’ ] . s k e t che s [ ’ __profile2__ ’ ] . autoTrimCurve (
curve1=g , po int1=(−r_0 , 0 . 0 ) ) # obta in h a l f e l l i p s e (
trimming )

101

102 mdb. models [ ’Model−1 ’ ] . Part ( d imens i ona l i t y=THREE_D, name=’ Part
−3 ’ , type=

103 DEFORMABLE_BODY)
104 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−3 ’ ] . BaseSol idRevolve ( sketch=
105 mdb. models [ ’Model−1 ’ ] . s k e t che s [ ’ __profile2__ ’ ] , ang le=
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360 . 0 ) # 3d sphere cons t ruc ted here
106

107

108 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance (name=’ Part−2−2 ’ ,
part= mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−1 ’ ] ) #de f i n e
i n s t an c e s f o r the cut procedure

109 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance (name=’ Part−3−2 ’ ,
part= mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−3 ’ ] ) #de f i n e
i n s t an c e s f o r the cut procedure

110 # red e f i n e Part−2 as the i n t e r s e c t i o n o f the bod ie s
111 mdb. models [ ’Model−1 ’ ] . rootAssembly . PartFromBooleanCut (name=’

Part−2 ’ , instanceToBeCut= mdb. models [ ’Model−1 ’ ] . rootAssembly
. i n s t an c e s [ ’ Part−2−2 ’ ] , c u t t i n g In s t an c e s= (mdb. models [ ’Model
−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−3−2 ’ ] , ) )

112

113 ####################################
114 # De f i n i t i o n o f the mesh parameters
115 ####################################
116

117 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . seedPart ( dev ia t i onFacto r
=0.1 ,

118 minSizeFactor =0.1 , s i z e =0.2) # 0.15
119 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . setMeshControls (

elemShape=HEX_DOMINATED, r e g i on s=
120 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . c e l l s , t echn ique=

STRUCTURED)
121

122 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . setElementType ( elemTypes
=(ElemType (

123 elemCode=C3D20H, e lemLibrary=STANDARD) , ElemType ( elemCode=
C3D20H,

124 e lemLibrary=STANDARD) , ElemType ( elemCode=C3D20H,
e lemLibrary=STANDARD) ) ,

125 r e g i on s=(mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . c e l l s , ) )
126

127 ##Mesh re f inement s in the edges
128

129 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . seedEdgeByNumber ( edges=
(mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−1 ’ ] . edges . f indAt
( ( ( 0 . 3 , 0 . 0 , 0 . 0 ) , ) ) [ 0 ] , )

130 , number= 14)
131

132 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . seedEdgeByNumber ( edges=
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(mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−1 ’ ] . edges . f indAt
( ( ( 0 . 0 , 0 . 3 , 0 . 0 ) , ) ) [ 0 ] , )

133 , number= 14)
134

135 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . seedEdgeByNumber ( edges=
(mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−1 ’ ] . edges . f indAt
( ( ( 0 . 5 , 0 . 3 , 0 . 0 ) , ) ) [ 0 ] , )

136 , number= 6)
137

138 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . seedEdgeByNumber ( edges=
(mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−1 ’ ] . edges . f indAt
( ( ( 0 . 5 , 0 . 3 , 0 . 0 ) , ) ) [ 0 ] , )

139 , number= 6)
140

141 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . seedEdgeByNumber ( edges=
(mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−3 ’ ] . edges . f indAt ( ( ( 0 . 0 ,
r_1 , 0 . 0 ) , ( r_0 , 0 . 0 , 0 . 0 ) , ) ) [ 0 ] , )

142 , number= 24)
143

144 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . view . se tVa lues ( nearPlane
=1.1417 ,

145 f a rP lane =2.49912 , width=1.09434 , he ight =0.535756 ,
cameraPos i t ion=(

146 −0.94545 , 0 .976212 , 1 .41532) , cameraUpVector=(0.489371 ,
0 .724344 ,

147 −0.485635) , cameraTarget =(0.26049 , 0 .229021 , 0 .26049) )
148 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . view . se tVa lues ( nearPlane

=1.20614 ,
149 f a rP lane =2.40382 , width=1.1561 , he ight =0.565994 ,

cameraPos i t ion=(
150 −1.18899 , 0 .458363 , −0.819664) , cameraUpVector=(0.341186 ,

0 .893802 ,
151 0 .29105) , cameraTarget =(0.261675 , 0 .231541 , 0 .271364) )
152 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . view . se tVa lues ( nearPlane

=1.21185 ,
153 f a rP lane =2.39966 , width=1.16157 , he ight =0.568671 ,

cameraPos i t ion=(
154 −1.00771 , 0 .179191 , −1.04392) , cameraUpVector=(0.21639 ,

0 .952558 ,
155 0 .214031) , cameraTarget =(0.259236 , 0 .235297 , 0 .274381) )
156 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
157 c = p . c e l l s
158 pickedRegions = c . getSequenceFromMask (mask=( ’ [#1 ] ’ , ) , )
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159 p . deleteMesh ( r e g i on s=pickedRegions )
160 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
161 e = p . edges
162 pickedEdges1 = e . getSequenceFromMask (mask=( ’ [#8 ] ’ , ) , )
163 p . seedEdgeByBias ( biasMethod=SINGLE, end1Edges=pickedEdges1 ,

r a t i o =5.0 ,
164 number=n_lig , c on s t r a i n t=FINER)
165 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
166 e = p . edges
167 pickedEdges1 = e . getSequenceFromMask (mask=( ’ [#80 ] ’ , ) , )
168 p . seedEdgeByBias ( biasMethod=SINGLE, end1Edges=pickedEdges1 ,

r a t i o =5.0 ,
169 number=n_lig , c on s t r a i n t=FINER)
170 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
171 e = p . edges
172 pickedEdges2 = e . getSequenceFromMask (mask=( ’ [#40 ] ’ , ) , )
173 p . seedEdgeByBias ( biasMethod=SINGLE, end2Edges=pickedEdges2 ,

r a t i o =5.0 ,
174 number=n_lig )
175 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
176 e = p . edges
177 pickedEdges = e . getSequenceFromMask (mask=( ’ [#2 ] ’ , ) , )
178 p . seedEdgeByNumber ( edges=pickedEdges , number=n_void )
179 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
180 e = p . edges
181 pickedEdges = e . getSequenceFromMask (mask=( ’ [#1 ] ’ , ) , )
182 p . seedEdgeByNumber ( edges=pickedEdges , number=n_void )
183

184

185 i f e l l i p s o i d == 1 :
186 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
187 pickedRegions = c . getSequenceFromMask (mask=( ’ [#1 ] ’ , ) , )
188 p . deleteMesh ( r e g i on s=pickedRegions )
189 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
190 e = p . edges
191 pickedEdges1 = e . getSequenceFromMask (mask=( ’ [#40 ] ’ , ) , )
192 p . seedEdgeByBias ( biasMethod=SINGLE, end1Edges=pickedEdges1

, r a t i o =5.0 ,
193 number=n_lig )
194 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
195 e = p . edges
196 pickedEdges2 = e . getSequenceFromMask (mask=( ’ [#2000 ] ’ , ) ,

)

96



197 p . seedEdgeByBias ( biasMethod=SINGLE, end2Edges=pickedEdges2
, r a t i o =5.0 ,

198 number=n_lig )
199 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
200 e = p . edges
201 pickedEdges = e . getSequenceFromMask (mask=( ’ [#20 ] ’ , ) , )
202 p . seedEdgeByNumber ( edges=pickedEdges , number=s i d e s )
203 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
204 e = p . edges
205 pickedEdges = e . getSequenceFromMask (mask=( ’ [#10 ] ’ , ) , )
206 p . seedEdgeByNumber ( edges=pickedEdges , number=s i d e s )
207

208 e = p . edges
209 pickedEdges = e . getSequenceFromMask (mask=( ’ [#80 ] ’ , ) , )
210 p . seedEdgeByNumber ( edges=pickedEdges , number=s ide s ,

c on s t r a i n t=FINER)
211 p = mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ]
212 e = p . edges
213 pickedEdges = e . getSequenceFromMask (mask=( ’ [#1000 ] ’ , ) , )
214 p . seedEdgeByNumber ( edges=pickedEdges , number=s ide s ,

c on s t r a i n t=FINER)
215

216

217 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . generateMesh ( )
218

219

220 #### FULL MODEL
221

222 # Symmetry to extend the mesh
223 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2 ’ ] . PartFromMesh ( copySets=

True , name=
224 ’ Part−2−mesh ’ )
225 mdb. models [ ’Model−1 ’ ] . Part ( compressFeatureLis t=ON, mirrorPlane

=XYPLANE, name=
226 ’ Part−3−mesh ’ , objectToCopy=
227 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−mesh ’ ] )
228 mdb. models [ ’Model−1 ’ ] . Part ( compressFeatureLis t=ON, mirrorPlane

=YZPLANE, name=
229 ’ Part−4−mesh ’ , objectToCopy=
230 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−mesh ’ ] )
231 mdb. models [ ’Model−1 ’ ] . Part ( compressFeatureLis t=ON, mirrorPlane

=XYPLANE, name=
232 ’ Part−5−mesh ’ , objectToCopy=
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233 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−4−mesh ’ ] )
234 mdb. models [ ’Model−1 ’ ] . Part ( compressFeatureLis t=ON, mirrorPlane

=XZPLANE, name=
235 ’ Part−6−mesh ’ , objectToCopy=
236 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−mesh ’ ] )
237 mdb. models [ ’Model−1 ’ ] . Part ( compressFeatureLis t=ON, mirrorPlane

=XYPLANE, name=
238 ’ Part−7−mesh ’ , objectToCopy=
239 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−6−mesh ’ ] )
240 mdb. models [ ’Model−1 ’ ] . Part ( compressFeatureLis t=ON, mirrorPlane

=YZPLANE, name=
241 ’ Part−8−mesh ’ , objectToCopy=
242 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−6−mesh ’ ] )
243 mdb. models [ ’Model−1 ’ ] . Part ( compressFeatureLis t=ON, mirrorPlane

=XYPLANE, name=
244 ’ Part−9−mesh ’ , objectToCopy=
245 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−8−mesh ’ ] )
246

247 #Assembly
248 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance ( dependent=ON, name

=’ Part−2−mesh−1 ’ ,
249 part=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−2−mesh ’ ] )
250 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance ( dependent=ON, name

=’ Part−3−mesh−1 ’ ,
251 part=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−3−mesh ’ ] )
252 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance ( dependent=ON, name

=’ Part−4−mesh−1 ’ ,
253 part=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−4−mesh ’ ] )
254 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance ( dependent=ON, name

=’ Part−5−mesh−1 ’ ,
255 part=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−5−mesh ’ ] )
256 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance ( dependent=ON, name

=’ Part−6−mesh−1 ’ ,
257 part=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−6−mesh ’ ] )
258 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance ( dependent=ON, name

=’ Part−7−mesh−1 ’ ,
259 part=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−7−mesh ’ ] )
260 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance ( dependent=ON, name

=’ Part−8−mesh−1 ’ ,
261 part=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−8−mesh ’ ] )
262 mdb. models [ ’Model−1 ’ ] . rootAssembly . In s tance ( dependent=ON, name

=’ Part−9−mesh−1 ’ ,
263 part=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−9−mesh ’ ] )

98



264

265 mdb. models [ ’Model−1 ’ ] . rootAssembly . InstanceFromBooleanMerge (
domain=MESH,

266 i n s t an c e s=(mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’
Part−2−mesh−1 ’ ] ,

267 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−3−mesh
−1 ’ ] ,

268 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−4−mesh
−1 ’ ] ,

269 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−5−mesh
−1 ’ ] ,

270 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−6−mesh
−1 ’ ] ,

271 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−7−mesh
−1 ’ ] ,

272 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−8−mesh
−1 ’ ] ,

273 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−9−mesh
−1 ’ ] ) ,

274 mergeNodes= BOUNDARY_ONLY, name=’ Part−1 ’ ,
nodeMergingTolerance=1e−06,

275 o r i g i n a l I n s t a n c e s=SUPPRESS)
276

277 ###############################
278 #DEFINE MATERIAL AND SECTION
279 ###############################
280 mdb. models [ ’Model−1 ’ ] . Mater ia l (name=’CRYSTAL’ )
281

282 mdb. models [ ’Model−1 ’ ] . ma t e r i a l s [ ’CRYSTAL’ ] . Depvar (n=125)
283

284 mdb. models [ ’Model−1 ’ ] . ma t e r i a l s [ ’CRYSTAL’ ] . UserMater ia l ( type=
MECHANICAL, unsymm=ON, mechanicalConstants=(C11 , C22 , C44
, 0 . , 0 . , 0 . , 0 . , 0 . ,

285 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,
286 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 1 . , 0 . , 0 . ,
287 0 . , 0 . , 0 . , 0 . , 0 . , 1 . , 1 . , 1 . , 1 . , 1 . , 0 . , 0 . , 0 . ,
288 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,
289 c r y s t a l_o r i en t a t i on1 [ 0 ] , c r y s t a l_o r i en t a t i on1 [ 1 ] ,

c r y s t a l_o r i en t a t i on1 [ 2 ] , c r y s t a l_o r i en t a t i on1 [ 3 ] ,
c r y s t a l_o r i en t a t i on1 [ 4 ] , c r y s t a l_o r i en t a t i on1 [ 5 ] , #
l o c a l / g l oba l c r y s t a l o r i e n t a t i o n

290 0 . , 0 . ,
291 c r y s t a l_o r i en t a t i on2 [ 0 ] , c r y s t a l_o r i en t a t i on2 [ 1 ] ,
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c r y s t a l_o r i en t a t i on2 [ 2 ] , c r y s t a l_o r i en t a t i on2 [ 3 ] ,
c r y s t a l_o r i en t a t i on2 [ 4 ] , c r y s t a l_o r i en t a t i on2 [ 5 ] , #
l o c a l / g l oba l c r y s t a l o r i e n t a t i o n

292 0 . , 0 . , n , gammadot , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,
293 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,
294 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . 0 , 1 0 9 . 5 , tau_0 ,
295 0 . , 0 . , 0 . , 0 . , 0 . , 0 . 0 , 0 . 0 , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,
296 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,
297 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,
298 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . 5 , 1 . , 0 . , 0 . ,
299 0 . , 0 . , 0 . , 0 . , 1 . , 1 0 . , 1 e − 0 5 , 0 . , 0 . , 0 . , 0 . , 0 . ) )
300

301 mdb. models [ ’Model−1 ’ ] . HomogeneousSol idSection ( mate r i a l=’
CRYSTAL’ , name=

302 ’ Sect ion−1 ’ , t h i c kne s s=None )
303

304 mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . Sect ionAssignment ( o f f s e t
=0.0 ,

305 o f f s e t F i e l d=’ ’ , o f f s e tType=MIDDLE_SURFACE, r eg i on=Region (
306 e lements=mdb. models [ ’Model−1 ’ ] . par t s [ ’ Part−1 ’ ] . e lements ) ,

sectionName=’ Sect ion−1 ’ ,
307 th icknessAss ignment=FROM_SECTION)
308

309 ########################################
310 #CREATE PERIODIC BOUNDARY CONDITIONS
311 ########################################
312 mdb. models [ ’Model−1 ’ ] . rootAssembly . Set ( nodes=(
313 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part−1−1 ’ ] .

nodes , ) , name=’PBC’ ) ## change t h i s to the s e t o f nodes
where the PCB w i l l be app l i ed ! !

314

315 (CoorFixNode , NameRef1 , NameRef2 , NameRef3 )=PeriodicBound3D (mdb,
’Model−1 ’ , ’PBC’ , [ ( 1 . 0 , 0 . 0 , 0 . 0 ) , ( 0 . 0 , 1 . 0 , 0 . 0 ) , ( 0 . 0 , 0 . 0 , 1 . 0 )
] , )

316

317 #######################################
318 #CREATE STEP AND APPLY BC
319 #######################################
320 mdb. models [ ’Model−1 ’ ] . ViscoStep (name=’ Step−1 ’ , t imePer iod=

total_time , nlgeom=ON, prev ious=’ I n i t i a l ’ , i n i t i a l I n c
=0.0001 , maxNumInc=1000 , minInc=0.000001 , maxInc=total_time ,
c e t o l =0.00001)

321 #Apply boundary cond i t i on s on r e f e r e n c e nodes
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322 DefMat=[(UNSET, 0 . 0 , 0 . 0 ) , ( 0 . 0 ,UNSET, 0 . 0 ) , ( 0 . 0 , 0 . 0 ,UNSET) ]
323 mdb. models [ ’Model−1 ’ ] . DisplacementBC ( amplitude=UNSET,

createStepName=’ Step−1 ’ ,
324 d i s t r ibut i onType=UNIFORM, fieldName=’ ’ , f i x e d=OFF,

l o ca lCsy s=None , name=
325 ’BC−REF−1 ’ , r eg i on=Region ( r e f e r e n c ePo i n t s=(
326 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ NameRef1 ] .

r e f e r e n c ePo i n t s [ 1 ] ,
327 ) ) , u1=DefMat [ 0 ] [ 0 ] , u2=DefMat [ 0 ] [ 1 ] , u3=DefMat [ 0 ] [ 2 ] , ur1

=UNSET, ur2=UNSET, ur3=UNSET)
328 mdb. models [ ’Model−1 ’ ] . DisplacementBC ( amplitude=UNSET,

createStepName=’ Step−1 ’ ,
329 d i s t r ibut i onType=UNIFORM, fieldName=’ ’ , f i x e d=OFF,

l o ca lCsy s=None , name=
330 ’BC−REF−2 ’ , r eg i on=Region ( r e f e r e n c ePo i n t s=(
331 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ NameRef2 ] .

r e f e r e n c ePo i n t s [ 1 ] ,
332 ) ) , u1=DefMat [ 1 ] [ 0 ] , u2=DefMat [ 1 ] [ 1 ] , u3=DefMat [ 1 ] [ 2 ] , ur1

=UNSET, ur2=UNSET, ur3=UNSET)
333 mdb. models [ ’Model−1 ’ ] . DisplacementBC ( amplitude=UNSET,

createStepName=’ Step−1 ’ ,
334 d i s t r ibut i onType=UNIFORM, fieldName=’ ’ , f i x e d=OFF,

l o ca lCsy s=None , name=
335 ’BC−REF−3 ’ , r eg i on=Region ( r e f e r e n c ePo i n t s=(
336 mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ NameRef3 ] .

r e f e r e n c ePo i n t s [ 1 ] ,
337 ) ) , u1=DefMat [ 2 ] [ 0 ] , u2=DefMat [ 2 ] [ 1 ] , u3=DefMat [ 2 ] [ 2 ] , ur1

=UNSET, ur2=UNSET, ur3=UNSET)
338

339 mdb. models [ ’Model−1 ’ ] . DisplacementBC ( amplitude=UNSET,
createStepName=’ Step−1 ’ ,

340 d i s t r ibut i onType=UNIFORM, fieldName=’ ’ , f i x e d=OFF,
l o ca lCsy s=None , name=

341 ’BC−FIXNODE’ , r eg i on=Region (
342 nodes=mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ ’ Part

−1−1 ’ ] . nodes . getByBoundingSphere ( c ent e r=CoorFixNode ,
rad iu s =0.001) ) , u1=0.0 , u2=0.0 , u3=0.0 , ur1=UNSET, ur2=
UNSET, ur3=UNSET)

343

344

345 #####################
346 ## APPLY LOADING
347 #####################
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348

349 #Create the user de f ined ampl itudes
350 mdb. models [ ’Model−1 ’ ] . UserAmplitude (name=’LOADAMP1’ ,

numVariables=0,
351 timeSpan=STEP)
352 mdb. models [ ’Model−1 ’ ] . UserAmplitude (name=’LOADAMP2’ ,

numVariables=0,
353 timeSpan=STEP)
354 mdb. models [ ’Model−1 ’ ] . UserAmplitude (name=’LOADAMP3’ ,

numVariables=0,
355 timeSpan=STEP)
356

357 #load ing
358 mdb. models [ ’Model−1 ’ ] . ConcentratedForce (name=’Load−1 ’ ,

createStepName=’ Step−1 ’ ,
359 d i s t r ibut i onType=UNIFORM, reg i on=Region ( r e f e r en c ePo i n t s=(

mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ NameRef1 ] .
r e f e r e n c ePo i n t s [ 1 ] , ) ) , c f 1=F11 , c f 2=F12 , c f 3=F13 ,
amplitude=UNSET)

360

361 mdb. models [ ’Model−1 ’ ] . ConcentratedForce (name=’Load−2 ’ ,
createStepName=’ Step−1 ’ ,

362 d i s t r ibut i onType=UNIFORM, reg i on=Region ( r e f e r en c ePo i n t s=(
mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ NameRef2 ] .
r e f e r e n c ePo i n t s [ 1 ] , ) ) , c f 1=F21 , c f 2=F22 , c f 3=F23 ,
amplitude=UNSET)

363

364 mdb. models [ ’Model−1 ’ ] . ConcentratedForce (name=’Load−3 ’ ,
createStepName=’ Step−1 ’ ,

365 d i s t r ibut i onType=UNIFORM, reg i on=Region ( r e f e r en c ePo i n t s=(
mdb. models [ ’Model−1 ’ ] . rootAssembly . i n s t an c e s [ NameRef3 ] .
r e f e r e n c ePo i n t s [ 1 ] , ) ) , c f 1=F31 , c f 2=F32 , c f 3=F33 ,
amplitude=UNSET)

366

367 #as s i gn UAMP subrout ine to the 3 loads
368 mdb. models [ ’Model−1 ’ ] . l oads [ ’ Load−1 ’ ] . s e tVa lues ( amplitude=’

LOADAMP1’ )
369 mdb. models [ ’Model−1 ’ ] . l oads [ ’ Load−2 ’ ] . s e tVa lues ( amplitude=’

LOADAMP2’ )
370 mdb. models [ ’Model−1 ’ ] . l oads [ ’ Load−3 ’ ] . s e tVa lues ( amplitude=’

LOADAMP3’ )
371

372
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373 ############################################
374 #### SENSOR OUTPUT REQUEST & FIELD OUTPUTS
375 ############################################
376

377 mdb. models [ ’Model−1 ’ ] . f i e ldOutputRequests [ ’F−Output−1 ’ ] .
s e tVa lues ( v a r i a b l e s=(

378 ’ S ’ , ’PE ’ , ’ER ’ , ’PEEQ’ , ’PEMAG’ , ’CE ’ , ’CEEQ’ , ’CEMAG’ , ’
LE ’ , ’U ’ , ’RF ’ ,

379 ’CF ’ , ’CSTRESS ’ , ’CDISP ’ , ’SVOL ’ , ’EVOL’ , ’ESOL ’ , ’IVOL ’ ,
’STH ’ ,

380 ’COORD’ ) )
381

382 #sen so r s
383 reg ionDef=mdb. models [ ’Model−1 ’ ] . rootAssembly . s e t s [ ’ RefPoint−0 ’

]
384 mdb. models [ ’Model−1 ’ ] . HistoryOutputRequest (name=’X1 ’ ,

createStepName=’ Step−1 ’ ,
385 va r i a b l e s=( ’U1 ’ , ) , r eg i on=regionDef , s e c t i onPo in t s=

DEFAULT,
386 rebar=EXCLUDE, senso r=ON)
387 reg ionDef=mdb. models [ ’Model−1 ’ ] . rootAssembly . s e t s [ ’ RefPoint−1 ’

]
388 mdb. models [ ’Model−1 ’ ] . HistoryOutputRequest (name=’Y1 ’ ,

createStepName=’ Step−1 ’ ,
389 va r i a b l e s=( ’U2 ’ , ) , r eg i on=regionDef , s e c t i onPo in t s=

DEFAULT,
390 rebar=EXCLUDE, senso r=ON)
391 reg ionDef=mdb. models [ ’Model−1 ’ ] . rootAssembly . s e t s [ ’ RefPoint−2 ’

]
392 mdb. models [ ’Model−1 ’ ] . HistoryOutputRequest (name=’Z1 ’ ,

createStepName=’ Step−1 ’ ,
393 va r i a b l e s=( ’U3 ’ , ) , r eg i on=regionDef , s e c t i onPo in t s=

DEFAULT,
394 rebar=EXCLUDE, senso r=ON)
395

396 #######################
397 #### JOB CREATION
398 #######################
399

400 mdb. Job (name=ODBname, model=’Model−1 ’ , d e s c r i p t i o n=’ ’ , type=
ANALYSIS,

401 atTime=None , waitMinutes=0, waitHours=0, queue=None ,
memory=90,
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402 memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True ,
403 e x p l i c i t P r e c i s i o n=SINGLE, nodalOutputPrec i s ion=SINGLE,

echoPr int=OFF,
404 modelPrint=OFF, contac tPr in t=OFF, h i s t o r yPr i n t=OFF,
405 userSubrout ine=’C:\\ temp\\UMAT_UAMP_REFPOINTS. f o r ’ ,

s c r a t ch=’ ’ ,
406 resu l t sFormat=ODB, mult iprocess ingMode=DEFAULT, numCpus=4,
407 numDomains=4, numGPUs=0)
408

409

410 # Auto−launch o f the ABAQUS job
411 #mdb. jobs [ ’ Tri3_L−1_100 ’ ] . submit ( cons i s tencyCheck ing=OFF)
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Appendix B
1 ### Author : Simon Ca r r i l l o Segura
2 ### Unive r s i ty o f Pennsylvania , Ph i l ade lph ia
3 ### Department o f Mechanical Engineer ing and Applied Mechanics

(MEAM)
4 #
5 ######################################
6 #PERIODIC BOUNDARY CONDITIONS IN 3D
7 #mdb: Model .
8 #NameModel : A s t r i n g with the name o f your model .
9 #NameSet : A s t r i n g with the name o f your s e t

10 #Latt iceVec :An array with the l a t t i c e vector s , f o r example
[ ( 1 . 0 , 0 . 0 , 0 . 0 ) , ( 0 . 0 , 1 . 0 , 0 . 0 ) , ( 0 . 0 , 0 . 0 , 1 . 0 ) ] f o r a cubic
l a t t i c e

11 ######################################
12

13 de f PeriodicBound3D (mdb,NameModel , NameSet , Latt iceVec ) :
14 import time
15 s t a r t 1 = time . time ( )
16

17 from part import THREE_D, DEFORMABLE_BODY
18 #Create r e f e r e n c e par t s and assemble
19 NameRef1=’ RefPoint−0 ’ ; NameRef2=’ RefPoint−1 ’ ; NameRef3=’

RefPoint−2 ’
20 mdb. models [ NameModel ] . Part ( d imens i ona l i t y=THREE_D, name=

NameRef1 , type=
21 DEFORMABLE_BODY)
22 mdb. models [ NameModel ] . pa r t s [ NameRef1 ] . Re ferencePoint ( po int

=(0.0 , 0 . 0 , 0 . 0 ) )
23 mdb. models [ NameModel ] . Part ( d imens i ona l i t y=THREE_D, name=

NameRef2 , type=
24 DEFORMABLE_BODY)
25 mdb. models [ NameModel ] . pa r t s [ NameRef2 ] . Re ferencePoint ( po int

=(0.0 , 0 . 0 , 0 . 0 ) )
26 mdb. models [ NameModel ] . Part ( d imens i ona l i t y=THREE_D, name=

NameRef3 , type=
27 DEFORMABLE_BODY)
28 mdb. models [ NameModel ] . pa r t s [ NameRef3 ] . Re ferencePoint ( po int

=(0.0 , 0 . 0 , 0 . 0 ) )
29 mdb. models [ NameModel ] . rootAssembly . In s tance ( dependent=ON,

name=NameRef1 ,
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30 part=mdb. models [ NameModel ] . pa r t s [ NameRef1 ] )
31 mdb. models [ NameModel ] . rootAssembly . In s tance ( dependent=ON,

name=NameRef2 ,
32 part=mdb. models [ NameModel ] . pa r t s [ NameRef2 ] )
33 mdb. models [ NameModel ] . rootAssembly . In s tance ( dependent=ON,

name=NameRef3 ,
34 part=mdb. models [ NameModel ] . pa r t s [ NameRef3 ] )
35

36 #Create s e t o f r e f e r e n c e po in t s
37 mdb. models [ NameModel ] . rootAssembly . Set (name=NameRef1 ,

r e f e r e n c ePo i n t s=(
38 mdb. models [ NameModel ] . rootAssembly . i n s t an c e s [ NameRef1

] . r e f e r e n c ePo i n t s [ 1 ] , ) )
39 mdb. models [ NameModel ] . rootAssembly . Set (name=NameRef2 ,

r e f e r e n c ePo i n t s=(
40 mdb. models [ NameModel ] . rootAssembly . i n s t an c e s [ NameRef2

] . r e f e r e n c ePo i n t s [ 1 ] , ) )
41 mdb. models [ NameModel ] . rootAssembly . Set (name=NameRef3 ,

r e f e r e n c ePo i n t s=(
42 mdb. models [ NameModel ] . rootAssembly . i n s t an c e s [ NameRef3

] . r e f e r e n c ePo i n t s [ 1 ] , ) )
43 end1 = time . time ( )
44 pr in t end1 − s t a r t 1
45 s t a r t 2 = time . time ( )
46 #Get a l l nodes
47 nodesAl l=mdb. models [ NameModel ] . rootAssembly . s e t s [ NameSet ] .

nodes
48 nodesAllCoor =[ ]
49 f o r nod in mdb. models [ NameModel ] . rootAssembly . s e t s [ NameSet

] . nodes :
50 nodesAllCoor . append ( nod . coo rd ina t e s )
51 end2 = time . time ( )
52 pr in t end2 − s t a r t 2
53 s t a r t 3 = time . time ( )
54 repConst=0
55 #Find p e r i o d i c a l l y l o ca t ed nodes and apply equat ion

c on s t r a i n t s
56 ranNodes=range (0 , l en ( nodesAl l ) ) #Index array o f nodes

not used in equat ions c on s t r a i n t
57 pr in t l en ( nodesAl l )
58 f o r repnod1 in range (0 , l en ( nodesAl l ) ) :
59 stop=False #Stop w i l l become true

when equat ion c on s t r a i n t i s made between nodes

106



60 Coor1=nodesAllCoor [ repnod1 ] #Coordinates
o f Node 1

61 f o r repnod2 in ranNodes : #Loop over a l l
a v a i l a b l e nodes

62 Coor2=nodesAllCoor [ repnod2 ] #Coordinates o f Node 2
63 f o r comb in range (0 , l en ( Latt iceVec ) ) : #Check

i f nodes are l o ca t ed exac t l y the vec to r l a t t i c e
apart

64 i f i n t (1000 .0∗ ( Latt iceVec [ comb ] [0 ] −Coor2 [0 ]+
Coor1 [ 0 ] ) )==0 and in t (1000 .0∗ ( Latt iceVec [
comb ] [1 ] −Coor2 [1 ]+Coor1 [ 1 ] ) )==0 and in t
(1000 .0∗ ( Latt iceVec [ comb ] [2 ] −Coor2 [2 ]+Coor1
[ 2 ] ) )==0:

65 #Correct combination found
66 #Create s e t s f o r use in equat ions

c on s t r a i n t s
67 mdb. models [ NameModel ] . rootAssembly . Set (

name=’Node−1− ’+s t r ( repConst ) , nodes=
68 mdb. models [ NameModel ] . rootAssembly . s e t s

[ NameSet ] . nodes [ repnod1 : repnod1+1])
69 mdb. models [ NameModel ] . rootAssembly . Set (

name=’Node−2− ’+s t r ( repConst ) , nodes=
70 mdb. models [ NameModel ] . rootAssembly . s e t s

[ NameSet ] . nodes [ repnod2 : repnod2+1])
71 #Create equat ions c on s t r a i n t s f o r each dof
72 f o r Dim1 in [ 1 , 2 , 3 ] :
73 mdb. models [ NameModel ] . Equation (name=’

PerConst ’+s t r (Dim1)+’− ’+s t r ( repConst )
,

74 terms =((1 .0 , ’Node−1− ’+s t r (
repConst ) , Dim1) ,(−1.0 , ’Node
−2− ’+s t r ( repConst ) , Dim1) ,

75 ( 1 . 0 , ’ RefPoint− ’+s t r (comb) , Dim1)
) )

76 repConst=repConst+1 #Inc r ea s e i n t e g e r f o r
naming equat ion con s t r a i n t

77 ranNodes . remove ( repnod1 )#Remove used node
from ava i l a b l e l i s t

78 stop=True #Don ’ t look fur the r ,
go to f o l l ow i n g node .

79 break
80 i f s top :
81 break
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82 end3 = time . time ( )
83 pr in t end3 − s t a r t 3
84 #Return coo rd ina t e s o f f r e e node so that i t can be f i x ed
85 r e turn ( nodesAl l [ ranNodes [ 0 ] ] . coord inate s , NameRef1 ,

NameRef2 , NameRef3 )
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Appendix C
1 # −∗− coding : mbcs −∗−
2 # Output Request f i l e f o r RVE PBC
3 ### Author : Simon Ca r r i l l o Segura
4 ### Unive r s i ty o f Pennsylvania , Ph i l ade lph ia
5 ### Department o f Mechanical Engineer ing and Applied Mechanics

(MEAM)
6

7 from abaqus import ∗
8 from abaqusConstants import ∗
9 import __main__

10

11 import s e c t i o n
12 import r eg i onToo l s e t
13 import displayGroupMdbToolset as dgm
14 import part
15 import mate r i a l
16 import assembly
17 import s tep
18 import i n t e r a c t i o n
19 import load
20 import mesh
21 import opt imiza t i on
22 import job
23 import sketch
24 import v i s u a l i z a t i o n
25 import xyPlot
26 import displayGroupOdbToolset as dgo
27 import connectorBehavior
28

29 ############
30 ##INPUTS
31 ############
32

33 ODBname=’C:/ temp/AXC_001_w2. odb ’ # name o f the ODB to ex t r a c t
va lue s from

34 n_steps= 240 # number o f s t ep s to ex t r a c t
35

36 ##########################################
37 ######## DO NOT TOUCH BELOW HERE #########
38 ##########################################
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39

40 #openning ODB s e s s i o n
41 s e s s i o n .mdbData . summary ( )
42 o1 = s e s s i o n . openOdb(name=ODBname)
43 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . s e tVa lues ( d i sp layedObject=o1 )
44

45 ## Extract e l ementa l volume o f the c e l l per time step
46

47 f o r x in range (0 , n_steps ) :
48 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . odbDisplay . setFrame (

s tep=0, frame=x)
49 odb = s e s s i o n . odbs [ODBname]
50 s e s s i o n . f i e ldRepor tOpt ions . s e tVa lues ( p r in tTota l=OFF,

printMinMax=OFF)
51 s e s s i o n . wr i t eF ie ldRepor t ( f i leName=’ vo l . rpt ’ , append=ON

,
52 sor t I tem=’ Element Label ’ , odb=odb , s tep=0, frame=x

,
53 outputPos i t i on=WHOLE_ELEMENT, va r i ab l e =(( ’EVOL’ ,

WHOLE_ELEMENT) , ) )
54

55

56 ## Extract l oga r i thmi c s t r a i n s components in the c en t r o id per
time step

57

58 f o r x in range (0 , n_steps ) :
59 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . odbDisplay . setFrame (

s tep=0, frame=x)
60 s e s s i o n . f i e ldRepor tOpt ions . s e tVa lues ( p r in tTota l=OFF,

printMinMax=OFF)
61 s e s s i o n . wr i t eF ie ldRepor t ( f i leName=’ s t r a i n s . rpt ’ ,

append=ON,
62 sor t I tem=’ Element Label ’ , odb=odb , s tep=0, frame=x

,
63 outputPos i t i on=ELEMENT_CENTROID, va r i ab l e =(( ’LE ’ ,

INTEGRATION_POINT, ( (
64 COMPONENT, ’LE11 ’ ) , (COMPONENT, ’LE22 ’ ) , (

COMPONENT, ’LE33 ’ ) , (
65 COMPONENT, ’LE12 ’ ) , (COMPONENT, ’LE13 ’ ) , (

COMPONENT, ’LE23 ’ ) , ) ) , ) )
66

67 ## Extract s t r a i n s ra t e components in the c en t r o id per time
step
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68

69 f o r x in range (0 , n_steps ) :
70 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . odbDisplay . setFrame (

s tep=0, frame=x)
71 s e s s i o n . f i e ldRepor tOpt ions . s e tVa lues ( p r in tTota l=OFF,

printMinMax=OFF)
72 s e s s i o n . wr i t eF ie ldRepor t ( f i leName=’ s t r a in s_ra t e . rpt ’ ,

append=ON,
73 sor t I tem=’ Element Label ’ , odb=odb , s tep=0, frame=x

,
74 outputPos i t i on=ELEMENT_CENTROID, va r i ab l e =(( ’ER ’ ,

INTEGRATION_POINT, ( (
75 COMPONENT, ’ER11 ’ ) , (COMPONENT, ’ER22 ’ ) , (

COMPONENT, ’ER33 ’ ) , (
76 COMPONENT, ’ER12 ’ ) , (COMPONENT, ’ER13 ’ ) , (

COMPONENT, ’ER23 ’ ) , ) ) , ) )
77

78

79 ## Extract s en so r s in fo rmat ion to compute V_cell (FULL CUBE)
80

81 xy1 = xyPlot . XYDataFromHistory ( odb=odb ,
82 outputVariableName=’ Spa t i a l d i sp lacement : U1 PI : REFPOINT

−0 Node 1 in NSET REFPOINT−0 ’ ,
83 suppressQuery=True , __linkedVpName__=’ Viewport : 1 ’ )
84 c1 = s e s s i o n . Curve ( xyData=xy1 )
85 xy2 = xyPlot . XYDataFromHistory ( odb=odb ,
86 outputVariableName=’ Spa t i a l d i sp lacement : U2 PI : REFPOINT

−1 Node 1 in NSET REFPOINT−1 ’ ,
87 suppressQuery=True , __linkedVpName__=’ Viewport : 1 ’ )
88 c2 = s e s s i o n . Curve ( xyData=xy2 )
89 xy3 = xyPlot . XYDataFromHistory ( odb=odb ,
90 outputVariableName=’ Spa t i a l d i sp lacement : U3 PI : REFPOINT

−2 Node 1 in NSET REFPOINT−2 ’ ,
91 suppressQuery=True , __linkedVpName__=’ Viewport : 1 ’ )
92 c3 = s e s s i o n . Curve ( xyData=xy3 )
93 xyp = s e s s i o n . XYPlot ( ’ chart ’ )
94 chartName = xyp . char t s . keys ( ) [ 0 ]
95 chart = xyp . cha r t s [ chartName ]
96 chart . s e tVa lues ( curvesToPlot=(c1 , c2 , c3 , ) , )
97 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . s e tVa lues ( d i sp layedObject=xyp

)
98 x0 = s e s s i o n . xyDataObjects [ ’_temp_1 ’ ]
99 x1 = s e s s i o n . xyDataObjects [ ’_temp_2 ’ ]
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100 x2 = s e s s i o n . xyDataObjects [ ’_temp_3 ’ ]
101 s e s s i o n . writeXYReport ( f i leName=’ volume_cel l . rpt ’ , xyData=(x0 ,

x1 , x2 ) )
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Appendix D
1 c l c
2 c l e a r a l l
3

4 %% Postproce s s ing subrout ine f o r RVE problem
5 %%% Author : Simon Ca r r i l l o Segura
6 %%% Department o f Mechanical Engineer ing and Applied Mechanics
7 %%% Unive r s i ty o f Pennsylvania , Ph i l ade lph ia
8

9 %% Load inputs
10 f_0 = 0 . 0 1 ; % i n i t i a l po r o s i t y l e v e l
11 n_elements =6992; % number o f mesh elements in the FEM model
12

13 n_steps =232; % number o f s t ep s ex t rac t ed from the ABAQUS
r e s u l t f i l e

14 ODB_name = ’AXC_001_w2 ’ ;
15

16 %% s t r a i n s input read ing
17

18 f o r i = 1 : n_steps
19 AA = importdata ( ’ s t r a i n s . rpt ’ , ’ ’ ,19+( i −1)∗( n_elements

+21) ) ;
20

21 s t r a i n s ( i ) = {AA. data } ;
22 end
23

24 %% s t r a i n s ra t e
25

26 f o r i = 1 : n_steps
27 EE = importdata ( ’ s t r a i n s_ra t e . rpt ’ , ’ ’ ,19+( i −1)∗(

n_elements+21) ) ; % ,19+( i −1)∗7493) ; ,19+( i −1)∗2469) ;
%,19+( i −1)∗955) ;

28

29 s t ra in_rate ( i ) = {EE. data } ;
30 end
31

32 %% elementa l volumes input read ing
33

34 f o r i = 1 : n_steps
35 BB = importdata ( ’ vo l . rpt ’ , ’ ’ ,19+( i −1)∗( n_elements+21) ) ;
36
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37 vo l ( i ) = {BB. data } ;
38 end
39

40 %% Creep s t r a i n computation ( per time step )
41

42 f o r i = 1 : n_steps
43

44 s t ra in s11_vo l ( i , : ) = s t r a i n s { i } ( : , 2 ) .∗ vo l { i } ( : , 2 ) ;
45 s t r a i n s 1 1 ( i ) = sum( s t ra in s11_vo l ( i , : ) ) / sum( vo l { i } ( : , 2 ) ) ;
46

47 s t ra in s22_vo l ( i , : ) = s t r a i n s { i } ( : , 3 ) .∗ vo l { i } ( : , 2 ) ;
48 s t r a i n s 2 2 ( i ) = sum( s t ra in s22_vo l ( i , : ) ) / sum( vo l { i } ( : , 2 ) ) ;
49

50 s t ra in s33_vo l ( i , : ) = s t r a i n s { i } ( : , 4 ) .∗ vo l { i } ( : , 2 ) ;
51 s t r a i n s 3 3 ( i ) = sum( s t ra in s33_vo l ( i , : ) ) / sum( vo l { i } ( : , 2 ) ) ;
52

53 s t ra in s12_vo l ( i , : ) = s t r a i n s { i } ( : , 5 ) .∗ vo l { i } ( : , 2 ) ;
54 s t r a i n s 1 2 ( i ) = sum( s t ra in s12_vo l ( i , : ) ) / sum( vo l { i } ( : , 2 ) ) ;
55

56 s t ra in s23_vo l ( i , : ) = s t r a i n s { i } ( : , 6 ) .∗ vo l { i } ( : , 2 ) ;
57 s t r a i n s 2 3 ( i ) = sum( s t ra in s23_vo l ( i , : ) ) / sum( vo l { i } ( : , 2 ) ) ;
58

59 s t ra in s13_vo l ( i , : ) = s t r a i n s { i } ( : , 7 ) .∗ vo l { i } ( : , 2 ) ;
60 s t r a i n s 1 3 ( i ) = sum( s t ra in s13_vo l ( i , : ) ) / sum( vo l { i } ( : , 2 ) ) ;
61

62 t rue_st ra in s ( i ) = sq r t (2 ) /3 ∗ s q r t ( ( s t r a i n s 1 1 ( i )−
s t r a i n s 2 2 ( i ) ) .^2 + ( s t r a i n s 2 2 ( i )−s t r a i n s 3 3 ( i ) ) .^2 + (
s t r a i n s 1 1 ( i )−s t r a i n s 3 3 ( i ) ) .^2 +3/2∗( s t r a i n s 1 2 ( i ) .^2 +
s t r a i n s 2 3 ( i ) .^2 + s t r a i n s 1 3 ( i ) .^2) )

63

64 end
65

66 %% s t r a i n ra t e computation ( per time step )
67

68 f o r i = 1 : n_steps
69

70 st ra in_rate11_vol ( i , : ) = s t ra in_rate { i } ( : , 2 ) .∗ vo l { i } ( : , 2 ) ;
71 s t ra in_rate11 ( i ) = sum( stra in_rate11_vol ( i , : ) ) / sum( vo l { i

} ( : , 2 ) ) ;
72

73 st ra in_rate22_vol ( i , : ) = s t ra in_rate { i } ( : , 3 ) .∗ vo l { i } ( : , 2 ) ;
74 s t ra in_rate22 ( i ) = sum( stra in_rate22_vol ( i , : ) ) / sum( vo l { i

} ( : , 2 ) ) ;

114



75

76 st ra in_rate33_vol ( i , : ) = s t ra in_rate { i } ( : , 4 ) .∗ vo l { i } ( : , 2 ) ;
77 s t ra in_rate33 ( i ) = sum( stra in_rate33_vol ( i , : ) ) / sum( vo l { i

} ( : , 2 ) ) ;
78

79 st ra in_rate12_vol ( i , : ) = s t ra in_rate { i } ( : , 5 ) .∗ vo l { i } ( : , 2 ) ;
80 s t ra in_rate12 ( i ) = sum( stra in_rate12_vol ( i , : ) ) / sum( vo l { i

} ( : , 2 ) ) ;
81

82 st ra in_rate23_vol ( i , : ) = s t ra in_rate { i } ( : , 6 ) .∗ vo l { i } ( : , 2 ) ;
83 s t ra in_rate23 ( i ) = sum( stra in_rate23_vol ( i , : ) ) / sum( vo l { i

} ( : , 2 ) ) ;
84

85 st ra in_rate13_vol ( i , : ) = s t ra in_rate { i } ( : , 7 ) .∗ vo l { i } ( : , 2 ) ;
86 s t ra in_rate13 ( i ) = sum( stra in_rate13_vol ( i , : ) ) / sum( vo l { i

} ( : , 2 ) ) ;
87

88 t rue_stra in_rate ( i ) = sq r t (2 ) /3 ∗ s q r t ( ( s t ra in_rate11 ( i )−
s t ra in_rate22 ( i ) ) .^2 + ( s t ra in_rate22 ( i )−s t ra in_rate33 ( i
) ) .^2 + ( s t ra in_rate33 ( i )−s t ra in_rate11 ( i ) ) .^2 +3/2∗(
s t ra in_rate12 ( i ) .^2 + st ra in_rate23 ( i ) .^2 +
st ra in_rate13 ( i ) .^2) )

89

90 end
91

92 %% Ce l l volume vs time
93

94 % re f e r e n c e po in t s d i sp lacement input read ing
95 CC = importdata ( ’ volume_cel l . rpt ’ , ’ ’ , 3 ) ;
96

97 f o r i =1:4
98

99 vo l_ce l l ( : , i ) = CC. data ( : , i ) ;
100

101 end
102

103 f o r i =1:4
104

105 vo l_ce l l ( : , i ) = CC. data ( : , i ) ;
106

107 end
108

109 f o r i= 1 : n_steps
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110

111 V_cell ( i ) = (1+ vo l_ce l l ( i , 2 ) ) .∗(1+ vo l_ce l l ( i , 3 ) ) .∗(1+
vo l_ce l l ( i , 4 ) ) ; %r e f po in t s volume

112

113 end
114

115 %% Volume f r a c t i o n computation ( per time step )
116

117 f o r i =1: n_steps
118

119 v_ce l l ( i , 1 ) = vo l_ce l l ( i , 1 ) ;
120 v_ce l l ( i , 2 ) = V_cell ( i ) ;
121

122 end
123

124 f o r i =1: n_steps
125

126 v_matrix ( i ) = sum( vo l { i } ( : , 2 ) ) ;
127

128 end
129

130 f o r i =1: n_steps
131

132 f ( i ) = ( v_ce l l ( i , 2 ) − v_matrix ( i ) ) / v_ce l l ( i , 2 ) ;
133

134 end
135

136 vo l_ f rac t i on = f / f (1 )
137

138

139 %% wri t e r e s u l t s to f i l e
140

141 A = [ v_ce l l ( : , 1 ) ’ ; t rue_st ra in s ] ;
142 f i l e ID = fopen ( [ ’ Creep_strain_ ’ ,ODB_name, ’ . txt ’ ] , ’w ’ ) ;
143 f p r i n t f ( f i l e ID , ’%6s %12s \n ’ , ’Time ’ , ’ Equiva lent Creep s t r a i n s ’ )

;
144 f p r i n t f ( f i l e ID , ’%2.12 f %2.12 f \n ’ ,A) ;
145 f c l o s e ( f i l e ID ) ;
146

147 B = [ t rue_s t ra in s ; vo l_ f rac t i on ] ;
148 f i l e ID = fopen ( [ ’ Porosity_ ’ ,ODB_name, ’ . txt ’ ] , ’w ’ ) ;
149 f p r i n t f ( f i l e ID , ’%6s %12s \n ’ , ’ Equiva lent Creep St ra in ’ , ’

Poros i ty ’ ) ;
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150 f p r i n t f ( f i l e ID , ’%2.12 f %2.12 f \n ’ ,B) ;
151 f c l o s e ( f i l e ID ) ;
152

153 C = [ t rue_st ra in s ; t rue_stra in_rate ] ;
154 f i l e ID = fopen ( [ ’ Strain_rate_ ’ ,ODB_name, ’ . txt ’ ] , ’w ’ ) ;
155 f p r i n t f ( f i l e ID , ’%6s %12s \n ’ , ’ Equiva lent Creep St ra in ’ , ’ S t ra in

Rate ’ ) ;
156 f p r i n t f ( f i l e ID , ’%2.12 f %2.12 f \n ’ ,C) ;
157 f c l o s e ( f i l e ID ) ;
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Appendix E
1 c Author : Simon Ca r r i l l o Segura
2 c Un ive r s i ty o f Pennsylvania , Ph i l ade lph ia
3 c Department o f Mechanical Engineer ing and Applied Mechanics (

MEAM)
4 c
5 c
6 c user amplitude subrout ine
7 Subrout ine uamp(
8 c passed in f o r in fo rmat ion and s t a t e v a r i a b l e s
9 ∗ ampName, time , ampValueOld , dt , nProps , props ,

nSvars , svars ,
10 ∗ l F l ag s In f o , nSensor , sensorValues , sensorNames ,
11 ∗ jSensorLookUpTable ,
12 c to be de f ined
13 ∗ ampValueNew ,
14 ∗ lF lagsDe f ine ,
15 ∗ AmpDerivative , AmpSecDerivative , AmpIncIntegral ,
16 ∗ AmpIncDoubleIntegral )
17

18 i n c lude ’ aba_param . inc ’
19

20 c sva r s − add i t i o na l s t a t e va r i ab l e s , s im i l a r to (V)UEL
21 dimension sensorValues ( nSensor ) , sva r s ( nSvars ) , props (

nProps )
22 cha rac t e r ∗80 sensorNames ( nSensor )
23 cha rac t e r ∗80 ampName
24

25 c time i n d i c e s
26 parameter ( iStepTime = 1 ,
27 ∗ iTotalTime = 2 ,
28 ∗ nTime = 2)
29 c f l a g s passed in f o r in fo rmat ion
30 parameter ( i I n i t i a l i z a t i o n = 1 ,
31 ∗ iRegu la r Inc = 2 ,
32 ∗ nFlags In fo = 2)
33 c op t i ona l f l a g s to be de f ined
34 parameter ( iComputeDeriv = 1 ,
35 ∗ iComputeSecDeriv = 2 ,
36 ∗ iComputeInteg = 3 ,
37 ∗ iComputeDoubleInteg = 4 ,
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38 ∗ i S topAna ly s i s = 5 ,
39 ∗ iConcludeStep = 6 ,
40 ∗ nFlagsDef ine = 6)
41 dimension time (nTime) , l F l a g s I n f o ( nFlags In fo ) ,
42 ∗ lF l ag sDe f i n e ( nFlagsDef ine )
43 dimension jSensorLookUpTable (∗ )
44

45 VALUE1 = GetSensorValue ( ’X1 ’ , jSensorLookUpTable ,
s ensorValues )

46 VALUE2 = GetSensorValue ( ’Y1 ’ , jSensorLookUpTable ,
s ensorValues )

47 VALUE3 = GetSensorValue ( ’Z1 ’ , jSensorLookUpTable ,
s ensorValues )

48

49 ampValueOld = 1d0
50

51 i f (ampName( 1 : 8 ) . eq . ’LOADAMP1’ ) then
52

53 C User code to compute ampValue = F( s en so r s )
54 i f ( l F l a g s I n f o ( i I n i t i a l i z a t i o n ) . eq . 1 ) then
55 ampValueNew = ampValueOld
56 e l s e
57 c Example : f ( t ) = t
58 tim = time ( iStepTime )
59 tS t a r t = tim − dt
60 tEnd = tim
61

62 ampValueNew = (1+VALUE2)∗(1+VALUE3)
63

64

65 end i f
66

67 end i f
68

69 i f (ampName( 1 : 8 ) . eq . ’LOADAMP2’ )
then

70

71 C User code to compute ampValue = F( s en so r s )
72 i f ( l F l a g s I n f o ( i I n i t i a l i z a t i o n ) . eq . 1 ) then
73 ampValueNew = ampValueOld
74 e l s e
75 c Example : f ( t ) = t
76 tim = time ( iStepTime )
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77 tS t a r t = tim − dt
78 tEnd = tim
79

80 ampValueNew = (1+VALUE1)∗(1+VALUE3)
81

82

83 end i f
84

85 end i f
86

87 i f (ampName( 1 : 8 ) . eq . ’LOADAMP3’ )
then

88

89 C User code to compute ampValue = F( s en so r s )
90 i f ( l F l a g s I n f o ( i I n i t i a l i z a t i o n ) . eq . 1 ) then
91 ampValueNew = ampValueOld
92 e l s e
93 c Example : f ( t ) = t
94 tim = time ( iStepTime )
95 tS t a r t = tim − dt
96 tEnd = tim
97

98 ampValueNew = (1+VALUE1)∗(1+VALUE2)
99

100

101 end i f
102

103 end i f
104 r e turn
105 end
106 c
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