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Abstract

Nowadays, Artificial Intelligence (AI), through Intelligent Transport Systems (ITS),
is seen as a major solution to traffic management problems. Among these issues is the
optimization of traffic signal control to reduce traffic congestion. The maturity of
connected devices is an opportunity to design cheap and efficient traffic light control
systems through Vehicle to Infrastructure (V2I) communications.

While traditional ITS use fixed sensors such as cameras or loop detectors, able to
detect every vehicle, a V2I implementation faces a real issue: partial detection. In-
deed, it cannot be assumed that every vehicle is equipped with the V2I communication
technology required to be observable to the ITS.

The present work reports a V2I Intelligent Transport System meant to reduce con-
gestion at traffic light intersections. Another main goal is to decrease the waiting time
of each and every road-user at these intersections. This is why the integration into the
algorithm of pedestrians and of a priority system for public transports is also analyzed
in this work. The system is implemented with a Reinforcement Learning (RL) algo-
rithm, particularly suitable for this kind of problem since it can use varied inputs and
does not have to model the underlying dynamics of the environment as it only relies
on experience about the efficiency of its actions.

The analyses under different car flows, detection rates and topologies show that the
presented algorithm is able to efficiently reduce commute time of road-users compared
to currently deployed fixed time systems, even at low detection rates. It is also robust
enough to be implemented on real traffic light intersections. Analyzes on road networks
with several intersections have shown that the algorithm is able to provide good per-
formances, even without an explicit multi-agent strategy. The integration of a priority
system for public transports was successful as well, although an effective integration of
pedestrians would require a more complex solution than the one proposed in this work.
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Chapter 1

Introduction

In today’s world, with more and more vehicles on the roads, traffic congestion is
more than ever a real problem. Part of this congestion is due to a non-optimal man-
agement of traffic signals.

Over the past decades, many studies succeeded in reducing queue lengths and wait-
ing time at traffic light intersections. Different methods were developed and deployed
in a few cities [1, 2, 3, 4], some of them optimizing fixed-time phases from traffic flow
data [1], others implementing dynamic control through traffic sensors [2, 3]. With the
growth of Artificial Intelligence (AI) and new technologies during the last few years,
the field of possibilities has been significantly increased and more and more Intelligent
Transportation Systems (ITS) are being designed as a solution to the traffic light con-
gestion problem. Since the beginning of the century, Reinforcement Learning (RL) has
proven to be very efficient in reducing congestion at intersections.

The present work is meant to solve today’s issues without overestimating the avail-
able financial and technological capabilities. It is based on methods presented in [5]
and aims to develop a Connectionist1 Reinforcement Learning solution for the conges-
tion problem at traffic light intersections. The resulting ITS is analyzed under different
configurations and on a larger scale. Its robustness is tested against several factors and
a deployment case.

1.1 Problem statement
The Internet of Things (IoT) has already enabled a huge amount of improvements

in our everyday lives. Traffic light control can also capitalize on this for alleviating
traffic congestion with technologies that allow for cheap deployment and maintenance.
Indeed, most of the Adaptive Traffic Control Systems (ATCS) proposed and developed
in recent years are still relying on vehicle state and quantity information that is either
very difficult to obtain or that requires an expensive equipment such as cameras or loop
detectors. Hence, in most cities, traffic lights are still controlled by fixed-time-phases

1Connectionism is a field of cognitive science that aims to explain mental phenomena with the help
of Artificial Neural Networks (ANN). Connectionist Learning, which predates Deep Learning by 10
to 20 years, uses interconnected networks of simple and often uniform units.
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CHAPTER 1. INTRODUCTION

policies. With the generalisation of smartphones and other connected devices all over
the world, other traffic light control methods could take advantage of these new tech-
nologies to replace traffic sensors.

The IoT approach consists in placing the technology in the driver’s seat instead of
setting it up at each traffic light intersection. It could either be external to the vehicle
(e.g. a free app developed by a city or state) or integrated in it (e.g. DSRC technology
[6]). Moreover, unlike fixed cameras or loop detectors, this kind of connected systems
allows for tracking vehicles (position, speed,...), thus providing a greater amount of
data that can be used in the state representation of the intersection.

Figure 1.1: Illustration of an Intelligent Transport System with partial detection.

This change in the mean of communication leads to another issue: it cannot be
expected that every user is able or agrees to get the proposed technology. It follows
that the implemented ITS solution will have to take decisions on traffic light phases
in a partially observable environment, as some vehicles will not be detected (detec-
tion/penetration rate lower than 100%). Figure 1.1 pictures a single traffic light inter-
section controlled by an ITS with partial detection. The RL agent is represented by
the traffic light symbol, detected and undetected vehicles appear respectively in green
and red.

In this work, the two main and strongly linked objectives are the following:

• To design a single-agent RL algorithm that is able to reduce traffic congestion,
even with a low detection rate, and thus to provide a cost-effective implementation
that can replace fixed time traffic signal control.

• To reduce the average waiting time of all road-users. This calls for the integration
of a priority system for public transports and the consideration of pedestrians in
some intersections.
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CHAPTER 1. INTRODUCTION

The outlined solution could be considered as permanent or as a transition to a
more efficient approach that would require a detection rate close or equal to 100% (e.g.
Virtual Traffic Lights [7]). In order to enhance the performances of the algorithm and
possibly to speed up the transition process to another Intelligent Transport System, it
is discussed how road-users can be encouraged to switch to the communication tech-
nology required by the solution to increase detection rate.

This work also analyzes how sensitive the proposed ITS is to several factors such as
traffic flow and detection rate and how well it can scale up to a network of intersections.
A deployment case is also evaluated thanks to a scenario modelling a real traffic light
intersection in Luxembourg and using historical traffic data. Finally, a study of the
integration of pedestrians and of a priority system for public transports is conducted.

The algorithm proposed in this thesis relies on Connectionist Reinforcement Learn-
ing, particularly Q-Learning, as it has proven to provide very good performances in the
past. Indeed, the problem that is tackled is a control problem that can be modelled as a
Markov Decision Process (MDP). It is therefore well suited for this kind of algorithms.
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Chapter 2

Related work

Traffic signal control using Reinforcement Learning has been studied for more than
20 years. In 1994, Mikami et al. proposed a Genetic RL solution to the traffic light
congestion problem over a road network by trading between two conflicting objectives
for each agent: optimize the local control plans while simultaneously cooperating with
the other agents, using respectively Reinforcement Learning and combinatorial opti-
mization [8].

In 2000, Wiering used multi-agent model-based Q-Learning, considering traffic
lights and vehicles as agents sharing the same value function (Co-Learning), to op-
timize traffic light settings and re-route cars [9]. Wiering et al. then proposed an
improvement of this implementation in the form of a bucket algorithm (communica-
tion between agents), and tested the solution on their Green Light District simulator
[10]. Bingham developed a neural network with a RL algorithm to fine-tune the pa-
rameters of a traffic signal controller that uses fuzzy logic [11].

With the rediscovery and generalization of neural networks, Connectionist Rein-
forcement Learning algorithms proved to be valuable schemes. In 2010, Arel et al.
designed a centralized multi-agent RL algorithm with a feedforward neural network for
value function approximation [12], based on the Longest Queue First Maximal Weight
Matching (LQF-MWM) algorithm proposed by Wunderlich et al. [13]. Another multi-
agent algorithm was proposed in 2019 by Wang et al., who used Cooperative double
Q-Learning (Co-DQL) and the Upper Confidence Bound (UCB) policy to avoid over-
estimation along with a fully connected neural network [14].

The recent improvement of Deep Learning and GPU has given Deep Reinforcement
Learning an important role to play in many fields, including intelligent traffic signal
control. In 2016, Van der Pol et al. introduced a scalable Deep Q-Learning approach
using transfer planning, max-plus coordination algorithm and convolutional layers in
Q-Network [15]. This paper was a source of inspiration for Gao et al., who proposed
a single-agent DRL solution using real-time machine-crafted features from raw traffic
data, instead of often used human-crafted features which ignore some traffic informa-
tion [16]. In 2019, Chu et al. developed a decentralized multi-agent DRL algorithm
using advantage actor critic (A2C) agents instead of widely used Q-Learning agents
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CHAPTER 2. RELATED WORK

and Long-Short Term Memory (LSTM) layers in their neural network [17].

The present work, although considered as a baseline, is strongly inspired from the
techniques exposed in 2018 by Zhang et al. [5]. They exploited the development of
Dedicated Short Range Communications (DSRC) technology [6], that is going to be
implemented in US cars in the near future, as a mean of Vehicle to Infrastructure (V2I)
communications. In this paper, a Q-Learning algorithm is proposed as a cost-effective
transition solution to Virtual Traffic Lights (VTL): an infrastructure-free traffic control
scheme that leverages the presence of DSRC-based Vehicle to Vehicle (V2V) communi-
cations, eliminating the need of any traffic light systems [7]. In October 2019, further
study of Partially Detected Intelligent Traffic Signal Control (PD-ITSC) was led by
Zhang et al. about the environmental adaptation of different Reinforcement Learning
algorithms [18].

Not only does this work re-assess the approach from [5], it also adds some more ele-
ments of analysis on the methods described, focusing only on a Q-Learning algorithm,
and evaluates two relatively new aspects of traffic signal control: the integration of
pedestrians and of a priority system for public transports.
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Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) is a field of machine learning that consists of an
autonomous agent evolving in an environment and perceiving information about its
current state. From these observations, it can decide to perform some actions following
a policy. Using this policy, the goal of the agent is to maximize an expected cumulative
reward over the course of interaction with the environment. For this purpose, the
agent iteratively collects a state observation, performs an action based on it in order
to maximize its expected cumulative future reward, and gets the reward associated to
this action in this state. The process is illustrated in Figure 3.1.

Figure 3.1: Reinforcement Learning agent interacting with its environment.

Based on the collected rewards, the RL agent optimizes its policy, either directly
(policy-based RL) or by optimizing a value function that estimates the expected future
reward that is obtained by performing a certain action in a certain state (value-based
RL). In the case of a value-based algorithm, the action chosen by the agent is the one
that maximizes the value function. The value-based approach that is used in this thesis
is called Q-Learning.

3.1 Neural Networks
For more details about Neural Networks, the current section is mainly based on the

lectures of Louppe [19].
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CHAPTER 3. REINFORCEMENT LEARNING

In Deep and Connectionist value-based Reinforcement Learning, the value function
is approximated by a Neural Network (NN). One should introduce the architecture
and mechanisms of the main NN used in the connectionist approach, i.e. the fully
connected feedforward network or Multi-Layer Perceptron (MLP).

3.1.1 The fully connected feedforward network

The fully connected feedforward network or Multi-Layer Perceptron (MLP) is the
simplest form of Neural Network. Still, this network is able to approximate any con-
tinuous function.

The building block of any MLP is called the neuron or perceptron. This neuron
takes some inputs xi, whose contributions are weighted by some weights wi, and outputs
a value added to a potential bias term b. This output value then goes through an
activation function a(x), resulting in:

h = a

(∑
i

wixi + b

)
, (3.1)

or, in terms of tensors:
h = a(wTx+ b) . (3.2)

The most common activation function in modern Neural Networks is the Rectified
Linear Units (ReLU) function:

ReLU(x) = max(0, x) . (3.3)

Figure 3.2: A fully connected feedforward neural network, or MLP, with three in-
put features, four hidden neurons and two outputs, along with an illustration of the
calculation performed in a neuron.

Neurons can be composed in parallel to form layers (called fully connected layers).
These layers can then be composed in series to form the MLP. Every MLP consists in
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CHAPTER 3. REINFORCEMENT LEARNING

one input layer, one or several hidden layers and one output layer. Each neuron in a
layer connects to all the neurons in the next layer. This explains the adjective "fully
connected". An example of MLP is represented in Figure 3.2. The arrows are pointing
to the direction of the forward pass.

3.1.2 Gradient descent and backpropagation

A Neural Network is used to approximate a model that represents a relation in some
data. In order to measure the correctness of the network, its predictions are compared
to the expected outputs over a data set through a loss function L(θ), where θ are the
parameters of the network (the weights and biases over the whole network).

The goal is to minimize the loss function. Gradient descent uses local linear in-
formation to iteratively move towards a local minimum. For initial parameters θ0, a
first-order approximation can be defined as:

L̂(θ0 + ε) = L(θ0) + εT∇θL(θ0) +
1

2α
‖ε‖2 . (3.4)

L̂(θ0 + ε) is minimized if:

∇εL̂(θ0 + ε) = 0 = ∇θL(θ0) +
1

α
ε , (3.5)

which results in the best improvement for the step ε = −α∇θL(θ0).

Therefore, parameters of the networks are updated iteratively following the update
rule:

θt+1 := θt − α∇θL(θt) , (3.6)

where α is the learning rate.

Minimizing the loss function L(θ) with (3.6) requires the gradient ∇θL(θt). This is
calculated thanks to the derivatives dL

dWk
and dL

dbk
, where Wk and bk are the parameters

of one of the L layers of the Neural Network, with k = 1, ..., L.

The chain rule states that:

(f ◦ g)′ = (f ′ ◦ g)g′ . (3.7)

Since a Neural Network is a composition of differentiable functions, the derivatives of
the loss function can be evaluated through a backward pass by applying the chain rule
recursively. This is called backpropagation.

As an example, Figure 3.3 shows the computational graph of a simple two layer
network where:

• White nodes correspond to input, output and intermediate values.

• Green nodes correspond to model parameters (in this case only weights).

12



CHAPTER 3. REINFORCEMENT LEARNING

• Blue nodes correspond to intermediate operations.

Figure 3.3: Computational graph of a simple two layer network, along with an illus-
tration of the backward pass.

Following the backward pass (represented by red arrows on Figure 3.3), dŷ
dW1

is
obtained by:

dŷ

dW1

=
∂ŷ

∂u3

∂u3
∂u2

∂u2
∂u1

∂u1
∂W1

=
∂a(u3)

∂u3

∂WT
2 u2

∂u2

∂a(u1)

∂u1

∂WT
1 u1

∂W1

. (3.8)

3.2 Markov Decision Processes
For more details about Markov Decision Processes, the current section is based on

the lectures of Louppe [20].

Reinforcement Learning tackles problems that can be modelled as a Markov Deci-
sion Process (MDP). It enables to define formally the environment in which the RL
agent is evolving and the interactions between the two. A Markov Decision Process is
modelled as a 4-tuple (S,A, P, R), where:

• S is a set of states.

• A is a set of actions.

• P (s′|s, a) is the transition function and denotes the probability to reach state s′
by performing action a in state s.

• R(s) is the reward function and denotes the immediate finite reward value ob-
tained for reaching state s.

A particularity of MDP is that future and past states are independent:

P (st+1|st, at, st−1, at−1, ..., s0, a0) = P (st+1|st, at) . (3.9)

A policy π : S → A maps states to actions. The discounted utility of a sequence of
rewards is given by:

V ([r0, r1, r2, ...]) = r0 + γr1 + γ2r2 + ... , (3.10)

where 0 < γ < 1 is the discount factor and reflects the fact that sooner rewards prob-
ably have greater utility than later rewards.
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CHAPTER 3. REINFORCEMENT LEARNING

From (3.10), it comes that the expected discounted utility of a sequence of actions
generated by a policy π, starting from a given state s, is defined by:

V π(s) = E

[
∞∑
t=0

γtR(st)

] ∣∣∣∣∣
s0=s

, (3.11)

where the expectation is taken with respect to the probability distribution over the
sequence of states generated by π and s, through the transition function.

This aims at finding an optimal sequence of actions, i.e. an optimal policy π∗ that
maximizes the expected discounted utility, such that:

π∗(s) = argmax
π

V π(s) . (3.12)

Therefore, assuming an optimal policy π∗, the expected discounted utility of a state
corresponds to the immediate reward for that state plus the expected discounted utility
of the next state. This next state is obtained by choosing the optimal action. This
relation is described by the Bellman equation:

V π∗(s) = R(s) + γmax
a

∑
s′

P (s′|s, a)V π∗(s′) . (3.13)

This relation exploits Equality (3.9).

3.3 The Q-Learning algorithm
For more details about Q-Learning, the current section is based on the work of

Watkins et al. [21].

In the Q-Learning algorithm, the agent learns a value function called the Q-value
function Q(st, at), which returns the maximum expected cumulative discounted future
reward (i.e. the maximum expected discounted utility), given a state observation st
and an action at, at time t. Each time step t is characterized by the set of values
[st, at, rt, st+1], which corresponds to performing an action at in state st and receiving a
reward rt for reaching state st+1. Relying on the Bellman equation (3.13), the maximum
expected cumulative discounted future reward is defined by:

Q(st, at) = E
[
rt + γmax

at+1

Q(st+1, at+1)

]
. (3.14)

Since time horizon for the traffic light control problem is infinite, the agent trains on
a chosen number of episodes of a chosen number of time steps.

In traditional Q-Learning, the agent directly updates its Q-value at each time step
following the update rule:

Q(st, at) := (1− α)Q(st, at) + α(rt + γmax
at+1

Q(st+1, at+1))

= Q(st, at) + α(rt + γmax
at+1

Q(st+1, at+1)−Q(st, at)) ,
(3.15)

14



CHAPTER 3. REINFORCEMENT LEARNING

where α represents the learning rate.

In Connectionist or Deep Q-Learning, as the state space can be too complex for
a discrete representation, a neural network (Q-Network) is used to approximate the
Q-function. It is thus the Q-function Qθ(st, at) that is updated at each time step using
backpropagation with a loss calculated with the following target value:

rt + γmax
at+1

Qθ(st+1, at+1) , (3.16)

where θ denotes the parameters of the Q-Network, which are the ones that are updated.

In this work, in order to stabilize the learning process, three features have been
added to the basic algorithm:

• Double Q-Learning (DQL), that consists in using two distinct networks Qθ and
Qθ′ to approximate the Q-function. Qθ corresponds to the regular Q-Network,
backpropagated every time step, while Qθ′ corresponds to the target network,
used to compute the target values and updated with the parameters θ of Qθ (i.e.
θ′ ← θ) periodically after a determined number of time steps. Without a target
network, target values would always be changing along with the parameters of the
regular Q-Network, which makes convergence more difficult. With this approach,
instead of using a target value as defined in (3.16), the latter is computed as:

rt + γmax
at+1

Qθ′(st+1, argmax
at+1

Qθ(st+1, at+1)) . (3.17)

This new definition enables to prevent overestimation of the Q-values. Indeed,
choosing an action and estimating its corresponding Q-value with different net-
works allows to decorrelate their noise.

• The use of a replay buffer, storing a certain number of transitions [st, at, rt, st+1],
from which a batch is randomly drawn at each time step for backpropagation.
This allows to break time correlation between transitions, which is a recurrent
problem of on-line Q-Learning.

• Scheduling on the learning rate used for backpropagation. This consists in choos-
ing a high value for the learning rate at the beginning of training in order to
quickly converge to a good reward, and then decreasing it to prevent oscillations.
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Chapter 4

Methodology

4.1 General design
In a classic traffic signal intersection, traffic lights are located at each approach and

coordinate into phases. Each phase is composed of a combination of light colors (green,
red or amber) defined to ensure all road-users’ safety. Figure 4.1 shows an example of
the different traffic light phases of a simple intersection.

Phase 1 Phase 2

Phase 3 Phase 4

Figure 4.1: The 4 traffic light phases of a simple intersection.

The ITS proposed in this work is illustrated in Figure 4.2. At each time step, it loads
the current state representation of the intersection, processes it with its Reinforcement
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CHAPTER 4. METHODOLOGY

Learning algorithm, and outputs an action to take: either stay at the current phase
(the output Q-value of the Q-Network is maximized for the action of staying at the
current phase: Qstay > Qswitch), or switch to the next one (Qstay < Qswitch). For the
sake of safety and realism, a traffic light phase has a minimum and maximum duration
time before switching to the next phase. This means that before reaching minimum
phase time, the agent cannot switch to the next phase whatever the maximum Q-value,
and once the maximum phase time is reached, the agent is forced to switch to the next
phase.

Figure 4.2: General design of the Intelligent Transport System.

4.2 Parameters of the Q-Learning algorithm

4.2.1 Q-Network

The Reinforcement Learning agent used in the ITS is designed with a Q-Learning
algorithm, using a Q-Network as Q-function. This Q-Network has fully connected
layers with Rectified Linear Unit (ReLU) activation. It takes a state observation in
entry and outputs a Q-value for each action. The policy is such that the action cor-
responding to the maximum Q-value is chosen by the agent. Detailed information
about the architecture, hyperparameters and training of the Q-Network is provided in
appendix A.
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4.2.2 State representation

The state observation that is given as input to the Q-Network is a vector of features.
The information it contains is listed in Table 4.1.

Feature Description
Number of

detected vehicles
Number of detected vehicles

for each lane/approach.

Distance to the
nearest detected vehicle

Normalized distance to the nearest
detected vehicle for each lane/approach.

If there are no vehicles in a lane,
set to the normalized lane length (i.e. 1).

Current phase time Normalized number of seconds elapsed
since the beginning of the current phase.

Amber phase 1 if we are in a phase where at least
one of the lights is amber, 0 otherwise.

Current day time Normalized number of seconds elapsed
since the beginning of the day.

Table 4.1: Detailed description of the state representation.

Notice that a lane or approach is not to be confused with the entire incoming road
segment. A road segment is demarcated by sidewalks or aisles while there can be sev-
eral lanes (going in the same direction or not) in a road segment.

In order to differentiate phases, the signs of the "Number of detected vehicles" and
of the "Distance to the nearest detected vehicle" features are changed if the light that
is shown to the corresponding lane is red or amber (meaning negative values for red or
amber colors and positive values for green color). Along with the use of ReLU activation
functions, this sign change also enables to activate different parts of the neural network.

In order to speed up learning, most of the input features are normalized, which
means, in this work, that their possible range of values is reduced to an interval between
0 and 1 (e.g. the "Current day time" feature is divided by 86400, i.e. the number of
seconds in a day).

4.2.3 Actions

The actions that can be taken by the RL agent at each time step are either:

• To keep the current phase configuration active.

• To switch to the next phase configuration.

Hence, the Q-Network has two output nodes corresponding to the Q-values of these
two actions.
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4.2.4 Reward

In order for the agent to learn the right parameters, the reward must be chosen as
a measure inversely translating the amount of congestion at the intersection. This can
be written as a function of the delay tITS − tmin of a vehicle passing through the inter-
section, where tITS and tmin represent respectively the travel time under a certain ITS
and the physically possible minimum travel time of a vehicle through the intersection.

Starting from this, the distance d through the intersection can be expressed as:

d =

∫ tITS

0

vITS(t)dt = vmaxtmin , (4.1)

where vITS(t) is the speed of the vehicle passing through the intersection at time t,
and vmax is the maximum reasonable speed corresponding to the minimum between
the maximum speed of the vehicle involved vvehmax and the speed limit of the road vlim
(so, in most cases, vmax is the speed limit):

vmax = min(vvehmax, vlim) . (4.2)

The delay can thus be defined by:

tITS − tmin =

∫ tITS

0

1dt− 1

vmax

∫ tITS

0

vITS(t)dt

=
1

vmax

∫ tITS

0

vmax − vITS(t)dt ,
(4.3)

where, theoretically, vmax − vITS(t) ≥ 0,∀t.

Therefore, at each time step, the goal is to minimize:

1

vmax
[vmax − vITS(t)] . (4.4)

This expresses a penalty. As the reward is meant to be maximized, it can rather
be defined by the opposite relation:

rt =
vITS(t)− vmax

vmax
. (4.5)

This reward corresponds to a single vehicle. The total reward, calculated for the
entire intersection at a certain time step t, is equivalent to the average of the rewards
corresponding to the vehicles currently passing through the intersection. It is also
interesting to notice that this reward could not have been computed with traditional
traffic sensors, such as cameras or loop detectors, as it requires ability to track vehicles.

However, the reward as defined above can only be calculated from a simulated
environment, as it bases on information collected from undetected vehicles. This means
that, once deployed, the agent will not be able to train anymore, and thus to adapt
further to its assigned intersection. This problem can be solved by using a partial
reward only considering detected vehicles.
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4.3 Simulation of the environment
The training and testing environments in this work are simulated with the Simulation
of Urban MObility (SUMO) simulator [22]. SUMO is an open source, microscopic,
space-continuous, and time-discrete traffic flow simulation platform that includes the
simulation application itself as well as supporting tools. It has been widely used during
the last decade in various traffic management and vehicular communication studies,
including adaptive traffic signal control.

The architectures of the environments created for this thesis were designed with
the netedit tool, a GUI for road network edition. Communication between the simu-
lator and the RL agent was enabled through the Traffic Control Interface (TraCI) API.

As SUMO is a time-discrete simulator, each time step in the simulator corresponds
to one second in reality. This is a realistic frequency at which the implemented ITS
could collect state observations and take actions once deployed on a real intersection.
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Chapter 5

Performance analysis on a simple
intersection

A first step in the analysis of the performances of the Q-Learning algorithm imple-
mented in this thesis is to test it in different situations within a simple environment.
This chapter focuses on two points: the general performance results of the algorithm
on a simple intersection, and its sensitivity and influenceability to several factors.

5.1 Description of the environment
The simple intersection on which the algorithm is tested is meant to be as general

as possible. Hence, as shown in Figure 5.1, the chosen intersection is a cross-like
intersection with incident roads composed of a single incident 100 meters long lane. A
vehicle coming from any lane can either turn left, right or keep going straight.

Figure 5.1: General simple intersection on which the algorithm is tested (L=lane).

The light phases are as shown in Figure 4.1 and explained in Table 5.1. The results
obtained with a minimum phase time lower than 10 seconds for phases 1 and 3 could
lead to better performances, as the algorithm would benefit from a better reaction
time and light maneuverability. However, for the sake of realism, this value has been
maintained at 10 seconds.
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L1 L2 L3 L4 Duration

Phase 1 G R G R Minimum: 10′′
Maximum: 50′′

Phase 2 A R A R 3′′

Phase 3 R G R G Minimum: 10′′
Maximum: 50′′

Phase 4 R A R A 3′′

Table 5.1: Description of the 4 phases of the simple intersection (L=lane, colors corre-
spond to light colors: G=green, R=red, A=amber).

For a complete analysis, the algorithm is tested against different traffic flow config-
urations that are presented in Table 5.2. These traffic flows are generated randomly:
every time step, the generation or non-generation of a vehicle for each possible path in
the intersection is determined by drawing from a Bernoulli distribution1. The choice of
non-uniform traffic flows is motivated by the fact that the two axes of a typical cross-
like intersection rarely have the same traffic flows (e.g. a main arterial road crossed
by some smaller, less frequented roads). A video of the different traffic flows (low,
medium, high and very high) is available at [23]. The very high traffic flow illustrates
an extreme case where congestion is so high that traffic is just a continuous queue.

Traffic flow per lane (in veh/s)
West North East South

Uniform

Low 0.01 0.01 0.01 0.01
Medium 0.05 0.05 0.05 0.05
High 0.1 0.1 0.1 0.1

Very high 0.2 0.2 0.2 0.2

Non-uniform
Medium - Low 0.05 0.01 0.05 0.01
High - Low 0.1 0.01 0.1 0.01

High - Medium 0.1 0.05 0.1 0.05

Table 5.2: Traffic flow configurations of the simple intersection used in the tests.

The algorithm is also tested against 4 detection rates: 100%, 70%, 50% and 20%.
The detection or non-detection of a vehicle is determined by drawing from a Bernoulli
distribution.

1The Bernoulli distribution is the discrete probability distribution of a random variable which takes
the value 1 with probability p and the value 0 with probability q = 1− p.
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5.2 Performances

5.2.1 Convergence of the algorithm

Before looking at the actual performances of the Q-Learning algorithm, it is inter-
esting to examine how it converges to an optimized reward during the training process.
Indeed, when analyzing the training curve of the algorithm at uniform medium traffic
flow (the training curves for all the traffic flow configurations can be seen in appendix B)
in Figure 5.22, it can be noticed that the reward stabilizes to a better score than a fixed
time system after only 50 episodes. This phenomenon could be caused by a convergence
to a solution that is too simple, meaning that the agent acquired little new information.

Figure 5.2: Training curve at uniform medium traffic flow, for different detection rates.

In order to exclude this hypothesis, the performances of the algorithm in terms
of waiting time have been compared to a random policy, with uniform probability of
choosing one action or the other at each time step. The convergence has also been
analyzed for simpler algorithms: on-line Q-Learning, and reduction of the amount of
exploration by reducing the initial value (from 1 to 0.1) or the number of decay steps
(from 100000 to 10000) of ε for the ε-greedy policy.

The results of these two experiments are presented in Figure 5.3. Figure 5.3a shows
that the algorithm is learning something significant compared to a system making
completely random choices and provides performances that are better than a fixed

2The curves are starting at two different value zones of the reward: around the fixed time baseline,
and around a worse value. This is due to the fact that, when initialized, the Q-Network is not tuned
at all and will almost always have its maximum Q-value corresponding to the same action: either
"stay at the current phase" or "switch to the next phase". The first one corresponds to phases of
50 seconds and is the worst choice, and the second one corresponds to phases of the minimum phase
time: 10 seconds, which is the phase time of the fixed time system used as baseline.
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time light controller. On the other hand, Figure 5.3b shows that simpler algorithms
also converge to the same reward after 50 episodes. Hence, the problem of managing
traffic lights is simple and does not require a lot of training episodes to find an effective
solution.

(a) Comparison of the performances of the algorithm, for different
detection rates (%), against a random policy.

(b) Comparison between the training curves of the algorithm and
other simpler versions of it.

Figure 5.3: Results of the convergence and learning tests.

Note that the error bars in Figures 5.2, 5.3a and 5.3b represent the standard de-
viation of the average reward or the standard deviation of the average waiting time
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following if the figure represents average reward or waiting time. This is the case for
all the figures with error bars in this dissertation.

5.2.2 General results

Now that it has been proven that the Q-Learning algorithm is converging to a so-
lution, performance results on a simple intersection can be analyzed with confidence.
Figure 5.4 displays the average reward and average waiting time obtained in the traffic
flow configurations exposed in section 5.1. The different phase times chosen in each
traffic flow configuration for the fixed time system correspond to the optimal ones.
These phase times are calculated as a function of the traffic flow in each road segment,
in the bounds imposed by minimum and maximum phase times. This means that, es-
pecially for more realistic non-uniform traffic flow configurations where the exact flow
of each lane is not supposed to be known, the baselines are ideal cases that shall be
approached but not reached in reality. A video comparing the performances of fixed
time control and of the algorithm with 100% detection rate for all traffic flows is avail-
able at [24].

First of all, as the reward is none other than a measure of decongestion (as demon-
strated in section 4.2.4), Figures 5.4a and 5.4b show the strong correlation between
congestion and waiting time: a low reward corresponds to a high waiting time and vice
versa. Hence, analyzing the performances only on the basis of the waiting time is not
a loss of information. That is what will be done from now on.

It can also be noticed that the performances are better than the baselines in every
configuration, even for low detection rates. However, in situations where the detection
rate is 20% (for low, medium, high-low and high-medium configurations), or in a high
traffic flow configuration, the error bars of the baseline and the algorithm overlap. This
means that it is possible to have better performances with a fixed time system than
with the implemented ITS in some situations.

The order of magnitude of the waiting times is pretty similar between a uniform
traffic flow configuration and a non-uniform one with the same traffic flow in the less
frequented approaches (medium-low is more similar to low than to medium, etc.). The
algorithm can thus adapt well to situations where only some approaches of the inter-
section suffer from high traffic flow, which is often the case in the real world.

The high standard deviation, especially for the average waiting time, in a uniform
high traffic flow configuration can be explained by the fact that the problem becomes
too complex for the simple state representation that has been chosen3. Hence, for a
certain state, the algorithm could choose the right action to take, and for a slightly
different state that seems similar with respect to the state representation, the algorithm
would act wrong.

3For example, the algorithm might perform better when including a notion of vehicle position in
each approach in the state representation, along with convolutional layers as a first forward stage of
the Q-Network, for this kind of input. This scheme is not studied in this work.
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(a) Average reward

(b) Average waiting time

Figure 5.4: General performance results on a simple intersection for different traffic
flows and detection rates.

From here, there is one traffic flow configuration that has not yet been studied:
uniform very high traffic flow. This is because the results for this configuration are
very different and not comparable to the others, as can be seen in Figure 5.5. Indeed,
in this situation, the traffic flows are so high that the queues are continuous and there
is no intelligent solution to learn, the best one being to alleviate the queues along each
axis in a periodic manner, as it is done with fixed time control. This is why the baseline
has a lower average waiting time than the algorithm and the standard deviations are so
low. There is nothing complex about the problem anymore, a fair amount of vehicles
just have to pass through the intersection at any green phase. It is also interesting
to notice, when looking at Figure 5.5a, that, unlike for waiting time, the algorithm
has learned the same reward than the one obtained with fixed time control, which
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corresponds to the best one. The correlation between congestion and waiting time is
thus lost when reaching unmanageable traffic flows.

(a) Average reward

(b) Average waiting time

Figure 5.5: Performance results for a uniform very high traffic flow and different de-
tection rates (%).

5.3 Sensitivity
Little are the chances that the environment under which an ITS has been trained

is the same as the one on which it is meant to be deployed. This is why a study of
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the sensitivity of the algorithm against different parameters is a necessary step in the
validation stage.

5.3.1 Normalization

A first question that one could think of when using normalized data in the state
representation of an RL algorithm is the effect it has when the reference values for
normalization are changing. In the present case, when browsing through Table 4.1,
as a day will always be composed of 86400 seconds, the only two values that are con-
cerned are the distance to the nearest detected vehicle and the current phase time.
Hence, the question is: "Is normalizing these two values a good idea with respect to
adaptability to other lane lengths and maximum phase times?". Figure 5.6 compares
the average waiting times obtained for different lane lengths and phase times, at uni-
form medium traffic flow and 100% detection rate, in the four possible lane length and
phase time normalization configurations. Each bar group corresponds to the same Q-
Learning algorithm trained on the original intersection with a different normalization
configuration.

Figure 5.6: Comparison of sensitivity to different lane lengths and phase times, for
different normalization configurations (original training intersection: 100 meter lanes
and 50 second maximum phase time, the phase values in the legend correspond to
maximum phase times).

The algorithm that only normalizes the distance to the nearest detected vehicle
shows good robustness in every cases. However, the algorithm that normalizes both
distance and current phase time is even less sensitive in every case, except for a longer
maximum phase time. As it is supposed that the maximum phase times of an intersec-
tion on which an ITS is meant to be deployed are known or determined before training,
this thesis will focus on this second algorithm (i.e. the state representation is kept as
defined in section 4.2.2).
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5.3.2 Traffic flow

While the lane lengths and maximum phase times of the deployment intersection
may be precisely known before training, it is certainly not true for the traffic flows
this intersection is subject to, that may not have the exact same average and vary a
bit. Hence, even if a general quantity about these real traffic flows can be collected
through historical data, robustness to traffic flow is a key characteristic for a successful
deployment. Figure 5.7 shows the sensitivity to traffic flow of three algorithms trained
respectively at low, medium and high traffic flow with 100% detection rate.

Figure 5.7: Sensitivity to traffic flow for different training flows.

It can be clearly stated from this figure that for any traffic flow an algorithm trained
at high traffic flow will perform at least as well as one trained at lower traffic flow. A
good piece of advice for training would thus be to overestimate the traffic flows of the
intersection the ITS will be deployed on.

5.3.3 Detection rate

In the same way as for traffic flow, the detection rate at which the ITS is trained
is not the same as the one at deployment time. The sensitivity of the algorithm to
detection rate at medium traffic flow is pictured in Figure 5.8. It is shown that, when
almost no information about the real detection rate is known, training the algorithm
with a detection rate between 50% and 70% leads to good results whatever the deploy-
ment detection rate.

Overall, the tested training detection rates lead to an average waiting time that is
below the fixed time baseline for any detection rate. However, this is not the case for
a 100% training detection rate where the performances are getting worse and worse as
the actual detection rate is lowering. This is an evidence of a different way of learning.
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When reaching 100% detection rate, all vehicles passing through the intersection can
be seen by the ITS, and the latter can adopt a different approach that would be
catastrophic if a significant percentage of vehicles was undetectable.

Figure 5.8: Sensitivity to detection rate for different training detection rates.

5.4 Influence of the lane length
The length of each approach of an intersection plays a huge role in the delay an

ITS has to react efficiently to new vehicles. Logic would state that the further from
the intersection a vehicle is detected, the better the agent will be able to adapt and
the better the performances. This is not entirely true, as can be seen in Figure 5.9.

Indeed, even if Figure 5.9a confirms this hypothesis, Figure 5.9b shows that, when
reaching high traffic flows, the tendency is reversed. This can be explained by the fact
that, at high traffic flow, there are always vehicles to be detected on each approach and
there will always be vehicles close to the intersection. In this case, what matters to
take good actions is not so much the distance from the intersection but the position of
the vehicles on each lane. This is why the average waiting time is significantly better
for 25 meter lanes than for longer lanes in Figure 5.9b. Vehicles that are detected are
grouped in the same small zone, which allows the algorithm to focus on what matters.
If the lanes are longer, the need of position information for each vehicle becomes more
urgent and the average waiting time increases as well as the standard deviation.
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(a) Uniform medium traffic flow

(b) Uniform high traffic flow

Figure 5.9: Influence of the length of the four approaches of the simple intersection on
the average waiting time.

In order to better understand the problem, an illustrated example is shown in Fig-
ure 5.10. When looking at this figure with human eyes, it can be directly seen that
giving a green light to the north lane will make every car on the east lane wait and thus
increase the waiting time more than necessary. However, with the state representation
defined in this work and considering a 100% detection rate, the north lane will still be
given a green light because more vehicles stand on it and the "Distance to the nearest
detected vehicle" features are the same for north and east lanes. If the ITS had only
detected cars that are inside the red square (lower lane lengths), vehicles that are far
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from the intersection on the north lane would have been ignored and the algorithm
would have made the right choice, i.e. letting east cars go through first.

This problem highlights a weakness of the proposed algorithm, and it would be
justified to think that the algorithm might perform better when including a notion of
vehicle position in each approach in the state representation, along with convolutional
layers as a first forward stage of the Q-Network, for this kind of input. This scheme is
not studied in this thesis but constitutes a good way of improvement for future works.

Figure 5.10: Illustrated example of the importance of vehicle position information.

5.5 Difference between detected and undetected ve-
hicles

When thinking about the deployment of the ITS exposed in this work, it is obvious
that, at first, a very low percentage of road-users will be equipped with the technology
allowing them to be detected by the system. Therefore, it is interesting to know if any-
thing could push road-users to switch to the technology, in order to increase detection
rate and thus performances of the ITS.

Figure 5.11 shows the average waiting time of detected and undetected vehicles for
different detection rates. It appears that undetected vehicles are clearly disadvantaged
compared to detected vehicles, which would lead the drivers to switch to the required
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technology. This shows that the solution presented in this thesis can integrate naturally
into road-users’ life, with possibly no cost for them depending on the technology.

(a) Uniform medium traffic flow

(b) Uniform high traffic flow

Figure 5.11: Average waiting time of detected and undetected vehicles for different
detection rates.

When comparing Figures 5.11a and 5.11b, it can be seen that the difference between
detected and undetected vehicles becomes tinier as the traffic flow increases. Moreover,
in Figure 5.11b, the average waiting time is lower than the fixed time baseline for
both detected and undetected vehicles. This is due to the fact that, when traffic flow
increases, vehicles are seen more like a fluid rather than separate particles, leading to
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less individualization and therefore to the possibility for undetected vehicles to leverage
the advantage that is given to detected vehicles.
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Chapter 6

Performance analysis on a road
network

The Q-Learning algorithm performs well on a single intersection. However, when
deploying such a solution in a city, it is very unlikely that it will limit to one intersection.
This is why it is important to check that the ITS also provides good results on road
networks, even without a multi-agent scheme (i.e. without any explicit information
exchange between agents).

6.1 Description of the environments
Once again, in order to stay as general as possible, two simple and very common

structures of network have been chosen as environments: a Manhattan grid and an
arterial road. These two architectures are illustrated in Figure 6.1.

(a) 3× 3 Manhattan grid

(b) 5× 1 arterial road

Figure 6.1: Road networks used as environments.

In these networks, each intersection is the same as the one defined in section 5.1,
with 100 meter lanes and the same phases as in Table 5.1. The tests are done at
uniform medium traffic flow and 20%, 50%, 70% and 100% detection rates.
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6.2 Independent multi-agent training
In this work, as no communication mechanisms between agents have been designed,

the only way to make them adapt better to the environment than just deploying several
instances of a same pre-trained agent is independent multi-agent training.

Independent multi-agent training consists in training directly on a road network as
many independent agents as there are intersections. Even if no explicit information is
shared between agents, training them together in the same simulated episodes enables
each agent to learn how to adapt to the others. Indeed, the actions of an agent that
lets vehicles pass on a particular road are reflected in the incoming traffic flow of the
intersection located at the other end of the road and controlled by another independent
agent.

6.3 Performances
The road networks allow us to test two aspects of the algorithm:

1. The performances of a single agent trained on a simple intersection and deployed
on every intersection of the network.

2. The performances of multiple agents, each corresponding to one intersection of
the network, directly trained together and deployed on the network, as described
in section 6.2.

These two separate tests enable to assess:

1. The possibility to deploy a general single agent on several intersections with good
performances.

2. How much improvement is brought by training several agents, each one special-
ized for a specific intersection.

The performances in terms of waiting time of the single pre-trained agent and the
specialized agents compared to fixed time control are presented in Figure 6.2.

The results for the Manhattan grid in Figure 6.2a display no difference between
the agent trained on a single intersection and the specialized agents. This is due to
the symmetry of the network. Indeed, as each entry of the network is subjected to the
same medium traffic flow, the traffic flows in every lane are thus the same and a single
agent trained at medium traffic flow on a simple intersection fits perfectly to every
intersection of the network. The only difference between a single simple intersection
and an intersection of the Manhattan grid is that the latter is subjected to more real-
istic, non-continuous traffic flows. This, however, does not seem to affect performances.

In Figure 6.2b are shown the results for the arterial road. The situation is different
in this case as, even though they are the same in each entry, the traffic flows are
different in each internal lane of the artery. This asymmetry in traffic flow leads to
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the issue that a single agent cannot be adapted exactly to each and every intersection,
leading to better performances for multiple agents trained simultaneously, directly on
the network.

(a) 3× 3 Manhattan grid

(b) 5× 1 arterial road

Figure 6.2: Performances of a single pre-trained agent and trained agents on the two
road networks.

In conclusion, in order to obtain less congestion and waiting time for vehicles, the
best solution consists in training multiple agents together on a simulated road network
corresponding to the deployment map. Training a single agent for each separate inter-
section could also be considered rather than taking a more general pre-trained agent.
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It is however worth mentioning that both approaches described in this section provide
good performances compared to a fixed time system.
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Chapter 7

Deployment on a real intersection

Although sensitivity and adaptability tests are essential to the validation process
of a control system like the one described in this work, it is also very important to
prove that the ITS will deliver good results on a real deployment case, with training
environment and data that are simple enough to generalize the proof to any other
deployment case. This chapter follows this purpose.

7.1 Description of the environment

7.1.1 The LuST scenario

The intersection used for deployment is part of a scenario called the Luxembourg
SUMO Traffic (LuST) scenario [25, 26]. It was designed by Codecá et al. in order
to provide a scenario that meets the requirements of scientists who want to test their
ITS on reproduced, realistic mobility patterns. The city of Luxembourg was mostly
chosen because the government provides traffic statistics that enable to calibrate traf-
fic demand. Moreover, this city has a reasonable size with respect to a microscopic
simulator like SUMO and has a topology that is complete enough and comparable to
many European cities. This traffic data is provided on the website of the Luxembourg
National Institute of Statistics and Economic studies (STATEC) [27].

In the scope of the algorithm presented here, this scenario is interesting because it
takes place over a 24 hour period, which exploits the "time of the day" feature in the
state representation. Moreover, despite the fact that the pedestrians and some specific
reserved lanes are not simulated, which would have added more realism, it provides
a sufficiently realistic traffic flow based on real historical traffic data. The scenario
simulates a deterministic traffic demand in the whole city of Luxembourg, with rush
hour peaks at 8:00 and 18:30 and an off-peak around 13:00.

7.1.2 Training and deployment intersections

So far, the intersections on which the algorithm was tested were simple and general.
The goal here is not only to test the ITS against real challenging traffic flows but also
to deploy it on an intersection that is realistically complex. In the LuST scenario, the
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junction identified by −12408 is a very frequented intersection providing enough com-
plexity (several lanes per incoming road, specific directions for each lane, more light
phases, ...).

In order to demonstrate the robustness of the algorithm and the generalization of
the training process, the training intersection is chosen to be a simplified replica of the
real intersection with simplified traffic patterns. The whole deployment process, which
can also be applied on real physical intersections rather than a scenario, consists of:

1. Measuring, lane by lane, the hourly traffic volumes of the real intersection.

2. Creating a simplified version of the real environment, with traffic flows corre-
sponding to these real volumes.

3. Training the RL agent on this newly created environment.

4. Substituting the newly trained agent to the fixed time system on the real inter-
section.

Figure 7.1 shows the training and deployment LuST intersections. Note that the
traffic light phases for these intersections are exactly the same and are defined in
appendix C. Table 7.1 highlights the differences between the two intersections. The
hourly traffic volume measured on the deployment intersection and simulated on the
training intersection is also presented in Figure 7.2. The rush hours and the off-peak
around lunch time are clearly visible.

(a) Training intersection (b) Deployment intersection

Figure 7.1: Topology of the training and deployment (in LuST) intersections.
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Training Deployment (LuST)

Lane length 100 meters
Equal to the length

of the shortest approach1

Traffic flow generation Bernoulli
distribution Bulk arrival

Type of vehicle Cars Cars and buses
Stop-and-go vehicles None Bus stops

Vehicle speed Constant Gaussian mixture distribution
Vehicle passing None Passing due to speed randomness

Table 7.1: Differences between the training intersection and the deployment intersec-
tion from the LuST scenario.

Figure 7.2: Hourly traffic volume on the deployment intersection from the LuST sce-
nario.

7.2 Performances
As an evaluation of the deployment case, Figure 7.3 shows the hourly performances

of the algorithm on the real intersection from the LuST scenario, in terms of waiting
time. Error bars are not displayed for the simple reason that the LuST scenario relies
on a deterministic traffic generation. It is clear that the algorithm provides a lower

1This is necessary when the "Distance to the nearest detected vehicle" feature is normalized in
order to keep comparison at scale between lanes. Hence, it brings out a limitation of this approach.
Indeed, not normalizing would allow different lane lengths and thus to consider each entire incoming
road.
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average waiting time than fixed time control, at any hour of the day, including and
most importantly at rush hours, and this even at low detection rate.

Figure 7.3: Hourly waiting time on the LuST deployment intersection, for different
detection rates.

It can also be noticed that the difference between the detection rates in terms of
waiting time decreases as the traffic volume increases, with roughly the same perfor-
mances for all the detection rates at rush hours. As explained in section 5.5, this is
due to the fact that the higher the traffic flow, the more traffic is seen as a fluid rather
than a collection of particles (vehicles), and thus the more undetected vehicles can
take advantage of the detection of other vehicles coming from the same lane. This
phenomenon is accentuated with the realistic mobility patterns of the LuST scenario,
as vehicles are arriving to the intersection by waves.
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Chapter 8

Integration of a priority system

In this chapter, a priority system for public transports, particularly buses, is de-
signed and tested. The integration of such a system into the original ITS could en-
courage people to take public transports, with three benefits:

• An obvious ecological benefit.

• The more people in public transports, the lower the average waiting time per
road-user (not per vehicle).

• Since all public transports should be detected by the ITS, more people in public
transport would mean less people in possibly undetected vehicles, and thus an
increase of the detection rate and a decrease of the congestion level, leading to
better performances.

8.1 Methodology and scenario
Methodology The integration of the priority system into the algorithm is straight-
forward. It consists in separating buses and other vehicles in the feature vector given
as input to the Q-Network, in order for the agent to differentiate the two types. For
this purpose, the entries for the "Number of detected vehicles" feature are doubled.
Also, the reward corresponding to a bus is multiplied by a priority factor p ≥ 1 such
that:

rbust = p.
vbusITS(t)− vbusmax

vbusmax

. (8.1)

This introduces a bigger penalty if a bus is slowed down or kept waiting rather than
another vehicle.

Scenario The scenario takes place on the simple intersection described in section 5.1,
with the exact same phases. For challenging tests, this intersection is meant to be
frequently crossed by buses. This is why three two-way bus lines (see characteristics
listed in Table 8.1) are passing through the intersection. These bus lines are only
representing paths to follow within the intersection and are not to be confused with
special lanes for buses.
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Path Passage
frequency

Difference between
planned and actual

passage time

Bus line 1 East lane to west
lane and back Every 10′ Gaussian distribution

with a standard deviation
of 1′30′′Bus line 2 North lane to east

lane and back Every 15′

Bus line 3 North lane to south
lane and back Every 10′

Table 8.1: Characteristics of the bus lines.

8.2 Results
The goal is to find the right value for the priority factor, so that buses are signif-

icantly favored without unnecessarily penalizing the rest of the vehicles1. Figures 8.1
and 8.2 show the influence of the priority factor on the average waiting time, sepa-
rating buses from the rest of the vehicles. By looking at the charts, it seems obvious
that it is not necessary to go over a priority factor of 4, as the waiting time of buses
is not reduced anymore and the waiting time of other vehicles is even slightly increased.

Comparing Figures 8.1a and 8.1b, it is quite visible that the curve corresponding to
buses is not starting at the same average waiting time as the others at 20% detection
rate. This is due to the simple fact that buses are considered to be fully detected.
Therefore, even for a priority factor of 1 (no prioritization), buses already benefit from
always being seen by the agent. Another interesting point is that, as the priority factor
increases, the average waiting time of buses seems to converge faster to its optimal
value at lower detection rates. Indeed, if less cars are detected, the proportion of buses
among detected vehicles increases. This means less competition for buses. Therefore a
smaller priority factor is enough to make the difference.

A lower detection rate also means worse performances for other vehicles than buses.
This bad performance seems to slightly rub off on that of buses since the optimal av-
erage waiting time of buses is lower than 1 in Figure 8.1a, at 100% detection rate, and
higher than 1 in Figure 8.1b, at 20% detection rate.

Now taking an interest in the effect of traffic flow, Figure 8.2b displays no differences
in the trends at high traffic flow compared to medium traffic flow. Moreover, Figure 8.2a
shows that, at low traffic flow, the average waiting time for buses is constant. Hence,
low traffic flows simplify the problem enough, so that the agent is able to optimize the
average waiting time of every vehicle without the need of prioritization.

1Another idea would be to make use of a different priority factor for each bus, proportional to
the number of passengers it carries. This approach optimizes the waiting time for each road-user.
However, in this work, from an ecological point of view, it has been chosen to favor buses as much as
possible in order to encourage people to take public transports.
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(a) 100% detection rate

(b) 20% detection rate

Figure 8.1: Influence of the priority factor on the average waiting time at uniform
medium traffic flow, separating buses and other vehicles.
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(a) Uniform low traffic flow

(b) Uniform high traffic flow

Figure 8.2: Influence of the priority factor on the average waiting time with a 100%
detection rate, separating buses and other vehicles.
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Chapter 9

Integration of pedestrians

An important next step in the process of solving the congestion problem at traffic
light intersections is to take pedestrians into account at relevant intersections. As a
matter of fact, not only would considering pedestrians in intersections featuring pedes-
trians reduce the waiting time for them, but, if a good scheme is to be found, it could
also improve the performances for vehicles: the environment and its corresponding
state observations would get closer to reality. This chapter analyzes several approaches
focused on pedestrians and incorporable into the original algorithm.

9.1 Definition of the environment
The intersection on which the different algorithms are trained and tested is the

same as the simple intersection described in section 5.1, except that:

• Sidewalks and four pedestrian crossings are added.

• For the sake of safety and realism, the traffic light phases are changed for both
vehicles and pedestrians.

Figure 9.1 displays this intersection and Table 9.1 explains the different light phases.
The pedestrian flow configurations are exactly the same as the traffic flow configurations
defined in Table 5.2.

Figure 9.1: Intersection featuring pedestrians on which the algorithms are tested
(L=lane, C=crossing).
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L1 L2 L3 L4 C1 C2 C3 C4 Duration

Phase 1 G R G R R G R G Minimum: 10′′
Maximum: 50′′

Phase 2 G R G R R R R R 5′′

Phase 3 A R A R R R R R 3′′

Phase 4 R G R G G R G R Minimum: 10′′
Maximum: 50′′

Phase 5 R G R G R R R R 5′′

Phase 6 R A R A R R R R 3′′

Table 9.1: Description of the 6 phases of the intersection featuring pedestrians (L=lane,
C=crossing, colors correspond to light colors: G=green, R=red, A=amber).

9.2 Description of the algorithms
The algorithms described in this section consider pedestrians as vehicles, moving

in different lanes (sidewalks) than car lanes. Therefore, the same values are associated
to vehicles and pedestrians, but as different entries of the Q-Network (different state
values). In order to better understand the idea behind each algorithm, the descriptions
are based on the illustration presented in Figure 9.2.

Figure 9.2: Supporting illustration for the description of the pedestrian algorithm ideas.

The algorithms described below exploit two main approaches: separating pedes-
trians either into 4 zones demarcated by the crossroads (algorithms identified by
"ZoneN") or by crossing (algorithms identified by "CrossingN").

1. Zone1: counts the number of pedestrians waiting in each blue zone (4 "Number
of detected pedestrians" entries).
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2. Zone2: same as Zone1, but also counts pedestrians moving in the red squares (4
"Number of detected pedestrians" entries).

3. Zone3: same principle as for vehicles. In each zone, counts the number of
pedestrians coming towards the intersection and takes the distance between the
intersection and the nearest pedestrian, considering this time the entire sidewalks
(4 "Number of detected pedestrians" entries, 4 "Distance to the nearest detected
pedestrian" entries).

4. Crossing1: counts the number of pedestrians waiting at each crossing, in each
blue zone. Separation between crossings in each blue zone is done by choosing
the crossing whose green dot is closest to the pedestrian (4 "Number of detected
pedestrians" entries).

5. Crossing2: same as Crossing1, but also counts pedestrians moving in the red
squares (4 "Number of detected pedestrians" entries).

6. Crossing3: same principle as for vehicles. Separating by crossing, counts the
number of pedestrians that are coming towards the intersection and takes the
distance between the intersection and the nearest pedestrian, considering this
time the entire sidewalks. Separation between crossings in each zone is done by
choosing the crossing whose green dot is closest to the pedestrian (4 "Number
of detected pedestrians" entries, 4 "Distance to the nearest detected pedestrian"
entries).

In order to avoid penalties regarding pedestrians voluntarily stopping on their way,
the rewards and waiting times are calculated only considering pedestrians standing in
the blue zones. Therefore, the only misleading case is the one where a pedestrian is
voluntarily stopping inside a blue zone, without the wish to cross the road (this would
however never happen in simulation).

9.3 Results
The performances of the 6 algorithms described in the previous section are com-

pared with those of:

• A fixed time control system ("Fixed" in the figures).

• The original algorithm, that neglects pedestrians ("Ped. neglected" in the fig-
ures).

• An algorithm that relies on the same principle as Crossing3 and has perfect
information about the trajectory of every pedestrian, allowing it to provide the
exact correct values as entries of the Q-Network ("Perfect" in the figures).

Figure 9.3 shows the average waiting time for the different algorithms at uniform
medium traffic and pedestrian flows, separating vehicles and pedestrians. The perfor-
mances of all the algorithms are quite identical, even in a perfect information case,
leading to the conclusion that no improvement can be made in this configuration. This
is due to two very limiting factors:

49



CHAPTER 9. INTEGRATION OF PEDESTRIANS

1. By adding pedestrians and sidewalks, the number of independent, incoming ap-
proaches to the intersection and the total flow are doubled, while the agent still
has the same number of alternatives (either let vehicles and pedestrians pass
from North to South and back, or from West to East and back). This limits the
chances to find an alternative that suits well to the current situation.

2. Safety requires two additional traffic light phases to be added, corresponding to
phases 2 and 5 in Table 9.1 that show a red light to all pedestrians. This means
that, while a transition from a vehicle green light phase to another still lasts 3
seconds, a transition from a pedestrian green light phase to another lasts up to 8
seconds. This highly reduces the light maneuverability for pedestrians. Moreover,
vehicle and pedestrian transitions depending on each other, bad performances
regarding pedestrians somehow rub off on performances regarding vehicles.

Figure 9.3: Average waiting time at uniform medium traffic and pedestrian flows, with
100% detection rate.

Knowing these limiting factors, in order to be able to compare the different algo-
rithms, two actions are taken:

1. The vehicle and pedestrian flows are reduced to low.

2. The length of all the lanes is increased to 300 meters instead of 100 meters. This
allows for more reaction time for the agent.

Figure 9.4 shows the corresponding results. The most important point is that per-
formances for fixed time control and for perfect information are still very close and with
overlapping error bars, meaning that not much improvement can be achieved with the
simple feature RL algorithm proposed in this thesis.

By looking at the average waiting times concerning the original algorithm (ped.
neglected in Figure 9.4), the usefulness of taking pedestrians into account in intelligent
traffic light control is verified, especially since the average waiting time for vehicles is
not even better than the ones of the other algorithms.
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Figure 9.4: Average waiting time at uniform low traffic and pedestrian flows, with 100%
detection rate and 300 meter lanes.

The two algorithms that seem to bring the best performances are Zone1 and Cross-
ing3, i.e. respectively the simplest and most sophisticated ones. Moreover, these
performances are similar to those of a fixed time system. This shows once again that
the problem of pedestrian integration cannot be efficiently solved or is at least too
complex for the state representation defined in this work.
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Chapter 10

Conclusion

This work aimed to design a Connectionist Reinforcement Learning algorithm based
on Vehicle to Infrastructure (V2I) communications and was therefore dealing with par-
tial detection. The main purpose was to perform an efficient traffic light control, even
at low detection rate, and to reduce the waiting time of every road-user. Overall, the
resulting algorithm showed significantly better performances than currently installed
fixed time control systems.

The present thesis was based on an article from Zhang et al. [5]. The methodology
and a reassessed performance analysis were presented in a more detailed and trans-
parent way. In addition, focusing on the optimization of the waiting time of every
road-user, the integration of pedestrians and of a priority system for public transports
were studied. These aspects of traffic light control are quite new to the scientific liter-
ature.

Results demonstrated that the proposed Intelligent Transport System was able to
reduce congestion, even at low detection rates, and was robust enough with respect
to different parameters (traffic flow, detection rate,...) to adapt to different situations
and to be effectively deployed on a real intersection.

It was also shown that prioritization of buses or other public transports is efficient
with the algorithm and constitutes a good idea in many ways. However, the study of
the integration of pedestrians led to the conclusion that traffic light control at inter-
sections featuring pedestrians is a completely new challenge that would at least require
as a working basis a more complex solution than the one introduced in this work. In-
deed, the state representation was too simple to overcome the difficulty of managing
pedestrians and vehicles at the same time.

The difference in waiting time between detected and undetected vehicles was veri-
fied. This difference can lead to an easier transition to higher detection rates, and thus
better performances. For example, one could think of advertisements for the new V2I
technology (required by the algorithm) that highlights the time-saving aspect of the
product.
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10.1 Future work
The lack of stability of the algorithm at high traffic flow as well as the analysis

of the influence of the lane length showed that taking the position of each vehicle on
the lanes into account, possibly adding convolutional layers in the Q-Network, may
lead to even less congestion. This is definitely a path to explore, especially since this
more sophisticated approach could demonstrate better performances on intersections
featuring pedestrians.

Since the RL agent is not meant to stand at only one intersection but is more likely
to be deployed as several instances on a road network, it is important to develop a
multi-agent scheme. Indeed, in this kind of configuration, deploying several indepen-
dent agents is suboptimal and establishing efficient communication between them could
greatly reduce commute time of road-users.

The work of Zhang et al. about the environmental adaptation of their algorithm
[18] outlines two interesting points:

• Policy-based algorithms can adapt to changing environments more efficiently than
value-based algorithms.

• The different algorithms led to satisfying results using a partial reward (calcula-
tion based on detected vehicles) instead of a full reward (calculation based on all
vehicles, as used in this thesis).

Continuing the work with a policy-based agent and a partial reward might therefore
be a good idea. The latter would enable the agent to continue to train once deployed.

Given the available historical traffic data, the performances of the presented ITS
were assessed only on periods of at most 24 hours. With larger data, it would be
interesting to add a "Day of the week" feature, in order to differentiate high traffic
flow days from low traffic flow days and possibly further reduce congestion.
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Appendix A

Architecture and hyperparameters of
the Q-Network

Architecture The Q-Network used in this work, as well as its corresponding tar-
get network, is composed of two fully connected hidden layers of 512 nodes each, an
input layer representing a state observation whose number of nodes varies with the
environment, and an output layer of 2 nodes that give the Q-values for the possible
actions: either stay at the current phase or switch to the next one. Rectified Linear
Unit (ReLU) activation functions are also used in each layer.

Hyperparameters The hyperparameters used for training are listed in Table A.1.

Number of iterations
per episode 3000

Replay buffer
Capacity: 100000

Initialized with 10000 transitions
generated with a random policy

Loss function Mean Squared Error (MSE)
Optimizer Adam

Scheduled learning rate α
0.0001 at episodes [0, 49]
0.00001 at episodes [50, 99]
0.000001 at episodes ≥ 100

ε (ε-greedy policy) Initially 1, decays linearly
to 0.05 in 100000 iterations

Discount factor γ 0.9
Batch size 32

Target network
update frequency Every 3000 iterations

Table A.1: Hyperparameters of the Q-Network training process.

Training is done over a certain number of episodes, each one lasting for a certain
number of iterations, with an ε-greedy policy. This means that, at each iteration, the
agent takes a random action with probability ε or takes the action corresponding to
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Q-NETWORK

the highest Q-value with probability 1− ε.

The agent usually trains on episodes of 3000 iterations, which corresponds to 3000
seconds in the SUMO simulator (see section 4.3). However, when it is required to train
on episodes that correspond to days, the number of iterations per episode is 86400
and the capacity and initial number of transitions of the replay buffer are adapted to
3000000 and 300000 respectively.
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Appendix B

Training curves of the algorithm on
the simple intersection

For information only, this appendix displays in Figures B.1 and B.2 the training
curves of the agent over all the episodes, for all the traffic flow configurations presented
in section 5.1.

(a) Low (b) Medium

(c) High (d) Very high

Figure B.1: Uniform traffic flow
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APPENDIX B. TRAINING CURVES OF THE ALGORITHM ON THE SIMPLE
INTERSECTION

In Figure B.2, the "Adapted fixed time" purple line corresponds to adapted fixed
time phases whose duration is proportional to traffic flow, as if the traffic flow in each
lane was exactly known, which is an ideal case.

(a) Medium - Low (b) High - Low

(c) High - Medium

Figure B.2: Non-uniform traffic flow
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Appendix C

Traffic light phases of the training and
deployment intersections

The training intersection for the LuST deployment case is represented in Figure C.1.
The identifier "RN" (for "road segment") corresponds to the light that is shown to all
vehicles on all the lanes of a road segment, whatever their direction, except the ones
that are turning left. The identifier "LN" (for "left turn") corresponds to the light
that is shown to the vehicles of the leftmost lane of a road segment that are turning
left. The exact same logic can be followed with the topology of the LuST deployment
intersection in Figure 7.1b.

Figure C.1: Training intersection for the LuST deployment case (R=road segment,
L=left turn).

Table C.1 explains the different light phases of the training and deployment inter-
sections.
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APPENDIX C. TRAFFIC LIGHT PHASES OF THE TRAINING AND
DEPLOYMENT INTERSECTIONS

R1 R2 R3 R4 L1 L2 L3 L4 Duration

Phase 1 R G R G R G R G Minimum: 5′′
Maximum: 31′′

Phase 2 R A R A R G R G 4′′

Phase 3 R R R R R G R G Minimum: 5′′
Maximum: 6′′

Phase 4 R R R R R A R A 4′′

Phase 5 G R G R G R G R Minimum: 5′′
Maximum: 31′′

Phase 6 A R A R G R G R 4′′

Phase 7 R R R R G R G R Minimum: 5′′
Maximum: 6′′

Phase 8 R R R R A R A R 4′′

Table C.1: Description of the 8 phases of the training and deployment intersections
(R=road segment, L=left turn, colors correspond to light colors: G=green, R=red,
A=amber).
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