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Abstract

It is common practice for risk-averse industrial companies to reduce their exposure to the volatile prices of
the spot market by securing a base load supply on the year-ahead electricity market. While many research
efforts have been put in designing strategies to interact with several markets and assets, the case of small
industrial consumers bound to a block-size constrained click-by-click contract for the year-ahead market is
overlooked in literature. This Master thesis seeks to explore this gap and aims at improving the purchase de-
cision making process of such electricity consumers. Multivariate probabilistic forecasting is investigated
as a mean to complement the trader’s expertise. Compelling results are that year-ahead electricity prices
expose random-like patterns which make future price inference extremely difficult. A comparison study of
several time series model suggests that training global deep learning models on related time series notice-
ably improves the forecast accuracy but that simpler models produce better calibrated prediction intervals.
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1 | Introduction

Electricity, due to its intrinsic nature, is one the most arduous commodity to exchange. Yet, the efforts
put into the conception of complex pieces of engineering have led to the reliable electrical infrastructure
that we know now and which we even tend to take for granted. Beside a physical infrastructure supporting
its production and delivery, a set of markets has naturally evolved to trade the commodity. Among them,
the wholesale electricity market gathers a set of market participants interested in purchasing and selling
electricity ahead-of-delivery in large volumes. The year-ahead market is more specifically the one of interest
for this Master’s thesis.

In this context, the goal of this Master’s thesis is to design an algorithmic solution to reduce the electricity
acquisition cost for a small industrial company concerned with the improvement of its purchase decision
making process in the year-ahead electricity market. An example of such company is the Société Wallonne
Des Eaux (SWDE)[14]: a Belgian company which supplied water and sanitation services for a population of
2,459,369 people and which delivered 166,707,379 cubic meters of water in 2018[15]. While residential and
small industrial consumers generally have a fixed-tariff contract with a given retailer, the SWDE is interested
in trading directly in the wholesale electricy market to reduce its cost of energy acquisition. In practice, small
industrial consumers cannot interact directly with the wholesale market but rather settle contracts by the
intermediate of a supplier like Engie[16] for example.

The SWDE is willing to stabilize the price of water for its customers. For several years now, the company has
strived to maintain the access to water at a fixed price despite the natural ongoing inflation. Forward trading
is a technique which aims at alleviating the company’s risks by reducing its exposure to the more volatile
prices of short-delivery-horizon (wholesale) markets. Risk-averse companies prefer therefore this strategy,
by covering, for example, 80% of their electricity demand on long-term-delivery markets. The SWDE is no
exception and leverages derivative contracts on the year-ahead market in order to hedge against risk. The
current situation is such that many managers in small industrial companies often rely on a loose human
expertise to determine a sketch of their purchase timing.

This Master thesis thus aims at improving the quality of the decision making process for such generic com-
pany’s profile. To this end, the research question to be addressed is the following:

“At any given time of the quotation period, is it better to buy now or later?”

Most of the corporate energy managers are still left with relative autonomy to sketch their purchase tim-
ing. This reason, coupled with the potentially very large traded amounts, makes resolving the problem with
a fully end-to-end automatic algorithmic trading agent either too rigid or miss-aligned with the business
reality. Instead, we aim at developing an approach based on an informative indicator to support the com-
pany’s managers in their decision process. Furthermore, it is expected that the solution should be relatively
sustainable and, likewise, easy to maintain in the future.

This thesis is organized as follows. First, Chapter 2 presents an introductory overview of the underlying
mechanics of the electrical system with a focus on its financial aspects. We frame the problem in a formal
way in Chapter 3. A literature review is conducted in Chapter 4 to introduce a set of candidate algorithms
suitable for resolving the problem in a flexible way. Chapter 5 presents an in depth analysis of the data
at hand so as to identify the possible challenges. In the second to last Chapter 6, we detail an evaluation
methodology before providing a discussion on the results obtained. We finally conclude in Chapter 7.
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2 | Overview of the electrical system in a Eu-
ropean and Belgian context

The European electricity system is a fascinating, yet very complex, ecosystem which gathers many actors
around a physical infrastructure. In this way, it can be analyzed with two lenses. First, it can be seen as a
network-like infrastructure, the physical grid which consists in generators, electricity transport systems as
well as a distribution system. Second, it can be seen as a set of organized markets which allows economic
agents to interact with each others in a controlled and safe manner. Complexity arises from the observation
that electricity is a commodity which has the property that generation has to match consumption (plus grid
losses) in real time [17]. Furthermore, it is not economically viable to store electricity at a large scale, which
motivates a careful design of consecutive electricity markets.

The electricity system has recently undergone structural changes while also being more and more disturbed
by new climate-related regulations which have impacted and complicated its dynamics. In the following
sections, we aim at providing the reader with the relevant high-level and introductory concepts about elec-
tricity markets and their core-dynamics.

1 Electrical grid infrastructure

The grid consists in a network connecting electricity generators and consumers via transmission and dis-
tribution networks. Two very important properties characterize this network. First, supply and demand
must be balanced at all time. A failure to meet this property would negatively impact the grid frequency and
result in a power outage, also referred as a blackout[18]. Second, since electricity follows the path of lowest
resistance, the flow of electricity within the grid cannot be easily controlled. As a result, consumers receive
electricity from mixed sources. Figure (2.1) depicts a schematic overview of the physical actors involved in
the system, whose roles will be briefly discussed. A more detailed schematic overview of an electrical grid
with voltage and capacity figures is available in the Appendix 1 (Figure (8.1)).

Figure 2.1 – Schematic overview of the electrical system [1]
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1.1 Generators

Generators, or Generation Companies (GenCo), are the entities that own a single or a portfolio of plants
which produce electricity. We distinguish two types of generators based on their capacity [1]. Firm capacity
generators form the first category and are characterized by a high level of control on their generation and
are somewhat flexible. This is opposed to variable capacity generators which depend on external factors
such as weather conditions. Table 8.1, in Appendix 2.1, lists the common energy generation types as well
as their intrinsic characteristics. In Belgium, the largest generator is Engie Electrabel [16]. To address the
security of supply, the generation capacity must be correctly scaled. In this way, non-flexible generators
are generally used to meet the base-load demand, while flexible generators are preferred to meet peaks in
demand. Furthermore, a set of reserves, ranked according to their reactivity, is deployed in the network to
help balance supply and demand.

1.2 Transmission Network

This is the part of the network responsible for long-distance transmissions. High-voltages (220kV-1000kV)
are used to reduce transmission losses, even though HVDC starts to emerge too[1]. Due to the colossal
operation cost, it is managed, in Europe, by a very limited number of operators, called the Transmission
System Operators, which are organised in the European Network of Transmission System Operators, abbrevi-
ated ENTSO-E from now on. There is only one TSO in Belgium: Elia [19]. Transmission System Operators
are also responsible for maintaining the instantaneous supply and offtake balance in the network.

1.3 Distribution network

The network distribution acts on a smaller geographical scale and brings access to electricity to consumers
via medium and low voltage connections. It is managed by Distribution System Operators (DSO). In Bel-
gium, we count several DSO who are dispatched on a geographical basis. ORES, Tecteo, Régie de Wavre,
AIESH and AIEG are dispatched in Wallonia, Sibelga in the Brussels-Capital region, and Eandis and Infrax in
Flanders.[2] They are also in charge of installing the billing metering device and performing the invoicing.
The complete list can be accessed via [20].

1.4 Balancing supply and demand

In addition to the management of generation plants and their reserves, balancing injections (supply) and
offtakes (demand) can also be tackled via the use of energy storage solutions. However, it is an expensive
process which still represents a very difficult challenge to solve, even though many technologies have al-
ready been developed (see the article [21] for an overview). An alternative is the flexible demand-response
approach, which strives to reduce demand in time of scarcity. This later mechanism can be enforced by
developing market incentives such as time-variant pricing (scarcity pricing). Coupled with new infrastruc-
tures such as smart grids and smart meters, it is a source of promising improvement for the EU network
[22].

1.5 Trends in the Belgian production, consumption and energy mix

Looking at the state of the Belgian electrical system reveals how strongly it is evolving with time. We en-
courage the reader to have a look at the Febeg 2018 report[23], written in collaboration with Elia, which
integrates many relevant statistics about the Belgian electrical system usage. The following summarizes
some of their key statistics for 2018.

Supply side The net total electricity production in Belgium amounts to 69.2 TWh which has decreased by
24.4% since its peak of 91.5 TWh in 2010. This decrease is mainly explained by the unavailability of a part
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of the national nuclear park. According to [24], imports have reached 8% of the electricity mix in 2017 but
soared 22% in 2018, thus complexifying the analysis of the share of energy generation by types.

Demand side For the last 8 years, the total consumption remained stable but slightly decreasing, reaching
81.35TWh. This implies that the country has had a constant deficit in its production, which it compensates
by importing the remaining from its neighbors. In 2017, the industry, services and residentials respectively
represented 46.7%, 25.8% and 21.7% of the demand.

Energy mix The national installed capacity increased to 23.289 MW in 2018, of which 36% are considered
renewable energy sources (RES). However, since the load factor (all the technologies considered) decreased
as well, the total production declined. Still, the renewable energy production progressed by 18% from 2017
to 2018 making up almost a quarter of the total share of the 2018 production. Thus, three quarters of the
production still originate from classical generation units.

Figure (2.2) depicts the state of the Belgian energy mix as of 2018. A detailed real-time monitoring platform
can also be consulted at this web address [25].

(a) Evolution of Belgian renewable energy
production in MWh [23].

(b) Belgian electricity mix along with imports
in 2018 [% (TWh)]. Figures from [24].

Figure 2.2 – State of the Belgian energy mix.

2 Current electricity markets design

Since electricity is a commodity which can’t be stored at large scale, different types of electricity markets
have been arranged in a sequential order, starting years before the actual delivery and ending after the
actual delivery [18]. Subsection 2.1 first highlights the recent changes in the EU market design as well as
the market actors. Then, we give an overview of the most common electricity markets classified by types,
end-consumer, geography and time scales.

2.1 Liberalization of energy markets

Up to three decades ago, the European energy market design was organized in a regulated monopoly. In
this way, one or a small number of vertically integrated companies used to have the full responsability for
the generation, transport and distribution of energy at a national level[18]. However, the European Com-
mission, aiming at an international EU market, has recently decided to design an unbundled structure by
opening the competition to third parties. As a result, gas and electricity markets have been liberalized by
means of three legislative packages adopted starting from the 1990s (1996), 2003 and in 2009 [1]. These Eu-
ropean directives are then being translated by the Member States but this long and complex modernization
procedure is still ongoing as pointed out in their Energy Union 2015 report [26]. The flow diagram from
Figure (2.3) summarizes the current Belgian situation from the electricity generation phase up to the retail.
Missing notions will be shortly introduced in the following subsections.
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Figure 2.3 – Belgian market liberalization and organization flow diagram[2].

2.2 Retail and wholesale electricity markets

Several types of market coexist depending on the type of consumers, time scale and geography. By classify-
ing the markets on the basis of their consumers, we can differentiate the retail market from the wholesale
market. This distinction is motivated by the fact that residential needs differ from industrial ones. Indeed,
it is easy to understand that small residential consumers would prefer paying a flat rate, be it, on average,
a bit higher via an intermediate retailer, for their yearly electricity demand. Table 2.1 summarizes the main
difference between the two.

Characteristics Retail market Wholesale market

Consumer type Small residential and industrial Large industrial

Geographical scope Local Local and transnational

Actors Suppliers, consumers Generators, suppliers, industries

Types of contract Tarif (periodic) Many (derivatives, auctions, etc.)

Entrance fee No Yes

Price variance Low High

Table 2.1 – Highlights of key differences between the retail and wholesale electricity market.

Market participants in the wholesale electricity market naturally involve generators, Transmission System
Operators and Distribution System Operators (together called system operators) are paid for generating elec-
tricity, the long-distance transport of electricity (and its stability), and the delivery to consumers respectively.
In an unbundled structure, it should be pointed out that DSO may not sell electricity to consumers. We des-
ignate as retailers any agent who buys electricity from generators on the electricity market and sells it to
consumers not participating in it. To facilitate the interaction between the above mentioned economic
agents, a market operator (MO) is responsible for issuing contracts between the supply and demand side
according to the market mechanism. Finally, a regulator is involved to set the rules and oversees the func-
tioning of the market. In Europe, ACER sets the guidelines for transnational electricity network and markets
with the network code[27]. The federal Belgian regulator is the Commission for Electricity and Gas Regula-
tion (CREG)[11]. A schematic simplified diagram of their interactions is available in Appendix 2.1.1 (Figure
(??)).

2.3 Types of wholesale electricity markets

We can highlight three common types of wholesale electricity markets: power exchange, over-the-counter
(OTC) and an organized OTC.
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Power exchange A Power exchange market is a multilateral trading platform featuring anonymous and
transparent pricing of standardized products. The market operator aggregates demand and supply bids of
market participants and then perform a market clearing once per predefined time period in order to output
a single market price.

OTC In contrast, OTC markets are used for bilateral trading and allow for the trading of assets without the
formal structure of an official exchange platform. Prices of various products (custom time periods, blocks,
etc.) are confidential and not transparent to other market parties, even though the market prices from the
transparent Power Exchanges are mostly used as a reference.

Organized OTC Finally, organized OTC markets allow market participants to submit bids to a market plat-
form in a similar manner to Power Exchanges with the exception these markets are continuously cleared. In
other words, one market actor can accept an offer or a bid bilaterally, thus resulting in different trade prices
[18].

2.4 Overview of the consecutive wholesale electricity market

Due to the technical difficulty and cost of storing electricity, contracts (transactions) are based on deliv-
ery at some time in the future which motivates the distinction and design of markets with different time
horizons. Figure (2.4) represents of a schematic view of the markets discussed in this section and how they
relate to one another in terms of time of delivery. Strictly speaking, day-ahead and intraday markets are
forward/future markets since they gather actors interested in purchasing electricity for a future delivery but
the denomination of forward markets tends to be reserved for time-horizons that take place before the day-
ahead market. The imbalance is considered outside the spot market since it is undergone by the market
actors.

Figure 2.4 – Markets by time horizon

2.4.1 Forward and future markets

Trading in forward and future markets is done from years before the delivery period up to the day before the
later begins. Thus, contracts are settled in such a way that the price for a quantity of electricity to be deliv-
ered in the future is agreed upon today. Its price should reflect the consensus expectation of the spot market
and is used to reduce exposure to the volatility of the spot market. Indeed, large industrial consumers prefer
to secure their future delivery consumption at an upfront known cost and reduce their exposure to unknown
possible future sudden price increase[18].

Forward market A (firm) forward contract specifies the quantity, date of delivery, date of payment fol-
lowing delivery and the penalties if either party fails to honor its commitment [28]. Such type of contracts
are usually non-standardized and traded bilaterally over-the counter [18]. Contracts can be settled on the
basis of several time horizons. Year-ahead, quater-ahead and week-ahead are the most frequent types of
time horizons encountered. In Belgium, long-term contracts are negociated on the ICE Endex[12] and the
European Energy Exchange (EEX)[29]. Later, we refer as hedging the risk-reducing strategy consisting in
purchasing on those markets with the objective of reducing the expose to the volatile prices of the spot
market.
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Future market In a future market, participants can buy and sell standardized (firm) forward contracts,
which are, in opposition to the above, not backed by physical delivery. These contracts can then be further
traded on power exchanges which is not usually the case for forward contracts [18].

2.4.2 Spot market

As the date of delivery approaches, participants must balance their position if they cannot produce, con-
sume or store the energy. They might have also a better knowledge of their demand on a finer time scale
(e.g. hourly) or leverage more accurate weather forecasts. The spot market is thus used to refine the traders’
positions close to delivery time. However, most of the forecasting errors also end up in the spot market so it
is known to be to be very volatile (even down to negative prices) and risky which is why smaller amounts are
usually traded. Under the spot market denomination, we distinguish the day-ahead and intra-day markets.

Day-ahead market (DAM) Electricity for next-days delivery can be traded bilaterally (OTC trading) or on
the day-ahead power exchange for each hour of the next day. In the Belgian market zone, the power ex-
change platform is called Belpex DAM and is managed by EPEX SPOT Belgium. The DAM power exchange
is said to be a fixed gate auction principle which means that final electricity prices are cleared (published
publicly) at a fixed specified time: the gate closure.

Intra-day Trading in the intra-day market happens on the delivery day itself and is used to correct shifts
in the day-ahead nominations due to better forecast or unplanned outage[18]. Market actors submit their
orders for the following hours of the trading/delivery day. The Belpex Continuous Intra-day Market is an or-
ganized OTC market that relies on a continuous gate auction mechanism. In other words, direct anonymous
contracts are settled as soon as a deal is feasible: the market is cleared continuously.

Balancing market The balancing market is designed to deal with real-time imbalance in the grid and not
for direct trading of electricty since it is undergone by the market participants. In this way, the imbalance
price is given by a function of the reserve activated by the TSO to maintain the balance of its system.

2.5 Market zones

Finally, markets may also vary depending on their geographical scope. Several trading platforms, or mar-
ket zones exist within the EU territory. The European energy legislation strives to design, in the long run,
increasingly interconnected market zones with, as a result, prices converging to the same level. This is also
known as Market coupling[23]. Forward and future contracts can be traded within a market zone or between
them but for cross-border allocation. Transmission capacity is traded apart from the energy. The day-ahead
market coupling is growing across Europe as pointed out by TSOs and regulators[30]. The current state of
the Power exchanges interconnections in Europe as well as an highlight of the price convergence are ex-
posed in Figure (8.4) and Figure (8.5a) respectively in the Appendix 2.1.3.

3 Trading in power exchange markets

The following covers some of the mechanics and dynamics of auction based electricity pools.

Since energy is pooled from generators on its way to the load, the concept of centralized electricity pool has
been introduced to provide a mechanism for reaching a market equilibrium. For the same reason, different
forms of bilateral trading exist depending on the amount of energy to be traded and the time available. In
the later, we refer by trade an amount of megawatts-hours to be delivered over a specific period of time [28].
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3.1 Notion of fixed gate auction mechanism

Generators submit bids, an amount of electricity at a certain price, for the period under consideration. Con-
sumers submit offers, an amount of electricity they are willing to pay at a certain price. At gate closure, the
market is cleared, i.e. an algorithm determines which order should be accepted and at which price. To do so,
bids are ranked in ascending order based on their price (merit order) and a supply curve is drawn. In a similar
manner, a demand curve is built in descending order of the offers’ prices. Both of them can be schematically
displayed as in Figure (2.5a) and their intersection marks the Market Clearing Price (MCP), also called the
System Marginal Price or equilibrium price. The market operator then accepts in-the-money transactions,
i.e. any bids inferior to the MCP and offers above the MCP. Generators thus receive the price corresponding
to offers which satisfy the marginal demand. In Figure (2.5a), this means that every operations at the left of
the green dot are accepted and paid at the MCP. Ideally, at-the-money orders, like depicted in Figure (2.5b),
should be accepted in proportion MC P−p0

p1−p0
if p0 6= p1. However, since GenCos want to recover their start-up

costs and consumers secure their supply with confidence, block orders are used in practice [9]. In other
words, bids and offers are considered as non-breakable blocks. For the market participants, this means that
their orders are either fully rejected or fully accepted at gate closure.

The application of this mechanism has led to the so-called merit order effect, whereby European prices tend
to decrease as a result of the growing capacity of variable generators (e.g. wind, hydro and solar) in the
grid[1]. Since such generators have no fuel cost, they are more prone to offer lower prices and, therefore,
increasingly influence the prices levels for classical generators.

(a) Establishement of the MCP [9].
(b) At-the-money
transactions [9].

Figure 2.5 – Market clearing mechanism

3.2 Comparison of year-ahead and day-ahead markets

3.2.1 Belgian Day ahead market (DAM)

To order day-ahead quantities at auction, market participants submit their orders on a hourly basis in an
order book that is cleared at 12:00 AM[18]. Supply and demand curves are thus computed for each hour slot
of the next day. This mechanism implies that participants trade electricity based on the public hourly price
distribution of the day before and receive confirmation or rejection for their orders, along with the hourly
clearing price, only after the gate closure. The DAM covers all the hours of the day and is open throughout
the whole year.

Figure (2.6) displays the full day-ahead data that have been fetched from the European Network of Trans-
mission System Operators open platform [31] via their REST api. The historical data starts on the 1st of
May 2015 at 2AM up to real-time with prices on a per-hour basis. The interactive visualization is done with
the the Python module plotly. The plot confirms our previous statement, whereby the day-ahead prices are
indeed very volatile. For example, on the 14th of December 2016, prices reached a soaring 696€/MWh at
5PM before dropping to 148€/MWh for the next hour slot. We also observe that prices can sometimes drop
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Figure 2.6 – Belpex day-ahead (DAM) market prices in €/MWh. Data fetched from the
ENTSO-E REST api.

below zero with some huge spikes in some rare and extreme situations when supply is in excess.

3.2.2 Belgian year-ahead market (YAM)

Quotation time in the year-ahead market already starts 3 years before the year of delivery and ends the day
before the start of the year of delivery. Prices are generally aligned on the ICE Endex[12]. Another difference
with the DAM to highlight is that the YAM is only open during working days. Furthermore, quantities are
not traded on a per hour basis but instead on a per day basis. Contracts that are signed on power exchanges
agree on a certain electricity quantity to be delivered at a constant rate during the delivery year. We only
cover the case of a click-by-click contract type in Subsection 3.4.

Figure (2.7) displays the year-ahead market prices at quotation time. The prices corresponding to the deliv-
ery year y are evaluated by the quotation of the CAL y which indeed starts three years before the delivery.
This way, it is important to understand that during the three-year quotation period, a trader buying elec-
tricity when the quotation price is low would make a significantly better decision than another trader who
would buy at times of higher prices since the product delivered is exactly the same and relates to the same
delivery period. Contrary to the DAM, YAM prices never dropped below zero.

Figure 2.7 – Year-ahead market prices at quotation time.
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3.2.3 Comparison of day-ahead and year-ahead prices

To compare the statistical properties of the day-ahead and year-ahead markets, it wouldn’t make much
sense to compare them for the exact same quotation time. Instead, statistical properties of the evolution of
electricity prices should be derived on the basis of the delivery period (year) so that somewhat comparable
products are analyzed. Following this observation, Table 2.2 presents the mean and variance of the DAM
and YAM market prices for a common delivery period spanning from 2016 to 2019 both inclusive. This time
range corresponds to the largest common delivery period between the acquired day-ahead and year-ahead
prices datasets.

Market Mean[€/MWh] Variance[(€/MWh)2]

Day-ahead 43.950 525.849

Year-ahead (CAL 2016-2019) 39.730 48.472

Table 2.2 – Mean and variance of historical year-ahead and day-ahead market prices for delivery
between 2016 and 2019 both inclusive.

We first notice that the DAM has an approximately 10% higher average price than the YAM. As expected,
its variance is also an order of magnitude higher than the one of the year-ahead market. In fact, had we
skipped CAL 2019, the variance of the year-ahead market would even have been halved to 27.81(€/MWh)2.

To illustrate the significantly higher volatility of the day-ahead market, it is worth comparing visually the
two market prices for a common delivery year. For that purpose, Figure (2.8) concatenates their respective
quotation periods for a delivery in 2016. The difference in volatility becomes striking to the eye.

Figure 2.8 – Historical quotation prices for CAL 2016 and the daily averaged price of the DAM for the
common delivery year 2016.

It would be worth investigating whether the year-ahead market is indeed consistently cheaper than the
day-ahead market though. By refining our analysis on a per-year basis, we obtain the results of Figure (2.9).
A similar plot (Figure (8.6)) from the official CREG report comparing different forward markets is also pre-
sented in the appendix Appendix 3.0.1. It can be deduced that the forward market is not always cheaper than
the DAM. In 2015 and 2016, the DAM was actually cheaper than the forward market. It is noticeable that,
in 2019 (CAL 2019), the forward market was characterized by a steep increase of the price (see Figure (2.7)),
thus resulting in a high variance for this particular year. This suggests that trading solely in the forward mar-
ket might not be an optimal solution and might not always prevent the exposure to spiky prices. Arbitrage
is a trading strategy that consists in exploiting the market imperfections by purchasing some quantity in a
first market and exploiting the price difference in a second one to make benefits. According to our observa-
tions, arbitrage strategies between the year-ahead and day-ahead market, i.e. selling exceeding base supply
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purchased on the YAM on the DAM, may be profitable when performed at strategic times. Such strategies
may however be hindered by transactions costs.

Figure 2.9 – Day-ahead and year-ahead electricity market prices at corresponding delivery time
(€/MWh).

3.3 Power price drivers

Figure (2.10) summarizes a set of external factors that are known to have an influence on electrical energy
prices. Those factors are briefly discussed in the following paragraphs.

Figure 2.10 – Power price drivers [3].

Weather conditions and renewable GenCo With the increasing share of renewable generators in the Bel-
gian electricity-mix (see Subsection 1.5), the weather is expected to have more impact on short-term elec-
tricity prices than ever before[28]. In this way, favorable weather conditions, like windy or sunny days, are
likely to move prices downwards since renewable generators, which benefit from virtually free energy, would
be ranked higher from a merit order perspective (Figure (8.3), Appendix 2.1.2). Another perspective is that
consumers demand is naturally impacted by weather, especially temperature changes. Thus, the increasing
capacity of renewable-based generation in the country, coupled with the unstability of weather conditions
can increase the volatility of the prices while complexifying the management of traditional and less respon-
sive generation companies. While the impact of weather is indisputable for short-term electricity markets,
the later might not apply to the same extent for long-term markets.
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Regulation and capacity changes It comes to no surprise that changes in regulations like the liberaliza-
tion of the industry, changes in tax regimes or subsidies, among others, have a very strong impact on the
energy market[32]. Those may however be tough to predict precisely in advance. An illustration of another
change in regulation is the one related to carbon emissions which have set a penalty on the ton of C 02. As
pointed out in the 2018 Febeg annual report[23], the price per ton of CO2 has almost quadrupled between
the beginning of 2017 and the end of 2018. Such changes naturally impact the market dynamics.

Capacity changes Planned revisions or technical outages are illustrations of factors that influence the
price of the energy from the supply side. For instance, a deficit in production due to a nuclear park under
maintenance would likely require an increase of net imports.

Other factors of price fluctuations are periodic events like working days, time of the day or holidays as well
as economical conditions (e.g. crise, increasing inflation, etc.) which have a natural impact on electricity
demand. Other (alternative) energy sources like coal, crude oil and natural gas, just to name a few, influ-
ence each others which yet complexifies the analysis of electricity price fluctuations. Finally, the role of
interconnection should be considered. For example, Germany’s new strategy to use gas and coal instead of
traditional nuclear plants tends to turn the country into a frequent exporter which can have an impact to
some extent on neighboring prices.

From a forecasting perspective, the complex interactions between all these external factors make a manual
evaluation of the future price movement far from trivial. A good expertise in the field is thus required for cor-
porate energy managers. Yet, professional solutions leveraging these external factors have been developed
to help these managers in their decision making[33, 34].

3.4 Click-by-click forward contracts

This subsection gives an overview of a generic contract details that could be settled between a small indus-
trial company and its broker intermediate to trade in the wholesale electricity market via a virtual platform.
The following covers a click-by-click contract type and will be used as a reference for this work.

3.4.1 Price terms

We refer by Booked Power the aggregated quantities registered by the customer via click orders. There are
two pricing systems the customer can usually choose from. The first one is based on the ICE Endex[12] while
the second one is determined on the basis of OTC ASK or BID quotations. The company books its base load
supply on a yearly, quaterly or montly basis via either Endex or OTC orders. The difference between the
customer’s base load and its nominated requirements is called the spot supply and is expressed in MWh.
Naturally, any future imbalance at delivery time is charged to the customer at tariffs set by the transmission
system operator, like Elia[19] in Belgium.

3.4.2 Booking of forward power blocks

In practice, the digitalization of the economy has often pushed companies to automatically settle their con-
tracts by means of a web platform. In this way, the customer can either click or declick fixed-size blocks of
power for the desired delivery period on the price published by the ENDEX or use an OTC booking mecha-
nism. Hence, the customer can build his contract portfolio in a somewhat flexible way like listed in Table 2.3.
Endex orders are based on the end-of-day quotation principle. This means that the customer places an or-
der based on the published price of the previous day without knowing the current price and only receives
the billing invoice the following day. On the other hand, an OTC buy (click) order needs to be performed
on another OTC ASK quotation. Conversely, an OTC sell (declick) order needs to be on an OTC BID quota-
tion. Obviously, transaction fees may apply for both systems and may even vary depending on the booked
delivery period. Fees might be asymmetric with respect to click or declick orders too even though it is not
captured in the simplified notation.
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Price reference Operation Volume[MW] Period Transaction fee [€]

Endex Click/Declick k×block_size
CAL feecal

Q feeQ

M feeM

OTC Click/Declick k×block_size
CAL fee′cal

Q fee′Q
M fee′M

Table 2.3 – Typical click-by-click booking mechanism assuming yearly, quarterly and monthly ahead
delivery options. k designates the number of power blocks purchased.

With this booking mechanism, the monthly price paid by the customer for the active energy is given by:

Bill for month Mbi l l =
∑

per i od={M ,Q,C AL}

ncl i ck
per i od∑
i=1

block_size× (pcl i ck
per i od ,i + feeper i od ,i )×Hper i od ,MBi l l

− ∑
per i od={M ,Q,C AL}

ndecl i ck
per i od∑
j=1

block_size× (pdecl i ck
per i od ,i − feeper i od , j )×Hper i od ,MBi l l

(2.1)

where Hper i od ,Mbi l l is the total number of hours of a given per i od ∈ {M ,Q,C AL} overlapping the billing
month Mbi l l . pper i od ,i designates the price paid for the order triggered by click i for the market (of per i od ∈
{M ,Q,C AL}) under consideration.

Finally, additional costs inherent to the customer’s spot supply naturally apply. For instance, in the case
where the customer’s spot supply is positive, i.e. when the base load is lower than his nominal require-
ments, the customer would be charged for the hourly settlement price (€/MWh) published by Belpex with
an additional fee Feei mbal ance€. Conversely, for a negative spot supply, the customer is paid back but with
a negative fee.

3.4.3 Constraints on the booking mechanism

A natural constraint of click-by-click contracts is that the broker agent enforces a minimum block_size
order expressed in MW which can’t be cut in smaller chunks. Additional possible constraints include a fixed
deadline after which electricity can’t be purchased anymore (close to delivery time) or even a limit on the
cumulative monthly orders. If we designate by Qbooked ,Mbi l l

= Qcl i cked ,Mbi l l
− Qdecl i cked ,Mbi l l

the booked
power for month Mbi l l , the constraints can be generically expressed as:

0 ≤ Qbooked ,Mbi l l
≤UMbi l l (2.2)

Qcl i cked ,Mbi l l
≤UMbi l l (2.3)

Qdecl i cked ,Mbi l l
≤ Qcl i cked ,Mbi l l

(2.4)

Qdecl i cked ,Mbi l l
≤ LMbi l l (2.5)
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3 | Problem Statement

This chapter frames the problem already introduced in Chapter 1 in a more formal way. First, we expose the
data at hand as well as the set of constraints considered for the electricity booking mechanism. We derive
from it a number of possible orders to place during the quotation period. From the combination of the
above, we then identify that only the year-ahead market can be considered and introduce the time notation
required to frame the problem, while assigning responsibilities between the operator and the solution that
should be provided. By taking into account the customer’s requirements, we finally propose to cast the
problem as a probabilistic forecasting problem that can be extended to derive an index of opportunity.

1 Context formulation and notation

We consider the case of small generic industrial consumer which is interested in hedging against risk by a
major part (e.g. 80%) of his total required electricity supply in the forward market and reducing the cost
of electricity acquisition. From the discussion of Subsection 3.2, we can conclude that trading solely on
the spot market should be excluded from the beginning. Strategically placing the acquisition orders of this
proportion under controlled risk is the subject that interests us. Only the year-ahead wholesale electricity
market is considered.

1.1 Risk, forecast and uncertainty

Reducing the cost of electricity acquisition by providing the right timing to place purchase decisions is a
complex trade-off between strictly reducing risk and seeking opportunities which could lead to potential
savings. Risk is captured in the uncertainty about the yet-unobserved price evolution and can lead to situ-
ations in which the company is constrained to buy electricity at any (high) price to meet its supply needs.
Likewise, securing a position while prices are thought to be high while they are likely to decrease in a some-
what near future can also result in large opportunity losses or missed savings.

In the absence of any possible other contract types or sources to secure the electricity demand, relying on
contract diversification is not possible. In this way, to strictly hedge against risk, i.e. to reduce the exposure
to the highest prices, a baseline method would consist in dispatching uniformly as many purchase orders
during the quotation period. This strategy strives to drive the average cost of electricity acquisition for a
given CAL as close as possible to its mean price in expectation. For this baseline, the average acquisition
price tends to converge to the average price for the complete quotation period, provided the allowed num-
ber of decisions tends to infinity too.

This strategy is however completely blind to the price evolution and ignores, additionally, possible pre-
dictable long or short term price movements that would result in potential large saving opportunities. Re-
ducing the future price uncertainty would mitigate this problem. A look in this direction is thus needed.

1.2 Booking mechanism, data and constraints taken into consideration

Market data Historical data of the forward market is notoriously difficult to get one’s hands on. The Elexys
platform[35] gives only condensed information about the historical ICE Endex prices but a historical dataset
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of the year-ahead market ranging from 2nd of September 2004 up to 16th of October 2019, is available for
this Master thesis. It naturally features one price per market open-days. Figure (2.7) already exposed in a
visual manner the available dataset.

Booking mechanism We consider the booking mechanism for the purchase of power assets to be the one
of a typical year-ahead click-by-click contract type like exposed in Subsubsection 3.4.3. The minimum block
power size is fixed to either 1MW or 0.2MW.

Customer’s demand The company has a limited number of orders to place during the quotation period
due to the comparatively large minimum block power size imposed by the click-by-click contract. The typ-
ical base demand to secure on the year-ahead market would be around 10MW h (to be delivered at a con-
stant rate for one year). By considering the minimum block_size imposed by the click-by-click contract of
1MW or 0.2MW, we derive directly a maximum number of orders to dispatch for 3 years equal to 10 and 50
respectively.

1.3 Year-ahead market trading

In a forward trading context, we naturally highlight two main time periods. We designate by τy
Q := {1, . . . ,T y

Q }

the price quotation (Q) period for CAL y divided in |T y
Q | time intervals. Likewise, τy

D is the corresponding
delivery (D) period. Since the methodology from trading in one CAL to another is the same, we will loosely
drop the upper index y for convenience unless precising the CAL is relevant in the context. For each given
CAL, the full period of consideration τ= [τQ ,τD ] thus spans over 4 years in total. The time interval resolution
∆tQ is equal to 1 day ∀tQ ∈ τQ .

A decision at each tQ ∈ τy
Q (up to three years before delivery) should be taken for the delivery of electricity at

a constant rate for all tD ∈ τy
D . The decision is under the responsibility of a (human) operator who can decide

whether to buy or sell a multiple of block_size or simply to take no action. An operator’s decision taken
at a time tQ is denoted by utQ ∈ UtQ where UtQ denotes the feasibility set of actions compatible with the
contract constraints at time tQ . Logically, making sure that the whole of the forecasted base load demand is
purchased by the quotation time horizon TQ is thus also under the responsability of the operator.

When the time interval following tQ = TQ is reached, i.e. when the quotation period is over (tD = 1), the
delivery starts and the operator is left with no decision to carry out anymore. This thus motivates to recenter
the time indexing in the quotation period only.

2 Decision stages with a Market Opportunity predictor

2.1 Decision stages

The evolution of the electricity price for a given CAL over a finite time horizon T can be represented, in
a discrete time model, by a random process ξ = (ξ1,ξ2, . . . ,ξT ) with the dynamics of the process inferred
from historical data. At a given present time t ∈ τQ , the realization of the sequence of continuous random
variables (r.v.) ξ1:t−1 = (ξ1, . . . ,ξt0−1) is known and the residual uncertainty is represented by the probability
distribution of ξt :TQ = (ξt0 , . . . ,ξTQ ) conditioned on the observed r.v. ξ1:t−1 denoted P (ξt :TQ |ξ1:t−1).[13].

Table 3.1 summarizes the decision stages that should be undertaken by the operator. We consider the case
of a price-taking consumer which assumes that the operator can purchase any quantity at the market price
without affecting that price. The later is thus said to be exogenous to the consumer. This assumption seems
legitimate due to the relatively small amounts traded by, for example, the SWDE, compared to the total
volumes exchanged in the YAM and allows to simulate, in advance, possible realizations of the random
process without caring about possible future actions of the operator.
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Stage (t )
Available information for taking decisions

Decision
Prior decisions Observed prices Residual uncertainty Market indicator

1 None None P (ξ1,ξ2, . . . ,ξTQ ) M̂1 u1 ∈U1

2 u1 ξ1 P (ξ2, . . . ,ξTQ |ξ1) M̂2 u2 ∈U2

3 u1,u2 ξ1,ξ2 P (ξ3, . . . ,ξT |ξ1,ξ2) M̂3 u3 ∈U3
...

...
...

...
...

...

T u1, . . . ,uT−1 ξ1, . . . ,ξT−1 P (ξTQ |ξ1, . . . ,ξT−1) M̂T uT ∈UT

Table 3.1 – Decision stages during quotation period (derived from [13])

2.2 A Market Opportunity Estimator (MOE)

Since the freedom of making decisions should be left to the operator, the problem lies in the design of a
Market Opportunity Estimator M̂t that leverages historical prices data to output a single number, at time t
of evaluation, summarizing the confidence in pursuing a (single) positive click order which would lead to
likely favorable money savings with a small worst case loss for a given forecast horizon (which could, for
example, be the next hedge period of the baseline described in Subsection 1.1).

The forecast horizon TF ∈ {t0, . . . ,TQ } used for the evaluation of the Market Opportunity Estimator (MOE) at
time t = t0 −1 is an hyper-parameter. The underlying forecast period is then denoted by τF := (t0, . . . ,TF ).

Formally, a MOE for a given time t , with a chosen forecast horizon TF , is a map from inputs X t ∈ Rm×n

to a real output M̂
TF
t ∈ R. When only the historical (CAL y) price data up to time t is used to produce the

indicator, X t simplifies to the observed data X t = (ξ1, . . . ,ξt0−1) but one could also embed additional features
to improve the quality of the estimator. For example, additional categorical information, correlated time
series or forecast of other commodities can be included in the information set. The output M̂

TF
t takes its

values in [0,1] with 0 corresponding to a wait recommendation and a 1 to a positive buy feedback. A value of
1 would for instance correspond to the highest confidence of making savings by purchasing a block_size
at evaluation time t compared to any potential later purchase in τF .

2.3 A two-stage framework

One approach to build a Market Opportunity Estimator is to split it into two subproblems corresponding to
two sequential stages: a price forecast followed by a measure of the buying opportunity over the underlying
predicted prices distribution. The reliability of the indicator is conditioned on the one of the forecast.

Prediction interval forecasting Measuring uncertainty is important to characterize and nuance the qual-
ity of a prediction and, obviously, to make correct informed decisions. This is why a forecast model Fθ is
used to leverage a set of observed values in order to predict, a probability distribution P̂ (ξt0 , . . . ,ξTF |ξ1, . . . ,ξt0−1)
of the future outcome conditioned on the previously observed prices. This refers to density forecasting.
However, such ideal forecast can rarely be matched in reality, especially without making assumptions about
the price data distribution. Simpler probability interval will thus also be considered. Choosing a model suit-
able for an accurate multi-step forecast of the price evolution ξ̂t0:TF is a first crucial subproblem that should
be tackled in order to produce, at a later stage, a good measure of opportunity. Forecasting with multivariate
inputs is considered as an extension to this problem.

Measure of opportunity The second subproblem then consists in designing a deterministic mapping
M

TF
t=t0−1 from P̂ (ξt0 , . . . ,ξTF |ξ1, . . . ,ξt0−1) to [0,1]. We refer to this mapping as a Market Opportunity Indica-

tor or opportunity measure, the goal of which being to capture the profitability and uncertainty associated
to pursuing a positive click order under the current market conditions at time t = t0 − 11 according to an

1compared to purchasing electricity during the interval spanning from t0 to TF .
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estimator whose reliability has been correctly backtested.

Wrapping it altogether, we thus have to compute at evaluation time t : M̂
TF
t =M

TF
t (Fθ(X t )).
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4 | Literature review

Due to the high complexity of the physical infrastructure as well as the large amounts of money traded in
electricity markets, it comes to no surprise that the literature covering electricity market analysis, electricity
contracts portfolio management and electricity forecasting is vast. Surprisingly though, the case of a small
industrial consumer, with a risk-averse profile, looking to reducing its cost of electricity acquisition with
only one type of derivative contract within the European wholesale market doesn’t seem to be covered in
literature, at least to the best of our knowledge. In such context, the topics covered in the literature bound
to the financial electricity sector rather tends to focus on hedging through diversified contract optimization
over different time scales[36, 37, 38], sometimes coupled with arbitrage strategies between markets[39, 40],
or energy forecasting [41, 42, 43] but only for short or medium term delivery markets. All of which don’t
directly fit our particular problem focus.

At the crossroad between financial portfolio and supply chain management, optimization and forecasting,
the well known Value-at-Risk (VaR) framework is central to risk management; a mathematical formulation
of which is briefly presented in the Appendix 4. Without loss of generality, for a considered asset 1 , the VaR
framework postulates the knowledge, or at least the estimation, of a certain probability distribution over its
future outcomes. In this way, it provides a tool to evaluate the cost-benefits of investing in an asset, or a
pool of such, and to improve risk-controlled decision making by focusing on the worst case outcome, i.e.
the leftmost part of the distribution for a given confidence levelα ∈ [0,1]. In other words, VaR can be used to
define hedging strategies for the construction of an optimized portfolio of diversified assets for an a-priori
fixed acceptance risk level. Our problem instance differs a bit from this perspective since it leaves us with
no other substitute contracts or markets to meet the electricity demand and, therefore, no "best" worst case
scenario to select.

From the above observations, we thus propose to embrace a more generic approach centered around fore-
casting to deal with the timing component of the purchase decision process. More specifically, to reconcili-
ate traditional forecasting techniques with the notion of informed decision making, we focus on probabilis-
tic forecasting techniques.

1 Towards deep learning probabilistic forecasting

1.1 The probabilistic forecasting paradigm in an electricity and finance context

With the introduction of smart grids, renewable integration requirements and the modernization of the
energy industry, probabilistic forecasting recently gained attention as market stakeholders started to face
increasing uncertainty in their decision making processes[45]. It hasn’t always been the case though. In a
comprehensive review on Electricity Price Forecasting (EPF)methods published in 2014, Rafal Weron spec-
ulated probabilistic forecasting would develop in the next decade[41]. The paper classified and provided
an overview of many popular techniques in econometrics and EPF but mostly applied to short term mar-
kets. While statistical models like autoregressive and exponential smoothing based techniques [46] are still
popular benchmarks nowadays[47, 48], the recent advances in computational intelligence tool, like neural

1We simply denote by assets any economic value (e.g. contract, commodity product, stock) that an individual, corporation, or
country owns or controls with the expectation that it will provide a future benefit[44]. For our problem instance, the benefit is to
meet the future electricity demand, with the additional objective to do so in the most economical way.
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networks, were already noticeable enough to provide successful results thanks to their ability to capture the
non-linear and complex behavior of electricity prices[41].

In fact, probabilistic EPF truly gained momentum with the Global Energy Forecasting Competition of 2014
(GefCom2014[43]), which featured a price forecasting track. The objective was to predict 99 quantiles as a
reasonable discrete approximation of the predictive distribution of the next 24 hours of short term electricity
prices (which exposed naturally a non-negligeable seasonal component).

The qth quantile, or percentile, of a random variable Y is the value yq below which a fraction q of obser-
vations of this random variable falls. For instance, for a quantile q, yq is that value of Y which satisfies
FY (yq ) = q where FY denotes the cumulative distribution of Y . The competition was designed such that
assimilating the true distribution as the discretized forecast distribution (density forecast) would be an op-
timal strategy in expectation.

A simpler alternative to density forecasting is Prediction Interval forecasting. We denote by Prediction In-
terval (PI) an interval which contains the true values of future observations with a specified probability [41].
The later can either be predicted directly or derived from two symmetric quantiles if the estimator is able to
produce the full future distribution. For instance, the (1−α%) PI, centered in the median (q0.5), features the
interval extrema from the α

2 % and 1− α
2 % quantiles with α ∈ [0,1].

The inclusion of PI forecasting entries, with a value ofα= 0.05, was considered in the renowned M4 compe-
tition [47, 49] back in 2018. Like GefCom2014, this competition positively influenced research by providing
a common evaluation scheme and datasets to ease scientific comparison between methods[50]. However,
unlike the previously mentioned one, it wasn’t just bound to the electricity sector but, instead, featured
more than 100 000 time series with various frequencies, origins (e.g. Micro, Macro, Finance, Industry, De-
mographic) and, therefore, dynamics[51]. Noticeable and valuable results are that forecasting accuracy of
simple methods are not too far from those of accurate methods. Moreover, hybrid models which combine
statistical with Machine Learning (ML) techniques yield the best results while pure ML methods tend to
perform poorly[47].

In the absence of true seasonality in our data (see Subsection 2.2), the more recent results of the M4 com-
petition are more valuable. We plan on evaluating our results with a similar approach to them (see Subsub-
section 1.4.3).

1.2 Deep learning based time series modeling

While neural networks don’t outperform statistical methods in a consistent manner[52] , time series model-
ing have mostly focused on local models whereby the parameters of the time series model are estimated per
time series individually eventhough a collection of related time series may be available as pointed out by
[53]. Recent advances in deep learning have however led to substantial improvements over this traditional
approach by introducing global models that can leverage a large collection of time series data to estimate
the parameters of a single model[4, 6, 54]. This later approach was also adopted by the winning hybrid
model of the M4 competition[48]. [53] actually qualifies this family of models as "having better capability to
extract high-order features and identify complex patterns" while [4] states it allows to fit more complex and
potentially more accurate models without overfitting.[4, 6, 54]

In this context, the open-source Gluon-ts library [53], developed by Amazon scientists, was very recently
introduced to fill the gap in the forecasting toolkit landscape by proposing the first deep learning library
featuring state of the art global deep learning models and more conventional probabilistic and statistic
models under a common (Python) interface. Notably, the library aims at rapid experimentation and bench-
marking of various models with support for the creation of custom PI or density forecast models on top of
the MXNET backend. In lights of the results discussed above, the Gluon-ts library seems to offer currently
the best set of features to handle the complex dynamics ruling the year-ahead market prices. Hence, from a
pragmatic point of view, the next section will only give an overview of the most important models featured
in the library and which we plan to test.
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2 An overview of the time series models implemented in Gluon-ts

We give now an overview of best performing models implemented in the Gluon-ts library and highlight their
benefits for our comparison study. Naturally, to keep things clear and organized, we redirect to the original
paper for more information regarding their details and implementation.

2.1 Notation and background

Let Z = {
zi ,1:Ti

}N
i=1 be a set of N univariate time series with zi ,1:Ti := (

zi ,1, zi ,2, . . . , zi ,Ti

)
, and zi ,t ∈ R corre-

sponding to the value of the i-th time series at time t . The time point t0 = Ti +1 is referred to as the forecast
start time and τ ∈N>0 to the forecast horizon yielding the last forecast step TF = t0 +τ. As follows, {1, . . . ,Ti }
is the training (conditioning) range and {Ti + 1, . . . ,Ti + τ} is the prediction range. Let us also consider a
set of time-varying covariate vectors X = {

xi ,1:Ti+τ
}N

i=1 with xi ,t ∈ RD . Most of the models discussed above
support those features which might as well correspond to static attributes for each series or known future
events. The inclusion of such features also allows the generation of "what if" scenario if so desired.

In the multivariate probabilistic forecasting paradigm, we define forecasting as predicting the probability
distribution of future values zi ,Ti+1:Ti+τ given the past values zi ,1:Ti , the covariates xi ,1:Ti+τ and the model
parameter Φ:

p
(
zi ,Ti+1:Ti+τ|zi ,1:Ti ,xi ,1:Ti+τ;Φ

)
(4.1)

We generically denote by Φ the set of parameters of the model which are learned jointly for all N similar
time series.

Autoregressive models Autoregressive models[46] are a family of time series model which forecast the
variable of interest based on a linear combination of predictors. In its simplest form, the predictor consists
of lagged values of the variable of interest. An autoregressive model of order p takes the following form

zi ,t = c +φ1zi ,t−1 +φ2zi ,t−2 +·· ·+φp zi ,t−p +εt (4.2)

whith εt being white noise. These models are trained on a sequence but reduces the prediction to a one-
step-ahead problem which models p

(
zi ,Ti+1|zi ,1:Ti , xi ,1:Ti+τ;Φ

)
. In this sense, to generate multi-step predic-

tion, they rely on a recursive scheme in which previous 1 step predictions are ingested as part of the true
observations (training range) to produce the next step. Likewise, errors from the sequential one-step-ahead
prediction are aggregated for the model update (which therefore leads to error accumulation too).

RNN, LSTM and Seq2Seq Recurrent Neural Networks[55] (RNNs) represent a class of artificial neural net-
works whose connections between nodes form a directed graph with the objective to learn a fixed-length
non-linear representation of a sequence of arbitrary length[6]. Vanilla RNNs aim at capturing temporal
dynamic in a time series but struggle to exploit long term dependencies (the so-called vanishing gradient
problem). To cope precisely with this issue, LSTM (RNN) networks, relying on Long-Short-Term-Memory
(LSTM) cells[56], have been introduced. Sequence-to-Sequence RNNs (Seq2Seq)[57] have finally been in-
troduced to generate future sequences whose length doesn’t especially equal the one of the input sequence.
They are based on a encoder-decoder RNN architecture where the encoder generates a fixed-size summary
context vector which is fed to the decoder.

2.2 Baseline algorithms

The library features several benchmarking univariate time series model through a Python interface of the
R forecast package [58] which are worth reporting. Prominent models include two of the most widely used
approaches to time series forecasting that are ARIMA[59] and exponential smoothing based models which
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are discussed in the comprehensive ebook Forecasting Principles and Practises[46]. The library also includes
an interface to the bayesian structural time series model Prophet developed by Facebook.

2.2.1 Prophet

Prophet[60] is an intuitive regression model with easily interpretable parameters which can be tailored ac-
cording to the domain knowledge of the data at hand. It is specifically designed for business time series
though. In this sense, the model is not the most adapted to our problem instance but would provide an
interesting point of comparison. A time series zi ,1:Ti , abbreviated zt , is modelled with three main additive
components: trend (g t ), seasonality (st ) and holidays (ht ).

zt = g t + st +ht +εt (4.3)

Trend exits when there is a long term increase or decrease in the data. Seasonality , on the other hand,
translates a periodic pattern that repeats with a fixed frequency. ht in Equation (4.3), represents the effect
of holidays which occurs on potentially irregular schedules while εt is an error term which is not taken into
account by the model and assumed to be normally distributed. The most relevant trend model in the paper
simply considers a linear trend with a growth rate of k. Trend changes are then incorporated by defining
so-called change points so that the piece-wise constant growth rate k is allowed to change over time. In
this way, this mechanism allows to split the time series into separate regimes with different dynamics. Let
S be the number of change points (hyperparameter) dispatched over several timestamps s j = {1, . . . ,S} and
δ ∈ RS be a rate adjustment vector. The rate at any time t is given by the base rate plus all the adjustments
encountered so far:

kt = k +a(t )T .δ where a j (t ) =
{

1, if t ≥ s j

0, otherwise.
(4.4)

If the change points are not explicitly defined, the selection can be done automatically by putting a sparse
prior on the adjustment vector. For instance, the sampling is done according to a Laplace distribution such
that δ j ∼ Laplace(0,τ) where τ is used to control the flexibility of the model in alternating its rate. Future
rate changes are then emulated by replacing τ with a variance inferred from data and sampled randomly
by assuming the average frequency of change points matches the one of the historical data. Periodic effects
are approximated by means of standard Fourrier series whose parameters are normally sampled past the
observations. Holidays are handled in a similar way but with a vector of Indicator functions indicating
whether the time t belongs to a given holiday.

All in all, the modeling is intuitively apparent to a curve-fitting task, in opposition to autoregressive models
which take into account the time dependencies in the data. Advantages of such approach over this alter-
native is faster fitting, no need for interpolation of missing values and straightforward interpretability at
the cost of a probably reduced inference capacity, more arbitrary hyperparameters, and strong modelling
assumptions though.

2.2.2 Non-Parametric Time Series forecaster (NPTS)

NPTS[61] is a non-parametric forecast method used by AWS which falls into the category of autoregressive
forecast methods. Traditional naive forecasts would, for example, use a fixed past time index, like T −1 or
T −τ as the prediction for the time step T but, instead, NPTS samples randomly a time index t ∈ {0, . . . ,T −1}.
By doing so, one obtains a Monte Carlo Sample which allows NPTS to generate prediction interval from the
predictive distribution. The generative process for time T is

ẑT = zt , t ∼ qT (t ), t ∈ {0, . . . ,T −1} (4.5)

where qT (t ) is the (categorical) probability distribution over the indices in the training range. In this way, the
model indeed reduces to an autoregressive model with weights qT (·) since the expectation of the prediction
yields:
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E [ẑT ] =
T−1∑
t=0

qT (t )zt (4.6)

Multi-step predictions is achieved by absorbing the predictions for the last time steps into the observed set
and then generating predictions using the last T values. To sample more recent values in the observed set
with higher probability, the sample distribution qT uses weights that decay in an exponential way according
to the distance to the past observations:

qT (t ) = exp(−α|T − t |)∑T−1
t ′=0 exp(−α|T − t |) (4.7)

where α is an hyper-parameter that is adjusted based on the data. Letting α= 0 would, for instance, result
in uniform sampling while setting α→ ∞ degenerates the prediction to the one of a naive random walk
forecast which predicts the last observed value. This thus makes NPTS an interesting baseline algorithm to
include in our study.

2.2.3 Feed Forward Neural Network (FFNN)

The library includes a last baseline algorithm called a Simple Feed Forward Neural Network. It takes an
input window of size W and learns to predict the distribution of the values of the subsequent future window
of length W . The model first process the input window with a mean scaling before feeding it into a multi
layer perceptron with a simple architecture. In this way, the model consists in forty dense layers with ReLu
activation but don’t include any dropout layers. The number of hidden nodes in each layer is also set to
40. The model computes a probability distribution for future data given the past observations and draws
N samples from it to derive prediction quantiles. To do so, the network needs to estimate the parameters
of the output distribution. For example, in the simple case where we assume a Gaussian distribution, the
model need to learn the mean and the variance that fully specify the distribution. Since each distribution
output have its own parameters that needs to be estimated, the FFNN first output an intermediate vector
whose dimensions matches the prediction length and the number of features. Then, a projection layer is
concatenated to the model to map its intermediate output to the parameters of the distribution. The model
is then trained by optimizing the negative log-likelihood under the model parameters and he parameters of
the projection layer are optimized along with the rest of the network. By default, Gluon-ts always considers
a default t-student distribution and a decaying learning rate.

2.3 DeepAR

DeepAR[4] is probably the model which is the most highlighted in the library and AWS, which is unsurpris-
ing considering it is developed by Amazon scientists like the library. The model sets high expectations with
good results achieved on demand forecasting tasks which notoriously violate core assumptions of simpler
models like Gaussian noise, stationarity or Homoscedasticity[4]. They promise minimal manual feature and
hyperparameter engineering to capture complex, group dependent behavior, all of which with minimal his-
torical data. This should indeed set DeepAR apart from classical forecasting approach[41] and makes it a
good candidate. Figure (4.1) gives a visual summary of the model.

Figure 4.1 – Summary of DeepAR model. The left part depict the training phase and the right part the
prediction phase. Source: [4]
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The output model distribution, which they denote QΘ

(
zi ,t0:TF |zi ,1:t0−1,xi ,1:TF

)
consists of a product of like-

lihood factors:

QΘ

(
zi ,t0:TF |zi ,1:t0−1,xi ,1:TF

)= TF∏
t=t0

QΘ

(
zi ,t |zi ,1:t−1,xi ,1:TF

)= TF∏
t=t0

`
(
zi ,t |θ

(
hi ,t ,Θ

))
(4.8)

parameterized by the output (hidden state)hi ,t of an autoregressive recurrent neural network, h, with LSTM
cells:

hi ,t = h(hi ,t−1, zi ,t−1, xi ,t ,θ) (4.9)

Following Equation (4.9), at each time step t , the network h takes as an input the features xi ,t , the target
value at the previous step zi ,t−1 as well as its previous output hi ,t−1 to produce hi ,t (and thus, allowing ob-
servation information to flow through time). The initial statehi ,0 of the encoder as well as zi ,0 are initialized
to zero.

The parameters of the likelihood `(z|θ) are given by a function θ(hi ,t ,Θ) of the network output (hi ,t ).One
advantage is that this later distribution, which determines the model noise[4], can be chosen by the fore-
caster to match the statistical properties of the data at hand. For real value data, such distribution can be a
Gaussian parameterized by θ = (µ,σ) for instance.

Learning the parametersΘ of the model, comprising the parameters of the RNN h(·) as well as the parame-
ters θ(·), is done by maximizing the log-likelihood

L =
N∑

i=1

TF∑
t=t0

log`
(
zi ,t |θ

(
hi ,t

))
. (4.10)

The optimization can be, for example, carried out with stochastic gradient descent by computing the gradi-
ent of Θ since hi ,t is a deterministic function of the input.

Given the parameter Θ, DeepAR makes probabilistic forecasts in the form of K ∈N>0 Monte Carlo samples
z̃k

i ,t0:TF
∼ QΘ

(
zi ,t0:TF |zi ,1:t0−1,xi ,1:TF

)
, k = 1, . . . ,K . More specifically, the history of the time series, zi ,t is

first fed in for t < t0. Then, for t ≥ t0, i.e. in the prediction range (right part of Figure (4.1)), a sample
z̃i ,t ∼ `

(·|θ (
hi ,t ,Θ

))
is drawn and fed back for the next point until the end of the prediction range t = t0+TF .

The process is repeated to generate K samples from which we can derive any quantile.

2.4 Wavenet

Wavenet[5] is a generative deep neural network model based on Convolutional Neural Networks (CNNs) ini-
tially developed for speech analysis and audio waveform generation tasks. State of the art results (2016) have
been obtained for text-to-speech problems. As such, this model seems less interesting at first glance and,
therefore, won’t be extensively covered even though it can also work for other time series related domains.
The join probability of a time series (waveform) z1:Ti = {z1, . . . , zT } is factorized as a product of conditional
probabilities

z1:T =
T∏

t=1
p(zt |z1, . . . , zt−1,x1:TF ) (4.11)

with each sample zt being conditioned on the samples of all the previous timesteps and additional, but
optional, input variables x1:TF (e.g. the speaker identity). Wavenet models this conditional probability
distribution by a stack of dilated causal convolutional layers as schematically picture in Figure (4.2). In a
nutshell, causal convolutions make sure the model doesn’t have a look ahead bias, i.e. that the output pre-
diction p(zt |z1, . . . , zt−1,x) emitted at time t indeed doesn’t depend on future timesteps zt+1, . . . , zT . Dilated
convolution, which skips input values with a certain step, are then introduced to increase the receptive
field and mitigate the computation overhead introduced by the high number of layers required by causal
convolutions.
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(a) Causal convolutions. (b) Dilated causal convolutions

Figure 4.2 – Schematic representation of a stack convolutional layers. Image sources: [5]

As a result, the higher-level dilated convolution layers can reach potentially far into the past to summarise
lower levels and therefore acting as an alternative to long-term memory connections.

Multi-step predictions are done in a sequential manner, by feeding back the one step prediction sample
into the network to predict the next sample. Interestingly though, the model outputs a categorical distribu-
tion over the next value thanks to a flexible Softmax layer, with the promise that it better models arbitrary
distributions ( p(zt |z1, . . . , zt−1,x) since it doesn’t make any assumptions about their shapes. The model is
optimized to maximize the log-likelihood of the data with regards to the parameters.

2.5 DeepState

The main idea behind DeepState[62] is to parameterize a per-time-series linear State Space Model[46] (SSM)
with a RNN whose weights are learned jointly from all the time series and covariates. On the one hand,
traditional SSMs are interpreteable models, which don’t require very long history. But since they are fit
on individual time series, model and covariate selection turn to either a compute-intensive or prove to
require human labor intensive work and they obviously can’t infer shared patterns across similar time series.
On the other hand, deep learning features a set of black box models which are able to extract high order
features, identify complex patterns by making fewer structural assumptions at the cost of more training
data (overfitting tendency). DeepState is an interesting proposition to include in our study since it strives to
take the best of both worlds and to counterbalance each of their flaws.

State space models model the temporal structure by encoding time series components (e.g. level, trend and
seasonality patterns), into a latent space lt ∈ RD . It is described by a state-transition equation defining the
stochastic transition dynamics p(lt |lt−1) by which the latent state evolves over time as well as an observation
model, specifying the conditional probability (zt |lt ), which describes how the observations are generated
from the latent space lt [62]. For instance, a linear innovation SSM yields the following transition dynamics
and observation model (we omit the time series index i ):

lt =Ft lt−1 +gtεt with l0 ∼N (µ0,Σ0), and εt ∼N (0,1)

zt = yt +σtεt , yt =a>
t lt−1 +bt , with εt ∼N (0,1)

at ∈RL ,σt ∈R>0,bt ∈R
(4.12)

where Θt =
(
µ0,Σ0,Ft ,gt ,at ,bt ,σt

)
, ∀t > 0 are parameters of the model. Ft is actually a deterministic tran-

sition matrix and gtεt the random innovation of strength gt .

In a nutshell, DeepState learns a global mapping Ψ
(
xi ,1:t ,Φ

)
from the covariate vectors xi ,1:Ti associated

with zi ,1:Ti to the time varying parameters Θi ,1:T of the linear state space models of each time series i =
1, . . . , N ). The mapping is parameterized by a RNN with LSTM layers with parametersΦwhich generates the
hidden states:

hi ,t = h
(
hi ,t−1,xi ,t ,Φ

)
(4.13)

In this way, the output values of the last LSTM layer is mapped to the parameters Θi ,1:T of the state space
model through a set of element-wise transformation constraining the parameters to valid ranges. The model
is trained so as to maximize the probability of observing the data in the training range (log-likelihood):
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Φ? = argmaxΦL (Φ) L (Φ) =∑N
i=1 log p

(
zi ,1:Ti |xi ,1:Ti ,Φ

)
(4.14)

where each term of Equation (4.14) measures the compatibility between the SSM parametersΘ1:Ti produced
by the RNN when given input xi ,1:Ti [62].

Finally, the prediction trajectory zi ,1:Ti is distributed according to

p
(
zi ,1:Ti |xi ,1:Ti ,Φ

)= pSS
(
zi ,1:Ti |Θi ,1:Ti

)
, i = 1, . . . , N (4.15)

where pSS is the marginal likelihood under the linear state space model of parameters Θi ,1:T [62].

2.6 MQ-RNN and MQ-CNN

So far, all the models described relied on a recursive prediction scheme to generate multi-step forecasts,
which, as already mentioned, lead to error accumulation. The next and final model we’ll describe sets apart
by embracing a direct strategy to predict the multivariate target (zt0 , . . . , zTF ) givenz1:t0−1. Proclaimed advan-
tages of the multi-horizon approach is a bias reduction, increased stability and robustness improvements
to model mis-specifications[63, 6].

In this way, Multi-Quantile RNN[6] (MQ-RNN or variant MQ-CNN) improves upon seq2seq networks by

leveraging Quantile Regression (QR) which learns to predict the conditional quantiles z(q)
t+h |z1:t of the target

distribution P
(
zt+h ≤ z(q)

t+h |z1:t

)
= q for each h = 1, . . . ,τ. By doing so, the model doesn’t make any distri-

butional assumptions (e.g. Gaussian residuals) which makes it more robust. Had the model be presented
in the GefCom2014[43], it would have scored first place on the price forecasting track. For all the above
reasons, the model is a prime candidate to include in our empirical study.

MQRNN (MQCNN) handles cross-learning between the distinct time series
{
zi ,1:Ti

}N
i=1 by means of a single

RNN(CNN) where each time series being considered as one sample. This has the further benefit of allowing
cold-start forecasting when the history of some series might be limited. Consequently, we drop the index i
to simplify the notation.

Training QR models are trained to minimize the so-called Quantile Loss (QL):

Lq (z, ẑ) = q max(z − ẑ,0)+ (1−q) max(ẑ − z,0) (4.16)

Denoting by τ the number of prediction horizons and Q the number of quantiles of interest, the parametric

model h(z1:t , x,θ) (e.g. an RNN or CNN) outputs a single matrix Ẑ =
[

ẑ(q)
t+h

]
h,q

of dimensions τ×Q. The

parameter of h are trained to minimize the sum of individual quantile loss and is given by:

L =∑
t

∑
q

∑
h

Lq

(
zt+h , ẑ(q)

t+h

)
(4.17)

where t iterates over all forecast creation times[6].

Architecture Figure (4.3) shows the neural network architecture in the case of MQRNN. It uses a vanilla
RNN-based encoder which encodes hidden states ht with LSTMs cells. Interestingly, this encoder can
even be replaced by a CNN-based encoder like Wavenet which leads to the MQ-CNN variant. However,
the encoder is not followed by a standard recursive LSTM based decoder as usual but by two custom MLP
branches.

In this way, a first (global) MLP, mG , is responsible for summarizing the information contained in the en-
coder output ht and future features xt :t+τ. This MLP then produces a series of horizon-specific contexts
ct+h as well as a general (horizon-agnostic[6]) context ca which captures common information:

(ct+1, · · · ,ct+τ,ca) = mG

(
ht ,x( f )

t :t+τ
)

(4.18)
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Figure 4.3 – MQRNN multi-step forecast architecture. yt corresponds to zt according to our notation.
Source:[6].

The second MLP, mL is said to be local since it applies only to each specific horizon. Its parameters are, like
the first MLP, time-invariant. Indeed, while a series of such decoders is placed at each recurrent layer of the
encoder, their parameters are actually shared across all horizons h ∈ {1, . . . ,τ}. Each produces the configured

quantiles from the information set
(
ct+k ,ca , x( f )

t+k

)
:

(
ŷ(q1)

t+h , · · · , ŷ(qQ )
t+h

)
= mL

(
ct+h ,ca ,x( f )

t+h

)
(4.19)
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5 | Data Analysis

1 Market data visualization

1.1 CAL visualizations

A first visualization of the available data (Figure (2.7)) is carried out with plotly in order to generate inter-
active html/js graphs that can be more easily incorporated into a future dashboard. In Figure (5.1), all the
CALs are plotted on separate graphs with common axis.

Figure 5.1 – Grid plot of the available year-ahead data. [x]: open days, [y]: €/MW

We directly notice that the full quotation is missing for old CALs like 2005, 2006, 2007 and 2008. In a similar
way, CALs 2020, 2021 and 2022 deal with delivery in the future at time of writing and thus can’t be extended
over 3 years of quotation. The number of open days also varies from one CAL to another. Furthermore,
trends in overlapping and concurrent1 CALs seem to be highly correlated. A steep increase during the fi-
nancial crisis of 2008 (quotation time) is also clearly noticeable on CALs 2009 to 2011.

Figure (5.2) shows that the price distribution can change a lot from a CAL to another. Some years, like 2012,
seem to follow a symmetric distribution. This can be checked by noticing that the median is located in
the middle of the Interquartile Range (IQR) and that the whiskers are symmetric too. However, most of the
CALs seem to follow a skewed distribution. The median is not centered in the interquartile range, and many
outliers, outside of the 1.5× IQR can sometimes be noticeable. The reduced variance for CAL 2005, CAL
2006, CAL 2007, CAL 2021 and CAL 2022 is a consequence of less data points available.

1understand CAL being quoted at the same time
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Figure 5.2 – Boxplots of year-ahead CAL.

1.2 Market interruptions

From Figure (5.3), we notice that, between closing and opening days, some gaps arise. For example, we can
observe that a gap of 10% can arise between a closing and an opening of the market.

Figure 5.3 – Prices jump between closing and next opening of the YAM market.

Finally it should also be mentioned that the beginning of the quotation period for a given CAL y , doesn’t
always start in the first open days of January of year y −3. Some CALs have indeed their first open days at
the end of December of y −4 in the provided data.

1.3 Smoothing and filling missing entries

The year-ahead market data turned out not to require any form of data cleaning. When filling missing en-
tries (closed market) is required, for forecasting for instance, it is done with a simple forward fill by default
to preserve as much as possible the original data. Various smoothing techniques can also be applied. The
objective behind the idea of smoothing the time serie is three folds. First, it helps better visualizing the un-
derlying trend. Second, and most important, we hope that smoothing would get us a fair approximation of
the noise-filtered series. Finally, the smoothed version of series can be used as a technical indicator (fea-
ture) for the original time series. For instance, economists leverage several smoothing filters with different
lengths (50-200 most of the time) and consider their crossing points as indicator that a reversal has occurred
and thus to generate buy/sell signals. We refer to the Appendix 5.1 for a brief explanation and discussion
on the most common filters that are moving average, median average, LOESS and EWMA. Figure (8.8) also
gives a visual representation of CAL 2016 smoothed according to the mentioned filters.
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2 Statistical market data analysis

2.1 Normality assumptions

Meeting the normality assumptions has generally a positive impact on regression models and estimators.
However, most of them can also handle fairly non-normal data as long as the residuals are fairly normal.

A Quantile-Quantile (Q–Q) plots is a graphical tool that can be used to compare the properties like location,
scale and skewness of two distributions. Figure (5.4a) graphically compares the sample quantiles of the
price data with the theoretical quantiles of a conventional normal distribution. The tails of the distributions
do not seem to align very well, therefore, a normality assumption doesn’t seem to hold.

(a) Normality check with QQ plot. (b) Histogram of prices.

Figure 5.4 – Normality analysis on CAL 2016.

To confirm this statement in a more formal way, a normality test, whose null hypothesis H0 corresponds to
the samples having a normal distribution, is made. Table 5.1 shows H0 is indeed rejected since p is below the
significance levelα= 0.005. The kurtosis parameter is a measure of the combined weight of the tails relative
to the rest of the distribution. In other words, it measures the tail-heaviness of the sample distribution with
zero corresponding to the value obtained for a normal distribution. On the other hand, skewness measures
the lack of symmetry of the distribution. A negative skewness would correspond to a longer left tail while a
positive skewness is interpreted as the reverse. Thus, Table 5.1 tells us that the price distribution is indeed
heavy-tailed (as stated in [39])and asymmetric.

Statistics p Reject H0 ? Kurtosis Skewness

131.886 0.000 X 1.756 -1.037

Table 5.1 – Normality test on cal 2016 prices

2.2 Time dependencies and patterns

2.2.1 Lag

Figure (5.5) plots the prices values against a shifted version of the time series. Finding lags such that a line
pattern emerges would prove there is a time dependency between a value and its past observations. Since,
it is the case, we can safely say prices are not random. To get more information on the correlation between
different lagged versions of the time series, we then test its autocorrelation.
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Figure 5.5 – Lag plots (CAL 2016).

2.2.2 Autocorrelation

The autocorrelation generalizes the notion of covariance by taking the Pearson correlation between values
of the process at different times. It is nothing else than the correlation of the series with a delayed copy of
itself as a function of this lag k:

ρξξ(k) = E
[
(ξ(t )−µ)(ξ(t +k)−µ)

]
σ2 (5.1)

It is a common practice to normalize the autocorrelation function, so that its value must fall in the range
[−1,1], with 1 indicating perfect correlation and -1 indicating perfect anti-correlation. Computing the auto-
correlation of each individual CAL does not highlight any relevant periodicity pattern. Figure (5.6) exposes
the results found for CAL 2016. Figure (5.6a) shows that the future values have high correlation with previ-
ous values but that there are no obvious underlying patterns in the time series. The Pearson coefficient is
positive and decreases linearly up to a lag close to 30. Thereafter, the autocorrelation is not significant (Fig-
ure (5.6b)) and crosses the zero axis near 80 to get positive again, but not significantly either when applying
a lag of around 230. Most of the other CALs have instead a "U" shape that crosses the 0 line only twice.

The partial autocorrelation of lag k denoted α(k) is the autocorrelation between ξt and ξt+k with the linear
dependence of ξt on ξt+1 through ξt+k−1 removed. In other words, it is the autocorrelation between ξt and
ξt+k that is not accounted for by lags 1 through k-1 inclusive[64] with α(1) = ρ(ξt ,ξt+1). Figure (5.6c) clearly
highlights that two consecutive values are highly correlated but that this correlation collapses suddenly past
a lag of 1. The partial autocorrelation for a lag of one amounts to 0.98. Interpretation of this finding will be
discussed in Subsection 2.3.

2.2.3 Seasonality, trend and residuals decompositions

A time series can be thought as the combination of four components:

• Level : the mean of the series.

• Tr end (optional): the increasing or decreasing value in the series.

• Seasonal i t y (optional): the repeating (short-term or medium-term) cycle in the series.

• Noi se: the random variation in the series.

either via an additive model ξ(t ) = level (t ) + tr end(t ) + season(t ) + noi se(t ) or a multiplicative model
ξ(t ) = level (t )∗ tr end(t )∗ season(t )∗noi se(t ).

Figure (5.7a) is the result of the seasonal_decompose() function of the statsmodel Python package for an
additive model. The trend is extracted using an automatically tuned moving average filter2 so that the esti-

2Even length are handled by weighting the two extreme lags by 1
2
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(a) Autocorrelation for all possible time shifts.

(b) Autocorrelation for up to 80 time shifts. (c) Partial autocorrelation for up to 80 time shifts.

Figure 5.6 – Autocorrelation analysis of CAL 2016.

mation of the trend computed from from lag −a to a is given by m̂(t ) =∑a
k=−a

( 1
1+2a

)
ξ(t +k). The seasonal

effect is then given by ŝ(t ) = ξ(t )−m̂(t ) while the random error term is the residual ê(t ) = ξ(t )−m̂(t )− ŝ(t ).
As a result, the detrended line ŝ(t ) also includes the random error term[65].

(a) Additive seasonality decomposition. (b) Detrended time series.

Figure 5.7 – Time series decomposition (CAL 2016)

Figure (5.7b) shows that the time serie has no seasonal component but results should be taken with a little
caution since the decomposition is still an approximation. It is widely recognized that seasonality is often
present in business related time series[60]. However, considering that the purchased electricity quantity is
to be delivered at a constant rate for a given year, the absence of seasonality is not surprising at all. It can
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be easily understood that there are no reasons that holidays or week-ends have any influence on the price
of the base load supply. Plotting a bar graph of the average year-ahead prices per weekday would not show
any useful pattern which is in complete opposition to what can be observed for the DAM (see Appendix
Figure (8.9) for a discussion). One way to exploit this decomposition is to forecast separately the seasonally
adjusted time series using any model and the seasonal component using a seasonal naive method of the
form ŷ(t+h|t ) = y(t+h−T ) where T designates the period of the seasonality and h the forecast horizon[46].
However, we decided not to proceed in this way due to low contribution of the seasonal component which
might as well suffer from approximations.

2.3 Stationarity and differentiation

A stationary process has the property that its statistical properties, like mean and variance, are constant
(independent of the time index) over time. Moreover, its autocorrelation structure should be constant over
time nor should it have a periodic fluctuation. We say the later is said to have no trend fluctuation and no
seasonal component. Strict stationarity, in the mathematical sense, imposes that the joint distribution of
observations is invariant to time shifts.

Stationarity can be checked visually with plots (see Appendix ??) or more objectively by running a statistical
test. The Augmented Dickey-Fuller (ADF) test[66, 67], with the null hypothesis,

H0 : The time series possesses a unit root[67] and is non-stationary

is the most commonly used one[66]. For instance, if the P-Value in the ADF test is less than the significance
level (0.05), we reject the null hypothesis. In Table 5.2, we notice that the time series do not satisfy the
stationarity property since, for ADF, the p-value is greater than all the significance levels.

Test ADF

Statistic -2.342914

p-value 0.158500

Critical values

1% −3.439

5% −2.865

10% −2.569

Table 5.2 – Stationarity statistical tests

Some autoregressive models work better if the observations are not correlated against each others[46]. Sta-
tionarizing removes any persistent autocorrelation and makes the predictors (lags of the series, see Equa-
tion (2.1)) in the forecasting models nearly independent. A convenient method to stationarize the data
is by differencing the series until it becomes approximately stationary (see Figure (5.9b)). The first differ-
ence CAL is obtained by replacing an observation ξ(t ) by its difference with the previous timestamp, i.e.
ξ′(t ) = ξ(t )−ξ(t −1).

Figure (5.9b) shows the differentiated prices of CAL 2016, the mean and variance of which are respectively
-0.01782 €/MWh and 0.09913 (€/MWh)2. The resulting time series has then a close to non-existent autocor-
relation with itself which is unsurprising considering the first difference data looks graphically almost like
white noise3. This is in line with Figure (5.6c) which showed that the maximum correlation was achieved
with the next value before collapsing suddenly with a l ag = 2. We can thus expect that the first difference
values are close to being independent to one another. If the later is true, the element-wise (partial) corre-
lation of the first difference data would be close to zero for all l ag 6= 0. Figure (5.10) shows it is actually the

3A white noise is a discrete signal whose samples form a sequence of serially uncorrelated random variables with zero mean
and finite variance.
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Figure 5.8 – First difference of CAL 2016

(a) Autocorrelation. (b) Partial autocorrelation.

Figure 5.9 – Correlation of CAL 2016 first difference prices for up to 80 time shifts.

case. By running again an ADF test, we get an ADF statistic of -5.123 with a p-value of 0 and thus the H0
hypothesis is rejected: the resulting process is stationary.

Plotting the histogram of the first difference reveals its distribution is bell-shaped and centered on 0. How-
ever, from Figure (5.10a), we notice it does not satisfy the normality assumption as the curve of the distribu-
tion is too narrow and has exceptional outliers4. This is inline with the high curtosis found for the statistical
test. A distribution with a kurtosis greater than three is qualified as leptokurtic. Such distributions are
known to produce less reliable and less safe value at risk distributions since the worst scenarios, derived
from the long left tail, are located further from the mean than the one estimated with a normal assumption.
As a result, using a normal hypothesis would be too optimistic with regards to the worst case scenario but
at least would be pessimistic with regards to the first difference price variance in general.

Statistics p Reject H0 ? Kurtosis Skewness

499.986 0.000 X 31.477 -2.198

Table 5.3 – Normality test on first difference cal 2016 prices

4Removing the 27 highest peaks among 766 data points, which corresponds to 3.5% of the data makes the normality assump-
tion correct though.
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(a) Normality check with QQ plot (b) Histogram of differentiated prices

Figure 5.10 – Normality analysis on first differentiated CAL 2016

2.4 Evaluation of forecastability

Figure (5.5) highlighted a decaying time dependency in the data while Figure (5.6c) showed peak correlation
between two consecutive values. The time series is not stationary and the analysis on the first differenciated
data highlighted a mean close to zero, with almost no autocorrelation. Unfortunately, all these properties
are very similar to what we would obtain for a random walk process.

As already introduced in Subsection 2.1, an autoregressive (AR(p)) model is a representation of a type of
random process which has the form:

X t = c +
p∑

i=1
αi X t−i +εt , εt ∼N (0,σ2) (5.2)

whereα1, . . . ,αp are parameters of the model and εt is an iid white noise with a normal distribution N (0,σ2).
From the computed partial autocorrelation (Figure (5.6c)), we know that p = 1 in our case and the model
can be simplified as:

X t =αX t−1 +εt , ε∼N (0,σ2). (5.3)

When |α| ≤ 1 , the random process is non-stationary, it is a pure random walk when α = 1, otherwise it
is explosive. Like our time series, random walks are non-stationary. Indeed, by resolving the recursive
definition for an AR(1) model, i.e. a pure random walk process, with α= 1, we get:

X t = X t−1 +εt (5.4)

= X t−2 +εt−1 +εt (5.5)

... (5.6)

= X0 +
t−1∑
i=0

εt−i (5.7)

Then, by considering the expectation of the random variable X t , we get:

E [X t ] = E [X0]+
t−1∑
i=0

E [εt−1] = E [X0] (5.8)

since the second term can be dropped due to the iid sampling with a mean centered in 0. Thus, if E [X0] = 0,
we naturally get E [X t ] = 0. The consequence of which is that the process has a constant mean over time.
However, by considering f.e. E [X0] = 0, the variance is not. Indeed, we have:

V ar [X t ] =
t−1∑
i=0

V ar [εt−i ] = tσ2 = f (t ) (5.9)
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where the covariance term can be dropped since the sampling is done iid. Equation (5.9) clearly depends
on time and the variance diverges to infinity with t . Hence the process is non-stationary.

We already showed the prices from CAL 2016 shared many common properties with the one inherent to
random walk processes. ?? illustrates an artificially generated random walk process alongside all the previ-
ously introduced plots for this random instance. Visually, all the analysis plots show a striking resemblance
to the one found for CAL 2016. The study could have been likewise conducted on other CAL but similar
results would have been obtained. The same summary plots for 2013, 2015, 2017 and 2019 are given in
Appendix 5.3 for the interested reader.

Figure 5.11 – Artificially generated random walk (AR(1) process). Noise sampled according to
ε∼N (−0.0178,0.0991) with ξ0, µ and σ2 set to match the one of CAL2016.

2.5 Conclusion on statistical data analysis

Time series with regular patterns are obviously known to be easier to forecast. Unfortunately, we weren’t
able to find any in the data. Forecasting the future price distribution is expected to be very challenging,
since, due to the highlighted AR(1) property of the data, a naive predictor of the form x̂t+k = xt , ∀k ∈
{1, . . . , |TF − t |} would be among, if not, the best estimator for a random walk like process. Let’s keep in
mind this observation holds for the time series as a whole.

3 Correlation and causation between time series

Visualizing the interactions between concurrently quoted CAL in the YAM electricity prices dataset can pro-
vide relevant insights on the dynamic of the market. Furthermore, in lights of Subsection 3.3, several exoge-
nous factors influence electricity prices. Professional software companies like Aleasoft[33] and N-Side[34]
also leverage thousands of variables to improve their long-term forecast accuracy on short-term delivery
electricity markets. Thus, we first expose very briefly a set of tools from the data mining community that
can be used to evaluate the dependencies between time series and their mutual contribution to improve
forecastability. We then analyze the similarities and causations relations between concurrently quoted cal
and a few exogenous variables with the hope to counterbalance the conclusion of the previous section.
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3.1 Background

3.1.1 Global correlation

We consider similarity as the measure that establishes an absolute value of resemblance between two vec-
tors. The (normalized) cross-correlation function, or Pearson correlation coefficient, is among the most
widely used measure of similarity due to its ease of interpretation and yet practical effectiveness[68]. The
Pearson coefficient rX Y between two variables X and Y is defined as the covariance of the two variables
divided by the product of the standard deviation of each data sample:

rX ,Y = cov(X ,Y )

σ(X ).σ(Y )
= E[(X −E[X ])(Y −E[Y ])]

σ(X ).σ(Y )
∈ [−1,1] (5.10)

where the denominator adjusts the scales of the variables to have equal units.

The covariance, like the correlation, is a symmetric measure of linear association between variables[68].
The use of mean and standard deviation in the calculation suggests the need for the two data samples to
have a Gaussian-like distribution. As a consequence, the Pearson coefficient measures the strength of the
linear relationship between normally distributed variables. A value for rX Y =+1 would correspond to a per-
fect positive linear correlation, 0 to no linear correlation and -1 to a negative correlation. In case linearity
or normality assumptions do not hold, the nonparametric Spearman rank correlation ρX Y can be used to
measure monotonic relationships (linear or not) instead. The later is simply defined as the pearson correla-
tion coefficient between rank variables[69]. In our case, the lesser assumptions, the better so the Spearman
correlation should be preferred to assess how much the time series are related to one another.

3.1.2 Global causality

The above mentioned coefficients don’t provide yet any insights on dynamics such as leader-follower rela-
tionships5. Identifying the direction of such dynamics can be achieved with Time Lagged Cross Correlation
(TLCC)[70]. It simply consists in computing repeatedly a correlation coefficient between one of the time
series and an incrementally shifted version of the other one where both lag directions are explored. The lag
value for which the peak correlation is reached indicates the lag which corresponds to the best synchroniza-
tion of the two time series.

However, in economics, a more complex statistical concept known as the Granger Causality, first proposed
in [71], is traditionally preferred[72]. Let YK be a lagged-k version of Y . In a nutshell, X is said to Granger
causes Y if the optimal linear predictor Yk , based on the information set comprising X, has a smaller vari-
ance than the one on Yk alone. Through a series of statistical tests for lag k, it is then the practice to show
that X provides statistically significant information about the future of Y .

3.1.3 Assessment limitations

The above mentioned techniques only assess global relationships on the common time range of several time
series. However, the exposed techniques do not truly capture local evolution of the causality relationships
which might evolve over time. An easy extension would be to perform the same analysis on a rolling window
basis but would require a lot of human labor for several time series. We instead simply assesses global
relationships. Heteroscedasticity6 and outliers are additional factors that can negatively impact the quality
of the study[70].

5Situations in which a leader series initiates a response which is repeated by a follower
6Heteroscedasticity is the property by which the variance of error in a time series is heterogenous across the time range.
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3.2 Concurrently quoted CAL

Zooming on Figure (5.3) shows that the price movements of concurrently quoted CAL seems to be highly
correlated. To confirm this intuition, Table 5.4 summarizes the correlation coefficients computed on the
raw time series as well as the time series replaced by the one step percent change. The later simply replaces
each value y(t) according to:

y(t ) = y(t −1)− y(t )

y(t )
. (5.11)

We notice highly positively correlation. The correlation on the percent change is however reduced and the
pairwise ordering in terms of similarity is not the same. One explanation is that ordinal values contain level
information that are lost by introducing the transformation.

Similarity Measure Percent change data cal2015 - cal2016 cal2016 - cal2017 cal2015 - cal2017

Pearson correlation no 0.892 0.968 0.905

Spearman correlation no 0.850 0.954 0.876

Pearson correlation yes 0.634 0.595 0.499

Spearman correlation yes 0.600 0.538 0.490

Table 5.4 – Similarity measure between concurrently quoted cal.

3.3 Exogenous data

Exogenous variables susceptible to improve forecastability are numerous. Most of the time, calendar data
is used but this is irrelevant in our situation. Changes in regulation are not really predictable. The informa-
tion about planned maintenance fetched from the ENTSO-E REST API does not bring relevant information
either due to to short time horizon. Year-ahead commodity prices from ICE are notoriously difficult to get
hands on since they are very expensive. Instead, we proactively collect information from freely accessible
databases and expose our findings for a set of plausible exogenous variables. We simply redirect to the
provided data sources for more information on them.

Commodity prices Carbon pricing is an instrument that captures the external costs of greenhouse gas
(GHG) emissions. In lights of the discussion in Subsection 3.1 and Subsection 3.3, we expect carbon prices
to influence electricity prices more and more in the future due to the increasing share of renewable energy
production units and the rapid increase of carbon taxes (starting from 2018). The dataset considered is the
Futures EU allowance[73] contracts from ICE: a discussion of which and a scaled visual comparison with
YAM prices is exposed in Appendix 5.4.1. Besides, several oil prices (weighted and taxes removed)[74] are
available on the Europa platform and are included in the analysis. The data frequency is weekly. No freely
accessible information sources have been found for other energy related commodities.

Financial Market indexes A market index aims at measuring the performance of the considered market
and its underlying stocks as a whole. Only the S&P 350 Europe[75] and the BEL20[76] markets are considered
here. The European consumer price index[77], used to measure inflation, is only available at a monthly
frequency and is thus not considered.

Energy indexes More specialized indexes for the energy sector exist. The STOXX EU Oil & gas (SXEP)
index [78] benchmarks integrated oil and gas companies engaged in the exploration, drilling, production,
refining, distribution and retail sales of oil and gas products. Finally, we also include the Euronext Rogers
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International Energy Commodity Index [79] which benchmarks usual future contracts for energy commodi-
ties like crude oil, gas oil, brent oil and natural gas to list a few. The origin of the underlying securities come
from ICE and NYMEX.

Figure (8.14), available in Subsubsection 5.4.2 displays all the logged transformed, weekly aggregated and
scaled in [0, 1] data. Figure (5.12) displays the correlation coefficients obtained after scaling all the aug-
mented dataset in [0, 1] and aggregating data weekly. To allow a global comparison on a common time
range (seven years), the concurrently quoted CALs have been averaged in one single time series. We notice
positive correlation between the year-ahead prices and all considered time series with the exception of the
two stock indexes (S&P350 and Bel20).

The Granger causality makes the assumption of stationary data. We thus replace the time series by the one
step percent change and obtain the results displayed in Figure (5.13). Reading the figure is done as follows:
if we take the value 0.1 in (row 2, column 1), it refers to the lowest p-value of the Granger test for Mean
CAL (X) causing SXEP (Y). The lag k which leaded to this p-value is given by the corresponding cell in the
rightmost heatmap. A p-value lower than 0.05 reject the null hypothesis X do not cause Granger Cause Y.

According to the statistical test, the time series tend to interchangeably causing each other. Since the dataset
features seven years of common data, this is not much surprising. LPG and fuel oils are not expected to
improve the forecast of year-ahead prices. However, several indications show the results don’t seem very
much reliable. The best lag value k is often encountered with an unexpected high lag. In this way, it is
highly unexpected that a lag value of 11 would be the most advantageous. Furthermore, the Granger test is
not coherent with the previous findings. From Figure (5.12), we noticed that the stock indexes weren’t very
correlated with the year-ahead prices which was then loosely confirmed by a manual graphical inspection.
Meanwhile, the Granger test insures that the two indexes were relevant with high statistical significance. We
conclude that the Granger Causality likely doesn’t provide reliable information about causality between the
related time series.

Overall, the empirical tests in this study highlight a positive correlation between the year-ahead electricity
prices, other commodity prices and energy indexes but fails to find additional compelling and consistent
evidence of predictive links. Still, the restropective analysis study of the M4 competition[50] recommends to
"select variables in forecasting with loose significance". In addition, the deep learning models we reviewed
in Chapter 4 have the benefit to learn the dynamics of many time series automatically[4], and, therefore,
prevent the need of more labor intensive correlation studies in the dataset.

Figure 5.12 – Spearman correlation between all scaled variables ([0, 1])
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(a) Lowest p-values for lag k ∈ {1, . . . ,12}. (b) Lag k corresponding to the lowest p-value.

Figure 5.13 – Summary of the Granger Causality test. The leftmost figure gives the lowest p-value
obtained for a lag k. If p < 0.005, the statistical test states X Granger causes Y.
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6 | Forecasting

Quantile forecasts are central to risk management decisions because of the widespread use of Value-at-Risk
(VaR). In this chapter, we first explain the methodology used to forecast the YAM prices with such meth-
ods as well as the performance assessment methodology. We then expose the empirical results obtained
and provide a discussion about them. Suggestions for improvements are expressed before finally giving a
conclusion on the results usability for reducing cost of electricity acquisition.

1 Methodology

1.1 Data preparation and pre-processing

1.1.1 Log transformation

The log transformation is a frequently used pre-processing technique for forecasting tasks. Helmut et al.[80]
gives an in-depth overview of the advantages and disadvantages of such transformation on economic vari-
ables with simple linear forecast techniques. Their results show that using the log transformation can pro-
duce dramatic gains in forecast accuracy if it makes the variance more homogeneous through the sample.
Otherwise, the pre-processing might reduce accuracy but to a lower extent. On stock indexes, the transfor-
mation turns out to be on average beneficial except for the longest forecasting periods. Their interpretation
is that long periods sometimes cover general downturns in stock markets, which penalized the forecast ac-
curacy of log transformed data in these particular cases.

Figure (6.1) reports the evolution of the variance across the CAL 2016 price series with a window size of four
weeks. Since ordinary values, and therefore the variance, are obviously affected by the log transformation,
the resulting series have been scaled to a common range. It is observed that the transformation seems to
slightly stabilize the variance. Yet, a look at Appendix 5.3.2 where the same plots have been derived for CAL
2013 and CAL 2019 shows that this result is not consistent. Indeed, the variance for CAL 2013 didn’t change
much at all. Conversely, the one for CAL 2019 was negatively impacted by the additional pre-processing.
Mixed results are thus obtained restrospectively. In this sense, it should be clearly understood, that, in prac-
tice though, the forecaster wouldn’t be able to assess the benefits of the transformation a-priori. Still, since
many practitioners[81, 82] take the log-transformation for granted, we include this processing step in our
data preparation phase.

1.1.2 Scaling

It is now widely accepted that inputs for neural-network based techniques should be shifted and scaled so
that their average is somewhat close to zero[83]. Instead of a hazardous data standardization which would
change the shape of the input distribution, we simply scale the training data in [0, 1] so that the shape of the
input distribution is not affected. Scaling an arbitrary input vector Z ∈R1×n ,n > 0 results in the transformed
vector Z ′ ∈R1×n :
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Figure 6.1 – Comparison of the scaled rolling variance evolution on raw and log-transformed prices of
CAL 2016. The window size is fixed to |w | = 4×7 = 28 days.

Z ′ = (Z −mi n(Z ))

(max(Z )−mi n(Z ))
(6.1)

with z ′
i ∈ [0,1], i = 0, . . . ,n. Let’s note this mapping can be generalized to scale the input in any specified

interval [L,U ],L ∈R,U ∈R:

Z ′′ = Z ′.(U −L)+L (6.2)

1.1.3 Weekly data aggregation

In order to compare the forecast accuracy obtained with univariate and multi-variate predictions but also to
leverage these exogenous variables, we need to aggregate the prices weekly so that the sample frequency is
the same in both settings. This is not without consequences. Indeed, it results in shorter training sets which
are likely to deteriorate the forecast accuracy on early open days of a given CAL. Furthermore, we loose
weekday granularity in the forecast. Considering we are however interested in medium to long term trends,
the later is not really a problem. Aggregating the data also enables to counterbalance the loss of training size
with a reduction of the forecast horizon. Furthermore, when aggregating the data weekly, missing values
corresponding to closed market days are simply ignored, which removes possible discussion on regression
techniques to fill them. No smoothing technique is applied before the resampling.

1.2 Exogenous variables and concurrently quoted CAL

In view of the exogenous variable analysis (Subsection 3.1) and the more restricted time range available in
the dataset, stock index data corresponding to Bel20 and S&P350 are removed. The case of concurrently
quoted CALs is interesting. Only three CALs are quoted at the same time and one CAL has a quotation
period that lasts over three years. As a result, by focusing on the predictions of one CAL, we can’t use the
same triplet all along. Let’s for instance consider the case of CAL 2016 as an illustration. CAL 2014 up to
CAL 2018 have actually a common quotation period with CAL 2016 at some time or another. Including all of
them in the training data would require to introduce zero-padding which might be harmful during model
training. To tackle this problem, we only include other concurrently quoted CAL data, up to the forecast start
date, if their quotation time can be exactly mapped one to one with the CAL being forecast. This mechanism
is visually depicted in Figure (8.15) for three forecast start scenarios in Appendix 6.0.1.
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1.3 Models configuration

In light of the literature review and data analysis carried out earlier, we consider a diversified pool of models
sharing the same API in order to quickly evaluate a set of diversified forecasting techniques. Thereby, we
leverage the recent gluon-ts [53] library which specializes in prediction interval forecasting and evaluate
the results on all the (working) models of the API. The models considered are the one presented in Section
2 with the addition of Gaussian Processes[84] and DeepFactor[85] as additional benchmarks.

Hyperparameters tuning All the algorithms are kept with their default hyperparameters without further
grid search, to keep the computation cost under control. Only DeepState and DeepAR have seen their num-
ber of epochs shrunk to 5 and 20 respectively due to their very slow training phase.

Forecast horizon In Subsection 1.2, we assumed two different restrictions on the minimum block power
size (block_size) which translated in 10 or 50 purchase decisions to dispatch across the quotation period
for a required base load of 10MW . Assuming 3.365 = 1095 open market days, splitting uniformly the quota-
tion period in 50 trading sub-periods as proposed for the baseline hedging algorithm (Subsection 1.1) would
create a time gap between two purchase decisions of 3.365

50 = 21.9 days. In this way, when a new time slot
begins and time comes to decide whether it is better to buy electricity now or in the next time slot, a forecast
of approximately three weeks is required. As pointed out in Makridakis et al.[47], the prediction intervals are
likely to underestimate reality and this underestimation will increase as the forecasting horizon lenghtens.
This motivates us to constrain at first the forecast horizon to four steps and not more. Making a reliable
forecast of 3.365

7.10 ≈ 15 weeks, for a 10MW block_size constraints, is more than likely overly optimistic for a
first approach.

Prediction interval Both forecast competitions introduced in Chapter 4 took different approaches. On
the one hand, the GefCom2014 asked competitors to produce the 99 quantiles [q01, q02, . . . , q99] as a discrete
approximation of the forecast distribution. On the other hand, the M4 competition took inspiration from
the value-at-risk framework and only required competitor to produce the 95% (confidence level of α= 5%)
prediction interval built from the quantiles q97.5 and q2.5%. For our experiments, all the models are config-
ured to produce the q01 and q99 quantiles so as to generate a 98% prediction interval. All the models relying
on Monte Carlo sampling are set to produce 100 samples (as default) to derive these quantiles.

1.4 Model performance evaluation

1.4.1 Considered quotation periods

To ensure that the results are not driven purely by specific periods, we report the results for a quotation
period spanning from 2010 to 2018 both inclusive. Considering that the rolling evaluation pipeline, pre-
sented in Subsubsection 1.4.2, requires a lot of computational resources, a trade-off to achieve statistical
significance, we limit the evaluation to CAL 2013, CAL 2016 and CAL 2019. In this way, we ensure that we
indeed cover independent time series regimes since the quotation of these CALs never overlaps. Indeed,
Concurrently quoted CALs tend to show redundant patterns (Subsection 3.2) anyway. Furthermore this se-
lection provides a good diversity of price distributions (Figure (5.2)). CAL 2013 is among the least volatile
CAL and the prices distribution is nearly symmetrical with regards to the median. CAL 2016 has already
been discussed extensively and CAL 2019 would allow us to analyze the forecast behavior on an exponen-
tially increasing trend, whereby the maximum prices (72.12€/MWh) account for a soaring 266% of the min-
imum value (27.1€/MWh) observed in the same CAL: the highest difference ever observed for the complete
dataset.
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1.4.2 Backtesting pipeline

Cross-validation is a popular procedure for tuning hyperparameters, selecting models and producing robust
measurements of models performance that are statistically significant. Due to the predominant temporal
dependencies in the dataset, conventional techniques like k-fold or leave-one-out would introduce data
leakages.

Rolling origin evaluation Instead, we consider an evaluation on a rolling origin principle[7, 86]. Let the
forecast origin be the time point of the last known value, from which the forecast is performed. The underly-
ing principle of the procedure consists in performing a set of fixed horizon forecasts by sequentially moving
values from the test set to the train set and changing the forecast origin accordingly[87]. The forecast origin
thus "rolls forward in time" as shown in Figure (6.2) for a simple univariate two-step forecast. Considering
the exogenous variables expose positive correlation, the procedure needs to be applied on all the time series
simultaneously. A complete retraining of the model is required to adjust the model to the newly observed
values. To avoid any look-ahead bias, the transformations exposed in Subsection 1.1 are applied each time
on the training data window. Coupled with the chosen forecast horizon, this pipeline turns out to require
35 simulations to cover the quotation period of each considered CAL.

Figure 6.2 – Rolling origin backtesting scheme for a univariate time series and a forecast horizon of two.

Extension for model selection The inclusion of an inner loop for a-priori model selection is a natural
extension of the previously describe backtesting strategy. This extension is sometimes referred as rolling-
origin-recalibration[87] or forward-chaining nested cross-validation[7]. As illustrated in Figure (6.3), models
are first trained on a window and their performance is assessed on the following validation window. The
most accurate model is selected and then trained again by assimilating the validation window in the train-
ing set. The reported error measures are the one of the test window. Since some models might be better
adapted to particular local regimes of the time series, performing a model selection is an experiment worth
considering. Likewise, model parameters could be optimized with this scheme but won’t be considered to
keep the computation cost under control.

It should finally be noted that the default parameters of the Gluon-ts library may limit the size of the training
set automatically to a fixed window whose length simply equals the forecast horizon for some estimators.

Figure 6.3 – Rolling origin with recalibration backtesting scheme for a univariate time series and a one
step forecast[7].
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1.4.3 Error measures

For a given forecast origin, a set of error measures averaged over all forecast points are computed for each
model. We then only report, for each model, the average of these intermediate measures over all the sim-
ulations on the test set by being aware that this might penalize some models that would perform well most
of the time but underperform in some rare specific situations though. The measurement is naturally per-
formed between the inverse scaled prediction and the actual values. For a given fixed number of forecast
step H, let’s denote by y a generic time series which take values yt ∈ R, t = 1, . . . ,T +H with forecast ŷt pro-
duced over T +1, . . . ,T +H .

To assess the quality of an estimator, we not only report four error measures, but choose these measures to
provide complementary interpretation of the results. In this way, we first report the widely used [46] Mean
Squared Error which naturally measures the average squared difference between the estimated values and
the actual values:

MSE = 1

n

T+H∑
t=T+1

(
yt − ŷt

)2 (6.3)

It is a scale dependent, yet simple non-negative measure, which, in the case of an unbiaised estimator,
fully reflects the variance and irreducible uncertainty of the estimator. It can’t however be used to compare
the performance across different CAL. At the cost of a more straightforward interpretation like the mean
absolute error, the introduced square exponent has the advantage to greatly penalize large errors.

Another error measure that became quite popular with the advent of forecasting competitions [47] is the
Mean Absolute Scaled Error first introduced by [88]. This error metric belongs to the family of scale free
error measures since it gives each error as a ratio compared to a baseline average error. For instance, the
conventional MASE is defined as the mean absolute error of the forecast values, divided by the mean abso-
lute error of the in-sample one-step naive random walk forecast[88, 46]:

MASE =
1
H

∑T+H
t=T+1 |et |

1
T−1

∑T
t=2

∣∣yt − yt−1
∣∣ (6.4)

(6.5)

where et = yt − ŷt denotes the mean absolute error of the forecast for period t . [88] recommends its use as
a versatile benchmarking tool, superior to the overly used and unstable (with actual values close to zero)
symmetric mean absolute percentage error (sMAPE) [89].

The next error measure aims at specifically evaluating prediction intervals. As prediction intervals slowly
made their introduction in literature, it doesn’t seem to be a true consensus on a PI scoring metric but the
Mean Scaled Interval Score (MSIS), first introduced by [90] has been at least used in the M4 competition
[49]. This quality measure aims at balancing coverage and width of prediction intervals since we strive for
a tradeoff between high coverage but with short, non-trivial, intervals so that they are at least informative.
MSIS is defined as follows:

MSIS =
1
H

∑T+H
t=T+1

(
Ût − L̂t

)+ 2
a

(
L̂t − yt

)
1
{

yt < L̂t
}+ 2

a

(
yt −Ût

)
1
{

yt > Ût
}

1
T−m

∑T
t=m+1

∣∣yt − yt−m
∣∣ (6.6)

where L̂ ∈ [0,1],Û ∈ [0,1], L̂ < Û are the lower and upper bounds of the prediction, y the future observa-
tions and 1 the indicator function. The significance level α is then used to control the target interval width
(α = 0.005 for 95% PI for example). The denominator scales the interval score by the in-sample seasonal
error. In the ideal case, the first term would be close to 0 whereas the two next penalizing terms would be
exactly 0 if all the actual values fall correctly within the prediction interval bounds. The M4 competition
guideline report[49] gives an additional empirical example to interpret the penalizing terms. The complex-
ity of such measure makes it already hard to interpret in a stand alone manner though. For this reason,
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we won’t include other more complex scoring rules which have been developed in the literature to evaluate
probabilistic forecasting [45].

Finally, we include an additional simple qualitative indicator. The Prediction Interval Coverage Probability[46,
45] (PICP) summarizes the proportion of actual values that fall inside the prediction interval. By definition,
a prediction interval [L̂t ,Ût ] with level (1−α) should match the nominal rate P (yt ∈ [L̂t ,Ût ] = (1−α)). If the
condition is met, the later is then said to be calibrated. PI forecasting obviously strives to generate calibrated
but also sharp (narrow) informative quantiles. While providing a straightforward way to interpret the cali-
bration, the PICP alone doesn’t provide any information about sharpness, in opposition to MSIS. For these
reasons and despite its simplicity, PICP well complements MSIS. Let’s note the same principle can naturally
be used to compute any quantile coverage by measuring the number of observations that fall below a each
of the desired quantiles.

1.4.4 Naive predictor benchmarking

To benchmark the different models of Gluon-ts, we compare them with two different naive predictors. We
consider the naive random walk forecast which simply predicts the last observed value all along the pre-
diction range. By using the same notation as in Subsubsection 1.4.3, the model outputs at forecast time T :
ŷt = yT , ∀t ∈ {T +1, . . . ,T +H }. We refer to this model as Trivial RW later on. The second naive predictor
generates K forecast samples whose value at each time t in the prediction range is given by ỹk

t = µ+ s.σ
with s ∼N (0,1) and where µ and σ are the mean and standard deviation of the last N observed values. We
consider N = 2 and stick to the Gluon-ts terminology by calling this model Trivial Mean 2.

2 Results for univariate time series prediction

In order to evaluate empirically and a-posteriori if adding exogenous variable is beneficial, we first report
the results obtained by training all the estimators without adding the exogenous variables.

The total computation time to run the experiment on three different CALs is estimated to twelve hours on
an intel i9 9880H with 8 threads dedicated to the computation. Most of the computation has however been
carried out on the provided CECI cluster infrastructure (NIC4[91]) while DeepState, MQRNN, MQCNN and
Gaussian Processes had to be run on Google Colab[92]. The simulation on Colab took eight hours to com-
plete for the three CALs with GPU support activated for MQCNN and MQRNN. Thanks to jobs parraleliza-
tion, the NIC4 cluster was able to handle one forecast simulation (3× 35 of them) in 20 minutes approxi-
mately (queuing time excluded). Table 6.1 summarizes the results obtained for a rolling origin evaluation
and a forecast horizon of four weeks.

Trivial predictors The bottom of Table 6.1 displays the naive predictors introduced in the previous sec-
tion. By paying particular attention to Trivial RW, it can be noticed at a glance that all the models without
exception perform worse. In fact, while being the simplest model, it turns out to outperform all the more
complex estimators by a good margin. In this way, the empirical results of Table 6.1 show that complex
models can’t provide additional accuracy on the random-like time series of the year-ahead market. In this
sense, it indeed confirms the findings of Chapter 5. Looking at Trivial Mean 2, we notice it performs second
overall for most accuracy measures. The historical sampling of NPTS, even though performed on a relatively
short past window of 4 weeks, didn’t provide better results.

Non-trivial estimators Among the most complex models, DeepState produces the safest prediction inter-
vals. While the reported results for the other evaluation metrics are disappointing, it is at least valuable that
the model doesn’t produce overly optimistic prediction intervals as assessed by the PICP. In this sense, the
model successfully reports a greater uncertainty on the future price distribution and is aware of the forecast
difficulty. MSIS naturally takes this property into account and therefore ranks DeepState higher. For the
same reason, the baseline regression-inspired Prophet scores among the best in terms of MSIS. In terms
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Cal 2013 Cal 2016 Cal 2019

Model MSE MASE MSIS PICP MSE MASE MSIS PICP MSE MASE MSIS PICP

DeepAR 4.87 2.04 63.50 0.14 4.18 3.72 114.80 0.35 14.63 3.82 108.35 0.24

DeepState 13.97 3.74 40.27 0.72 6.93 5.87 60.23 0.83 15.72 4.85 47.58 0.70

DeepFactor 213.57 4.39 175.02 0.00 6.80 5.62 223.75 0.00 17.05 4.64 184.77 0.00

MQCNN NaN 2.09 72.70 0.06 NaN 4.08 144.47 0.10 NaN 3.07 104.49 0.08

MQRNN NaN 1.99 80.52 0.06 NaN 3.51 125.58 0.10 NaN 2.62 85.50 0.08

WaveNet 60.62 7.26 86.15 0.43 16.50 9.15 128.89 0.46 136.60 11.08 135.39 0.48

Prophet 10.21 3.18 29.20 0.84 6.13 5.85 61.34 0.81 10.37 3.89 49.11 0.78

Gaussian Processes 4.68 1.88 32.22 0.41 3.84 3.68 65.07 0.42 16.74 4.73 119.00 0.28

NPTS 15.87 4.42 106.30 0.32 8.65 7.93 194.70 0.31 108.09 11.80 379.03 0.09

FFNN 2.35 1.33 21.49 0.85 2.09 2.57 48.52 0.80 6×109 2.71 60.83 0.94

Trivial RW 1.81 1.24 / / 1.67 2.44 / / 5.49 2.48 / /

Trivial Mean 2 2.25 1.40 32.31 0.31 2.09 2.86 64.39 0.40 6.18 2.67 70.03 0.25

Table 6.1 – Prediction accuracy assessment of univariate forecasting on three different CAL. Backtesting
carried out with of a rolling origin evaluation and a time horizon of four weeks. The Bottom of the table

display the naïve models performance.

of MSE, it can be noticed that Gaussian processes, which are more suitable to stationary data, struggle to
handle the increasing trend of CAL 2019. Wavenet also produces worse results on this CAL. Interestingly, the
simple feedforward neural network is the "best performing" model among the non-trival ones. Eventhough
its wide quantile predictions are likely not very much informative, the model produces safe prediction inter-
vals and has a comparable accuracy for the median prediction as Trivial Mean 2. The FFNN strives the best
balance between coverage and median prediction accuracy among non-trivial models. It is likely that it pro-
duced a few completely off predictions on CAL 2019 though, as can be interpreted from the very large MSE.
The NaN entries for the MSE of MQCNN and MQRNN are both a result of an unbounded MSE produced for
the first simulation, whereby the training set length exactly equals the prediction length.

3 Results for multi-variate time series prediction

3.1 Model performance evaluation and discussion

Table 6.2 summarizes the results obtained by including 10 additional exogenous variables as discussed pre-
viously. The table features two additional entries: an additional one for DeepAR and another one for the
Feed Forward Neural Network. They are actually the same model but trained on the raw scaled data rather
than the log scaled data. Considering they were the two best performing models, the experiment without
the log transformation has been only repeated for those two. Compared to the univariate experiment, com-
putation time didn’t change much on the NIC4 cluster and increased by less than 10% on Google Colab
which might as well be inherent to the share of hardware resources among users.

PIs Calibration improvements A first observation that can be made is that including the exogenous vari-
able turned out to substantially improve the calibration of the prediction interval produced by all the mod-
els with the little exception of DeepState. In this way, almost all the models gained better knowledge on the
range of future price outcomes.

Forecast accuracy improvements With regards to the other error measures, we observe a noticeable gain
in accuracy too. Yet again, DeepState did worse than previously though. A possible explanation is that, since
DeepState is by far the most time consuming model to train, the training error might not have had the time
to stabilize due to the restricted number of epochs. Moreover, we didn’t include any additional features
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Cal 2013 Cal 2016 Cal 2019

Model Log MSE MASE MSIS PICP MSE MASE MSIS PICP MSE MASE MSIS PICP

DeepAR X 3.70 1.76 28.94 0.64 2.32 2.88 43.51 0.64 6.65 2.53 36.22 0.68

DeepAR × 4.74 2.02 34.58 0.54 3.18 3.35 51.85 0.60 5.92 2.55 36.04 0.64

DeepState X 16.61 4.43 59.02 0.61 6.11 5.85 61.88 0.79 27.07 5.76 64.06 0.80

DeepFactor X 25.42 5.98 32.33 0.70 6.87 6.32 45.94 0.89 inf inf 52.49 0.66

MQCNN X NaN 2.49 53.46 0.40 NaN 3.99 104.23 0.30 NaN 2.37 57.09 0.40

MQRNN X NaN 2.62 59.82 0.28 NaN 3.80 101.32 0.33 NaN 2.46 57.35 0.35

WaveNet X 43.95 6.20 49.47 0.71 4.56 4.27 45.65 0.75 15.42 4.23 50.22 0.81

FFNN X 1.85 1.26 20.51 0.84 1.86 2.49 46.29 0.85 11.25 2.47 49.13 0.95

FFNN × 1.72 1.26 20.93 0.85 1.71 2.44 45.79 0.84 5.98 2.52 40.96 0.97

Trivial RW / 1.81 1.24 / / 1.67 2.44 / / 5.49 2.48 / /

Trivial Mean 2 X 2.25 1.40 32.31 0.31 2.09 2.86 64.39 0.40 6.18 2.67 70.03 0.25

Table 6.2 – Prediction accuracy assessment of multivariate forecasting on three different CAL.
Backtesting carried out with of a rolling origin evaluation and a time horizon of four weeks. The log

column makes reference to the use of logged transformed prices for training.

for each related time series while DeepState relies primarily on them to learn a global model. Interestingly,
MQCNN and MQRNN score a lower MASE on CAL 2013 than previously but produce better calibrated PIs
on the other hand. A look at the MSIS actually shows that the exogenous variables should be considered
beneficial. Another observation is that previous abnormally high error scores encountered in FNN, Wavenet
and Deep Factor got significantly reduced.

Comparison with univariate baselines Gaussian processes and Prophet are not displayed in Table 6.2
since they don’t support multivariate predictions. However, looking back at Table 6.1, it can be noticed that
only DeepAR and the FFNN do a better score consistently. MQRNN and MQCNN have a lower MASE than
Prophet, all the CALs considered but have a higher MSIS due to worse PIs calibration. MQCNN, MQRNN
and Wavenet outperform Gaussian Processes on CAL 2019.

Best performing multivariate models Among the non-trivial multivariate models, the simple feedfor-
ward neural network turned out to produce the best price predictions on CAL 2013 and CAL 2016. On CAL
2019 though, DeepAR takes a little hedge over the simpler neural network with a twice lower MSE and a
better MSIS. However, it also produces overly confident prediction interval with a PICP of only 64% instead
of the target 98%. Meanwhile, the FFNN has nearly perfectly calibrated (but likely not sharp) PIs with a PICP
of 95% on average.

Impact of the log transformation The same experiment repeated for the two best performing models,
DeepAR and FFNN, with the data log transformation removed, shows the transformation doesn’t impact
the two models in exactly the same way. The FFNN saw prediction accuracy improvements by removing
the transformation on each CAL. The most notable improvements are on the exponentially increasing CAL
2019 where the MSE gets almost halved. On the other hand, DeepAR took advantage of the log transfor-
mation on CAL 2013 and CAL 2016 but, like the FFNN, better results are obtained without the log transfor-
mation on CAL 2019. In this sense, the results of this additional experiment are in line with the discussion
in Subsubsection 1.1.1. Since the preprocessing doesn’t provide consistent benefits retrospectively, the log
preprocessing should probably be discarded though.

Comparison with univariate trivial predictors As it turns out, no model is able to undeniably produce
better results than the naive forecast despite the data augmentation. However, the FFNN shows very similar
performances compared to the naive benchmark on all the CALs with even a better MSE for CAL 2013 and a
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better MASE on CAL 2019 for the log version. The neural network is also able to produce very well calibrated
prediction intervals while the naive predictor doesn’t produce any by definition. In fact, Trivial RW may not
be the optimal model among the considered pool on CAL 2019. DeepAR produces close results to Trivial RW
too while MQCNN and MQRNN have even a lower MASE than the trivial predictor. MQCNN and MQRNN
are however underperforming in terms of MSIS by being penalized for their bad PI calibration. Still, all the
CALs considered, trivial RW has still a very slight edge on the median prediction accuracy over the FFNN
despite not providing any information about the future price ranges.

Impact of model selection Up to now, results have been discussed for a rolling origin evaluation without
any a priori model selection on a validation window. Table 6.3 summarizes the results with the rolling origin
with recalibration evaluation scheme presented in Subsubsection 1.4.2. Models were selected on the basis
of the MASE score. The resulting sets of forecasts didn’t yield lower error scores. Trivial RW, FFNN and
DeepAr were overall the most often selected models but most models got included at east once in the end.
A good accuracy on the validation set is thus not a good enough indicator of reliability since some models
likely turned out to be selected by luck and drove the accuracy down.

Cal 2013 Cal 2016 Cal 2019

MSE MASE MSIS PICP MSE MASE MSIS PICP MSE MASE MSIS PICP

Model selection 2.453 1.367 24.347 0.614 4.178 3.843 63.557 0.636 13.255 2.904 49.700 0.632

Table 6.3 – Prediction accuracy summary on the test set on a rolling origin with recalibration pipeline
which select the best model. Both the validation window and the testing window length are set to four

weeks.

3.2 Forecast visualization and residuals

The FFNN simulations were characterized by a 5% lower MSE compared to Trivial RW on CAL 2013. The fol-
lowing paragraphs give an additional analysis on the results obtained with the feed forward neural network
on this CAL.

From Figure (6.4), we notice the model didn’t tried to systematically reproduce the flat predictions of the
benchmark but started to do so around the beginning of 2012. When prices tends to fluctuate more, the pre-
diction interval correctly widens. The model produced overly optimistic prediction intervals during 2012.

Figure 6.4 – Feed forward neural network predictions for CAL 2013
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The FFNN yields an average difference between predicted prices and actual prices (denoted residuals[46]
from now on) of −0.23€/MW. In this way, the estimator is rather unbiaised, at least on CAL 2013 which,
pointed out earlier, has already a symmetric price distribution. From Figure (6.5a), which displays all the
predicted points, we notice that the predictions tend to be centered around the red line. The closer the
points to the later the better. Higher prices tend to deviate more though.

The histogram in Figure (6.5b) shows residuals also tend to follow a normal distribution. This observation is
likewise confirmed by the corresponding QQ plot, Figure (8.16), in Appendix 6.0.2. A look at the horizontal
axis of the histogram tells us the amplitude of residuals are still non-negligible though. For instance, the
maximum difference between the predicted and actual prices amounts to 4.364€/MW. In terms of monetary
value, a missjudgment like so already represents approximately a potential loss of 4.364×60×24 = 38,230£
assuming just 1MW has been purchased.

(a) Scatter plot of the predicted prices
against ground truth. (b) Residual diagnosis.

Figure 6.5 – FFNN visual forecast evaluation on CAL 2013.

Finally, it is worth quickly investigating whether the model can be used to correctly predict simple price
directions. To do so, we only consider a very simple assessment procedure based on the median point-
wise prediction. In this sense, more complex evaluations leveraging the predicted future price distribution
should be encouraged instead.

A confusion matrix can be for example computed by categorizing all the point-wise median predictions into
two categories: either up or down. Any prediction whose value is greater (less) than the last observed price,
from which the forecast is generated, is labelized as up (down). The same procedure is applied in a similar
way to actual values. From the resulting Table 6.4, we notice that the FFNN struggles to predict the correct
price movement accurately, at least by considering the median as a proxy of the price direction. When actual
prices went down, the model was able to correctly predict the direction most of the time. However, when
prices went up, the model completely failed to capture the correct direction since the model predicted 51
times the wrong direction and only 38 times the correct one. From a practical point of view, a company
energy manager who would have relied on the forecast to evaluate whether it was opportune to buy in this
situation, would have likely received a positive signal. If the manager indeed followed the indication and
purchased a block order, he would have therefore paid the higher price. As a result, the median point-
wise prediction should not be considered as a reliable indicator of future price direction, at least from a
restrospective point of view on CAL 2013 with FFNN.
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Actual

Predicted
Down Up

Down 49 6

Up 51 38

Table 6.4 – Confusion matrix derived from the prediction of FFNN on CAL 2013.
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7 | Conclusion and perspectives

We began this Master thesis by reviewing the current European electrical system from three different per-
spectives. First, we briefly exposed the notion of grid infrastructure, introduced the main actors and high-
lighted some trends in the Belgian system. We then gave a comprehensive overview of the markets available
to trade electrical energy and highlighted some of their properties. Lastly, a trading focus was adopted. We
deduced from a delivery-wise price comparison that trading in the year-ahead market largely reduces the
exposure to the volatile prices encountered in the spot market and, in that sense, turns out to be a good
strategy to hedge against risk. All those introductory notions led us to discuss several power price drivers
where we learned how complex price dynamics can be.

The analysis aimed at improving the decision making process of a rather risk-averse industrial company
looking to reduce its cost of electricity acquisition by interacting in the year-ahead market. More specif-
ically, it was targeted to help such company securing a fixed base load supply of around 10MW using a
generic click-by-click contract type. Specific constraints included a limited number of orders to dispatch
throughout each quotation period and the expectation that the research outcome should provide an indi-
cator to complement the expertise and autonomy of the resource manager. The absence of relevant support
to the problem in the literature motivated us to embrace the probabilistic forecasting approach to provide
a flexible support to human decision making while providing nuanced information over future price out-
comes. To this end, we planned to leverage recent advances in deep learning based models and reviewed
some of the most prominent models featured in the literature in the last four years.

To expand our knowledge of the price dynamics ruling the year-ahead market, an extensive data analysis
study was conducted on the available dataset. It showed that the price distributions were not consistent
from a delivery year to another and often highly skewed. The most noticeable finding of the analysis was
that the year-ahead electricity prices exposed very similar properties to random walk processes whose best
theoretical prediction is simply the last observed value. In lights of the reflection on power price drivers and
the literature review, we decided to analyze several related times series datasets fetched proactively from the
web to mitigate this problem. Similarity measures and the Granger Causality were the two main techniques
to analyze correlation and causality among eleven time series as it is common in finance. Seven commodi-
ties, two energy indexes and two stock indexes were considered. It was shown all time series except the two
stock indexes are positively correlated with the year-ahead prices on a seven years long time frame. Mixed
results were obtained with the Granger Causality though. We suggest to not rely on this tool for future work
due to the difficulty to interpret the results and evaluate their reliability.

By means of a rolling origin backtesting methodology, we assessed the results of both univariate and mul-
tivariate probabilistic predictions on the year-ahead market. Ten models were evaluated for the univariate
setup and seven for the multivariate one on cloud computing servers. The results are clear. The time series
model yielding the lowest prediction errors collapses to a simple and non-informative constant point-wise
prediction generated from the last observed price: the naive random walk forecast. The later doesn’t provide
much information to measure opportunity. Despite leveraging other related time series, the best perform-
ing (non-trivial) model is a simple feed forward neural network that produces very similar results to the
random walk benchmark when exogenous variables are used in the training set. However, its prediction
quantiles can be used to estimate future price ranges with a decent accuracy. In this sense, the neural net-
work provides additional benefits over the benchmark although not outperforming it in a consistent way in
terms of median prediction accuracy.

52



While common belief would have gone in favor of complex deep learning based time series models, our
results are still coherent with the finding of the M4 competition[50] whereby simpler models often tend to
perform very well comparatively. Naturally, our experiments don’t pretend to have covered all the possible
ways to predict the future price outcomes. In this way, this Master thesis only considered a continuous prob-
abilistic forecasting approach. Threshold forecasting, price bins classification, regime switching models or
ensemble methods are examples of future possible paths of investigation to improve the forecast. However,
future work could also build upon this one. In the comparative study, all models were kept with their de-
fault parameters. Further optimization of the architecture, learning rate(s), or the number of epochs, just
to name a few, would probably slightly improve forecast accuracy. The noticeable improvements result-
ing from the data augmentation also make us confident that including many time series datasets of other
countries or related commodities traded in the year-ahead market would be valuable[4], despite being very
expensive to procure.

“An investment in knowledge pays the best
interest."

— Benjamin Franklin
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8 | Appendix

1 Electricity infrastructure overview

Figure 8.1 – General layout of electrical networks [8].

2 Electricity market overview

2.1 Classification of common energy generation technologies
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Type Firm/capacity Type of fuel Flexibility Low-carbon CO2 emissions (kg/KWh)

coal firm fossil medium no 0.95

natural gas firm fossil high no 0.55

biomass firm renewable medium Yes (regrowth of biomass compensates)

nuclear firm nuclear low

Considered as zero-emission sources

hydro with dam firm renewable very high

solar variable renewable very low

wind variable renewable very low

geothermal firm renewable high

Table 8.1 – Characteristics of the main energy-generation technologies [1]

2.1.1 The wholesale electricity market actors

Figure 8.2 – Simplified view of market participant interactions[9].

2.1.2 Merit order

Figure (8.3) presents in a very simplified and schematic way the merit order effect used to define the market
clearing price. Supportive legislation and the virtually free energy sources used by renewable generators
can push the clearing price low enough to put other generator types out of business.
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Figure 8.3 – Simplified and schematic representation of the merit order effect[3].

2.1.3 Market zones

As a result of the increasing market interconnection across Europe, electricity prices tend to converge among
countries. Figure (8.4) shows the state of the DAM power exchange coupling as of 2015 while Figure (8.5a)
reports the annual average prices for the day-ahead market from 2007 to 2018 onwards.

Figure 8.4 – Status of the day-ahead energy markets coupling as of 2015[10].
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(a) Yearly averaged day-ahead market prices per bidding
zone[23]

(b) Yearly averaged year-ahead market
prices[1]

Figure 8.5 – Highlight of the electrical energy prices similarities in the CWE region.

3 Trading in year-ahead markets

3.0.1 Forward market prices comparison

Figure 8.6 – Average prices for four types of contracts for delivery in the Belgian bidding zone, in terms
of delivery period[11]. Data from ICE Endex[12] and EEX.
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Figure 8.7 – Comparison of several wholesale power exchange market zones with monthly averaged
year-ahead electricity prices[1].

4 Literature review

4.0.1 The Value-at-Risk formulation

The Value-at-Risk[93] is certainly one of the most widely accepted risk indicator for financial risk manage-
ment. It is measured in euros and summarizes the expected maximum loss, or worst loss, of a portfolio over
a given target horizon for a fixed confidence levelα. Formally, the VaR of a random variable X forα ∈]0,1[ is:

V aRα(X ) = min{z|FX (z) ≥α} (8.1)

Mathematically, V aRα(X ) is the (1−α) quantile of X . Most of the time, α is set to 0.95. The measure pro-
vides a straightforward interpretation to evaluate the worst case scenario after excluding all worse outcomes
whose combined probability is at most α.

5 Data analysis

5.1 Smoothing techniques

Moving average and moving median filters Moving average and moving medians are probably the two
most common types of techniques to smooth out a time series. Figure (8.8a) and Figure (8.8b) display the
resulting post-processed CAL 2016 prices obtained with a window size of 10. 95% of the area under a normal
curve lie within roughly 1.96 standard deviation of the mean. Due to the central limit theorem, which states
that the sum of independent random variables tends towards a gaussian random variable, it is often the
practice in finance to stick to a normal assumption. In econometrics, these bounds computed for a moving
average of 20 gives the famous Bollinger Bands.

LOESS filtering Locally Estimated Scatterplot Smoothing (LOESS) is a generalization of moving average
and polynomial regression that is popular in econometrics. Market data often expose different regimes
which makes the fit of one function on the data less relevant. Instead, LOESS fit segments of the data at the
cost of increased computation. In a nutshell, several low degree polynomials are fitted using weighted least
squares. More weight are put on points near the point whose response is being estimated while less weight
is put on points further away. This makes the method quite robust and suitable to reject sudden peaks in
the data.
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EWMA filtering Exponentially Weighted Moving Average is nothing else than an extension of moving av-
erages in which the element within a given windows are weighted in an exponentially decaying fashion. For
a same window width, EWMA is way more responsive to recent changes which make it a frequent choice in
econometrics or for fault detection in quality control processes. It is computed in a self-explanatory manner
according to the recursive definition:

St =
{

Y1, t = 1

α ·Yt + (1−α) ·St−1, t > 1
(8.2)

(a) Moving average filter, window size = 10 (b) Moving median filter, window size = 10

(c) LOESS filter, frac=0.05 (d) EWMA filter, α= 0.095

Figure 8.8 – Smoothing filter comparison

5.2 Pattern analysis of day-ahead market prices

Figure (8.9a) shows that the average daily prices of the DAM don’t fluctuate much during working days but
drop by a sensible margin during week-ends. By processing all the data from 1st May 2015 up to 22th March
2020, the average price during working days amount to 46.73€/MWh, which is 23.7% less than the regular
open days of the week. The variance of the prices is also lower, especially on Sundays. The fact that many
economic activities cease during the week-end cause a drop in demand of electricity which is then reflected
in the price. From Figure (8.9b), we note prices during the middle of the night are, on average, way lower
than in the morning and the evening. Furthermore, the variance at these time is also smaller.

(a) Day-ahead prices per weekday (b) Day-ahead prices per hour

Figure 8.9 – Periodicity of day-ahead prices (€/MWh)
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From Figure (8.10), we notice several periodic patterns rule the day-ahead prices. The weekday effect is
noticeable on Figure (8.10b) while Figure (8.10c) shows a periodic pattern every 24h hours (larger spikes),
and a smaller one of around 15 hours approximately. In this way, despite being very volatile, day-ahead
prices are not are not of fully stochastic nature.

(a) All DAM dataset. [lag] = 1 day.

(b) March 2016 DAM prices, [lag] = 1 day.
(c) Week 10 of 2016 (in March) DAM prices, [lag] = 1

hour.

Figure 8.10 – Autocorrelation of DAM prices at different time scales and/or time resolution. Data is
aggregated based on the median.

5.3 Supplement on year-ahead market prices analysis

5.3.1 Summary plots for four additional CAL
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(a) CAL 2013. (b) CAL 2015.

(c) CAL 2017. (d) CAL 2019.

Figure 8.11 – Data analysis summary plots for four different CAL of the year-ahead market.

5.3.2 Impact of the log transformation on CAL 2013 and CAL 2019

(a) CAL 2013 (b) CAL 2019

Figure 8.12 – Rolling variance of year-ahead market prices with a window size of 28 days (four weeks).

5.4 Supplement on exogenous variable discussion

5.4.1 EU allowances

EU Allowances (EUAs) are a form of carbon allowance used as the main currency in the EU Emissions Trad-
ing Scheme (EU ETS). Companies are allowed to trade those carbon credits between themselves. The ma-
jority of EUA carbon trading takes place on exchanges, with the Intercontinental Exchange (ICE), being the
most prominent one. The ECX EU Futures (Continuous Contract #1 from ICE), fetched from quandl, can
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provide additional meaningful information to the improve forecast accuracy of the YAM prices. One EUA
gives the holder the right to emit one tonne of carbon dioxide, or the equivalent amount of two more pow-
erful greenhouse gases, nitrous oxide (N2O) and perfluorocarbons (PFCs). The unit is Euro (€) per metric
tonne and the data has a weekly frequency.

Figure (8.13) displays all the scaled CAL prices in low intensity orange with the mean of concurrently quoted
cal in deep orange for easier patterns interpretation. The purple trace represents the scaled carbon prices,
fetched from the Global European Open platform. Leader-follower roles seem to change overtime.

Figure 8.13 – Carbon prices and all year ahead CAL along with their average.

5.4.2 All exogenous variables

Figure 8.14 – All exogenous variables alongside the Mean of all cal. Data aggregated weekly, logged
transformed then scaled in [0, 1].

6 Forecasting

6.0.1 Handling the case of concurrently quoted CAL

Let denote by t0 the forecast start date. To handle the inclusion of concurrently quoted CAL data in the
training set at t0, we only include CAL whose quotation period can be mapped one to one with the CAL
being forecasted. Figure (8.15) illustrate this mechanism for CAL 2016 for three scenarios. When t0 is lo-
cated in the first year of CAL 2016, i.e. scenario A, CAL 2014 and CAL 2015 are included in the training set.
In scenario B, only CAL 2015 is added to the training set. Finally, in scenario C, no other CAL has shared
the exact same number of open days as CAL 2016. For this reason, no other concurrently quoted CAL are
used in the training set for the corresponding t0. While not being the most data efficient mechanism, it cer-
tainly removes any possible miss-guidance due to zero-padding. Many different alternatives can of course
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be derived. Introducing categorical features or using a cold start approach (see MQRNN[6] to improve the
forecast accuracy in the very beginning of the quotation period are natural extension that can be investi-
gated.

Figure 8.15 – Illustration of the inclusion criterion for concurrently quoted CAL for three forecast start
time (t0) scenario, assuming CAL 2016 is the CAL of interest.

6.0.2 Normality assessment of residuals.

Figure 8.16 – QQ plot of the forecast residuals produced by the backtesting simulation of Simple Feed
Forward Neural Network on CAL 2013.
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