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Abstract

Doing inference on a model defining an implicit likelihood that is not known in closed
form is called likelihood-free inference. This occurs frequently in engineering and science
domains where a simulator is used as a generative model of data, but the likelihood of
the generated data is not known and is intractable. Given observed data, we combine
the idea of hierarchical Bayesian modeling, empirical Bayes, and neural density estimation
with normalizing flow to first learn a surrogate approximation of the model likelihood and
then, to learn a prior distribution over the model parameters. The learned prior and the
surrogate likelihood further allow to learn a posterior distribution for each observation.
This is a general approach to likelihood-free inference, and is especially useful in settings
where the simulator is too costly to run at inference time. We show the applicability of our
methods on a real physical problem from high energy physics (HEP).
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1. Introduction

Problem Statement Many scientific and technology fields are interested in learning
source data from corrupted observed data which is called solving an inverse problem. For
example, topics in image restoration are interested in retrieving a clean image from a noisy
one or a high resolution image from a low resolution one. Similarly, some astrophysicists are
working on deblurring telescope images such as black hole images. In high energy physics,
a typical example would be to retrieve true particle properties given measured properties
that is, correct the corruption introduced by the measurement tools.

At the same time, many scientific and technology fields have developed computer sim-
ulators of physical processes such as robotic simulators, galaxy-galaxy lenses simulators
and particle collision simulators. A simulator is a computer program that maps a vector
of parameters x to a vector of parameters y, typically built using known rules of physical
law. They may have free-parameters that are tuned over time so that simulations match
real experiments. Usually, simulators are stochastic and thus, they may produce multiple
different y′s given the same x. The stochasticity is due to the use of random variables
generated by random number generators. These variables are called latent variables and
usually represent a true underlying physical quantity. For example, while a coin thrown
is often thought as stochastic, it is actually a process that can be fully determined given
the initial orientation of the coin, the force applied to it and many other parameters (Tran
et al., 2017a). Given the force applied to the coin, a simulator could stochastically simulate
the thrown by modelling all unknowns by random variables.

While these simulators are computer programs, they may be very complex — some of
them results from decades of research and engineering — and may have long run times.
Simulating an event is called the forward process, it allows to observe data y given param-
eters x. The aim of this dissertation is to estimate solutions to the backward process that
is, retrieve plausible x′s that could have produced the observed y. This area of research
utilizes techniques such as maximum likelihood and posterior inference which aims to learn
the posterior p(x|y). When a simulator is used to aid this process, this is often called
simulator-based inference. The stochastic simulator defines an implicit likelihood function
p(y|x) which is often intractable as computing it would require integration over all the latent
variables that could produce y:

p(y|x) =

∫
p(y, z|x)dz. (1)

Experts have therefore mostly developed algorithms that do not need the likelihood func-
tion in closed-form. This area of research is thus called likelihood-free inference.

Many current inference methods suffer from the fact that they need the simulator at
inference and when the simulator has a long run time, most of the inference time budget
is spent on running simulations. This means that in order to run the simulator as much as
needed by the inference method in order to obtain the desired accuracy, inference can be
arbitrary long. There also exist settings when you have raw data but do not have access
to the simulator (especially in this era of Big Data) which makes the use of many inference
methods impossible. Finally, in addition to the simulator, most current inference methods
need a prior distribution p(x) during inference, which cannot be always postulated easily.
Therefore, developing inference methods that do not need the simulator at inference time,
nor a predefined prior distribution is of much interest.
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Research question To sum up, the research question that we will try to answer through-
out this dissertation is:

How to perform inference when the simulator is too costly to run at inference time and
when no likelihood function is available in closed-form?

Contributions. Given a set of training data, for instance obtained from running the
simulator, we first learn a model of the simulator — called a surrogate — with a power-
ful differentiable statistical model called normalizing flow (Rezende and Mohamed, 2015)
described in Section 2.4. This model allows us to explicitly evaluate an approximated
likelihood p(y|x) and being differentiable, allows to use gradient-based optimization.

Given such a surrogate, our contributions are as follows:

• Point Estimation. Given a corrupted observation, we retrieve plausible parameters1

that could have generated this observation. We also show that given a set of observa-
tions, the set of individual learned parameters can produce a plausible empirical prior
distribution of the parameters.

• Density Estimation. Given a single observation, we discuss four methods to learn a
distribution of plausible parameters that could have generated the observation. This
allows to quantify uncertainty over parameters, which is significantly more useful than
point estimates in decision making and scientific settings as it allows an understanding
of the significance of a prediction. The learned distribution can be fast sampled and
differentiated. When it is modeled by a normalizing flow, its density can be evaluated
as well.

• Empirical Bayes. Given a set of observations, we generalize one of the method from
the previous point in order to learn a plausible prior distribution over the unseen source
parameters. We successfully apply this method in correcting the detector effects in a
real high energy physics problem.

• Amortized Inference. Given multiple observations, we use our results from the
previous point in order to learn a prior distribution over the unseen source data.
Then, for each observation, we use the learned prior and the surrogate likelihood in
order to approximate the posterior.

Notations. Throughout the rest of this dissertation, vectors are represented in bold low-
ercase while tensors are represented in bold uppercase except for neural network and distri-
bution parameters that are not represented in bold. When there is no ambiguity, a function
f : X −→ Y is noted f(·) and when the function is parametrized by parameters φ that we
are not interested in, we omit them. Otherwise, we represent the function by fφ(·). All
norms are represented by || · || and the gradient operator whose components are the partial
derivatives of a function fφ(·) with respect to all the parameters in φ is noted as ∇φf .
Finally, the probability density function of a random variable x is noted p(x).

1. The word parameters refers to a single vector of variables taken as input by the simulator. This is a
single instance and should not be confused with a set of parameters.
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Conventions. In the likelihood-free inference literature, the latent variables are often
noted θ while the observations are referred by x. The probabilistic programming and linear
inverse problems literature rather use x and y for the latent and observations respectively. In
the Empirical Bayes literature, where the latent variables are considered as random variables
modeled by a parametric distribution, a common notation is to refer to the observations by
y, the latent variables by x and the parameters defining the underlying distribution on x
by θ. This is this notation that we will use throughout this dissertation.

Reproducibility. Code to reproduce the experiments and figures will be available in a
GitHub repository at www.github.com/MaximeVandegar/LikelihoodFreeEB.

Roadmap. We introduce background concepts in Section 2 and cover related work in
Section 3. Then, in Section 4 we show how we design surrogate models and in Section 5, we
introduce our methods. In Section 6 we evaluate our methods on four toy problems inspired
by the literature and in Section 7 we solve a scientific application in high energy physics
(HEP) showing the applicability of our methods on real problems.
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2. Background

2.1 Inverse Problems

Linear Inverse Problems In many scientific and technology domains, reconstructing a
target signal x ∈ Rn from a corrupted observation y ∈ Rm can be represented as:

y = Ax + η (2)

where A ∈ Rm×n is a corruption matrix and η possible additive noise. Usually, m < n
and even without noise, this is an ill-posed problem as A is not invertible or may be ill-
conditioned. In most common problems, A is known. For example, in compressed sensing,
it is the measurement matrix and in image denoising, it is the identity matrix.

In order to solve the corruption problem, two main approaches are commonly used. The
first one is maximum a posteriori (MAP):

x∗ = arg max
x

log p(y|x) + log p(x) (3)

where p(y|x) is the likelihood — often known — of the corruption model and p(x) is a
regularizer that constrains the solution space of the problem otherwise ill-posed. A broad
class of problem-dependent off-the-shelf regularizer have been introduced and studied such
as the total variation (TV) norm. Other approaches also rely on learned-based regularizer.
A main challenge is to find pairs of likelihood and prior function that lead to a convex opti-
mization problem. When this is the case and when both p(y|x) and p(x) are differentiable,
Equation 3 can be solved recursively:

xt+1 = xt + γ∇x(log p(y|xt) + log p(xt)) (4)

where γ is a learning rate.

The second approach is to solve a constrained problem:

x∗ = arg min
x
L(Ax,y), s.t. x ∈ S (5)

where L is an appropriate loss between regenerated values and observations — usually the
minimum mean squared error (MMSE) — and S is a set that captures prior knowledge
about x.

Nonlinear Inverse Problems While linear inverse problems are already challenging to
solve, nonlinear problems are even more challenging and as opposed to linear problems,
they often results from black-box corruption processes:

y = s(x) (6)

where s in a black-box corruption process, often stochastic. Therefore, in general, well-
studied problem-dependent off-the-shelf regularizers cannot be used.

While using traditional supervised learning techniques to learn a mapping from y to x
would not produce good results as the mapping is ambiguous, normalizing flows as well as a
recent class of neural networks called invertible neural networks (INNs) have had particular
interest in solving this class of problems as they allow to learn a stochastic mapping from
y to x. Some INNs allow to directly learn the posterior p(x|y) (Ardizzone et al., 2018).
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2.2 Empirical Bayes

Given observed values Y = {yn}Nn=1 of random variables that depend on unobserved latent
variables X = {xn}Nn=1, empirical Bayes aims at finding a complete-data likelihood of the
model p(x,y|θ) parameterized by hyperparameters θ.

All the observed y′s are treated as if they were from the same population, which is
implicitly the case in the Bayes model as the x′s come from the same prior distribution
(Casella, 1985).

In empirical Bayes, all the information about θ is contained in the marginal likelihood
distribution:

p(Y) =

∫
p(X,Y)dX. (7)

which can be rewritten as

p(Y|θ) =

∫
p(X,Y|θ)dX. (8)

Instead of quantifying uncertainty over θ:

p(θ|Y) =

∫
p(θ,X|Y)dX (9)

empirical Bayes often set θ to their most likely values and therefore, is also referred as
maximum marginal likelihood.

Dempster et al. (1977) proposed the well known EM-algorithm that finds the maximum
likelihood θMLE of Equation 8 from observations Y by iteratively alterning between an
expectation step and a maximization step.

The expectation steps defines Q(θ, θ(i−1)) as the expected value of the complete-data
log-likelihood with respect to the unknown variables X given the observations and the
current estimate of the parameters θ(i−1):

Q(θ, θ(i−1)) = Ep(X|Y,θ(i−1))[log p(X,Y|θ)] (10a)

=

∫
log p(X,Y|θ)p(X|Y, θi−1)dx (10b)

Then, the maximization step finds θi that maximizes this function:

θi = arg max
θ
Q(θ, θ(i−1)) (11)

Many researchers have proved that each iteration is guaranteed to increase the marginal
likelihood and thus, the algorithm is guaranteed to converge to a local maximum.

2.3 Variational Inference

As opposed to empirical Bayes, in the fully Bayesian setting, the prior is postulated to be
known and the probabilistic model defines a joint p(x,y) = p(y|x)p(x) — here we assume
that we can evaluate the likelihood and therefore the joint. Inference consists in computing
the posterior p(x|y) which can be written as:

p(x|y) =
p(x,y)

p(y)
(12)
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However, the evidence p(y) is often not known in closed form or is intractable as it requires
to marginalizing out the latent variables:

p(y) =

∫
p(y,x)dx. (13)

Variational inference is a common machine learning framework that cast this inference
problem into an optimization problem. The idea is to find a member q from a distribution
family Q over the latent variables x that is the closest in Kullback-Leibler (KL) divergence
to the true posterior:

q∗(x|y) = arg min
q∈Q

KL(q(x|y)||p(x|y)) (14a)

= arg min
q∈Q

KL(q(x|y)||p(y|x)p(x)

p(y)
) (14b)

= arg min
q∈Q

[KL(q(x|y)||p(x))− Eq log p(y|x) + Eq log p(y)︸ ︷︷ ︸
log p(y)

] (14c)

Equation 14c cannot be optimized directly as it still requires to compute the evidence p(y).
Nonetheless, the evidence is constant with respect to q:

KL(q(x|y)||p(x|y)) = −Eq log p(y|x) +KL(q(x|y)||p(x))︸ ︷︷ ︸
−ELBO(q)

+ log p(y) (15)

and therefore, we can optimize the evidence lower bound (ELBO), an alternative to the
KL divergence up to a constant. Maximizing the ELBO, is equivalent to minimizing the
KL divergence. The first term of the ELBO is the expected log likelihood with respect
to the latent variables given the observations. It is also called the reconstruction term
and encourages q to place its mass on latent variables that explain the data. The second
term is a negative KL divergence between q and the prior which encourages the variational
distribution to stay close to the prior.

Variational Inference and the EM Algorithm

Neal and Hinton (2000) showed interesting connections between the EM algorithm and
variational inference. They show that in the EM algorithm and its variants, both the E and
M steps increase the same function:

F (q, θ) = Eq(x|Y) log p(x,Y|θ) +H(q) (16)

where H(q) is the entropy of the distribution q.
They show that if a local maximum of F occurs at q∗ and θ∗, then a local maximum

of the marginal likelihood p(Y|θ) occurs at θ∗ as well. We can therefore maximize the
marginal likelihood by maximizing F which can be rewritten as:

F (q, θ) = −KL(q(x|Y)||p(x|Y, θ)) + log p(Y|θ). (17)

2.4 Normalizing Flows

In variational inference, in order to find a variational distribution q that approximates the
posterior, one should postulate a distribution family Q flexible enough to model p(x|y).

10



Furthermore, it should be computational efficient to evaluate the density q(x|y) as the op-
timization problems defined in Equation 14 requests its computation in the ELBO term.
Normalizing flows (Rezende and Mohamed, 2015) are powerful statistical model well de-
signed for this task among others.

The idea is to construct a bijective mapping f : Rd −→ Rd such that y = f(z) where z is
a variable with a usually simple base density p(z). As f is invertible:

z = f−1(y) = f−1(f(z)). (18)

. In this setting, given y one can evaluate its density by simply inverting it and keeping
track of the Jacobian of the transformation:

ln(q(y)) = ln(p(z)) + ln |det
∂f−1(y)

∂y
| (19a)

= ln(p(f−1(y))) + ln |det
∂f−1(y)

∂y
| (19b)

where Equation 19a results from the change of variable theorem. Beyond evaluating densi-
ties, one can use the flow — once trained — to sample from the target density (represented
in Figure 1):

y = f(z), z ∼ p(z). (20)

Given a dataset of samples Y = {yn}Nn=1 from the target distribution p(y), the flow can be
trained by minimizing the Kullback–Leibler divergence between the flow density and the
target density:

f = arg min
q

KL(p(y)||q(y)) (21a)

= arg min
q

Ep(y)[ln q(y)] +�
��H(p)︸ ︷︷ ︸
Cst

(21b)

= arg min
f

Ep(y)[ln(p(f−1(y))) + ln |det
∂f−1(y)

∂y
|] (21c)

≈ arg min
f

1

N

N∑
n=1

ln(p(f−1(yn))) + ln |det
∂f−1(yn)

∂yn
| (21d)

In Equation 21a we formulate the objective. Then, we develop the KL term and rewrite the
entropy of the target distribution. The entropy can be omitted because it is constant with
respect to the distribution q that we optimize. In Equation 21c we develop the evaluation
of the density from the normalizing flow as defined in Equation 19a. Finally, in the final
step, we approximate the expectation over the target density with the dataset of samples
and Monte Carlo Integration.

As long as f(·) is a composition of invertible functions, f(·) is itself invertible. Therefore,
researchers have worked in developing such layers and many of them can be stacked to form
highly-flexible transformations. It is worth mentioning that a naive choice of f(·) would
imply a complexity O(d3) to compute the jacobian determinant. Therefore, researchers have
developed constrained function such that the computation of the Jacobian determinant is
computational efficient.
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Figure 1: Representation of normalizing flows.

Real-Valued Non-Volume Preserving Transformations

Real NVPs (Dinh et al., 2017) are expressive transformations with a tractable Jacobian
determinant. They use a common approach that is to design the transformation such that
the Jacobian is triangular and therefore, the Jacobian determinant can be computed in
O(d).

Given D dimensional variables z and y and d < D, the bijective mapping is defined as:{
y1:d = z1:d

yd+1:D = z1:d � exp(s(z1:d)) + t(z1:d)
(22a)

⇔

{
z1:d = y1:d

zd+1:D = (yd+1:D − t(y1:d))� exp(−s(y1:d))
(22b)

where � represents the element-wise product and the exp(·) and addition operators are as
well element-wise operators. The functions s(·) and t(·) are functions from Rd −→ RD−d and
can be arbitrarily complex as their Jacobians do not need to be computed to compute the
Jacobian determinant of the transformation f(.):

∂f(z)

∂z
=

(
Id 0

∂yd+1:D

∂z1:d
diag(exp(s(z1:d)))

)
(23a)

⇔ ln | det
∂f(z)

∂z
| =

D−d−1∑
j=0

s(z1:d)j (23b)

and therefore, s(·) and t(·) are usually designed by trainable neural networks. Thus, the
bijective mapping is entirely parametrized by the parameters θ of those neural networks but
for clarity, we omit them in this section and note fθ(·) as f(·) and similarly with f−1(·).

A similar reasoning allows to compute the log Jacobian determinant of the transforma-
tion f−1(·) as required by Equation 19a:

ln |det
∂f−1(y)

∂y
| = −

D−d−1∑
j=0

s(y1:d)j . (24)

12



Equation 24 can also be derived from the inverse function theorem:

ln | det
∂f−1(y)

∂y
| = ln |det

∂f(z)

∂z
|−1 (25a)

= −
D−d−1∑
j=0

s(z1:d)j (25b)

= −
D−d−1∑
j=0

s(y1:d)j (25c)

where the last equality comes from the fact that real NVP layers do not modify the first d
components of their inputs. This of course introduces flexibility limitations and therefore,
in practice variables are reversed between every layers so that there is no dimension that is
left unchanged during the full transformation. In practise, d is often rounded to the closest
integer to D

2 .

Unconstrained Monotonic Neural Networks

Wehenkel and Louppe (2019) proposed another class of bijective mapping called Uncon-
strained Monotonic Neural Networks (UMNNs). These networks are based on the fact
that a function is bijective as long as it is strictly monotonic or equivalently, as long as its
derivative is of constant sign.

Therefore, they model a scalar bijective mapping as:

z = f−1(y) (26a)

=

∫ y

0
gφ(t)dt+ f−1(0)︸ ︷︷ ︸

β

(26b)

where gφ : R −→ R+ is a strictly positive function — enforced by ELU activation increased
by one — and β ∈ R is a scalar. The function gφ can therefore be as complex as needed and
its only constrained is to be positive. As with real NVPs, this function is therefore often
defined by a neural network and the bijective mapping is entirely parametrized by φ and β.
For clarity, we do not explicitly write the dependence of f(·) and f−1(·) on these parameters.
The integration is efficiently approximated (numerically) using Clenshaw-Curtis quadrature.
UMNNs do not allow to compute f : Z −→ Y analytically and therefore, inversion should be
done using root-finding algorithms.

The gradient with respect to y can be trivially computed:

d

dy
f−1(y) = gφ(y) (27)

and the gradient with respect to the integrand parameters φ — required to train the network
— can be computed with the Leibniz integral rule:

∇φf−1(y) =

∫ y

0
∇φgφ(t)dt+∇φβ. (28)

In order to scale to multi dimensions, UMNNs can be combined with autoregressive trans-
formations that are widely used in normalizing flow architectures.

13



Similarly to real NVPs, the idea is to make the Jacobian of the transformation lower
triangular. To do so, the transformation is made autoregressive such that f−1(·) can be
rewritten as a vector of d scalar functions:

f−1(y) = [f−11 (y1), f
−1
2 (y1:2), ..., f

−1
d (y1:d)] (29)

where each f−1i (·) is a scalar function. The Jacobian of the function f−1(·) is indeed lower
triangular and making each scalar function bijective is sufficient to make f−1(·) bijective.

One can therefore build a normalizing flow architecture combining UMMNs and au-
toregressive transformations called UMNN autoregressive transformations (UMNN-MAF).
Each layer in Equation 29 is represented by a UMNNs:

f−1i (x1:i) =

∫ xi

0
giφi(t, hψi(x1:i−1))dt+ β(hψi(x1:i−1)) (30)

where hi
ψi

: Ri−1 −→ Rq is a q-dimensional neural embedding of the variables x1:i−1 and β
is a scalar function. Equation 30 is obtained from the definition of UMNNs in equation
26 where the function gφ(·) now has additional arguments to account for the new variables
x1:i−1 and similarly, the scalar β is transformed to a scalar function with arguments de-
pending on x1:i−1. The bijective mapping is therefore parametrized by θ = {φ, ψ}.

To sum up, normalizing flows are powerful statistical models that allow to define a bijec-
tive mapping between a target and a base density. This allows to sample from the target
distribution or evaluate its density. Each of these tasks have different complexity depending
on the flow architecture and therefore, the appropriate model depends on the application
at hand.
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3. Related Work

Differentiable programming. The recent advances in deep learning and differentiable
programming have leveraged the interest in (stochastic) gradient-based optimization. There
is unfortunately a gap between scientific simulators and differentiable mappings between
their inputs and outputs. Ullrich et al. (2019) filled this gap by implementing a differentiable
alternative of a projection simulator in electron microscopy. However, simulators sometimes
results of decades of engineering and cannot be rewritten easily. In these cases, experts rely
on differentiable surrogates of the simulators. For example, Walker et al. (2019) model
thousands of mouse’s neuron responses by a convolutional neural network (CNN) that they
latter use to find sensory stimuli that drive neurons optimally. In order to optimize the
free-parameters of a simulator, Shirobokov et al. (2020) learn a differentiable surrogate
during the optimization process in order to enable gradient-based optimization. Closely
related to our approach, Lueckmann et al. (2018) learn a differentiable surrogate of the
simulator that allows to evaluate the likelihood p(y|x). Then, given a prior distribution
p(x), one can do inference by evaluating p(y|x)p(x) ∝ p(x|y). As opposed to them, we do
not assume a known prior distribution. With an empirical Bayes approach, we learn a prior
distribution during the inference process that can be directly used to quantify uncertainty
over the parameters of interest or plugged together with the likelihood in a Markov Chain
Monte Carlo (MCMC) sampler.

Likelihood-free inference. Likelihood-free inference study how to learn the likelihood
ratio r(yobs; x0,x1) = p(yobs|x0)

p(yobs|x1)
or the posterior p(x|yobs) given an observation yobs. As

opposed to empirical Bayes that learns a distribution over the unseen data x given multiple
observations, in the likelihood-free inference literature, yobs is often a single observation.

The likelihood ratio is a powerful test statistics that allows to compute the goodness
of a parameter against a reference parameter. For example, Brehmer et al. (2018) learn a
likelihood ratio that can be used to constrain theory parameters in collider experiments.
The likelihood ratio can also be used to solve a maximum likelihood estimation problem
(Louppe, 2018). In our work, maximum likelihood estimation can be solved directly with
the learned surrogate likelihood.

Since Rubin (1984), Approximate Bayesian computation (ABC) methods have been
largely used to solve the problem of estimating the posterior in simulator-based inference.
They run the simulator repeatedly with different parameters and only accept parameters
that produce y′s close to the true observed data yobs. Then, the accepted x′s form an
empirical posterior p(x|yobs). Another well-known approach to approximate the posterior is
to create model of the likelihood by kernel or histograms, usually in 1-D (Diggle and Gratton,
1984). Then, inference can be done with standard tools as if the likelihood was known. Both
approaches suffer from the curse of dimensionality [Bishop (2006) & Bellman and Collection
(1961)] and therefore rely on domain-knowledge summary statistics. Similarly to the latter
approach, we build a model of the likelihood function. However, we take advantage of the
revolutions in deep learning that allow to work with high-dimensional data and to keep the
correlation between dimensions in the likelihood model.

With the recent advances in deep learning, sequential neural network-based methods
have emerged requiring much fewer simulations than traditional ABC methods and much
less domain knowledge. These methods are sequential in the sense that they alternate be-
tween an acquisition step guided by active learning where they run the simulator and an
optimization step. Lueckmann et al. (2018) and Papamakarios et al. (2019) sequentially
learn a density estimator of the simulator likelihood which allows once trained, to sample
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from the posterior by MCMC. Hermans et al. (2019) learn a density ratio proportional to
the likelihood which can be plugged into MCMC samplers while Papamakarios and Mur-
ray (2016), Lueckmann et al. (2018) and Greenberg et al. (2019) directly learn a density
estimator of the posterior. While the density ratio method of Hermans et al. (2019) and
the posterior-based method of Greenberg et al. (2019) had been compared and considered
distinct in the literature, Durkan et al. (2020) recently showed that they are actually in-
stances of a more general framework called contrastive learning. As opposed to sequential
methods, our work assume that the simulator is costly to run (and therefore avoided at
inference time) and that we do not have a known prior distribution. We maximize the
marginal likelihood of observed data through the surrogate likelihood in order to learn a
prior in the support allowed by the observed point. The learned prior and the likelihood
can then be used to approximate or sample independent data from the posterior.

For a broader review of simulator-based inference, Cranmer et al. (2020) provide an
overview of the rapidly evolving field as well as how machine learning revolutionizes it.

Empirical Bayes. Hong and Cheng (2018) detect careless or unmotivated responders
in research surveys. A first step in their method is to consider the responders as random
effects and learn the parameters of the underlying responder distribution. To do so, they
use domain knowledge to build a complete-data log-likelihood function that they can plug
in the well-known EM-algorithm (Dempster et al., 1977). Wu et al. (2018) and Krishnan
et al. (2019) learn a prior over the weights of Bayesian Neural Networks by approximating
empirical Bayes (Robbins, 1956) to allow variational inference. In our work, we build a
hierarchical model where the observations are independent on the population parameters
given the latent variables x. Given a surrogate that allows to evaluate an approximation
of the likelihood function, this allows to learn a neural network-based prior distribution
of the underlying population parameters by maximum marginal likelihood, with minimal
assumptions on the form of the prior.

Closely related to our work is Louppe and Cranmer (2019) that deal with the fact that
the simulator is non-differentiable by learning a prior distribution over the unseen variables
such that the marginal likelihood of reconstructed data — defined by the simulator and the
trainable prior — match the empirical distribution of observed data in a minimax problem.
This can be viewed as a form of empirical Bayes where the prior is optimized based on the
observed data. In our work, we build an estimator of the likelihood which allows to directly
maximize the marginal likelihood and thus, we do not need the simulator at inference.
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4. Surrogate Models

In this section we describe how we use normalizing flows to build a stochastic model of the
simulator from a dataset D = {xn,yn}Nn=1 of pairs of uncorrupted and corrupted data.

Given such a dataset and that the end goal is to do inference, rather than learning a
model of the simulator — i.e. a stochastic mapping from x to y — one could be interested
in directly learning a stochastic mapping from y to x (Kruse et al., 2019; Ardizzone et al.,
2019). Yet, for many simulators and experiment setups, this might not be the best way to
tackle the problem.

First, the stochastic mapping from x to y results from a true underlying process and
given a flexible model enough, can be approximated precisely well. On the other hand, the
stochastic mapping from y to x is ambiguous and is usually much more difficult to learn.

Second, suppose that the uncorrupted data in D have been generated from a proposal
prior p̃(x). Then, if someone learns a stochastic mapping from y to x such that the mapping
approximates the posterior, the learned distribution is:

p̃(x|y) =
p(y|x)p̃(x)

p̃(y)
(31)

where p̃(y) is the evidence
∫
p(y|x)p̃(x)dx.

Suppose now that we want to do inference on data drawn from another prior p(x) — for
example a tighter prior or a prior concentrated in a region of interest. Then, the target
posterior is:

p(x|y) =
p(y|x)p(x)

p(y)
(32)

where p(y) =
∫
p(y|x)p(x)dx. So, the stochastic mapping learned beforehand does not

approximate the target posterior but rather approximates a proposal posterior and the two
are linked by:

p̃(x|y) = p(x|y)
p̃(x)p(y)

p(x) ˜p(y)
(33)

where the last equality is obtained by combining equations 31 and 32.

This kind of situation is not uncommon in practise. For example, one can be interested in
doing inference on a stochastic detector whose inputs are themselves results of simulations.
If the input data generator is tuned over time or run with other arguments producing data
with a different distribution, a previously trained model of the posterior distribution of the
detector would not approximate the target distribution.

On the other hand, directly learning a mapping from x to y — learning the likelihood
— does not suffer from this issue (Papamakarios et al., 2019). Indeed, for large N , training
a density estimator qθ(y|x), approximation of p(y|x) by maximizing the total log likelihood∑N

n=1 log qφ(yn|xn) — where the data have been drawn from p̃(x,y) = p(y|x)p̃(x) — is
approximately equivalent to maximizing:
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Ep̃(x,y) log qφ(y|x) = Ep̃(x)Ep(y|x) log qφ(y|x) (34a)

= Ep̃(x)
∫

log qφ(y|x)p(y|x)dy (34b)

= Ep̃(x)
∫

(log qφ(y|x) + log p(y|x)− log p(y|x))p(y|x)dy (34c)

= Ep̃(x)
[∫

(log qφ(y|x)− log p(y|x))p(y|x)dy +H(p)

]
(34d)

= −Ep̃(x) [KL(p(y|x)||qφ(y|x))] +�
��H(p). (34e)

In the first line we factorize the joint distribution. Then, in the next line we expand
the expectation definition and in Equation 34c we introduce the log-likelihood which will
later allow us to write the Kullback–Leibler divergence. In Equation 34d we develop the
integrand and rewrite the entropy of the likelihood distribution. Finally, in the last line we
rewrite the integral using the KL divergence definition and develop the expectation over
p̃(x) taking into account that H(p) is a constant with respect to p̃(x).

The above quantity is maximized when qφ(x|y) = p(x|y) in the support of p̃(x). This
means that as long as the proposal prior p̃(x) do not exclude parts of the prior space, no
matter the shape of the proposal, the learned distribution approximates the true likelihood
everywhere. This suggests that one could build a dataset with a broad proposal of any
shape and use it to train a surrogate to do inference in different subdomains. Thus, after
an upfront expensive simulation phase, inference is amortized as the surrogate can be used
as a proxy of the simulator everywhere in the support of the proposal prior.

Now, let us focus on how we use normalizing flows to build a model of the simulator or
in other words, learn a stochastic mapping from x to y maximizing Equation 34. Note that
the latter equation and the objective introduced to train normalizing flows (Equation 21b)
are the same up to the conditioning variables x.

Real NVP layers can be adapted to produce conditional layers. As the scale network
s(.) and translation network t(.) can be any function in Rd, we concatenate the conditioning
data x to their inputs. This allows to define a bijective mapping f(.; x) between z and y
conditioned on x:

{
y1:d = z1:d

yd+1:D = z1:d � exp(s(z1:d; x)) + t(z1:d; x)
(35a)

⇔

{
z1:d = y1:d

zd+1:D = (yd+1:D − t(y1:d; x))� exp(−s(y1:d; x)).
(35b)

This allows to sample from p(y|x) or evaluate its density (Figure 2). It is also possible to
condition the base density p(z) on x even though it is not a common practice.
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Figure 2: Representation of conditional normalizing flows.

UMNN-MAF layers can also be adapted to produce conditioning layers. This is done
by concatenating the conditioning variable x to the inputs of the embedding network from
Equation 30:

f−1i (y1:i) =

∫ yi

0
giφi(t, hψi(y1:i−1; x))dt+ β(hψi(y1:i−1; x)). (36)

In the rest of this dissertation, we assume that we have a trained surrogate model of
the simulator. Therefore, we assume that we can evaluate the likelihood p(y|x) (or at least,
approximate it) and sample from the surrogate. We note the surrogate likelihood p̃(y|x) but
for clarity, in the rest of this dissertation, when it is clear that the likelihood is evaluated
by the surrogate, we simply write p(y|x). We use the notation S(·; x) for the function
S : Z −→ Y that approximates a stochastic simulation with parameters x.

Interestingly, the dimensions of the variables that we are doing inference on and the
variables that we observe do not need to be the same which is a powerful asset. For
example, x can be a high resolution image that we perform optimization on while y can
be its observed low-resolution counterpart. Or y can be a grey image that we are trying to
color by optimizing x, a three channel image. Among others, this is specifically interesting
in scientific imaging where we are trying to retrieve a Rd+1 structure from Rd observations,
such as a 3-D protein structure from 2-D microscope observations (Ullrich et al., 2019).
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5. Inference

This section is divided in four parts. In Part 5.1, we focus on point estimation and then,
in Part 5.2 we introduce uncertainty quantification. In Part 5.3, we switch to multiple
observations and learn a prior distribution over the unseen parameters. Finally, in Part 5.4,
given multiple observations, we first learn a prior as described in Part 5.3 and then, we use
it with the surrogate likelihood to do inference on each observed variable.

The main novelty of our work rely on how we use the surrogate in the optimization
processes. We take advantage of normalizing flow surrogates that allows us to evaluate an
approximation of the simulator likelihood. We then make an implicit model assumption.
We assume that given parameters x, the observed data y is independent on the random
variable θ, the hyperparameters of the distribution over x. This is depicted in Figure 3.
We do not learn a distribution on θ but we rather try to find its most likely estimate as it
is commonly done in empirical Bayes. Then, given this assumption, we combine generative
modelling, Monte Carlo integration, the reparameterization trick, and standard statistics
methods to design powerful inference algorithms.

Figure 3: (Left) Bayesian model with global variables θ. (Right) Hierarchical model where
y is independent on θ given x.

In Part 5.1, we simply highlight that the surrogate can be used directly to solve a
maximum likelihood estimation (MLE) or constrained MLE problem.

In Part 5.2, we introduced four methods that go beyond point estimation and learn a
distribution over the unseen variables. Given our assumptions, they require a differentiable
surrogate of the simulator that allows to evaluate the likelihood — the last requirement
is not needed for one of the approach. They do not need the true simulator nor domain
knowledge at inference. Apart from one method, they train a model of the distribution of
interest whose only constraint is that it should be sampled from efficiently. They do not
need to evaluate its density during training. This suggest computationally efficient methods
that should be applicable on high-dimensional problems as they do not require to compute
the log Jacobian determinant at each training step.

In Part 2.2, we generalize one of the method proposed in the previous point to multiple
observations.

In Part 5.4, we highlight how four standard inference methods can be used to learn a
posterior for a given observation given the surrogate likelihood and a prior learned from
multiple observations (Part 2.2). The inference process is fast and amortized as after an
upfront expensive data acquisition and surrogate training phase, a prior is learned only once
and then, these quantities are fixed and can be used to do inference.
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5.1 Point Estimation

As highlighted in section 2.1, a common approach to solve inverse problems is to solve the
maximum a posteriori (MAP) estimation problem. This requires the likelihood function
and a prior distribution. In our experiments, we study significantly different simulators for
which we build a surrogate that allows to evaluate the likelihood but we assume few prior
knowledge and as opposed to well-studied problem, we do not have access to off-the-shelf
regularizers.

We will therefore focus on maximum likelihood estimation (MLE) which is also a com-
mon approach to solve inverse problems. Note that solving the MLE problem is substantially
different than solving the MAP estimation problem. In the first case, the question answered
is: For which x, the observation y is the most likely to be produced? while in the latter case,
the question is rather: Given this observation, which x is the most likely to have produced
it? (Renaud Foy, 2002).

Maximum Likelihood Estimation

Experimental results show that even if the surrogate likelihoods are in general non convex
and that no regularizers are used, we are able to properly retrieve plausible x′s that may
have generated observed y′s. To do so, we optimize by gradient ascent:

xt+1 = xt + γ∇x log p(y|xt) (37)

where γ is a learning rate and x0 is randomly initialized.

Constrained Maximum Likelihood Estimation

Despite good empirical results when solving the maximum likelihood problem, MLE alone
is often unable to properly solve inverse problems. Therefore, a common approach is to
rather solve the constrained maximum likelihood estimation problem:

x∗ = arg max
x

log p(y|x) s.t. x ∈ S (38)

where S is a set that captures prior knowledge about x, such as positiveness.
Constrained MLE is not a too strong assumption. For example, in science and technol-

ogy it is common to have variables that are naturally constrained. Namely, we know that
the mass of a particle should be positive or that pixel values are bounded by the application
dynamic range.

To ensure such constraints, we use the following reparametrization:

x = h(z) (39)

where h(·) is a constrained function (possibly parametrized) and z is the new optimized
variable. The constrained problem 38 therefore becomes:

z∗ = arg max
z

log p(y|h(z)) (40a)

x∗ = h(z∗). (40b)

Note that h(·) should be differentiable to allow backpropagation. For instance, to ensure
positiveness, h(·) can be the rectified linear unit. If we want to constraint x such that
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x ∈ [α, β], we can design h(·) such that:

x = h(z) (41a)

= (α− β)Sigmoid(z) + β (41b)

In image reconstruction, Ulyanov et al. (2017) interestingly show that when the function
h(·) is a deep convolutional network, the network itself acts as a regularizer that constrains
x in the space of natural-like images.

When the prior is uniform and that the constrained function ensure that the solution lies
within the prior space, solving the MLE problem is equivalent to solving the MAP estimation
problem. At the same time, anyone who is solving the problem defined in Equation 5 with
a mean-squared error loss:

x∗ = arg min
x
||Ax− y||2, s.t x ∈ S (42)

is implicitly solving a constrained maximum likelihood problem — or a maximum likelihood
problem if the solution is not constrained. Therefore, when using a mean-squared error,
constrained maximum likelihood is a generalization of Equation 5 and is well justified. This
is shown in Appendix A.

Empirical Prior From Single Estimates

Now, rather than having a single observation, let us assume that we have observed a large
number of events Y = {y1, ...,yN}. One’s goal could be to form estimates x̂1, ..., x̂N of the
x′s that have generated the observations or to learn a distribution over the population x.

A first naive approach would be to learn for each observation yi its most likely estimate
x̂i such that p(yi|x̂i) is maximized. Efron (2019) shows that one can effectively do better
by considering the observations as a whole rather than treating them independently. We
will discuss this problem in Section 5.3.

We experimentally show that given a large number of observations, we can learn indi-
vidual estimates x̂1, ..., x̂N of the true uncorrupted data and that these estimates can be
binned to form a plausible empirical prior distribution over x. This process can be efficiently
parallelizable and is fast. Therefore, if someone is interesting in learning a distribution over
the unseen variables x, the proposed method can be used to gather prior knowledge before
a more complex optimization loop.

5.2 Density Estimation

Given a single observation yobs we aim at finding a distribution over the latent variables
x that may have produced this event. As we can approximate the likelihood through the
learned surrogate, if we had a prior over x, we could sample from the posterior with Markov
Chain Monte Carlo (MCMC) or solve a variational inference problem to learn the posterior.
Therefore, in this section we will not operate in a fully Bayesian setting but rather introduce
four methods that can learn a distribution over x without a known prior distribution. First,
we show how we use Empirical Bayes to learn a prior distribution over the latent variables
in the support allowed by the observation. Then, we show how to constrain this distribution
such that it stays close to the posterior. Third we show how the EM algorithm an be used
given our assumptions. Finally, we show how to learn a distribution such that it generates
parameters whose simulator’s outputs are close to the observed data given a defined loss.
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N=1 Empirical Bayes

As postulated in Section 2.2, empirical Bayes aims at finding population parameters that
maximize the marginal likelihood. As opposed to equation Equation 8, we do not operate
with a dataset of observations Y but with a single observation yobs:

p(yobs|θ) =

∫
p(x,yobs|θ)dx. (43)

As already mentioned, in order to maximize Equation 43, we build a hierarchical model
and assume that y is independent on θ given x (figure 3). Then, as opposed to a fully
Bayesian analysis, we do not try to learn a distribution on θ but we find its most likely
values as it is commonly done in empirical Bayes. So, Equation 43 is maximized directly
with respect to θ rather than being integrated (again with respect to θ). The optimization
problem is therefore:

θ∗ = arg max
θ

log p(yobs|θ) (44a)

= arg max
θ

log

∫
p(yobs|x, θ)p(x|θ)dx (44b)

= arg max
θ

log

∫
p(yobs|x)p(x|θ)dx. (44c)

The first line maximizes the marginal likelihood with respect to the prior hyperparame-
ters. Then, the second line comes from marginalizing x and rewriting the joint probability
distribution using the definition of conditional probabilities. Finally, the last line uses the
hierarchical model assumption.

Our aim is to model p(x|θ) by a neural-density estimator qθ(x) — a normalizing flow
— and optimize θ, the parameters of the normalizing flow. The flow should allow us to
differentially sample x′s from a base density p(ε) as x = f(ε), ε ∼ p(ε) and to approximate
the density p(x|θ) by qθ(x). The first condition is a strong requirement that should be met
in order to train the model as will be explained below. However, during the optimization
process, it is not required to evaluate the density qθ(x) and therefore, if the end-goal is only
to learn a distribution that can be sampled from but not evaluated, any generative model
that allows to differentially sample x from a base density can be used. We train the flow
by setting its parameters θ to the most likely values of Equation 44. We therefore aim to
solve by gradient ascent:

θ∗ = arg max
θ
L(θ) (45)

with L(θ):

L(θ) = log

∫
p(yobs|x)qθ(x)dx (46a)

= logEqθ(x)p(yobs|x) (46b)

= logEp(ε)p(yobs|fθ(ε)) (46c)

≈ log
1

N

∑
ε∼p(ε)

p(yobs|fθ(ε)) (46d)

The first line results from Equation 44 where the prior has been approximated by the density
estimator qθ(x). In the second line we rewrite the integral as an expectation and in the
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third line we apply the law of the unconscious statistician (LOTUS). Finally, the last line
approximates the expectation (46c) with Monte Carlo integration.

Maximizing Equation 46 by gradient ascent requires the gradient signal from the sur-
rogate model. There is a whole literature about Monte Carlo gradient estimation and for
example, one can compute the gradient of L(θ) without having to backpropagate through
the surrogate — called a score function gradient estimator (Mohamed et al., 2019). There
are many competing approaches in Monte Carlo gradient estimation and they mainly differ
in their bias and variance properties as well as their computational requirements. Using
such estimators may allow us to have less noisy gradients but is left for future work.

In our experiments, we applied the log-sum-exp trick to L(θ) and used PyTorch (Paszke
et al., 2019) to compute gradients by automatic differentiation. The log-sum-exp is a convex
function (Boyd and Vandenberghe, 2004) that allows to compute a sum of exponentials in
a numerical stable way and is defined as:

logSumExp(x1, ..., xn) = log [exp(x1) + ...+ exp(xn)] (47a)

= x∗ + log [exp(x1 − x∗) + ...+ exp(xn − x∗)] (47b)

where x∗ is the maximum value in {x1, ..., xn}. Intuitively, when x∗ is substantially higher
than the other variables, it contributes to most of the value of Equation 47 and the value
of the equation is close to the value of x∗. Therefore, rewriting the equation allows to avoid
numerical error on this most interesting variable and numerical errors in the second part
of Equation 47b are less important. Or for example, when all variables are of constant
sign and highly positive or highly negative, subtracting them by x∗ allows to shift all the
variables towards zero which allows more stable computations.

Therefore, Equation 46d is computed as:

log
1

N

∑
ε∼p(ε)

p(yobs|fθ(ε)) = log
∑

ε∼p(ε)

p(yobs|fθ(ε))− logN (48a)

= log
∑

ε∼p(ε)

exp log p(yobs|fθ(ε))− logN (48b)

= logSumExpε log p(yobs|fθ(ε))−���logN (48c)

where the first line comes from applying the logarithm product and power rules, the second
line rewrites the likelihood using an identity operator that will allow us to write the log-sum-
exp trick. Finally, in the last line, we rewrite the equation using the notation logSumExp
to refer to the log-sum-exp trick operator. As logN is constant with respect to θ, it can be
omitted when doing gradient optimization.

Before concluding with this method, let us focus on the defined loss. Given Equation
46b, the objective is maximized when the distribution qθ(x) is a sum of dirac functions
where the likelihood is maximum. Or in other words, when the learned distribution only
generates points where the likelihood is maximum. When the likelihood function has finite
number of global maximum, this means that the problem is optimized when the learned
distribution degenerates to the most likely estimates. This is not specifically a bad behaviour
and depends on what is expected. For example it can be an alternative to maximum
likelihood estimation in order to retrieve different modes. There exists problems, where
there are many equally likely x′s that could have generated an observation, and therefore,
the method proposed here allows to learn a distribution over the unseen parameters. It is
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worth mentioning that the generative model used to model the distribution may act as a
regularizer and avoid mode collapse even when there is a single most likely estimate.

Expected Log Likelihood

As explained, the hereabove defined method tends to collapse to the most likely estimates
of the problem - when there are finite. We show that it is possible to avoid such behaviour
for example by constraining the distribution qθ(·) by maximizing:

L(θ) = Eqθ(x) log p(yobs|x). (49)

As the logarithm is a concave function, losses defined in Equation 46 and Equation 49
are linked by Jensen’s inequality:

Eqθ(x) log p(yobs|x) ≤ logEqθ(x)p(yobs|x). (50)

So, maximizing the expected log likelihood with respect to the variational prior distri-
bution is maximizing a lower bound on the maximum marginal likelihood loss. Let us study
the interval between these two quantities. By the Bayes rule, we know that:

log p(yobs|θ) = log p(yobs|x) + log qθ(x)− log p̃(x|yobs, θ) (51)

where p(yobs|θ) =
∫
p(yobs|x)qθ(x)dx, p̃(x|yobs, θ) = p(yobs|x)qθ(x)

p(yobs|θ) and the dependence of θ
in the likelihood function has been removed due to the hierarchical model assumption. If
we take the expectation over qθ(x) on each side of Equation 51:

log p(yobs|θ) = Eqθ(x) log p(yobs|x) + KL(qθ(x)||p̃(x|yobs, θ)) (52)

or equivalently:

Eqθ(x) log p(yobs|x) = log p(yobs|θ)−KL(qθ(x)||p̃(x|yobs, θ)). (53)

In other words, the difference between the two losses is the Kullback–Leibler divergence
between the variational prior and the posterior distribution. The first term of the loss
defined in Equation 49 is the maximum marginal likelihood and can be compared to a re-
construction term that encourages q to put its mass where the likelihood is maximized. The
second term is the negative Kullback–Leibler divergence between the learned distribution
and the posterior which constrains the solution to remain close to the posterior. This allows
to learn broader distributions over x and was confirmed in experimental studies.

EM algorithm

Given the hierarchical model assumption and taking advantage of the fact that we can
compute the likelihood, we can as well use the EM algorithm. Under the hierarchical model
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assumption, the expectation step defined in Equation 10 can be rewritten as:

Q(θ, θ(i−1)) =

∫
log [p(X,Y|θ)] p(X|Y, θi−1)dX (54a)

=

∫
log [p(x,yobs|θ)] p(x|yobs, θi−1)dx (54b)

=

∫
log [p(x,yobs|θ)]

p(yobs|x)qθi−1(x)

p(yobs|θi−1)
dx (54c)

∝
∫

log [p(x,yobs|θ)] p(yobs|x)qθi−1(x)dx (54d)

= Eqθi−1 (x) log [p(x,yobs|θ)] p(yobs|x) (54e)

= Eqθi−1 (x) log [p(yobs|x)qθ(x)] p(yobs|x) (54f)

In the first line, we use the definition of Q(θ, θ(i−1)). In the second line, we highlight
that there is a single observation yobs. Then, in the third line we use the Bayes rule, model
the prior distribution by a variational prior and and use the hierarchical model assumption
in order to remove the dependency on θ in the likelihood term. In Equation 54d, as the
purpose of the expectation step is to define a function that will be optimized with respect
to θ, the evidence can be removed as it is positive and constant with respect to x and θ.
Then, in Equation 54e we rewrite the integral as an expectation and finally, in the last line,
we rewrite the joint distribution using the hierarchical model assumption.

The maximization step is unchanged and aims at finding θ that maximizes Equation 54.
We search this value by gradient ascent.

Concretely, in the expectation step, we generate a dataset D of latent variables from
the current estimate of qθi−1 . Then, in the maximization step, we optimize Q(θ, θi−1) by
gradient ascent:

θi = θi−1 + γ∇θQ(θ, θi−1) (55a)

= θi−1 + γ
∑
x∈D
∇θ log(p(yobs|x)qθ(x))p(yobs|x) (55b)

where γ is a learning rate. This procedure is depicted in Algorithm 1. The algorithm
follows the same structure as sequential neural network-based algorithms in likelihood-free
inference. That is, it is sequentially composed of step that generates a dataset and then, the
parameters of the density estimator are optimized with respect to the generated dataset. In
our case, we only generate a dataset of uncorrupted data while sequential methods generate
pairs of uncorrupted and corrupted data by running the simulator.

In the EM algorithm, each iteration is guaranteed to increase the marginal likelihood and
thus, the algorithm is guaranteed to converge to a local maximum. However, we approximate
the maximization step by gradient descent rather than computing it analytically as it is
commonly done. Therefore, there is no guarantees that each iteration will indeed increase
the marginal likelihood. Nonetheless, experimental results show a clear increase between
each step before convergence.
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Algorithm 1 EM algorithm

Inputs: Surrogate model p(y|x), Density estimator qθ(x),
Observation yobs, Number of iterations N ,
Number of points to estimate the expectation M

Outputs: Trained density estimator qθ(x)

1: for n = 1 : N do
2: D = {}
3: sample x1:M ∼ qθ(x)
4: add x1:M into D
5: while not converged
6: L(θ)←− −

∑
x∈D log(p(yobs|x)qθ(x))p(yobs|x)

7: θ ←− Optimizer(θ,L(θ))
8: end while
9: end for

Handcrafted Loss

Finally, we can use a handcrafted loss. Here, the idea is to learn a distribution that generates
data such that when corrupted, there are close to the observation given a defined distance
metric:

L(θ) = Epθ(z,x)C(yobs,S(z,x)) (56a)

= Ep(z)Eqθ(x)C(yobs,S(z,x)) (56b)

= Ep(z)Ep(ε)C(yobs,S(z, fθ(ε))) (56c)

where C is an appropriate cost function between the observation and the regenerated data
such as the least-squared error. The first line defines the loss as the expectation of a cost
function. The expectation is taken over the joint of the variables that drive the stochasticity
of the surrogate simulator and the distribution over x that we try to lean. The second lines
comes from the independence of these variables and we apply the law of the unconscious
statisticians in the last line.

This loss can be useful if we have a differentiable surrogate or directly a differentiable
simulator but that we cannot evaluate the likelihood. However, this is substantially different
than solving the three other problems as we will rather find a distribution over x that
maximizes a cost function between regenerated y′s and the observation and therefore, we
will not learn a prior distribution.

5.3 Empirical Bayes

In this section, we assume that we have observed a large number of i.i.d. events Y =
{y1, ...,yN} and we are interested in learning an underlying population distribution over x.
Therefore, as opposed to Section 5.1, we do not try to learn the hidden variables xi for each
observation. We focus on the later problem in Section 5.4 where the distribution learned in
this section allows to amortize the inference process.

Similarly to Section 5.2, we model the distribution over x, p(x|θ) by a neural-density
estimator qθ(x) and optimize its parameters θ. The density estimator should allow us to
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differentially sample x′s from a base density p(ε) as x = f(ε), ε ∼ p(ε) and to approximate
the density p(x|θ) by qθ(x) but only the former condition is required by the optimization
process. So, the distribution over x could be technically modeled by any differentiable
generative model.

In order to learn the parameters θ, we maximize the marginal likelihood of observed
data with the hierarchical model assumption made in Section 5.2:

max
θ
p(Y|θ) = max

θ

N∏
j

p(yj |θ) (57a)

= max
θ

N∏
j

∫
p(yj |x)qθ(x)dx (57b)

= max
θ

N∏
j

Eqθ(x)p(yj |x) (57c)

= max
θ

N∏
j

Ep(ε)p(yj |fθ(ε)) (57d)

≈ max
θ

N∏
j

1

M

M∑
ε∼p(ε)

p(yj |fθ(ε)). (57e)

In the first line, we rewrite the marginal likelihood of the observed data taking into
account that the data are independent and identically distributed. In the second line,
we rewrite the individual marginal likelihoods and remove the conditioning on θ in the
likelihood p(y|x) given the hierarchical model assumption. Then, in the third line, we
rewrite the integral as an expectation and in the fourth line, we use the LOTUS theorem.
Finally, in the last line, we approximate the integral with Monte Carlo integration.

As it is often done in statistics, we do not maximize the marginal likelihood directly but
rather maximize the logarithm of the marginal likelihood which is numerically more stable.
We also use the log-sum-exp trick and therefore maximize:

max
θ

log(p(Y|θ)) ≈ max
θ

log

 N∏
j

1

M

M∑
ε∼p(ε)

p(yj |fθ(ε))

 (58a)

= max
θ

N∑
j

log

 1

M

M∑
ε∼p(ε)

exp(log(p(yj |fθ(ε))))

 (58b)

= max
θ

N∑
j

log

 M∑
ε∼p(ε)

exp(log(p(yj |fθ(ε))))

−N logM (58c)

= max
θ

N∑
j

logSumExpε (log(p(yj |fθ(ε))))−�����N logM. (58d)

In the first line, we take the logarithm of Equation 57e. Then, we use the logarithm
product rule and introduce an identity term that will allow us to use the log-sum-exp trick.
In the third line, we use again the logarithm product rule and remove logM from the sum
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over j. Finally, in the last equation, we rewrite the log-sum-exp operator and N logM can
be omitted as it is constant with respect to θ.

In the limit, for a large number of observations N , maximizing the data marginal like-
lihood is equivalent to minimizing the Kullback–Leibler divergence between the target dis-
tribution p(y) and the learned marginal likelihood q(y|θ) =

∫
p̃(y|x)qθ(x)dx2:

KL(p(y)||q(y|θ)) = Ep(y) [log(p(y)− log q(y|θ))] (59a)

= −Ep(y) [log q(y|θ)] +H(p) (59b)

≈ − 1

N

N∑
j

log q(yj |θ) +���H(p). (59c)

In the first line, we use the definition of the Kullback–Leibler divergence. Then, in the
second line, we develop the expectation and rewrite the entropy of the target distribution.
Finally, in the third line, we approximate the expectation with Monte Carlo integration
from the observed dataset Y and the entropy term can be omitted as it is constant.

Minimizing Equation 59c is equivalent to maximizing Equation 57a (up to a constant
1
N ) as the logarithm is a monotonic function. Therefore, Equation 58 is optimized when the
Kullback–Leibler divergence is minimized or equivalently, when the learned marginal likeli-
hood equals the target evidence distribution. This means that in theory, we are guaranteed
to learn a distribution qθ(x) such that when corrupted by the surrogate model, reproduces
the target distribution p(y):

p(y) = qθ(y|θ) (60a)

=

∫
p̃(y|x)qθ(x)dx. (60b)

where the first line results from Equation 59 that is minimized when p(y) = qθ(y|θ). Then,
we develop the definition of the learned marginal likelihood by marginalizing over x.

Therefore, the problem is optimized when the learned distribution qθ(x) is such that
equation 60b holds, or in other words, such that when corrupted by the surrogate model,
reproduce the distribution p(y). Even if the surrogate model was a perfect approximation of
the likelihood function p(y|x), depending on its shape, there may exist different solutions to
the problem. If the surrogate model approximates perfectly well the likelihood function, the
exact distribution p(x) over unseen data will belongs to the set of solutions that optimize
the problem. However, there is no guarantee to converge to this solution among the others.
In that matter, proper regularization should be introduced.

5.4 Amortized Inference

In this section, we assume that we have observed a large number of i.i.d. events Y =
{y1, ...,yN} and that we are interested in learning the hidden variables xi for each obser-
vation.

The surrogate model allows us to evaluate an approximation of the likelihood function
and as explained in Section 5.3, we can learn a prior distribution over the unseen variables.

2. Until now, the true likelihood p(y|x) and its approximation p̃(y|x) have been used interchangeably, for
clarity. Here, we explicitly state the difference between them because it impacts the learned marginal
distribution q(y|θ).
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In this section, we highlight how these two quantities can be used to do inference and
learn a posterior for each observed variable. Each of the proposed methods have their own
strengths and drawbacks, and a full comparison between them is beyond the scope of this
dissertation. Therefore, we only superficially state some strengths and drawbacks given our
setting.

Rejection sampling

In all generality, the only requirements to learn a prior as explained in Section 5.3 is that
the prior model can be easily sampled from. We show here how given such a prior and the
an approximation of the likelihood one can sample from the posterior without additional
requirements. Given an observation y, rejection sampling iteratively sample a data point
x from the prior as well as a random variable u from a uniform distribution U(0, 1) and
accept the data point if:

u <
p(y|x)

M
(61)

where M is a constant that should meet the requirement:

M > p(y|x), ∀x. (62)

Choosing the constant M is therefore the most critical part of this method. This can
be done by sampling a large number of x′s and evaluating empirically the maximum value
of the likelihood.

The algorithm can be efficiently parallelizable. The first step consists in sampling many
x′s, which can be done in constant time on graphics processing unit (GPU) given enough
memory. Then, the likelihood of each x should be evaluated which can also be done in
parallel in constant time and M is defined as the maximum value of these likelihoods. To
finish, a random variable can be sampled and associated to each x, and only points that
meet the requirement defined in Equation 61 are kept. The last two steps are also efficiently
parallelizable.

Importance Sampling

As in the previous point, importance sampling only requires to sample from the prior and
not to evaluate its density. By sampling from the prior distribution and weighting samples
by the likelihood, one can infer properties about the posterior, for example by plotting the
weighted distribution. It is also possible to compute the expected value of the posterior
distribution from the weighted samples. Indeed,

Ep(x|y)[x] =

∫
xp(x|y)dx. (63a)

=

∫
1

Z
xp(x)p(y|x)dx. (63b)

= Ep(x)[
1

Z
xp(y|x)] (63c)

where in the first line, we rewrite the definition of the expectation. Then, in the second
line, we use the Bayes rule and rewrite p(y) as Z. Finally, in the last line we rewrite the
expectation with respect to p(x).

Therefore, if we knew the normalizing constant Z, we could approximate the expected
value of the posterior distribution by sampling data points from the prior distribution and
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weighting them by p(y|x)
Z . Fortunately, it can be showed that the normalizing constant can

be approximated by the mean of the non-normalized weight, that is by the mean of the
sample likelihoods.

Importance sampling is interesting here as it can also be highly parallelizable. Given
enough GPU memory, a large number of data points can be sampled in constant time.
Then, evaluating their likelihood can also be done in parallel in constant time.

Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) allows to sample from a distribution when all we can
do is evaluate its density (or the density up to a constant factor)3.

Therefore, if we can evaluate the likelihood and the prior, we can evaluate the posterior
up to a constant term and sample form it with a MCMC sampler. In order to evaluate
the prior, a density estimator of the distribution over the unseen data should be trained as
described in Section 5.3 but now, it is no longer sufficient to model the prior distribution
with any generative model. The generative model should allow to evaluate the density
qθ(x). Depending on the model chosen, the prior density may also be differentiable and as
the likelihood function defined by the surrogate is differentiable as well, one can use MCMC
samplers that require to compute the derivatives with respect to the latent variables such
as Hamiltonian Monte Carlo.

Unfortunately, MCMC samplers cannot be used without careful checks and proper tun-
ing. Moreover, these algorithms are not easily parallelizables and therefore can be slow to
run, especially when the densities are evaluated by Neural Networks.

Variational inference

Finally, in order to go beyond sampling or estimating the properties of the posterior, one
can use variational inference in order to directly learn a density estimator of the posterior.
This allows, once trained to directly sample from the posterior or evaluate the density of
data points. If the learned model of the prior allows to differentially evaluate the density
qθ(x), it is possible to maximize the evidence lower bound defined in Equation 15 to fit a
density estimator on the posterior distribution.

3. For a clear review about MCMC, van Ravenzwaaij et al. (2016) provide a simple introduction to Markov
Chain Monte Carlo.
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6. Results

In this section, we illustrate the methods defined hereabove. First, we introduce four bench-
mark simulators inspired by the literature. Then, we show how the surrogate model can be
used alone to a solve standard maximum likelihood estimation problem. Afterwards, we go
a step further and learn a prior density over the unseen source data, first when there is a
single observation and then, when the number of observations increases. Finally, we show
how the learned prior and the surrogate model can be used together to learn a posterior
distribution over unseen source data.

Before presenting our results, let us introduce a few terms.

Proposal prior. In order to train the surrogate model, pairs of source data and corrupted
data should be generated. Once the surrogate is trained, our methods require minimal
domain knowledge. However, choosing a distribution from which training source data should
be sampled is a crucial step and may require domain knowledge. We refer to this distribution
as the proposal prior.

Regenerated data. When we learn a point estimate x̂, we may want to use the sim-
ulator M to run simulations with x̂ as parameters to see how regenerated data compare
with a target observation. Or in other words, we call regenerated data, samples from the
distribution p(y|x̂). When we learn a density p̃(x) over x rather than a point estimate, we
called regenerated data, samples from the distribution:

p(ŷ) =

∫
p(y|x)p̃(x)dx. (64)

Reconstruction error. Given generated data, we may want to compute a distance be-
tween these data points and a target observation yobs. Therefore, when a point estimate x∗

is learned, unless stated otherwise, we define the reconstruction error as:

Err = Ep(y|x∗)||y − yobs||22. (65)

When we learn a density over x rather than a point estimate, unless stated otherwise, the
reconstruction error is defined as:

Err = Ep(y|x)p̃(x)||y − yobs||22. (66)

Distance to ground truth parameters. When doing inference on an observed variable
yobs generated by ground truth parameters x∗, we may want to compute the distance
between the learned point estimate x̂ and x∗. unless stated otherwise, we use the euclidean
norm: When a distribution over x is learned and that we want to assess how close samples
from this distribution are to the ground truth parameter, we define the distance to ground
truth parameter the distance:

d = Ep̃(x)||x− x∗||22. (67)

aim at computing the distance between a learned point estimate x̂ and the ground truth
parameter x∗ that have generated the observation yobs
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6.1 Experimental Setup

Simple Gaussian

To start with, we introduce a simple 2-D gaussian stochastic simulator. Given parameters
x ∈ R2, the simulator generates y ∈ R2 according to:

m = x (68a)

Σ =

[
1 0
0 1

]
(68b)

y = N (m,Σ). (68c)

The prior p(x) is a 2-D multivariate gaussian with means m = [3, 7]> and an identity
covariance matrix.

Two-Moons

Next, we use the two-moons simulator introduced in Greenberg et al. (2019). Given param-
eters x ∈ R2, the simulator generates y ∈ R2 according to:

a ∼ U(−π
2
,
π

2
) (69a)

r ∼ N (0.1, 0.012) (69b)

p = [r cos(a) + 0.25, r sin(a)]> (69c)

y = p + [−|x1 + x2|√
2

,
−x1 + x2√

2
]>. (69d)

The prior p(x) is uniform between [−1, 1] for each xi.

Simple Likelihood and Complex Posterior

The next simulator (Papamakarios et al., 2019) has a simple likelihood but complex posterior
(SLCP). Given parameters x ∈ R5, the simulator generates y ∈ R8 according to:

mx = [x1, x2]
> (70a)

s1 = x23 (70b)

s2 = x24 (70c)

ρ = tanh(x5) (70d)

Σ =

[
s21 ρs1s2

ρs1s2 s22

]
(70e)

xj ∼ N (mx,Sx), j = 1, ..., 4 (70f)

x = [x>1 , ...,x
>
4 ]>. (70g)

The prior p(x) is uniform between [−3, 3] for each xi. Such a prior includes nonlinearities
in the posterior. The posterior is further complexified due the symmetries introduced by
the squared operations in Equations 70b and 70c.

Inverse Kinematics

Ardizzone et al. (2018) introduced a problem where x ∈ R4 but which can still be easily
visualisable in 2-D. They model an articulated arm that can move vertically along a rail
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and that can rotates at three joints. Given parameters x, the arm’s end point y ∈ R2 is
defined as:

y1 = x1 + l1 sin(x2) + l2 sin(x2 + x3) + l3 sin(x2 + x3 + x4) (71a)

y2 = l1 cos(x2) + l2 cos(x2 + x3) + l3 cos(x2 + x3 + x4) (71b)

with arm lengths l1 = l2 = 0.5, l3 = 1.0.

As the forward model defined in equation 71 is deterministic and that we are interested
in stochastic simulators, we add noise at each rotating joint. Noise is sampled from a
normal distribution ε ∼ N (0, σ2) with σ = 0.00017 rad ≡ 0.01◦. This gives a repeatability4

of about 1.7 mm which is quite high for industrial applications and means that joint noise
in industrial robots are even smaller.

The prior p(x) follows a gaussian N (0, σ2i ) for each xi with σ1 = 0.25 and σ2 = σ3 =
σ4 = 0.5 ≡ 28.65◦. This prior favors arm configurations as represented in Figure 4.

Figure 4: Inverse kinematics. An articulated arm is mounted on a rail. The position on
the rail is determined by the variable x1. Then, x2:4 are the joint angles. The background
shows different arm configurations.

6.2 Surrogate Models

All toy simulators are modeled by real NVP transformations. All surrogates are made of 4
NVP layers where the networks s(·) and t(·) are multilayer perceptron (MLPs) with three
layers of 50 units each with ReLU between every two layers. Batch normalization between
MLP layers as well as between NVP layers as suggested in Papamakarios et al. (2017) did
not improve results. Therefore, no batch normalization was used. As the output of the
network s(·) is exponentiated in Equation 35 this may lead to unstable behaviours during
training. In the initial NVPs paper, s(·) is squashed by a hyperbolic tangent function

4. In robotics, repeatability defines how well a robot can achieve the same task. Repeatability has been
measured by ANSI/RIA R15.05-1 standard as explained in Dagalakis (2007).
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multiplied by a trainable parameter. We rather use soft clamping of scale coefficients as
introduced in Ardizzone et al. (2019):

sclamp =
2α

π
arctan(

s

α
) (72)

which gives sclamp ≈ s for s� |α| and sclamp ≈ ±α for |s| � α.

We performed a grid search over hyperparameters and found α = 1.9 to be a good value
for most architectures, as in Ardizzone et al. (2019). Therefore, we fixed α to 1.9 for all
models.

As it is commonly done, each NVP layer only modifies half the dimension of its inputs
and between every two layers, dimension are reversed so that no dimension is left unchanged.

Finally, each surrogate was trained with a training dataset of only 15,000 samples. A
validation set of 5,000 samples was used to avoid overfitting. Datasets were generated by
producing pairs of uncorrupted (sampled from a proposal prior) and corrupted (obtained by
running the simulator) data. The used proposal prior are the priors defined in Section 6.1.
Optimization was run for 300 epochs over the training dataset and the Adam optimizer was
used with default parameters and weight decay set to 5 × 10−5. Figures 5 and 6 show the
(empirical) learned distributions against the target distribution p(y) =

∫
p(y|x)p(x)dx on

the toy datasets. The target distributions have been generated after training, by sampling
parameters from the proposal prior p(x) and corrupting them with the simulator. The
learned distributions are obtained by corrupting the same parameters but this time, with
the surrogate.

(a) Simple gaussian. (b) Two-moons. (c) Inverse kinematics.

Figure 5: For different simulators, given a set of parameters x sampled a proposal prior p(x),
the empirical distributions of corrupted data obtained by running the physical simulator (in
blue) against running the trained surrogate (in black) with parameters x are shown. The
diagonal show the 1-D marginal distributions while others are pairwise scatter plots.
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Figure 6: Simple likelihood and complex posterior (SLCP) simulator. Given a set of param-
eters x sampled a proposal prior p(x), the empirical distribution of corrupted data obtained
by running the physical simulator (in blue) against running the trained surrogate (in black)
with parameters x is shown. The diagonal show the 1-D marginal distributions while others
are pairwise scatter plots .

6.3 Point Estimation

In this section we study how to retrieve a point estimate that may have generated an
observation. To do so, given a single observation yobs, we aim at finding x̂ that solves:

x̂ = arg max
x

log p(yobs|x). (73)
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We solve this problem iteratively with the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization algorithm5 (Liu and Nocedal, 1989). It is a quasi-Newton
method that approximates the inverse of the Hessian matrix with limited memory.

Simulators Ground truth parameters x∗

Simple gaussian [4.9, 6.5]>

Two-moons [0.0, 0.7]>

SLCP [0.7,−2.9,−1.0,−0.9, 0.6]>

Inverse kinematics [0.1,−0.4, 0.5,−0.1]>

Table 1: For different simulators, ground truth parameters x∗ used to run the stochastic
simulator and generate a single observation yobs.

Experimental Setup Throughout this dissertation, we assume minimal knowledge about
the corruption process and the distribution over parameters x. Yet, when solved iteratively
by gradient ascent, the optimization process described in Equation 73 needs a starting
point x0. Choice have been made to sample x0 from a zero-mean, unit-variance isotropic
gaussian distribution. This heavily samples points out of the proposal prior space used
to train the surrogate model for the two-moons, inverse kinematics and simple gaussian
toy problems. For the gaussian toy problem, all points are sampled out of the space used
to train the surrogate. Nonetheless, x′s are pushed towards the expected solution even if
they are initialized in a out-of-training region. These results suggest that the surrogate
model has nicely generalized and learned the likelihood function beyond the domain from
the training dataset. Despite these good empirical results, Equation 34 only guarantees
that given enough training sample, the learned likelihood matches the true likelihood in the
support of the proposal prior. In order to avoid unexpected behaviors, one can therefore
solve a constrained maximum likelihood problem where x is constrained to stay within this
proposal.
For each simulator, we generate a single observation yobs by running the stochastic simu-
lator with the ground truth parameters defined in Table 1. Then, we repeatedly solve the
optimization problem defined in Equation 73 with multiple random starting points to assess
the consistency of the algorithm. The optimization is solved with the L-BFGS optimizer
with default parameters and learning rate set to 10−1 for the simple gaussian, two-moons
and inverse kinematics simulators. For the SLCP simulator, the learning rate is set to 10−2.
The algorithm is run for 400 epochs.

Reconstruction Error In Table 2, it can be observed that for the two-moons and in-
verse kinematics problems, the reconstruction error is very small. On the contrary, the
reconstruction error for the other simulators is much higher but this is not necessarily bad.
Indeed, this is mainly due to the simulator itself that is stochastic and has a broad likelihood.
Figure 7 shows the regenerated data against the target. When pushed to the simulator, the
learned x̂′s produce y′s that are concentrated at the observed target point yobs. The fact
that regenerated data are spread out is due to the simulator’s stochasticity.

Distance to ground truth parameters Table 2 also shows the distance between the
optimized x̂′s and the ground-truth parameters over multiple runs. For most problems, the
distance to the true parameters is not that small but it is not necessarily a problem. Indeed,

5. We used the public implementation from PyTorch.
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Reconstruction Distance to ground Distance to
Error truth parameters true MLE

Ep(y|x∗)||y − yobs||22. ||yobs − x∗||2 ||yobs − xMLE ||2
Simple Gaussian 1.2544 ± 0.6644 0.4049 ± 0.0005 0.0531 ± 0.0006

Two-Moons 0.0888 ± 0.0561 0.0458 ± 0.0088∗ /
SLCP 2.9131 ± 2.4723 1.6190 ± 0.6437∗ 0.8563 ± 0.8616∗

Inverse Kinematics 0.0034 ± 0.0018 0.8026 ± 0.3555 /

Table 2: Reconstruction error between an observation and data regenerated by running
simulations with the (learned) most likely parameter estimates as input. We also show
the distance between the learned MLEs and the true parameters that have generated the
observation as well as the distance to the true MLE — when it can computed. Asterisks
indicate that a norm that takes the simulator symmetries into account has been used rather
than the euclidean norm. We report the average metrics over 100 runs, error bars equal to
the standard deviation.

Figure 7: Target observation against reconstructed data obtained by running the simulator
with learned point estimates as input. The point estimates are learned by solving a max-
imum likelihood problem with different starting points. a Simple gaussian simulator. b
SLCP simulator. For clarity, we show the target as four 2-D variables as it is the case from
the problem definition. Nonetheless, the simulator is seen as a black-box and the target
is treated everywhere as an 8-D variable and it should be considered as such. For both
simulators, regenerated data are in strong agreement with the observation.

the stochastic simulator may have generated an observation yobs with a low likelihood and
therefore, there are better x′s than the ground truth that explain the observation. At
the same time, for a given yobs, there may be many equally likely x′s that can generate
it. Therefore, the optimization algorithm may not always converge to the ground truth
parameters. This can be clearly seen in Figure 8 where all optimized x̂′s consistently
reproduce data close to the observation, but many different x̂′s are learned.
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Figure 8: Articulated arm configurations learned by solving a maximum likelihood problem
with different initializations. The cross indicates the target observation yobs. The algorithm
do not always converge to the same solution but consistently learn an arm configuration
that allows to reach the target.

Distance to ground truth MLE Finally, in Table 2 we also report the distance between
the optimized solutions and the true most likely estimate (when it can be computed). On
the simple gaussian problem, we consistently retrieve the true MLE. For the SLCP problem,
about ∼ 2% of the optimized data were outliers6 and have been removed. This is due to
large losses that induce large update steps and thus, x′s that have large values. Then, the
algorithm diverge and do not recover. This may be due to a poorly tuned L-BFGS optimizer
with respect to this problem. Here, in order to compute the distance between learned and
exact MLEs, we use a norm that takes the symmetries of the problem into account. The
norm is defined as:

d =
√

(x1 − x∗1)2 + (x2 − x∗2)2 + (|x3| − |x∗3|)2 + (|x4| − |x∗4|)2 + (tanh(x5)− tanh (x∗5))
2.

(74)
This norm equals zero if the retrieved x̂ is one of the most likely estimate — there are four
of them in the SLCP problem due to the squared operations in Equations 70b and 70c.
Here, the distance to the MLE and the variance are not so small which means that the
optimization algorithm does not always converges to the same point. Nonetheless, results
are decent and optimized x̂′s produce data close to the target (Figure 7). A better tuning
of the L-BFGS optimizer may lead to even better results.

To sum up, using the surrogate likelihood, we are able to consistently retrieve x′s that
explain the observation and that regenerate data close to it. No regularization was used
and even if x is sometimes outside of the proposal space used to train the surrogate model,
the surrogate has well generalized and allows to guide the optimization process to one of
the expected most likely estimates.

6. We define outliers as data points that when optimized, are beyond the proposal prior distribution used
to train the surrogate.
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Empirical Prior From Single Estimates

In this section we assume that we have observed N corrupted data {y1, ...,yN}. We retrieve
the most likely estimates of each observations and bin the retrieved x̂′s to empirically
approximate the prior. Binning is done in 1-D for each dimension by defining equally likely
bins in the range of the values taken by the data. Binning is only done at the end of the
optimization process and thus, we could bin in multiple dimensions as well. Of course,
one can do better and consider all the observed data as a whole (we treat this problem in
Section 6.5) rather than treating them independently. Nonetheless, this can be embedded
in a more complex algorithm for example, to initialize the prior before optimization.

(a) Simple gaussian. (b) Two-moons.

(c) Simple likelihood and complex posterior (SLCP).

(d) Inverse kinematics.

Figure 9: Empirical prior obtained by binning (unseen) parameters against their binned
most likely estimates (MLEs). The later are obtained by solving a maximum likelihood
problem for each observation.

Experimental Setup For all toy problems, we use 25,000 observations. Experiments
showed that using more observations do not lead to a better empirical prior. As in the
previous section, for each observation yi, we start the algorithm by initializing the starting
point xi,0 with a sample from a zero-mean unit-variance isotropic gaussian distribution. The
L-BFGS implementation from PyTorch is not parallelizable and may takes several minutes
to solve the MLE problem. Therefore, it does not scale to large numbers of observations
and therefore, we switched to the Adam optimizer to parallelize the process. There is no
stochasticity in the optimization and Adam was chosen for its learning rate adaptability.
Therefore, a good tuning of another standard gradient descent algorithm or using a second
order method may further improve results. The Adam optimizer was used with default
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parameters and a learning rate set to 10−3 for the simple gaussian and two-moons simulators,
10−4 for the inverse kinematics simulator and 5 × 10−4 for the SLCP simulator. The
optimization problem was run for 25,000 epochs.

Figure 9 shows the learned 1-D learned empirical distribution against the true empirical
prior. Figure 9a and 9b show that the learned empirical distribution is already a good ap-
proximation of the unseen empirical prior on the simple gaussian and two-moons problems.
Figure 9c shows that the binned MLEs on the higher dimensional problem with an easy
likelihood but complex posterior do not match the empirical prior as well as for the other
problems. This is nonetheless a good first approximation that can be used to pretrain a
variational prior, for example. Figure 9d shows results on the inverse kinematics simulator.
The learned and expected distributions do not closely match but the learned distributions
are gaussian distributions as expected. The empirical standard deviation retrieved over
the first variable is smaller than the ones of the other variable, as it is the case on the
distribution that has generated source data.

6.4 Density Estimation

In this section, we go beyond point estimation and aim at learning a distribution over the
source data x that may have generated a single observation yobs. Four different approaches
to solve this problem have been defined in Section 5.2 and all of them perform fairly similarly
in terms of reconstruction error and distance to the ground truth parameters. While the
empirical Bayes method and EM algorithm defined in Section 5.2 often have difficulties to
capture all the modes and sometimes collapse to a single point, the expected log likelihood
loss often learns all the modes and broader distributions due to the implicit KL constraint in
the loss definition7. Therefore, throughout this section, we focus on this loss unless stated
otherwise. Thus, we model the prior distribution p(x) by a density estimator qθ(x) and
optimize iteratively the parameters θ of the density estimator by gradient descent on the
following loss:

L(θ) = −Eqθ(x) log p(yobs|x). (75)

The expectation is approximated by Monte Carlo integration. We used 256 integration step
for all simulators. When this is optimized on GPU, using more integration steps do not
necessarily increase the computational time. We used the Adam optimizer with a learning
rate set to 10−3. The density estimator are modelled with NVP layers for the simple
gaussian, two-moons and inverse kinematics simulators. Three NVP layers were used with
the networks s(·) and t(·) modeled by MLPs with 3 layers of 16 units each and with RELU
between every two layers. For doing inference on the SLCP simulator, UMNN-MAFs were
used. We used the public implementation8 from Wehenkel and Louppe (2019). We used a
single layer with the embedding and integrand networks made of 4 layers of 100 units. The
optimization process is trained for 5,000 epochs.

We also compare our method to two sequential-neural based methods. This is mostly
for illustration purpose because these methods are learning a posterior distribution in a
Bayesian setting, which is substantially different to what we are doing. Our aim is to

7. In this study, we do not put much attention on the handcrafted loss approach as it requires domain
knowledge to design a proper cost function between the observation and regenerated corrupted data.
Furthermore, the cost function chosen makes implicit assumptions on the simulator likelihood function.
In this study, we have the luxury of being able to evaluate an approximation of the likelihood function
and therefore, we take advantage of it.

8. https://github.com/AWehenkel/UMNN
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highlight that without calling the simulator at inference, we achieve similar performance in
terms of reconstruction error. This also gives an order of magnitude about the number of
simulations needed by these methods at each inference step. 9 We compare our results to
Sequential Neural Likelihood (SNL) proposed in Papamakarios et al. (2019) and SNPE-B
(Lueckmann et al., 2017). The first method sequentially learns an approximation of the
likelihood function that can be plugged with a prior distribution into a MCMC sampler
to sample from the posterior. The second method directly learns an approximation of the
posterior, also in a sequential algorithm. Results and figures are produced with the public
implementation10 of Papamakarios et al. (2019). We run the methods with the default
hyperparameters presented in the method papers. For low-dimensional toy problems, we
use 250 simulations at each round rather that 1,000.

Figure 10: Simple gaussian. a Learned prior distribution (black) against true parameters
(red). b Observation (red) against data (blue) regenerated by running simulations with
parameters drawn from the learned distribution. c Median distance between regenerated
data and the observation as a function of the number of calls to the simulator. Our method
does not call the simulator at inference.

Figure 10 shows the learned distribution, the regenerated corrupted distribution and
a comparison between our results, SNL and SNPE-B on the simple gaussian simulator.
The learned distribution does not collapse to the most likely estimate and contains the
ground truth parameters. Yet, it is not always the case as the ground truth parameters
may generate the observation yobs with a low likelihood. As we are not learning a posterior
distribution, we often learn a tighter distribution that puts most of its mass on parameters
for which the observation has a high likelihood. Regenerated data are in strong agreement
with the observation. In terms of reconstruction error, our results are better than sequential
methods only because we learn a distribution that is often tighter than the posterior dis-
tribution learned by sequential methods. As the stochastic simulator has a high variance,
our regenerated data concentrate much closer to the observed point and therefore, we have
better results in terms of reconstruction error. All results are consistent over multiple runs.

Similarly, we show the learned distribution, the regenerated corrupted distribution and
a comparison between our results, SNL and SNPE-B on the two-moons simulator in Figure
11. Due to the absolute values in Equation 69d, for a given observation, there are two moon-
shaped manifolds of parameters that may have produce it. It can be observed in Figure

9. For each observation, these methods train a local density estimator of the likelihood function or the
posterior distribution, guided by active learning. Therefore, the process should be repeated for each
observation but the local estimator can be reused from one observation to another. Thus, the number
of calls to the simulator is not constant and tends to decreases as more observations are observed.

10. https://github.com/gpapamak/snl
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11 that the learned distribution has well learned the two modes as well as their expected
shape. Here as well, reconstructed data are in strong agreement with the observation.
Finally, in this problem the distribution that we learn is close to the posterior distribution
and therefore, the reconstruction error obtained with our method matches the ones from
sequential methods. All results are consistent over multiple runs.

Figure 11: Two-moons. a Learned prior distribution (black) against true parameters
(red). b Observation (red) against data (blue) regenerated by running simulations with
parameters drawn from the learned distribution. c Median distance between regenerated
data and the observation as a function of the number of calls to the simulator. Our method
does not call the simulator at inference.

Figure 12: SLCP. a Learned prior distribution (black) against true parameters (red). b
Observation (red) against data (blue) regenerated by running simulations with parameters
drawn from the learned distribution — only the first four dimensions are represented. c
Median distance between regenerated data and the observation as a function of the number
of calls to the simulator. Our method does not call the simulator at inference.

Figure 12 is a clear example of a learned distribution that is too tight to contain the
ground truth parameters. Nonetheless, the learned distribution learns all the modes induced
by the squared operations in Equations 70b and 70c. As with the other toy problems,
regenerated data are in strong agreement with the observation. This simulator being higher
dimensional than the others, sequential methods need more simulations in order to converge.
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Thus, the upfront simulation cost requested by the methods proposed in this dissertation
in order to train the surrogate model is quickly amortized.

For the inverse kinematics problem, Figure 13 shows that the learned distribution pro-
duce a broad set of arm configurations in order to reach a target point with high accuracy.
The regenerated points are highly focused around the target and the average (computed
over three runs) reconstructed error is 0.0076 m. These results therefore compete with the
best architecture presented in Kruse et al. (2019) where the authors benchmark different
neural network architectures to solve inverse problem. Yet, the simulator used in this dis-
sertation is not the same as the one in Kruse et al. (2019) as we introduced stochasticity in
the joints, albeit almost negligible.

Figure 13: Inverse kinematics. Learned prior over the arm configurations given a target
observation represented by the cross. The learned distribution do not collapse to a single
mode and captures a large set of configurations while reaching the target point with high
accuracy.

Figure 14: Two-moons. Illustration of importance sampling. a The manifold of parame-
ters that could generate the observation. b Learned distribution for each loss. c Learned
distributions reweighted by the surrogate likelihood.
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In Figure 14 we illustrate importance sampling. Given the learned prior distribution, as
we can evaluate the surrogate likelihood, we can reweight the learned distribution by the
likelihood. This allows to get properties about the associated posterior distribution. This
process is fast and as can be seen in Figure 14, allows to fine tune the learned distribution
and only keep parameters that could have generated the observation by assigning them a
much higher weight than others. For the expected likelihood and minimum mean squared
error (MMSE) losses, results are consistent over multiple runs. For the other methods, one
of the two modes is sometimes missed.

6.5 Empirical Bayes

In this section, we study empirical Bayes in a model-free setting in order to learn a distri-
bution over source data. As opposed to traditional methods, we do not assume knowledge
about the likelihood function in closed form and we rather approximate the log marginal
likelihood by Monte Carlo integration as explained in Section 5.3. That is, we model the
prior by a distribution qθ(x) and train its parameters by doing gradient descent on stochastic
minibatches of observations, with the loss defined in Equation 58. This section is divided in
two parts. In the first one, we assume knowledge about the distribution family to which the
prior belongs and we optimize the hyperparameters θ of this distribution so that it defines
a plausible prior over unseen source data. Then, we go a step further and assume minimal
knowledge about the distribution family to which the prior belongs. We only assume that
it can be modeled by a neural network density estimator and that it is supported almost
everywhere by the proposal prior used to train the surrogate.

Knowledge About the Prior Distribution Family

In this section we assume knowledge about distribution family Q to which the prior belongs
and we try to find the parameters θ such that the candidate pθ(·) ∈ Q approximates well
the distribution over unseen source data. To do so, we learn θ by solving Equation 58.

As the prior distribution pθ(x) should be differentiable, we use the reparametrization
trick to parameterize it from a known base distribution. When the prior belongs to the
family of multivariate gaussians, we learn the parameters θ = {µ,A} and sample from
pθ(x) as:

x ∼ N (µ,AΣAT)⇔ x = µ + Aε, ε ∼ N (0,Σ) (76)

where Σ is the covariance of the base density (a multivariate gaussian as well), usually
the identity matrix. When the prior belongs to a uniform family, we learn the parameters
θ = {α, β} and sample from pθ(x) as:

x ∼ U(α, β)⇔ x = (β − α)ε+ β, ε ∼ U(0, 1). (77)

In Figure 15, we focus on toy datasets for which the prior is gaussian and plot the
evolution of the prior summary statistics during training. That is, we plot the mean µ and
the covariance AΣAT as training evolves. We optimize Equation 58 with Adam optimizer
with default parameters and stochastic minibatches from the observed data. For the simple
gaussian problem, we used 1,000 observed data and we use 512 MC integration steps. Figure
15a shows that around 3,000 epochs, the learned summary statistics converge exactly to the
summary statistics of the distribution used to generate source data. Results are consistent
over multiple runs. The base density from Equation 76 was chosen to be an isotropic
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gaussian and µ was initialized to 0 and A to the identity matrix. Therefore, at the beginning
of training samples are generated completely out of the proposal prior space used to train the
surrogate (N ([3, 7]>, I)). Again, this shows that the density estimator has well generalized
even out of the proposal prior.

(a) Simple gaussian.

(b) Inverse kinematics.

Figure 15: Evolution of the learned (solid lines) prior summary statistics against the ones
of unseen source data (dashed lines) during training.

Figure 15b shows the learned summary statistics during training for the inverse kine-
matics problem. As the underlying problem is more complex and is higher dimensional,
25,000 observations have been used. For estimating the marginal likelihood integral, 210

MC integration steps are used. It can be observed that the learned summary statistics do
not converge as nicely to the summary statistics of the distribution used to generate source
data. This is not necessarily bad. Figure 16 shows the learned marginal likelihood density
q(y|θ) =

∫
p(y|x)qθ(x)dx (obtained by sampling parameters from the learned distribution

and corrupting them with the simulator) against the empirical distribution of observed data
p(y). It can be observed that they closely match — the represented configurations are not
induced by the simulator itself but are clearly due to the chosen prior over the source data.
Table 3 shows quantitative summary statistics between the two densities over multiple runs.
This highlights that the learned marginal likelihood has been well learned and converges
towards the expected density but due to the symmetries in the problem definition (Equation
71), we do not necessarily converge to the prior used to generate source data. Even in a
perfect setting, with a perfect surrogate and a large number of observations, if the likelihood
function has symmetries, without proper regularization, no better solution can be achieved.
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(a) Learned distribution. (b) Expected distribution.

Figure 16: Inverse Kinematics. Expected
and learned marginal likelihood densities in
log-space.

True Learned
statistics statistics

Means
0.01
1.51

0.01 ± 0.01
1.44 ± 0.02

Log
Variances

0.74
0.24

0.78 ± 0.03
0.30 ± 0.01

Table 3: Inverse Kinematics. Ex-
pected and learned marginal likelihood
summary statistics over three runs.

Figure 17 shows the evolution of the learned distribution parameters against the ones
used to generate source data as training evolves. Figure 17a shows the lower bounds θ0 and
θ1 and the higher bounds θ2 and θ3 of the learned uniform distribution against the ones that
were used to generate source data. For this low dimensional problem, 1,000 observations
have been used and 512 MC steps have been used to approximate the marginal likelihood.
After approximately 2,000 epochs, the parameters converge to the ones that were used to
generate source data. Results are consistent over multiple runs.

For the problem with an easy likelihood but complex posterior (SLCP), we do not show
directly the lower bounds {θ0, θ1, θ2, θ3, θ4} and higher bounds {θ5, θ6, θ7, θ8, θ9} but the
bounds after a change of variable that takes the symmetries from the simulator definition
(Equation 70) into account. Indeed, as in the inverse kinematics problem, we do not con-
sistently converge to the parameters that have generated the source data but we converge
at least to parameters that minimize the Kullback–Leibler divergence between the observed
distribution and the learned marginal likelihood. In other words, we learn the prior up to
the symmetries of the problem.

(a) Two-moons. (b) SLCP.

Figure 17: Evolution during training of the learned parameters against the distribution
parameters used to generate unseen data.

No Prior Knowledge

In this section we now assume minimal prior knowledge. We model the prior with a density
estimator qθ(x) and optimize its parameters θ. We model the prior over the SLCP and
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two-moons simulator parameters with UMNN-MAFs. Tor the two-moons simulator, we
use three layers where the embedding and integrand network both have three layers of 100
units. The prior on the SLCP problem is modeled with seven layers where the integrand
and embedding network have 100 units each. For the other simulators, we use four NVP
layer where the scale and translation networks are modelled by three-layer MLPs of 16 units
with RELU between every two layers. We used 210 MC integration steps for all simulators.
We used the Adam optimizer with default parameters with a learning rate of 10−3 for the
simple gaussian and two-moons simulators. We used a learning rate of 10−4 for the SLCP
simulator and 10−5 for the inverse kinematics simulator.

The training objective defined in Section 5.3 (Equation 58) requires to be able to differ-
entially sample from the density estimator. However, in the way that we have introduced
UMNNs in Section 2.4, they do not allow it. Indeed, UMNN-MAFS model the forward
process between noise to the variable of interest with a root finding algorithm. While im-
plementing the latter in a differentiable way is technically possible, it may not be straight-
forward and efficient. Therefore, when we use them in this section, we swap the forward
and backward pass. That is, we can model the forward process from noise ε to x as:

x = f(ε) (78a)

=

∫ ε

0
gφ(t)dt+ f(0). (78b)

Then, to evaluate the density of a data point x:

p(x) = p(ε)
dε

dx
(79a)

= p(ε)| det
∂f−1(x)

∂x
| (79b)

= p(ε)| det
∂f(ε)

∂ε
|−1 (79c)

= p(ε)
1

gφ(ε)
(79d)

where ε is obtained by a root-finding algorithm and gφ(·) is a neural network with positive
outputs that can be quickly evaluated. The swapped model allows to learn a density that
can be sampled from efficiently, which is interesting for rejection sampling for example.
However, evaluating the density requires to solve a root-finding algorithm. This can be
efficiently parallelizable but when this has to be computed multiple times for single points,
for example in Markov Chain Monte Carlo (MCMC) samplers, this can be slow and other
models would be more appropriated.

Here as well, we suppose that the assumptions required for the learned distribution to
converge towards the unseen data distribution are met to some extent. Thus, we assess our
method by comparing these two distributions.

Figure 18 shows the evolution of the learned prior against the expected prior as the
number of observation increases. It can be seen that when the number of observations is
large, the learned density learns well the prior defined in Section 6.1. At the same time,
Figure 18a (among others) is not necessarily bad. No regularization have been used and it
learns a distribution over x that explains well the observed data, and nothing more.

Figure 19 shows the learned prior distribution on the two-moons problem. Source data
are uniformly distributed over [−1, 1]2. It can be observed that we have remarkably well
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(a) 100 observations. (b) 1,000 observations. (c) 10,000 observations. (d) Prior distribution.

Figure 18: Simple gaussian simulator. Prior distribution learned by maximum marginal
likelihood given 100, 1,000 and 10,000 observations against the prior used to generate source
data.

learned the bounds of the uniform prior over [−1, 1] for each xi. However, the prior is not
uniform as it should be. This is explained by the fact that in the simulator definition (Equa-
tion 69), x1 and x2 are only used through the intermediate variables |x1+x2| and −x1+x2.
As already observed in section 6.5, the prior has been learned up to the symmetries of the
problem. Indeed, the sum of two uniform distributions follows a Irwin–Hall distribution,
or a triangular distribution in 2-D. Figure 19 shows that we have clearly well learned the
distribution of the intermediate variables.

Figure 19: Two-moons simulator. Prior distribution learned by maximum marginal
likelihood on 10,000 observations. Plots in the diagonals are 1-D histograms while the others
are pairwise densities in log-scale. a Learned prior distribution over the input variables x1

and x2. The expected prior is uniform over [−1, 1] for each xi. b Learned distribution of
|x1 + x2| and −x1 + x2 which is how x is used in the two-moons simulator. The learned
distributions match the expected distributions (triangular distributions).

Figure 20 shows the learned distribution on the problem with simple likelihood and
complex posterior (SLCP). Source data are uniformly distributed over [−3, 3]5. For each
variable, the learned prior is close to uniform and for the first four variables, the bounds have
been nicely learned. For the last variables, the bounds are a bit tighter than expected. In
the problem definition, a hyperbolic tangent is applied to x5. After squashing the variable,
the learned bounds are close to the expected bounds and again, we see that without proper
regularization we are limited by the symmetries of the problem.
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Figure 21 shows the learned prior against the prior used to generate source data on the
inverse kinematics problem. As opposed to Section 6.5, the prior converges to the expected
prior rather than a prior limited by the symmetries of the problem. Even though the model
here is more flexible and less likely to get stuck in a local extremum, the summary statistics
over the learned marginal likelihood are not substantially better than the one presented in
Table 3 — apart from the log variance over the second dimension that is slightly better.
Therefore, both solutions are similar and the convergence to this solution here is more likely
due to the network architecture and its initialization.

Figure 20: SLCP simulator. Prior distribution learned by maximum marginal likelihood
on 25,000 observations. Plots in the diagonals are 1-D histograms while the others are
pairwise densities in log-scale. The expected prior is uniform over [−3, 3] for each xi.

Figure 21: Inverse Kinematics simulator. Prior distribution learned by maximum
marginal likelihood on 25,000 observations. The learned prior (black) closely match the
prior used to generate unseen data (blue).

6.6 Amortized Inference

In this section we use the prior learned in the previous section and the surrogate likelihood
in order to learn a posterior distribution. Starting with minimal assumptions, we have
therefore build tools that now allow us to do Bayesian inference. In this section, we compare
Markov Chain Monte Carlo, rejection sampling and importance sampling as defined in
Section 5.4. For MCMC, we used Slice Sampling (Neal, 2003) as in Papamakarios et al.
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(2019). Variational inference could have been used as well in order to directly learn a
model of the posterior. However, this requires to solve an optimization algorithm while the
other methods proposed here are not based on optimization, even if MCMC requires careful
checks and tuning. Therefore, variational inference has not been used in this section but
depending on the end-goal, could be used.

(a) Exact
posterior.

(b) MCMC. (c) Rejection
sampling.

(d) Importance
sampling.

Figure 22: Simple gaussian simulator. Approximated posterior with different methods
against the exact posterior. Samples from the exact posterior are sampled from MCMC
with the true simulator likelihood and the exact prior distribution over source data. Other
methods use the surrogate likelihood and a prior learned with empirical Bayes to do infer-
ence. Plots in the diagonals are 1-D histograms while the others are pairwise scatter plots.
Red data are the ground truth parameters.

(a) Exact
posterior.

(b) MCMC. (c) Rejection
sampling.

(d) Importance
sampling.

Figure 23: Two-moons simulator. Approximated posterior with different methods
against the exact posterior which can be directly sampled from. Other methods use the
surrogate likelihood and a prior learned with empirical Bayes to do inference. Plots in the
diagonals are 1-D histograms while the others are pairwise scatter plots. Red data are the
ground truth parameters.

The exact posterior defined by the simulator likelihood and the prior used to generate
source data against the posteriors approximated with the different methods are shown for
each toy problem in Figures 22, 23, 24 and 25. For the inverse kinematics problem, the
simulator likelihood is not known in close-form and therefore, the exact posterior cannot be
computed. For the simple gaussian and SLCP simulators, the plotted distribution for each
methods are almost indistinguishable between each others and between the true posterior.
For the two-moons simulator, the MCMC sampler often fails to capture one of the two
modes and similar observations were made in Greenberg et al. (2019). A better tuning of
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the sampler or another sampler may solve this issue. For the inverse kinematics simulator,
the distribution learned by importance sampling is tighter than the others.

Importance sampling is without a doubt the fastest method used here. It only needs to
sample points from the prior and weight them by their likelihood. Even for millions of data
points, this is done in a few seconds on GPU. In Table 5 we show the approximated posterior
expectation against the true empirical expectation. For the simple gaussian problem, the
expectation is approximated with high accuracy. For the two-moons and SLCP simulators,
the accuracy is not as good. Nonetheless, for the SLCP toy problem, the estimated values
are clearly an approximation of the true expectation.

Importance sampling allows to get properties about the target distribution but is not
designed to sample from the distribution. In order to sample from the posterior, we therefore
use rejection sampling or MCMC. Rejection sampling performs particularly well in this
context. As explained in section 5.4, the process can be parallelizable and in order to
generate the data points plotted in Figures 22, 23, 24 and 25 (5000 points per plot), it
takes between a few seconds to a few minutes for the higher dimensional simulator. On
the other hand, Markov chain Monte Carlo is much slower and takes dozens of minutes to
several hours. Moreover, rejection sampling only needs to sample from the prior distribution
while MCMC needs to evaluate its density. Table 4 shows the Maximum Mean Discrepancy
(MMD) Gretton et al. (2012) between the exact and approximated posteriors. Results are
good and similar between rejection sampling and MCMC apart on the two-moons simulator
where MCMC is much worse than rejection sampling due to the fact that MCMC fails to
consistently get the two modes.

(a) MCMC. (b) Rejection sampling. (c) Importance sampling.

Figure 24: Inverse kinematics simulator. Approximated posterior with different meth-
ods that use the surrogate likelihood and a prior learned with empirical Bayes to do infer-
ence. Plots in the diagonals are 1-D histograms while the others are pairwise scatter plots.
Red data are the ground truth parameters.

MCMC Rejection sampling

Simple gaussian 0.005± 0.001 0.005
Two-moons 0.380± 0.001 0.090± 0.010
SLCP 0.025± 0.001 0.022± 0.002

Table 4: Comparison of the Maximum Mean Discrepancy between the true posterior and
the posterior approximated by Markov Chain Monte Carlo and rejection sampling. The
Maximum Mean Discrepancy is computed with a gaussian kernel.
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Posterior mean Approximated mean

Simple gaussian [4.48, 6.98]> [4.48, 6.88]>

Two-moons [−0.42, 0.43]> [−0.61, 0.23]>

SLCP [0.61,−2.46, 0.01,−0.07, 0.22]> [0.75,−2.33, 0.30,−0.01, 0.40]>

Table 5: Empirical posterior expectation against its approximation by importance sam-
pling. When it is not possible to sample directly from the posterior, we generate samples
from it with Markov Chain Monte Carlo with the true simulator likelihood and the exact
distribution over source data.

(a) Exact posterior. (b) MCMC.

(c) Rejection sampling. (d) Importance sampling.

Figure 25: SLCP simulator. Approximated posterior with different methods against the
exact posterior. Samples from the exact posterior are sampled from MCMC with the true
simulator likelihood and the exact prior distribution over source data. Other methods use
the surrogate likelihood and a prior learned with empirical Bayes to do inference. Plots in
the diagonals are 1-D histograms while the others are pairwise scatter plots. Red data are
the ground truth parameters.
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7. Detector Effects Correction in High Energy Physics

7.1 Problem Statement

In experimental particle physics, the measurement process follows a hierarchical process
similar to those discussed in previous sections. The theory of fundamental particles and
their interactions, the Standard Model (SM), can predict with high accuracy the outcomes of
particle interactions, but relies on 19 free parameters. At a collider like the Large Hadron
Collider (LHC), high energy particle collisions produce an emanating spray of particles
which are measured, with finite precision, in detector devices. Thus, the Standard Model
can predict a prior particle distribution but it is only measured by a noisy detector device
(the detector response can be considered independent of the parameters of the Standard
Model). A major goal in such experiments is therefore to deconvolve the effects of the
detector. From individual particle measurements, the aim is to access the “true” particle
energy to use in downstream analysis and to measure the distribution of particle properties
for comparison with the Standard Model predictions.

The LHC produces proton-proton collisions at approximately 40 MHz. Protons and
neutrons are the most famous hadrons, they are made of quarks held together by strong
force interactions. According to the Standard Model (SM) of particle physics, quarks are
one of the building blocks of our universe. These building blocks are elementary particles
classified in different categories (Figure 26).
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Figure 26: Elementary particles defined by the Standard Model (Commons, 2020).

In order to test different theories, search for new physics and study their properties,
elementary particles are created in particle accelerators. For example, collisions at the LHC
have sufficient energy to create heavy short lived particles, including those defined by the
Standard Model such as the Higgs Boson and potentially new heavy particle beyond the
Standard Model (BSM) theory. Once created, such heavy particles are unstable and decay
to other elementary particles on extremely short time scales, for example the Higgs boson
lifetime is O(10−22s). Therefore, these particles cannot be observed directly but only a
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by-product of their formation is observed. For example, the Higgs boson was discovered in
2012 (Collaboration, 2012) by individual searches into its decay into Z, photon and W pairs
that are elementary particles as well. The intermediate produced particles may also have
short lifetimes. Thus, they will themselves decay and the newly produced particles will
decay again. This cascade process will continue until a stable particle that cannot decay (at
least on the timescale of it traversing the detector) is produced. In the case of quarks, they
cannot exist as isolated particles and when produced at high energy will radiate energy and
form hadrons, thus producing a collimated spray of particles known as a jet. The particles of
this jet then emanate outward and their energy and direction are measured by calorimeter
detectors. In order to identify a jet in a calorimeter, a clustering algorithm is used to cluster
the energy depositions.

Let us illustrate these concepts with a typical proton-proton collision. After a collision
at high energy, a proton-proton collision may produce elementary particles after a process
called scattering. Among others, the collision may produce a Z hand Higgs Boson:

pp −→ ZH. (80)

Z and Higgs Boson have respectively mean lifetimes of about 3× 10−25s and 1.56× 10−22s.
Thus, they will themselves decay into other particles. Z boson may decay into charged
lepton-antilepton (leptons are elementary particles that are not subjected to the strong
force) pairs such as an electron and a positron. The H boson may decay for example, into
two bottom quarks. This is represented in Figure 27.

Figure 27: Feynman diagram where a Z and Higgs boson are produced. The former decays
into a positron and an electron. The later decays into bottom quarks.

The bottom quarks will radiate energy and form hadrons. The produced hadrons will
deposit energy in the calorimeters of particle detectors and a clustering algorithm will
produce jets associated to the original bottom quarks. This process is represented in Figure
28. Then, these jets have different attributes such as mass, momentum and rapidity that
can be studied.

A standard way to simulate the collision process is to use Monte Carlo simulators such
as Pythia (Sjöstrand et al., 2006; ATL, 2014; Sjöstrand et al., 2015) or Herwig (Bähr et al.,
2008). Then, the smearing through the detector should be simulated as well. GEANT
Brun et al. (1994) is used to simulate realistic particle interactions with material. As this
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is a highly computationally expensive process, sometimes a simplified model of particle
interactions with material is used, for example the Delphes software (de Favereau et al.,
2014).

Figure 28: Display of an event
observed in the CMS detector
in which a Higgs boson decays
to bottom quarks (Mc Cauley,
2018). The event produces a Z
and Higgs boson. The former
decays into a positron and an
electron represented by the two
green lines. The later decays
into bottom quarks that form
jets through radiating energy
and then hadronizing. These
jets are represented by the two
cones while the green towers
represent energy deposits in the
electromagnetic calorimeter.

Here, given measured jet properties (hence corrupted), we aim at retrieving source
properties. We study four of them. The first one is the jet mass m. In relativity, the
particle with energy E and momentum p = mγv (where γ is the Lorentz factor and v is
the velocity of the particle) is represented as the energy-momentum four-vector:

P = [
E

c
, px, py, pz]

>.

The jet mass is computed as:

m =

√
(
E

c

E

c
− pxpx − pypy − pzpz). (81)

where the jet four-vector is obtained by summing the four-vectors of all the particles that
belong to the jet:

P = [
E

c
f, px, py, pz]

> =
∑
i∈jet

Pi. (82)

Equation 81 is obtained by the energy-momentum relation:

E2 = (mc)2 + (pc)2 (83)

where c is the speed of light and p, the momentum magnitude.

We also study the groomed mass after Soft Drop (Larkoski et al., 2014a) which is a jet
grooming technique. Jet grooming are post-processing methods that aim at cleaning a jet
from constituents that are likely to come from contamination (Marzani et al., 2017). For
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example, at the LHC, multiple collisions happen at the same time11 (pile-up) and thus, in
a given jet, some of the observed data might not come from the collision of interest.

We also study the jet width w that belongs to a family that defines jet shapes called
generalized angularity. For example, generalized angularities are effective in discriminat-
ing quarks and gluons because they probe the energetic and angular structure of the jet
(Larkoski et al., 2014b). Finally, we also study the 2-subjettiness value with β = 1. Simi-
larly to the jet width, the N-subjettiness is a jet shape. It is designed to identify boosted
hadronic objects such as top quarks (Thaler and Van Tilburg, 2012).

We use the dataset (Andreassen et al., 2019a) of pairs of source and corrupted data made
publicly available in Andreassen et al. (2019b). Proton-proton collisions are studied at

√
s =

14 Tev. Among the different datasets made available, we use source data generated with
the Monte Carlo simulator Pythia 8.243 (Sjöstrand et al., 2015) with Tune 26 (ATL, 2014).
Data are corrupted with a fast simulation of the CMS detector, Delphes 3.4.2 (de Favereau
et al., 2014). We use 60 % of the dataset to train the surrogate, 20% as validation set
to tune the inference algorithm and 20% as test set to report inference performance. We
also assess performance on the dataset where source data are generated by Herwig 7.1.5
(Bähr et al., 2008; Bahr et al., 1999) with default tune and corrupted with Delphes detector
simulator. All the dataset is used to only report inference performance. This is a challenging
setting where the distribution used to train the surrogate is substantially different than the
distribution on which inference is done. Both datasets contain approximately 1.6 million
events.

7.2 Related Work

Since D’Agostini (1995), Iterative Bayesian Unfolding (IBU) has been a widely used tech-
nique to correct detector effects. Source and corrupted data are usually binned into 1-D
histograms with respectively NE and NC bins. Therefore, equation:

p(y) =

∫
p(y|x)p(x)dx (84)

is rewritten for each dimension as:

P (yj) =

NC∑
l=1

P (yj |xl)P (xl) (85)

where P (yj) is the probability assigned to the jth bins. IBU requires an approximation
of the likelihood P (yj |xl), approximated with pairs of source and corrupted data. This

quantity is approximated by computing the 2-D joint histogram P (y,x)
P (x) for 1-D variables y

and x. Therefore, as opposed to us, IBU only treat one variable at a time and correlation
between variables are lost. Given an approximation of the likelihood, IBU iteratively learns

11. In order to collide particles, two beams circulating in opposite directions are concentrated in a small
section. Due to the size of protons, and the limited size of the section, the probability that two protons
collide is small. Therefore, each beam contains a large number of protons and thus, several collisions
happen at the same time.
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a 1-D binned prior distribution and update the probability assigned to each bin as:

Pn+1(xi) =

NE∑
j=1

P (xi|yj)P (yj) (86a)

=

NE∑
j=1

P (yj |xi)Pn(xi)∑NC
l=1 P (yj |xl)Pn(xl)

P (yj) (86b)

where the first equation is obtained by marginalizing x and the second line is obtained using
the Bayes rule. The initial values P0(xi) are initialized given prior knowledge and uniformly
in case of complete ignorance.

Recently, Andreassen et al. (2019b) used machine learning to generalize Equation 86 by
replacing the sum by a full phase-space integral:

pn+1(x) =

∫
p(y|x)pn(x)∫
p(y|x)pn(x)dx

p(y)dy. (87)

The idea is to use a dataset of corrupted and uncorrupted data in the same way that
IBU uses pairs of corrupted and uncorrupted data to approximate the likelihood or in the
same way that we need a dataset to train a surrogate model. Then, they learn a function
ν(x) such that the prior distribution p(x) can be approximated by reweighing the dataset
distribution of source data pdata(x):

p(x) = ν(x)pdata(x). (88)

Thus, Equation 88 can be plugged in Equation 87 which provides an iterative strategy to
update the function ν(·). Yet, they do not need to approximate the likelihood function
nor the integral function defined in Equation 87. They use the likelihood ratio in order
to iteratively learn a function that reweights the corrupted data from the dataset to the
observed corrupted data. Then, they use this function to learn the function ν(·). As opposed
to them, we do not learn a weighting function. We learn a prior distribution that can be
sampled from, whose density can be evaluated and differentiated.

7.3 Surrogate Model

In order to define the surrogate model, a grid search was performed over hyperparameters.
This grid search showed similar performance between different architectures. Therefore,
we used the same architecture than the one used on toy problems defined in Section 6.2.
Training was done with Adam optimizer with a learning rate of 10−4 and no weight decay
regularization for 300 epochs over the dataset. As the 1-D marginal distributions over the
variables of interest have long tails, we preprocessed the variables by taking their logarithm.
No further preprocessing was done.

Figure 29 shows the (empirical) learned corrupted distribution against the target dataset
distribution on the test set.
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Figure 29: Empirical distributions of corrupted data from the test set (in green) against
their associated source data corrupted by the trained surrogate (in black). The x and y-axes
correspond to different jet properties. The diagonals show the 1-D marginal distributions
while others are pairwise scatter plots. The surrogate model approximates well the detector
corruption process.

7.4 Empirical Prior from Point Estimates

In Section 6.3, we showed that given a large number of observations {y1, ...,yN} we can
learn the most likely estimate associated to each observation and bin them to approximate
the source data distribution. Here, we show that despite simple, this approach can be truly
efficient even on real, complex problems.

The experiment setup is the same as the one introduced in Section 6.3. As defined by
Equation 73, we aim at maximizing the log likelihood of each observation yi by optimizing
individual unseen parameters xi. As in Section 6.3, we use the Adam optimizer for its
learning rate adaptability and to parallelize the optimization algorithm. We used the default
parameters of Adam optimizer because it performed well on the Pythia validation set. For
this proof of concept, few other hyperparameter settings were tested. We initialize each xi
to the corrupted data yi, because we assume that the source data should not be too far
away from the corrupted data and then, solve a maximum likelihood estimation problem
for each yi.
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In Figure 30, we report the learned empirical prior on Pythia and Herwig test sets that
contain respectively about 300,000 and 1,6 millions observations. Binning is done in 1-D
for each jet property by defining 100 equally-likely bins in the range of values taken by the
data. We insist on the fact that binning is done after the optimization process. Therefore,
we could bin in multiple dimensions as well. It can be observed that on both datasets, a
first correction step has been nicely done. Given observed data represented by the black
curve, the learned blue curve is a better approximation of the source distribution. While
results are interesting for this jet property, the correction step is not as big on other jet
properties. Therefore, this simple technique can be embedded in a more complex one, for
example to initialize the weights of the prior distribution in IBU or in empirical Bayes.
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Figure 30: Empirical prior approximated by binning most likely estimates (MLEs) of unseen
jet properties (truth) where MLEs are obtained by solving a maximum likelihood problem
for each measurement (data).

7.5 Detector Effects Correction with Empirical Bayes

In this section, we learn an approximation of the source data distribution, that we model
by a density estimator. As defined in Section 5.3, we maximize the log marginal likelihood.
In order to do so, we evaluate the log marginal likelihood and optimize it on stochastic
minibatches of size 256. In order to approximate the marginal likelihood integral, we use
Monte Carlo integration with 210 integration steps. We use Adam optimizer with default
parameters and a learning rate of 10−4. We train for 10 epochs over the whole Herwig
dataset. Finally, the density estimator modelling the prior distribution is made of 6 NVP
layers where the functions s(·) and t(·) are MLPs with three layers of 32 units each and
RELU between every two layers. These parameters performed best after a grid search over
hyperparameters on the Pythia validation set.

In Figure 31, we compare our results to IBU and Multifold. Multifold is a version
of omnifold where jet properties are used rather that the raw particles at detector level.
Results for these methods as well as the layout used to make Figures 30 and 31 have been
obtained with the public implementation12 of Andreassen et al. (2019b). For IBU and

12. https://github.com/ericmetodiev/OmniFold
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Multifold, we used the same hyperparameters than them. We also report the two-sample
Kolmogorov–Smirnov test for each jet property in Table 6.

Figure 31: Detector effects correction on four jet substructure observables. Source data
(truth) have been generated with Herwig simulator and then corrupted (data) with Delphes
simulator. We compare our results against IBU and Multifold. All methods perform well
with our method being slightly better in correcting the mass property.

The mass is challenging to learn and the likelihood-free empirical Bayes method con-
sistently does better than IBU and Multifold. For the other properties, it incredibly well
learns the source distribution even if it performs a bit worse than IBU and Multifold quan-
titatively. As opposed to IBU and Multifold, the likelihood-free empirical Bayes method
learns a prior distribution that can be sampled from, whose density can be evaluated and
differentiated. This should open new perspectives in downstream analysis.
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m mSD τβ=1
2s w

IBU 0.0839 0.004 0.022 0.021

Multifold 0.054 ± 0.001 0.003 ± 0.001 0.009 ± 0.001 0.016 ± 0.001

Ours 0.038 ± 0.012 0.010 ± 0.003 0.028 ± 0.012 0.032 ± 0.005

Table 6: Detector effects correction performance for IBU, Multifold and our method. Perfor-
mance are quantified using the two-sample Kolmogorov–Smirnov test: Dp,q = supx |Fp(x)−
Fq(x)| where Fp and Fq are the binned empirical distribution of the truth-level and cor-
rected histograms. We show the mean and standard deviation over 5 runs for Multifold and
our method while IBU algorithm has no stochasticity. All methods perform well.
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8. Conclusion

This works leverages the recent advances in generative modelling and especially normalizing
flows to approximate the otherwise intractable likelihood of simulators. Being able to ap-
proximate and differentiate the likelihood function allows to use traditional methods such as
maximum likelihood and posterior inference. We show how, with minimal assumptions, we
can learn a prior over the model parameters. Then, the learned prior can be used with the
approximated likelihood to do traditional Bayesian inference. Therefore, after an upfront
data acquisition phase and surrogate training, inference is later amortized.

Hence, we develop a pipeline than learns a prior and then use it to do inference with
minimal assumptions and we show its applicability on a real high energy physics problem.
This opens new perspectives for methods that require less and less domain knowledge.

In this work, the learned prior distributions have been consistently modeled by normal-
izing flows, which act as regularizers by themselves. A strength of our method is that the
prior can be modeled by any generative model. Therefore, for future work it is interesting to
investigate stronger regularizations that do not specifically require more domain knowledge.
For example, convolutional neural network are strong regularizers that constrain data in
the space of natural-like images.

63



Appendix A. Maximum Likelihood as a Generalization of Minimum
Squared Error

In this appendix we show that anyone who is solving a constrain problem of the type:

x∗ = arg min
x
||Ax− y||2, s.t. x ∈ S (89)

is implicitly solving a maximum likelihood problem. This generalizes to unconstrained
problems.

Equation 89 can rewritten as:

z∗ = arg min
z
||Ah(z)− y||2, x∗ = h(z∗) (90)

where h(.) enforce x to be in the set S.
Solving a maximum likelihood problems aims at solving:

x∗ = arg max
x

log p(y|x), s.t. x ∈ S (91)

or equivalently:

z∗ = arg max
z

log p(y|h(z)), x∗ = h(z∗). (92)

Assuming that p(y|x) ∼ N (Ax,Σ2) where A ∈ Rm×n is the matrix defined in Equation
89 and Σ ∈ Rn×n is the identity matrix multiplied by an arbitrary constant, Equation 92
can be rewritten as:

z∗ = arg max
z

ln
1√

(2π)n|Σ|
exp(−1

2
(y −Ah(z))TΣ−1(y −Ah(z))) (93a)

= arg max
z

ln exp(−1

2
(y −Ah(z))TΣ−1(y −Ah(z))) +��cst (93b)

= arg max
z

ln exp(−1

2
Σ−1(y −Ah(z))T (y −Ah(z))) (93c)

= arg max
z
−1

2
Σ−1(y −Ah(z))2 (93d)

= arg max
z
||Ah(z)− y)||22 (93e)

In the first line, we use the definition of the multivariate gaussian distribution. Then,
in the second line, we use the hypothesis that the covariance matrix is independent on z
and therefore, we remove it from the optimization problem. In the third line, we perform
a commutativity that may be performed because Σ is diagonal. In (93d) we remove the
identity operator and finally, in the last line we remove terms that are independent on z.
The norm in the last line derives from the fact that Σ is a constant diagonal matrix.

Equation 93e is the same to Equation 90 proving that maximum likelihood is a gener-
alization of solving a minimum mean squared error. Note that this generalizes to nonlinear
inverse problems where Ah(z) should be replaced by s(h(z)) where s(.) is a deterministic
nonlinear corruption process.

Before concluding let us dive into the assumption made about the likelihood function,
what it implies and therefore what assumptions are made when solving a problem with a
least-squared error loss.
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Assuming that conditioned on x, the likelihood follows a normal distribution assume that
in stochastic processes, given a fixed x, the produces y′s are distributed given a multivariate
gaussian with an arbitrary complex mean Ax or s(x), a fixed variance along each dimension
and with no correlations between dimensions. Using a weighted squared error is equivalent
to Equation 93d where Σ is an arbitrary diagonal matrix and therefore, relax the assumption
that the variance along each dimension is the same.
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problems with invertible neural networks. CoRR, abs/1808.04730, 2018. URL http:

//arxiv.org/abs/1808.04730.
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Rene Brun, László Urbán, Michel le Maire, Federico Carminati, Simone Moretti Giani,
Flavienne Bruyant, Garda Patrick, and A. C. McPherson. Geant : detector description
and simulation tool. 1994.
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