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Abstract

The �utter velocity is an important output for the design of long-span bridges.
Jones proposed in 1940 a model based on rational derivatives for the determ-
ination of this velocity.

Through this Master thesis, a model based on fractional derivatives is con-
sidered. In the context of the �at plate theory, the accuracy of this model is
compared to the one of the Jones' model in order to represent the Theodorsen's
function. Then follows a discussion in the frequency domain and in the time
domain, stochastic analysis versus simulation based approach, where the res-
ults of the �utter speeds are confronted for two degree-of-freedom system.
Finally, a case study of a real bridge is presented. The bridge is reduced to
its torsional-degree-of-freedom system subjected to a pitch moment. The �ut-
ter derivatives obtained experimentally are approximated by the fractional
model for the computation of the structural response.

Résumé

La vitesse de �ottement est une donnée importante du dimensionnement des
ponts à grande portée. En 1940, Jones a proposé un modèle basé sur les
dérivées entières a�n de déterminer cette vitesse.

Au travers de cette thèse de Master, un modèle aux dérivées fractionnaires
est considéré. Dans le contexte de la théorie de la plaque mince, la précision
de ce modèle est comparée à celle du modèle proposé par Jones dans le but
d'approximer la fonction de Theodorsen. S'ensuit ensuite une discussion
dans le domaine fréquentiel et dans le domaine temporel, confrontation entre
analyse stochastique et approche par simulation, où les résultats des vitesses
de �ottement sont comparés entre eux pour un système à deux degrés de
liberté. En�n, un cas d'étude d'un réel pont est présenté. Ce pont est réduit
à son système à un degré de liberté en torsion soumis à un moment. Les
coe�cients de �ottement obtenus expérimentalement sont approximés par
le modèle aux dérivées fractionnaires a�n d'obtenir par calcul la réponse
structurelle.
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1 Introduction

Aerodynamics research is marked by three important turning points [1]. The
�rst one is the simple estimation of the wind pressure based on the wind
speed normal to the surface by John Smeaton. The second one was the tra-
gic rupture of the railroad bridge called The Firth of Tay Bridge in Scotland.
Due to gust wind loading, it collapsed only two years after its inauguration
taking the lives of seventy-�ve people. The last one is the famous collapse
of the Tacoma Bridge in the United States in 1940. This was the starting
point of the aerodynamic study. Since then, many researchers have worked
on the development of equations to explain this failure. In consequence, new
theories have emerged and have become the foundations of the aerodynamic
studies in the civil engineering. Many new mathematical models have ap-
peared, including the Jones' model. This model is able to approximate the
Theodorsen's function for the �at plate theory, but it is also used to �t the
Scanlan's �utter derivatives after wind tunnel tests.

In this Master thesis, the accuracy of two other models is studied compared
to the Jones' model. They both use the theory of fractional derivatives. In
Chapter 2, The Fractional Derivative Theory is developed and followed by the
main concepts of �utter theory in Chapter 3. In that section, the equation of
motion is explained as well as the Theodorsen's function. Then Jones' model
and its applications are discussed before ending with the Scanlan's �utter
derivatives. In Chapter 4, all the previously mentioned theories are combined
in order to determine the �utter speed in the frequency and time domains.
First, a �tting of the Theodorsen's function is carried out with these two
new models before verifying the accuracy compared with the Jones' model.
Then, the �utter speed is obtained in the frequency domain. For the time
domain analysis, an explicit numerical scheme is used to solve the equation.
Finally, the accuracy of both models is assessed. In Chapter 5, the Golden
Gate Bridge is chosen in order to illustrate the method for a real bridge. The
same method as described above is followed. Based on wind tunnel tests,
the Scanlan's �utter derivatives are determined before solving the equation
of motion in the frequency and time domains for single degree-of-freedom.
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2 Fractional derivatives

This chapter covers the properties needed to solve the equation of motion.
Di�erent de�nitions of a fractional derivative exist, this Master thesis focuses
only on the Riemann-Liouville de�nition but to calculate the results in the
time domain, the Grünwald-Letnikov de�nition is used. Both de�nitions are
identical for a wide class of functions that are commonly encountered in the
physical and engineering �elds [2].

2.1 Motivation

Fractional derivatives are a tool that extends the concept of linear operator
with integer powers. By using a Fourier Transform of the exponential, the
answer is always a rational fraction with integer powers. However, a large
number of physical laws are not governed by rational derivatives. Indeed, it
is possible to express some concepts by using fractional powers [3]. Finally,
fractional derivatives can more properly �t natural phenomena. For example,
fractional calculus is more and more employed in the modeling of advanced
materials [4].

2.2 Properties

Derivatives of Arbitrary Order

aD
p
t f(t) =

1

Γ(k − p)
dk

dtk

∫ t

a

(t− τ)k−p−1f(τ)dτ (1)

(k − 1 ≤ p < k) and k is an integer

First property

aD
p
t (aD

−p
t f(t)) = f(t) (2)

where t > a and p > 0. The equation (2) shows that the Riemann-Liouville
fractional di�erential operator is the left inverse Riemann-Liouville
fractional integration operator of the same order p [2].
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Second property

It is possible to extend the �rst property.

aD
p
t (aD

−q
t f(t)) = aD

p−q
t f(t) (3)

where t > a, p > q ≥ 0 and that aD
p−q
t f(t) exists [2].

Third property

aD
−p
t (aD

q
t f(t)) = aD

q−p
t f(t)−

k∑
j=1

[aD
q−j
t f(t)]t=a

(t− a)p−j

Γ(p− j + 1)
(4)

where t > a and 0 ≤ k − 1 ≤ q < k [2].

Fourth property

It is possible to combine integer derivatives and fractional derivatives:

dn

dtn
(aD

p
t f(t)) = aD

p+n
t f(t) (5)

where n is an integer [2].

2.3 Numerical approach

The Grünwald-Letnikov De�nition

aD
α
t f(t) = lim

h→0

a∆
α
hf(t)

hα
(6)

where

a∆
α
hf(t) =

[ t−a
h

]∑
j=0

(−1)j
(
a
j

)
f(t− jh) (7)

where the notation [x] represents the integer part of x [2].

Fractional Di�erence Approach

In this Master thesis, the Grünwald-Letnikov de�nition is used. The following
approximation is obtained [2]:

aD
α
t f(t) ≈ a∆

α
hf(t) (8)

where 0 ≤ α < 1 and the order of approximation is equal to O(h).
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Higher-order approximations

0D
α
t f(t) = h−α

[t/h]∑
k=0

w
(α)
k f(t− kh) (9)

where k = 0, 1, 2, ..., n; n =
[
t
h

]
and w(α)

k = (−1)j
(
a
j

)
[2].

Computation of coe�cients

The following expression is used to compute the coe�cients w(α)
k [2]:

w
(α)
0 = 1;w

(α)
k =

(
1− α + 1

k

)
w

(α)
k−1 (10)

Initial conditions

If 0 ≤ n − 1 ≤ α < n and if 0D
α
t f(t) = h−α

∑[t/h]
k=0 w

(α)
k f(t − kh), then n

homogeneous initial conditions have to be provided. If these initial conditions
are inhomogeneous, it is possible to apply the formula (11) to transform them
into homogeneous initial conditions [5]. For further examples, see also [6].

y(x) =
n−1∑
k=0

bkx
k + z(x) (11)

where y(x) is the initial unknown of the problem, bk are the inhomogeneous
initial conditions and z(x) is the new unknown with homogeneous initial
conditions.

To study the Grünwald-Letnikov de�nition in details, two examples of equa-
tions using the fractional operator with theoretical values are presented [7].

Example 1

0D
1/2
x y(x) = −y(x) (12)

where the initial condition is y(0) = 1.

By using the �nite di�erence method [2] and thanks to Equation (9) and
Equation (11), Equation (12) can be numerically solved :
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0D
1/2
x z(x) + z(x) + 1 = 0

⇔ h−1/2
∑n

k=0wk · zn−k + zn = −1
⇔ w0 · zn +

∑n
k=1wk · zn−k + h1/2zn = −h1/2

⇔ zn(1 + h1/2) = −h1/2 −
∑n

k=1wk · zn−k
⇔ zn =

(
−h1/2 −

∑n
k=1wk · zn−k

)
/(1 + h1/2)

where n = x/h and h is the time step. This method is called `Traditional'.

However, Podlubny proposed another method [2] :

0D
1/2
x z(x) + z(x) + 1 = 0

⇔ h−1/2
∑n

k=0wk · zn−k + zn−1 = −1
⇔ w0 · zn +

∑n
k=1wk · zn−k + h1/2zn−1 = −h1/2

⇔ zn = −h1/2 − h1/2zn−1 −
∑n

k=1wk · zn−k

For both methods, y(x) has been transformed into z(x). To calculate the
real solution y(x), Equation (13) is used:

y(x) = z(x) + 1 (13)

On Figures 1 and 2, the solution of y(x) for two di�erent steps h is shown.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.4

0.5

0.6

0.7

0.8

0.9

1

y
(x

)

Solution for h=10
-2

Podlubny's method

Traditional method

Exact solution

Figure 1: Example 1 : Solution for h = 10−2
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Figure 2: Example 1 : Solution for h = 10−5

On Figures 1 and 2, it is clear that for a smaller step h, Podlubny's method
is more accurate. To con�rm this observation, the absolute error has been
calculated and reported on Figures 3 and 4. Equation (14) gives the formula
for the calculation of the error :

error =
|exact solution− numerical solution|

|exact solution|
(14)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6
Error in % for h = 10

-2

Podlubny's method

Traditional method

Figure 3: Example 1 : Absolute error for h = 10−2
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Figure 4: Example 1 : Absolute error for h = 10−5

As presented on Figure 5, the absolute errors were calculated for a large
amount of steps h. For each step, the Podlubny's method is more accurate
than the traditional method and for smaller steps h, the traditional method
tends to converge to Podlubny's method.

10
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step h

10
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10
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10
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E
rr

o
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Error as a function of h
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Figure 5: Example 1 : Absolute error for di�erent steps h
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Example 2

It is possible to repeat the same exercise but this time, a fractional deriv-
ative exponent greater than the unity is taken into account with two initial
conditions.

0D
3/2
x y(x) = −y(x) (15)

where the initial conditions are y(0) = 1 and y′(0) = 0.

Traditional method :

0D
3/2
x z(x) + z(x) + 1 + 0 · x = 0

⇔ h−3/2
∑n

k=0wk · zn−k + zn = −1
⇔ w0 · zn +

∑n
k=1wk · zn−k + h3/2zn = −h3/2

⇔ zn(1 + h3/2) = −h3/2 −
∑n

k=1wk · zn−k
⇔ zn =

(
−h3/2 −

∑n
k=1wk · zn−k

)
/(1 + h3/2)

Podlubny's method :

0D
3/2
x z(x) + z(x) + 1 + 0 · x = 0

⇔ h−3/2
∑n

k=0wk · zn−k + zn−1 = −1
⇔ w0 · zn +

∑n
k=1wk · zn−k + h3/2zn−1 = −h3/2

⇔ zn = −h3/2 − h3/2zn−1 −
∑n

k=1wk · zn−k

By using Equation (13), it is possible to obtain the values of y(x).

On Figures 6 and 7, y(x) is plotted for two di�erent steps h.
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Figure 6: Example 2 : Solution for h = 10−2
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Figure 7: Example 2 : Solution for h = 10−5

The same observation can be mentioned : Podlubny's method is more accur-
ate than the traditional one.

On Figures 8 and 9, the absolute errors for h = 10−2 and h = 10−5 are shown.
The formula to calculate the error is the same as Equation (14) previously
mentioned.
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Figure 8: Example 2 : Absolute error for h = 10−2
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Figure 10 shows the absolute errors that were calculated for di�erent values
of step h. Podlubny's method is always more accurate than the traditional
method.

10
-5

10
-4

10
-3

10
-2

10
-1

step h

10
-3

10
-2

10
-1

10
0

10
1

E
rr

o
r

Error as a function of h

Podlubny's method

Traditional method

Figure 10: Example 2 : Absolute error for di�erent steps h

Based on the knowledge given by these two examples, it is clear that to
improve the solution of a fractional derivatives equation, Podlubny's method
has to be used.
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3 Flutter of bridge deck

Flutter is a big issue for long-span bridges. This instability comes from wind
actions and causes an ampli�cation of the vertical displacements and also of
the torsion angle. This e�ect is directly related to the energy dissipation. If
the energy of the aerodynamic forces is greater than the dissipated energy
of the mechanical damping, then the displacements increase. If this phe-
nomenon stands during a too long period of time, the structure can collapse
[8].

3.1 Equation to solve

The dynamic of the structure is represented on Figure 11:

Figure 11: Diagram of the system

On Figure 11, U , u and w are respectively the mean velocity of incoming
wind, the horizontal component of incoming turbulence and the vertical com-
ponent of incoming turbulence while M and L are respectively the pitching
moment and the lift force.

The equation (16) is a two degree-of-freedom equation : z the vertical dis-
placement of the bridge deck and θ the torsion angle of the bridge deck [9].{

mz̈ + cz ż + kzz = L

Jθ̈ + cθθ̇ + kθθ = M
(16)

where m is the mass per unit length, J is the inertia per unit length, cz/cθ
is the damping ratio and kz/kθ is the sti�ness.
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Equation (16) can also be written in the following form [10] :{
mz̈ + 4πξfzmż + 4π2f 2

zmz = L

Jθ̈ + 4πξfθJθ̇ + 4π2f 2
θ Jθ = M

(17)

Wind actions

There is a need to derive the pitching moment and the lift force in details.{
L = Lse + Lb

M = Mse +Mb

(18)

As shown in the equation (18), the pitching moment and the lift force are
composed of self-excited forces and bu�eting forces.

In this Master thesis, both self-excited forces and bu�eting forces are taken
into account in order to represent the real behaviour of the bridge. Figure 12
shows the di�erence between bifurcation, i.e. without bu�eting forces, and
divergence, i.e. with bu�eting forces.

u

λ

Bifurcation vs Divergence

Divergence

Bifurcation

λ
cr

U

σ

Bifurcation vs Divergence

Divergence

Bifurcation

U
cr

Figure 12: Bifurcation versus Divergence

12



Bu�eting forces

For most bridges cross sections, the horizontal component of incoming tur-
bulence u can be neglected because drag forces are not taken into account in
this Master thesis. Bu�eting forces Lb and Mb come mainly from the wind
turbulence w [1, 11]. The formula in the time domain are given in Equation
(19). {

Lb(t) = πρUB w(t)

Mb(t) = 1
4
πρUB2w(t)

(19)

It is possible to derive the expressions of bu�eting forces in frequency domain
by using the Fourier Transform of w(t).{

Lb(ω) = πρUB w(ω)

Mb(ω) = 1
4
πρUB2w(ω)

(20)

Then, to know w(ω), the Von Karman Power Spectral Density (PSD) is used
by making the following hypotheses (see Equation (21)):

� w(t) is a random process that has a mean value equal to zero

� This random process is Gaussian and stationary

Sw(ω) =
σ2
wLw
πU

1 + 755.2
(
ωLw

2πU

)2(
1 + 283.2

(
ωLw

2πU

)2) 11
6

(21)

Self-excited forces

The self-excited forces come from the motion itself of the bridge deck. The
formula in the frequency domain is given by the Equation (22):

{
Lse(ω)
Mse(ω)

}
= q

[
Bω2

4U2 − C(ω) iω
U

B
4U

(iω) + C(ω)
(
1 + B

4U
(iω)

)
−B

4
C(ω) iω

U
B
4

(
B2ω2

32U2 − B
4U

(iω) + C(ω)
(
1 + B

4U
(iω)

)) ]{ z(ω)
θ(ω)

}
(22)

where q = πρU2B and C(ω) is the Theodorsen's function.
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3.2 Theodorsen's function

Theodorsen's function depends only on k = ωb
U
, the reduced circular fre-

quency based on deck half chord. This function is an exact solution of the
circulatory aerodynamic forces that are obtained from the harmonic oscilla-
tion of a �at plate [12]. There are di�erent formula to evaluate Theodorsen's
function. In this Master thesis, the following mathematical equation is used:

C(k) =
K1(ik)

K0(ik) +K1(ik)
(23)

where Kn is a modi�ed Bessel function of the third kind of order n.

On Figure 13, the real and imaginary parts of Equation (23) are shown.
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Figure 13: Theodorsen's function

3.3 Jones' model

To approximate the Theodorsen's function, the Jones' model has been de-
veloped in 1940 [13]. This model consists, in the time domain, of a sum of
decreasing exponentials [14].

φ(s) = 1− 0.165e−0.0455 s − 0.335e−0.3 s (24)

where s = Ut
b
is a dimensionless time parameter.
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In the frequency domain, a Fourier Transform can be used on Equation (24)
in order to obtain the Equation (25):

φ(k) = 1− 0.165
ik

ik + 0.0455
− 0.335

ik

ik + 0.3
(25)

Figure 14 shows the Jones' approximation compared to the Theodorsen's
function. In Chapter 4, a complete discussion about this model will be done.
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Figure 14: Jones' approximation and Theodorsen's function

3.4 Scanlan's �utter derivatives

In 1971, Scanlan and Tomko derived a new formulation of the self-excited
forces for a two-dimensional bridge deck section [9].

 Lse(t) = qB
[
KH∗1 (K) ż(t)

U
+KH∗2 (K)Bθ̇(t)

U
+K2H∗3 (K)θ(t) +K2H∗4 (K) z(t)

U

]
Mse(t) = qB2

[
KA∗1(K) ż(t)

U
+KA∗2(K)Bθ̇(t)

U
+K2A∗3(K)θ(t) +K2A∗4(K) z(t)

U

]
(26)

where q = 0.5ρU2 is the dynamic pressure.

Here is the formulation for all Scanlan's �utter derivatives :

H∗1 (K) = π
[
2F (k)
K

]
A∗1(K) = π

[
F (k)
2K

]
H∗2 (K) = π

[
2G(k)
K2 + 1

2K
+ F (k)

2K

]
A∗2(K) = π

[
− 1

8K
+ G(k)

2K2 + F (k)
8K

]
H∗3 (K) = π

[
2F (k)
K2 − G(k)

2K

]
A∗3(K) = π

[
1
64

+ F (k)
2K2 − G(k)

8K

]
H∗4 (K) = π

[
−1

2
− 2G(k)

K

]
A∗4(K) = π

[
−G(k)

2K

]
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However, the Equation (26) is a mixed of time domain and frequency domain.
Starossek developed a compact formulation in the frequency domain for the
self-excited forces [15].{

L = ω2πρb2(czzz + bczθθ)
M = ω2πρb2(bcθzz + b2cθθθ)

(27)

where,

� czz = 1− 2i
k
C(k) = 2

π
(H∗4 + iH∗1 )

� czθ = − 1
k
[i(C(k) + 1) + 2

k
C(k)] = 4

π
(H∗3 + iH∗2 )

� cθz = i
k
C(k) = 4

π
(A∗4 + iA∗1)

� cθθ = i
2k

(C(k)− 1) + 1
k2
C(k) + 1

8
= 8

π
(A∗3 + iA∗2)
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4 Application of fractional derivatives to the

�at plate theory

In this chapter, the �tting of Theodorsen's function is discussed as well as
its impact on the computation of the �utter speed. The Storebaelt Bridge in
Denmark is taken as an example to analyse the results in the context of the
�at plate theory. Firstly, a comparison between fractional derivatives models
and Jones' model is carried out. Then, �utter analysis is made in frequency
domain. It is therefore possible to evaluate the accuracy of all models. The
last step in this chapter concerns the solution in the time domain. The
numerical approach is analysed through the equation of motion to calculate
the �utter speed.

4.1 Fitting of the Theodorsen's function

The �tting of the Theodorsen's function is a good starting point to correctly
evaluate the �utter speed. In 1989, David V. Swinney proposed a fractional
model based on only two parameters [12]:

S(k) =
1 + a(iω)α

1 + 2a(iω)α
(28)

where a = 2.19 and α = 5
6
.

This model provides a good approximation of the Theodorsen's function. In
this Master thesis, a new fractional model is proposed based on Swinney's
model. This model is called augmented Swinney because four parameters are
used instead of two.

Saug(k) =
1 + a(iω)α + b(iω)β

1 + 2a(iω)α + 2b(iω)β
(29)

where a = 1.9293, b = 0.4262, α = 0.7887 and β = 1.4753.

The main goal of this model is to improve Swinney's �tting of the Theodorsen's
function. Moreover, this model contains the same number of parameters
than the Jones' model approximation of the Theodorsen's function. If for
the same number of parameters the augmented Swinney's approximation is
better then, the application of this new model could be extended to the �tting
of the Scanlan's �utter derivatives for example.
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Figure 15: Comparison of the three di�erent models' approximations based
on the Theodorsen's function

On Figure 15, Jones', Swinney's and augmented Swinney's approximations
are shown and can be compared to the reference function given by Equation
(23).

Equation (30) represents the error of the three di�erent models.

error =
√∑

|reference function - model|2 (30)

Table 1 contains the models' approximation errors.

Model Error

Jones' model 1.29e−2

Swinney's model 7.90e−3

Augmented Swinney's model 8.32e−4

Table 1: Error of the di�erent models' approximations on the �tting of
Theodorsen's function

It is now possible to come to a �rst conclusion about the �tting of Theodorsen's
function. All fractional models' approximation are more accurate than Jones'
model's. Moreover, augmented Swinney's approximation is able to �t almost
perfectly with the Theodorsen's function by using the same amount of para-
meters as Jones' model. A comparison of these models is going to be made
in the frequency domain and it will be seen if this observation is con�rmed
by calculating the �utter speed.
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4.2 Frequency domain

In this chapter, the Storebaelt Bridge in Denmark is taken as an example.
The main span is equal to 1624 meters and the structure connects Seeland
and Fionie islands. The following used values are reported in Table 2 (see
[16]):

Value Unit

m 22740 kg/m
J 2.41 · 106 kg ·m2/m
B 31 m
ξ 0.003 −
fz 0.10 Hz
fθ 0.278 Hz
ρ 1.22 kg/m3

Lw 20 m
U [10, 80] m/s
Iw 0.05 −

Table 2: Storebaelt Bridge values

The equation that has to be solved is given by Equation (17), Equation (20)
for the bu�eting forces and Equation (22) for the self-excited forces.

On Figure 16, the PSD for each model are shown. PSD gives a good idea of
how accurate a model is and if the real behaviour of the structure is correctly
represented. The PSD is a representation of the structural response for a
given frequency.
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Figure 16: PSD of the di�erent models in frequency domain
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Figure 17: Legend of PSD in frequency domain

On Figure 16, several observations can be noticed:

� For lower wind speeds, all PSD given by the models �t properly the
reference PSD.

� For greater wind speeds, Jones' approximation is the less accurate es-
pecially around peaks.

� PSD for both fractional derivatives models are close to the reference
PSD and as expected, augmented Swinney's model is the most accurate.

To determine the �utter speed, the standard deviation needs to be calculated.
Equation (31) gives its formula [17].

σx =

√∫ +∞

−∞
PSDx(ω)dω (31)

The �utter speed occurs when the standard deviation is at its maximum.
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Figure 18: Standard deviation given by the di�erent models in frequency
domain
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Table 3 contains the di�erent �utter speeds of each model.

Model Flutter speed [m/s]

Theodorsen's function 77.4
Jones 76.6

Swinney 77.6
Augmented Swinney 77.4

Table 3: Flutter speed for all di�erent models

Based on Figures 18 and 19 and Table 3, it is now clear that Jones' approx-
imation is the least accurate approximation based on the reference function
(Theodorsen's function). However, the di�erence is quite small. Indeed, it is
lower than 1 m/s.

On Figure 20, the error is plotted based on the Theodorsen's function. In-
stead of calculating the error as a function of the wind speed U , it is more
interesting to determine the error as a function of the standard deviation.
Actually, the �utter speed is given for the standard deviation maximum. It
is more relevant if, for a given standard deviation, the model can give an
accurate wind speed U .
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Figure 20: Error on the �utter speed of the di�erent models in frequency
domain

The errors of all models are really low : maximum 1.5% for Jones' model. As
expected again, augmented Swinney's model is the most accurate model but
compared to other models, the increasing in precision is not very relevant.

23



4.3 Time domain

In this section, the Monte Carlo method for fractional derivatives models is
discussed. The �utter speed is determined for all models and compared to
the reference solution. Afterwards, the discussion is focused on numerical
calculation time and optimization and truncation.

Flutter speed analysis

Before showing the results, it is interesting to focus on the main mathematic
points. Jones' is the �rst model that is discussed.

By using Equation (22), it is possible to derive the self-excited forces in time
domain :

Lse(ω) = πρU2B
[(

B
4U

(iω)θ(ω) + Bω2

4U2 z(ω)
)

+ C(ω)
(
θ(ω)− (iω) z(ω)

U
+ (iω) B

4U
θ(ω)

)]
= πρU2B

[(
B
4U

(iω)θ(ω) + Bω2

4U2 z(ω)
)

+ C(ω)
(iω)

(
(iω)θ(ω) + ω2 z(ω)

U
− ω2 B

4U
θ(ω)

)]
By applying the Fourier transform,

Lse(t) = πρU2B
[(

B
4U
θ̇(t)− B

4U2 z̈(t)
)

+
∫ t
0
φ(t− τ)

(
θ̇(τ)− z̈(τ)

U
+ Bθ̈(τ)

4U

)
dτ
]

Suggesting that

exp(t) =

∫ t

0

φ(t− τ)

(
θ̇(τ)− z̈(τ)

U
+
Bθ̈(τ)

4U

)
dτ (32)

and,

µ(t) =

∫ t

0

φ(t− τ)θ̇(τ)dτ (33)

ν(t) =

∫ t

0

φ(t− τ)

(
− z̈(τ)

U
+
Bθ̈(τ)

4U

)
dτ (34)

where

µ(t) =
2∑
i=0

µi(t) (35)

ν(t) =
2∑
i=0

νi(t) (36)
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Moreover, it is possible to express µ̇(t) and ν̇(t) as a function of µ(t) and
ν(t):

µ̇i(t) = aiθ̇(t)−
2biU

B
µi(t) (37)

ν̇i(t) = ai

(
− z̈(τ)

U
+
Bθ̈(τ)

4U

)
− 2biU

B
νi(t) (38)

where ai and bi are Jones' coe�cients.

Then, the following self-excited forces can be obtained :

Lse(t) = πρU2B

(
B

4U
θ̇(t)− B

4U2
z̈(t)

)
+ πρU2B(µ0 + µ1 + µ2 + ν0 + ν1 + ν2)

(39)

Mse(t) =
πρU2B2

4

(
B

4U2
z̈(t)− B

2U
θ̇(t)− B2

32U2
θ̈(t)

)
+
πρU2B2

4

(
B

4U
θ̇(t)− B

4U2
z̈(t)

)
+
πρU2B2

4
(µ0 + µ1 + µ2 + ν0 + ν1 + ν2) (40)

Finally, the following system of equations has to be solved :{
mz̈(t) + cz ż(t) + kzz(t) = Lse(t) + Lb(t)

Jθ̈(t) + cθθ̇(t) + kθθ(t) = Mse(t) +Mb(t)
(41)

At last, the following matrix system is derived :

Mẋ(t) = Ax(t) + f b(t) (42)

The expressions of the matrices and vectors can be found in Appendix A1.

Now, the focus is going to be on the fractional derivatives models. Augmented
Swinney's model is developed below.{

−mω2z(ω) + cz(iω)z(ω) + kzz(ω) = Lse(ω) + Lb(ω)
−Jω2θ(ω) + cθ(iω)θ(ω) + kθθ(ω) = Mse(ω) +Mb(ω)

(43)

where Lse(ω) and Mse(ω) are given by Equation (22) and where,

C(k) = Saug(k) =
1 + a · (iω)α + b · (iω)β

1 + 2a · (iω)α + 2b · (iω)β
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By multiplying Equation (43) by the augmented Swinney's denominator and
by applying the Inverse Fourier Transform, Equation (44) is obtained :

mD2
t z(t) + 4πfzξmD

1
t z(t) + 4π2f 2

zmz(t) (44)

+2arαmD2+α
t z(t) + 8arαπfzξmD

1+α
t z(t) + 8arαπ2f 2

zmD
α
t z(t)

+2brβmD2+β
t z(t) + 8brβπfzξmD

1+β
t z(t) + 8brβπ2f 2

zmD
β
t z(t)

= −pr2D2
t z(t)− 2apr2+αD2+α

t z(t)− 2bpr2+βD2+β
t z(t)

−2prD1
t z(t)− 2apr1+αD1+α

t z(t)− 2bpr1+βD1+β
t z(t)

+pBrD1
t θ(t) +

3

2
apBr1+αD1+α

t θ(t) +
3

2
bpBr1+βD1+β

t θ(t)

+pBθ(t) + apBrαDα
t θ(t) + bpBrβDβ

t θ(t)

+fb(t) + 2arαDα
t fb(t) + 2brβDβ

t fb(t)

A similar development can be carried out for the second equation. The new
expression is given by Equation (45) :

JD2
t θ(t) + 4πfθξJD

1
t θ(t) + 4π2f 2

θ Jθ(t) (45)

+2arαJD2+α
t θ(t) + 8arαπfθξJD

1+α
t θ(t) + 8arαπ2f 2

θ JD
α
t θ(t)

+2brβJD2+β
t θ(t) + 8brβπfθξJD

1+β
t θ(t) + 8brβπ2f 2

θ JD
β
t θ(t)

= −pB
2
rD1

t z(t)− apB

2
rα+1Dα+1

t z(t)− bpB

2
rβ+1Dβ+1

t z(t)

−pB
2

32
r2D2

t θ(t)−
apB2

16
rα+2Dα+2

t θ(t)− bpB2

16
rβ+2Dβ+2

t θ(t)

−apB
2

8
rα+1Dα+1

t θ(t)− bpB2

8
rβ+1Dβ+1

t θ(t)

+
pB2

4
θ(t) +

apB2

4
rαDα

t θ(t) +
bpB2

4
rβDβ

t θ(t)

+Mb(t) + 2arαDα
tMb(t) + 2brβDβ

tMb(t)

where r = B
2U

and p = πρU2.
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By using the �nite di�erence method and by grouping all terms together, the
�nal expression of the solution is derived :

zn

(
Fz2
h2

+
Fz1
h

+
Fzα2
hα+2

+
Fzα1
hα+1

+
Fzα
hα

+
Fzβ2
hβ+2

+
Fzβ1
hβ+1

+
Fzβ
hβ

)
(46)

−θn
(
Fθ1
h

+
Fθα1
hα+1

+
Fθβ1
hβ+1

+
Fθα
hα

+
Fθβ
hβ

)
= zn−1

(
2
Fz2
h2

+
Fz1
h
− Fz

)
− Fz2

h2
zn−2 − θn−1

(
Fθ1
h

+ Fθ

)
−Fzα2
hα+2

n∑
j=1

w
(α+2)
j zn−j −

Fzα1
hα+1

n∑
j=1

w
(α+1)
j zn−j −

Fzα
hα

n∑
j=1

w
(α)
j zn−j

−Fzβ2
hβ+2

n∑
j=1

w
(β+2)
j zn−j −

Fzβ1
hβ+1

n∑
j=1

w
(β+1)
j zn−j −

Fzβ
hβ

n∑
j=1

w
(β)
j zn−j

+
Fθα1
hα+1

n∑
j=1

w
(α+1)
j θn−j +

Fθβ1
hβ+1

n∑
j=1

w
(β+1)
j θn−j

+
Fθα
hα

n∑
j=1

w
(α)
j θn−j +

Fθβ
hβ

n∑
j=1

w
(β)
j θn−j

+Lbn

(
1 + 2a

rα

hα
+ 2b

rβ

hβ

)
+ 2a

rα

hα

n∑
j=1

w
(α)
j Lbn−j + 2b

rβ

hβ

n∑
j=1

w
(β)
j Lbn−j
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and for the second equation :

zn

(
Gz1

h
+
Gzα1

hα+1
+
Gzβ1

hβ+1

)
(47)

+θn

(
Gθ2

h2
+
Gθ1

h
+
Gθα2

hα+2
+
Gθα1

hα+1
+
Gθα

hα
+
Gθβ2

hβ+2
+
Gθβ1

hβ+1
+
Gθβ

hβ

)
=
Gz1

h
zn−1 + θn−1

(
2
Gθ2

h2
+
Gθ1

h
−Gθ

)
− θn−2

Gθ2

h2

−Gzα1

hα+1

n∑
j=1

w
(α+1)
j zn−j −

Gzβ1

hβ+1

n∑
j=1

w
(β+1)
j zn−j

−Gθα2

hα+2

n∑
j=1

w
(α+2)
j θn−j −

Gθα1

hα+1

n∑
j=1

w
(α+1)
j θn−j −

Gθα

hα

n∑
j=1

w
(α)
j θn−j

−Gθβ2

hβ+2

n∑
j=1

w
(β+2)
j θn−j −

Gθβ1

hβ+1

n∑
j=1

w
(β+1)
j θn−j −

Gθβ

hβ

n∑
j=1

w
(β)
j θn−j

+Mbn

(
1 + 2a

rα

hα
+ 2b

rβ

hβ

)
+ 2a

rα

hα

n∑
j=1

w
(α)
j Mbn−j + 2b

rβ

hβ

n∑
j=1

w
(β)
j Mbn−j

The coe�cents are given in Appendix A2.

Finally, the system that has to be solved can be written in the following form
given by Equation (48):

A

(
zn
θn

)
= b (48)

For Swinney's model, the equations are the same but all coe�cients that
contain b and β disappear.

Based on the previous mathematical developments for the Jones' model and
fractional derivatives models, it can be observed that the �nal form of the
system is the same. Indeed, by starting from the same equations, it is obvious
that all models provide a similar formulation. However, the fractional deriv-
atives mathematical expression does not require augmented states. Then, it
is possible to create a numerical data bank for each model and solve di�erent
types of equations systems without further work from an engineer. On the
one hand, fractional derivatives mathematical development is more adapt-
able if the model is modi�ed but on the other hand, the sum calculation is
time-consuming while augmented states have a �nite memory.
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On Figures 21, 22, 23, 24, 25, 26, 27, 28 and 29, the PSD for each model and
for three di�erent steps are plotted. The full lines represent the Theodorsen's
function in frequency domain while the dashed lines are for the Monte Carlo
approach for each model approximation.

0 0.5 1 1.5 2

ω [rad.s
-1

]

10
-6

10
-4

10
-2

10
0

10
2

P
S

D

Nodal PSD
z
 ∆t = 0.06s

U=10m/s

U=20m/s

U=30m/s

U=40m/s

U=50m/s

U=60m/s

U=70m/s

0 0.5 1 1.5 2

ω [rad.s
-1

]

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
S

D

Nodal PSD
θ
 ∆t = 0.06s

Figure 21: PSD given by Jones' model ∆t = 0.06s

0 0.5 1 1.5 2

ω [rad.s
-1

]

10
-6

10
-4

10
-2

10
0

10
2

P
S

D

Nodal PSD
z
 ∆t = 0.06s

U=10m/s

U=20m/s

U=30m/s

U=40m/s

U=50m/s

U=60m/s

U=70m/s

0 0.5 1 1.5 2

ω [rad.s
-1

]

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

P
S

D

Nodal PSD
θ
 ∆t = 0.06s

Figure 22: PSD given by Swinney's model ∆t = 0.06s
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Figure 23: PSD given by augmented Swinney's model ∆t = 0.06s

On Figures 21, 22 and 23, the only model approximation that practically
�ts the reference function is the Jones' model. For the fractional derivatives
models, the curves are heterogeneous, especially around the peaks. The time
step is too big for these models.
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Figure 24: PSD given by Jones' model ∆t = 0.012s
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Figure 25: PSD given by Swinney's model ∆t = 0.012s
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Figure 26: PSD given by augmented Swinney's model ∆t = 0.012s

On Figures 24, 25 and 26, by reducing the time step, the �tting of the
fractional derivatives models is improved. The peaks are now visible for all
models but Jones' model is still the most accurate one for this time step.
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Figure 27: PSD given by Jones' model ∆t = 0.006s
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Figure 28: PSD given by Swinney's model ∆t = 0.006s
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Figure 29: PSD given by augmented Swinney's model ∆t = 0.006s

The smaller the time step, the better the matching. On Figures 27, 28 and
29, all models approximations give good results of the reference PSD but the
peaks �tting are smoother for Jones' and augmented Swinney's models. For
a time step ∆t = 0.006s, all models have converged to an accurate solution.

On Figures 30, 31, 32, 33, 34, 35, 36, 37 and 38, the standard deviation σ is
plotted for all models and for three di�erent time steps. It is important to
notice that [σz] 6= [σθ]. This is why σθ has been multiplied by B

2
in order to

be able to compare both standard deviations.
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Figure 30: Standard deviation given by Jones' model ∆t = 0.06s
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Figure 31: Standard deviation given by Swinney's model ∆t = 0.06s
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Figure 32: Standard deviation given by augmented Swinney's model ∆t =
0.06s

On Figures 30, 31 and 32, the observations made for the PSD are the same.
The Jones' model �ts to a great extent its standard deviation in the frequency
domain while both fractional derivatives models are inaccurate.
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Figure 33: Standard deviation given by Jones' model ∆t = 0.012s
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Figure 34: Standard deviation given by Swinney's model ∆t = 0.012s

35



10 20 30 40 50 60 70 80

Avg. velocity U (m/s)

0

1

2

3

4

5

6

7

σ

Standard deviation augmented Swinney's model ∆t = 0.012s

Theodorsen's function σ
z

Theodorsen's function σ
θ

Augmented Swinney's model σ
z
 frequency domain

Augmented Swinney's model σ
θ
 frequency domain

Augmented Swinney's model σ
z
 time domain

Augmented Swinney's model σ
θ
 time domain

Figure 35: Standard deviation given by augmented Swinney's model ∆t =
0.012s

On Figures 33, 34 and 35, the fractional derivatives models start �tting their
standard deviations in the frequency domain except for high wind speed
values.
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Figure 36: Standard deviation given by Jones' model ∆t = 0.006s
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Figure 37: Standard deviation given by Swinney's model ∆t = 0.006s
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Figure 38: Standard deviation given by augmented Swinney's model ∆t =
0.006s

On Figures 36, 37 and 38, all models are accurate. The Jones' model �ts
perfectly with its standard deviation in the frequency domain. For both frac-
tional derivatives models, the numerical solution in the time domain is good
but it can be observed that the standard deviation σθ is always underestim-
ated.

On Figures 39, 40 and 41, the error of standard deviations is plotted com-
pared to the standard deviation given by Theodorsen's function for three
di�erent time steps. Again, it has been decided to compare the obtained
wind speed values for a given standard deviation.
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Figure 39: Standard deviation error ∆t = 0.06s
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Figure 40: Standard deviation error ∆t = 0.012s
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Figure 41: Standard deviation error ∆t = 0.006s

Based on Figures 39, 40 and 41, as expected, the smaller the time step, the
smaller the error. For all di�erent time steps, Jones' model error is more or
less the same around 5%. For the fractional derivatives models, the error
is pretty big for the two �rst time steps. For ∆t = 0.006s, the fractional
derivatives errors are quite close to Jones' error even if the standard deviation
error σθ of fractional derivatives models is high for small values of σ. It comes
from the fact that the standard deviation σθ is always underestimated, as
mentioned above for Figures 37 and 38.

Numerical calculation time

The accuracy of the di�erent models has been much discussed in the previous
sections. In this one, the numerical calculation time of one standard deviation
for each model is analysed thanks to the Figure 42.
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Figure 42: Comparison of the numerical calculation time without truncation

On Figure 42, the x-axis represents the number of points. The more points
there are, the smaller the time step is. Increasing the number of points raises
slightly the numerical calculation time for the Jones' model. Unfortunately,
the numerical calculation time increases sharply for both fractional derivat-
ives models. Indeed, based on the formulation of Grünwald-Letnikov (see
Equation (9)), the sum has to be calculated again for each step and the
number of elements inside the sum increases for each step too. Due to these
two factors, the numerical calculation time for fractional derivatives models
is very high. For N = 100000, this time is ten times greater than the one of
Jones' model for the same accuracy as shown in the previous section.

Optimisation and truncation

As mentioned in the previous section, the numerical calculation time is very
high for fractional derivatives models. A good optimisation is to truncate the
sum. The idea behind this concept is the `Short-Memory' Principle [2]. It
means that the current time step depends only on the `recent past'. Thanks to
this assumption, it is possible to limitate the maximum numbers of elements
inside the sum to spare some calculation time without decreasing too much
the accuracy of both models.

On Figures 43, 44 and 45, the numerical calculation time is plotted for dif-
ferent time steps ∆t and for di�erent maximum values of elements inside the
sum of the fractional derivatives models.
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Figure 43: Comparison of the numerical calculation time with truncation
∆t = 0.06s
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Figure 44: Comparison of the numerical calculation time with truncation
∆t = 0.012s
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Figure 45: Comparison of the numerical calculation time with truncation
∆t = 0.006s

On Figure 43, the numerical calculation time for both fractional derivatives
models is always smaller than the numerical calculation time of Jones' model
with and without truncation. However, it has been mentioned that for this
time step, the accuracy of the fractional derivatives models is lower compared
to Jones' model.

On Figures 44 and 45, the opposite is observed. Nonetheless, by limiting
the maximum numbers of elements inside the sum of fractional derivatives
models, the numerical calculation time tends to the numerical calculation
time of Jones' model.

To choose the correct maximum number, it is also interesting to check how
the accuracy varies due to the truncation. On Figures 46, 47 and 48, the
standard deviation error due to truncation is shown for di�erent time steps
and the formula of the error is given by Equation (49).

error =
√∑

(σTheodorsen − σModel)
2 (49)
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Figure 46: Standard deviation σ error due to truncation ∆t = 0.06s
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Figure 47: Standard deviation σ error due to truncation ∆t = 0.012s
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Figure 48: Standard deviation σ error due to truncation ∆t = 0.006s

On Figure 46, the error for both fractional derivatives models is greater than
the error of Jones' model for all maximum number of points inside the sum.

On Figure 47, the error for fractional derivatives models is smaller com-
pared to the one on Figure 46. As expected, for small maximum numbers
of elements inside the sum, the accuracy of the fractional derivatives mod-
els decreases. Nevertheless, it exists a �uctuation of the error values due to
Monte Carlo simulations.

On Figure 48, the error of σz for both fractional derivatives models is close
to the error of Jones' model. However, for σθ, it is the opposite. Again, for
small maximum numbers inside the sum, the accuracy is reduced.

To summarize this section, a truncation of a maximum number of elements of
N/50 is a good compromise between accuracy and numerical time calculation
where N is the maximum time simulation over the time step. As an example,
if the simulation lasts 600s and ∆t = 0.06s thus N = 600

0.06
= 10000 and then

the maximum number of elements inside the sum is equal to 200.
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5 Application of a case study : The Golden

Gate Bridge

In Chapter 4, the �utter speed has been calculated for the �at plate theory
by using the data of the Storebaelt Bridge. In this chapter, the fractional
derivatives models are used to calculate the �utter speed for the Golden
Gate Bridge. Firstly, the Scanlan's �utter derivatives are approximated by
all models. For the Jones' model, the traditional de�nition of the Scanlan's
�utter derivatives is used while the Starossek's formulation is applied for
fractional derivatives models. Then, the �utter speed is determined in the
frequency domain for single degree-of-freedom θ. A comparison between
each model is carried out. Finally, in the time domain, the �utter speed is
calculated.

5.1 Fitting of the Scanlan's �utter derivatives

The Theodorsen's function is only applicable to the �at plate theory. In this
chapter, Scanlan's �utter derivatives have to be used. They are obtained
experimentally [18]. For each models' �tting, the function minimizes the
error given by Equation (30). For the Jones' model, the standard de�nition
of Scanlan's �utter derivatives is used (see Equation (26)). Only A∗2 and A

∗
3

have to be approximated because single degree-of-freedom θ is taken into
account.

Figures 49 and 50 show the Jones' �tting.
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Figure 49: A∗2 Jones' model
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Figure 50: A∗3 Jones' model

On Figures 49 and 50, Jones' model with four parameters was used. By
de�nition, a0 is always equal to 1. The values of these parameters are given
in Table 4.

Jones' coe�cients Values

a1 1.1512
b1 0.3711
a2 −1.2873
b2 0.0511

Table 4: Jones' coe�cients for the �tting of Scanlan's derivatives A∗2 and A
∗
3

For the fractional derivatives models, the equations were extended in a more
general way. The new formulas for both models are given by Equations (50)
and (51).

S(k) =
1 + a(ik)α

1 + b(ik)α
(50)

Saug(k) =
1 + a(ik)α + c(ik)β

1 + b(ik)α + d(ik)β
(51)
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On Figures 51 and 52, the �tting of Swinney's model for A∗2 and A
∗
3 is plotted.
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Figure 51: A∗2 Swinney's model
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Figure 52: A∗3 Swinney's model
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The coe�cients of the Swinney's model are given in Table 5.

Swinney's coe�cients Values

a 2.7616
b 10.7557
α 2.7970

Table 5: Swinney's coe�cients for the �tting of Scanlan's derivatives A∗2 and
A∗3

Based on Figures 51 and 52, it can be observed that the Swinney's model
does not �t with the experimental points. Indeed, the number of parameters
is not enough. By increasing this number, the �tting is better.

On Figures 53 and 54, the �tting of the augmented Swinney's model for
Scanlan's �utter derivatives is plotted.
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Figure 53: A∗2 Augmented Swinney's model
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Figure 54: A∗3 Augmented Swinney's model

The augmented Swinney's model values are given in Table 6.

Augmented Swinney's coe�cients Values

a −0.9955
b −1.0128
c −0.008
d −0.0385
α 0.0063
β 1.6201

Table 6: Augmented Swinney's coe�cients for the �tting of Scanlan's deriv-
atives A∗2 and A

∗
3

As expected, by increasing the number of parameters of the model, the �tting
of the experimental points is better. The best �tting is obtained by augmen-
ted Swinney's model, followed by Jones' model and Swinney's model.

5.2 Frequency domain

In the previous section, the Scanlan's �utter derivatives A∗2 and A
∗
3 were de-

termined for all models. In this section, the PSD and the standard deviations
given by all models are analysed.
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The Golden Gate Bridge characteristics are given in Table 7 (see [18]).

Value Unit

J 4.4 · 106 kg ·m2/m
B 27.43 m
ξ 0.005 −
fθ 0.1916 Hz
ρ 1.22 kg/m3

Lw 20 m
Iw 0.05 −

Table 7: Golden Gate Bridge values

As mentioned in the previous section, the traditional formulation of Scanlan's
�utter derivatives is used for the Jones' model. Single degree-of-freedom is
considered in this analysis. The self-excited force Mse is simpli�ed and its
mathematical formula is given by Equation (52).

Mse(ω) = qB2

[
KA∗2(K)

B(iω)θ(ω)

U
+K2A∗3(K)θ(ω)

]
(52)

For both fractional derivatives models, the Starossek's formulation is applied.
The self-excited forceMse mathematical formula for these two models is given
by Equation (53).

M = ω2πρb4cθθθ (53)
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On Figure 55, the standard deviation given by the di�erent models is shown.
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Figure 55: Standard deviation given by the di�erent models for the Golden
Gate Bridge in frequency domain

The values of the �utter speed for each model are given in Table 8.

Models Flutter speed [m/s]

Jones 20.2
Swinney 20.3

Augmented Swinney 22.3

Table 8: Flutter speed given by each model for the Golden Gate Bridge

Based on Figure 55 and Table 8, the �utter speed is similar for each model.
Indeed, the maximum di�erence is equal to 2 m/s. Moreover, even if the
�utter speed for all models is low, it stays inside the values range for the
given data in Table 7 (see[18]).
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Figure 56: PSD given by the di�erent models for the Golden Gate Bridge in frequency domain
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On Figure 56, it is possible to see that the PSD given by the models are
close to each other, except for the peaks. Indeed, they are not equal in
terms of magnitude and location. This variation explains the di�erence of
the �utter speed given by each model. However, the structural response and
the behaviour of the structure are properly calculated.

5.3 Time domain

The same method as the one described in section 4.3 is used. Unfortunately,
both fractional derivatives models do not converge to a �nite solution. A
deepened stability analysis of the Grünwald-Letnikov de�nition is needed in
order to study the models' convergence for many parameters values.

53



6 Conclusions

The objective of this Master thesis is to investigate the modeling of bridge
deck �utter by means of fractional derivatives. Through this work, the �at
plate theory and a case study of the Golden Gate Bridge were being analysed.

The main results of the �at plate theory are summarized below :

� The augmented Swinney's model's approximation shows the best �tting
of the Theodorsen's function. The advantage of this model compared
to the Jones' model is that it uses the same number of parameters.

� In the frequency domain, the augmented Swinney's response properly
�ts with the results returned by the Theodorsen's function. However,
the di�erence of the �utter speeds given by all models is low. Moreover,
the error on the �utter speed for a given standard deviation is maximum
for the Jones' model and is equal to 1.5% while this error is barely equal
to 0.4% for the augmented Swinney's model.

� The mathematical expressions for both fractional derivatives models
are easily adaptable and a numerical data bank can be used in order
to solve di�erent problems. However, the required memory for these
models is greater than the one for the Jones' model; these models are
more time-consuming.

� In the time domain, both fractional derivatives models need a smaller
time step to achieve the same accuracy as the one of Jones' model.
Moreover, the smaller the time step is, the greater the numerical time
is required. Indeed, due to a smaller time step, the number of elements
inside the fractional derivatives sum is greater which greatly increases
the numerical calculation time. A truncation of the sum can be carried
out. By limiting the number of elements to N/50, where N is the ratio
between the maximum simulation time and the time step, the accur-
acy remains the same while the numerical calculation time is greatly
reduced.
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For the Golden Gate Bridge, the following results can be listed :

� The parameters of both fractional derivatives models have been in-
creased in order to improve the Scanlan's �utter derivatives �tting.
The augmented Swinney's model provides the best matching of the
experimental points, followed by the Jones' and Swinney's models.

� In the frequency domain, the �utter speeds given by all models are
slightly di�erent due the variation of the PSD peaks magnitude.

Finally, fractional derivatives models o�er a great extension to integer deriv-
atives models, like the Jones' model, in order to investigate on the modeling
of bridge deck �utter thanks to the accuracy improvement of �utter speed
results.

Further research

� Detailed research could be undertaken on the �tting of Scanlan's �ut-
ter derivatives in order to compare fractional derivatives models and
integer derivatives models. The number of used parameters and the
accuracy of each model should be investigated.

� Further research could also be made on the numerical fractional deriv-
atives scheme to determine the numerical stability based on parameters
values.

Personal contributions

� The improvement of the Theodorsen's function approximation by using
the augmented Swinney's model.

� The comparison between fractional derivatives models and Jones' model
in order to compute the �utter speed thanks to the stochastic analysis.

� The numerical implementation of fractional derivatives models and the
study of its truncation.

� The �tting of Scanlan's �utter derivatives by combining fractional de-
rivatives models and Starossek's formulation.
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Appendix

Appendix A1 Jones' model coe�cients in time do-

main for the �at plate theory

M =



1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

0 0 m+ πρB2

4
0 0 0 0 0 0 0

0 0 0 J + πρB4

128
0 0 0 0 0 0

0 a0 0 0 1 0 0 0 0 0
0 a1 0 0 0 1 0 0 0 0
0 a2 0 0 0 0 1 0 0 0
0 0 −a0

U
a0B
4U

0 0 0 1 0 0
0 0 −a1

U
a1B
4U

0 0 0 0 1 0
0 0 −a2

U
a2B
4U

0 0 0 0 0 1



A =



0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

−kz 0 −cz qB
4U

q q q q q q

0 −kθ 0 −cθ − qB2

16U
qB
4

qB
4

qB
4

qB
4

qB
4

qB
4

0 0 0 0 −2Ub0
B

0 0 0 0 0
0 0 0 0 0 −2Ub1

B
0 0 0 0

0 0 0 0 0 0 −2Ub2
B

0 0 0
0 0 0 0 0 0 0 −2Ub0

B
0 0

0 0 0 0 0 0 0 0 −2Ub1
B

0
0 0 0 0 0 0 0 0 0 −2Ub2

B


where q = πρU2B.

x(t) =



z(t)
θ(t)
ż(t)

θ̇(t)
µ0

µ1

µ2

ν0
ν1
ν2


, f b(t) =



0
0

Lb(t)
Mb(t)

0
0
0
0
0
0



58



Appendix A2 Augmented Swinney's model coe�cients

in time domain for the �at plate theory

Fz2 = m+ r2p Gz1 = pB
2
r

Fz1 = 4πfzξm+ 2pr Gzα1 = apB
2
rα+1

Fz = 4π2f 2
zm Gzβ1 = bpB

2
rβ+1

Fzα2 = 2arαm+ 2aprα+2 Gθ2 = J + pB2

32
r2

Fzα1 = 8arαπfzξm+ 2aprα+1 Gθ1 = 4πfθξJ

Fzα = 8arαπ2f 2
zm Gθ = 4π2f 2

θ J −
pB2

4

Fzβ2 = 2brβm+ 2bprβ+2 Gθα2 = 2arαJ + apB2

16
rα+2

Fzβ1 = 8brβπfzξm+ 2bprβ+1 Gθα1 = 8arαπfθξJ + apB2

8
rα+1

Fzβ = 8brβπ2f 2
zm Gθα = 8arαπ2f 2

θ J −
apB2

4
rα

Fθ1 = pBr Gθβ2 = 2brβJ + bpB2

16
rβ+2

Fθα1 = 3
2
apBrα+1 Gθβ1 = 8brβπfθξJ + bpB2

8
rβ+1

Fθβ1 = 3
2
bpBrβ+1 Gθβ = 8brβπ2f 2

θ J −
bpB2

4
rβ

Fθ = pB
Fθα = apBrα

Fθβ = bpBrβ
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