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Chapter 1

Introduction

Music is a form of art, which derives from the Greek word meaning “art of the
Muses”. Music has been performed since the dawn of human time with instruments
and through vocal song. While it is not certain how and when the first musical in-
strument was invented, historians point to early flutes made from animal bones
that are at least 37000 years old. The oldest known written song dates back 4000
years and was written in ancient cuneiform. Instruments were created to make
musical sounds. Any object that produces sound can be considered a musical in-
strument and most particularly if it was designed for that purpose. Amongst these
instruments are synthesizers which use some method of sound synthesis.

Sound synthesis can be defined as the production of sound that originates elec-
tronically from scratch by either analog or digital circuitry, as opposed to sound
whose origins derive from recorded or sampled real-world sonic events.

Programming a synthesizer can be an art by itself. Considering the number of
parameters supported by most synthesizers, finding a set of parameters to generate
a wanted sound is a difficult task. Humans typically start from existing sets and
modify parameters one by one until obtaining what they are looking for, using a
trial-and-error approach.

The goal of this project is twofold: reverse engineer a synthesizer in order to
build a simulator and use deep learning techniques to solve the problem of finding
a set of parameters (or distributions of parameters) given a sound.

In this document, we will describe the complete approach taken to solve this
problem.

e In chapter 2, we will do a quick review of sound synthesis history, where it
stands today and why we are interested in analog synthesizers.

e In chapter 3, we will do a deep-dive in the Roland JX synthesizer: its hardware
architecture as well as the software running on its microcontrollers.

e In chapter 4, we will build a simulator based on the knowledge learnt from
the reverse engineering done previously. This will allow us to create datasets
to be processed by our neural networks.



e In chapter 5, we will review and use deep learning techniques to solve the
problem of finding synthesis parameters given a sound.

e Chapter 6 describes the results that we have obtained using the different
algorithms from chapter 5.

e Finally, we will conclude and talk about potential enhancements to your so-
lution.



Chapter 2

Sound synthesis

Sound synthesis can be defined as the production of sound that originates electron-
ically from scratch by either analog or digital circuitry, as opposed to sound whose
origins derive from recorded or sampled real world sonic events.

Sound synthesis is actually pretty old. Patented in 1895, the Telharmonium can
be considered the first significant electronic musical instrument and was a method
of electro-magnetically synthesising and distributing music over the new telephone
networks of victorian Americal. In the mid-1960’s, Robert Moog released a series of
self-contained modular instruments that made voltage-controlled synthesis afford-
able to many studios. These modular synthesizers were made of building blocks
connected together using “patch cords”. In 1971, the Minimoog was released. It
was designed to be affordable, portable and was the first synthesizer sold in retail
stores.

Figure 2.1: The Minimoog

Synthesizers generate audio through different methods including subtractive syn-
thesis, additive synthesis and frequency modulation synthesis. The sounds are
shaped and modulated by other components such as filters, envelopes and low-
frequency oscillators.

'http://120years.net/the-telharmonium-thaddeus-cahill-usa-1897/
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2.1 Subtractive synthesis

Creasey [5] describes subtractive synthesis as an approach in which filtering is the
principal tonal modification technique. The sources to be filtered are generally
simple waveforms (triangle, rectangle, sawtooth) or noise generators.

The most basic example of subtractive synthesis is shown at Figure 2.2.

1

Figure 2.2: Basic subtractive synthesis

2.1.1 Oscillator

The oscillator generates a repeating signal in a particular waveform containing all
of its dynamic range and harmonic frequencies. A sine waveform will produces a
smooth and mellow sound and is often used to create pipe sounds. The sawtooth
waveform creates a strong “buzz” sound. It contains harmonic frequencies which
sound rich and full and great for powerful synth bass and lead sounds. The square
waves have a sound that is rich in harmonics, not as “buzzy” as the sawtooth but
not as smooth as the sine. They have half as many harmonic frequencies as the
sawtooth and are use for nasal sounds, such as those created by wind instruments
such as a clarinet.

2.1.2 Filter

The filter (often called VCF, Voltage Controlled Filter) is used to filter out unwanted
frequencies from the raw oscillator sound. Most synthesizers rely on two kind of
filters: a lowpass filter (LPF) and highpass filter (HPF). The lowpass filter allows
the low frequencies to pass through cutting off the high frequencies. A highpass filter
does the opposite. The frequency at which the sound starts to be affected is called
the cutoff frequency. Another important parameter of the filter is the resonance.
Most filters have a resonance (often called ) control). Resonance occurs when the
sound in the same range as the cutoff frequency is routed back to the filter, creating
feedback. VCF can be affected by an envelope (which will be described with the
amplifier).



Amplitude
Amplitude

Frequency (Hz) Frequency (Hz)
Normal low pass filter Low pass filter with resonance

Figure 2.3: Lowpass filter with and without resonance

2.1.3 Amplifier

The next step in the chain is the amplifier, also called VCA (Voltage Controlled
Amplifier), which controls the volume of the sound. VCA can be affected by a
volume envelope. The envelope allows to sculpt the tone, shaping the waveform to
create the sound we are looking for. Envelopes (Figure 2.4) can be broken in four
parts: attack, decay, sustain and release.
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Figure 2.4: ADSR envelope

The envelope is a key in shaping the sound we want to create. Let’s compare
a drum and a violin : the drum has a sharp, sudden increase in volume (attack)
with almost no sustain and a short release time. The violin has a longer and slower
attack, building to maximum volume, a long sustain and the sound tails off slowly.

Envelopes don’t just apply to the amplifier. Many synthesizers have an envelope
on the filter and/or the pitch (oscillator frequency).

2.1.4 LFO

The LFO (Low Frequency Oscillator) is another oscillator using similar waveforms
as the main oscillator but its frequency is so low that it is inaudible. Rather than
being used to create a tone, it is use to manipulate other parameters. Typical
LFO parameters are the rate (its frequency) and depth (amount of LFO applied
to a parameter). Many synthesizers include controls to set the LFO to affect pitch



(which creates a vibrato effect), volume (creates a tremolo) or filter cutoff. Having
the LFO control the filter creates sounds with a wah-wah effect or wobble basslines.

2.2 Additive synthesis

Additive synthesis is the oldest form of sound synthesis dating back to its applica-
tion in pipe organs. It is based on techniques based on summation of elementary
waveforms to create a more complex waveform. Typically sine waves are used be-
cause they don’t contain harmonics. We can for example create a square wave by
adding a series of sine waves, one sine being the fundamental frequency and the
others being the odd harmonics (added in decreasing amplitude).

There is no need to add more details since the principle is trivial. The main
drawback is the need to many many oscillators to produce interesting sounds, which
makes the technique impractical for real synthesizers.

2.3 Frequency modulation synthesis

FM sound synthesis was first described in a paper [3] from Stanford. Yamaha
bought the patent and produced synthesizers based on FM, making the famous
DXT released in the early eighties.

FM (Frequency Modulation) synthesis is based on the use of two oscillators:
a carrier and a modulator. The carrier is used as the fundamental frequency of
the sound (and is controlled by the keyboard) while the modulating frequency is
used to alter the carrier at a specific modulation rate and modulation intensity.
Mathematically this is based on the concept of sideband frequencies. When a signal
is frequency modulated, sum and difference tones appear.

FM signal can be expressed with the equation

Y = A sin(2nfot — % cos(2m fint)) (2.1)

FM generates frequency components in the output waveform that are not nec-
essarilly harmonically related to the carrier or modulator frequency which in turn
affects the sound produced. FM produces an infinite number of side bands (brighter
sounds) at frequencies fq, = f. £ nfpn.

Yamaha uses 6 oscillators in the DX7. They modulate each other in various
combinations as shown as Figure 2.5. Each oscillator has its own envelope. This
complex synthesis generated a new variety of sounds (revolutionary at the time)
which contributed to the huge success of FM synthesis. Programming these syn-
thesizers was very difficult due to the non-intuitive nature of FM.

2.4 Modern sound synthesis

Today, processing audio even at a high sample rate, has become a trivial task for a
CPU or GPU. In the beginning era of sound synthesis, this was not the case. There
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Figure 2.5: DXT7 oscillators configurations

was no GPU at that time and the CPU were very limited: they ran way too slow
for generating or processing audio in real time.

Modern sound synthesis can pretty much generate anything, the number of
oscillators is virtually unlimited, envelopes are multi-points, filters can have any
shape, etc... Many techniques are used to try to reproduce the sound of the early
synthesizers but it appears to be difficult to reproduce the sounds produced by
analog synthesizers which, by definition, don’t produce discrete sounds. These
synthesizers became “classic” and highly sought machines with crazy prices for
some models.

We happen to own a Roland Super JX synthesizer, which was the last analog
synthesizer ever produced by Roland. It has 12 voices, each having 2 oscillators,
analog filters (resonant lowpass and highpass), analog amplifier and chorus. When
trying to replicate a sound on this synthesizer, the manual method is often trial-
and-error. We start with a sound which sounds like the sound we want, then modify
parameters one by one until reaching the desired output. Our motivation for this
project is to fully automate this process.



Chapter 3
The Roland Super-JX

In order to write an accurate simulator of the Roland JX, we have to fully under-
stand how it works internally. The good news is that Roland released schematics of
their synthesizers and some high-level overview on how it operates. The bad news
is that this is far incomplete and nowhere close to the level of knowledge required
to develop a simulator.

3.1 High-level overview

The Roland documentation provides a high-level overview of the synthesizer which
we provide at Figure 3.1. We find the following elements:

e an assigner board : this board contains a CPU (Hitachi HD6303), 32KB of
ROM, 10KB of RAM, midi interface and a gate-array' chip.

e two sound boards : these boards are the sound generators. Each one contains
another CPU (Intel 8031) and analog circuitry.

e several other smaller boards : display, buttons, output buffers, ...

We will detail the assigner board and the sound boards in this chapter.
First, let’s start with some definitions used with this synthesizer.

e A sound produced by a sound board is referred as a tone. A tone is made
from a set of parameters and this is what we are interested in for this project.

e A patch is made of one or two tones. The Super JX synthesizer can play up
to 12 voices in whole mode or up to 6 voices in dual mode. The patch is the
structure which encompasses up to two tones and some extra patch specific
parameters such as a detune factor between the tones, how notes are assigned,
ete...

e The assigner board is the hardware dealing with the human interface (front
panel, keyboard, midi interface) and responsible to assign notes to the sound
board voices.

!Early incantation of CPLD/FPGA chips
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The sound board is an digital/analog board capable of generating up to 6
voices.

Midi is a standard interface used to interconnect synthesizers and computers.

A DCO is a Digitally Controlled Oscillator. Early analog synthesizer used
VCO (Voltage Controlled Oscillator) which suffered from temperature stabil-
ity. By using a crystal to control the frequency, DCO are stable and don’t re-
quire adjustment. DCO produces sawtooth, square waves (sometimes PWM,
Pulse Width Modulated) and noise signals.

A VCF is a Voltage Controller filter. Typically a lowpass filter with a
-12dB/octave or -24dB/octave response.

A VCA is a Voltage Controller Amplifier. The gain of the amplifier is con-
trolled by an input voltage. Typically the input voltage is linear and the
output gain is exponential.

An envelope is a time dependent function which can be applied to DCO,
VCF, VCA (and other entities) to vary their action across time.

A LFO, Low Frequency Oscillator, is an oscillator in the range of 0.1 Hz to
20 Hz which can be applied on control voltages to modulate their action.

A CV, Control Voltage, is a DC voltage applied to an entity (VCF, VCA,...)
to control this entity. It is typically generated from a DAC which is itself
controlled by a CPU.

All of these items will be described with more details in the coming sections.

3.1.1 Assigner board
The assigner is the brain of the Roland JX. Its purpose is multiple:

1.

2.
3.
4.

Scan the keyboard to detect keys which are played and how fast/hard (veloc-
ity)
Handle the midi interface.

Scan and control the human interface: buttons, LEDs, sliders.

Control a 40-characters fluorescent display.

A state diagram of the assigner is shown at Figure 3.2.

A quick note about the midi interface. Midi is the standard interface used
by musical instruments to communicate. It is basically a serial interface running at
31250 bauds. The difference with a regular serial port is that midi uses opto-couplers
to provide electrical isolation between instruments and therefore avoid ground loops
known to create hum. See Figure 3.3.

10
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Figure 3.3: Midi hardware interface
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3.1.1.1 Hardware

The 8-bits CPU runs at 2 MHz and has an address bus of 16 bits, allowing for a
64KB address space. This address space is divided between RAM, ROM and the
gate-array which provides a shared ram between itself and the CPU. This shared
ram is used to place information about the keyboard scan. When a key is pressed
on the keyboard, the gate-array writes the velocity at a fixed offset and interrupts
the CPU which can then retrieve the data by reading the shared ram. Note that
this is implemented using a weird scheme: the gate-array controls the clock going
into the CPU so it can stale the cpu to prevent it from generating bus traffic to
the shared ram. Buttons and LEDs are memory-mapped and directly controlled by
the CPU. The code fits in a 32KB eprom but is actually less than 24KB since the
eprom contains a bank of factory sounds which takes about 8KB.

The synthesizer has a 40 characters display. This display board has its own
controller which receives data from the CPU using a bit-banged spi? protocol which
only requires 2 signals (clock and data).

Since the synthesizer has a few analog inputs, an A/D converter chip is added
connected through another bit-banged spi interface to the CPU. The A /D converter
provides 8-bits sampling of 4 analog signals:

e the bender : a pitch wheel to vary the pitch in a continuously variable manner.
The first bender with a pitch wheel was the Minimoog in 1971.

e the aftertouch : on electronic synthesizers, pressure sensitivity is called after-
touch. It allows keyboard players to change the tone or sound of a note after
it is struck, the way that singers, wind players or bowed instrument players
can do.

e two sliders which can modify any parameter in real time. Software simply
maps the A/D outputs to defined parameters.

The assigner controls the sound boards. It must also generates midi output since
the keyboard can control other synthesizers. It is also useful to have midi in/out
to load and save sounds (through midi sysex®). Unfortunately the CPU only has
one serial interface. Its receive side is used for midi in and Roland engineers have
decided to use the transmit side to control the sound boards. The communication is
unidirectional. Ultimately, midi out must be provided somehow : without any serial
interface left, the solution implemented by Roland is to pass midi out information
to a sound board which will then control the midi out signal. The advantage of
this approach is money-saving : there is no need for additional hardware. The
disadvantage is increased latency when outputting midi and extra burden on the
sound board CPU since it gets interrupted to process serial traffic.

3.1.1.2 Software

If we started with a schematics and a high-level overview to understand the hard-
ware, there was no documentation or specification available for the software. For

2Serial Peripheral Interface
3System Exclusive messages

12



the software, we started by dumping the eprom in order to disassemble the code.
Since our goal is to write a simulator of the sound generators, we don’t need to fully
understand what the assigner is doing. Instead we will be happy to reverse-engineer
how parameters are mapped between the user interface (where most parameters are
displayed as 7-bits integers).

The HD6303 is a CPU built by Hitachi but it is based on the Motorola 6800
processor with some extra instructions. It has two 8-bits registers A /B and a 16-bits
address register X. From today’s standards, it is a very simple CPU. Disassembling
the assigner code was straightforward. After configuring the hardware, the CPU
enters a main loop :

1. scan the buttons

2. refresh the LEDs

3. update the display

4. read the A/D converter
5. assign notes

Assigning notes is the main job’s of the assigner. When a note is played (through the
keyboard or incoming midi message), the assigner must decide which sound board
will play the note and which of the 6 voices will be used. Various algorithms are
used depending on the assign patch parameter and the patch mode parameter.
Indeed the synthesizer can stack 2 tones together in dual mode, play all voices in
mono mode, etc... Voices can be assign in FIFO or LIFO order. These details,
while interesting, are not relevant for this project.

Amongst the assigner tasks, the one that interests us the most is how tones
are configured on the sound boards. We will see in the next section the parameters
required for a tone. In the assigner, each tone is stored in memory has a blob/struct
of bytes. Each parameter has an associated number used to transmit the parameter
to the sound board. Therefore the protocol is very simple : to transmit a parameter,
the assigner first sends its number followed by the parameter value. Since each
parameter is a number between 0 and 127, parameter numbers are chosen to be
bigger than 127 which allows easy synchronization for the sound board. In the event
of a corrupted byte during transfer (remember that the communication assigner to
sound board is unidirectional), the sound board can detect the condition very easily.
The list of the parameter numbers is given in Appendix A.

3.1.2 Sound board

We started again from the schematics, a state diagram of a sound board is shown
at Figure 3.4.

3.1.2.1 Hardware

The sound board is a subtle mix of digital and analog electronics. The digital
part is based on an Intel 8031 microcontroller, one of the earliest microcontroller

13
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Figure 3.4: Sound board

in the market. It has 128 bytes of internal memory but another Intel chip (a 8155)
provides 256 extra memory bytes.
The 8031 microcontroller is a very simple chip which provides:

e a 8051 instruction set

e 2 16-bits timers

e 1 full-duplex serial port

e up to 4 8-bits ports (32 I/O lines)
e 128 bytes of RAM

As stated previously, the serial port is used as the primary communication mech-
anism. The 8031 receives orders from the the assigner on the RX side. The TX
side is used to drive the midi out port.

The sound board hardware can generate up to 6 voices. In the JX terminology,
each voice plays a tone and is made of a set of parameters. Most parameters are
unique to a voice while some parameters of a tone can affect the 6 voices at once.
The flow of how a tone is generated is shown at Figure 3.9.

DCO The DCO uses a clever mechanism to generate a sawtooth of a given fre-
quency, starting from a 8 MHz square wave produced by a crystal. Figure 3.5 shows
a simplified hardware view. At the input, we have the high-frequency signal. The
8031 CPU computes a divider value which is programmed into the counters®. At
the output of the counters, we find a square wave of the wanted frequency.

The sawtooth waveform is generated by charging a capacitor linearly in an op-
amp integrator configuration. A rising edge of the square waveform discharges the
capacitor and resets the sawtooth. While this generates a sawtooth of the perfect
frequency, the level of the sawtooth is not constant since the less time the capacitor
charges, the less the output amplitude. To circumvent this issue, the input of the
integrator is a voltage controlled by the CPU. This voltage is computed based on
the wanted frequency and some calibration value computed at boot time®. The

4The counters are programmable counter chips, 8253.
5Capacitors typically have a precision of 10-20% so a calibration is required.
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result is a sawtooth amplitude nearly constant accross the whole frequency range.

While this method is clever, it comes with a drawback: since the output fre-
quency is based on a digital divider, it cannot produce a smooth variable frequency.
Instead it can only produce various discrete frequencies, depending on the value
of the divider. When a modulation is applied to the DCO, the frequency actually
steps through the various values of the divider under control of the CPU. If these
steps are not close enough, the result will be audible. We did some calculation to
find how bad this could be. If the master clock is 8 MHz, we must divide by 8000
to produce 1kHz. Dividing by 4000 will produce 2 kHz which is an octave higher.
We see that the higher the frequency, the less steps we have in each octave. While
it may look bad, in practice the error is much smaller than 1% and the human ear
can only detect errors bigger than 5%. At the bottom of the midi frequency range,
another problem happens: a 16-bits divider is no longer enough to produce the
wanted low frequencies, therefore Roland engineers added a prescaler to the master
clock input of the counters. This prescaler can pass the 8 MHz clock through or
divide it by 2, 4 or 8 ©,

There are two DCOs per voice in the JX architecture. Each DCO can generate a
sawtooth, a square wave or white noise. The second oscillator can be synchronized
to the first one or both oscillators can synchronized each other (refered as cross-
synced). This is simply done by using the square wave of one oscillator to reset the
sawtooth generator of the other oscillator.

Finally, it should be mentioned that there is a detune factor that can be applied
to the second DCO. In the 8155 chip, Roland had a 8-bits timer left unused. They
use it to slightly change the clock going into the counters of the second oscillator.
The result obtained by detuning the second oscillator is a warmer sound containing
more harmonics.

The circuit diagram of a single voice generator is shown at Figure 3.6.

VCF and VCA Voltage controlled filters were invented by Roger Moore in the
sixties and consisted of transistors ladders as shown in Figure 3.7. It is outside the
scope of this thesis to develop this VCF. However, we can note that constructing

6This is the DCO RANGE tone parameter.
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Figure 3.6: Roland JX voice

such filter with discrete transistors is difficult because of different characteristics of
transistors (based on the transistor batch, etc...) To avoid this issue, transistors can
be manually matched. Another solution is to design a custom chip where internal
transistors are matched by design and this is the solution that Roland has taken:
the VCF and the VCA are both implemented in a custom chip which just requires
a few external components. The 14-pins chip contains two 2-poles state variable
filters configured as a 4-poles low pass filter. The chip has external capacitors with
two internal VCA: one for voltage controlled resonance and one as the final VCA
in the signal chain. What matters for us is the -24dB/octave frequency response of
the filter as well as its resonant capability.
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Figure 3.7: Moog VCF

Roland has also added a high-pass filter in the signal chain but it is common to
all voices.
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Chorus In music, a chorus effect occurs when individual sounds with approxi-
mately the same time and similar pitches, converge and are perceived as one. The
effect is implemented using a Bucket-bridage chip (BBD). A BBD is a discrete-time
analog delay line and consists of a series of capacitance sections Cy to C,, where n
is typically 512, 1024 or 2048. The stored analog signal is stored along the line of
capacitors and moves step by step at each clock cycle”. The frequency of the clock
driving the BBD is itself modulated, producing the desired chorus effect. A circuit
diagram of a BBD is shown at Figure 3.8.
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Figure 3.8: Bucket Brigade Device

3.1.2.2 Software

The 8031 microcontroller is responsible for controlling the hardware generating the 6
voices. In order to build an accurate simulator, this code had to be fully understood
so we went again through disassembly. Fortunately, the code is small (8KB) and
the memory is very limited (384 bytes).

The code can be divided into 2 parts :
1. The main loop which refreshes the CV of the 6 voices, one by one.

2. The interrupt code : triggered when a byte is received or has been transmitted
on the serial port. In receive mode, the software is in either one of these two
states:

e waiting for tone parameters or voice control commands

e forward incoming byte to midi out

Let’s describe the simple interrupt code first. In midi forward mode, the 8031
simply takes a byte received from serial and places it in the transmit circular buffer.
Once a byte is transmitted, an interrupt is generated and the eventual next byte
can be sent. In regular mode, the code receives tone parameters or voice commands.
Tone parameters, as explained in Section 3.1.1.2, are made of a byte greater than
0x80 followed by a byte smaller. Voice control commands are also bytes higher
than 0x80 making protocol decoding extremely simple. Voice control commands
are used to start and stop generating a sound on a given voice, turn the bender
effect on/off or select a board. The values are given in Appendix A.

"The name comes from analogy with the term bucket brigade used for a line of people passing
buckets of water

17



The main loop (see Algorithm 1) is made of 6 copies of the same code used to
control each voice. While a modern software developer would use a subroutine to do
this, we have to remember that real time (or close to real time) control of each voice
is required. Furthermore, the 8031 CPU doesn’t have many registers and it has a
single indirect pointer register. Therefore copying the code made a lot of sense.
By simulating the code, it can be seen that 100% of the CPU cycles are consumed,
resulting in about 10 ms to refresh each voice. To keep the processing time of a voice
constant, every conditional instruction is coded such that taking any branch results
in the same processing time®. We have a hybrid digital/analog implementation:
the signal path is fully analog but some of the analog controls come from voltage
generated by a DAC and computed by the 8031 CPU. For example, the envelopes
are computed, applied (by computation) to the parameters controlling the analog
components and finally converted to analog voltage fed to the related chips.

Algorithm 1: 8031 algorithm

Initialize hardware
Calibrate DCOs

while true do

update LFO

update common parameters
for i < 1 to 6 do
program DCO1;
program DCO2;
update MIXFER;
update VCF;
update VCA;

f Interrupt then
if Byte received then
if Forward mode then
L add byte to transmit buffer

o

else
L decode byte and update corresponding parameter

else if Transmit buffer not empty then
L send byte to midi out

8This is actually hard to achieve. The programmer must known the number of cycles taken by
each instruction in a branch and eventually add nop instructions in the other branch to match the
number of cycles in each branch. Obviously when there are nested conditionals, the complexity
of this exercise increases.
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3.1.2.3 Parameters

Once the code has been disassembled, finding all parameters contributing to a tone
(and how they contribute) is relatively easy. Table 3.1 gives a summary of all
parameters and what they do. Figure 3.9 provides a block diagram view of a tone

generator.
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Figure 3.9: JX Tone flow

The signal path is as follow :

1.

2.

D.
6.

Most of these building blocks can be affected by one or more of these:

Two oscillators (DCO1 and DCO2) generate waveforms.

A mixer combines the two oscillator outputs into a single signal.

A low-pass filter (VCF) removes high frequencies of the signal. Some frequen-

cies near the cutoff can be amplified (resonant filter).

An amplifier (VCA) boosts the signal level.

Eventually a chorus effect is added.
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e An envelope which dictates over time the amount of effects applied to the
sound currently generated. This effect can be fixed or the envelope can itself
be affected by the player’s velocity.

e The low frequency oscillator (LFO) can modulate the effect, eventually after
a certain delay.

Parameter Values Description

DCO1 WF 0-3 DCO1 waveform : sawtooth, square, pulse or
noise

DCO1 RANGE 0-3 DCOL1 octave. Shift -2, -1, 0 or 1 octaves

DCO1 TUNE 0-25 DCO1 pitch in step of semi-tones
(-12..0..+12)

DCO1 ENV 0-127 DCOL1 envelope. Control by how much the
envelope controls the pitch

DCO1 LFO 0-127 Amount of LFO to apply to DCO1

DCO2 WF 0-3 DCO2 waveform, same as DCO1

DCO2 RANGE 0-3 DCO2 range (same as DCO1)

DCO2 TUNE  0-25 DCO2 pitch (same as DCO1)

DCO2 ENV 0-127  DCO2 env (same as DCO1)

DCO2 LFO 0-127  DCO2 LFO (same as DCO1)

DCO2 FTUNE 0-127 fine detune of DCO2

DCO XMOD 0-3 DCO synchronization: none, DCO1 —
DCO2, DCO1 + DCO2, DCO1 + DCO2
DCO DYNA 0-3 Dynamic control of the DCOs : when the

DCOs pitch are controlled by the envelope,
the amount of envelope is affected by velocity

DCO MODE 0-3 Select which envelope (1 or 2) and envelope
polarity is applied to the DCOs

MIX DCO1 0-127 Amount of DCOL1 in the final tone

MIX DCO2 0-127 Amount of DCO2 in the final tone

MIX ENV 0-127 Control how much the envelope affects the
mixer

MIX DYNA 0-4 Dynamic control of the mixer. Velocity af-
fects the behavior of the mixer

MIX MODE 0-3 Select which envelope and polarity is used for
the mixer

VCF FREQ 0-127 Cutoff frequency of the filter

VCF RES 0-127 Amount of resonance of the filter

VCF LFO 0-127 Amount of LFO applied to the filter cutoff

VCF KEY 0-127 Control the shift of the cutoff position.

VCF DYNA 0-3 Control how dynamics (player velocity) af-
fects the filter

HPF FREQ 0-3 Select one of the 4 cutoff frequencies of the

high-pass filter (0=no filtering)
VCA LEVEL  0-127 Control the overall volume of the tone
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VCA MODE 0-1 Select ENV2 to control the VCA, or simply
an on/off envelope form

VCA DYNA 0-3 Control how dynamics affects the VCA

CHORUS 0-3 Control the chorus. Can be off or 2 values

LFO WF 0-2 LFO waveform : sine, square or random

LFO DELAY 0-127 Control when the LFO starts after a key is
pressed

LFO RATE 0-127 Control the frequency of the LFO
ENV1 ATT 0-127 Envelope 1 attack time
ENV1 DECY 0-127 Envelope 1 decay time

ENV1 SUS 0-127 Envelope 1 sustain level
ENV1 REL 0-127 Envelope 1 release time
ENV1 KEY 0-3 Envelope key follow. Changes the time re-

quired for an envelope curve to complete.
The higher the value, the shorter time higher
keys will be.

ENV2 ATT 0-127 Envelope 2 attack time

ENV2 DECY 0-127 Envelope 2 decay time

ENV2 SUS 0-127 Envelope 2 sustain level
ENV2 REL 0-127 Envelope 2 release time
ENV2 KEY 0-3 Envelope key follow (same as ENV1)

Table 3.1: All tone parameters

Note that internally each parameter is coded on 7-bits. If the parameter can
only take a few values, only the most significant bits are used”.

9This allows some code simplification
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Chapter 4

Synthesizer simulator

Armed with a deep knowledge of the hardware of the Super JX, we are now able
to develop a simulator capable of generating sounds similar to the analog synthe-
sizer. By similar we don’t mean exact nor even close to the real sounds. Indeed,
simulating analog synthesizers is extremely complex [18]. Even today, synthesizer
manufacturers try to approximate the sounds generated by their old devices but fall
pretty short. The warmth and complex sounds generated by these devices remain
unmatched. However, for our project, an approximation of the waveforms generated
will be plenty.

4.1 Simplification

As we have seen in Table 3.1, a tone is made of 42 parameters. Several of these
parameters don’t apply in a static configuration. If we define a static configuration
as a sound which is generated at a given frequency, velocity and duration, then
some parameters while affecting the tone, won’t be visible to a human or neural
network. These parameters are:

o All key follow parameters. These parameters control how the position of
the key played matters. An effect will affect a high frequency sound deeper
than a low frequency sound. Without listening to several sounds of different
frequencies, these parameters are impossible to guess.

o All dynamic parameters. Here, the velocity of played keys affects the effect
applied. In order to find out the value of such parameters, the same note
should be played at different velocities.

Since we limit our research of static sound recognition, we will ignore these param-
eters.

Without losing any generality, we can also get rid of the envelope select pa-
rameters. Indeed, the components affected by envelope have a parameter to select
which envelope should be applied. Typically in most sounds, one envelope is used
for the filter and the other envelope is used for the amplifier and/or the mixer. In
our simulator, we have decided to have dedicated envelope per component (mixer,
filter, amplifier).
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To keep the number of parameters down, we have further simplified the simulator
by removing parameters which are rarely used in common sounds. For example,
applying an envelope to the oscillators is uncommon since this produces a sound
with varying pitch®.

We end up with the diagram shown at Figure 4.1. We are down to 33 parameters.
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Figure 4.1: Simulator tone flow

We will now describe the building blocks of the simulator.

4.2 Oscillator

Our oscillator must produce 3 waveforms : sawtooth, square and noise.

The sawtooth is produced using Equation 4.1 where A is the amplitude, T" the
period of the wave, ¢ its phase and frac(z) the fractional part. The left figure in
Table 4.1 shows the sawtooth generated by the fractional method and the Fourier
series with 4 and 10 terms.

S(x)=A frac(% + ) (4.1)
frac(z) =z — |z| (4.2)
If =0, A=1and T = 2L, the Fourier series is given by
1 11 . /nmx
fla) =5 =23 5o () (43)

IThis is great to generate sound effects!
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Table 4.1: Oscillator waveforms

The square wave is produced using Equation 4.4.

S(x) = A(=1)2/T = A sgn [sin <2”T”“">} (4.4)

Its Fourier transform is given by

f(x):% S L ("7 (4.5)

n=1,3,5,...

Finally we have the white noise where the Fourier transform is flat.

4.3 Mixer

The mixer takes the two signals coming from the oscillators and mix them together.
The amount of one signal vs the other is controlled by the mixer level (one per
oscillator) as well as the envelope amount applied. The computation is done using
the following equation:

S(x) = (1 — enviever) (G1 + §2) + enviever(env(x) * g1 + (1 — env)gs) (4.6)

where 1§, = mix 1y , Yo = MiTaYa, ENVere 1S the amount of envelope applied
and env(x) is the actual envelope value computed at time x.
A simple example, without envelope, is shown at Figure 4.2.

4.4 Amplifier

The amplifier is trivial to implement in the digital domain: we just multiply the
samples value by a factor. Of course, like most parameters in a synth, this factor
is not constant across the sound duration but depends on an envelope effect.

On real hardware, the filter appears in the signal chain before the amplifier. The
reason is that the input level of the filter chip is in the range of 20mV-30mV. This
small signal is then amplified to a few volts.
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Figure 4.2: Mixer

In the simulator, we don’t care about this detail so we can first amplify the signal
(in the time domain), then move to the frequency domain and do the filtering there.
We don’t even need to go back to the time domain because the inputs of our neural
networks are spectrograms. We coded the conversion back to the time domain so a
human can listen to the generated tones.

4.5 Filter

As mentioned in the JX Section 3.1.2.1, the JX uses a custom chip as the VCF.
To reproduce this filter, we will be using second-order lowpass filters [20, 8]. These
filters have a transfer function

QZ
H — n
&)= s

(4.7)

where €2, is the undamped natural frequency and ( is the damping ratio. Using
quadratic formula, we can solve this equation and find the two poles of H(s):

S12 = _CQn + Qn\/ <2 —1 (48)

There are 3 sets of poles that can be characterized as follows :

e Overdamped. The poles are real and distinct. This occurs if ¢ > 1.

e Critically damped. This corresponds to ¢ = 1. The two poles are repeated
with 1 = s = —=(Q,, = —Q,

e Underdamped when 0 < ¢ < 1, giving a pair of complex conjugate poles.
(If ¢ = 0 the system is unstable.)

The frequency response of the 2nd order lowpass filter can be found using the
substitution H(jQ2) = H(s)|s=jo giving

Q2

H(jQ) =
() 02 — Q2 + 52000

(4.9)
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Figure 4.3: Lowpass filter

The critically damped filter represents a filter where no resonance is applied.
Applying resonance to the filter is done by underdamping it, resulting in the curves
shown at Figure 4.3 where 4 filters are shown with a cutoff frequency of 1000 Hz. The
blue curve is critically damped while the orange, green and red are underdamped
by different factors.

4.5.1 Short-time Fourier transform

The implementation of this filter is done in the frequency domain where filtering
is simply done by multiplication. The conversion from time domain to frequency
domain is done using short-time Fourier transform [1].

The short-time Fourier transform (STFT) is a Fourier-related transform used to
determine the sinusoidal frequency and phase content of local sections of a signal
as it changes over time. To obtain this, the signal is divided into short segments of
equal length. The Fourier transform is computed separately on each segment. The
concatenation of these Fourier transforms shows the changing spectra as a function
of time and is known as a spectrogram plot.

Mathematically, we can define the STFT as

STFT{z(t)}(1,w) = X (1,w) = / z(t)w(t — 7)e ¥ dt (4.10)
where w(7) is a window function (commonly a Hann or Gaussian window) centered
around zero, and x(t) is the signal to be transformed. X (7,w) is the Fourier trans-
form of z(t)w(t — 7), a complex function representing the phase and magnitude of
the signal over time and frequency. Phase unwrapping is employed along either or
both time axis 7 and/or the frequency axis w to suppress any jump discountinuity
of the phase result of the STFT.

In our simulator, we use tensorflow’s stft implementation tf.signal.stft with
a Hann window tf.signal.hann window.
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Table 4.2: ADSR envelopes

4.6 Envelope generator

Several envelope formats have appeared in the synthesizer industry [13]. Today,
synthesizers allow to draw any envelope shape but at the time where analog syn-
thesizers ruled, generating an arbitrary signal shape was difficult to do (and ex-
pensive). Therefore the most common envelope format was the ADSR, envelope.
ADSR stands for Attack, Decay, Sustain and Release. Attack, decay and release
are expressed in time unit, while sustain is a level. The attack is defined as the
time it takes for the sound to reach its maximum amplitude. Decay is the time it
takes for the sound amplitude to decrease to the sustain level. When the key is
released, release is the time it takes for the sound amplitude to vanish.

If we denote z, the attack time in seconds, x4 the decay time, y, the sustain level
and x, the release time, we can model an ADSR envelope using Equation 4.11.

1
O<e <z, : f(—x) (4.11)

Tq

-1

Ty < T < Ty+Tq : g<u(x—xa)+1,ys,l>
Tq
To+xg << xg+Tqg+ x5+ T, g<—%(m—(xa—l—xd—i-xs))—i-yS,O,ys)
rT>x,+xg+zs+x, @ 0

where f and ¢ are defined by

@) = V3 (4.12)
g(@,5,7) = (‘y) (c—y)+y

Y

Two examples of envelopes are given at Table 4.2.
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4.7 Dataset

Initially, we intended to use a sound board from a Roland JX synthesizer. Indeed,
during the reverse engineering process, we had a setup with a standalone sound
board and a microcontroller to control it. This is depicted at Figure 4.4. While
it looks very attractive (it requires simply one USB connection where parameters
are fed and samples are collected), this setup has one major drawback: it only
works in real time. The algorithms that we are trying to use either require a large
dataset or generation of samples along the learning process. A quick computation
shows that a dataset of 100.000 samples of 4 seconds will require about 5 days to be
generated. This is still practical since the dataset can be generated once for all, but
if generating samples must occur during learning, it simply renders the generator
impractical.

Power
supply

<— usb — | microcontroller [~ serial #| Sound board

T

audio

Figure 4.4: Standalone setup

That’s why we have developed the simulator. It is written in python using
tensorflow and numpy?.

Our simulator (see figure 4.1) takes 33 input parameters. At first, we generated
sets of parameters randomly using uniform distributions for each parameter. This
resulted in a dataset of sounds where almost none of them could be usable to make
music. Indeed, from the large input space (about 128%%) only a very small subset
will produce usable sounds. In order to generate a dataset with useful samples, we
use the following approach :

1. Extract tone parameters from banks of sounds of our Roland JX
2. Add code to convert Roland JX parameters to our simulator (and vice-versa)
3. Analyze the distribution of the parameters

4. Generate samples from this distribution

2Mixing them proved to be a mistake and had a significant impact on performance
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We found about 500 sound parameters on the internet and we compiled them in a
small dataset. As we can see in Table 4.3, the parameters are not evenly distributed.
Furthermore, we know that the parameters are correlated. This correlation is shown
at Figure 4.5 by a covariance matrix. We made a few extra simplifications:

e Remove the envelope of the mixer. Almost no sound made use of it.

e For the same reason, remove the LFO parameter from the mixer and the
amplifier.

e Always apply the envelope to the amplifier.

The idea behind these simplifications is to lower the number of parameters and we
ended up with 26 parameters.

Equipped with the means and covariance matrix of real sound parameters, we
can sample new sets of parameters from the multivariate normal distribution. Pa-
rameters falling outside their allowed range are clipped. We generated 3 datasets:
a small (1000 samples), medium (100.000) samples and large (1.000.000 samples).

4.7.1 Dataset hyper-parameters
e Sample frequency is fs = 44.1kHz

e Each sample is 4 seconds long

e The Fourier transform windows are 512 samples long and overlap half of the
previous window.

e The tones are generated at 440 Hz

e Spectrograms are clipped at fs/16 without loss of information. This of course
would have to be revisited if the generated tones have a higher frequency than
440 Hz. Spectrograms have therefore a (690, 16) size®*.

e Each dataset consists of (p, s) pairs where p € [0,1]?® are the simulator pa-
rameters and s € R%xR!C is the spectrogram.

4.7.2 Sample outputs

Table 4.4 shows a few spectrograms generated by the simulator. Some parameters
can be seen easily: the top-left spectrogram, for example, has its amplifier with
an envelope with no sustain (the sound fades before the end of the 4 seconds) and
it stops brutally, so the release parameter of the amplifier envelope is small. The
second spectrogram has not a lot of frequencies so the cutoff is particularly high. On
the opposite, the last spectrogram (bottom right) has varying peaks in frequencies,
so the cutoff parameter is most likely affected by the LFO or the envelope.

344100 * 4/256 ~ 690
4 the FFT produces 512/2 = 256 bins but since we clip at fs/16, we get 16 bins
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Chapter 5

Deep learning approach

5.1 Introduction

In the last decade, advances in deep learning have raised the state of the art re-
sults in various fields, such as computer vision [14], speech recognition [10], natural
language understanding [6] and many other fields. In these papers, convolutional
neural networks (CNN) and recurrent neural networks (RNN) have shown great
performance.

Our problem is to estimate synthesizer parameters to reconstruct a source audio
signal. We assume that the source audio is generated by the same synthesizer
with hidden parameters. Learning is supposed to find out these hidden parameters
that were used to generate the source signal. Practically, this would be useful for
musicians who want to reproduce sounds generated by other artists. By extension,
it could also provide a mechanism to generate sound X from synthesizer Y on
another synthesizer Z. For now, we will focus on intra-domain where we try to
recover hidden parameters from the same synthesizer.

5.2 Algorithms

This section will describe the various methods that we have applied to solve our
problem. We started with classical deep learning methods, using standard regres-
sion. In this setting, multiple neural architectures have been tested and will be

described:
e Convolutional neural networks
e Recurrent neural networks
e Convolutional neural networks with locally connected layers.

As will be detailed in Chapter 6, the parameters obtained with such methods were
good. Nevertheless, we also tried some adversarial methods (this time, only based on
recurrent neural networks since they provided the best performances in a standard
regression setting, as will also be shown in Chapter 6). The adversarial methods
which we used and will now describe are the following:
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e Adversarial variational optimization (AVO) [16]

e AVO, with a modification inspired by “Synthesizing programs for images using
reinforced adversarial learning (SPIRAL)” [9]

The last method we tried was a mix of both classical regression and adversarial
methods. Indeed, we use the prediction of a standard regression network to guide
the learning of the SPIRAL algorithm.

5.2.1 Classical regression

The goal of regression is to predict real valued output vectors based on real valued
input vectors. In our case, predict simulator parameters, based on input spectro-
grams. Many machine learning algorithms exist for such task, but artificial neural
networks have proven to be particularly effective.

Let 6 denote the parameters of a neural network, D be the set of pairs (p, s)
generated as detailed in Section 4.7 and f(-;6) : Rl — RIP| be the function repre-
sented by the neural network. A neural network is trained with stochastic gradient
descent on a loss. In our case, the loss is defined as:

Z(p,s)ep(f(SQ 0) — p)*
D]

The parameters 0 are simply updated multiple times on stochastic batches with
the following update:

Lr =

0« VoLliP

where d ~ D denotes a mini-batch sampled in D. Let us now note a potential
problem of this loss in our setting. Indeed, as will be discussed further in Chapter 6,
all parameters might not have the same effect on the sound produced from a quali-
tative perspective. That is, a big prediction error for some parameters might not be
heard, while a small prediction error for other parameters might change the sound
significantly. There is however no way to know beforehand which parameters are
more important than others (especially since there is also correlation between them,
so depending on the value of one parameter, another might be very important, or
not). Note how the loss that we use (standard mean squared error (MSE)) assigns
the same weight to each parameters, which might not be optimal from a qualitative
sound reproduction perspective.

As is widely known, all architectures of artificial neural networks are not equal.
some are better fitted for some problems than others. Let us now detail the three
types of architectures that were implemented and tested on our problem.

5.2.1.1 Convolutional neural network

A Convolutional Neural Network (CNN) is a deep learning algorithm which takes an
input image (or more generally, a structured input), assign importance (learnable
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weights) to various shapes in the image and is able to distinguish one from the other
[15].

CNN requires much less pre-processing compared to other methods because they
have the ability to learn the characteristics of the image. This comes at the cost of
more computation and more parameters in the neural network.

The architecture of a CNN is analogous to the connectivity pattern of neurons in
the human brain: individual neurons respond to stimuli only in a restricted region
of the visual field (known as the Receptive Field). A collection of such fields overlap
to cover the entire visual area.

The convolution layer extracts features from the input image and it preserves
the relationship between pixels by learning image features using small squares of
input data. The mathematical operation takes two inputs (image matrix) and a
filter (called kernel):

e Input image of dimension (h,w, d)
e Filter of dimension (fy, fuw,d)

e Output a matrix of dimension (h— f, +1), (w— f, +1),1 (with a stride equal

to 1)
s
M
- S|
\ S \\\_ N x\:‘\
\ it \\. \\'\, \"\:‘\
kernel “ \\\‘ \\ \“‘-\_\"‘“
) - \‘\\"‘x B
input \“‘».,. output‘\k\‘-x
\\\ \\._\\

Figure 5.1: lustration of a kernel

Note that convolving a kernel across an image is an old and well-known technique
used in image processing. Various kernels can be used to detect edges, sharpen or
blur images, etc.. The beauty of the CNN is that the algorithm will learn the kernels
by itself.

A few more quick definitions:

e Stride is the number of pixels shifts over the input matrix. When the stride
is 1 then we move the filters to 1 pixel at a time. When the stride is 2 then
we move the filters to 2 pixels at a time and so on.

e Padding is used when the filter doesn’t fit the input image (at the borders).
The image can be zero-padded or we can drop the part of the image where
the filter doesn’t fit.
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e Pooling layers can be seen as a kind of downsampling used to reduce the di-
mensions of the output while keeping important information. Typical pooling
layers can be max pooling (keep the maximum element), average pooling
(compute the average of all elements) and sum pooling (compute the sum
of all elements).

Deep Convolutional Neural Networks are made of several convolution and pool-
ing layers followed by one or more fully connected layers.

Feature Maps Feature Maps Feature Maps

e I e I e S
;‘:E : 1 : 1 T Bost 0.09)
— & [ House (0.05)
L DTree {0.9)
m-: ~ U ___estiooy

| | |

Convolution Pooling Convolution Pooling
+ Relu +Relu Fully Connected Layers

Output Layer

Figure 5.2: Example of CNN

5.2.1.2 Recurrent neural network

Neural networks don’t have persistence. Recurrent networks have been widely used
in the past years, providing excellent performances on many problems requiring
memory such as e.g. sequence to sequence modeling, speech recognition. They
look particularly well suited to our problem which is by definition time related.
The envelopes, for example, modify the sound shape along the time axis. These
achievements often are the result of the development of the long-short term memory
(LSTM [11]) and gated recurrent units (GRU [2, 7]) recurrent cells, which allowed
RNNs to capture time-dependencies over long horizons [12, 4].

More formally, a time-series can be defined as X = [xo,...,xr] with T € Ny
and x; € R™. In our case, the spectrogram can be cut along the temporal axis
(that is, each @; corresponds to the ith column of the spectrogram s). To capture
time dependencies, RNNs maintain a recurrent hidden state whose update depends
on the previous hidden state and current observation of a time-series, making them
dynamical systems and allowing them to handle arbitrarily long sequences of inputs.
Mathematically, RNNs maintain a hidden state hy; = f(h;_1,®;;0), where hg is a
constant. In its most standard form, a recurrent neural network updates its state
as follows:

ht = g(USL't + Wht_l) (51)

where ¢ is a standard activation function such as a sigmoid or an hyperbolic
tangent. However, recurrent neural networks using Equation 5.1 as update rule are
known to be difficult to train on long sequences due to vanishing (or, more rarely,
exploding) gradient problems. To alleviate this problem, more complex recurrent
update rules have been proposed, such as long-short term memory (LSTM [11]) and
gated recurrent units (GRU [2]).
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Table 5.1: RNN and LSTM structures

LSTM Network Long Short Term Memory networks are capable of learning
long-term dependencies. In a standard RNN, the repeating module has a very simple
structure such as a single tanh layer. The LSTM also has a chain structure, but the
repeating module has a more complex structure: instead of a single neural network
layer, we have four of them. These repeating modules are shown at Table 5.1. Refer
to [19] for all details, we will provide a summary below.

Let’s walk through the LSTM to understand.

va

The cell state runs straight down the entire chain
with only minor linear interactions. The LSTM
has the ability to remove or add information to
the cell state. Gates are a way to optionally let
information through. They are composed out of a
sigmoid neural net layer and a point-wise multipli-
cation operation. The sigmoid layer outputs values
between 0 and 1, describing how much of each com-
ponent flows through. A zero value means nothing
while one means everything.

The first step is to derive what information will be
discarded from the cell state. This decision is made
by a sigmoid layer called the forget gate layer. It
looks at h;_; and x; and outputs a number be-
tween 0 and 1 for each number in the cell state
Ci_.

fi= O'(Umil':t + tht—l + bf) (52)

The second step is to decide which information the
cell will store. This is made of two parts: a sigmoid
layer called input gate layer decides which value
will be updated, and a tanh layer which creates
a vector of new candidate values é’t that can be
added to the state.

’l:t = O'(UZ'CL't + VVZ'ht_l + bz) (53)
C,; = tanh(Ugx, + Wehy_y + be) (5.4)
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Steps 1 and 2 decided what to do, so we need to
apply their decisions. The old state C;_; is multi-
; plied by f; (forgetting things). The old candidate
f,T i $ C,_1 is multiplied by ; to reflect the magnitude of
ac
the update.

Cia

va

Ci= fiCi1 + i,C, (5.5)

Finally we compute the output. We run the cell
state through a sigmoid layer (it decides what
parts of the cell state we will output). The values
are mapped between [—1, 1] by passing through a
tanh.

Oy = O'(Uomt + Woht—l + bo) (56)

ht = Ot tanh(Ct) (57)

5.2.1.3 Locally connected convolutional neural network

We have described convolutional neural network at Section 5.2.1.1. Convolutional
layers are technically locally connected layers with shared weights. The same filter
is run for all the (z,y) positions in the image. In other words, all the pixel positions
share the same filter weights. The neural network tunes the filter weights until
convergence. Researchers found out that while this is great for classification, CNN
tend to miss subtle nuances of spatial arrangements.

To circumvent this issue, a different approach can be used: we can have a
different filter for each (x,y) position, so there is no more a convolution per-se,
but rather a dot product at each pixel position. The drawback is an much higher
number of parameters since the kernel is no more shared on the whole image but
we have many individual kernels.

The locally connected convolution layer is almost identical to a convolutional
layer without any sharing of the weights.

5.2.2 Adversarial Variational Optimization

Let us now move towards a completely different learning paradigm than classi-
cal regression, Adversarial Variational Optimization (AVO) [16]. In this learning
paradigm, there is no need to acquire a train set with (p, s) pairs. Rather, the goal
of AVO is to find the set of parameters (actually a distribution over such parameters)
that fits best a set of samples generated using the simulator. Contrary to classical
regression where after training, obtaining a prediction for a set of parameters p,
corresponding to a spectrogram s is as easy as calling f(s;6), the procedure here
is more cumbersome and goes as follows. To obtain a distribution over parameters
to replicate a sound (or set of sounds) generated using the set of parameters p:

e Generate a set of sounds S using the simulator with the parameters p.
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e Use AVO to learn a distribution ¢(f) over parameters, which fits best to
replicate S.

e Sample p from ¢q. Plugging p in the simulator should give sounds close to
those in &

We note that this procedure must be repeated for each sound (or set of sounds)
we want to find the true set of parameters for. This is a big drawback with respect
to classical regression where after training, it is very straightforward to obtain new
predictions. However, there is also a huge advantage to this technique. With
AVO there is no groundtruth on the set of parameters to predict. Rather the
algorithm receives a set of sounds S and is only asked to generate a distribution
over parameters, which when sampled, gives parameters that should produce similar
sounds than those in §. This alleviates completely the problem of regression that
some parameters might be important, others not, and so on, which could not be
integrated easily into the regression’s loss. Furthermore, it is also possible that two
very different sets of parameters would lead to the same sound distribution when
plugged in the simulator. This would not be a problem for AVO as it should output
a distribution that can converge to either parameters set. With these advantages
and drawbacks in mind, let us now proceed to the details of the algorithm. Note that
this algorithm is based on the idea behind adversarial optimisation, an algorithm
first introduced in generative adversarial networks (GANs [17]).

Generative Adversarial Network GANSs are a kind of generative model. They
are used to generate samples which resembles an input distribution. For example,
GANSs can generate images of digits when trained on the MNIST dataset.

We can express the task of learning a generative model as a 2-players zero-sum
game between two networks [17]:

e A generator ¢(-;0) : Z — X mapping a latent space equipped with a prior
distribution p(z) to the data space, inducing a distribution

z ~ p(x;0) & z ~ p(z), = g(z:0) (5.8)

e A classifier d(-;¢) : X — [0,1] trained to distinguish between true samples
x ~ p,(x) and generated samples & ~ p(x;0)

Supervised learning is used to guide the training of generative model.
We want to solve

arg Hlaill quESlX Emwpr(ac) [log d(x: ¢)] + IEerp(z) [log(l o d(g<z; '9)7 ¢>>] (59)

In practice, the min-max solution is approximated using alternating stochastic
gradient descent on the following losses:

Ed(¢) = ]EmNpr(m) [_ log d(w§ ¢)] + ]Ezwp(z) [_ IOg(l - d(g(z; 9)3 ¢))] (5'10)
Ly(0) = Eoupellog(l —d(g(z;0);9))] (5.11)
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for which unbiased gradient estimates can be computed with Monte Carlo integra-
tion.

5.2.2.1 AVO

In AVO, generation is replaced with a simulator g(z,p), where p is a set of pa-
rameters and z is a latent variable used to model the stochasticity of the simulator
(which can happen with, for example, noise waveforms). Let p* denote the true
set of parameters which we want to replicate and do not have access to and pg(s)
denote the distribution over sounds generated with parameters . We have:

s~ pg(s) e z~p(zlr),s=g(z,x) . (5.12)

In AVO a proposal distribution (in our case a multivariate Gaussian) over pa-
rameters ¢(p; @) is maintained, and the goal to achieve is to have p;(s) =~ pp-(s),
with p ~ ¢(p; 9).

To this end, a discriminator is trained to guide the training of the generator.
Let d(s;¢) : RI¥l — [0,1] be the discriminator. The discriminator is trained to
assign 1 to real examples (s ~ pp+(s))) and 0 to false examples (s ~ pp(s))). In
our case the network used as a discriminator is a LSTM and it is updated thanks
to the following loss (which is a simple binary cross-entropy):

Lo=3" —ymlog(d(smi$)) — (1 — ym)log(l — d(sm5%)  (5.13)

Sm€S

where y,, = 1 if s, ~ pp-(s) and y,, = 0 if s,, ~ pp(s) and where S is
a subset composed of half true samples and half false samples (more details in
Algorithm 2). The discriminator is used differently than in GANs; as the simulator
is not differentiable. The main trick behind AVO is to use the REINFORCE loss,
by taking the output of the discriminator as "reward“. This allows the distribution
to put more density on samples which are classified as true by the discriminator,
and less density on samples which are classified as false by the discriminator. This
leads to the loss used to train the distribution ¢(p; 6):

Lo="3" log (s 0)(log(1 — (s, %)) — b) (5.14)
SmES
where b is a baseline strategy used to reduce variance of REINFORCE estimates
(which can be quite high), without adding bias, and is computed as follows:

E [(Vglogq(p; 8))*(1 — log(d(s; ))?]
E[(Vylogq(pl6))?]

We note that some regularization terms are also added to stabilize the learning.
These are given more explicitly in Algorithm 2. Finally we note that, as a starting
point for ¢(p; @), we use a multivariate Gaussian, where each component has a mean
of 0.5 and a standard deviation of 0.5.

b —

(5.15)
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Algorithm 2: Adversarial variational optimization (AVO)

Inputs : Observed data s; ~ pr(s)i\il, simulator g

Outputs : Proposal distribution ¢(p; @) such that
q(s,p) = pp+(s)
Hyper-parameters: k : number of iterations of the discriminator d
M : size of a mini batch
A . Ry regularization coefficient
~ : entropy penalty coefficient
b : baseline strategy in REINFORCE estimates

q(p; @) <+ prior on p (with differentiable and known density, in our case,
multivariate Gaussian with ¢ = 0.5 and o = 0.5)
while 0 has not converged do
for i <1 to k do
Sample true data {s,, ~ pp+(8),ym = 1}
Sample synthetic data
{Pm ~ a(p;0), 20 ~ p(2|Pm), 8m = 9(Zm: Pm), Ym = 0}%[:M/2+1
VwUd —
3 Lomet Vo [=Um 108(d(8m3 %)) = (1 = yn) log(1 = d(s;9))]
M
VuRi < 5175 2o Vo [[[Vyd(s: )2
7,0 — RMSPROP(VUJUd + AV¢R1)

M/2
m=1

Sample synthetic data
{Pm ~ a(p:0). 2 ~ D(2|Pm), 8 = 9(2imi P) b1
VoUy ¢ 37 Spey [Vo 108 4(p0) (l0g(1 — d(3,;9)) — b)]

VoH L5 Vyl—q(pn|0) log ¢(p|6)]
| 6 < RMSPROP(VoU, +VoH)
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5.2.3 SPIRAL

SPIRAL is a paper [9] which describes a method to synthesize images using an agent.
This agent is trained to generate a program which is executed by a graphic engine
to obtain an image. The goal of the agent is to fool a discriminator network that
distinguishes between real and rendered data, trained with reinforcement learning
without supervision.

SPIRAL wants to construct a generative model GG capable of sampling from
some target data distribution pg. The simulator R takes a set of parameters a =
(ay,as, ...,ay) and transforms them into the domain of interest. In other words,
they want to recover a distribution p, such that p; = R(p,). p, is modelled with a
recurrent neural network 7 (called the policy network or the agent).

In order to optimize 7, a GAN framework is used. The generator G goal is to
confuse the discriminator D which is trained to distinguish samples drawn from p,
and those generated by the model. This results in the distribution defined by G, p,
to gradually become closer to py.

There is a very interesting property in SPIRAL, which distinguishes it from AVO
and GANs: the discriminator is not bounded (i.e. d(-;¢) : X — R). Rather, the
discriminator is tasked to assign the lowest possible value to false examples and
the highest possible value to true examples. As will be seen in Chaper 6, this
property can be relevant in our setting. Indeed, one of the caveat of AVO is that
if the discriminator learns too fast compared to the “generator”, the discriminator
will distinguish false examples too easily and assign them a value of 0. Thus, it
will be very hard for the “generator” to update its parameters in a direction which
improves its performance.

We thus carried some tests, using the discriminator loss of SPIRAL in AVO.
That is the loss becomes:

Ly=—Esup,.d(s;9) + Esp,d(s;¢) (5.16)

As will be seen, this loss tends to give bigger feedbacks to the generator, resulting
in better updates and more stable learning.

5.2.4 Enhanced SPIRAL

Enhanced SPIRAL is a quick simple improvement that we tried lately: instead of
starting with a wide distribution N (0.5;0.5) of the unknown parameters, we use
a network trained using supervised learning (with a dataset of a large numbers of
spectrograms, generated using the multivariate normal described in Section 4.7).
The idea behind this enhancement is to provide a better initial guess to the REIN-
FORCE algorithm and therefore hoping for a faster convergence. Furthermore, this
acts as a mean of regularisation for the discriminator, as it should thus be much
more difficult for it to distinguish true and false samples at the beginning of the
learning procedure. This should also result in better initial updates and even more
stable learning.
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Chapter 6

Results

This chapter describes the application of the algorithms explained in the previous
chapter to the datasets generated by the simulator and gives a quantitative, as well
as qualitative analysis of the results.

6.1 Regression

6.1.1 CNN

We tested 3 CNN layouts, described at Table 6.1. The dataset is made of 200.000
samples. Each model is more complex than its predecessor. The training and
validation graphs are given in Table 6.2.

First, we see that all networks are learning and achieve good results. The mean
squared error drops to around 0.03 which is pretty good. Secondly, we can see in
the training phase that more complex models are able to overfit easily the datasets.
Indeed, the neural networks can fit any data if they have enough parameters. With
more parameters, the error on the training set goes lower and lower but it doesn’t
mean that the accuracy over the validation set will be better. The minimum error
in the validation set occurs after a few epochs (remember that these results are
coming from a big dataset, so an epoch means a lot of sound samples).

The 4th graph in Table 6.1 shows only the validation curves and the light-blue
curve gives the best model. It corresponds to the more complex CNN. We will
compare this model with the other networks at Section 6.1.4.

model \ 1 2 3 4 5 6 7 8
ennl conv maxpool conv maxpool fc fc i i
3Ix10x32 2x2 2x2x64 2x2 128 26
enn2 conv maxpool conv maxpool  conv fc fc
3x10x32 2x2 3x10x64 2x2 2x2x64 128 26
enn3 conv maxpool conv maxpool  conv fc fc fc
3x10x32 2x2 3x10x64 2x2 2x2x64 512 128 26

Table 6.1: Convolutional Neural Network layouts
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6.1.2 LSTM

We tested 3 LSTM layouts, described at Table 6.3. Our RNNs are unrolled over
690 timesteps (corresponding to the temporal dimension of the spectrogram) and
each x; has dimension 16 corresponding to the number of bins of the STFT. The
training and validation graphs are given in Table 6.4. Like the CNNs, we focused
on 3 models of increasing complexity. We noticed that all 3 models will eventually
overfit but unlike the CNNs, they slowly converge to the same accuracy on the
training set. The validation set is showing a minimum, achieved by the three
LSTM networks. The dark blue network surprisingly gets the lowest mean squared
error despite being the simplest network. We noted that the longest LSTM network
got disturbed: after learning, the mean squared error become much higher and it
took a large number of epochs for the network to train again and reach a minimum
similar to what it had already learned. This might be due to a gradient explosion
during learning (which should normally not happen with LSTMs). This behaviour
might have been avoided by using learning rate decay or gradient clipping.

model ‘ 1 2 3 4

Istm fc fc
Istml | e 6y 96

Istm fc fc
Istm2 1 o 64 26 -
Jstm3 Istm fc fc fc
SN o956 1928 64 26

Table 6.3: Long Short Term Neural Network layouts

6.1.3 LCNN

We tested 2 locally connected convolutional network layouts, described at Table 6.5.
The training and validation graphs are given in Table 6.6. We tested LCNN with
2 models. They both achieved the same accuracy after a few epochs (this number
of epochs being similar to their CNN counterparts). Unfortunately the accuracy
achieved is lower than the CNN and LSTM, so we didn’t spend too much time on
these models.

We believe that this lower accuracy is due to the fact that CNN have charac-
teristics that make them invariant to shifts or translations while LCNN don’t have
these properties. The LCNN will focus and learn on some specific parts of the
spectrogram, which could be appealing for various applications but not in our case
where the sounds have features which are distributed along the time axis.

6.1.4 Comparison of CNN, LSTM and LCNN

Figure 6.1 is a graph representing all validation curves for the 8 models that we
tested (3 CNN, 3 LSTM, 2 LCNN). We are looking for the curve containing the
lowest mean squared error. We can directly forget the LOCNN which don’t match
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Table 6.4: LSTM results
model | 1 2 3 4
1 1 lenn2d fc fc
AL 3 10x64 128 26
lenn lenn2d  maxpool fc  fc
CIIE 3 10x64 3x3 256 26

Table 6.5: Locally connected convolutional layouts
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the level of accuracy achieved by the CNN and LSTM. We see directly that the
winners are the LSTM which have a lower mean squared error than the CNN but
the CNN train faster. While it takes less than 5-6 epochs to train the CNN, it takes
about 30 epochs to reach the lowest error with the LSTM.

The mean squared errors of all algorithms are given at Table 6.7. We used 3
datasets : small, medium and large, respectively 103, 10° and 10° samples. The
small dataset didn’t provide good results so we simply dropped it. Results were
slightly better by using the bigger dataset. Training MSE is given at epoch 50 to
allow for some comparison.

Qualitative analysis. So far, we looked at the mean squared errors to compare
the results of the various neural networks. While this measure is easy to compare
mathematically, it may not reflect a qualitative comparison of the reconstructed
sounds. We explain this by the fact that some parameters have more weight than
others:

e Some parameters are discrete, such as the waveforms (sawtooth, square or
noise). An error on such parameter may be completely innocuous or may
generate a very different sound. So the contribution of such errors is not
taken in account properly with a mean squared error.

e Some parameters have strong effects on the final sound while other parame-
ters only produce mild effects. A small variation of a mixer value is almost
inaudible while the same variation of a tuning frequency is immediately no-
ticeable!

e Some parameters represent internally exponential values, so the error on these
parameters is not linear. A small difference in high values produces an effect
much stronger then in low values. This is again something that is not captured
in a mean squared error. The resonance of the filter is such a parameter.

We did obviously some listening tests and confirmed our explanations. Some
sounds are actually very close to their original while some others are indeed very
different. Any error in tuning is immediately detected by a human ear while some
other errors are completely indistinguishable. Fortunately, most of the sounds are
actually usable and the ones which aren’t can often be corrected manually. In
most cases, we had good initial sets of parameters that could be used by musicians
for further tuning. We note that despite the differences between LSTMs and other
architectures being seemingly small in terms of MSE, they can actually lead to some
big differences in the sounds produced. Indeed, a mean squared error of 0.0261
(Istm1) leads to an average absolute error of 0.16, whereas a mean square error
of 0.04 leads to an average absolute error of 0.2, resulting in an average further
difference of 0.04 with respect to the true parameters, in turn leading to highly
different sounds.
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Figure 6.1: Comparison of CNN, LSTM and LCNN

model medium dataset large dataset
train  validation | train  validation
cnnl || 0.01717  0.02856 | 0.01753  0.02933
cnn2 || 0.01923  0.03055 | 0.01845  0.02874
cnn3 || 0.00429  0.02701 | 0.00436  0.02811
Istm1 | 0.02517  0.02721 | 0.02335 0.02618
Istm2 || 0.02398 0.02671 | 0.02369  0.02643
Istm3 || 0.02332  0.02866 | 0.02146  0.02671
lennl || 0.04435  0.04244 | 0.04056  0.04108
lenn2 || 0.04059  0.04153 | 0.04058  0.04109

Table 6.7: Mean squared errors comparison

48



6.2 Adversarial optimisation

6.2.1 AVO

During training, AVO is supposed to move the parameters distributions (each pa-
rameter having its own normal distribution) towards the true values used to generate
the input spectrograms or to some values which would produce similar sounds.

Unlike for standard regression, it is much harder to quantify how well AVO
works, as some wildy different set of parameters can lead to similar sounds (in fact,
a set of parameters with a greater MSE can lead to sounds that are more similar
to the wanted sound than some sets of parameters with lower MSE).

Unfortunately, we were unable to make AVO work well in our setting. We
believe that the issue lies in the discriminator whose job is too simple: the generated
spectrograms are initially mostly random, so the generator immediately classifies
them properly. As can be seen on Table 6.8, the generator’s loss is almost always
0, or very close to it, leading to almost no updates or at least no relevant updates.
To make the task easier, we tried to predict only 3 or 4 parameters by treating the
other 23 or 22 parameters as constant. We finally saw AVO learning something
(the unknown distributions slowly converged to the hidden parameters, that is the
means slowly moved in the good direction and the standard deviations converging
towards low values).

We noticed that this algorithm was highly sensible to hyper-parameter tuning.
In fact, building a discriminator with too simple of an architecture led to it not
being powerful enough to learn how to distinguish samples properly, while building
a too complex discriminator led to it being too powerful and never being fooled. We
thus believe that with careful tuning and a better choice of parameters, we could
probably make AVO work much better and obtain decent results (even with more
than 3 or 4 parameters). However, due to our implementation of the simulator?,
slow computation prevented to make a lot of tests using this method. For example,
the first iterations of AVO in Table 6.8 took over 6 hours.

Qualitative analysis Despite being extremely hard to train, and the set of pa-
rameters sampled from the proposal distribution not being as close to the true set
(from a MSE point of view) than those of standard LSTMs trained with regression,
the results are actually quite good. The sounds produced using the parameters
sampled from the proposal distribution seem to adhere quite well with those given
as input to the algorithm. The caveat being of course that we only learn 3 or 4
parameters. Also note that we chose parameters which should have a high influence
on the sound (with basic prior knowledge on the synthesizer), as the analysis would
otherwise not make much sense.

L As we already mentioned before, the simulator is written using tensorflow and numpy. While
this looks reasonable, it prevents running the whole simulation on the GPU. Furthermore, we
wrote the simulator at the beginning of this project without envisaging the need to compute
several spectrograms in one pass. These two limitations result in an unfortunate slow computing
time in AVO where multiple simulations must be run at each iteration of the algorithm. These
simulations being sequentially run on the CPU literally make the computation time impractical.
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Table 6.8: AVO results
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6.2.2

Thanks to the new loss used for the discriminator, as can be seen in Table 6.9,
the losses tend to have a much bigger magnitude than in Table 6.8 resulting in more
stable learning. Through the sawtooth shape of the generator’s loss on Table 6.9,
one can see that the generator manages to learn how to fool the discriminator (be-
fore this last one enhances and learns how to discriminate even better). However,
despite obtaining decent results, one can see that the discriminator still ends up
“beating” the generator in the long term. We note that these results were also
obtained while limiting the number of varying parameters to 4. It remains however
extremely difficult to compare the results quantitatively. From a qualitative view-
point, the sounds were actually quite similar to those expected. In fact, a noticeable

SPIRAL
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‘00 204000801002040608202224Q0Q¢
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SPIRAL generator
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‘00 20406008010020406082Q0Q2Q4Q60Q¢
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Table 6.9: SPIRAL results

improvement could be heard from the simple AVO algorithm.
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6.2.3 Enhanced SPIRAL

The result is given at Figure 6.2 where a single parameter distribution is shown
after different numbers of iterations. Initially, the mean is obtained by the “lstm2”
network and the standard deviation set to be rather large. We see that the mean
slowly moved towards the ground truth (it was already close at the start) and the
standard deviation slowly decreased. Using this method, we were able to increase
the number of varying parameters to 9, against 4 for the SPIRAL method. We
believe that tuning the hyper-parameters better would lead to the possibility of
managing even more varying parameters.

Again, it is hard to qualify quantitatively the performance of enhanced SPIRAL.
However, the sounds generated were on the same level as SPIRAL, with 5 more
varying parameters. This proves that the regularisation added with the “hot-start”
was beneficial to the training procedure. In Figure 6.2, we provide a plot showing
the evolution of the distribution for one of the 9 varying parameters, over the course
of training. As one can see, for this parameters, the mean ends up close to that
of the true parameter (note that this could well not be the case even if the sound
generated still matched the true sounds distribution).

—— after O iterations
2.0 1 after 50 iterations
—— after 100 iterations
—— after 150 iterations
—— after 300 iterations
----- ground truth

1.5 1

1.0 A

0.5 1

0.0 A

0.0 0.2 0.4 0.6 0.8 10
Figure 6.2: Enhanced SPIRAL

6.2.4 Possible improvements

Some more improvements for the adversarial methods could be thought of, but
due to time constrains, the implementation and tests of such improvements proved
unfeasible. Most of these improvements would lead to the regularisation of the
discriminator, as it showed to be the main problem we encountered.

e We could use the trunk of a pretrained neural network, with regression, such
as “lstm2” as the trunk of the discriminator and freeze its weights. We would
then simply train the head of the discriminator with the AVO procedure.
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The trunk of the pretrained network should have learned relevant features for
distinguishing sounds. However, these features were not trained to distinguish
true and false samples. Thus, using only the head of the network for such
purpose would lead to a regularization of the discriminator.

e We could add some noise to the true parameters when sampling the sounds.
This would lead to true sounds samples with more variance, making the task
for the discriminator harder. With this technique, the discriminator would be
less certain of what is a true sound and thus again, be regularized.

e Do a grid-search on hyper-parameters of the algorithm.
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Chapter 7

Conclusion

This thesis has been a long journey! We started from a very well defined problem:
given a synthesizer and a sound, find how the synthesizer could be programmed to
make that sound or a somehow relatively similar sound. This task is difficult for
humans and it turned out that it is also difficult for machines.

We selected the latest analog synthesizer made by Roland and reverse engineered
it. This step was necessary so that we could build a simulator and hence be able to
generate sounds much faster than using the real synthesizer itself. We discovered
that several parameters of the synthesizer cannot be guessed from a single sound
and so we simplified our problem by removing such parameters.

Armed with the simulator, we generated datasets and processed them with dif-
ferent machine learning algorithms. With supervised learning, good results were
obtained using convolutional neural networks and recurrent neural networks. One
difficulty was to qualify the guessed parameters. A mean squared error with these
algorithms achieved a relative similitude between the true sound and its estimate.
However, in certain cases, the estimated sound was very different because some
parameters are more important than others even if they contribute for the same
amount in a mean squared errors. This leads to the question “can the neural net-
works learn how to differentiate sounds?”. We applied learning algorithms from two
papers, AVO and SPIRAL, which are based on adversarial techniques. These tech-
niques obtained good and encouraging results but due to technical limitations of our
simulator (which caused extremely long compute times), we couldn’t do as many
experiments as we wanted. For example, we couldn’t sweep the hyper parameters
to tune them.

The next step would have been to use the real synthesizer to generate a dataset
of real samples. The supervised learning algorithms are well suited for processing
such a dataset: even if its generation will take a lot of time (several days), this
operation must only be done once. The adversarial algorithms won’t be practical
in this situation because they use the sound generator during learning.
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One area that remains to be explored for this particular problem is finding the
parameters which were removed because of their dynamic behavior. Instead of
providing a single sound to the machine learning algorithm, we could provide several
samples of the same sound. These samples would have to be created at different
frequencies and played with different velocities. We would hope that the algorithms
would be able to recognize the dynamic characteristics and hence guess the missing
parameters.

95



Appendix A

JX parameters

;53 sound parameters
SOUND_PARAM_DCO1.RANGE
SOUND_PARAM_DCO1.WF
SOUND_PARAM_DCO1.TUNE
SOUND_PARAM_DCO1_LFO
SOUND_PARAM_DCO1_ENV
SOUND_PARAM_DCO2_RANGE
SOUND_PARAM_DCO2_.WF
SOUND_PARAM_DCO_XMOD
SOUND_PARAM_DCO2_TUNE
SOUND_PARAM_DCO2_FTUNE
SOUND_PARAM_DCO2_LFO
SOUND_PARAM_DCO2_ENV
SOUND_-PARAM_AFTER_-VIB
SOUND_PARAM_AFTER-BRI
SOUND_PARAM_AFTER_-VOL
SOUND_PARAM_DCO_DYNA
SOUND_PARAM_DCO_-MODE
SOUND_PARAM_MIX_DCO1
SOUND_PARAM_MIX_DCO2
SOUND_PARAM_MIX_ENV
SOUND_PARAM_MIX_DYNA
SOUND_PARAM_MIX_MODE
SOUND_PARAM_HPF_FREQ
SOUND_PARAM_VCF_FREQ
SOUND_PARAM_VCF_RES
SOUND_PARAM_VCF_LFO
SOUND_PARAM_VCF_ENV
SOUND_PARAM_VCF_KEY
SOUND_PARAM_VCF_DYNA
SOUND_PARAM_VCF_MODE
SOUND_PARAM_VCA_LEVEL
SOUND_PARAM_VCA DYNA
SOUND_PARAM_CHORUS
SOUND_PARAM_LFO_WF
SOUND_PARAM_LFO_DELAY
SOUND_PARAM_LFO_RATE
SOUND_PARAM_ENV1ATT
SOUND_PARAM_ENV1.DECY
SOUND_PARAM_ENV1_SUS
SOUND_PARAM_ENV1_REL
SOUND_PARAM_ENV1_KEY
SOUND_PARAM_ENV2_ATT
SOUND_PARAM_ENV2_ DECY
SOUND_PARAM_ENV2_SUS
SOUND_PARAM_ENV2_REL
SOUND_PARAM_ENV2 KEY
SOUND_PARAM._VCA_MODE

SOUND_PARAM_PORTA_TIME
SOUND_PARAM_MIDI_.VOL
SOUND_PARAM_BENDER
SOUND_PARAM_AFTERTOUCH
SOUND_PARAM_MASTER_TUNE1
SOUND_PARAM_PORTA_SW
SOUND_PARAM_SILENCE
SOUND_PARAM_BEND_RANGE
SOUND_PARAM_AFTER_VIB_.SW
SOUND_PARAM_AFTER_BRI_SW
SOUND_PARAM_AFTER_-VOL_SW
SOUND_PARAM_HOLD_SW
SOUND_PARAM_MODULATION
SOUND_PARAM._.CHECK_ENV_SW
SOUND_PARAM_-MASTER_-TUNE2
SOUND_PARAM_BENDER.POLARITY

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

$80
$81
$82
$83
$84
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
$8F
$90
$91
$92
$93
$94
$95
$96
$97
$98
$99
$9A
$9B
$9C
$9D
$9E
$9F
$A0
$A1
$A2
$A3
$A4
$A5
$A6
SAT
$A8
$A9
SAA
$AB
SAC
$AD
$AF

$BO
$B1
$B2
$B3
$B4
$B5
$B6
$B7
$B8
$B9
$BA
$BB
$BC
$BD
$BE
$BF
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