
https://lib.uliege.be https://matheo.uliege.be

Travail de Fin d'Etudes : Development of a compressible flow solver for PFEM

fluid simulations

Auteur : Février, Simon

Promoteur(s) : Ponthot, Jean-Philippe; Boman, Romain

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil physicien, à finalité approfondie

Année académique : 2019-2020

URI/URL : http://hdl.handle.net/2268.2/9010

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

ATFE9007-1 - Final thesis
(included an introduction to research methodology)

Development of a 3D
compressible flow solver for
PFEM fluid simulations

Simon Février

Abstract
A solver using the Particle Finite Element Method (PFEM) for incompressible and
weakly-compressible Navier–Stokes equations is developed in order to simulate quasi

incompressible 3D flows. The equations describing these types of flows are recalled in their
analytical form. The PFEM method and the discretized version of the equations are described
in 3D, using an implicit scheme for the incompressible equations and an explicit scheme for the
compressible ones. The problem of 3D triangulation and alpha shape algorithm is solved by
using the Computational Geometry Algorithms Library (CGAL). The results are compared to
the solver developed during the PhD thesis of M.-L. Cerquaglia as well as analytical results
when available. The solver, although able to simulate flows with fluids near incompressibility

quite well, seems to have more difficulties simulating fluids which are too compressible.

Supervisors
Pr. Jean-Phillipe Ponthot

Dr. Romain Boman

Jury Member
Pr. Vincent Terrapon

Jury President
Pr. Benoît Vanderheyden

Master of Science (MSc) in Engineering Physics

Academic year 2019-2020

Table of contents 2

Table of contents

Introduction 6

I Reminder of continuum mechanics 7

1 Conservation equations 7

2 Navier–Stokes equations 9
2.1 Incompressible fluid . 9
2.2 Weakly-compressible fluid . 10

3 Galerkin formulation 10

II The Particle Finite Element Method 13

1 Overview of the method 13
1.1 Eulerian methods . 14
1.2 Lagrangian methods . 14
1.3 The PFEM . 15

2 Remeshing Procedure 15
2.1 Delaunay triangulation . 15
2.2 Alpha-shape algorithm . 17

3 Other mesh-improvement algorithms 21

4 Frequency and performance of remeshing 22

5 Space Discretization 23
5.1 Weakly Compressible fluid . 24
5.2 Incompressible fluid . 25

6 Time integration 26
6.1 Weakly Compressible fluid . 26
6.2 Incompressible fluid . 27

7 Boundary conditions 28

8 Implementation 29

Table of contents 3

III 2D Incompressible solver case studies 31

1 Hydrostatic case 31

2 Flow in between two plates 34

3 Sloshing 38

4 Dam break 40

5 Dam break with obstacle 45

6 Performance considerations 48
6.1 Mesh size . 48
6.2 Parallelization . 49

IV 2D Compressible solver case studies 51

1 Hydrostatic case 51

2 Flow between two plates 54

3 Sloshing 56

4 Dam break 58

5 Dam break with obstacle 60

6 Performance considerations 63
6.1 Incompressible and compressible solving time comparison 63
6.2 Parallelization . 64

V 3D case studies 66

1 Fluid in cylindrical pipe 66

2 Dam break 70

3 Performance considerations 72

Conclusions and future work 74

Table of contents 4

Annexes 76

A Mesh file 76

B Boundary conditions implementation 76

C How to use the executable and its JSON parameter file ? 77

D How to use the project from python ? 79

References 80

Books 80

Thesis 80

Articles 80

Software 82

Notations 5

Notations
E A set.
q A scalar (zero-th order tensor).
~v A vector (first order tensor).
~v1 · ~v2 A standard dot product between two vector.
‖~v‖ The standard norm of a vector.
n̂ A unit vector (symbolized by the hat).
(êx, êy, êz) A Cartesian basis.
(êr, êθ, êz) A cylindrical basis.
(êr, êθ, êφ) A spherical basis.
~∇~v The gradient of ~v.
~∇ · ~v The divergence of ~v.
~∇× ~v The curl of ~v.
~~T A tensor (second order tensor).
~~I The identity tensor.
~~T · ~v A standard dot product between a tensor and a vector.
~~T1 : ~~T2 A standard double dot product between two tensors.
~~TT The transpose tensor associated to this tensor.
I~~T , II~~T , III~~T Tensor invariants tr~~T , 1

2

(
tr~~T 2 − (tr~~T)2

)
, and det~~T .

dev~~T Deviatoric part of a tensor.
~∇ · ~~T The divergence of ~~T .
tr~~T The trace of ~~T .
det~~T The determinant of ~~T .
A A matrix.
v A column-matrix.
AT The transpose of a matrix.
vT A row-matrix.
[f] The matrix representing f in a cartesian basis.

Introduction 6

Introduction
In addition to its existing solid mechanics solver, the MN2L (Non-Linear Computational
Mechanics) lab of the University of Liège has gained access to free surface flow simulations
and FSI (Fluid Structure Interaction) problems simulations thanks to the development of
its PFEM (Particle Finite Element Method) incompressible Newtonian flow solver as well
as the CUPyDO partitioned coupler. The PFEM is a mesh-based Langrangian method,
giving it the ability to follow the free surface quite easily; while CUPyDO is an integrated
Python environment able to couple multiple fluid or solid solvers for FSI problems. Both
programs were developed in collaboration with the MTFC (Multiphysic and Turbulent
Flow Compilation) lab at Uliège during a previous work by Marco-Lucio Cerquaglia
(Cerquaglia [2019]) and David Thomas (Thomas et al. [2019]). The main problem that
the lab currently encounters is the simulation of real 3D flows, as the current existing
code is only able to simulate 2D flows. Moreover, simulating a 3D incompressible flow
might turn out to be extremely computationally expensive due the need to use an implicit
solver for such kind of equations, since such solvers do not scale well when increasing the
number of unknowns, and memory consumption.

Cerquaglia’s solver also uses an external executable (named triangle, Shewchuk [1996]) to
perform the Delaunay triangulation of the remeshing step inherent to PFEM simulations.
This means that some data has to be exchanged between the PFEM program and the
external executable through the hard drive, which has an impact on performance. This
external program is also unable to perform 3D Delaunay triangulations.

To remedy this situation, an explicit solver which should scale far much better with
the size of the problems of interest will be developed in this master thesis. To do so,
the incompressible Navier–Stokes equations will be replaced by the weakly-compressible
Navier–Stokes equations, based on the work in Meduri [2019], but still with the goal of
simulating incompressible flows. An incompressible implicit solver has also been devel-
oped alongside the explicit solver.

Moreover, both implicit and explicit solvers support 3D flows simulations. All the 2D
and 3D Delaunay triangulations as well as alpha-shape algorithm are performed using
CGAL (Computational Geometry Algorithms Library, The CGAL Project [2020]) such
that the remeshing does not need to do input-output access on the drives anymore.

This report is divided in five parts. The first part will recall the continuum mechan-
ics equations involved in Newtonian incompressible and weakly-compressible flows. The
second part will describe the method used in this report and the particular problems
encountered in 3D with spurious element generation. The third part will compare the
implicit incompressible 2D solver developed in this work to Cerquaglia’s solver. The
fourth part will compare the incompressible implicit 2D solver and the weakly compress-
ible explicit 2D solver developed in this work. The final part will then illustrate the 3D
capabilities of the solvers developed in this master thesis.

Reminder of continuum mechanics 7

Part I

Reminder of continuum mechanics
Contents

1 Conservation equations 7

2 Navier–Stokes equations 9
2.1 Incompressible fluid . 9
2.2 Weakly-compressible fluid . 10

3 Galerkin formulation 10

In this short part, the equations describing the behaviour of a linear incompressible or
weakly-compressible fluid will be recalled, both in their strong and weak form. A basic
knowledge of continuum mechanics as well as FEM (Finite Element Method) is assumed
all along the manuscript.

1 Conservation equations

We consider the evolution of a volume of matter V (t) through time as seen in Figure 1.

Figure 1: A continuum of matter.

The boundary of this fluid domain ∂V (t) is assumed to be partitioned in SD(t) and
SN(t), which are respectively the boundary on which are applied Dirichlet and Neumann
boundary conditions, such that SD ∪ SN = ∂V and SD ∩ SN = ∅.

Reminder of continuum mechanics 8

Under continuum hypothesis, the equations describing the behaviour of a homogeneous
material without electromagnetic effect are:

dρ

dt
+ ρ~∇ · ~v = 0

ρ
d~v

dt
= ~∇ · ~~σ + ρ~b

~~σ = ~~σT

ρ
du

dt
= ~~σ : ~~D + ρr − ~∇ · ~q

D = ~~σ : ~~D − ρdu
dt

+ ρT
dη

dt
− ~q · ~∇T

T
≥ 0

,∀~x ∈ V (t) , (I.1)

where ρ is the density, ~v the velocity, ~~σ the Cauchy stress tensor, ~b the body forces, u the
internal energy, T the absolute temperature, ~~D the strain rate tensor, r the heat source,
~q the heat flux and η the entropy at any point ~x(t) in the considered volume V (t).

These equations represent the conservation of mass, linear momentum, angular momen-
tum and energy respectively; while the inequation represents the second principle of
thermodynamics where D is called the dissipation.

The initial and boundary conditions for this domain are considered to be of the form:
~v(~X, t = 0) = ~v0 and ρ(~X, t = 0) = ρ0, ∀ ~X ∈ V (0)
~v(~x, t) = ~vb, ∀~x ∈ SD(t)
~~σ · n̂ = ~tb, ∀~x ∈ SN(t)

, (I.2)

where ~X denotes the reference configuration (taken here as the initial one).

Alternatively, the mass conservation equations can be written as:

ρ0 = ρJ , (I.3)

where ρ0 is the the initial density field and J is the determinant of the deformation
gradient tensor:

~~F = ∂~x

∂ ~X
, (I.4)

such that J = det~~F .

Reminder of continuum mechanics 9

2 Navier–Stokes equations
Assuming the stress tensor depends only linearly on the strain rate tensor, the constitutive
equations for a so-called Newtonian fluid reads:

~~σ = −p~~I + λ~∇ · ~v~~I + 2µ~~D , (I.5)
where µ and λ are the so-called first and second viscosity of the considered fluid. If the
Stokes hypothesis is assumed (λ+ 2

3µ = 0), this constitutive equation becomes:

~~σ = −p~~I + 2µ dev ~~D = −p~~I + µ
(
~∇~v +

(
~∇~v
)T
− 2

3
~∇ · ~v~~I

)
, (I.6)

Further assuming that all properties of the fluid are independent of temperature, the
system of equations from I.1&I.2 becomes:

dρ

dt
+ ρ~∇ · ~v = 0, ∀~x ∈ V (t)

ρ
d~v

dt
= ~∇ · ~~σ + ρ~b = −~∇p+ µ~∇2~v + µ

3
~∇(~∇ · ~v) + ρ~b, ∀~x ∈ V (t)

~v(~X, t = 0) = ~v0 and ρ(~X, t = 0) = ρ0, ∀ ~X ∈ V (0)
~v(~x, t) = ~vb, ∀~x ∈ SD(t)
~~σ · n̂ = ~tb, ∀~x ∈ SN(t)

. (I.7)

The energy equation can be dropped, as thermal effects will not affect fluid flow since
every parameter is assumed independent of temperature and that its evolution will not
be considered in this work. The second principle of thermodynamics imposes that µ and
λ+ 2

3µ are both positive quantities.

This system of four equations with five unknowns (vx, vy, vz, ρ and p) is missing an
equation to link the density and the pressure. Two solutions to this will studied hereafter:
incompressible and weakly compressible fluid description.

2.1 Incompressible fluid
An incompressible fluid is characterised by

dρ

dt
= 0⇒ ~∇ · ~v = 0 , (I.8)

so that the system of equations from I.7 is reduced to

~∇ · ~v = 0, ∀~x ∈ V (t)

ρ
d~v

dt
= ~∇ · ~~σ + ρ~b = −~∇p+ µ~∇2~v + µ

3
~∇(~∇ · ~v) + ρ~b, ∀~x ∈ V (t)

~v(~X, t = 0) = ~v0 and ρ(~X, t = 0) = ρ0, ∀ ~X ∈ V (0)
~v(~x, t) = ~vb, ∀~x ∈ SD(t)
~~σ · n̂ = ~tb, ∀~x ∈ SN(t)

. (I.9)

One can see from the above system that there is no explicit equation for the time evolution
of the pressure unknown.

Reminder of continuum mechanics 10

2.2 Weakly-compressible fluid
In this case an equation of state will be used to link the density and the pressure. The
bulk modulus of the fluid is defined as:

K = ρ
∂p

∂ρ

∣∣∣∣∣
T

. (I.10)

Assuming that the bulk modulus depends linearly of the pressure:

K = K0 +K ′0p , (I.11)

and that the temperature remains constant, one can derive:

ρ
dp

dρ
= K0 +K ′0p

⇒ 1
K0 +K ′0p

dp

dρ
= 1
ρ

⇒
∫ ρ

ρ0

1
K0 +K ′0p

dp

dρ?
dρ? =

∫ ρ

ρ0

1
ρ?
dρ?

⇒ 1
K ′0

ln
∣∣∣∣∣ K0 +K ′0p(ρ)
K0 +K ′0p(ρ0)

∣∣∣∣∣ = ln
∣∣∣∣∣ ρρ0

∣∣∣∣∣
⇒ K0 +K ′0p(ρ)

K0 +K ′0p(ρ0) =
(
ρ

ρ0

)K′
0

.

(I.12)

Assuming p(ρ0) = 0, the Tait-Murnagham state equation (Macdonald [1966]) reads:

p = K0

K ′0

(ρ
ρ0

)K′
0

− 1
 , (I.13)

and the system of equations from I.7 becomes:

dρ

dt
+ ρ~∇ · ~v = 0 ∀~x ∈ V (t)

ρ
d~v

dt
= −~∇p+ µ~∇2~v + µ

3
~∇(~∇ · ~v) + ρ~b ∀~x ∈ V (t)

p = K0

K ′0

(ρ
ρ0

)K′
0

− 1
 ∀~x ∈ V (t)

~v(~X, t = 0) = ~v0 and ρ(~X, t = 0) = ρ0, ∀ ~X ∈ V (0)
~v(~x, t) = ~vb, ∀~x ∈ SD(t)
~~σ · n̂ = ~tb, ∀~x ∈ SN(t)

. (I.14)

3 Galerkin formulation
The above derived systems of equations I.7, I.9 or I.14 are designated as strong formulation
of the system of equations, because of the derivability requirements on the different

Reminder of continuum mechanics 11

unknown fields. A so-called weak formulation, which has lower derivability requirements
will be introduced hereafter.

The spaces L2(Ω) and H1(Ω) are first introduced (Adams and Fournier [2003]):

L2(Ω) =
{
f : Ω→ R :

∫
Ω
f 2 dΩ < +∞

}
, (I.15)

H1(Ω) =
{
f : Ω→ R : f ∈ L2(Ω) and ~∇f ∈ L2(Ω)

}
. (I.16)

The space of admissible or test functions for the velocity, for the velocity with homoge-
neous boundary conditions and for the pressure, denoted by Sv, Sv0 and Sp respectively,
are defined:

Sv =
{
~w ∈ H1(V (t)) : ~w = ~wb on SD(t)

}
Sv0 =

{
~w ∈ H1(V (t)) : ~w = 0 on SD(t)

}
Sp =

{
q ∈ L2(V (t))

} . (I.17)

The weak form can then be derived by integrating the product of the strong form I.7
and a test function over the considered volume. The natural boundary conditions are
also handled by the weak form of the momentum equation, while essential boundary
conditions still need to be applied. By choosing ~w ∈ Sv0 as the test function for the
momentum equation and q ∈ Sp as the test function for the continuity equation, one can
write: 

∫
V0
q ρJ dV0 =

∫
V0
q ρ0 dV0, ∀~x ∈ V (t)

∫
V (t)

~w · ρd~v
dt
dV =

∫
V (t)

~w ·
(
~∇ · ~~σ

)
dV +

∫
V (t)

~w · ρ~b dV

−
∫
SN (t)

~w · (~~σ · n̂− ~tb) dSN
, ∀~x ∈ V (t)

~v(~X, t = 0) = ~v0 and ρ(~X, t = 0) = ρ0, ∀ ~X ∈ V (0)
~v(~x, t) = ~vb, ∀~x ∈ SD(t)

(I.18)

where J is the determinant of the deformation gradient tensor. This finally gives (since
ρJ dV0 = ρ dV and ~w = 0 on SD(t)):

∫
V (t)

q ρ dV =
∫
V0
q ρ0 dV0, ∀~x ∈ V (t)

∫
V (t)

~w · ρd~v
dt
dV =−

∫
V (t)

~∇~w : ~~σ dV +
∫
V (t)

~w · ρ~b dV

+
∫
SN (t)

~w · ~tb dSN
, ∀~x ∈ V (t)

~v(~X, t = 0) = ~v0 and ρ(~X, t = 0) = ρ0, ∀ ~X ∈ V (0)
~v(~x, t) = ~vb, ∀~x ∈ SD(t)

. (I.19)

Reminder of continuum mechanics 12

The weak form of the continuity equation can also be written differently if the continuity
equation with explicit time derivation is used:

∫
V (t)

q

(
dρ

dt
+ ~∇ · ~v

)
dV = 0 ∀~x ∈ V (t) . (I.20)

One can see from equation I.19 that the spatial derivability requirements on the stress
tensor have been lowered, hence the name weak form. While a solution to the strong
form is a solution to the weak form, the inverse is not always true. Such a solution is
called a generalized solution.

Now that the required equations have been introduced, the numerical method used in
this master thesis, as well as the discretized equations will be described in the next part.

The Particle Finite Element Method 13

Part II

The Particle Finite Element Method
Contents

1 Overview of the method 13
1.1 Eulerian methods . 14
1.2 Lagrangian methods . 14
1.3 The PFEM . 15

2 Remeshing Procedure 15
2.1 Delaunay triangulation . 15
2.2 Alpha-shape algorithm . 17

3 Other mesh-improvement algorithms 21

4 Frequency and performance of remeshing 22

5 Space Discretization 23
5.1 Weakly Compressible fluid . 24
5.2 Incompressible fluid . 25

6 Time integration 26
6.1 Weakly Compressible fluid . 26
6.2 Incompressible fluid . 27

7 Boundary conditions 28

8 Implementation 29

In this part, the particle finite element method is introduced. After a brief overview of
the method, a discussion about the remeshing procedure is made. The numerical scheme
is then derived and finally the actual implementation is described. again it is assumed
that the reader has some knowledge about the FEM and discretization methods.

1 Overview of the method
As mentioned in the introduction of this report, this work focuses on numerically solving
problems involving free surface flows. Being able to track the free surface is then of
particular importance.

Various methods exist in computational fluid dynamics nowadays. They can be separated
in two big categories, based on the employed formalism:

The Particle Finite Element Method 14

- Eulerian methods, which use a fixed grid/mesh where the fluid is moving through
it.

- Lagrangian methods, where the grid/mesh/nodes are attached to the fluid in mo-
tion.

Some examples of methods to solve free surface flows will be described hereafter.

1.1 Eulerian methods

Examples of free surface tracking Eulerian methods are the Volume Of Fluid method and
the Level Set method.

The Volume Of Fluid method (Noh and Woodward [1976]) solves multiphase flows by
tracking the content of each cell using the volume fraction of each phase in the cell. The
main problem of this method is that the free surface is not sharp and can be quite spread
out in space.

The Level Set method (Osher and Sethian [1988]; Sussman et al. [1994]) uses a spatial
set function, which has positive sign on a certain side and a negative sign on the other
side of the free surface, and is equal to zero at the free surface . While the free surface is
sharp, the method is more difficult to implement and does not conserve mass really well
like the Volume of Fluid method.

The main problem the necessity to discretize each phase of the multiphase flow, which
can be very expensive and is not useful at all in some cases, for example when modelling
the behaviour of waves in which the surrounding flow of air has little impact. Those
methods also contains a convective term in their discretized equations and are complex
to implement.

1.2 Lagrangian methods

An example of Lagrangian method is the SPH method (Gingold and Monaghan [1977])
which discretizes the fluid as particles, without a mesh. The properties of the fluid at
a certain position are evaluated using a kernel function of a certain kernel length which
allows a weighted average of the properties of the nearby particles. The particles are
attached to the fluid in motion, but imposing boundary conditions might be extremely
difficult. On the other, this method is simple to implement and parallelize.

The Particle Finite Element Method 15

1.3 The PFEM

Correctly representing the boundaries of the fluid is really important in all problems
involving surface tension or solid-fluid interaction, in order for example to correctly impose
boundary conditions or compute the curvature. The idea is then to use a standard FEM
mesh to discretize the fluid. The mesh is attached to the fluid in motion. At each time
step, a FEM-like computation is performed based on this mesh to compute the time-
evolution of the fluid. As the mesh deforms with the fluid, a new mesh is sometimes
needed in order to ensure accurate computation since the previous one might be too
deformed. For this remeshing procedure to be as fast as possible, linear shapes functions
are used and the fluid can thus be represented by a cloud of nodes which stores all of
the fluid properties at a certain time, nodes which are the basis of the mesh generation.
Using a FEM mesh allows the tracking of a sharp free surface. This is the basics of the
Particular Finite Element Method (PFEM), first described in Idelsohn et al. [2004].

2 Remeshing Procedure

A mesh composed of elements (triangles in 2D or tetrahedrons in 3D) needs to be gener-
ated from the cloud of nodes in order to perform the FEM computations. The generation
of the initial set of points is performed by the Gmsh library Geuzaine and Remacle [2009],
which has been chosen for its simplicity and the knowledge of this library in a previous
project by the author of this report, while the generation of the mesh during the solver
computation is performed by the Computational Geometry Algorithms Library (hereafter
denominated CGAL (The CGAL Project [2020])), because this library contains every-
thing needed regarding the triangulation and extra elements deletion that are needed for
the remeshing in the PFEM.

2.1 Delaunay triangulation

A Delaunay triangulation (Delaunay [1934]) is first performed on the set of points, which
has the remarkable defining property that the circumcirle/circumsphere of any element
does not contain any other node in the 2D/3D set. This triangulation has also the
property, in 2D, of maximizing the minimum angle of in all elements with respect to
other triangulations (Meduri [2019]), which is indeed great for the computing quality of
the mesh.

An example of such a triangulation can be seen in Figure 2 in 2D and in Figure 3 in 3D.

The Particle Finite Element Method 16

(a) Before triangulation. (b) After triangulation.

Figure 2: 2D Delaunay triangulation of a cloud of nodes using CGAL. The square box
is of 10 units length and the cube is of 5 units length. The disk is of 1 unit
diameter and is placed at

√
2 unit length from the cube top right corner along

the square diagonal.

(a) Before triangulation. (b) After triangulation.

Figure 3: 3D Delaunay triangulation of a cloud of nodes using CGAL. The square planes
are of 10 units length and the cube is of 5 units length. The sphere is of 4 unit
diameter and is placed at 2.5

√
3 unit length from the cube corner along the

cube diagonal.

As it can be seen on both figures, both the square and the circle in 2D and both the cube
and the sphere in 3D are meshed, but also all the space around. Triangulating the set of
points is thus insufficient to correctly identify the fluid domains. Some triangles/tetrahe-
drons need to be discarded. This operation is performed using the alpha-shape algorithm
(Edelsbrunner et al. [1983]) (using CGAL).

Since it will be needed in various part of this report, the characteristic size (hchar) of the
elements in a mesh is defined as the initial spacing between the nodes, which is the value
used by Gmsh to generated the initial cloud of nodes.

In order not to surcharge the figures in the next section, we will anticipate a discussion
on 3D mesh generation here. As it can be seen in figure 4, near-zero-volume tetrahedrons

The Particle Finite Element Method 17

are generated by CGAL in some 3D problems. Those elements (called slivers) are simply
deleted from the mesh, by deleting all elements whose volume are inferior to 10−4×h3

char.
The impact on the "real" fluid mesh should be negligible, as multiple strategies are used
alongside the alpha-shape in order to conserve relatively constant element size through
the simulation as it will be seen later in this part. This effect only appears in 3D.

(a) Mesh generated by CGAL without slivers deletion. As it can
be seen, non fluid elements are generated and looks like planar
tetrahedrons.

(b) Mesh generated by CGAL with sliver deletion. The problem is
now correctly meshed.

Figure 4: Mesh generation for a cylinder of fluid lying at the entrance of a cylinder pipe.

2.2 Alpha-shape algorithm

The alpha-shape algorithm was first introduced in Edelsbrunner et al. [1983]. This tech-
nique allows to reconstruct the overall shape formed by a set of points, and is performed in
this work thanks to CGAL (Edelsbrunner and Mücke [1994]; Da [2020]; Da et al. [2020]).

To understand how this algorithm works, some mathematical definitions are needed
(Spanier [1981]). A simplex can be seen as the generalization of the concept of trian-
gle to any dimension:

- a 0-simplex is a point.

The Particle Finite Element Method 18

- a 1-simplex is a line segment.

- a 2-simplex is a triangle.

- a 3-simplex is a tetrahedron.

A k-simplex is composed of k + 1 points. A face of a simplex is the convex hull of any
not empty subset of those k + 1 points. For a triangle (2-simplex), the faces are the 3
line segments and the 3 points forming the triangle.

A simplicial complex K is a set of simplicies such that:

- Every face of a simplex in K is also in K.

- For every pair of simplicies s1 and s2 in K, if they have a non empty intersection
i = s1 ∩ s2 6= ∅, this intersection is a face of s1 and s2.

A simplex is said α-exposed if there is an open disk/open sphere of radius
√
α through the

vertices of the simplex that does not contain any other point of the set. For a triangle in
2D, this open disk is unique as there is only one circle that passes by 3 points in 2D, such
that there is only one α value at which a triangle could be α-exposed: α = r2

circumcircle.
For a line segment in 2D, the α value is generally comprised between two limits. An
exemple of the α-value of a segment and a triangle in 2D can be seen in figure 5.

√ α
= 2.1

9

3.24

√
α = 1.95

√
α = 1.63

Figure 5: Minimum and maximum α value of a 1-simplex (on the left) and a 2-simplex
(on the right) for which they remains α-exposed in 2D.

An αchar-complex is a simplicial complex, subcomplex of a triangulation, containing all
α-exposed k-simplicies (k ∈ [0; dim(set)] ⊂ N) of α-value smaller than αchar. The alpha-
shape is then the interior of the αchar-complex. In summary, a triangle is removed from
the mesh if:

rcircumcirle >
√
αchar . (II.1)

The version of the alpha-shape algorithm used in Cerquaglia [2019] and Meduri [2019] is
similar to the one used in CGAL, but the alpha value is defined differently. In Cerquaglia

The Particle Finite Element Method 19

[2019]; Meduri [2019], a triangle is removed from the mesh if its circumcircle radius is
greater than a certain constant:

rcircumcircle > αh . (II.2)

The definition of h in Cerquaglia [2019]; Meduri [2019] is the average of all the he, he
being the minimal distance between two points in the element e. The two definitions can
be reconciled by:

αCGAL = (αC,Mhchar)2 . (II.3)

In this work, the parameter α that the user inputs to the solvers is indeed the parameter
αC,M in the above equation, in order to use an α value relatively independent of the mesh
density. The conversion to the CGAL definition is obviously done inside the program.
Please note than even with this, the alpha-shape algorithm will remain different because
of the differences between hchar, given by the user in the present work, and h, compute
as described above by Cerquaglia [2019] and Meduri [2019].

The result of the alpha shape algorithm on the Delaunay triangulation from Figure 2 and
Figure 3 can be seen in Figure 6 in 2D and Figure 7 in 3D for various αC,M values.

(a) α = 5. (b) α = 2.5.

(c) α = 1.25. (d) α = 0.625.

Figure 6: Alpha-shape algorithm results on a Delaunay triangulation see Figure 2 for the
initial mesh) for various αC,M values using CGAL in 2D (hchar = 1 unit of
length).

The Particle Finite Element Method 20

(a) α = 5. (b) α = 2.5.

(c) α = 1.25. (d) α = 0.625.

Figure 7: Alpha-shape algorithm results on a Delaunay triangulation (see Figure 3 for
the initial mesh) for various αC,M values using CGAL in 3D (hchar = 1 unit of
length).

As a conclusion, the alpha value should be large enough to capture all of the actual fluid
elements, but small enough to discard non-fluid elements. Alpha values between 1.1 an
1.3 generally appear to be a good choice.

However, extra fluid elements are still present in those cases in the box corners (see Figure
6c and Figure 7c), as there is no way for CGAL to differentiate them from an actual same-
sized fluid element. Those kind of superfluous elements have two characteristics:

- They are only composed of boundary nodes.

- The nodes of those elements do not have neighbour fluid nodes.

Thanks to those characteristics, those kind of spurious elements can be deleted quite
easily. The final results can be seen in Figure 8 in 3D.

The Particle Finite Element Method 21

(a) Before extra elements dele-
tion.

(b) After extra elements deletion.

Figure 8: Exemple of extra elements deletion for a fluid cube in a box in 3D.

It can be noted however that the cube shape in Figure 8 is still not perfectly identified.
There is indeed no way for CGAL to differentiate those elements from the other "real"
elements. However, the size of those elements will decrease as the number of nodes is
increased, such that the cube will be better and better approximated as the number of
nodes is increased.

3 Other mesh-improvement algorithms

The density of nodes should be controlled while the simulation in running in order to
maintain good mesh quality, and prevent the apparition of bad fluid behaviour in the
simulation conditions. To do so, one could consider adding or removing nodes from the
simulation when it is needed. Two examples of why adding or removing nodes could be
useful are presented hereafter.

It could happen that some nodes become too close from each others (for example when
nodes approach a wall boundary), which can lean to higher numerical errors and physical
errors (e.g. nodes crossing a boundary). The only solution is to delete some of the nodes
which are too close from each other. This deletion unfortunately removes information
from the solution.

The opposite problem could appear if at some part of the mesh some elements became
too big, such that the alpha-shape algorithm introduces holes in the mesh were there
should not be any. To prevent that, a solution is to add nodes at the center of those too
big elements.

Two strategies are thus implemented:

- if some nodes become too close to each other, one of the nodes is deleted if the
distance between the two nodes is inferior to a user-defined parameter times the
mesh characteristic size (hchar). This parameter is denoted as γ.

The Particle Finite Element Method 22

- if an element becomes too big, a node is added at the center of the element if the ele-
ment volume is greater than a user-defined parameter times the mesh characteristic
element volume (h3

char). This parameter is denoted as ω.

In order to avoid simulating fluid that goes out of the spatial region of interest of a
simulation, a bounding box mechanism is implemented such that fluid nodes which go
out of that box are deleted.

4 Frequency and performance of remeshing

The overall remeshing algorithm used in this work is not really optimized, as the bounding
box checking, nodes removing and adding part of the algorithm do not feed back their
modification of the cloud of nodes to the list of elements, such that a triangulation plus
an alpha-shape algorithm are performed in between each of these step, which is rather
inefficient and could be optimized by simply asking to those parts of the remeshing to
also check the elements when they delete or add new nodes.

For the implicit incompressible solver developed in this work, the remeshing is performed
at each time step. As it will be seen in section III.6, the time taken by the remeshing is
really small in comparison to the time taken to solve the equations, so that this is not
currently a problem.

For the explicit compressible solver developed in this work, the time taken by the remesh-
ing is in the same order of magnitude as the time taken to solve the equation, as it will
be seen in section in section IV.6. Moreover, since explicit time steps are generally really
small, it would be a waste of computing power to remesh at every time step like for the
incompressible solver, because the mesh does not change that much between two close
time steps. That is why the remeshing is only performed at a certain frequency, which can
be set in the solver using the "maximum ∆t" user-defined variable, which also represents
an upper bound for the time step in both solvers when adaptive time step is used. It can
finally be noted that in 3D the time to perform the remeshing is greater that the time
to actually solve the equations, as it will be seen in V.3. The remeshing takes here a big
part of the computational time, even if it is not triggered at every time step.

The Particle Finite Element Method 23

5 Space Discretization

Now that a mesh is available, the discretization of the system of equations I.19 can be
described. This will be done in 3D, the 2D case being similar.

We consider that the mesh represents an approximation of the actual fluid domain:

Vh(t) =
Ne⋃
e=1

V e
h (t), lim

h→0
Vh(t) = V (t) , (II.4)

where V e
h is the volume of the element e, and h is a characteristic element size. The

unknown fields are then approximated by:

~v(~x, t) ' Nv(~x)v(t)
p(~x, t) ' Np(~x)p(t)
ρ(~x, t) ' Np(~x)ρ(t)

, (II.5)

where Nv and Np are the linear shape function matrices for the velocity and the pres-
sure/density ; and v, p and ρ the vectors of nodal unknowns:

Nv =

N
v
1 N v

2 N v
3 N v

4 0 0 0 0 0 0 0 0
0 0 0 0 N v

1 N v
2 N v

3 N v
4 0 0 0 0

0 0 0 0 0 0 0 0 N v
1 N v

2 N v
3 N v

4


Np =

[
Np

1 Np
2 Np

3 Np
4

]
v =

(
u1 u2 u3 u4 v1 v2 v3 v4 w1 w2 w3 w4

)T

ρ =
(
ρ1 ρ2 ρ3 ρ4

)T

p =
(
p1 p2 p3 p4

)T
.

(II.6)

The gradient of shape function matrices for the velocity and the pressure/density are

The Particle Finite Element Method 24

defined as:

Bv =



∂N v
1

∂x

∂N v
2

∂x

∂N v
3

∂x

∂N v
4

∂x
0 0 0 0 0 0 0 0

0 0 0 0 ∂N v
1

∂y

∂N v
2

∂y

∂N v
3

∂y

∂N v
4

∂y
0 0 0 0

0 0 0 0 0 0 0 0 ∂N v
1

∂z

∂N v
2

∂z

∂N v
3

∂z

∂N v
4

∂z

∂N v
1

∂y

∂N v
2

∂y

∂N v
3

∂y

∂N v
4

∂y

∂N v
1

∂x

∂N v
2

∂x

∂N v
3

∂x

∂N v
4

∂x
0 0 0 0

∂N v
1

∂z

∂N v
2

∂z

∂N v
3

∂z

∂N v
4

∂z
0 0 0 0 ∂N v

1
∂x

∂N v
2

∂x

∂N v
3

∂x

∂N v
4

∂x

0 0 0 0 ∂N v
1

∂z

∂N v
2

∂z

∂N v
3

∂z

∂N v
4

∂z

∂N v
1

∂y

∂N v
2

∂y

∂N v
3

∂y

∂N v
4

∂y



Bp =



∂N v
1

∂x

∂N v
2

∂x

∂N v
3

∂x

∂N v
4

∂x

∂N v
1

∂y

∂N v
2

∂y

∂N v
3

∂y

∂N v
4

∂y

∂N v
1

∂z

∂N v
2

∂z

∂N v
3

∂z

∂N v
4

∂z


,

(II.7)

such that:

Bvv '
(
∂u

∂x

∂v

∂y

∂w

∂z

(
∂u

∂y
+ ∂v

∂x

) (
∂u

∂z
+ ∂w

∂x

) (
∂v

∂z
+ ∂w

∂y

))T

Bpp '
(
∂p

∂x

∂p

∂y

∂p

∂z

)T

Bpρ '
(
∂ρ

∂x

∂ρ

∂y

∂ρ

∂z

)T

.

(II.8)

The test functions pair (q, ~w) is approximated the same way as the unknown field. Putting
those linear approximations into I.19 and developing leads to the discretized system. The
results are summarized hereafter.

5.1 Weakly Compressible fluid

The system of equation I.19 is discretized as:

M
dv
dt

= DTp−Kv + f ext

Mρdρ

dt
+ Dρv = 0 or Mρρ = Mρ

0ρ0

, (II.9)

The Particle Finite Element Method 25

where:

M =
∫
Vh(t)

ρ?NvTNv dVh D =
∫
Vh(t)

NpTmTBv dVh

K =
∫
Vh(t)

BvTddevBv dVh f ext =
∫
Vh(t)

ρ?NvT
[
~b
]
dVh +

∫
SN h(t)

NvT
[
~tb
]
dSNh

Mρ =
∫
Vh(t)

NρTNρ dVh Dρ =
∫
Vh(t)

ρ?NρTmTBv dVh

mT =
(
1 1 1 0 0 0

)
ddev =



4/3 −2/3 −2/3 0 0 0
−2/3 4/3 −2/3 0 0 0
−2/3 −2/3 4/3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



, (II.10)

where ρ? = Nρρ. The index 0 below the matrix Mρ and the vector ρ indicates they
are computed on a reference configuration. As expected two versions of the continuity
equation are available. The second one has the advantage that it does not contains any
time derivation. However some problems cannot be simulated using this equation as it
will be seen in part IV.

The equation of state still needs to be added:

[p]i = K0

K ′0

([ρ]i
ρ0

)K′
0

− 1
 , 1 ≤ i ≤ Nnodes (II.11)

5.2 Incompressible fluid

The system of equations I.19 is discretized as:

M
dv
dt

= DTp−Kv + f ext

Dv = 0
, (II.12)

The matrices are all defined the same way as in II.9 except the ddev matrix which can be
simplified as:

ddev = diag(2, 2, 2, 1, 1, 1) (II.13)
and ρ? = ρ is a constant.

There is no explicit time evolution equation for the pressure in II.12. The incompressible
Navier–Stokes equations form a saddle point problem ([Donéa and Huerta, 2003]) in which
the pressure acts as a Lagrange multiplier of the incompressibility equation. The system
of equations II.12 does not satisfies the Ladyzhenskaya-Babuška-Brezzi (LBB) condition
(Donéa and Huerta [2003]; Sani et al. [1981a,b]) when linear elements for the velocity
and pressure are used. A stability procedure, such as the PSPG described hereafter, is
thus applied to the equation.

In the Pressure Stabilizing Petrov Galerkin (PSPG) procedure (Hughes et al. [1986]), the
pair of test functions (q, ~w) is replaced by (q, ~w + τPSPG~∇q). At the end, this acts by

The Particle Finite Element Method 26

adding a term proportional to the momentum equation (which is equal to zero for the
exact solution) to the continuity equation. The final equation for the mass conservation
reads:

C
dv
dt
−Dv + Lp = h , (II.14)

with:
C =

∫
Vh(t)

τPSPGBpTNv dVh L =
∫
Vh(t)

τPSPGBpTBp dVh

h =
∫
Vh(t)

τPSPGBpT
[
~b
]
dVh

, (II.15)

the value of τPSPG being computed for all elements as (Tezduyar [1991]):

τ
(e)
PSPG =

√√√√√√√√
1(2

∆t

)2
+
2

∥∥∥~U (e)
∥∥∥

h̃(e)

2

+
(

4µ
(h̃(e))2ρ

)2
, (II.16)

where ∆t is the time step, h̃(e) is an element characteristic size computed as the cir-
cumcircle diameter of the element and

∥∥∥~U (e)
∥∥∥ is the norm of the fluid velocity in the

element.

6 Time integration

Having the space discretization done, the time integration methods for both types of
fluids can now be derived.

6.1 Weakly Compressible fluid

As every unknown can be computed explicitly in II.9, an explicit time integration scheme
will be employed in this case. More precisely, a central difference scheme will be used
(Meduri [2019]).

The mass matrices will be lumped (i.e. for each row of the matrix, the elements are
summed up on the diagonal) as soon as they are in the left hand side of the equations. No
global matrices are assembled during the computations. The summary of the algorithm
used can be found in Algorithm 1.

The Particle Finite Element Method 27

Algorithm 1: Central Difference scheme
Previous time step data: (xn,vn,pn,ρn, an,∆tn)
Half-step velocity: vn+1/2 = vn + 1

2∆tnan
Position update: xn+1 = xn + ∆tnvn+1/2
Density update: ρn+1 = (Mρ

n+1)−1fρn+1

Pressure update: [pn+1]i = K0

K
′
0

([ρn+1]i
ρ0

)K′
0

− 1

 ∀i

Acceleration update: an+1 = M−1
n+1fn+1

Velocity update: vn+1 = vn+1/2 + 1
2∆tnan+1

Time step update: ∆tn+1 = C mine

 he

max(‖~ve‖,
√
Ke/ρe)



The index (n + 1) of the matrices indicates that they have been computed using the
updated position xn+1. The vector fn+1 is defined as DT

n+1pn+1 −Kn+1vn+1/2 + fextn+1
and the vector fρn+1 is either Mρ

0ρ0 or Mρ
n+1ρn −∆tnDρ

n+1vn+1/2 depending on the form
of the continuity equation chosen. The mass matrix present in the right hand side of the
continuity equation is not lumped in order to stabilize the equations (this procedure is
called Consistent Lumping Stabilization Meduri [2019]; Ryzhakov et al. [2010]). For the
first form mentioned here, the reference configuration can be any previous configuration
and in practice is chosen to be the precedent time step configuration.

As this explicit scheme is only conditionally stable, a CFL-like condition is used to com-
pute the next time step (Courant et al. [1967]), using as speed the maximum of the fluid
speed and the pressure wave speed in the fluid. The parameter C ∈ [0; 1] in the time
step update is a user-defined safety coefficient. In sub-sonic condition, which is always
the condition met in this report, the pressure wave speed is always the greatest and thus
the parameter K0 will strongly impact the size of the time steps and the performance of
the explicit solver.

6.2 Incompressible fluid

As there is no explicit equation for the pressure in II.12, an implicit backward-Euler
scheme is used. This leads to a system of the form:

1
∆tMn+1 + Kn+1 −DT

n+1

1
∆tCn+1 −Dn+1 Ln+1


(

vn+1
pn+1

)
=
f extn+1 + 1

∆tMn+1vn
hn+1

 , (II.17)

where the vector (v p)T will be denoted q, the left hand side global matrix as A and
the right hand side vector as b. Since the matrix A is a function of the solution (through
the nodes position, which are updated thanks to the velocity), a non-linear algorithm is
needed to solve this system. The Picard (fixed-point) algorithm has been chosen for its
simplicity. The summary of the algorithm is summarised in Algorithm 2.

The Particle Finite Element Method 28

Algorithm 2: Implicit Picard algorithm
Previous time step data: (xn,qn)
k = 0
Initial guess: xk = xn
while Convergence not reached do

Solve


1

∆tMk + Kk −DT
k

1
∆tCk −Dk Lk

qk =
f extk + 1

∆tMkvn
hk

 for qk

xk+1 = xn + ∆tvk+1
k = k + 1

end
qn+1 = qk
xn+1 = xn + ∆tvn+1

The convergence criterion is a criterion on the velocity part of the solution:
‖vk − vk−1‖
‖vk−1‖

< ε , (II.18)

ε being a user defined parameter. It can happen that for a certain time step the Picard
algorithm converges really slowly, or does not seem to converge at all. When the number
of Picard algorithm iterations exceeds at certain number (user-defined), the current time
step size is decreased. On the other end, if the number of Picard algorithm iterations
is too small, the time step increases, up to a user-defined maximum value (called the
maximum time step). The coefficients to increase or decrease the time step in those cases
are also user-defined.

7 Boundary conditions
The solvers developed in this work currently supports the following kind of boundary
conditions:

- No-slip boundary condition. The velocity of the nodes are imposed to a certain
value. This is done by modifying the matrix A and the vector b in the implicit
solver, and by modifying the matrix M and the vector f in the explicit solver (in
this case, it is the acceleration which is imposed to control the velocity). While
the solver can handle non zero velocities for the boundary nodes (and thus moving
boundaries), this specific case has not been tested extensively.

- Dirichlet boundary condition on the velocity. The velocity of the nodes are imposed
like in the previous case but the nodes will not move. If a patch of fluid is connected
to the nodes where this boundary condition is imposed, the elements nearby those
nodes will extend and the remeshing algorithm will add nodes at the center of those
elements when they are too big, thus simulating an entrance of fluid. Any velocity
profile can be created that way.

- Dirichlet boundary condition on the pressure at the free surface. Indeed, the only
value that the pressure can take in this work is the value 0. It can be strongly
imposed using similar method as the previous boundary conditions, and will be
denoted Pressure imposed at free surface in the tables describing the parameters
used in the different case studies.

The Particle Finite Element Method 29

8 Implementation
All the code developed can be found at the address:

https://github.com/ImperatorS79/PFEM

The code is written using the C++17 programming language (Stroustrup et al. [2020]), at
the exception of the initial and boundary conditions code which is written in Lua v5.1
(de Figueiredo et al. [2020]). The interface between Lua and C++ is performed using
the sol2 v3.0 library (Meneide et al. [2020]). Some informations about how boundary
conditions can be set-up in Lua are provided in Annex B.

The initial set of nodes generation as well as the results writing is performed thanks to
the Gmsh library (Geuzaine and Remacle [2009]). Remeshing and alpha shape algorithm
are performed thanks to CGAL (The CGAL Project [2020]). Some informations about
how the input mesh file should be built are provided in Annex A.

The linear algebra operations are performed using the Eigen v3.3.7 library (Guen-
nebaud et al. [2010]). This library provides multiple linear solvers for sparse matrices
which can be used to solve the Aq = b problem in the non-linear algorithm of the im-
plicit solver. The list of those solvers can be found in https://eigen.tuxfamily.org/
dox/group__TopicSparseSystems.html. Both direct and iterative solvers exist. In this
work, the SparseLU solver has been chosen because it turned out that it was the fastest.
That solver is however not parallel.

The parallel threading in the code is implemented using the OpenMP 4.5 standard (OpenMP
Review Board [2020]). Finally the parameters reading in the executable is performed us-
ing the JSON for Modern C++ library (Lohmann et al. [2020]). However, a SWIG binding
(Beazley et al. [2020] is available to execute the code from Python 3 (Python Software
Foundation [2020]). Some informations about how the JSON parameters file should look
like are provided in Annex C; and about how the python script should look like in Annex
D.

The code is divided in two main parts. The libpfemMesh library is responsible for storing
a mesh and handling all mesh related operations, like the remeshing. The libpfemSolver
library contains the two classes SolverIncompressible and SolverCompressible which
can be used to do a simulation. The code provides the ability to extract some data:

- The states (example: vx, vy, p,..) at one specific point.

- The total mass of the fluid.

- The maximum/minimum position of the fluid nodes.

- The states for all elements using Gmsh.

The pfem executable is just a wrapper around the libpfemSolver library that reads the
parameters from a json file and then launches the simulation.

The simulations have either been run on a personal computer or on the Fabulous
aerospace and mechanical engineering department cluster at Uliège.

https://github.com/ImperatorS79/PFEM
https://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html
https://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html

The Particle Finite Element Method 30

After having introduced the numerical methods and the discretization, the next part will
compare this work’s solver to Cerquaglia’s solver and analytical solutions in order to
verify that the implementation is correct.

2D Incompressible solver case studies 31

Part III
2D Incompressible solver case
studies
Contents

1 Hydrostatic case 31

2 Flow in between two plates 34

3 Sloshing 38

4 Dam break 40

5 Dam break with obstacle 45

6 Performance considerations 48
6.1 Mesh size . 48
6.2 Parallelization . 49

In this part, the implicit incompressible solver developed in this work will be compared to
analytical solutions when they are available, and to Cequaglia’s solver Cerquaglia [2019]
when they are not, in order to verify if the implementation is correct. Unless stated
differently, the same parameters are used for this work’s solver and for Cerquaglia’s
solver (including the use of a Picard non-linear algorithm).

1 Hydrostatic case
A 2D fluid lying in a box is considered. The purpose of this test is to see if the solver is
able to correctly find the pressure field of a static fluid. The geometry of this problem
can be found in Figure 9.

L = 10 m

H
=

5m
5m

êz

Figure 9: Inital geometry of the hydrostatic problem.

2D Incompressible solver case studies 32

The analytical solution for the unkowns in this problem is simply:

p(z) = ρg(5− z)
~v = ~0

, (III.1)

assuming the pressure is zero at the free surface. Three simulations were run using
three different element characteristic sizes. The parameters used for those simulations
are summarized in Table 1. The materials properties are typical of water.

hchar 1, 0.5 and 0.25 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.7
Bounding box

(xmin, ymin, xmax, ymax)
[−2,−1, 12, 100]

Gravity 9.81 kg m s−2

Pressure imposed at free surface yes
Adaptive time step yes

Coefficient when increasing ∆t 1.5
Coefficient when decreasing ∆t 2

Maximum ∆t 0.01 s
Initial ∆t 0.01 s

Simulation span 4 s
Picard algorithm relative tolerance 5× 10−6

Picard algorithm
maximum iterations number 10

Density 1000 kg m−3

Dynamic viscosity 0.001 Pa s

Table 1: Parameters used for solving an incompressible hydrostatic problem whose ge-
ometry is described in Figure 9.

The initial meshes can be found in Figure 10.

(a) hchar = 1 m, 76 nodes. (b) hchar = 0.5 m, 251 nodes. (c) hchar = 0.25 m, 901 nodes.

Figure 10: Initial mesh for three different mesh densities for hydrostatic problem whose
geometry is described in Figure 9 and parameters given in Table 1.

2D Incompressible solver case studies 33

As it can be seen in Figure 10, two supplementary triangles lie on top of the actual free
surface. Those triangles are generated by CGAL which cannot erase them since they
have the same size and form as the others triangles and are connected to the main fluid
domain. Since the size of those triangles decreases with the hchar parameters, this is does
not generate an inconsistency/problem in the formulation.

The evolution of the total mass with respect to time and the pressure profile along the
vertical axis in the middle of the box at time t = 4 s are considered. The results of the
simulations can be found in Figure 11.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

6

8

10

12

14

t (s)

%
er
ro
r
on

m
as
s

hchar = 1 m
hchar = 0.5 m
hchar = 0.25 m

(a) Error on mass as a function of time.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

5

6
·104

z (m)

p
(P

a)

hchar = 1 m
hchar = 0.5 m
hchar = 0.25 m
analytical

(b) Pressure along the z axis at the middle of
the water column at t = 4 s.

0 0.5 1 1.5 2 2.5 3 3.5 44.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8
·104

t (s)

p
(P

a)

hchar = 1 m
hchar = 0.5 m
hchar = 0.25 m
Analytical

(c) Pressure at the point (5, 0.1) (middle of the water column, near the bottom) as a function
of time.

Figure 11: Simulation results for the hydrostatic case whose geometry is described in
Figure 9 and parameters in Table 1.

It can be seen that the error on the pressure decreases when the average element size
decreases. However, the mass is constantly increasing in all the three cases. This increase
of mass over time is correlated to an increase of pressure over time at the bottom middle
point of the box. This is not expected for such an hydrostatic case where the total

2D Incompressible solver case studies 34

mass and the pressure at that point should remain constant. This generation of mass is
maybe due to non-zero velocities induced by the two spurious triangles, which have been
identified in Figure 10. An insight on those velocities is provided in Figure 12.

(a) hchar = 1 m (b) hchar = 0.5 m (c) hchar = 0.25 m

1
2 ‖~v‖

2[J kg−1]

0 1.38

Figure 12: Specific kinetic energy for three different mesh size at t = 4 s in the hydrostatic
case whose geometry is described in Figure 9 and parameters in Table 1.

Since the error on the free surface position and shape as well as the total kinetic energy
generated in the fluid decreases when hchar decreases, this again does not generate an
inconsistncy/problem in the formulation. One could be tempted to delete the two spurious
triangles in order to see if the errors disappear. Unfortunately, this leads to an infinite loop
in the Picard algorithm, with the relative error not changing between the iterations. As
a conclusion here, one should be careful when simulating flows containing an hydrostatic
part for too long. One could try to delete those two spurious triangle in order to see if the
fluid is then motionless. Unfortunately, in this case the Picard algorithm seems unable
to converge to a solution.

2 Flow in between two plates
A flow between two plates is considered, whose geometry can be found in Figure 13. There
is no gravity in this problem. A no-slip boundary condition with ~0 velocity is applied
on the two plates. At the "entrance" of the plates, on the left, a Dirichlet boundary
condition with ~v = 1êx m s−1 is applied. An initial surface of fluid of length 0.2 m is
also placed at the "entrance" of the plates, near the Dirichlet nodes, and the same initial
condition is applied on the nodes of this surface. All those nodes which have an initial
velocity different from ~0 will start to move to the right. As described in the previous
part, the Dirichlet nodes will not move, and thus the remeshing algorithm will add nodes
at center of the deforming elements, which will simulate an input of fluid (the time step
size should be inferior to hchar/ ‖~v‖ to be sure that the fluid does not detach from the
Dirichet boundary and that a fluid input is correctly simulated).

2D Incompressible solver case studies 35

L = 4 m

H
=

1m
0.2 m êx

êy

Figure 13: Initial geometry of the flow between two plates problem.

If the fluid flows long enough in between long enough plates, one could expect that the
transient solution converges to a steady-state solution, which is:

vx(y) = 6Q
H3y(H − y) , dp

dx
= −12µQ

H3 , (III.2)

where Q is the volume flow rate and µ the dynamic viscosity. A high viscosity has
been chosen in this test in order for the fully-developed region of the flows to appear
soon enough. The flow at 3 m from the entrance will be compared to the steady-sate
solutions, even if a perfect matching is not expected, relatively the same behaviour and
order of magnitude of the solution are expected. Multiple simulations were run using
three different element characteristic sizes, comparing the profile of the horizontal velocity
with respect to y at 3 m from the entrance and the profile of the pressure field along the
horizontal axis at time t = 4 s. A parabola initial condition on the velocity following the
formula in equation III.2 has also been tested for one of the hchar. The parameters used
for those simulations are summarized in Table 2.

hchar 0.2, 0.1 and 0.05 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.7
Bounding box

(xmin, ymin, xmax, ymax)
[−1,−0.25, 5, 1.25]

Gravity 0 kg m s−2

Pressure imposed at free surface yes
Adaptive time step yes

Coefficient when increasing ∆t 1.5
Coefficient when decreasing ∆t 2

Maximum ∆t 0.005 s
Initial ∆t 0.005 s

Simulation span 5 s
Picard algorithm relative tolerance 5× 10−6

Picard algorithm
maximum iterations number 10

Density 1000 kg m−3

Dynamic viscosity 200 Pa s

Table 2: Parameters used for solving an incompressible pipe problem whose geometry is
described in Figure 13.

2D Incompressible solver case studies 36

For the case hchar = 0.1 m, a initial condition equal to the analytical results presented in
III.2 is also considered. The initial meshes can be found in Figure 14.

(a) hchar = 0.2 m, 50 nodes. (b) hchar = 0.1 m, 109 nodes. (c) hchar = 0.05 m, 257 nodes.

Figure 14: Left part of the initial mesh for three different mesh densities for the problem
whose geometry is described in Figure 9 and parameters are given in Table 1.

Like previously, two supplementary triangles lie on front of the actual free surface. The
results of the simulations can be found in Figure 15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

y (m)

v x
(m

/s
)

Analytical
hchar = 0.2 m
hchar = 0.1 m
hchar = 0.05 m
hchar = 0.1 m (parabola)

(a) Horizontal velocity profile along x = 3 m.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1
·104

x (m)

p
(P

a
s)

Analytical
hchar = 0.2 m
hchar = 0.1 m
hchar = 0.05 m
hchar = 0.1 m (parabola)

(b) Pressure profile along y = 0.5 m.

Figure 15: Simulation results for three different mesh size for the pipe case whose geom-
etry is described in Figure 13 and parameters in Table 2 at t = 4 s.

As it can be seen, the velocity profile converges to the analytical steady state solution
as the mesh characteristic size decreases. The pressure profile is also following well the
steady state solution in the half end of the pipe, which is expected since the beginning of
the pipe is experiencing a transient behaviour. The gradient of pressure seems to change
when x > 4 m such that the pressure does not evolve anymore. This is simply due to
the fact that the plates are only 4 m long. When an initial condition following equation
III.2 is imposed as a Dirichlet boundary condition, the matching between the numerical
results and the steady-state analytical solution is even better.

A graphical evolution of the fluid and its horizontal velocities at three time steps for hchar
= 0.05 m can be seen in Figure 16.

2D Incompressible solver case studies 37

(a) t = 0 s

(b) t = 1.2 s

(c) t = 2.6 s

(d) t = 5 s

vx [m s−1]

0 1.5

Figure 16: Horizontal component of the velocity at different times for hchar = 0.05 m in
the case whose geometry is described in Figure 9 and parameters are given in
Table 1.

It can be seen on Figure 16d that when the fluid has reached the end of the plates,
the behaviour of the solution change and switch from a parabola-like profile to a more
uniform profile.

2D Incompressible solver case studies 38

3 Sloshing

A sloshing problem considers the movement of a fluid with a free surface inside an object.
In the problem studied hereafter, a fluid whose free surface initial position is given by:

y(x) = 1 + 0.1 sin(πx− π

2) , (III.3)

is lying in a box and no-slip boundary conditions are applied to the wall of that box. The
resulting geometry is presented in Figure 17.

L = 1 m

1.
2m

H
=

0.
9m

0.
2m

Figure 17: Initial geometry of the sloshing problem .

Two simulations are run using two different hchar from both the present solver and the one
proposed by M.-L. Cerquaglia. The parameters used for those simulations are summarized
in Table 2.

An analytical solution exists for this case when a small amplitude of the free surface
perturbation and zero friction with the wall are considered (Wu et al. [2001]). The
solvers developed in this work do not support such kind of boundary conditions. However,
a damped oscillation of the free surface is still expected.

2D Incompressible solver case studies 39

hchar 0.02 and 0.01 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.7
Bounding box

(xmin, ymin, xmax, ymax)
[−2,−1, 12, 100]

Gravity 9.81 kg m s−2

Pressure imposed at free surface yes
Adaptive time step yes

Coefficient when increasing ∆t 1.5
Coefficient when decreasing ∆t 2

Maximum ∆t 0.01 s
Initial ∆t 0.01 s

Simulation span 4 s
Picard algorithm relative tolerance 5× 10−6

Picard algorithm
maximum iterations number 10

Density 1 kg m−3

Dynamic viscosity 0.01 Pa s

Table 3: Parameters used for solving an incompressible sloshing problem whose geometry
is described in Figure 17.

The initial meshes can be found in Figure 18.

(a) hchar = 0.02 m, 3005 nodes. (b) hchar = 0.01 m, 10555 nodes.

Figure 18: Initial mesh for two different mesh density for the sloshing problem whose
geometry is described in Figure 17 and parameters in Table 3.

The maximum of the fluid height will be tracked. The results are presented in Figure 19.

2D Incompressible solver case studies 40

0 0.5 1 1.5 2 2.5 3 3.5 41

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

t (s)

y
(m

)

hchar = 0.02 m
hchar = 0.01 m
hchar = 0.02 m (Cerquaglia)
hchar = 0.01 m (Cerquaglia)

Figure 19: Simulation results for three different mesh size for the pipe case whose geom-
etry is described in Figure 13 and parameters in Table 2 at t = 4 s.

The damped oscillations of the free surface are recovered. In the case hchar = 0.02 m,
this work’s solver and Cerquaglia solvers gives really close solutions up to t = 2.5 s where
some differences appear. In the case hchar = 0.01 m, this work’s solver and Cerquaglia
solvers gives really close solutions when near the different local maximum of the solution.
However, in between those maximum, the "filling" is different. As the algorithm tracks
the maximum of the free surface height, it happens than a particle lying near the wall
will move more slowly due to the friction with the wall than a particle less close to the
wall, which explains why the maximum of the free surface height suddenly seems to slow
down. The "filling" behaviour remains slightly different between the two solvers, but it
can be recalled to the reader that those two solvers are not the same (e.g. the remshing
and the linear algebra operations are not performed by the same software !).

4 Dam break

A "dam break" problem is considered. It consists of a rectangle surface of fluid initially
resting which will start to move when one of the wall maintaining it is instantaneously
removed at time t = 0 s. Its geometry can be found in Figure 20. This particular geometry
has been chosen in order to compare to solution to experimental results in Koshizuka and
Oka [1996] later on.

2D Incompressible solver case studies 41

L = 0.146 m
4L

2L

3L

Figure 20: Initial geometry of the dam break problem.

Since there is no analytical solution to this problem, two simulations on both the code
developed in this thesis and Cerquaglia’s code were run. The parameters for this problem
can be found in Table 4 and the mesh used in Figure 21.

hchar 0.0146 and 0.0073 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.7
Bounding box

(xmin, ymin, xmax, ymax)
[−0.01,−0.01, 0.594, 100]

Gravity 9.81 kg m s−2

Pressure imposed at free surface yes
Adaptive time step yes

Coefficient when increasing ∆t 1.5
Coefficient when decreasing ∆t 2

Maximum ∆t 0.01 s
Initial ∆t 0.01 s

Simulation span 2 s
Picard algorithm relative tolerance 5× 10−6

Picard algorithm
maximum iterations number 10

Density 1000 kg m−3

Dynamic viscosity 0.001 Pa s

Table 4: Parameters used for solving an incompressible dam break problem whose geom-
etry is described in Figure 20

.

2D Incompressible solver case studies 42

(a) hchar = 0.0146 m, 301 nodes. (b) hchar = 0.0073 m, 1001 nodes.

Figure 21: Initial mesh for two different mesh density for the dam break problem whose
geometry is described in Figure 20 and parameters in Table 4.

The total mass of the fluid as well as the evolution of the pressure in the left corner will
be studied. The results of the simulations can be found in Figure 22.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

20

40

60

80

100

120

140

t (s)

Er
ro
r
on

m
as
s
(%

)

hchar = 0.0146 m
hchar = 0.0073 m
hchar = 0.0146 m (Cerquaglia)
hchar = 0.0073 m (Cerquaglia)

(a) Error on mass as a function of time.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1,000

2,000

3,000

4,000

5,000

6,000

t (s)

p
(P

a)
hchar = 0.0146 m
hchar = 0.0073 m
hchar = 0.0146 m (Cerquaglia)
hchar = 0.0073 m (Cerquaglia)

(b) Pressure at (x, y) = (0, 0) m as a func-
tion of time.

Figure 22: Simulation results for two different mesh size for the dam break case whose
geometry is described in Figure 20 and parameters in Table 4.

The first comment which should be done is that the mass increases a lot in those simu-
lations (it doubles after 2 s). The adding and the removing constant should be checked
to prevent that from happening. One could also note that in the case hchar = 0.0073 m
for the solver developed in this work, the mass surprisingly suffers the greatest increase.
As stated in subsection II.2.2, the two definitions of the alpha-value are slightly different
and thus could also explains the difference of results between the two solvers. However
such a great increase of mass (two times more mass after two seconds) is problematic and
a study of the relation between the remeshing parameters and the mass evolution could
be interesting.

Regarding the pressure evolution at the left corner, all the four curves seems to provide
the same solution before 0.8 s, but the fluid attains the right corner at approximatively
0.27 s. The local maximum near 0.9 s corresponds to the come back of the closing from
the right to the left. The interpretation for the rest of the curve is difficult since the big

2D Incompressible solver case studies 43

increase of mass that the fluid has encountered, but both Cerquaglia’s and this work’s
solver remains in the same order of magnitude.

A lot of "spikes" can be seen on the pressure field. A plausible hypothesis is that they
appear because of the adding/removing nodes algorithm. Indeed one could imagine that
deleting a node makes the local velocity field too much not divergent-free so that a spike
appears in the pressure afterwards. However, completely deactivating the addition and
deletion of nodes is not feasible as it would cause nodes to cross the boundaries during
the flow of the fluid. This should however be investigated further.

The flow can also be compared to experimental results from Koshizuka and Oka [1996].
This comparison is done in Figure 23. The simulation matches the experimental results
quite nicely, even though as time advances in the simulation, the probability of a chaotic
behaviour to appear increases, deteriorating the results.

2D Incompressible solver case studies 44

(a) t = 0.2 s

(b) t = 0.4 s

(c) t = 0.6 s

(d) t = 0.8 s
1
2 ‖~v‖

2[J kg−1]

0 1.35

Figure 23: Simulation results for hchar = 0.0073 m for the dam break case whose geometry
is described in Figure 20 and parameters in Table 4, compared to experimental
results in Koshizuka and Oka [1996].

2D Incompressible solver case studies 45

5 Dam break with obstacle

The same dam break as in the previous section with a rigid obstacle in the fluid’s way is
now considered and the geometry of this problem is presented in Figure 24.

4L+ s

L = 0.146 m

2L2L
+
s

4L

s = 0.024 m

2s

Figure 24: Initial geometry of the dam break with obstacle problem.

The initial mesh used can be seen in Figure 25. The parameters are the same as in 4,
except that hchar = 0.006 m and the maximum time step is 0.0005 s.

Figure 25: Initial mesh for the dam break with obstacle problem whose geometry is de-
scribed in Figure 24 and parameters in Table 4, hchar = 0.006 m, 1497 nodes.

The evolution of the total mass and the pressure at the leftmost and rightmost corners
over time will be studied. The results are presented in Figure 26

2D Incompressible solver case studies 46

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−20

0

20

40

60

80

100

120

140

t (s)

Er
ro
r
on

m
as
s
(%

)
Cerquaglia
This work

(a) Error on mass as a function of time.

0 0.2 0.4 0.6 0.8 1 1.2 1.40

500

1,000

1,500

2,000

2,500

3,000

t (s)

p
(P

a)

Cerquaglia
This work

(b) Pressure at the leftmost corner as a
function of time.

0 0.2 0.4 0.6 0.8 1 1.2 1.40

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

t (s)

p
(P

a)

Cerquaglia
This work

(c) Pressure at the rightmost as a function
of time.

Figure 26: Simulation results for the dam break with obstacle case whose geometry is
described in Figure 24 and parameters in Table 4.

The same conclusion can been drawn here than for the dam break problem in the pre-
vious section. The difference between Cerquaglia’s solver and this work’s solver is even
greater (Cerquaglia’s solver is conserving the mass quite well). Again there are differ-
ences between the two solvers in the remeshing part and a study of the influence of the
remeshing parameters on the mass evolution should be done. Regarding the pressure at
the leftmost corner, the two solvers give nearly the same result until 0.8 s. After that,
the curve from this work’s solver seems to be shifted up with respect to the curve from
Cerquaglia’s solver. Regarding the pressure at the rightmost corner, the time required
by the fluid to reach that point (0.3 s) seems to be the same for both solvers, the pressure
remaining in the same order of magnitude afterwards.

A graphical comparison between the two solvers is provided in figure 27. Globally, the
two solutions behave quite the same way in the range displayed. However it seems that
there is more mass detaching from the tail which is appearing when the fluid hit the
obstacle in this work’s solver than in Cerquaglia’s solver.

2D Incompressible solver case studies 47

(a) t = 0.1 s

(b) t = 0.2 s

(c) t = 0.3 s

(d) t = 0.4 s
1
2 ‖~v‖

2[J kg−1]‖~v‖ [m s−1]

0 4.2 0 2.3

Figure 27: Comparison of this work’s solver results (on the right) and Cerquaglia’s solver
results (on the left) for the dam break with obstacle problem.

2D Incompressible solver case studies 48

6 Performance considerations

A comparison of the typical time to compute the solution and the typical time of remesh-
ing is provide in Figure 28. The problem used in this figure is the dam break problem
from section 4, except that the time step used was 0.0001 s. Only one thread is used.

0 600 1,200 1,800 2,400 3,0000

0.5

1

1.5

2

2.5

Number of nodes

C
om

pu
ta
tio

n
tim

e
(s
)

Picard algorithm
Remeshing

Figure 28: Comparison of the remeshing computation time and the computation time of
the Picard algorithm in the dam break problem described in Figure 20 and in
Table 4 for one typical time step.

It can be seen that the computation time for the remeshing is always smaller that the
time to compute the solution. More over, the time to compute the remeshing increases
more slowly than the time to compute the solution when the number of nodes initially
present increases. The remeshing is thus not blocking regarding the computation time
for the incompressible implicit solver developed in this work.

6.1 Mesh size

The computation time for various initial number of nodes are compared in Figure 29 for
this work’s solver and Cerquaglia’s solver. The used problem is again the problem from
4, except that the time step used was 0.0001 s. Only one thread is used for both solvers.
The solver developed is this work seems to be always faster. However, this result has to
be taken with caution as it is never impossible that an error in the parameters of the
different solvers could have been made.

2D Incompressible solver case studies 49

0 20 40 60 80 100 120 140 160 180 2000

500

1,000

1,500

2,000

2,500

3,000

3,500

Number of nodes

C
om

pu
ta
tio

n
tim

e
(s
)

This work
Cerquaglia

Figure 29: Comparison of the computation time between this work’s solver and
Cerquaglia’s solver for various initial number of nodes.

6.2 Parallelization
Defining τN the execution time of the program using N threads, using OpenMP (OpenMP
Review Board [2020]) in this work and Intel Thread Building Blocks (Intel [2020]) in
Cerquaglia’s solver, the speed-up ratio and the parallel efficiency are defined as:

γ = τ1

τN
and η = τ1

NτN
(III.4)

The two solvers are compared in Figure 30. The used problem is again the problem from
III4, except that the time step used was 0.0001 s.

0 1 2 3 4 5 6 7 8 9 10 11 120

2

4

6

8

10

12

Number of threads

γ

Perfect
This work
MN2L

(a) Speed-up ration as a function of the
number of threads.

0 1 2 3 4 5 6 7 8 9 10 11 120

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of threads

η

Perfect
This work
MN2L

(b) Parallel efficiency as a function of the
number of threads.

Figure 30: Comparison of the parallelization of Cerquaglia’s solver and this work’s solver.

The parallel performance of both solvers is really bad. Cerquaglia’s solver also seems not
to speed-up at all when changing the number of threads, which is strange and maybe due
to an error from the author of this report while using Cerquaglia’s solver.

As explained in section II.8, this work’s solver uses Eigen (Guennebaud et al. [2010]) to
solve the linear system involved in the Picard non-linear algorithm. In particular, it uses

2D Incompressible solver case studies 50

its SparseLU solver, because it appears in early test that it was the fastest. This solver is
however a serial solver and thus cannot be accelerated using threads. A similar method is
used in the Picard algorithm implemented in Cerquaglia’s solver, through the gmm library
(Renard et al. [2020]). This could explain a part of the bad threading performance of
both solvers.

Other ways of improvements could be explored:

- The use of another more efficient non-linear algorithm (Newton-Raphson could be
tried).

- The use of an iterative algorithm to solve the linear system. Early test showed
a degradation of performance using Eigen’s iterative solvers but the knowledge of
them by the author of this report was quite limited and it should be worth to try
again.

This work’s implicit incompressible solver has been compared to Cerquaglia’s solver and
analytical solutions. While it seems that this work’s solver is able to correctly simulate
incompressible flows, a problem of too big increase of mass during the simulations was
identified. In the next part, the explicit weakly-compressible solver developed in this
work will be compared to the implicit incompressible solver developed in this work in
order to verify that the implementation is correct.

2D Compressible solver case studies 51

Part IV

2D Compressible solver case studies

Contents
1 Hydrostatic case 51

2 Flow between two plates 54

3 Sloshing 56

4 Dam break 58

5 Dam break with obstacle 60

6 Performance considerations 63
6.1 Incompressible and compressible solving time comparison 63
6.2 Parallelization . 64

In this part, we will focus on the compressible solver implemented in this work by looking
at various case studies. When an analytical solution is not available, the results will be
compared to this work’s incompressible solver. The geometries and meshes used are the
same as in the previous part so they will not be recalled here. In the following, "strong"
continuity will denote the use of the continuity equation without explicit time derivative
(i.e. Mρρ = Mρ

0ρ0).

1 Hydrostatic case
The same case as in the previous part is considered using the compressible solver devel-
oped in this work. The geometry and the meshes are the same as in Figure 9 and 10 and
the parameters used can be found in Table 5.

The analytical solution for the unknowns in this problem is:

ρ = ρ0

(
K ′0 − 1
K0

ρ0g(5− z) + 1
) 1
K ′0 − 1

p = K0

K ′0

(ρ
ρ0

)K′
0

− 1


~v = ~0 ,

(IV.1)

The purpose of this test is to verify the quality of the numerical solution with respect to
the analytical solution in a certain range of the parameters K0 and K ′0.

2D Compressible solver case studies 52

hchar 1, 0.5, 0.25 and 0.125 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.7
Bounding box

(xmin, ymin, xmax, ymax)
[−0.1,−0.1, 10.1, 100]

Gravity 9.81 kg m2 s−1

Pressure imposed at free surface yes
"Strong" continuity yes
Adaptive time step yes
Security coeffeficent 0.2

Maximum ∆t 0.001 s
Initial ∆t 10−8 s

Simulation span 4 s
Density 1000 kg m−3

Dynamic viscosity 0.001 Pa s
K0 2.2× 107, 2.2× 106 and 2.2× 105 Pa
K ′0 1.6, 7.6 and 10.6

Table 5: Parameters used for solving a compressible hydrostatic problem whose geometry
is described in Figure 9.

The first test will simply compare different numerical solutions computed using different
mesh element characteristic sizes at K0 = 2.2 × 107Pa, value at which the difference
between the incompressible analytical solution and the weakly-compressible analytical
solution is negligible. The results of this test can be found in figure 31. The value of K ′0
chosen here is 7.6 (which is the value for water at ambient temperature).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−2

−1

0

1

2

3

4

5

6

t (s)

%
er
ro
r
on

m
as
s

hchar = 1 m
hchar = 0.5 m
hchar = 0.25 m
hchar = 0.125 m

(a) Error on mass in function of time.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

1

2

3

4

5

6
·104

z (m)

p
(P

a)

Analytical
hchar = 1 (m)
hchar = 0.5 (m)
hchar = 0.25 (m)
hchar = 0.125 (m)

(b) Pressure along the y axis at the middle of
the water column at t = 4 s.

Figure 31: Simulation results for four different mesh sizes in the hydrostatic case whose
geometry is described in Figure 9 and parameters in Table 5 at t = 4 s, K0 =
2.2× 107Pa and K ′0 = 7.6.

2D Compressible solver case studies 53

The first comment to be made is that the mass is far better conserved than in the
incompressible case. For hchar = 1 m, after 4 s, the incompressible solver encountered an
error on mass of 14% while the compressible solver only encountered an error on mass
of 5 %. Secondly, the pressure is also far better approximated, the curve for hchar = 1 m
is closer to the analytical curve in the compressible case than in the incompressible case,
and the other curves are so close to the analytical curve in the compressible case that it
is difficult to distinguish them.

The second test will compare the behaviour of the solution for multiple value of K0, in
order to know the range of values at which the solver gives a good solution (for hchar =
0.125 m). The results are presented in figure 32.

0 0.5 1 1.5 2 2.5 3 3.5 4
−25

−20

−15

−10

−5

0

t (s)

%
er
ro
r
on

m
as
s

K0 = 22000000 (Pa)
K0 = 2200000 (Pa)
K0 = 220000 (Pa)

(a) Error on mass in function of time.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.50

1

2

3

4

5

·104

z (m)

p
(P

a)

K0 = 22000000 (Pa) (Analytical)
K0 = 2200000 (Pa) (Analytical)
K0 = 220000 (Pa) (Analytical)
K0 = 22000000 (Pa)
K0 = 2200000 (Pa)
K0 = 220000 (Pa)

(b) Pressure along the y axis at the middle of
the water column at t = 4 s.

Figure 32: Simulation results for three different K0 values in the hydrostatic case whose
geometry is described in Figure 9 and parameters in Table 5 at t = 4 s, hchar =
0.125 and K ′0 = 7.6.

As it can be seen, it is difficult for the compressible solver to represent fluid with K0 =
2.2× 106 and 2.2× 105 Pa, while the curve of K0 = 2.2× 107 matches its analytical curve
as expected. Indeed the level of fluid decreases in the two lower K0 cases, as it can be
deducted from the mass figure and from the pressure figure which references 0 Pa when
the fluid is on the free surface or if there is no fluid. The current approach seems able to
correctly represent fluid not too far from incompressibility, which is the original objective
in this work. The behaviour at lower K0 should be explored further to extend the solver
capabilities to more compressible fluid.

The last test will study the influence of the last parameter Kp
0 on the solution. Since it

had been identified that only fluid with high K0 are represented correctly, this test will
use a value of K0 = 2.2× 107Pa. The results are presented on figure 33.

2D Compressible solver case studies 54

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t (s)

%
er
ro
r
on

m
as
s

K ′0 = 1.6
K ′0 = 7.6
K ′0 = 70.6

(a) Error on mass in function of time.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·104

z (m)

p
(P

a)

Analytical (K ′0 = 1.6)
Analytical (K ′0 = 1.6)
Analytical (K ′0 = 1.6)
K ′0 = 1.6
K ′0 = 7.6
K ′0 = 70.6

(b) Pressure along the y axis at the middle of
the water column at t = 4 s.

Figure 33: Simulation results for three different K ′0 values in the hydrostatic case whose
geometry is described in Figure 9 and parameters in Table 5 at t = 4 s, hchar =
0.125 and K0 = 2.2× 107Pa.

This last parameter does not seem to influence the mass evolution and the different
pressure curves in Figure 33 are undistinguishable. It will thus be fix at K ′0 = 7.6 for
the rest of this work, value near 7 being the value used by the empirical Tait equation
(Meduri [2019]).

2 Flow between two plates

The same problem as described in the previous part is considered, with the same geometry
as in Figure 13. The purpose of this test is to see if the compressible solver developed
in this work is able to correctly represent the parabola profile of the horizontal velocity
between the two plates. Two values of K0 will also be tested. The parameters used for
the simulations can be found in Table 6.

It should be noted that the continuity equation with explicit time derivative has to be
used in this case, otherwise the elements near the Dirichlet boundary will not deform
enough due to the presence of the boundary for the remeshing algorithm to add nodes
at the center of those elements in order to simulate a flow input (the continuity equation
without explicit time derivative seems too "strong" at conserving mass).

In the same way as in the previous part, both a uniform and a parabola profile for the
Dirichlet boundary condition are tested. In the same way as in the previous part, if
the fluid has enough time to flow, the velocity profile should converge to a steady-state
solution. Here the horizontal velocity profile and the pressure profile in the middle of the
plates are compared to the analytical solution of the incompressible steady-state problem.

2D Compressible solver case studies 55

hchar 0.1 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.7
Bounding box

(xmin, ymin, xmax, ymax)
[−1,−0.25, 5, 1.25]

Gravity 0 kg m s−2

Pressure imposed at free surface yes
"Strong" continuity no
Adaptive time step yes
Security coefficient 0.2

Maximum ∆t 0.005 s
Initial ∆t 10−8 s

Simulation span 5 s
Density 1000 kg m−3

Dynamic viscosity 200 Pa s
K0 2.2× 107, and 2.2× 105 Pa
K ′0 7.6

Table 6: Parameters used for solving a compressible pipe problem whose geometry is
described in Figure 13.

The results can be found in Figure 34. The analytical curve correspond to the steady-state
solution of the incompressible problem.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

y (m)

v x
(m

/s
)

Analytical (incompressible)
K0 = 22000000 Pa
K0 = 220000 Pa
K0 = 22000000 Pa (parabolae)
K0 = 220000 Pa (parabolae)

(a) Horizontal component of the velocity at the
function of y at x = 3 m.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1
·104

x (m)

p
(P

a
s)

Analytical
K0 = 22000000 Pa
K0 = 220000 Pa
K0 = 22000000 Pa (parabolae)
K0 = 220000 Pa (parabolae)

(b) Pressure at y = 0.5 m.

Figure 34: Simulation results for the compressible pipe case whose geometry is described
in Figure 13 and parameters in Table 6 at t = 4 s.

The pressure profile matches quite well the analytical solution of the incompressible
problem for both K0 when using a parabola Dirichlet boundary condition. When using
a uniform boundary condition, the correspondence is good at the end of the pipe as

2D Compressible solver case studies 56

expected. The pressure does not evolve anymore out of the pipe as expected too. Re-
garding the horizontal velocity, a parabola-like profile is recovered in all the cases, and
the numerical solution matches the solution of the incompressible steady-state problem
when a parabola Dirichlet boundary condition is used as expected.

The most interesting results is that the velocity profile does not notably changes when
dividing K0 by 100. This means that one could use a lower K0 in some cases and not
obtain degraded results as it has been remarked in the previous section, which is great for
compute time since, as said in subsection II.6.1, the K0 parameter is the main parameter
influencing the time step size in sub-sonic condition. However this parameter influences
the pressure profile at the beginning of the plates in the case where a uniform Dirichlet
boundary condition is used.

3 Sloshing

The same problem as described in the previous part is considered, with the same geometry
as in Figure 17. The parameters used for the simulations can be found in Figure 7. Again
the maximum height of the free surface is tracked. The parameter K0 is set to 2.2× 106

Pa, and not to 2.2× 107 Pa in order to spare some computing time.

hchar 0.02 and 0.01 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.7
Bounding box

(xmin, ymin, xmax, ymax)
[−1,−0.25, 5, 1?25]

Gravity 9.81 kg m s−2

Pressure imposed at free surface yes
"Strong" continuity yes
Adaptive time step yes
Security coefficient 0.2

Maximum ∆t 0.01 s
Initial ∆t 10−8 s

Simulation span 4 s
Density 1 kg m−3

Dynamic viscosity 0.01 Pa s
K0 2.2× 106 Pa
K ′0 7.6

Table 7: Parameters used for solving a compressible sloshing problem whose geometry is
described in Figure 17.

The results are presented in Figure 35.

2D Compressible solver case studies 57

0 0.5 1 1.5 2 2.5 3 3.5 41

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

t (s)

y
(m

)

hchar = 0.02 m (Incompressible)
hchar = 0.01 m (Incompressible)
hchar = 0.02 m (Compressible)
hchar = 0.01 m (Compressible)

Figure 35: Simulation results for the compressible sloshing case whose geometry is de-
scribed in Figure 17 and parameters in Table 7.

While the positions of the local maximum seems to be the same for both solvers, the
maximum amplitude decreases slower for the compressible solver than for the incom-
pressible solver. Testing the behaviour of this problem for varying value of K0 greater
that 2.2× 106 could be really interesting, this could unfortunately not been done in time
for this report.

2D Compressible solver case studies 58

4 Dam break

The same problem as described in the previous part is considered, with the same geometry
as in Figure 20. The parameters used for the simulations can be found in Figure 8.

hchar 0.02 and 0.01 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.7
Bounding box

(xmin, ymin, xmax, ymax)
[−0.01,−0.01, 0.594, 100]

Gravity 9.81 kg m s−2

Pressure imposed at free surface yes
"Strong" continuity yes
Adaptive time step yes
Security coefficient 0.1

Maximum ∆t 0.005 s
Initial ∆t 10−8 s

Simulation span 2 s
Density 1000 kg m−3

Dynamic viscosity 0.001 Pa s
K0 2.2× 106 Pa
K ′0 7.6

Table 8: Parameters used for solving a compressible dam break problem whose geometry
is described in Figure 20.

The total error on mass as well as the pressure at the left corner with respect to time are
studied. The results are presented on Figure 36, and a graphical comparison between the
incompressible and compressible solver developed in this work can be found in Figure 37.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

0

20

40

60

80

100

120

t (s)

Er
ro
r
on

m
as
s
(%

)

hchar = 0.0146 m (incompressible)
hchar = 0.0073 m (incompressible)
hchar = 0.0146 m (compressible)
hchar = 0.0073 m (compressible)

(a) Error on mass as a function of time.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

1,000

2,000

3,000

4,000

5,000

6,000

t (s)

p
(P

a)

hchar = 0.0146 m (incompressible)
hchar = 0.0073 m (incompressible)
hchar = 0.0146 m (compressible)
hchar= 0.0073 m (compressible)

(b) Pressure at the leftmost as a function
of time.

Figure 36: Simulation results for the compressible dam break case whose geometry is
described in Figure 20 and parameters in Table 8.

2D Compressible solver case studies 59

(a) t = 0.2 s

(b) t = 0.4 s

(c) t = 0.6 s

(d) t = 0.8 s
1
2 ‖~v‖

2[J kg−1]1
2 ‖~v‖

2[J kg−1]

0 1.35 0 1.74

Figure 37: Comparison of the dam break flow between the incompressible solver (left)
and the compressible solver (right). The geometry is described in Figure 20
and the parameters in Table 4 and 8.

2D Compressible solver case studies 60

Firstly the increase of mass is smaller in the compressible solver (up to 80 % of increase)
than in the incompressible solver (up to 120 % of increase). Concerning the pressure
results, those from the compressible solver seems more noisy in the second part of the
flow (after 0.8 s while the results in the first part of the flow are really similar). A more
deep study of this test should be done with varying K0 to see if this parameter has the
same impact on the solution as for the flow between two plates problem.

Concerning the graphical results in Figure 37, the overall shape of the solution seems the
same for both solvers. It should be noted however that the solution from the compressible
solver seems to stick more to the right wall than for the incompressible solver. Indeed at
time t = 0.4 and 0.6 s the fluid keeps going up along the wall for the compressible solver
instead of being partially projected in an oblique direction for the incompressible solver.
At 0.9 s no more fluid sticks to the wall for the incompressible solver while some fluid
remains up on the wall for the compressible solver. The closing wave is also further to
the left at that time for the incompressible solver.

5 Dam break with obstacle

This problem is again the same as in the incompressible part. The geometry is described
in Figure 24 and the parameters in Table 8, but hchar = 0.006 m and the maximum time
step is 0.0005 s. The error on mass and the pressure at the leftmost corner and rightmost
corner with respect to time will be studied. The results are presented in Figure 38.

The error on mass is smaller for the compressible solver (up to 66 % of increase) than for
the incompressible solver (up to 95 % of increase). There is a notable decrease of mass of
6.2 % at 0.33 s for the compressible solver. Regarding the pressure at the leftmost corner,
the results are the same, but one can remark that the solution from the compressible solver
is more noisy than the solution from the incompressible solver, and that the curve of the
first solver seems a little bit below the curve of the second solver after 0.8 s. Regarding the
pressure at the rightmost corner, one can see that the fluid seems to arrive at this corner
at the same time for both solvers around 0.4 s. After that time, it is clearly visible in the
figure than the solution from the compressible solver is really noisy is comparison to the
solution from the incompressible one, but is remaining in the same order of magnitude.

A graphical comparison between the solution from this work’s compressible solver and
this work’s incompressible solver is presented in figure 39. Globally, the two solutions
behave quite the same way in the range displayed. There are some differences in the
shape of the free surface of the tail that is appearing when the the fluid hits the obstacle.
Those differences comes certainly from the difference of solver used conjugated with the
remeshing algorithm

2D Compressible solver case studies 61

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−20

0

20

40

60

80

100

t (s)

Er
ro
r
on

m
as
s
(%

)

Incompressible
Compressible

(a) Error on mass as a function of time.

0 0.2 0.4 0.6 0.8 1 1.2 1.40

500

1,000

1,500

2,000

2,500

3,000

t (s)

p
(P

a)

Incompressible
Compressible

(b) Pressure at the leftmost corner as a
function of time.

0 0.2 0.4 0.6 0.8 1 1.2 1.40

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

t (s)

p
(P

a)

Incompressible
Compressible

(c) Pressure at the rightmost corner as a
function of time.

Figure 38: Simulation results for the dam break with obstacle case whose geometry is
described in Figure 24 and parameters in Table 4.

.

2D Compressible solver case studies 62

(a) t = 0.1 s

(b) t = 0.2 s

(c) t = 0.3 s

(d) t = 0.4 s
1
2 ‖~v‖

2[J kg−1]1
2 ‖~v‖

2[J kg−1]

0 2.3 0 1.87

Figure 39: Comparison between the incompressible solver and the compressible solver for
the dam break with obstacle case. The geometry can be found in 20 and the
parameters in 4 and 8.

.

2D Compressible solver case studies 63

6 Performance considerations

A comparison of the typical time to compute the solution for one time step in the com-
pressible solver and the time of remeshing (when it happens) is provided in figure 40.
The problem used in this figure is the dam break problem from section 4, except that the
time step used was 0.0001 s. Only one thread is used.

600 1,200 1,800 2,400 3,0000

0.5

1

1.5

2

2.5

3

3.5

4
·10−2

Number of nodes

C
om

pu
ta
tio

n
tim

e
(s
)

Explicit algorithm
Remeshing

Figure 40: Comparison of the computation time between the explicit algorithm and the
remeshing (when it is triggered) for the dam break problem described in Figure
20 and Table 8.

As expected the time to compute a time step in explicit is really smaller than the time to
compute a time step in implicit, which makes the computation time of the explicit time
step of the same order of magnitude as the time to perform the remeshing.

6.1 Incompressible and compressible solving time comparison

A comparison of the time to compute the solution for this work’s incompressible solver and
this work’s compressible solver is provided in Figure 40. The problem used in this figure
is the dam break problem from section 4, except that the time step used was 0.0001 s.
Only one thread is used. The compressible solver seems faster and it also seems that the
computation time grows faster with the number of nodes for the incompressible solver
than for the compressible solver. It should be noted however that a lot of parameters can
influence the computation time of both solvers such that those results should be taken
with caution.

2D Compressible solver case studies 64

0 20 40 60 80 100 120 140 160 180 2000

500

1,000

1,500

2,000

2,500

Number of nodes

C
om

pu
ta
tio

n
tim

e
(s
)

Incompressible
Compressible

Figure 41: Comparison of the computation time of the incompressible and compressible
solver in the dam break problem described in Figure 20 and in Table 4 8.

6.2 Parallelization

The incompressible and compressible solvers are compared in the same way as in the
previous part in Figure 30.

Surprisingly, the two solvers behave the same way regarding to parallel performance.
This not expected as the compressible solver does not contain a part not parallelized
as the incompressible solver. No explanation can be currently provided for this for the
compressible solver, such that it should be investigated further.

0 1 2 3 4 5 6 7 8 9 10 11 120

2

4

6

8

10

12

Number of OpenMP threads

γ

Perfect
Incompressible
Compressible

(a) Speed-up ration as a function of the
number of threads.

0 1 2 3 4 5 6 7 8 9 10 11 120.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of OpenMP threads

η

Perfect
Incompressible
Compressible

(b) Parallel efficiency as a function of the
number of threads.

Figure 42: Comparison of the parallelization of the incompressible and compressible
solver.

This work’s implicit compressible solver has been compared to this work’s explicit com-
pressible solver and analytical solutions. Both solver seems overall to give the same

2D Compressible solver case studies 65

results. The study has brought to light however that the compressible solver sometimes
gives more noisy solution than the incompressible and has highlighted the particular
problem of simulating fluid too far from incompressibility with the current method. This
could be a particular subject of interest if one is interested in simulating such kind of
flow.

3D case studies 66

Part V

3D case studies
Contents

1 Fluid in cylindrical pipe 66

2 Dam break 70

3 Performance considerations 72

In this part, two 3D tests are performed. Even if the program is able to use both the
incompressible and compressible solver for 3D simulations, all the presented simulations
use the compressible solver. This is because the incompressible solver takes far too much
computation time to solve those problems. For example, in the pipe case showcased below,
the incompressible solver took 48 h to solve 0.9 s of flow, while the compressible solver
manage to solve all the 5 s of the flow during that time, which justifies the development
of a compressible explicit solver in order to compute 3D problems in a reasonable amount
of time.

1 Fluid in cylindrical pipe

A cylindrical pipe is considered and its geometry can be found in Figure 43. A Dirichlet
boundary condition with vx = 1m s−1 is placed at the left entrance of fluid. A small
initial cylindrical volume of fluid is also placed next to this boundary, in order to allow
the addition of nodes by the remeshing algorithm as the elements of this volume will be
deformed due to the presence of the Dirichlet boundary.

L = 4 m
0.2 m

D
=

1m

êx

êy

Figure 43: Initial geometry of the pipe problem.

If the fluid flows for long enough in a long enough pipe, one could expect that the transient
solution converges to a steady-state solution. For an incompressible fluid, it is:

u = 2Q
πR4 (R2 − r2)

dp

dx
= −8µQ

πR4

, (V.1)

3D case studies 67

where Q is the volume flow rate, R is the pipe radius, µ is the dynamic viscosity and r is
the radial distance from the center of the pipe. The parameters are summed up in Table
9. A sufficiently high value of the dynamic viscosity has been chosen in order for the flow
to become fully developed soon enough.

hchar 0.05 m
α (alpha-shape) 1.4

γ (nodes removing) 0.7
ω (nodes adding) 0.35
Bounding box

(xmin, ymin, zmin, xmax, ymax, zmax)
[−1,−1,−0.5, 5, 1, 1.5]

Gravity 0 kg m2 s−1

Pressure imposed at free surface yes
"Strong" continuity false
Adaptive time step yes
Security coeffeficent 0.05

Maximum ∆t 0.01 s
Initial ∆t 10−8 s

Simulation span 5 s
Density 1000 kg3 m−1

Dynamic viscosity 0.001 Pa s
K0 2.2× 106 Pa
K ′0 7.6

Table 9: Parameters used for solving a compressible 3D pipe problem whose geometry is
described in Figure 43.

The results of the simulation can be seem in Figure 44.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

y (m)

u
(m

/s
)

Analytical
h = 0.05 m

(a) Horizontal component of the velocity as a
function of y at x = 3 m.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.5

0

0.5

1

1.5

2

2.5

3
·104

x (m)

p
(P

a
s)

Analytical
h = 0.05 m

(b) Pressure along the pipe center.

Figure 44: Simulation results for the 3D compressible pipe case whose geometry is de-
scribed in Figure 43 and parameters in Table 9 at t = 2.7 s.

3D case studies 68

The velocity profile matches well the incompressible analytical solution. The pressure
profile also matches well that solution, excepted at the pipe entrance, due to the transient
behaviour of the flow there. Outside of the pipe, pressure does not evolve anymore as
expected. A graphical representation of the solution is provided in Figure 45 and Figure
46.

(a) t = 0 s (b) t = 1 s

(c) t = 2 s (d) t = 3 s

(e) t = 4 s

u [m s−1]

0 2

Figure 45: Horizontal component of the velocity at multiple time stations at hchar =
0.05 m in the 3D pipe case whose geometry is described in Figure 43 and
parameters in Table 9.

As it can be seen in Figure 46, the parabola velocity profile switches to a more uniform
velocity profile when the fluid goes out of the pipe, as friction in the fluid smooths out
the gradient of velocity since the pipe walls are not there anymore.

3D case studies 69

(a) t = 0 s

(b) t = 1 s

(c) t = 2 s

(d) t = 3 s

(e) t = 4 s

u [m s−1]

0 2

Figure 46: Horizontal component of the velocity at multiple time stations in the 3D pipe
case whose geometry is described in Figure 43 and parameters in Table 9,
cutted view at half of the pipe.

3D case studies 70

2 Dam break

A 3D dam break similar to the 2D dam break presented before is considered. Its geometry
can be found in Figure 47 and the parameters used in Table 10. The results are presented
in Figure 48 and 49 .

L = 0.146 m
4L

2L
4L

b = 0.175 m

Figure 47: Initial geometry of the 3D dam break problem.

hchar 0.0073 m
α (alpha-shape) 1.2

γ (nodes removing) 0.7
ω (nodes adding) 0.37
Bounding box

(xmin, ymin, zmin, xmax, ymax, zmax)
[−1,−1,−1, 1.584, 1.175, 100]

Gravity 9.81 kg m2 s−1

Pressure imposed at free surface yes
"Strong" continuity yes
Adaptive time step yes
Security coefficient 0.05

Maximum ∆t 0.01 s
Initial ∆t 10−8 s

Simulation span 1 s
Density 1000 kg3 m−1

Dynamic viscosity 200 Pa s
K0 2.2× 106 Pa
K ′0 7.6

Table 10: Parameters used for solving a compressible 3D dam break problem whose ge-
ometry is described in Figure 47

.

3D case studies 71

(a) t = 0 s (b) t = 0.3 s

(c) t = 0.65 s (d) t = 1 s
p [Pa]

451 6.62× 103

Figure 48: Pressure at multiple time stations in the 3D dam break case whose geometry
is described in Figure 47 and parameters in Table 10

3D case studies 72

(a) t = 0 s (b) t = 0.3 s

(c) t = 0.65 s (d) t = 1 s
1
2 ‖~v‖

2 [J kg−1]

0 2.1

Figure 49: 1
2 ‖~v‖

2 at multiple time step in the 3D dam break case whose geometry is
described in Figure 47 and parameters in Table 10

While the global expected behaviour of a dam break is presented, the discretization in
this example is not fine enough to capture all the features of the flow, as such a simulation
could not be done in time for this work.

3 Performance considerations
A comparison of the typical time to compute the solution for one time step in the com-
pressible solver and the time of remeshing (when it happens) is provided in figure 50.
The problem used is the pipe problem firstly described in this part

3D case studies 73

0 0.5 1 1.5 2 2.5
·104

0

0.5

1

1.5

2

2.5

3

Number of nodes

C
om

pu
ta
tio

n
tim

e
(s
)

Explicit algorithm
Remeshing

Figure 50: Repartition of the computation time in the 3D pipe problem described in
Figure 43 and in Table 9 for one time step.

As it can be seen, in 3D the time to perform the remeshing is greater than the time to
compute one explicit time step and seems to grow faster with the number of nodes. This
should thus be a major concern if simulating 3D problems with a high number of nodes
is needed.

In this part it has been showed that the compressible solver developed in this work is able
to simulate accurately 3D flows. However there is still some research work to do, notably
on the acceptable range of remeshing parameters in 3D as well as the time of remeshing
in 3D which could be a major bottleneck for further uses.

Conclusions and future work 74

Conclusions and future work
In this work, a weakly-compressible solver for the Navier–Stokes equations has been
developed in order to simulate 3D flows. To do so, the strong form and weak form of the
equations in both the compressible case and the incompressible case have been recalled
from continuum mechanics. The PFEM method has then been introduced, and a solution
to perform the Delaunay triangulation and the alpha-shape algorithm in 3D, necessary
steps to produce a mesh on which computations can be made, has been found by using
CGAL. Based on the work in Cerquaglia [2019] and Meduri [2019], the spatial discretized
equations and the time integration methods used have then been introduced.

In a second time, the 2D incompressible solver developed in this work has been compared
to analytical solutions and to the solver developed by Marco-Lucio Cerquaglia (Cerquaglia
[2019]). Although the solver seems able to correctly simulate those flows, a problem of
too big increase of mass has been identified. After that the 2D compressible solver
developed in this work has been compared to the 2D incompressible solver from this
work. The compressible solver is able to reproduce the results from the incompressible
solver. However, the results are in some case more noisy for the compressible solver, and
this solver seems unable to correctly simulate fluid too far from incompressibility.

At last, the 3D compressible solver has been tested using a cylindrical pipe problem. The
numerical solution being close to the analytical one, this show that the solver is able to
simulate 3D flows.

There is still a lot of room for improvements in the solvers developed in this work, and
some ideas to do so are presented hereafter:

- The parameter hchar has to be specified in the parameters file, while it could be
computed from the .msh file in order to minimize the probability of an error from
mismatching hchar between that file and the parameters file.

- A space varying hchar could be introduced easily using Lua (de Figueiredo et al.
[2020]) in order to tune the density of nodes where the solution is the more inter-
esting to compute.

- The remeshing algorithm currently performs three triangulations per remeshing,
because the functions which add, delete nodes or check if some nodes are outside
the bounding box do not ensure that the state of the Mesh class remains consistent
after being executed. While it is not really a problem in the incompressible 2D
solver, it can be really problematic in the compressible 3D solver where the time to
perform the remeshing becomes a major concern.

- The Delaunay triangulation and alpha-shape algorithm are currently not paral-
lelized (because it seems CGAL does not have parallelized algorithm for them).
Since the 3D remeshing takes a lot time, it could be interesting to investigate if
those algorithm inside CGAL could benefit from parallelization.

Conclusions and future work 75

- The problem of generation of slivers has been solved in a quite abrupt way. It is
not impossible that some really small actual fluid elements might be deleted. The
problem of slivers should thus be investigated further. Some more 3D specific mesh
optimization algorithms might also be needed.

- A more precise study should be done on the remeshing constants (α, γ and ω) to
see their influence on the mass conservation during the simulations (in both 2D and
3D).

- The solver does not currently handle imposed surface traction at all. This is mainly
due to the fact that currently the mesh does not store any geometrical information
about the edges (Jacobian determinant, and especially curvature computation).
This prevents taking into account any surface tension effect but could be easily
added.

- The origin of the "spikes" appearing in the pressure graph in the dam break problems
should investigated. The addition and removal of nodes by the remeshing algorithm
could be a candidate as a cause of this effect.

- Technically speaking, there is nothing in the current code that prevents one to use
moving wall, the Lua code of boundary conditions allowing to set any velocity for
wall nodes . However, this has not been tested in this work due to lack of time. It
could thus be interesting to see if it works or not.

- The solver does not support free slip boundary conditions, which can be useful at
high Reynolds number (Cerquaglia [2019]).

- Other time integration schemes could be used in the incompressible and compress-
ible solvers, which currently use a backward-Euler and a central difference scheme
respectively.

- Other convergence criteria from Cerquaglia [2019] could be implemented for the
non-linear algorithm in the incompressible solver.

- The poor parallel performance of the compressible solver should be investigated.
In the incompressible solver, different non-linear algorithms could be tested (e.g.
Newton-Raphson) and one could try to use an iterative solver instead of a solver
using LU decomposition to solve the algebraic system.

- The compressible solver does not behave really well for too small value of the
parameter K0. While this was not a problem in this work as the compressible solver
was still used for simulating flows with fluid near incompressibility, this should be
investigated if someone is interested in solving more compressible flows.

- Different equations of state could be added in the compressible solver. However
this has an interest only if the low K0 problem is solved first.

Annexes 76

Annexes

A Mesh file

The two solvers developed in this work use a .msh as input file for the initial set of nodes.
This file should be generated by the 4.5 version of Gmsh (Geuzaine and Remacle [2009]).

In 2D, each curve and surface must have a physical curve and a physical surface, which
is a tool provided by Gmsh to identify from which curves or surfaces the nodes come from
once inside the solver (but multiple curves/surfaces can be in the same physical curve.
The same should be done in 3D for surfaces and volumes, using physical surfaces and
physical volumes.

The name of those now denominated physical objects will be used by the solver to know
which Lua function to call to get the boundary and initial conditions.

B Boundary conditions implementation

A typical Lua file for the boundary and initial conditions for the problem from section
III.2 can be seen in Figure 51.

Figure 51: Example of a Lua boundary and initial condition file for an incompressible
problem.

Each physical object must provide a function named initNameOfPhysicalObject(e.g.
initFluid, initFluidInput, initBoundary in the example of Figure 51) , which takes
the position of the nodes inside the physical object as argument. This functions is then

Annexes 77

used to initialize the states of those nodes (e.g. vx, vy, p, etc) at the beginning of the
program.

Moreover, each boundary must provide a function named nameOfPhysicalObject, which
takes the current position of nodes, the initial position of the nodes of the boundary and
the current time of the simulation as argument. Those functions are used by the solver to
impose the correct value of the for velocity for the wall and Dirichlet boundary conditions.
In order to differentiate a wall condition from a fluid input, a boolean which is true in
the last case is returned in the initNameOfPhysicalObject functions.

It can be seen in the example that the velocity of the physical curve "FluidInput" and
physical surface "Fluid" are initialized to a parabola profile, respectively by function
initFluidInput and initFluid. The "FluidInput" boundary is a Dirichlet boundary,
as denoted by the returned value true in the function initFluidInput. On the other
hand the physical curve "Boundary" represents a fixed wall, as denoted by the returned
value false in the function initBoundary.

C How to use the executable and its JSON parameter
file ?

The command to execute the program is :

pfem path_to_json_file path_to_msh_file

The JSON file will contain all the parameters needed for the simulation. A typical example
of this file for the problem described in section IV.2 can be found in Figure 52

Annexes 78

Figure 52: Example of a JSON parameters file for a compressible problem.

The writing of such a parameter file is quite easy, and the potential errors can be found
quite easily.

Annexes 79

D How to use the project from python ?
The project generates a python module thanks to SWIG (Beazley et al. [2020]). The
library can then be called and the parameters set by filling python objects which are sent
to the solver’s constructors. An example of such a python file launching a simulation for
the problem from section III.2 can be seen in Figure 53

Figure 53: Example of a python file to launch a simulation.

The first part of the file imports the required python objects. Firstly a MeshCreateInfo
object is filled and will contain the parameters about remeshing. Then a SolverCreateInfo
object is filled, which will contain general informations common to both the incompress-
ible and compressible solvers. Finally a SolverIncompCreateInfo object is filled, con-
taining the parameters specific to the incompressible solver. This object is passed to the
constructor of a SolverIncompressible object, which represents the solver. The method
addGMSHExtractor adds an extractor to the solver so that the results are exported to a
.msh file. Finally, the solver is launched using the method solveProblem, which takes a
boolean controlling the verbosity of the console output.

References 80

References

Books

R. Adams and J. Fournier. Sobolev Spaces, Volume 140 (Pure and Applied Mathematics).
Academic Press, jul 2003. URL https://www.xarg.org/ref/a/0120441438/.

R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathe-
matical physics. IBM Journal of Research and Development, 11(2):215–234, Mar. 1967.
URL https://doi.org/10.1147/rd.112.0215.

J. Donéa and A. Huerta. Finite Element Methods for Flow Problems. Wiley, Apr. 2003.
URL https://doi.org/10.1002/0470013826.

E. H. Spanier. Algebraic Topology. Springer New York, 1981. URL https://doi.org/
10.1007/978-1-4684-9322-1.

Thesis

M. L. Cerquaglia. Development of a fully-partitioned PFEM-FEM approach for fluid-
structure interaction problems characterized by free surfaces, large solid deformations,
and strong added-mass effects. PhD thesis, Université de Liège, 2019.

S. Meduri. A fully explicit Lagrangian Finite Element Method for highly nonlinear Fluid-
Structure Interaction problems. PhD thesis, Politecnico di Milano, 2019.

Articles

B. Delaunay. Sur la sphère vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i
Estestvennyka Nauk, 7:793–800, 1934.

H. Edelsbrunner and E. P. Mücke. Three-dimensional alpha shapes. ACM Transactions on
Graphics (TOG), 13(1):43–72, Jan. 1994. URL https://doi.org/10.1145/174462.
156635.

H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape of a set of points in the
plane. IEEE Transactions on Information Theory, 29(4):551–559, July 1983. URL
https://doi.org/10.1109/tit.1983.1056714.

R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Monthly Notices of the Royal Astronomical Society,
181(3):375–389, Dec. 1977. URL https://doi.org/10.1093/mnras/181.3.375.

https://www.xarg.org/ref/a/0120441438/
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1002/0470013826
https://doi.org/10.1007/978-1-4684-9322-1
https://doi.org/10.1007/978-1-4684-9322-1
https://doi.org/10.1145/174462.156635
https://doi.org/10.1145/174462.156635
https://doi.org/10.1109/tit.1983.1056714
https://doi.org/10.1093/mnras/181.3.375

References 81

T. J. Hughes, L. P. Franca, and M. Balestra. A new finite element formulation for
computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a
stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order
interpolations. Computer Methods in Applied Mechanics and Engineering, 59(1):85–99,
Nov. 1986. URL https://doi.org/10.1016/0045-7825(86)90025-3.

S. Idelsohn, E. Oñate, and F. D. Pin. The particle finite element method: a powerful
tool to solve incompressible flows with free-surfaces and breaking waves. International
Journal for Numerical Methods in Engineering, 61(7):964–989, Sept. 2004. URL https:
//doi.org/10.1002/nme.1096.

S. Koshizuka and Y. Oka. Moving-particle semi-implicit method for fragmentation of
incompressible fluid. Nuclear Science and Engineering, 123(3):421–434, July 1996.
URL https://doi.org/10.13182/nse96-a24205.

J. R. Macdonald. Some simple isothermal equations of state. Reviews of Modern Physics,
38(4):669–679, Oct. 1966. URL https://doi.org/10.1103/revmodphys.38.669.

W. F. Noh and P. Woodward. SLIC (simple line interface calculation). In Proceedings of
the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28 –
July 2, 1976 Twente University, Enschede, pages 330–340. Springer Berlin Heidelberg,
1976. URL https://doi.org/10.1007/3-540-08004-x_336.

S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79
(1):12–49, Nov. 1988. URL https://doi.org/10.1016/0021-9991(88)90002-2.

P. B. Ryzhakov, R. Rossi, S. R. Idelsohn, and E. Oñate. A monolithic lagrangian ap-
proach for fluid–structure interaction problems. Computational Mechanics, 46(6):883–
899, Aug. 2010. URL https://doi.org/10.1007/s00466-010-0522-0.

R. L. Sani, P. M. Gresho, R. L. Lee, and D. F. Griffiths. The cause and cure (?) of the
spurious pressures generated by certain FEM solutions of the incompressible Navier-
Stokes equations: Part 1. International Journal for Numerical Methods in Fluids, 1
(1):17–43, Jan. 1981a. URL https://doi.org/10.1002/fld.1650010104.

R. L. Sani, P. M. Gresho, R. L. Lee, D. F. Grifftths, and M. Engelman. The cause and cure
(!) of the spurious pressures generated by certain FEM solutions of the incompressible
Navier-Stokes equations: Part 2. International Journal for Numerical Methods in
Fluids, 1(2):171–204, Apr. 1981b. URL https://doi.org/10.1002/fld.1650010206.

M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions
to incompressible two-phase flow. Journal of Computational Physics, 114(1):146–159,
Sept. 1994. URL https://doi.org/10.1006/jcph.1994.1155.

T. Tezduyar. Stabilized finite element formulations for incompressible flow computations.
In Advances in Applied Mechanics, pages 1–44. Elsevier, 1991. URL https://doi.org/
10.1016/s0065-2156(08)70153-4.

D. Thomas, M. Cerquaglia, R. Boman, T. Economon, J. Alonso, G. Dimitriadis, and
V. Terrapon. CUPyDO - an integrated python environment for coupled fluid-structure
simulations. Advances in Engineering Software, 128:69–85, Feb. 2019. URL https:
//doi.org/10.1016/j.advengsoft.2018.05.007.

https://doi.org/10.1016/0045-7825(86)90025-3
https://doi.org/10.1002/nme.1096
https://doi.org/10.1002/nme.1096
https://doi.org/10.13182/nse96-a24205
https://doi.org/10.1103/revmodphys.38.669
https://doi.org/10.1007/3-540-08004-x_336
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1007/s00466-010-0522-0
https://doi.org/10.1002/fld.1650010104
https://doi.org/10.1002/fld.1650010206
https://doi.org/10.1006/jcph.1994.1155
https://doi.org/10.1016/s0065-2156(08)70153-4
https://doi.org/10.1016/s0065-2156(08)70153-4
https://doi.org/10.1016/j.advengsoft.2018.05.007
https://doi.org/10.1016/j.advengsoft.2018.05.007

References 82

G. Wu, R. E. Taylor, and D. Greaves. The effect of viscosity on the transient free-surface
waves in a two-dimensional tank. Journal of Engineering Mathematics, 40(1):77–90,
2001. URL https://doi.org/10.1023/a:1017558826258.

Software
D. M. Beazley et al. Simplified Wrapper and Interface Generator. 2020. URL http:

//www.swig.org/.

T. K. F. Da. 2D alpha shapes. In CGAL User and Reference Manual. CGAL Editorial
Board, 5.0.2 edition, 2020. URL https://doc.cgal.org/5.0.2/Manual/packages.
html#PkgAlphaShapes2.

T. K. F. Da, S. Loriot, and M. Yvinec. 3D alpha shapes. In CGAL User and Reference
Manual. CGAL Editorial Board, 5.0.2 edition, 2020. URL https://doc.cgal.org/5.
0.2/Manual/packages.html#PkgAlphaShapes3.

L. H. de Figueiredo, R. Ierusalimschy, and W. Celes. Lua 5.1 language. 2020. URL
https://www.lua.org/.

C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-
in pre- and post-processing facilities. International Journal for Numerical Methods
in Engineering, 79(11):1309–1331, Sept. 2009. URL https://doi.org/10.1002/nme.
2579.

G. Guennebaud, B. Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

Intel. Intel Threading Building Blocks. 2020. URL https://github.com/oneapi-src/
oneTBB.

N. Lohmann et al. JSON for Modern C++ . 2020. URL https://github.com/nlohmann/
json.

J. Meneide et al. Sol3 (sol2 v3.0) - a C++ <-> Lua API wrapper with advanced features
and top notch performance. 2020. URL https://github.com/ThePhD/sol2.

OpenMP Review Board. OpenMP 4.5 standard. 2020. URL https://www.openmp.org/.

Python Software Foundation. Python 3.8. 2020. URL http://www.python.org/.

Y. Renard, J. Pommier, M. Fournie, and B. Schleimer. Gmm++: a generic C++ template
library for sparse, dense and skyline matrices. 2020. URL http://getfem.org/gmm.
html.

J. R. Shewchuk. Triangle: Engineering a 2d quality mesh generator and delaunay
triangulator. In Applied Computational Geometry Towards Geometric Engineering,
pages 203–222. Springer Berlin Heidelberg, 1996. doi: 10.1007/bfb0014497. URL
https://doi.org/10.1007/bfb0014497.

B. Stroustrup et al. The C++17 language. 2020. URL https://www.isocpp.org.

The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.0.2
edition, 2020. URL https://doc.cgal.org/5.0.2/Manual/packages.html.

https://doi.org/10.1023/a:1017558826258
http://www.swig.org/
http://www.swig.org/
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgAlphaShapes2
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgAlphaShapes2
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgAlphaShapes3
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgAlphaShapes3
https://www.lua.org/
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
http://eigen.tuxfamily.org
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/ThePhD/sol2
https://www.openmp.org/
http://www.python.org/
http://getfem.org/gmm.html
http://getfem.org/gmm.html
https://doi.org/10.1007/bfb0014497
https://www.isocpp.org
https://doc.cgal.org/5.0.2/Manual/packages.html

