
https://lib.uliege.be https://matheo.uliege.be

Master's Thesis : Cell segmentation in whole-slide cytological images

Auteur : Testouri, Mehdi

Promoteur(s) : Maree, Raphael

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"

Année académique : 2019-2020

URI/URL : http://hdl.handle.net/2268.2/8979

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège

Faculty of Applied Sciences

Cell segmentation in
whole-slide cytological images

A thesis submitted as part of the fulfillment of a
Master’s degree in Computer Sciences and engineering

Author:
Mehdi Testouri

Supervisor:
Dr. Raphaël Marée

Academic year 2019 - 2020

Abstract

University of Liège - Faculty of Applied Sciences

Cell segmentation in whole-slide cytological images

Master’s degree in Computer Sciences and engineering

Author : Mehdi Testouri Supervisor : Dr. Raphaël Marée

The digital pathology is a field of medicine that leverage computer aided
techniques to view, manage and analyse microscope acquired images, com-
monly called whole-slide images. The field has been rapidly evolving in the
recent years thanks to novel research around AI based techniques for au-
tomated diagnosis. A popular sub-field of the automated diagnosis is the
segmentation (or detection) of relevant regions in a whole-slide image.

This thesis deals with the problem of cell detection using segmentation in
whole-slide cytological images as part of an automated diagnosis system for
the thyroid cancer. The work is conducted within Cytomine R&D project
team from ULiège.
Among the challenges is the implementation of a segmentation algorithm us-
ing novel deep learning methods while dealing with incomplete training data.

The proposed solution comprises of a U-Net network for the segmenta-
tion along with an iterative data improvement method for incomplete data
completion. The implementation also achieves the required level of modu-
larity and scalability for the subsequent integration in the ULiège Cytomine
instance which was almost complete.

Promising results were obtained thus demonstrating the abilities of the
U-Net and the data improvement method. However, inaccuracies remained
mainly due to false positives and all available data weren’t used because their
incompleteness couldn’t be fully addressed. Further work should enhance the
training set building, for instance using active learning, and especially pay
attention to the diversity and completeness of the data used.

i

Acknowledgement

I would like to thank my supervisor Raphaël Marée for his continuous follow-
ing and helpful guidance as well as his introduction to me to the interesting
field of digital pathology.

I also want to thanks Romain Mormont for his precious help while tack-
ling the challenges of this work and his advises for the writing of this thesis.

I finally want to thanks my family and close friends for their support for
this work and throughout the years.

ii

Contents

1 Introduction 1

2 Machine learning for biomedical image analysis 3
2.1 Cell detection in thyroid cytology 3

2.1.1 Context . 3
2.1.2 Complete pipeline . 9
2.1.3 Detection using segmentation 11

2.2 Problem definition . 12
2.2.1 Supervised learning . 12
2.2.2 Segmentation . 16
2.2.3 Main challenges . 17

2.3 Related works and state of the art 20
2.3.1 Whole-slide cytological images analysis 20
2.3.2 Cell segmentation . 21
2.3.3 Weakly supervised learning 24

2.4 Fully convolutional network 26
2.4.1 Principle . 26
2.4.2 U-Net . 30

2.5 Evaluation metrics . 31
2.5.1 Dice coefficient . 31
2.5.2 Jaccard index . 32

3 Proposed methodology 33
3.1 Overview of the method . 33
3.2 Implementation architecture 34
3.3 Dataset . 36

3.3.1 Dataset building . 36
3.3.2 Data augmentation . 37

iii

3.4 Segmentation algorithm . 38
3.4.1 Motivation . 38
3.4.2 Training . 38
3.4.3 Post-processing . 39

3.5 Iterative data improvement 41
3.5.1 Motivation . 41
3.5.2 Principle . 41
3.5.3 Post-processing . 43

3.6 Cytomine integration . 45

4 Experiments and Results 48
4.1 Validation and testing sets . 48
4.2 Results . 49

4.2.1 Selection and assessment stages 50
4.2.2 Data selection . 52
4.2.3 Hyper-parameters tuning 56
4.2.4 Performance . 59
4.2.5 Model selection . 63
4.2.6 Assessment . 63

4.3 Improvements . 64

5 Conclusion 68

iv

Chapter 1

Introduction

In today’s medical world, the analysis of biomedical images is one of the most
important method of assessing a patient health issues and ultimately produce
a diagnosis. Thanks to major advances in imagery technologies such IRMs,
microscopes, scanners, X-rays, etc. There is now the ability to produce high
resolution medical images for various purposes and medical practitioners.
However, while the process of producing those images is highly automated,
the analysis of them still mainly rely on the assessment of a human expert
and this brings problems associated with the human factors. Human can
be tired, make mistakes or have biases and while there is no intention to
question the medical practitioners who remain highly qualified experts, this
is obvious that there is room for improvements.
One area well concerned by this is the cancer diagnosis. It goes without say-
ing that cancer is one of the most important health issue affecting human-
ity and it is thus a matter of importance to improve diagnosis techniques.
Nowadays, thanks to the emergence of new capabilities of AI there is now
the opportunity to address this issue by using AI to provide the practitioner
with a help for his/her diagnosis to further improve it. A recent study pub-
lished in Nature [12] even showed that the AI can surpass the expert for the
diagnosis of breast cancer. Such AI methods should thus be investigated for
the diagnosis of other cancers and, in the context of this thesis, the con-
cern is the diagnosis of the thyroid cancer by detection of relevant cells in
whole-slide cytological images. This work thus falls into the field of digital
pathology whose practice is to manage, view and analyse whole-slide images
(WSI) which are microscope acquired images that consequentially have the
characteristic of being very huge.

1

The main contributions of this work are the implementation and assess-
ment of an U-Net based segmenter, the implementation of an iterative data
improvement method and finally the integration of the segmenter into a web
application for results visualization.

The following paper is structured as follow :

• Chapter 2 will introduce the problem informally and formally and pro-
vide an overview of the state of the art methods.

• Chapter 3 will describe the methodology and implementation of the
solution.

• Chapter 4 will assess the solution and present the results before the
final conclusion and improvement suggestions.

2

Chapter 2

Machine learning for
biomedical image analysis

The problem addressed by this thesis is to develop an efficient method able
to segment the cells of interest in whole-slide cytological images of the thy-
roid. The segmentation algorithm is implemented using deep learning and
computer vision techniques.
This problem thus falls into the broader category of machine learning appli-
cations where the goal is to learn an algorithm from a training dataset, so
that this algorithm can make accurate prediction on unseen data.

2.1 Cell detection in thyroid cytology

2.1.1 Context

The process of automated diagnosis based on medical images is typically
based on the detection of relevant tissues or cells, their presence may be
indicating underlying problems. For instance, some types of tissues or cells
present in a scanner can be a sign of an emerging cancer.

This thesis is conducted within the Cytomine R&D project at ULiège.
Cytomine [1] is an open source internet application aimed for collaborative
analysis of multi-gigapixel images and the ULiège hosts its own instance of
Cytomine.
The ULiège Cytomine team in collaboration with the ULB Erasme Hospi-

3

Figure 2.1: Example of papillary cells with inclusion highlighted in orange.

Figure 2.2: Example of a proliferative follicular architectural pattern.

tal (Dr. Isabelle Salmon) is developing an automated diagnosis application
working on whole-slide cytological images of the thyroid, obtained by fine
needled aspiration biopsy. The ultimate goal of the project is to be able to
detect 2 different elements in the whole-slide images as they may highlight
the presence of an emerging cancer :

• The papillary cells with inclusion (Figure 2.1).

• The proliferative follicular architectural patterns (Figure 2.2).

The detection of these elements is performed in two main steps : the
segmentation and classification. The segmentation is used to extract useful
areas in the whole-slide image (e.g areas with cells) while the classification
determines the type of the extracted areas (e.g type of cells within the area).
The goal of this Master thesis is to develop the segmentation algorithm but

4

Figure 2.3: Example of a whole-slide image (104704× 172032 pixels).

also provide an integration of it in the ULiège Cytomine instance (by imple-
menting a Cytomine software) so that it is possible to run the segmentation
on a hosted whole-slide image and visualize the results in the Cytomine web
interface.

Whole-slide images are very big with hundreds of thousands of pixels in
height and width (see Figure 2.3 and 2.4) so that it is inconceivable to per-
form the segmentation directly on them. Instead, the whole-slide image is
cut into tiles (or crops) of reasonable size and the segmentation algorithm is
trained and run on them.

The reasons for the approach of first separating the cells from the back-
ground and then classifying them are the following :

• While the segmentation works at a structure level, the classification
algorithm developed by the Cytomine R&D team works at a cell level
for the detection of papillary cells with inclusion. The segmentation
can help to remove useless areas in the WSI and thus reduce the area
on which the classification is applied. This is analogous to how a prac-
titioner proceeds, he/she first looks for areas with cells and then looks
for problematic cells in those areas. If the classification was directly
applied on the WSI, it would drastically increase the computation time
because of the reduced size of the crops used and the need of processing
all areas of the WSI.

5

Figure 2.4: From whole-slide perspective to cell perspective.

• Even if the classification isn’t very reliable, the segmentation can help
the practitioner with the diagnosis by presenting him/her among all
cells detected in the images (and thus possibly missing cells in the
practitioner diagnosis) on which he/she can decide those with problems.
This can help speeding up the diagnosis and provide redundancy.

The different types of cells and patterns that are the target of the seg-
mentation are illustrated in Figures 2.5 and 2.6.

6

Figure 2.5: Illustration of the different patterns.

7

Figure 2.6: Illustration of the different cells.
8

Figure 2.7: Stardist cell detection algorithm applied to a tile. Green arrow :
correctly segmented nuclei; Orange arrow : false positive on foreground; Red
arrow : false positive on background.

2.1.2 Complete pipeline

In order to delineate individual cells, the Cytomine team has put in place
the StarDist model [18] [20] which is used to segment cell nucleus. However
while this algorithm works well on pre-selected foreground, it generates too
much false positives on the background, as seen on Figure 2.7, and thus the
foreground selection is required for it to work properly.

The complete pipeline for the diagnosis envisioned by the Cytomine R&D
team works as follow (see Figure 2.8):

1. Per-tile foreground segmentation followed by tiles merging in the whole-
slide image.

2. Nucleus segmentation using StarDist in the foreground areas.

3. Classification of the nucleus and patterns in the foreground using deep
learning classification models [14][13].

The complete pipeline is illustrated on Figure 2.8. The goal is to be able
to run this pipeline directly from the Cytomine web interface so that the
results can be interactively visualized. The implementation of the Cytomine
cell segmentation software is the concern of this work.

9

Figure 2.8: Complete diagnosis pipeline.

10

Figure 2.9: Example of expert made annotations (blue) viewed from the
Cytomine web interface. It can be seen that the annotation don’t highlight
all cells and are thus incomplete.

2.1.3 Detection using segmentation

The segmentation consists in producing a segmentation mask (which is an-
other image) from an original image. This mask binds each pixel of the input
image to a specific class and as such, the segmentation is also being referred
as a ”pixel-wise classification” problem. The image crops and associated
masks used to train the algorithm are derived from man-made (by expert)
annotations on the whole-slide images. Such annotations are illustrated on
Figure 2.9.

The mask can be binary by assigning the class 0 to a non-interest pixel
(also referred as background) and 1 to a pixel of interest (also referred as
foreground) and the segmentation is thus said to be binary. The 0 class is
commonly represented by a black color while the class of interest is repre-
sented with a white color. A binary segmentation is illustrated in Figure
2.10. The mask can also contain more than 2 classes, in such cases, the seg-
mentation is said to be multi-class. In this work, the addressed problem is a
binary segmentation.

11

Figure 2.10: Binary segmentation.

2.2 Problem definition

2.2.1 Supervised learning

Definition

The problem of training a segmentation algorithm falls into the realm of su-
pervised learning which is itself a sub-domain of machine learning. Rudiment
of supervised learning are introduced in this section.

Let X and Y be 2 random variables and let us consider an unknown
distribution P (X, Y) and training data (xi, yi) drawn from the distribution
where xi ∈ X , yi ∈ Y , i = 1, ..., N , ∀N ∈ N. The xi is the input or simply the
data and yi is the associated output or the label hence the name supervised
learning.
In the scope of this work, xi represents one crop and yi the associated mask.

The supervised learning is applied to solve inference problems where the
goal is to estimate a function f :

f : X −→ Y (2.1)

The inference problem can either be a classification or a regression.
In classification, the yi represents classes or discrete categorical values

and thus, given the training set, (2.1) estimates for any new x:

arg max
y

P (Y = y|X = x)

12

In regression, the yi represents continuous numerical values and thus,
given the training set, (2.1) estimates for any new x:

E[Y |X = x]

This project addresses is a classification inference problem as the labels yi
represent a segmentation map containing pixel-wise association with a class.

Empirical risk minimization

In order to evaluate (2.1), the concept of loss function L is introduced :

L : Y × Y −→ R

where L(f(x), y) ≥ 0 measures how f(x) is close to y, the lesser L, the
closer f(x) is.

Let us assumes F is the set of function f that can be produced by the
learning algorithm, the goal is to find f∗ that minimizes the expected risk
R(f):

f∗ = arg min
f∈F

R(f) (2.2)

where,
R(f) = E(x,y)∼P (X,Y)[L(f(x), y))] (2.3)

However, since P (X, Y) is unknown, it is not possible to evaluate (2.3)
and thus an approximation has to be made.

Let us assume a training set d = {(xi, yi)|i = 1, ..., N}, then the empiri-
cal risk R̂(f, d) can be computed as follow:

R̂(f, d) =
1

N

∑
(xi,yi)∈d

L(f(xi), yi)

If d is independent and identically distributed (i.i.d), then R̂(f, d) is un-
biased and can be used to find an approximation of f∗. This procedure is
called empirical risk minimization and it is implemented in most machine
learning applications to train a model.

13

Under-fitting and over-fitting

Let YX be the set of all possible functions f : X −→ Y . The Bayes model
fB ∈ YX is the model that achieves the minimal expected risk RB:

RB = min
f∈YX

R(f)

fB is a (theoretical) optimal model for the distribution P (X, Y).

Let fd
∗ be a model obtained using a training algorithm on a dataset d and

let R(fd
∗) be the expected risk.

If the learning algorithm allows for the production of high complexity models,
the latter could be trained such that the empirical risk is arbitrarily small :

R(fd
∗) ≥ RB ≥ R̂(fd

∗ , d) ≥ 0 (2.4)

In such a case, the model is said to overfit since it is too specialised on
the training data. The empirical risk R̂(fd

∗ , d) is low on d but the expected
risk (or generalization error) is expected to be higher.
By contrast, a model is said to underfit if its complexity is too low and the
generalization error can still be decreased.

The goal of training is thus to find the optimal balance between overfit-
ting and underfitting as illustrated on Figure 2.11.
In order to achieve that balance, the minimization of R̂(fd

∗ , d) does not seem
suited to minimize the expected risk as illustrated by (2.4).

An unbiased solution to approximate the expected risk is to evaluate the
model on a test set dtest independent from the training set dtrain.
However, this test set should be only used as a final step for the model assess-
ment and the hyper-parameters must not be tuned using it. Indeed, model
tuning using the test set will likely lead to overfitting of the model on that
set, thus compromising the neutral assessment of the generalization error.
Instead, another set called validation set dvalid is introduced for model tun-
ing, it also has to be independent from the training set.
An overview of the evaluation process is shown on Figure 2.12.

14

Figure 2.11: Overfitting and underfitting [2].

Figure 2.12: Evaluation process.

15

2.2.2 Segmentation

The segmentation can be expressed as a pixel-wise classification problem :

Let d = {(Xk, Yk)|k = 1, ..., N} be a dataset of N samples.
Each Xk is an RGB crop in the form of a tensor of size H ×W ×Cx where :

H is the crop height.
W is the crop width.

Cx = 3 is the number of channels.

Let pk,i,j ∈ Xk with i = 1, ..., H and j = 1, ...,W be a pixel of Xk.
Each pk,i,j is thus a vector (rk,i,j, gk,i,j, bk,i,j) where :

(rk,i,j, gk,i,j, bk,i,j) ∈ ([0, 255], [0, 255], [0, 255]) ∀k, i, j

The Yk is the segmentation mask corresponding to Xk. It is a tensor of
size H × W × Cy where Cy = 2 because of the 2 type of classes for each
pixel in Xk. The first class is the background and the second class is the
foreground or cell area.

Each pixel-wise element ek,i,j ∈ Yk with i = 1, ..., H and j = 1, ...,W is a
vector (bk,i,j, fk,i,j) such that ∀k, i, j:

bk,i,j = 0 or 1

fk,i,j = 0 or 1

bk,i,j + fk,i,j = 1

(2.5)

and :

bk,i,j = 1 −→ pk,i,j is a background pixel
fk,i,j = 1 −→ pk,i,j is a foreground pixel

We thus have Xk as data and Yk as the corresponding label. The aim is
to learn a function f : X −→ Y using the dataset d such that for any given
crop X, f(X) returns a segmentation mask of the cells present in X.

In practice, in order to upload new annotations to the Cytomine server,
the predicted masks need to be converted to polygons objects. This operation
is done using the rasterio framework [3].

16

Figure 2.13: 2 pairs of crop and annotation mask. For each pair, the left is
the area to annotate and the right the annotated area converted to a mask.
The left pair represents an almost complete annotation while the right one
represents a sparse annotation.

2.2.3 Main challenges

Weak annotations One of the main issue with the data provided by the
ULiège Cytomine instance is that the aforementioned annotations (and thus
their derived masks) are not always complete, i.e the segmentation mask does
not contain all cells of interest, and thus some pixels belonging to cells are
labelled as ”background”. The annotation can be almost complete or sparse
as shown on Figures 2.13 and 2.14.

Given the size of whole-slide images and the fact that the process of man-
ual annotation is time-consuming, experts make the understandable choice
of focusing on the most interesting cells. It is thus a common issue in the
biological imagery that the annotations are incomplete and those kind of
problems are commonly referred as weakly supervised learning since su-
pervised learning assumes correctly (completely) labelled data.
This issue affects mainly the annotations of individual cells in a cell group
rather than annotations of the whole cell groups, in the latter case, the avail-
able data provides more complete annotations. The Figure 2.15 provides
examples of pattern (or group) annotations.

17

Figure 2.14: More examples of incomplete (top) and sparse (bottom) anno-
tations.

Figure 2.15: Examples of pattern (group) annotations.

Whole-slide images variety Another challenge concerns the ability of
making a model that generalizes well on new whole-slide images. Indeed,
as it can be seen on Figure 2.16, there is a high variety between different
whole-slide images at a macroscopic level, often resulting in a different type
of background at a microscopic level.

18

Figure 2.16: Illustration of the variety between whole-slide images.

This variety can be explained by the following causes:

• The WSIs don’t necessarily come from the same lab with the same
hardware. Moreover, different practitioners with different proce-
dures (cutting, staining, scanning, ...) to proceed the aspiration biopsy
and scanning will impact the production of WSIs.

• Each patient will obviously have some specificity associated with his
WSIs such as cells types and density, etc.

• The time factor on its own can embed the above causes, the closer the
time, the greater the likelihood of the WSIs to share common charac-
teristics.

In practice, this variety will make the training of the model harder as
unseen whole-slide images may have important variations, compared to the
ones used in training and validation sets.

19

2.3 Related works and state of the art

In this section, several papers with related works are reviewed. This can
provide an overview of some of the state of the art methods applied to solve
problems that resemble this work

2.3.1 Whole-slide cytological images analysis

In [6], the authors describe a method of automated diagnosis of the thyroid
cancer in which the first part is similar to this work, that is to determine
areas of interest (relevant cells) in whole-slide cytopathology images. A sec-
ond algorithm (second part of their paper) is then used to determine the
malignancy of the cells.
Their approach differs though as they do not perform cell segmentation. In-
stead they try to classify portions of the image (sub-images) that are relevant
(Figure 2.17) from those who are not, by using a CNN which is trained on
labelled sub-images. The relevancy of a sub-image is 1 if it contains follicular
groups of cells and 0 otherwise (it is labelled as background) and the goal
is thus to separate the parts of the original image that contains follicular
groups from the background which is assumed to constitute the majority of
the image. Their dataset comprises of 908 WSIs of size ≈ 40000 × 25000
pixels. However, their work is not applicable in this project because the seg-
mentation is required as part of the detection of papillary cell with inclusion
(which does not constitute cells of interest in the paper) and because of the
other advantages it brings as explained in section 2.1.1.

20

Figure 2.17: Figure from [6]. On the top, instances containing groups of cells
of interest and, on the bottom, instances containing the background.

2.3.2 Cell segmentation

The following section presents a series of papers that compare different ap-
proaches for the cell segmentation.

Caicedo et al. [5] gives a comparison of the different state of the art meth-
ods used for biological segmentation, namely DeepCell and U-Net and also
more conventional machine learning methods with no use of deep learning
such as the random forest for nucleus segmentation in fluorescence images
(examples on Figure 2.18) . Even though the present work is about cells
segmentation, it seems very likely that the efficient methods for nucleus seg-
mentation will also be good candidates as the problem is similar. DeepCell
is a CNN with the configuration detailed in [19] whereas the U-Net follows
an architecture similar to an auto-encoder with convolutional layers.
The segmentation problem is formulated as a boundary detection problem
which consists in identifying three types of pixels: background, interior of
nuclei and boundaries of nuclei. This is thus a three-class pixel-wise classifi-
cation problem and it necessary to have the boundary classification to handle
overlapping nuclei.
The test set used to assess the models contains 5,720 nuclei which accounts
roughly for 57 images. The results clearly illustrate that the deep learning
methods are better in terms of their defined accuracy metrics as they provide
more accurate boundaries but are also better at dealing with overlapping nu-
clei. The two neural networks have different types of errors. U-Net is able to
detect nuclei of various size better (less false negative errors) (Figure 2.19)

21

Figure 2.18: Figure from [5]. Example of fluorescence images.

Figure 2.19: Figure from [5]. On the center, a false negative error made by
DeepCell and, on the right, a split error made by the random forest.

than DeepCell, however, it also detects imaginary cells more often (more false
positive errors). U-Net is also better at detecting various cells edges (reduced
merge error) but also see ones where it shouldn’t. One should recall that the
goal of this work is to produce segmentation of cells of interest so that they
can be processed by a second algorithm. In this context, false negative errors
are crucial. Indeed, if it is assumed that the second algorithm can deal with
irrelevant cells or background, skipping relevant cells might compromise its
results. The U-Net seems thus more suitable.
Finally, the paper illustrates the benefit of the data augmentation which
helps to increase the accuracy even though DeepCell and U-Net can perform
well on small datasets. Basic augmentation techniques are image rotations,
symmetries, change of contrast and illumination.

A comparison between the performance of the U-Net and the SegNet is
performed in [9] in the context of cells segmentation of the endothelial layer
of the cornea. Again, the problem is similar though the tissue of interest
is not from the thyroid. It can thus be expected that the results from this

22

Figure 2.20: Figure from [9]. (a) is an example image from the test set; (b)
represents the manual ground truth annotations; (c) & (d) are the proba-
bility output and binary segmentation result from U-Net ; (e) & (f) are the
probability output and binary segmentation result from SegNet.

study may apply to the present work.
The implemented U-Net uses 16 convolutional layers whereas the SegNet ac-
counts for 26 and has about 4 times more parameters. The evaluation metrics
are the Dice and Jaccard coefficients. The dataset contains 130 images which
is split in a training and test set of 100 and 30 images respectively. Despite its
inferior complexity, the U-Net has been decribed by the authors to be quote :
”far superior to SegNet for segmenting ECs in specular microscopic images”.
The difference in accuracy in illustrated in Figure 2.20 and it can be seen that
U-Net is clearly superior. The authors think that it could be attributed to
the skip connections in the U-Net between the encoding and decoding layers.

Another comparison of segmentation methods is performed in [4]. The
problem is the segmentation of cells in microscopy image of glioblastoma tis-
sue which is not an easy tissue for this task as it is claimed in the paper (see
Figure 2.21).
The paper assesses the performance of supervised and unsupervised method
as well as non machine learning methods. Among the supervised learning
methods, there are two deep learning ones : a standard U-Net method and
a novel deep learning one called ASPP which combine U-Net with atrous
spatial pyramid pooling. Among the performance measures are once again
the Dice coefficient and the Jaccard index but also the sensitivity and speci-
ficity which is interesting in the context of the present work. The results
show a clear advantage for the deep learning based method for Dice, Jac-

23

card but also in terms of sensitivity and specificity. The U-Net performed
slightly better on pixel-based performance metrics but ASPP was better at
separating merged objects. The dataset used in this study was comprised
of 50 fluorescence microscopy tissue images of glioblastoma cells from which
30 were used for training and 20 used for evaluation. The paper concludes
that the deep learning methods performed best but their training were time
consuming.

Figure 2.21: Figure from [4] which illustrates the challenges associated with
the segmentation of glioblastoma cells.

2.3.3 Weakly supervised learning

As explained in section 2.2.3, the presence of incomplete masks in the data
means that method applied in weakly supervised learning may need to be
investigated. Weakly supervised learning for segmentation can mean that
the masks are incomplete or that there is no mask at all. In the latter case,
the label is attributed to the complete image. For instance, in binary seg-
mentation, if at least one pixel of the image is foreground, then the image is
labelled as foreground otherwise it is labelled as background.

24

Figure 2.22: Figure from [10]. Unfiltered predicted tumor maps obtained
with 15 bench-marked framework configurations.

In [10], the authors describe a method to learn a segmentation model from
image level labels (presence of tumor or not in the whole-slide image). The
method relies on multiple instance learning (MIL) and uses two parameters
(α and β) to assume tumor area and normal tissue area respectively. The
framework is assessed using a dataset that contains 6481 whole-slide images
obtained from The Cancer Genome Atlas which is divided in training (65%)
validation (15%) and testing sets (20%). The assessment show promising
results with some configurations of α and β, giving annotations close the
expert ones (see Figure 2.22).

In [11], the authors propose a solution to a problem of training a seg-
mentation algorithm with sparse or incomplete annotations in the scope of
gastric cancer tissue segmentation. The method works by first extracting
a patch (sub-region) of interest from the images for the network training
and predicting (patch-based FCN). In order to combined the patches predic-
tions and rebuild the whole segmentation map, an overlapped region forecast
algorithm and other post-processing operations are used. The patches are
selected by using a a threshold on the annotated area (use the most complete
patches). To further enhance the results, a reiterative learning scheme is
introduced which consists in iterative training on the self-annotated train-

25

ing set (Figure 2.23). The method achieved a mean Intersection over Union
coefficient (IoU) of 0.883 and a mean accuracy of 91.09%.

Figure 2.23: Figure from [11]. Overview of the reiterative learning pipeline

2.4 Fully convolutional network

2.4.1 Principle

The implemented segmentation algorithm uses a type of fully convolutional
network (or FCN), which as the name suggests, is based on convolution.
Rudiments about convolution operations and their use in the scope of neural
network is given in this section.

Kernel The core of the FCNs is the convolution operation which is an
operation between an input tensor and a given kernel. Kernels can be seen as
filters whose convolution with an input image can highlight specific features
in it.

Convolution Let us consider an input image I of size H×W ×C where C
is the number of channels and a kernel u of size h×w×C. The convolution
between I and u is given by :

26

Figure 2.24: Feature maps.

I ~ u = O

where,

On,m =
C−1∑
c=0

h−1∑
i=0

w−1∑
j=0

Ic,n+i,m+j · uc,i,j (2.6)

and O is of size (H−h+1)× (W −w+1) (padding can be added to preserve
the input size).

In the context of FCNs, a bias b is introduced so that (2.6) becomes:

On,m = bn,m +
C−1∑
c=0

h−1∑
i=0

w−1∑
j=0

Ic,n+i,m+j · uc,i,j (2.7)

where bn,m and u are parameters to learn.

Intuitively, the bigger the value of On,m, the closer the area around On,m

matches the kernel feature. For instance, if u is used to detect edges and
On,m has a high value then the area corresponding to On,m can be seen as an
edge. The output O is called the feature map (for the kernel u) as it maps
regions of the image matching the kernel feature.

Feature maps Several kernels can be convoluted with the input so that
different features can be extracted. The output of those convolutions can be
stacked so that the total output is of size D × (H − h + 1) × (W − w + 1)
where D is called the depth and the output is called feature maps (Figure
2.24).

27

Figure 2.25: Illustration of a (2× 2) max-pooling operation.

Max-pooling and up-sampling The max-pooling operation is used to
reduce the input dimensions. It can be seen as a special type of kernel used
for down-sampling by selecting the maximum value within a defined area
in the input. The max pooling operation is illustrated on Figure 2.25.
The up-sampling is to opposite operation and is used to increase the input
dimensions.

ReLU The rectified linear unit (ReLU) is an activation function f defined
by:

f(x) = max(0, x)

Activation functions are applied at the output of a layer in neural network.
In the scope of FCNs, the ReLU is applied after the convolution operation
i.e : x = On,m.

Architecture The convolution, max-pooling/up-sampling and ReLU to-
gether are the fundamental building blocks of the FCNs and they are gener-
ally assembled using the following rules:

• A convolution (conv) is followed by a ReLU.

• Several convolution operations can be chained to form a convolution
block (conv-block).

• A max-pooling/up-sampling can be appended at the end of a convolu-
tion block.

• The network is made of two part : the encoding part where the input
size is decreased from the initial input using max-pooling and an en-

28

Figure 2.26: Generic FCN architecture with I, J,N,M ∈ N. ’?’ marks the
element as optional.

coding part increasing again the input size using up-sampling all way
to the network output.

Once the building blocks are assembled following those rules, an FCN looks
like the generic architecture shown on Figure 2.26.

Training In order to update the model parameters, the training makes use
of an optimizer whose role is to tune the model parameters so that they min-
imize the loss function L over the training set. The core principle behind the
optimizer is the stochastic gradient descent or SGD which is itself a popular
optimizer.

Let θ be the model parameters and X an input image with Yp = f(X; θ)
then θ is updated as follows :

θt+1 = θt − γ(
1

B

B∑
b=1

∇θL(Yn(t,b), f(Xn(t,b); θ)))

where γ is the learning rate, B the batch size, t the step and n(t, b) is a
random order of sample visiting. The principle of the SGD is thus to find a

29

Figure 2.27: U-Net architecture, image derived from [16]. The numbers
indicate the channels (or filters) count for each convolution.

minimum of L by following the slope of the gradient to update the parame-
ters.

2.4.2 U-Net

The core of the segmentation algorithm is based on U-Net[16] which is a FCN
with the addition of skip connections between conv-block in the encoder and
the decoder as illustrated on Figure 2.27.

Intuitively, the U-Net works by first extracting the relevant features of
the image in the encoding part, the deeper in the network the more complex

30

the detected features become. For instance, the very first conv-block might
detect simpler features like edges, color intensity, ... The next conv-block

will use those general features to derive more complex ones and so on.
The decoding part works in reverse and uses encoded image features to re-
build a complete image. The skip connections added in the U-Net help this
process by giving information relative to the original image at each stage of
the reconstruction.

2.5 Evaluation metrics

In order to evaluate the quality of the segmentation in a formal way, it is
necessary to make use of metrics. Those that have been used are introduced
in this section.
The two metrics used are the Dice coefficient also known as F1 score and
the Jaccard index also known as the intersection over union (IoU). Theses
are commonly used metrics in segmentation problems [9][19][4].

2.5.1 Dice coefficient

Let Y be the ground truth mask and YP be the predicted mask.
The Dice coefficient d is a similarity measure between Y and YP where:

d(YP , Y) =
2|YP ∩ Y |
|YP |+ |Y |

(2.8)

In practice, (2.8) can be computed using a vector operation.
Let y be the ground truth mask in vector format and yP be the predicted
mask also in vector format, (2.8) can be rewritten as follow :

d(yP,y) =
2|yP · y|
|yP|2 + |y|2

The values of d range from 0 to 1. A value of d = 0 indicates that the sets
are completely different while d = 1 indicates a full similarity and thus the
closer d is to 1, the better.

31

Figure 2.28: Intersection over union [17].

2.5.2 Jaccard index

The Jaccard index coefficient j is also a similarity measure between Y and
YP where:

j(YP , Y) =
|YP ∩ Y |
|YP ∪ Y |

(2.9)

Informally, it can be considered as a measure of the overlap between Y and
YP as shown on Figure 2.28.

The Jaccard index and Dice coefficient are related each other and j can
be computed from d using :

j =
d

2− d

The values of j also range from 0 to 1. A value of j = 0 indicates no overlap
while j = 1 indicates a full overlap and thus the closer j is to 1, the better.

32

Chapter 3

Proposed methodology

This chapter describes the implementation and methodology done to solve
the segmentation problem. Among the relevant points is a proposed iterative
data improvement solution for the weak annotation and the implementation
of a generic and modular segmenter for easy integration in Cytomine.

3.1 Overview of the method

The Figure 3.1 provides a simplified overview of the method along with the
different modules used to implement the Cytomine cell segmentation soft-
ware. This provides a broader view over the key elements implemented in
this project and how the model was obtained.

33

Figure 3.1: Overview of the methodology and modules. The ’?’ marks the
augmentation step as optional because it wasn’t used in practice since it
hasn’t significantly improved the results but improvements could be brought
to it. ’IDI’ stands for iterative data improvement.

3.2 Implementation architecture

The software developed for this work is built around 6 main modules.

1. cydata (CYtomine DATAsets) : This module contains all utilities used
to handle the datasets. It implements modes for dataset downloading
from the Cytomine server, splitting a dataset and augmenting a dataset.
It was also used to add regions of interests in Cytomine WSIs for the
building of the validation and test sets.

2. cyseg (CYtomine cells SEGmentation) : This is the main module, it
can run the various modes associated with the implemented segmenter
which are : training the model, segmenting a dataset and/or Cytomine
WSIs and improving a dataset. It can serve as a standalone program
for testing/prototyping of a segmenter model but it can also be easily
run in Cytomine for segmentation of whole-slide images.

3. segmenter : This generic class specifies and implements the elements of
a segmentation module that can be easily customized and integrated in

34

an image processing pipeline. This module also contains the integration
of the developed algorithm (UNet class) within the Cytomine server
using the SLDC framework [15] to abstract the Cytomine WSIs to the
model. The Figure 3.2 illustrates the segmenter customizations. The
classes weights enable to associate different weights to each classes for
loss and metric computations.

4. unet : This is a subclass of Segmenter that implements the segmen-
tation using the U-Net architecture. It also contains the definition of
the used training loss and post-processing transforms. This module in
fact contains the user defined element shown on Figure 3.2.

5. transforms : This module contains a set of implemented transforms
that can be applied to an image for pre/post processing. The following
transforms were implemented : normalize, smoothing, erode dilate and
threshold. More details in the post-processing section.

6. metrics : It implements the two metrics used in this project : the
Jaccard index and the Dice coefficient. These metrics have been im-
plemented in such a way that they are compatible with the PyTorch

gradients computation so they can be used as part of a loss function.

The aforementioned modules were implemented in Python using mainly the
PyTorch, OpenCV and Cytomine-Python frameworks.

35

Figure 3.2: Segmenter customizations.

3.3 Dataset

3.3.1 Dataset building

As shown on 3.1, the dataset is built using the following steps:

1. Annotations selection : The Cytomine web interface has a feature al-
lowing the user to select the annotations he wants and then to download
a csv file containing all those annotations with their relevant associated
features such as: project id, image id, coordinates in the whole-slide
image, ... This file can then be used at the second step to download
the dataset. The dataset can also be downloaded using JSON files
provided by the Cytomine server and containing the aforementioned
components.

2. Dataset download : For each annotation in the file, a crop as well
as its masked version is extracted from the original whole-slide image
using the coordinates of the annotation.

36

3. Data selection and improvement : As it will be further explained
in the results, the data from the raw dataset was needed to be selected
to build a smaller dataset with less incomplete and sparse annotations.
This new dataset is then improved (completing the weak annotations)
using iterative data improvement (see section 3.5).

4. Data conversion (not on Figure 3.1) : While the RGB crops don’t
need data conversion to be used in the training process, their corre-
sponding mask must be converted from an RGB tensor to a mask tensor
according to the format specified in (2.5). This conversion is however
done when the mask is loaded and not in the actual file so that the
crop and mask can be easily visualised. An example of a sample of the
dataset is shown in Figure 2.10.

3.3.2 Data augmentation

The data augmentation is used to increase the number of data available by
applying various transformations to them. This is a commonly used tech-
nique to make up for a lack of data or improve model generalization.

Data augmentation of the training data was implemented in this work in
an effort to improve the results and the following augmenters were used :

• Apply a vertical symmetry with a probability of p = 0.5.

• Apply a horizontal symmetry with a probability of p = 0.5.

• Randomly translate the image along the X axis between −15% to 15%
(zero padding added).

• Randomly translate the image along the Y axis between −15% to 15%
(zero padding added).

• Rotate the image by 0, 90, 180 or 270 degrees randomly.

The augmenters were applied in a sequential fashion to each crop of the
dataset (and its corresponding mask), the sequential order being randomized
for each crop. One augmentation step on a dataset will thus double its
size. The Figure 3.3 shows an example of a crop being augmented using the
augmenters sequentially.

37

Figure 3.3: Example of an augmented crop along with its corresponding
mask.

3.4 Segmentation algorithm

3.4.1 Motivation

The inquiry about the the state of the arts methods in section 2.3 showed
the U-Net to be well suited for segmentation in biomedical applications, in
addition to surpass other models for the same task. The architecture also
has the following advantages:

• Well documented and numerous implementation examples available.

• Easy to modify/adapt for different tasks.

• As stated in [16], the network can be efficiently trained with few images
which might mean that there won’t be the need to use all the data
(a large portion of them containing weak annotations) and that the
training might be faster.

The choice for the core algorithm was thus made with U-Net.

3.4.2 Training

As explained in section 2.2.1, the training of the U-Net is performed by ad-
justing its parameters so that it minimizes a loss function L.

Let YP be the predicted segmentation mask and let Y be the ground truth
segmentation mask. The loss function L was define as (similar definition in
[11]):

L = Lbce + Ldice

38

Lbce is the binary cross-entropy loss which can be written as follow :

Lbce(YP , Y) = − 1

N

N−1∑
i=0

Yi log(YPi) + (1− Yi) log(1− YPi)

where N is the number of pixels in the mask, Yi is 1 if the pixel in i is fore-
ground (0 for background) and YPi is the predicted probability of the pixel in
i to be foreground. The first term of the sum penalizes false negatives while
the second term penalizes false positives.

Ldice is the dice loss which is a dissimilarity measure between 2 sets that
is commonly used in segmentation problems :

Ldice(YP , Y) = 1− d(YP , Y)

where d(YP , Y) is the Dice coefficient introduced in section 2.5.1.

The optimizer used is Adam[8] which is an extension of the SGD and batch
normalization[7] was also employed in the model to speed up the training.

The model is trained on 512× 512 crops with a batch size set to 1 as in
[16] to help reduce memory footprint on the GPU. The implemented U-Net
has a variable depth and also support multi-class segmentation (though only
binary segmentation was used).

3.4.3 Post-processing

The post-processing encompasses all treatments made to the predicted seg-
mentation mask after it is produced by the model. The goal is to further
refine the results which often include reducing the noise. The following trans-
forms were used.

Erode dilate Erosion can be achieved by sliding a kernel over the image
and replacing the pixel value in the image at the center of the kernel by the
minimal pixel value in the image overlapped by the kernel.
The dilation is the opposite operation which instead replaces the pixel value
in the image by the maximal pixel value in the image overlapped by the
kernel.

39

Figure 3.4: Erode dilate transform (the arrows indicate noise examples).

The combination of erosion and dilation can be successful to suppress
noise in the image. Indeed, the noise is first removed by the erosion but not
restored by the dilation unlike the rest of the image. An application of the
erode dilate transform is illustrated on Figure 3.4.

Smoothing The smoothing (or blur) is useful to soften the edges of the
mask thus making it more natural. A (3× 3) smoothing can be achieved by
simply using the following kernel:

u =
1

9

1 1 1
1 1 1
1 1 1

The new pixel value is computed by averaging the value with the one of the
neighboring pixels.

Threshold Since the output values given by the model are continuous (the
predicted values correspond to the probabilities of the pixels to be fore-
ground), it is necessary to determine a threshold from which the prediction
for each pixel will be considered foreground or background, the most common
choice being to simply round the predicted value. The threshold transform
is thus used to convert the output into discrete values :

v(i, j)′ =

{
1 if v(i, j) > threshold

0 otherwise

where v(i, j) is the value of the pixel at position (i, j).

40

Tiles merging As the segmenter works on tiles and some inaccuracies can
occur, especially on the edges (lack of context), this can reduce the quality of
the segmentation mask once the tiles have been reassembled. To mitigate this
problem, it is necessary to consider methods for tiles merging. Fortunately,
for the segmentation on WSIs, the SLDC[15] framework already implements
tiles merging techniques so that no further work is required. The segmenter
was consequentially developed with a per-tile segmentation approach and no
reassembling. However, for reasons that will be further explained, a (late)
choice was made to assess the models on crops bigger than 512 × 512 thus
requiring tiles reassembling. In order to implement some sort of merging for
those local segmentations, the idea was to apply the aforementioned post-
processing techniques on the reassembled mask. In practice, as it will be seen
on the results, this technique proves to be efficient enough for the models
assessment as the tiles related inaccuracies can hardly been seen.

3.5 Iterative data improvement

3.5.1 Motivation

In order to deal with the weak annotations, a method involving iterative data
improvement (IDI) is proposed. This section will focus on the principle of
the technique and more in depth results will be shown in section 4.2.

3.5.2 Principle

One of the properties of the convolutional neural network is the shift invari-
ance which is the ability to withstand shifting in the feature of the image
while still detecting those features. This can be partly explained by the use
of the same kernels that are identically applied on the complete image (ker-
nels sharing).
If we take the example of the cells detection, the U-Net will learn to detect
cells in the image and, under the good assumption, in such a manner that it
does not only depend on the location of those cells.

The phenomenon (kernels sharing) that enables the shift invariance prop-
erty can also have other repercussions that can be exploited. In the context
of weak annotations, it means that the model will struggle to fit exactly the

41

Figure 3.5: Results obtained by training a model on incomplete annotations.
The expert annotations are in white while the low tone gray are the model
predictions. The low tone indicates a low confidence of the model and thus
no threshold transforms were applied to obtain this result.

training data because if it learns to detect cells at some locations, it will likely
detect the cells at other locations on the image because they will share the
same features. What is likely to happen is that the output probabilities of the
foreground class for the pixels belonging to detected cells will be lower as a
trade-off for the loss and this will be especially the case if the dataset is large
and filled with sparse annotations. This reasoning is obviously simplified as
other factors are involved. In practice, this phenomenon was observed and
example is illustrated on Figure 3.5 with a model trained on 107 incomplete
annotations.

The principle of the iterative data improvement tries to exploit the phe-
nomenon shown on Figure 3.5 and works in the following steps (see Figure
3.6):

1. Training : The model is trained on the dataset to improve.

2. Segmentation : The model is used to predict the segmentation masks

42

Figure 3.6: Iterative data improvement.

of the dataset to improve.

3. Post-processing : The required post-processing is applied to the pre-
dicted masks.

4. Merging : The predicted masks are merged with the weak annotations
using a bit-wise OR operation and the file is saved in place of the old
ones.

5. Repeat : Repeat the above steps iteratively.

3.5.3 Post-processing

While IDI can work well if the dataset is relatively small and without too
much sparse annotations, it is very likely that it won’t converge properly on
less suitable data as shown on Figure 3.7 because the output probabilities of
the foreground class for cell pixels would be under the threshold.

43

Figure 3.7: IDI with and without the normalize transform (dataset of 236 an-
notations, half of them being sparse). Without the normalize transform, the
mask on top would not contain any predicted annotations after the threshold
is applied given the low output probabilities for the foreground class while
for mask below, the threshold would not drastically alter it.

44

To mitigate this problem one might want to adjust the threshold but this
solution is complicated in practice as it is difficult to determine the correct
value and that value will depend on the dataset. A better solution is to
normalize the predicted masks before they are merged with the weak anno-
tations (see Figure 3.7).

Let M be the predicted mask with C channels, the normalized mask M ′

is computed per channel as follow:

M ′
c =

Mc − µ(Mc)

σ(Mc)
∀c = 0, ..., C − 1

where µ(Mc) and σ(Mc) are respectively the mean and standard deviation
of the channel Mc.

In practice, the normalization enables the IDI to work on bigger datasets
with more sparse annotations as it will be shown in the results.

3.6 Cytomine integration

The integration in Cytomine can be divided into main 2 steps :

1. The first step is to implement the required functionalities in the cyseg

and segmenter modules so that the program is able to be run from the
Cytomine server and perform a remote segmentation of WSIs using a
pre-trained model. This step mainly involves integrating the SLDC[15]
framework into the segmenter module and adapting the interface of
cyseg.

2. The second step involves the creation of a Docker image of the applica-
tion and the insurance of the compliance with the Cytomine software
development guidelines. The Cytomine software is run from a Docker
image (virtualization technology to run software in a containerized en-
vironment) so that there is no problem with the required environment
and libraries while also providing easy updating.

The cyseg program has 2 functions for remote segmentation of WSIs :
segmenting portions (or windows) (Figure 3.8) or complete segmenting of the
WSI. Segmenting only portions of the WSI can be useful to assess the model

45

Figure 3.8: Segmentation of portions (windows) of the WSI.

on specific areas (for instance, containing expert annotations) while avoiding
the computational overhead of the segmentation on a complete WSI. Seg-
menting on windows can also open the way of a parallelized segmentation of
the WSI and the increased computational speed associated (the merging of
windows should be addressed in this case).

In order to upload the predicted annotations, the predicted masks need to
be converted to polygon objects that can be efficiently sent to the Cytomine
server. The polygons represent the areas covered by foreground in the pre-
dicted masks. The relevant steps of the remote segmentation of a Cytomine
WSI are illustrated on Figure 3.9.

At the time of writing of this thesis, the integration is almost complete,
the program is able to segment portions of the WSI but some technical
problems prevent the segmentation on the complete WSI. These problems

46

Figure 3.9: Remote segmentation of a Cytomine WSI. The polygon objects
represent the areas covered by foreground in the predicted masks.

will hopefully be solved for the defense.

47

Chapter 4

Experiments and Results

The following chapter will describe the various experiments that were made
along with their associated results while assessing the performance of the
solution under various aspect. The impact of the training set and the hyper-
parameters of the model will be assessed on a validation set. The compu-
tation performance will also be assessed before drawing the conclusion and
suggesting improvements.

4.1 Validation and testing sets

According to the introduced evaluation process in Figure 2.12, the datasets
must be split into three distinct ones. However, ensuring that the crops are
uniquely used in each set is not enough because of the bias resulting from
the specificity associated to the whole-slide image from which the crops in
the datasets derived, as explained in section 2.2.3.

It is thus crucial that the data used to train the model does not integrate
the specifity of the whole-slide images in the validation or testing otherwise
it will compromise the relevance of the results regarding the generalization
of the model.

The sets were constructed as follows :

1. WSIs were put aside for the testing and validation sets, the remaining
were put in the training set and each WSI is unique in each set.

48

set WSIs as source # crops crop size (pixels)
validation 3 20 2048× 2048

test 3 25 2048× 2048

Table 4.1: Summary of the validation and test sets.

2. Attention was made by looking at the IDs and times of the WSIs to
ensure that they don’t share the same patient and time across the
different sets.

3. Because of the weak annotations (section 2.2.3) and the need to have
complete data for model validation and assessment, manual annotations
were added to the selected WSIs. Some were made by completion of
the annotations of the expert but since there weren’t enough of them,
the vast majority were manually added. A total of 307 annotations
were manually added.

4. The crops and their corresponding masks were extracted as described
in section 3.3.1.

The size of the crops in the validation and testing set is 2048 × 2048
which is 16 times bigger than the size of the training crops. This choice is
motivated by the following reasons :

• The greater the crop, the closer it represents the WSI it belongs to
because it contains more and diverse types of cells and background.

• It is a less tedious and faster task of annotating a few bigger regions of
interest than creating a lot of smaller annotations. As this step must
be done manually, this is a great advantage.

The characteristics of the sets are summarized in Table 4.1. Although
the number of crops seems limited, their bigger size means that the actual
number of segmentations performed by the model is 16 times bigger.

4.2 Results

The goal of the assessment is to evaluate the methodology used to train the
models and also to perform model selection for the integration in Cytomine.
Several tests were made to assess the method regarding various aspects of
the problem and the results are presented in this section.

49

4.2.1 Selection and assessment stages

The process of assessing the proposed methodology was divided in several
stages described below.

Stage 0 : Early prototyping This phase is not clearly defined and typ-
ically involves the early experiments made while implementing the model.
This stage does not give clear results though it is useful to bound the prob-
lem and assess the feasibility of a solution.

Stage 1 : Dataset selection The goal of this phase is to determine
which dataset to use for model training, namely the raw dataset (d raw) or
a selected dataset (d selected) whose elements are selected from the raw
dataset. This approach is motivated by the following reasons :

• Experiments made during the early prototyping seem to indicate that
the model performs better on reduced datasets made up of selected
data than on the raw dataset downloaded from the Cytomine server.
The assumption is that the larger presence of incomplete and sparse
annotations in the raw dataset hurts the training.

• The raw dataset downloaded from the Cytomine server contains erro-
neous annotations and/or corrupted data. For instance, some crops
are abnormally blurred, some annotations are erratic, etc. This means
that a first cleaning step (which is hard to automate) is required and,
given the size of the raw dataset, this can be an extensive task.

• The time required to train the model would be significantly bigger on
the raw dataset than on a selected one.

• The validation set is equivalent to 320 (512 × 512) crops and the test
set is equivalent to 400 crops. By using a reduced training set of similar
size, the results become more relevant.

Because of the disparity in annotations quality, the datasets are split into
2 parts : pattern annotations (mostly complete) and cell annotations (mostly
incomplete or sparse). The latter will be subjected to IDI before being re-
combined with the pattern annotations. The resulting dataset is used for
training (Figures 4.1 and 4.2) .

50

Figure 4.1: Training using the raw dataset.

Figure 4.2: Training using the selected dataset.

51

Data augmentation will also be applied to the chosen dataset (either
d raw or d selected) to study its potential benefits.

Stage 2 : Model selection This phase will study the impact of 2 hyper-
parameters : the initial number of filters n and the threshold t. The goal
is to find the most suitable combination of them. The models are trained
using the dataset chosen at stage 1 and validated on the validation set. The
performance of the models in terms of computation time and memory usage
depending on n will also be assessed.

The hyper-parameter n is the value of the initial number of filters
of the U-Net, i.e 32 on Figure 2.27. Since the number of filters is doubled
at each stage, n affects the number of filters at each stage of the U-Net.
For instance, a value of n = 8, would mean a number of filters in the last
stage equal to 128. The hyper-parameter n is thus used to control the model
complexity.
The threshold t is simply the threshold value used by the threshold transform
applied after the predictions.

The goal of this phase is to be able to derive a model selection method.

Stage 3 : Assessment on test set This is the final phase which will assess
the selection method on the test set in order to draw the final conclusions.

4.2.2 Data selection

The dataset d selected is built using the 2 following rules:

• Select the most complete annotations (≈ 50% or more of annotated
cells in the crop).

• Annotations should be selected from diverse WSIs.

A summary of the datasets is given on Table 4.2.

First, the IDI is applied on the subset containing the cells of both datasets.
Then a model is trained on the resulting improved datasets (improved cell
annotations along with the pattern annotations) and evaluated on the vali-
dation set.

52

set # crops of which patterns of which cells crop size (pixels)
d raw 4677 1731 2946 512× 512

d selected 407 300 107 512× 512

Table 4.2: Summary of the raw and selected datasets.

set # crops IoU Dice
d raw 4677 0.35 0.52

d selected 407 0.67 0.80

Table 4.3: Average IoU and Dice scores obtained by training models on the
raw and selected datasets. Evaluation performed on a validation set of 20
crops of size 2048× 2048.

Since the optimal hyper-parameters of the model are not known, different
values of n (8, 16, 32) were tested (3 models for each) and t is fixed to a
standard 0.5 (round). It should be noted that the goal is not to find an
optimal model but rather to identify a tendency.
The final results on Table 4.3 report the average IoU and Dice obtained with
each dataset.

What can be seen from Table 4.3 is that d selected performs substan-
tially better than d raw. As explained above, it is very likely that the huge
presence of weak and erratic/erroneous annotations affect the model perfor-
mance on d raw. Moreover, as it can be noticed on Table 4.2, the proportion
of cell crops (and thus poorer annotations) in d raw is significantly bigger
than the proportion of patterns while the situation in d selected is the op-
posite.

IDI seems more efficient on a smaller dataset and it is confirmed by an
inquiry of the results of the IDI applied on both datasets. On shared crops
with weak annotations among both datasets, the IDI managed to produce
better annotations as illustrated by an example on Figure 4.3. However, IDI
on both datasets also produced some false positives as shown on Figure 4.4.

Given the results, the chosen dataset is d selected. The next step was
to perform data augmentation on it to see if it managed to improve the re-
sults using the same assessment strategy as before. An augmentation step

53

Figure 4.3: IDI using the raw and selected datasets. Missing foreground
highlighted in red.

Figure 4.4: IDI using the raw and selected datasets. Examples of false posi-
tives are highlighted in red.

54

set aug. steps # crops IoU Dice
d selected 0 407 0.67 0.80
d selected 1 814 0.67 0.80
d selected 2 1221 0.66 0.79

Table 4.4: Average IoU and Dice scores with and without data augmentation.
The number of steps indicate the number of times data augmentation was
applied on the original dataset. Evaluation performed on a validation set of
20 crops of size 2048× 2048.

means that data augmentation is applied once on the original dataset and
thus each augmentation step will increase the dataset size by its original size.
The Table 4.4 shows the average IoU and Dice obtained with and without
data augmentation.

As shown on 4.4, there is no significant change on the scores with 1 step
of data augmentation. As for 2 augmentation steps, the results are slightly
worse but, again, with no significant difference. It thus seems that the pro-
posed data augmentation does not help improving the results and is even
slightly decreasing them when significantly more data is added. It should
be noted however that the apparent ineffectiveness of the data augmentation
may be due to the augmenters employed. Data augmentation should not be
considered completely inefficient as other augmenters may be tested.

To conclude with the data selection, the following tests will be made on
d selected. The identified tendency is that greater datasets don’t seem to
produce substantially better results. It seems however that the correctness
and diversity of the data are beneficial. The following guidelines for dataset
building can thus be derived :

• The data should come from a diverse pool of WSIs so that the model
can better generalize on different types of background.

• The annotations effort should focus on lesser but more complete an-
notations (≈ 50% or more of annotated cells in the crop) rather than
making a large portion of sparse annotations.

55

Figure 4.5: Mean IoU on validation set depending on the initial number of
filters n and the threshold t.

4.2.3 Hyper-parameters tuning

The goal of this section is to study the influence of the hyper-parameters
n and t (defined in section 4.2.1) on the segmentation performance. Four
values of n were tested : 4, 8, 16, 32. 10 models were trained with each value
of n and for each one of them, 10 values of t were tested and the final results
report the IoU scores obtained for each pair (n, t) on Figures 4.5, 4.6 and 4.7.

It can be seen right away from 4.5 that n = 4 performs substantially worse
than the others. The observed tendency is that as n increases, the average
IoU will get better over a wider range of threshold values. For instance, for
n = 4 the spectrum of good values would be t in the close neighborhood of
0.5. For n = 8 it can be 0.4 to 0.5, for n = 16 it’s 0.6 to 0.8 and for n = 32
it’s 0.5 to 0.8. The best models on average were obtained with n = 32 asso-
ciated with a t of 0.6 and 0.7 and interestingly, with n = 8 and t = 0.5. The
need for a higher threshold may indicate that the model is prone to false
positives whereas in the other case, it is prone to false negatives.

56

Figure 4.6: Standard deviation for the IoU on validation set depending on
the initial number of filters n and the threshold t.

The Figure 4.5 illustrates one of the issue with the training method which
is the variation of the IoU score obtained between models trained with ex-
actly the same hyper-parameters and data. This training instability is a
recurring situation in deep learning due the stochastic nature of the opti-
mizer. However, while small variations can be acceptable, the variation of
IoU observed in this project can be greater than 0.1 which is significant.

On Figure 4.6 it can be seen again that n = 4 performs worse than the
others by having the bigger standard deviations for all thresholds. The model
training with n = 8 seems reasonably stable for t = 5 but unstable beginning
with t = 6. As for n = 16 and n = 32, the model training is reasonably stable
for t ≥ 0.5. However, even for those most stable configurations, the standard
deviation is still around 0.05 which is too high to be considered truly stable.
One should also recall that a stable configuration of (n, t) does not mean
good accuracy. It means consistency of the results and therefore, the recom-
mended configuration should be a trade-off between stability and accuracy.

57

Figure 4.7: Max IoU obtained validation set depending on the initial number
of filters n and the threshold t.

A last interesting observation is to look at the best IoU score obtained
for each configuration. In this case, it is interesting to see that good models
(IoU ≥ 0.7) can be obtained with any n and a threshold 0.5 ≤ t ≤ 0.8.

Aside from n = 4 that can be safely put aside given its poor results
with nearly every aspects. It is rather difficult to draw definitive conclusions
based on those observations. The sample of models may not be large enough
or other tests may be required to better distinguish the tendencies. Still, it
seems that models trained with higher n associated with a threshold t slightly
above 0.5 give more stable configurations with good mean IoU scores. n = 16
and n = 32 with a threshold of 0.6 or 0.7 can thus be recommended. Good
models were also found with n = 8 and t = 0.5. However, this configuration
does not seems stable with higher thresholds.

The Figures 4.8 and 4.9 illustrate segmentations made on the validation
set using a model trained with n = 16 combined with t = 0.6. Some false

58

Figure 4.8: Segmentations on the validation set. From left to right : the crop
to segment, crop with ground truth mask, crop with predicted mask, ground
truth mask alone, predicted mask alone.

positives can be seen on the bottom crop of Figure 4.9 and the background
generating it seems similar to the one in Figure 4.4. Those false positives
were also observed in other crops no matter the configuration and it seems
that they are one of the main cause of reducing the IoU score.

4.2.4 Performance

The goal of this section is to assess the computation performance of the
model and the hardware used is the following :

• i7-4710MQ 3.5GHz

• NVIDIA GTX860M with 2GB VRAM

• 12GB RAM

This hardware is not comparable to the capabilities of a GPU cluster
which could not be used due to lack of time. The goal of this performance

59

Figure 4.9: Segmentations on the validation set. From left to right : the crop
to segment, crop with ground truth mask, crop with predicted mask, ground
truth mask alone, predicted mask alone. Some false positive are highlighted
in red on the bottom crop.

60

n training time # crops crop size
8 2m09s 407 512× 512
16 3m40s 407 512× 512
32 7m51s 407 512× 512

Table 4.5: Training times for different values of n which controls the com-
plexity of the network.

n segmentation time # crops crop size
8 0m29s 20 2048× 2048
16 0m37s 20 2048× 2048
32 0m59s 20 2048× 2048

Table 4.6: Segmentation times for different values of n.

assessment is thus to again identify tendencies, as the potential gaps of perfor-
mance between different configurations could fade away on the GPU cluster.
Nevertheless, assessing the performance on modest hardware can potentially
drive the model to a more efficient implementation and given the size of the
whole-slide images, it can be useful to have a faster model.

Computation time The segmenter can be run and trained using the CPU
or the GPU, though the latter is obviously preferred and used to assess the
computation time. The different computation times of training and segmen-
tation with respect to n are shown on Tables 4.5 and 4.6 (t does not affect
the performance).

The training time is significantly smaller for n = 8 which is about 1.7
times faster than n = 16 and 3.7 times faster than n = 32. This is ex-
pected since n controls the complexity of the model and thus the number
of parameters in the model to learn. The training time seems reasonable
but will sharply increase with bigger datasets and/or models. It should be
noted, however, that while a smaller training time can be useful for fast pro-
totyping/testing, it shouldn’t be a huge matter of importance for production
models as they are generally not often retrained and the accuracy matters
the most.

The segmentation time is again smaller for n = 8 which is about 1.3 times

61

n RAM usage [GB] VRAM usage [GB] # crops crop size
8 1.3 0.64 407 512× 512
16 1.3 0.86 407 512× 512
32 1.3 1.35 407 512× 512

Table 4.7: Memory usage for training.

faster than n = 16 and 2 times faster than n = 32. A quick estimation can
be made to try to determine the segmentation time of a whole-slide image
with n = 16.

Let nwsi be the total number of 512× 512 tiles contained in a WSI, then
using the dimensions from Figure 2.3 :

nwsi =
104704 · 172032

512 · 512
= 68712

Let twsi be the WSI segmentation time :

twsi =
37

20 · 16
· nwsi = 7944s ≈ 2h12min

It should be noted that it is not considering the communication overhead
with the Cytomine server, so the actual time should be bigger.

The segmentation time seems quite substantial with modest hardware
but it can be expected to be fast enough using a cluster. In this case, the
segmentation time is more relevant from a production perspective as it can
help to reduce the diagnosis time.

Resource usage Attention was made to reduce the memory footprint so
that it is possible to handle huge datasets though the crop size remains the
bottleneck because of the limited GPU VRAM. The memory usage (RAM
and VRAM) for different values of n is studied and the results for training
and segmentation is reported on Table 4.7 and 4.8 respectively.

What can be seen from Table 4.7 is that the parameter n does not affect
the RAM usage but the VRAM usage. This is due to the model being stored
on the GPU memory while the RAM usage is caused by the crops being
buffered before being passed to the model. The memory usage increases of

62

n RAM usage [GB] VRAM usage [GB] # crops crop size
8 2.4 0.5 20 2048× 2048
16 2.4 0.6 20 2048× 2048
32 2.4 0.77 20 2048× 2048

Table 4.8: Memory usage for segmentation.

≈ 34% from n = 8 to n = 16 and of ≈ 57% from n = 8 to n = 16. Con-
sidering an augmentation of ≈ 100% between n = 32 to n = 64, a model
with n = 64 could be easily trained on a GPU with 4GB of VRAM (not all
VRAM is accessible to PyTorch). The memory usage seems very reasonable
though and one can conclude that the model training can be easily scaled on
a GPU cluster in terms of memory usage.

For segmentation, one can notice an increase of RAM usage which is due
to the bigger size of the crops being buffered. The increase of VRAM usage
from n = 8 to n = 32 is twice as small as for the training which means that
the model can also be scaled for segmentation concerning memory usage.

4.2.5 Model selection

The selected configuration is n = 16 combined with t = 0.6. The reason is
that n = 16 seems to be a good compromise between accuracy (mean IoU),
training stability (std IoU), segmentation speed and resource usage. It is as
accurate and stable as n = 32 while performing segmentation faster. n = 8
was not chosen as the models were shown to be unstable with t ≥ 0.6 but
this threshold can be useful to attenuate false positives.
In real conditions, the recommendation would thus be to train models on
validation set and select the one with the best IoU score with the additional
requirement that the IoU should be ≥ 0.7 knowing that the best models that
can be produced are around IoU ≈ 0.7 (Figure 4.7).

4.2.6 Assessment

To assess the model selection, 30 models were trained using the recommended
configuration and the best ones were selected on validation set (IoU ≥ 0.7)
then they were assessed on test set. The results on Table 4.9 report the IoU

63

set mean IoU std IoU # crops crop size
validation 0.7103 0.006 20 2048× 2048

test 0.6604 0.0135 25 2048× 2048

Table 4.9: Results on test set compared with validation set using model
selection.

scores on both validation and test sets using the selected models.

The results obtained on the test set are lower than those obtained on
validation by ≈ 0.05. This is a significant difference but after inspection of
the segmentations (see Figure 4.10), it seems that once again the IoU scores
are driven down by false positives obtained on some types of background (in-
cluding 4.4). On other types of crops however, the model seems to perform
well, as shown on Figure 4.11.

Regarding the stability of the produced models, the standard deviation
is reasonably low on test set. Indeed, it is well under the 0.05 originally ob-
tained by training models with n = 16 (Figure 4.5) which may imply that the
selected models from the validation set indeed share common characteristics
and thus they have a similar generalization.

To conclude the assessment, the selection method produces models that
are consistent and perform reasonably well but a problem of false positive on
some types of background is one the main factor affecting the IoU scores.

4.3 Improvements

This section summarizes the various improvements that can be built upon
this work to address the main issues with the proposed solution.

Improve model training and accuracy One of the main problem of
the model is the generation of false positives which affect IoU score and the
non-negligible variability of those models produced by the training is also an
issue. The following solutions can be envisioned by order of priority :

1. The first solution to explore would be to improve the training set by
adding more complete and diverse annotations, especially the ones con-

64

Figure 4.10: Segmentations on the test set. From left to right : the crop to
segment, crop with ground truth mask, crop with predicted mask, ground
truth mask alone, predicted mask alone. Examples of false positives are
highlighted in red.

65

Figure 4.11: Segmentations on the test set. From left to right : the crop to
segment, crop with ground truth mask, crop with predicted mask, ground
truth mask alone, predicted mask alone.

66

taining the problematic background. This solution is linked to the need
of improvement regarding the data selection process to build the train-
ing set.

2. Improve the proposed data improvement and data augmentation meth-
ods.

3. Tune/change the optimizer.

4. Try another network architecture or search for improvement of the U-
Net.

Theses solutions can, of course, be combined.

Data selection process The main problem with the selection of data is
that it is a manual process and hard to automate because a way of au-
tomatically selecting good data would assume a model able to detect the
cells and patterns correctly. Nevertheless, there could be ways of acceler-
ating/enhancing the data selection process by, for instance, using active
learning.

Increase validation and test set sizes The gap of the results between
the validation and test set showed that models performing reasonably well on
validation set can be subjected to greater inaccuracies on test set. Increasing
the size of validation and test sets can help getting more relevant model
selection ans results. The problem being that it can be an extensive task and
should be delegated to experts.

Integration Even though a partial integration in Cytomine was achieved,
the full integration is held by some technical problems that need to be ad-
dressed.

Post-processing on GPU While the computation of the predicted masks
is done on the GPU, the post-processing is currently implemented on the
CPU, which forms a bottleneck. Smaller segmentation time could be achieved
by moving the post-processing onto the GPU.

67

Chapter 5

Conclusion

This thesis addressed a digital pathology problem of cell segmentation in
whole-slide cytological images with the end goal of contributing to an au-
tomated diagnosis system of the thyroid cancer. Among the challenges was
the presence of incomplete/weak annotations in the dataset which made the
training of a supervised learning algorithm harder.

The implemented solution uses a U-Net network in conjunction with noise
reduction post-processing for the segmentation. An iterative data improve-
ment method has also been proposed and managed to partly deal with the
weak annotations, though it couldn’t with all available data. This led to the
need of building a training set by selecting the data from the whole set of
data. The implementation has also been made modular so that the developed
segmenter can be easily integrated in another image processing framework
and the Cytomine instance of the ULiège. The integration in the latter being
almost complete.

The results are promising and show that the U-Net in conjunction with
data improvement can produce satisfying segmentations though inaccuracies
due to false positives remain. The solution should also be easily scaled on a
GPU cluster for faster segmentations thanks to its reasonable resource usage.

One main recommendation for further work would be to address the build-
ing of the training set by, for instance, using active learning and paying
attention to the diversity and completeness of the data.

68

Bibliography

[1] Cytomine. https://cytomine.be.

[2] Overfitting and underfitting graph. https://github.com/d2l-ai/

d2l-en/blob/master/img/capacity_vs_error.svg.

[3] Rasterio. https://rasterio.readthedocs.io.

[4] D. Baltissen, T. Wollmann, M. Gunkel, I. Chung, H. Erfle, K. Rippe, and
K. Rohr. Comparison of segmentation methods for tissue microscopy
images of glioblastoma cells, 2018.

[5] Juan C. Caicedo, Jonathan Roth, Allen Goodman, Tim Becker, Kyle W.
Karhohs, Matthieu Broisin, Csaba Molnar, Claire McQuin, Shantanu
Singh, Fabian J. Theis, and Anne E. Carpenter. Evaluation of deep
learning strategies for nucleus segmentation in fluorescence images, 2019.

[6] David Dov, Shahar Ziv Kovalsky, Jonathan Cohen, Danielle Elliott
Range, Ricardo Henao, and Lawrence Carin. A deep-learning algorithm
for thyroid malignancy prediction from whole slide cytopathology im-
ages, 2019.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift, 2015.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[9] Chaitanya Kolluru, Beth A. Benetz, Naomi Joseph, Harry J. Menegay,
Jonathan H.Lass, and David Wilson. Machine learning for segmenting
cells in corneal endothelium images, 2019.

69

https://cytomine.be
https://github.com/d2l-ai/d2l-en/blob/master/img/capacity_vs_error.svg
https://github.com/d2l-ai/d2l-en/blob/master/img/capacity_vs_error.svg
https://rasterio.readthedocs.io

[10] Marvin Lerousseau, Maria Vakalopoulou, Marion Classe, Julien Adam,
Enzo Battistella, Alexandre Carré, Théo Estienne, Thé ophraste Henry,
Eric Deutsch, and Nikos Paragios. Weakly supervised multiple instance
learning histopathological tumor segmentation, 2020.

[11] Qiaokang Liang, Yang Nan, Gianmarc Coppola, Kunglin Zou, Wei
Sun, Dan Zhang, and Yaonan Wang Guanzhen Yu. Weakly supervised
biomedical image segmentation by reiterative learning, 2018.

[12] McKinney, S.M., Sieniek, M., Godbole, and V. et al. International eval-
uation of an ai system for breast cancer screening, 2020.

[13] Romain Mormont, Pierre Geurts, and Raphaël Marée. Comparison of
deep transfer learning strategies for digital pathology, 2018.

[14] Romain Mormont, Pierre Geurts, and Raphaël Marée. Multi-task pre-
training of deep neural networks fordigital pathology, 2020.

[15] Mormont Romain. A workflow for large scale computer-aided cytol-
ogy and its applications. https://matheo.uliege.be/handle/2268.

2/1314, 2016.

[16] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation, 2015.

[17] Adrian Rosebrock. A visual equation for intersection over
union (jaccard index). http://www.pyimagesearch.com/2016/11/07/
intersection-over-union-iou-for-object-detection/, 2016. Cre-
ative Commons Attribution-Share Alike 4.0 International license.

[18] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers.
Cell detection with star-convex polygons. In Medical Image Computing
and Computer Assisted Intervention - MICCAI 2018 - 21st International
Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part
II, pages 265–273, 2018.

[19] David A. Van Valen, Takamasa Kudo, Keara M. Lane, Derek N. Mack-
lin, Nicolas T. Quach, Mialy M. DeFelice, Inbal Maayan, Yu Tanouchi,
Euan A. Ashley, and Markus W. Covert. Deep learning automates the
quantitative analysis of individual cells in live-cell imaging experiments,
2016.

70

https://matheo.uliege.be/handle/2268.2/1314
https://matheo.uliege.be/handle/2268.2/1314
http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
http://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

[20] Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene
Myers. Star-convex polyhedra for 3d object detection and segmenta-
tion in microscopy. In The IEEE Winter Conference on Applications of
Computer Vision (WACV), March 2020.

71

