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Abstract

Superconductivity at room temperature is a hundred year old problem of condensed matter
physics. Since the recent discovery of SH3 (200 GPa) and LaH10 (300 GPa), conventional super-
conductors under pressure play a major role in solid state physics. These BCS-superconductors
can be described by theoretical tools and can be more and more synthesized experimentally
with strenuous efforts. These classes of materials are especially interesting for they display
outstanding parameters influencing the critical temperature. The extreme pressures they are
synthesized in lead to completely new materials that would otherwise not spontaneously form
in ambient pressures.1 The following work is investigating possible superconducting proper-
ties of novel metal-nitrides that can be obtained via high-temperature and high-pressure syn-
thesis techniques. They can be recovered at ambient temperatures with interesting parameters,
making them versatile for industrial use. A focus is put on binary transition metal nitrides
with the nitrogen to metal ratio 3:2, while a close look is taken on Group 5 metals. This mate-
rial class does not only display superconductivity but also interesting mechanical properties.
For all compounds, structural, electronic and vibrational properties are predicted and they are
found to be in good agreement with literature. Firstly, the previously synthesized η-Ta2N3 com-
pound is investigated and its experimentally found critical temperature of≈ 3 K is theoretically
confirmed in this work.2 Similar superconductive parameter are found for the same material
at 26.065 GPa. We compare the calculation of superconductive parameters from the software
Abinit, which is used to obtain all results, with previous results from Quantum Espresso for the
tetragonal Ta2N3 and it is found that the superconductive parameters, especially the logarith-
mic frequency, are generally underestimated with Abinit. It is proposed to calculate the critical
temperature with the help of the more accurately calculated Debye-temperature. The tetrago-
nal Ta2N3 is predicted to be a very low critical temperature superconductor, while it still might
display no superconductivity at all. Furthermore, the orthorhombic Nb2N3 is investigated fur-
ther, its electronic and vibrational parameters are found and it is predicted to have a very high
electron phonon coupling that could potentially lead to a superconductivity at 30 K. The last
Group 5 metal nitride in question is the V2N3. Previously, the instability of the orthorhombic
V2N3 was found, which is confirmed by us through calculating the phonon dispersion and
finding various imaginary frequencies.3 Its stable trigonal form is investigated, its electronic
structure and vibrational properties are discussed in the following. Superconductivity is either
not present in this compound or it can be found at very low critical temperatures.
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1 Introduction

Superconductivity refers to the zero electrical resistance phenomenon displayed by certain
materials at finite temperatures.4 Since Kamerlingh Onnes’s 1911 discovery of supraconduc-
tivity in mercury with a Tc of 4.2 K, researchers have been working on understanding and
developing new superconducting materials. With the finding of the Meissner effect in 1933 de-
scribing how superconducting materials exclude external magnetic fields up to a critical mag-
netic field value, it was clear that superconductivity can’t be explained with classical physics.
Phenomenological theory of superconductivity emerged (London) and the dependence of the
precise atomic masses on the superconductivity described as isotope effect was discovered in
1950.5 This first clue on how the phonons could play a major role by generating attractive chan-
nels for electrons lead then to the BCS-theory in 1957 giving a microscopic picture of supercon-
ductivity. BCS-theory describes superconductivity in so called conventional superconductors.
Here, pairs of electrons form bosonic Cooper pairs through coupling between electrons and
phonons. This theory is the base of the theoretical framework nowadays to predict supercon-
ducting parameter like in the following work. Cohen and Anderson postulated in 1972, that the
hard limit for the critical temperature of conventional superconductors was 25 K. At that point,
there were no theoretical tools to predict superconductivity and the Migdal-Eliashberg theory
developed in the 60’s was solely a semi-phenomenological method because electron-phonon
spectra were just accessible experimentally.1 After first research around metallic hydrides at
ambient pressure lead to no interesting findings around the 70’s, the attention was fastly di-
verted to a new class: The cuprates. This class of unconventional superconductors did not
follow the BCS theory but new critical temperatures of up to 145 K with optimal hole-doping
could be reached, making superconductivity accessible for technological use because a cool-
ing with liquid nitrogen was enabled.6 Up until today, these superconductors are used for e.g.
MRI, while the reason for their high temperature superconductivity is still not clear. With the
development of theoretical tools to predict superconductivity, and especially electron-phonon
spectra, Cohen and Anderson’s postulates became obsolete end of the 90’s. And after the poten-
tial of unconventional superconductors, especially cuprates, iron pnictides and chalcogenides,
has been thoroughly investigated, the interest on conventional superconductors returned with
the discovery of the low cost MgB2 superconductor (Tc=39 K) in 2001 and Ashcroft returned to
previous ideas to find high temperature superconductors through introducing a high content
of hydrogen into a material.1,5 Followed by the development of new synthesis and prediction
techniques it was recently possible to access new structures previously unimaginable to pro-
duce for they require extreme pressures. This was the beginning of the discovery and race for
superconductors synthesized under pressure.
Nowadays, superconductors are used as generators of intense magnetic fields that can be used
in particle accelerators, magnetic resonance imaging and superconducting quantum interfer-
ence devices (SQUIDs). The main limitation is here the extremely low temperatures or ex-
tremely high pressures to access the superconducting state of a material. Therefore, finding a
superconductor at ambient temperature and pressure is an ongoing quest in physics that has
the potential to trigger the development of a series of new technologies playing an important
role in improving global energy efficiency.5

The following work focuses on nitrides with the stoichiometry M2N3, while metals are the V-
group metals Tantalum, Niobium and Vanadium. Nitrides themselves are a very interesting
group of materials that display high hardness and other attractive mechanical properties for
application. E.g. boron nitrides BC2N, the third hardest material after diamond. One system
of interest that will be further explored is the novel superconducting orthorhombic η-Ta2N3.

1



Alexandra Dudzinski CHAPTER 1. INTRODUCTION

It was recently synthesized under high pressure and high temperature conditions and can be
recovered under ambient pressure. Next to the η-Ta2N3, a variety of other tantalum nitrides
can be synthesized, while the η-Ta2N3 is the first Tantalum nitride with a U2S3 structure, a vari-
ation of the stibnite structure.7 Structural and mechanical information are reported at ambient
pressure showing very low compressibility of the edge-sharing polyhedral structure leading
to high rigidity.8 Furthermore, the η-Ta2N3 displays interesting very high hardness. Previous
theoretical investigations show the meta stable nature of the η-Ta2N3 due to a tetragonal, more
favorable, Ta2N3 structure.9 In a preceding work, the superconductivity with a critical temper-
ature of around Tc = 10 K could be predicted for the theoretical tetragonal structure, note that
this is just a vague assumption that needs more in-depth theoretical examination and finally,
experimental back-up.10 In the following work, a quick look is taken upon this structure to
mainly understand numerical differences because the old results were calculated with Quan-
tum Espresso, while in this work, mainly Abinit is used to gain insights in the superconductiv-
ity.11,12,13,14,15,16,17 The superconductivity of this materials class is based on electron-phonon
coupling phenomena firstly described by BCS-theory. This group of superconductors have a
high unknown potential for showing very high values for the critical temperature. The critical
temperature is anti-proportional to the atomic mass of the participating atoms due to the fact
that the frequency of the phonon modes is generally higher for low atomic mass atoms. This
is the main motivation why a look will be taken on potential superconductors with the stoi-
chiometry M2N3 with M=Ta,Nb,V. The Ta2N3 is a known superconductor and after trying to
confirm its superconductivity, the heavy Tantalum is substituted by the lighter Niobium and
Vanadium. It is of interest to investigate this new material class of superconductors not only
because they also consists of the light nitrogen, but also because Nitrides display interesting
mechanical properties. These materials were a priori theoretically investigated, predicting the
Nb2N3 to be orthorhombic, while the stable structure of V2N3 is supposed to be trigonal. It is
indicated, that these materials are candidates for hard materials and mechanically stable under
ambient conditions.3

2



2 Superconductivity under pressure

Scientist have searched for higher critical temperature superconductors starting with elemental
materials and then venturing forth towards more complex systems.18 The superconductors of
interest in the following work belong to the group of superconductors under pressure, for their
synthesis require high pressures and temperatures, like e.g for the η-Ta2N3 a pressure of 11-
20 GPa and temperature of 1800–2000 K.7 In order to understand the trends and reasons in
that area of research it is of utmost importance to take a look back at significant discoveries
of the last two decades in order to also fully grasp the development of methods explained in
the following chapter. A few famous examples are presented in the following to show the
highlights of the recent years of superconductivity under pressure. Their structure is shown in
figure 2.0.1.

J. A. Flores-Livas, L.Boeri, A.Sanna et al., Physics Reports 856, 2020, 1-78

Figure 2.0.1: Examples for structures of superconductors under pressure. PdH is a metal hydride at ambient pres-
sure with a Tc=54 K (0 GPa), PH2 is a molecular hydride at intermediate pressure (120 GPa), which can reach a
maximum Tc=103 K at around 207 GPa. H3S is a covalently bonded hydride at high pressure reaching Tc=203
K (200 GPa) and the superhydride LaH10 shows superconductivity at very high pressures (300 GPa) with a crit-
ical temperature at around 260 K. Solid metallic hydrogen in comparison becomes superconducting at megabar
pressures of around 400 GPa.1

2.1 Superconducting metallic hydrogen

Looking at the BCS-theory as derived in chapter 3.4, high temperature superconductors can be
reached through introducing low atomic mass atoms in order to increase the frequency. The
lowest mass atom is hydrogen, and its metallic structure under very high pressures was sus-
pected since 1935 by Wigner and Huntington.19 In 1968, Ashcroft proposed that solid metallic
hydrogen could be a high temperature superconductor. Under sufficient high pressures, hy-
drogen changes from its molecular form into a metallic liquid phase, but for a long time, there
was just theoretical predictions of the solid metallic state of hydrogen. Currently, it is widely
accepted that a large portion of Jupiter’s core is formed by hydrogen in its metallic liquid state.
2017 Dias et al.20 claimed to have produced solid metallic hydrogen at a pressure of 495 GPa
at 5.5 K, while the change in reflectance was measured and the carrier density was determined
with the help of the Drude free-electron model. Recently, Loubeyre et al. reported that when
pressurizing a hydrogen sample in a DAC, an abrupt, discontinuous and reversible change in

3
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optical reflectivity can be observed at 425 GPa that indicate the change into a "dense" metallic
state, for it is still controversial if measuring the reflectance is enough to prove the solid metal-
lic structure of the hydrogen nor it gives any clue on important properties of the new phase.21

Although theoretical calculation do lack accuracy due to the large quantum mechanical cor-
rection needed in that kind of extreme regimes, there are some that do predict a transition at
500 GPa which leads to a critical temperature around room temperature.22 Interestingly, fol-
lowing predictions, the critical temperature can rise up to 420 K above 3 TPa.18 But achieving
to obtain the solid state metallic hydrogen superconductor is not sufficient due to the extreme
pressures needed to keep the material stable. So researchers started searching potential metal-
lic hydrides that could give a high temperature superconductor.5 In 2004, Ashcroft suggested
that metallic hydrogen could be found chemically in high hydrogen content materials. In 2006,
Hoffmann et al.23 proposed to metallize pressurized group 14 hydrides. The hydrogen is sup-
posed to be chemically precompressed in these systems and can then be metallized at lower
pressures. Firstly, they predicted a metallization pressure of 91 GPa for SiH4.23 After thorough
investigation, a more stable semiconducting phase was found in this regime which led to a
very low Tc which was confirmed by experiments.5

2.2 Sulfur hydride

After many experiments with the goal to find a novel high temperature superconductor failed
for various reasons, H2S was discovered, where the metallization occurred at around 100 GPa
in a hydrogen atmosphere.1 Superconductivity then appeared at around 150 GPa giving a crit-
ical temperature of around 8 K. Interestingly, experiments showed that the critical temperature
varied not only with the increase in pressure but also with the increase of the temperature,
which could be explained through the formation of H3S, which then can be described as a
dense solid of covalently-bonded hydrogen and sulfur.1 With increasing the pressure, the struc-
ture of the H3S also changes, starting with Cccm (88) or C2/c (49) space group below 112 GPa,
changing into a rhombohedral R3m distorted bcc structure and ending at a Im3̄m phase above
175 GPa. Taking into account the anharmonicity of the hydrogen phonon modes, the hydrogen
bonds are symmetrized at lower pressures and the cubic Im3̄m is even favored beneath 175
GPa. With this knowledge, a new record was set 2015 with reaching a critical temperature of
203 K at around 170 GPa.1 Several experiments were conducted to characterize the phases cor-
rectly and it is found to be a conventional Type-II superconductor with two critical magnetic
fields found. Key parameters making the H3S having a high critical temperature is mainly
the hydrogen high frequency vibrational modes and the hydrogen contribution of 45 % of the
states at the Fermi level. The short metal hydrogen distances are also much shorter then for
other compounds like e.g. the superconducting PdH, leading to a stronger electron-phonon
coupling. Noteworthy is also, that elemental sulfur is a high pressure superconductor, enhanc-
ing the coupling further. More findings of superconducting hydrides followed like e.g. the
metastable PHn (at 200 GPa Tc = 100K) were reported. Again the stochiometry could not be
defined very well.

2.3 Lanthanum hydrides

The next big revelation were the lanthanum hydrides, that still hold the record.1 Through two
different synthesis, two groups obtained this material, while the exact phases and the phase di-
agram itself is yet to be clarified. Drozdov et al.24 annealed La and H2 directly in the DAC while
Somayazulu et al.25 used BH3NH3 as a hydrogen donor. A critical temperature up until 260 K
was found at a pressure of 180–200 GPa, while the stochiometries and structures could not be
defined properly. A the LaH10 (Fm3̄m) is most probable based on the volume per formula ratio,
some XRD measurements and first principle predictions by Li et al., that previously predicted
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a critical temperature of 280 K at 210 GPa, confirmed this suspected structure. Various LaHn

could be found depending on the synthesis procedure with differing critical temperatures.26 A
new class of superhydrides was born to be explored. In this structure, the Lanthanum donates
its electrons to a pure metallic hydrogen lattice surrounding. The structure resembles closely to
the idea of Ashcroft-Gillans’s precompressed hydrogen which can be seen in figure 2.0.1. The
critical temperature varies and there is a big disparity between synthesis with deuterium and
hydrogen showing a big influence of anharmonic effects that are yet to be explained theoreti-
cally. Due to the arduous synthesis which enables a sample size up to 10-20 µm, the Meissner
effect could not yet be measured, but the suppression of the magnetic field could be shown.1

Recently, Grockowiak et al. synthetized a lanthanum based superhydride whose critical tem-
perature could rise up to around 500 K through thermal cycling leading to a new record.18 Like
for the sulfur hydride, we can find a high electron-phonon coupling, high frequency phonons
that stem from the hydrogen and a comparable electronic DOS.

2.4 Superconducting nitrides

A new class of potential high temperature superconductors could include other light elements
like e.g. nitrogen or carbon. These materials show possibility to be stable under ambient pres-
sures and they also combine superconducting behavior with interesting mechanical properties.
Noteworthy is the NbN, that has a critical temperature of around 16 K. It shows very high
hardness and is therefore tested for applications of e.g. superconducting quantum interference
devices, superconducting hot-electron, photo detectors, and IR sensors.27 With the help of high
pressure synthesis, new nitrides can be found and even be recovered at ambient pressures. An
example is the novel superconducting orthorhombic η-Ta2N3 that is further investigated in this
work. It was recently synthesized under high pressure and high temperature conditions and
can be recovered under ambient pressure. This new material class is shown to have interest-
ing mechanical properties like an exceptional hardness and high rigidity.8 Previous theoretical
investigations show the meta stable nature of the η-Ta2N3 due to a tetragonal, more favorable,
Ta2N3 structure.9 Next to the tantalum and niobium hydrides, a variety of other nitrides with
a broad range of stoichiometries can be synthesized.7

2.5 State of the art

Nowadays, many superconducting high temperature hydrides have been predicted theoreti-
cally as shown in figure 2.5.1. Experimental progress is catching up for the experiments require
very high pressures and temperatures in order to break the molecular hydrogen bond that
makes up a large kinetic barrier. Nevertheless, the experimental development and discovery
of the last 10 years is impressive whilst the theoretical and experimental results are often in
agreement.1 One can count around 61 superconducting binary hydrides predicted.1

One can also see in figure 2.5.1, that new superhydrides followed the LaH10, like e.g. YH10,
while many also experimentally confirmed cases are missing like e.g. ThH10 with Tc= 160 K
(170-175 GPa)28 and YH9 with Tc= 243 K (201 GPa)29. These very recent results show how fast
the field of superconducting hydrides is growing towards higher values of merit. Conditions
that enhance the critical temperature are found to be:1

• Light-element electronic states crossing the Fermi-level

• The existence of a extended bonding structure between the light elements and the host

• High phonon mode energies leading to a high electron-phonon coupling

Theoretical understanding still needs to be refined for the structures might differ from the ex-
pected. Not only do quantum effects and anharmonicity complicate theoretical predictions but
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C. J. Pickard, I. Errea, M. I. Eremets, Annual Review of Condensed Matter Physics 2020,11, 57–76

Figure 2.5.1: Critical temperatures of superconducting materials synthesized experimentally (yellow hexagons),
predicted theoretically in the harmonic approximation (blue circles) and predicted theoretical including anharmonic
effects (green squares) as a function of pressure. The contouring shows the merit S.5

also the difficulty to conclude experiments in this extreme conditions can be arduous. Many
questions are still unanswered like e.g. if there is an upper limit for the critical temperature for
superconductors and if one can quantify it by structural distortion, compositional change, or
competition with electronic or magnetic phases while many materials are undiscovered or not
synthesized. Furthermore, compounds have to be found that work at not only ambient tem-
perature, but also ambient pressure in order to use them for technological applications. This
compromise can be described by the following figure of merit proposed by Pickard et al.5 that
is also used in figure 2.5.1:

S =
Tc√

T 2
c,MgB2

+ P 2
(2.1)

P is here the pressure in giga pascal and the critical temperatures are shown in Kelvin. Assum-
ing a score of 10 would be optimal for terrestrial use, one can see how the highest scale up until
now is still taken by the cuprate HgBaCaCuO, discovered by the nobel prize winners Dr Georg
Bednorz and Professor Dr K. Alex Müller. One can see here how the critical temperature (≈
39 K) of the Magnesiumdiboride is used as a reference. Recent research does give a variety of
new materials through stochastic search, although the computation of the critical temperature
is not yet routine.5 The potential of superconductors under pressure is vast. Ternary, quater-
nary and complex hydrides are still to be explored. It is estimated that there can be around
300 binary hydrides as an upper limit while it could be possible to find 1770 ternary hydrides,
including 60 elements as possible building blocks. But not only hydrides are of interest, new
material classes with other light elements like perovskites, two dimensional materials and ni-

6



CHAPTER 2. SUPERCONDUCTIVITY UNDER PRESSURE Alexandra Dudzinski

trides could be of interest while doping can also influence the superconductivity.1 This work is
trying to get deeper understanding of another material class, that is the metal nitrides with a
ratio of nitrogen to the metal exceeding 4:3. Recently, it is possible to synthesise and find more
and more metal nitrides and superconductivity can be found in some of them. What makes
them interesting candidates is the fact that they can be recovered in ambient conditions and
also the light nitrogen might lead to a high critical temperature.

7
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3 Methodology

One can mention three crucial methods that enabled researchers to find superconductors under
pressure. One main method used for experiments, is the the diamond anvil cells (DACs), en-
abling the complicated high pressure, high temperature synthesis and characterization of the
hydrides.5 And for the theoretical methods, firstly, the random sampling that enables to find the
stable state of a material at specific conditions and secondly, the computation of superconduct-
ing properties. The interplay between theory and experiments enabled the substantial progress
of the last two decades. After shortly explaining the first two important methods bringing re-
search as far as it is now, the focus will be set on the theoretical prediction of superconducting
parameters which is also the main goal of this work.

3.1 Experimental tools

Almost in parallel with the rise in maximum critical temperature, one can note a rise in max-
imum pressure possible to reach experimentally. Therefore, a crucial experimental tool is the
diamond anvil cell (DAC), it is used to access ultrahigh compression of a material so one can
achieve these high pressures needed. Not only does a state of the art DAC produce the high
pressures, it also has build-in characterization tools which can be seen in figure 3.1.1.

J. A. Flores-Livas, L.Boeri, A.Sanna et al., Physics Reports 856, 2020, 1-78

Figure 3.1.1: DAC with in-built characterization tools

Nowadays, it is possible to also synthesize the material in situ.1 The material in question is
placed in a thin metal foil between the two diamond anvils. The underlying physical prin-
ciple is the anti proportionality of the pressure with respect to the area of surface where the
force is applied. This also leads to the necessity to work with tiny sample volumes and to have
diamond as the hardest material to build the anvils. Another reason to use diamond is its trans-
parency for a wide range of electromagnetic radiation (weak absorption in the IR range, UV up
to 220 nm). With their help, researchers have been able to study many materials and elements.
It became possible to gain a deep understanding of their properties like e.g. superconductivity.
Many molecules or elements become metallic and superconducting under pressure, while with
pressure the critical temperature usually rises. Some interesting examples are: O2 with 0.6 K

9
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at 95 GPa or boron with 11.2 K at 250 GPa. In order to be able to prove superconductivity,
the development of the SQUID was essential. This is a superconducting quantum interference
device, that can measure very low magnetic fields. They can detect vertices in superconductors
whose number grow with applied magnetic field and once their non-superconducting cores
overlap, the superconductivity is lost, which occurs in type II superconductors and explains
the two critical magnetic fields found and the breakdown of the Meissner effect.30 In order to
get information about the type of superconductor, magnetization experiments are conducted
in the diamond anvil cell.

3.2 Theoretical tools

In the following, atomic units are used: e2 = ~ = m = 1

The main tool at hand is the density functional theory (DFT) and density functional pertur-
bation theory (DFPT) explained in sections 4.3 and 4.4. It is a a first principle method/ab
initio method that provides a description of the ground state electronic properties. It enables
material-dependent predictions through mapping complex many-body problems of interact-
ing particles in an external potential onto a system of non-interacting particles.31 The two main
theorems are, that the energy can by fully determined as a functional of the electronic density
ρ(~r) and the theorem that the energy expectation value will always be higher or identical to
the actual energy of the system.32 One can gain information about the ground state energy and
structure with DFT and the perturbation of the ground state of the system opens up many new
ways of gaining a variety of information about vibrational, electrical, mechanical and many
other parameters defining a material.
One important development that influenced the discovery of superconductors substantially is
the random structural search, also used by Jiang et al. to gain the information about the ground
state structure of materials. With the help of ab initio random structural search, researchers
could discover novel stable materials. Main characteristic here is the stochastic generation of
structures, which then are optimised with the help of DFT which also gives the ground state
energy. These random searches helped to gain information about energy landscapes and to
find the minima of the PES of a variety of materials. Important here is also the technical devel-
opment that increased computational power and efficiency remarkably. Many computational
methods are developed for structural prediction and for gaining data on potential novel mate-
rial classes. With the help of these methods, researchers could predict the stable structures of
the Ta2N3, Nb2N3 and V2N3 which are used as start point in this project.9,3

3.2.1 Predictive framework

Not only can one answer structural questions, but the calculation of the critical temperature is
possible from first principal calculations. The most important equations leading to the results of
this work are presented in the following, while they are derived and explained in the following
sections starting with BCS-theory. Chapter 4 explains the practical implementation based on
density functional theory (DFT). BCS-Theory gives the following expression for the critical
temperature Tc:

Tc =
2eγ

π
ωDe

−2/g(εF )V0 = 1.314~ωDe−2/g(εF )V0 (3.1)

Here g(εF ) is the density of states for both spins at Fermi level εF , the Euler-Mascheroni con-
stant is γ = 1.134. The Debye energy ωD and V0 characterize the attractive electron interaction.
In the following chapter 3.4, this formula will be derived.33,34
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The MacMillan formula gives a more material-specific estimate of Tc for phonon-mediated su-
perconductivity which will be used for the calculations. The origin of this formula is explained
in chapter 3.10 and reads:

Tc =
ωlog
1.2

exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
(3.2)

The average logarithmic frequency or characteristic phonon frequency, that corrects for the
relevant low energy phonons, is:1

ωlog = exp

[
2

λ

∫ ∞
0

log(ω)
α2F (ω)

ω
dω

]
(3.3)

µ∗ is an empirical parameter that describes the Coulomb screening. Typically its value is be-
tween 0.1-0.16, while it can be between 0 and λ

2 . It is shown that the Coulomb strength param-
eter µ∗ is not necessary constant in the full solution of the Eliashberg equations. Especially, if
the density of states is varying strongly at the Fermi level.35

The momentum integral λ =
∑

qν λqν is also called the electron-phonon enhancement param-
eter or electron-phonon coupling and it describes the attractive strength between the phonons
and the electrons with a branch index ν. It is calculated for a defined set of k and q-points. The
electron-phonon coupling strength λqν can be defined as following:

λqν =
1

N(εF )ωqν

∑
nmk

|gmn,ν(k,q)|2δ(εnk)δ(εmk+q) =
γqν

N(εF )ω2
qν

(3.4)

The electron phonon matrix elements gmn,ν(k,q) can be calculated through perturbing the sys-
tem with a atomic displacement, while m and n describe two bands:

gmn,ν(k,q) =
1√
2ωqν

〈φmk+q|δVqν |φnk〉 (3.5)

These are obtained as a byproduct from the phonon mode calculation through linear response
or finite difference methods to which the Green functions belong.
N(εF ) is the density of states per spin at Fermi level εF . γqν are the phonon linewidths. From
that the Eliashberg function α2F (ω) can be obtained by taking the average over the Brillouin
zone (BZ).33,34 It describes the phonon density of states weighted by the electron phonon inter-
action:

α2F (ω) =
∑
qν

ωqνλqνδ(ω − ωqν) (3.6)

α2F (ω) =
1

N(εF )

∑
kq,ν

|gmn,ν(k,q)|2δ(εnk)δ(εmk+q)δ(ω − ωqν) (3.7)

These quantities can be determined from first principles calculations. Specifically, the electronic
properties can be acquired through Density functional theory and the phonon frequencies are
given by Density functional perturbation theory. The main parameters needed are the Kohn-
Sham energies εi and wavefunctions |φi〉 accessible through a ground state calculation and the
phonon frequencies ωqν , for which one has to use a perturbative approach.
Noteworthy is how the MacMillan temperature is not only dependent on the phonon modes
and electron density, but also on the electron phonon coupling itself. This is important for the
value can vary strongly from λ=0.4 for PdH to λ=2 for H3S.5 Limitations for the MacMillan
formula are that it tends to underestimate the critical temperature for strongly coupled super-
conductors λ > 1. One example here is the cubic H3S, that shows a critical temperature of
125 K at 200 GPa with the MacMillan formula, while one gets 194 K if the Migdal-Eliashberg
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equation for the superconducting gap are solved directly.5 Another breakdown can be found
in anharmonic materials for the phonon frequencies are calculated in the harmonic approxi-
mation. This is particularly tricky for calculations with hydrogen for quantum effects appear
due to the small atomic mass. Another break down of the theoretical calculation is, if uncon-
ventional superconductors are encountered, for computational calculations are based on the
BCS-theory for conventional superconductors.

3.2.2 BSC-theory

Bardeen, Cooper and Schrieffer (BCS) provided the first microscopic explanation of supercon-
ductivity as a superfluid of Cooper pairs due to the electron-phonon coupling. Superconduc-
tors of this type are called conventional (or BCS) superconductors.
Cooper pointed out that, in the presence of an attractive force between electrons, the Fermi
sea of a normal metal is unstable with respect to the formation of electron pairs (i.e. the so-
called Cooper pairs). The strength of the attractive force is not of importance for the Cooper
instability, but rather its bare existence. The electron-phonon coupling, in particular, can lead
to an effective attractive interaction overcoming the Coulomb repulsion as demonstrated by
Fröhlich. BCS-theory is still today essential for the characterization and understanding of su-
perconductivity.1 It is customarily formulated in terms of a reduced Hamiltonian. For that one
has to introduce the annihilation operator ĉkσ (creation operator ĉ†kσ) that annihilates (creates)
an electron in state |kσ〉with the momentum or wave vector k, spin σ and band energy εk. The
creation operator for electrons or Bloch waves ĉ†k+q′σ can be used to construct the formation of
a Cooper pair. The final Cooper pair state is: |k+ 1

2q ↑,−k+ 1
2q ↓〉. Thus, the reduced Hamilto-

nian can be stated, where the first term is the electronic term and the second one an interaction
term:36

Ĥred =
∑
kσ

ξk ĉ
†
kσ ĉkσ +

1

N

∑
k,k′

Vk,k′ ĉ
†
k,↑ĉ
†
−k′,↓ĉk′,↑ĉ−k′,↓ (3.8)

Assuming that Vk,k′ is attractive in the superconducting state, the ground state has either empty
or doubly occupied pair states leading to Cooper pairs. Superconducting instabilities are due to
the scattering between electrons k ↑ and −k ↓with energies |ξk′ | < ~ωD, whereas |ξk| = εk − εF
is the energy of electrons relative to the Fermi energy. The Debye frequency ωD is the phonon
bandwidth in the attractive state.

Vk,k′ =

{
−V0 for |ξk| and |ξk′ | < ~ωD,
0 otherwise.

(3.9)

A mean field approximation is applied. That means that the one replaces the products of two
operators A and B in the following manner: AB −→ 〈A〉B + A〈B〉 − 〈A〉〈B〉. The error is
proportional to the second order in deviation of A and B from their averages ((A − 〈A〉)(B −
〈B〉)). Now we can plug in: A = 〈ĉ†k′↑ĉ

†
−k′↓〉 and B = 〈ĉ−k′↓ĉk′↑〉. The following mean-field BSC

Hamiltonian can be stated:

ĤMF
red =

∑
kσ

ξk ĉ
†
kσ ĉkσ −

∑
k

(∆∗k ĉ−k↓ĉk↑ + ∆k ĉ
†
k↑ĉ
†
−k↓) + const. (3.10)

∆k = − 1

N

∑
k′

Vk,k′〈ĉ−k′↓ĉk′↑〉 ∆∗k = − 1

N∗
∑
k′

V ∗k,k′〈ĉ
†
k′↑ĉ
†
−k′↓〉 (3.11)

The last term const. is a constant description of the energy shift. ∆k describes the energy gap.
Seeing how 〈ĉ−k′↓ĉk′↑〉 and 〈ĉ†k′↑ĉ

†
−k′↓〉 can be non-zero, the emergence of a new ground state
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and the condensation of Cooper pairs is implied. The Hamiltonian ĤMF
red is bilinear so it de-

scribes two non interacting systems. Now one has to diagonalize the system and determine the
temperature at which ∆k = 0.
For that reason, a Bogoliubov transformation can be applied to the Hamiltonian:

γ̂k↑ = u∗k ĉk↑ − υk ĉ
†
−k↓ (3.12)

γ̂†−k↓ = υ∗k ĉk↑ − uk ĉ
†
−k↓ (3.13)

The operator ĉ describes electrons. That is why it has to satisfy anti commutation relations.
Therefore, γk has to be anti commutative like the operator ĉ and the coefficients have to satisfy
{γ̂k↑, γ̂†k↑} = |uk|2 + |υk|2 = 1. The transformation can also be inverted:36,33

ĉk↑ = ukγ̂k↑ + υkγ̂
†
−k↓ (3.14)

ĉ†−k↓ = −υ∗kγ̂k↑ + u∗kγ̂
†
−k↓ (3.15)

The coefficients satisfy all requirements if they are defined as following, whereas Φk = arg ∆k:

uk =
1√
2

1 +
ξk√

ξ2
k + |∆k|2

1/2

(3.16)

υk =
1√
2

1− ξk√
ξ2
k + |∆k|2

1/2

eiΦk (3.17)

In combination with the expression ∆k = |∆k|eiΦk the diagonalized reduced Hamiltonian can
be stated:

ĤBCS =
∑
k,σ

Ekγ
†
k,σγk,σ + const. (3.18)

At T = 0 with Ek =
√
ξ2
k + |∆|2 and the assumption ξ−k = ξk and |∆−k| = |∆k|, the BSC gap

equation can be stated:

∆k =
1

N

∑
k′

Vkk′
∆k′

2Ek′
(1− 2nF (Ek′)) (3.19)

For self consistency, the averages have been evaluated accordingly to the BCS Hamiltonian. We
assume, that for |ξk| < ~ωD, the band gap ∆0 is independent of the electronic state:

∆k =

{
∆eiΦ if |ξk| < ~ωD
0 otherwise

(3.20)

Now to obtain the critical temperature Tc, one has to observe ∆k −→ 0. There the temperature
corresponds to the Tc. If in this limit of the DOS is constant near εF and βωD � 1, the gap
equation (3.19) becomes:

1 ≈ V0N(εF )

∫ ωD

0
dξ

tanh βξ
2

ξ
= V0N(εF )

(
ln
βξ

2
tanh

βωD
2
−
∫ βωD/2

0
dx

lnx

cosh2 x

)
(3.21)

' V0N(εF )

(
ln
βωD

2
+ γ − ln

π

4

)
(3.22)
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Now the equation (3.2) for the Tc can be obtained from that.33

Furthermore, one can examine the condensation energy. Here, one can calculate the expectation
value of the mean field Hamiltonian Ĥ .

〈G|Ĥ|G〉 =
∑
k

(
ξk − Ek +

|∆k|2

2Ek

)
= Es (3.23)

The condensation energy is the difference between the expectation value and the ground state
energy of the metallic phase 2

∑
k ξkΘ(kf − k) at ∆k = 0:

Es − En =
∑
k

(
ξk − Ek +

|∆k|2

2Ek
− eξkΘ(kF − k)

)
(3.24)

= 2
∑
k

(ξk − Ek)Θ(ξk)Θ(~ωD − ξk) +
∑
k

∆2
k

2Ek
Θ(~ωD − |ξk|) (3.25)

Setting the electronic state k for the Fermi state kF , the following equation can be obtained:

Es − En ≈ −
1

2
V N(εF )∆2

0 (3.26)

The term 1
2N(εF )∆2

0 is the condensation energy density. From there one can obtain the critical
field value at zero temperature:

1

2
N(εF )∆2

0 = −H
2
c

8π
(3.27)

Hc(0) =
√

4πN(εF )∆0 (3.28)

3.2.3 The electron-phonon Hamiltonian

The BSC-theory is assuming a rather simple attractive interaction between the electrons, see
equation (3.9). The attractive interaction results from the electron-phonon coupling because
the electronic states are highly influenced by lattice vibrations, especially close to the Fermi
level. One can start building a perturbative system to treat the perturbation of the electronic
system by the phonons or vice versa in order to describe the attraction more accurately. To
derive the Hamiltonian, that gives the accurate energy of a system, one can start from electrons
in a rigid ion lattice without influence of phonons. One cannot start from the phonons for they
are changed strongly by the electrons. This change has to be incorporated into the description
of the phonons. One can start from the Fröhlich Hamiltonian:31,36,37

Ĥ = Ĥe + Ĥph + Ĥe−ph (3.29)

The formula splits into non-interacting quasi-particles for the electrons Ĥe, phonons Ĥph and
the electron-phonon part Ĥe−ph. The electronic part can be described in the approximation as
non-interacting quasi particles with energetic dispersion εk in a periodic lattice whereas the
Coulomb interactions are included:

Ĥe =
∑
kmσ

εkmĉ
†
kmσ ĉkmσ (3.30)

The phonon or lattice Hamiltonian for non interacting quasi particles is the following:

Ĥph =
∑
qν

ωqν(b̂†qν b̂qν +
1

2
) (3.31)
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Again b̂†qν and b̂qν describe the creation and annihilation operator for a phonon with the mo-
mentum q, branch index or polarization state ν and energy or phonon frequency dispersion
ωqν of the branch ν and phonon momentum q. These operators can also describe the atomic
displacement. The creation operator creates a phonon in state |qν〉. The Hamiltonian for the
electron-phonon coupling can be derived in the following way38. One can write the periodic
normalized displacement describing the normal mode vibrations in terms of the unit cell l and
the atoms inside s with the Cartesian indices:31

ulsα = eiqR
0
lα

1√
Nq

∑
qν

Aqνsα(b̂qν + b̂†−qν) (3.32)

Aqνsα =
ηsα(qν)√
2Msωqν

(3.33)

Here, ηsα(qν) is the eigenvector of the vibrational mode qν. Nq is a normalization factor and
gives the number of the wavevectors q, which are given by the q-points. This leads to the
electron-phonon part of the electron phonon Hamiltonian:

Ĥel−ph =
∑
kmnσ

∑
qν

gmn,ν(k, q)(b̂†−qν + b̂qν)c†k+qσckσδk′,k+q (3.34)

The electron-phonon coupling matrix element gmn,ν(k, q) describes the probability of scatter-
ing an electron with the momentum k to a state with the new momentum k + q into another
band n through absorbing (emitting) a phonon with momentum q(−q) and branch index ν like
described by equation (3.5).31,36,31

3.2.4 Nambu formalism

An accurate way of calculating superconducting properties are the first-principle Green-functions,
that will be briefly discussed below. Green functions are a way of describing the superconduct-
ing state in the same way as the a normal state regarding Feynman diagrams.37,36

Starting from the electron-phonon Hamiltonian, one can use the Fröhlich Hamiltonian and split
it into the part describing the unperturbed particles:

Ĥ0 = Ĥe + Ĥph (3.35)

Ĥel−ph is the perturbation linear to the electron-phonon coupling (EPC). Therefore, investiga-
tions of this part can make us gain information about the EPC. Green functions can be used to
solve this differential perturbation theory problem, in particular one can use imaginary-time
Green functions in the Nambu formalism as perturbator:

G(k, τ) = −〈T̂τ ckσ(τ)c†kσ(0)〉 (3.36)

This Green function utilizes the imaginary time −iτ and can be used for fermionic quasipar-
ticles like electrons. Here, ĉkσ(τ) = eHτ ĉkσe

−Hτ and −β < τ < β, β = 1/T . T̂τ is the Wick
operator or time-ordering operator that orders the operators to increasing τ from right to left.31

One can get an expectation value of a physical quantity A in the following manner:1

〈A〉 =
T̂r(exp (−βH)A)

T̂r(exp (−βH))
(3.37)

The phonon Green function is the following:

D(q, τ) = −〈T̂τ (b̂q(τ) + b̂†−q(τ))(b̂q(0) + b̂†−q(0))〉 (3.38)
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Symmetry properties can be denoted to the two in τ periodic functions G(k, τ) and D(q, τ),
while β = 1/T :

G(k, τ + β) = −G(k, τ) (3.39)
D(q, τ + β) = −D(q, τ) (3.40)

Applying a Fourier transformation one can obtain the following:

G(k, iωn) =
1

2

∫ β

−β
dτeiωnτG(k, τ) (3.41)

D(q, iνm) =
1

2

∫ β

−β
dτeiνmτD(q, τ) (3.42)

(3.43)

Where n,m are now integers and ωn = (2n + 1)π/β the Matsubara fermionic and νm =
2nπ/β the Matsubara bosonic frequencies. Assuming a nonmagnetic state, the spin index is
neglected.31,36

With the help of the Green functions one can achieve the same like the BCS-theory and get an
exact solution following Gor’kov:1

Here, Green functions satisfy the equation of motion, that is then solved by a mean-field ap-
proximation:

(
− d

dτ
− ξk

)
G(k, τ) = δ(τ)−

′∑
k

Vkk′〈T̂rc†−k↓(τ)c−k′↑(τ)c−k′↓(τ)c†−k↑(0)〉 (3.44)

〈T̂rc†−k↓(τ)c−k′↑(τ)c−k′↓(τ)c†−k↑(0)〉 −→ F (k, 0)F ∗(k, τ) (3.45)

Where F is the anomalous Green’s function:

F (k, τ) = −〈Trck′↑(τ)c−k′↓(0)〉 (3.46)

One can rewrite for the two Green functions:

G(k, iωn) =
−iωn − ξk
ω2
n + E2

k

(3.47)

F (k, iωn) =
∆∗k

ω2
n + E2

k

(3.48)

WhereE2
k = ξ2

k+|∆k|2 and the superconducting gap function ∆k =
∑

k′ F (k′, 0) can be written:

∆k =
1

β

∑
k

∞∑
n=−∞

Vkk′∆
′
k

ω2
n + E2

k

=
∑
k

Vkk′∆k′

2E′k
tanh

(
E′k

2kBT

)
(3.49)

Like for BSC-theory, one can now extract limits defining superconductivity. One important
assumption is that the gap function is isotropic ∆k = ∆ 6= 0:

1. T −→ 0 with V N(EF )� 1:
∆ ∼ 2~ωD exp

(
− −1
V N(εF )

)
2. T ∼ Tc, then ∆ −→ 0:
Tc = 1.134ωD exp

(
−1

V N(εF )

)
like equation (3.1).
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Same like in the previous section one obtained the first definition of the critical temperature.
But BCS-theory has the main drawback that it does does not take any time into account. It
solely assumes the electronic interaction as instantaneous, which leads to a low quantitative
accuracy.1

3.2.5 Migdal-Eliashberg theory

The Eliashberg theory is the extension of the normal-state Migdal theory to the superconduct-
ing state. Here, a many-body perturbation approach is applied, whilst the derivation is similar
like for BCS-theory, here the electron-phonon interactions are computed within the Kohn-Sham
theory.
One simplification is that the perturbation does not need to mix different electron bands or
phonon modes to lead to a sufficient representation by a single band or phonon mode index.
The lattice dynamics are also decoupled.
As in perturbation theory, one can write the Hamiltonian as a sum of the ground state Hamil-
tonian and the perturbed Hamiltonian:

Ĥ = Ĥ0 + ĤI (3.50)

Ĥ0 = ĤKS + Ĥext (3.51)

ĤI = Ĥe−e + Ĥel−ph − Ĥdb (3.52)

Here, the Ĥ0 consists of the Kohn-Sham Hamiltonian plus a Hamiltonian Ĥext describing the
coupling with external fields. The interaction Hamiltonian takes the electron-electron and
electron-phonon interactions into account, whilst a exchange Hamiltonian Ĥdb is subtracted
to avoid double counting. Because the non-interacting Hamiltonian Ĥ0 includes a term in Ĥext

which contains a proximity field introducing an extra process that is forbidden in particle con-
serving theory, one cannot apply a conventional many body perturbative approach.1 One can
solve this problem with introducing the Nambu-Gor’kov formalism that introduce two elec-
tronic field operators obeying fermionic commutation rules. Now a perturbative approach can
be applied with the only difference that the Green’s functions and self-energies will be 2 × 2-
matrices and the vertices will carry an additional factor. The following Green function for the
unperturbed Hamiltonian can be stated:

G0(k, iωn) =
1

−ωn − εk
(3.53)

D0(q, iνm) =
1

−νm − ωq
− 1

−νm − ωq
(3.54)

In other words, these Green functions can be accounted for a non-interacting system for single
particles. One can apply the Many Body Perturbation Theory (MBPT), this is a way to account
for each electron correlation. From here the Migdal-Eliashberg theory explains the basic com-
ponents of a many-body system, which are the propagators. After a partial re-summation the
Dyson equations are obtained through analysis of the Feynman diagrams:

G(k, iωn)−1 = G0(k, iωn)−1 − Σ(k, iωn) (3.55)

D(q, iνm)−1 = D0(q, iνm)−1 −Π(q, iνm) (3.56)

They give the perturbed electron and phonon self-energies: Σ and Π. These are the sum of all
one particle irreducible Feynman diagrams that describe the behavior between the quasipar-
ticles.31 In other words, they contain all the electron-phonon vertices that govern the super-
conductivity. Migdal’s theorem is stating, that the vertex corrections are small in comparison
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with the self-energies, which means that the electron-phonon interaction can be truncated. But
even with this simplification, the computational cost is still quite high. Therefore, more ap-
proximations are made, like e.g. that the Coulomb interactions (and all the other interactions)
are replaced by a Fermi surface average. The Green function can then be solved and separated
into components to gain the Eliashberg functions. These are then even more simplified through
describing the k-dependence by the energies εnk. The Eliashberg functions in the isotropic ap-
proximation are then:

Z(iωn) = 1 +
π

ωnβ

∑
n′

ωn′√
ω2
n′ + ∆2(iωn′)

λ(iωn′ − iωn) (3.57)

∆(iωn)Z(iωn) =
π

β

∑
n′

∆(iωn′)√
ω2
n′ + ∆2(iωn′)

[λ(iωn′ − iωn)− µ] (3.58)

λ(iωn − iωn′) =

∫
2ωα2F (ω)

(ωn − ωn′)2 + ω2
dω (3.59)

Where the spectral function α2F (ω) is given by equation (3.6). These isotropic gap equations
are fully accessible by first principle calculations.37 µ carries the Coulomb interactions, for it is
assumed as described that is it constant around the Fermi level and zero outside it.
Here, λ is introduced as a interaction kernel. These equations can be solved for a given temper-
ature T and the isotropic spectral function α2F . The isotropic coupling constant λ characterizes
the strength of the electron phonon coupling. If ∆(iωn) 6= 0, then the superconducting state is
achieved. Therefore the max. temperature fulfilling this condition will be the critical tempera-
ture Tc, which was already stated by BCS-theory.

3.2.6 Electron self energy

The self-energy can be approximated in the basis of the Kohn-Sham states as:

Σ(k, iωn) = − 1

β

∑
k′,n′µ

σ3G(k′, iωn′)σ3

(
(gkqν,k′)

2Dµ(k − k′, iωn − iωn′) + VC(k − k′)
)

(3.60)

VC is a screened Coulomb potential depending only on the momentum transfer (k − k′). Here
the electron-phonon matrix elements gkqν,k′ equals the expression shown in equation 3.5, while
the indices vary for n and m do not stand for band indices since section 3.6. The equation
can be rewritten using Pauli matrices and the green function matrix can be replaced with the
definition of it in the Dyson function. From that the Eliashberg functions can be extracted, that
enable the calculation of the electronic density and the chemical potential. These are a complex
set of non-linear equation which couple all momenta k.37

The lowest-order diagram of the electron self-energy is the virtual exchange of a phonon. After
simplification through performing the Matsubara sum over ωn′ , the following equation can be
formulated:

Σep(k, iωn) =
1

Nq

∑
k′,q

|gkqν,k′ |2(
b(ωq) + f(εk′)

iωn + ωq − εk′
+
b(ωq) + 1− f(εk′

iωn − ωq − εk′
) (3.61)

It is dependent on temperature through the Fermi distribution function f(ε) = (eε/T +1)−1 and
Bose distribution function b(ω) = (eω/T − 1)−1. Nq is the summation over all phonon momenta
q. If the self-energy is small enough, the quasiparticle energy is shifted, which is determined
by the real part of the electron self energy Σ. The imaginary part of the equation is defining
a finite lifetime of the quasiparticle. The inverse of the lifetime gives a linewidth. Rewriting
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the imaginary part of the electron self-energy, two spectral functions can be introduced, that
describe the probability of scattering electrons with higher energies while absorbing a phonon
α2F−k (ε, ω) or scattering electrons from lower energies while emitting a phononα2F+

k (ε, ω).This
probability depends on the fermionic and bosonic distributions:

α2F±k (ε, ω) =
1

Nq

∑
q

δ(ω − ωq)
∑
k′

|gkqν,k′ |2δ(ε− εk′ ± ω) (3.62)

These spectral functionα2F±k (ε, ω) depends on the electronic state k and influence the linewidth
additively through creating decay channels for the quasiparticles. The spectral function can be
simplified in the quasielastic approximation. Here, one assumes that, because the electronic
scales are much larger then the phonon scale, the difference between emission and absorption is
negligible. Also, the phonon energy ωq can be neglected in the δ-function giving equation (3.6).

3.2.7 Phonon self-energy

Like for the electron self energy in the previous section, also the phonon energy shows a
phonon linewidth that can be extracted from the imaginary part. The lowest order diagram
can be given after performance of the Matsubara sum:

Πq(iνm =
1

β

∑
n

1

Nk

∑
k,k′

|gqk,k′ |
2 f(εk)− f(εk′

iνm + εk − εk′
(3.63)

Following linewidth can be extracted (half-width-half maximum):

γq = −2ImΠq(ωq) = 2π
1

Nk

∑
k′,k

|gqk,k′ |
2(f(εk)− f(εk′))δ(ωq + (εk − εk′)) (3.64)

Note that Fermi distribution functions f defining the temperature dependence are included.
Again the phonon energies are negligible in comparison to the electron energies. The difference
εk − εk′ is neglected:

f(εk)− f(εk′) = f ′(εk)(εk − εk′) = f ′(εk)ωq (3.65)

γq = 2π
1

Nk

∑
k′,k

|gqk,k′ |
2δ(εk)δ(εk′) (3.66)

This theoretical line width shows only the contribution for EPC. It is calculated numerically
through integrating over the Brillouin zone (BZ) points at Fermi-level εF in the double delta
approximation:31,36,37

γq,ν =
∑
nmk

|gmn,ν(k,q)|2δ(εnk)δ(εmk+q) (3.67)

3.2.8 Critical temperature

Morel-Anderson theory is deriving a new analytical estimation of the critical temperature start-
ing at the isotropic Eliashberg functions. In order to get to a more accurate description, it was
firstly assumed that ∆ is small enough so that equation (3.58) can be linearized and a definition
for ∆(iωn) can be extracted:

∆(iωn) =
π

βZ(iωn)

∑
|ωn′ |<ωc

∆(iωn′)

|ωn′ |
(λ(iωn′ − iωn)− µ)− µ∆∞

π

βZ(iωn)

∑
ωc<|ωn′ |<εF

1

ωn′
(3.68)
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It is assumed that λ is finite only for a very small iωn′ − iωn << ωc, where ωc is a much shorter
cut-off energy. ∆∞ defines a constant ∆(iωn) for very high frequencies and λ = 0. The defi-
nition of ∆∞ that can be obtained through assuming the absence of the mass renormalization
effect for large ωn due to the electron-phonon coupling Z(iωn = 1) and taking the limit for low
temperature:

∆∞ = −

µπ
β

∑
|ωj |<ωc

∆g(iωn′)

|ωn′ |

 /(1 + µ log(εF /ωc)) (3.69)

When plugging this equation into equation (3.68) one gets:

∆(iωn) =
π

βZ(iωn)

∑
|ωn′ |<ωc

∆g(iωn′)

|ωn′ |
(λ(iωn′ − iωn)− µ∗) (3.70)

Now we get a first expression for the pseudo-Coulomb potential µ∗:

µ∗ =
µ

1 + µ log(εF /ωc)
(3.71)

Assuming a constant λ(iωn′ − iωn):

λ = λ(0) = 2

∫
α2F (ω)

ω2
dω (3.72)

Defining |ωn′ | = ωD and Z = 1 + λ and the ωi dependence of ∆ is neglected, one can rewrite
equation (3.70):

1 + λ

λ− µ∗
=

ωD/2πTc−1/2∑
i=0

1

i+ 1/2
(3.73)

A new analytical estimation for the critical temperature can be given:

Tc = 1.13ωD exp

(
− 1 + λ

λ− µ∗

)
(3.74)

In comparison with the description of the critical temperature by the BCS-theory, one can now
see how the mass enhancement effect defined by Z = 1 + λ and the Coulomb repulsion de-
scribed as λ− µ∗ reduce superconductivity.1

In 1968, McMillan introduced a new formula that could accurately describe the critical formula.
For that reason the experimental phonon spectral function of Niobium was used with different
scaling and µ∗/λ-ratios:1

Tc =
ωD
1.45

exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
(3.75)

This formula will also be compared for the materials on interest for the Debye temperature
is given by the phonon calculations. Allen and Dynes thoroughly numerically analyzed the
isotropic gap equations while varying λ and µ∗. That enabled the calculation of the Tc solely
defined by the material-dependent quantities α2F (ω) and µ∗. The prefactor changed and in-
stead of the Debye energy, the logarithmic average was introduced (see equation(3.3)), that
corrects for the low energy phonons that are relevant for the superconductivity. They prove
that in the range of λ < 2 and µ∗ > 0.15 the MacMillan formula (3.3) is valid with the included
modified prefactor.31,36,37 The McMillan formula is nowadays widely used for computing the
critical temperatures for first principles and surprisingly, the Coulomb interaction described by
µ∗ is material independent in this description.

20



4 Theoretical framework

Abinit is a software to calculate the electrical, vibrational, optical, mechanical, and other prop-
erties of materials. It uses density functional theory and combines it with perturbation theories
and many body Green’s function. It is the main tool in this work and it utilized the formulas
explained in section 3.2.1 to predict superconducting behavior.11,12,13,14,15 In the following, the
numerical background to acquire all the important input is described.

4.1 The Schrödinger equation

The Schrödinger equation Ψ(~r, ~R) is a many-body wavefunction describing a quantum-mechanical
system, which here consists of nuclei Ni at positions ~Ri and electrons ni at ~ri. Following the
Born-Oppenheimer approximation, the wavefunction can be rewritten in terms of electronic
coordinates, whereas the nuclei positions are considered constant and sub nuclear interactions
are neglected. This is due to the much higher nucleus mass in comparison to the electronic
mass:

Ψ(~r, ~R) = Ψel(~r)Ψnu(~R) (4.1)

Because our material is a periodic system described by a unit cell, one can write the states as
a superposition of plane waves, the Bloch states, to tackle the problem of having to calculate
an infinite amount of wavefunctions for each electron. Conductive electrons therefore move in
the periodic potential set by the ionic lattice.
The wavefunctions are calculated just for the electrons in the unit cell in reciprocal space of the
Bravais lattice. The wavefunction Ψ(~r) can be written as a sum of Bloch states Ψ~k

:39

Ψ(~r) =
∑
~k

Ψ~k
(4.2)

Ψ~k
(~r) = ei

~k~rf~k(~r) (4.3)

The wavefunction consists of two parts. The first one is the plane wave part. ~k is a wave
vector in reciprocal space that can be described by its wave length λ = 2π

|~k|
. Using periodic

boundary conditions, all the information about the electronic distribution can be found inside
the Brillouin zone (BZ). Therefore, one has to only consider a finite amount of k-points inside.
The wavefunction is expressed with the help of sampling special sets of high symmetry k-
points with the help of the Brillouin zone. The plane-wave set at each k-point is discrete and
describes the wavefunction. The number of k-points can be set in the input file in Abinit with
the command ngkpt. For 3-dimensional systems, a grid of kx× ky× kz is used, that is evenly
spread in the BZ, also called a Monkhorst-Pack grid. The finer the grid, the more accurate the
calculation gets, so a convergence test has to be concluded to choose the right k-point grid [App.
12.2.1]. With the command kptopt, one can control the symmetry used in order to generate
the k-point grid. Other parameters in the script defining the k-point grid is nshiftk: This
parameter gives the number of shifted grids to be used to generate the full grid and shiftk
gives its values. They are also called Monkhorst-Pack grids. One can have a look at the values
chosen in the appendix[App. 12]
The second term is the cell periodic part, that describes the cell periodicity:
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f~k(r) =
∑
~g

c~k,~ge
i~gr (4.4)

Here, ~g is the reciprocal lattice vector defined by ~g~q = 2πm, where ~q is a lattice vector and m

an integer. The value of ~g is defined by the energy cut-off. The summation of ~k and ~g gives
the radius of the sphere centered around k in which the calculation takes place. This explains
why there is not necessary the same number of plane waves per k-point. The lattice vector ~g is
defined by the energy cut-off with the following equation:

E(g) =
|~g + ~k|2

2
(4.5)

Plane waves are considered as long as their kinetic energy is equal or below Eg. The bigger
~g, the higher the corresponding energy is and once a desired accuracy due to the right k-point
grid is reached, the summation ~k + ~g is neglected, for ~g becomes bigger then ~k. The full Bloch
function is the following:

Ψ~k
(r) =

∑
~g

c~k,~g+~ke
i~r(k+~g) (4.6)

In order to reach the needed electronic cut-off, two approaches are included: The Pseudopoten-
tial used makes the frozen core approximation, which leads to a lower energy cut-off needed
for the highly energetic core electrons are not considered for interatomic interactions. Further-
more, the potential is smoothed around the nuclei, which is then called Pseudopotential. It also
defines the energy cut-off. If a soft Pseudopotential with a soft well is used, a smaller energy
cut-off can be used. For a hard Pseudopotential with a deep well, a bigger energetic cut-off
should be used to include more oscillations. In the input file, one can then define the energy
cut-off with the command ecut. It is usually introduced in Hartree and has to be converged in
order to catch all the important interactions, like shown in appendix [App. 12.2.2].39

One can take equation (6) to build the nth Kohn Sham wavefunction needed to apply density
functional theory (see. 2.3):

φn(~r) =
∑
~k

BZ∑
~g~k

c
n,~k,~g+~k

ei~r(
~k+~g) (4.7)

The coefficients c
n,~k,~g+~k

are defined in a self consistent procedure following the variational
principle. The variational principle is used to find the ground state (GS) wavefunction and
energy. Therefore a self consistent field procedure (SCF) is used, whose convergence criteria are
defined by the Abinit input variables. For setting a tolerance, one can use one of the following
commands and give them a value (e.g. 10−10 (read by Abinit in Hartree)): toldfe for energy,
toldff for forces, toldwfr for wavefunction, tolvrs for potential. The maximum number of
steps is then defined by nstep.[App. 12]

4.2 The Hamiltonian

To obtain the ground state energy, one has to solve the Hamiltonian for the time-independent
Schrödinger equation:

ĤΨ(~r, ~R) = EΨ(~r, ~R) (4.8)

The Hamiltonian consists of different contribution:

Ĥ = T̂el(~r) + T̂nu(~R) + Ûel−el(~r) + Ûel−nu(~r, ~R) + Ûnu−nu(~R) (4.9)
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After application of the Born Oppenheimer approximations, neglecting the kinetic energy of
the nuclei T̂nu(~R), the Coulomb interaction of the nuclei Ûnu−nu(~R) and ~R is considered con-
stant. This will give the electronic Hamiltonian Ĥel = T̂el + Ûel−el + Ûel−nu, that will be used in
combination with the electronic wavefunction.

4.3 Density Functional Theory

The density functional theory (DFT) is a first principle method/ab initio method to solve for
systems, that give a tremendous electronic wavefunction for it is dependent on 3 × Nel vari-
ables. The underlying principle is here to construct the ground state density of a fully inter-
acting system build of non-interacting electrons, also called Kohn Sham one electron states,
enabling to make material-dependent predictions.31 The density functional theory is based on
two theorems:

4.3.1 The Hohenberg-Kohn Existence Theorem:

It states that the ground state electronic density is sufficient to determine the the energy as a
functional of the density ρ(~r). One reason for is that, the integration of the electronic density
ρ(r) gives the number of electrons Nel.

Ne =

∫
ρ(~r))dr (4.10)

The external potential Vext, which are the charges and positions of the nuclei, is also given by
the non-degenerate ground state density, since each nucleus is located at an electron density
maximum.40 Furthermore, this external potential Vext is defining the density of the system:

Eel[ρ(~r)] =

∫
Vext(~r)ρ(~r)d~r + F [ρ(~r)] (4.11)

This leads to the fact, that the non-degenerate ground state density ρ(r) determines the Hamil-
tonian and thus the wavefunction. Since the Hamiltonian determines all excited-state wave-
functions, the amount of information laying in the density is tremendous. The first theorem is
an existence theorem, thus it does not provide any information on how to predict the density
ρ(~r) of a system.

4.3.2 The Hohenberg-Kohn Variational Theorem

It states that the density obeys a variational principle. If for instance a well-behaved approxi-
mated density indicates an approximated wavefunction and a Hamiltonian, the energy expec-
tation value will be higher or identical the actual energy of the system:40

〈Ψapp|Ĥapp|Ψapp〉 = Eapp ≥ E0 (4.12)

4.3.3 Practical Implementation

Having the theoretical tools in hand, we can move on to the following problematic: Solving the
Schrödinger equation. The description of the electron-electron interaction term in the correct
Hamiltonian is complicated to grasp for a many-electron system. The solution is to write the
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Hamiltonian operator as a sum of non-interacting one electron operators, the so called Kohn-
Sham (KS) operators ĥi:

ĤKS =

Nel∑
i=1

ĥKSi (4.13)

ĥKSi (~ri)|φi(~ri)〉 =

(
−1

2
∇2
i + Vext(~r) + VH [ρ(~ri)] + V̂xc[ρ(~ri)]

)
|φi(~ri)〉 = εi|φi(~ri)〉 (4.14)

Vxc[ρ(~ri)] =
δExc(~ri)

δρ(~ri)
(4.15)

VH [ρ(~ri)] =

∫
j
d~rj

ρ(~rj)

|~rj − ~ri|
(4.16)

Nel here is the total number of electrons. The one electron Kohn-Sham operator ĥKSi consist of
a kinetic energy −1

2∇
2
i , an external potential Vext felt by the electrons (generated by nuclei or

external electromagnetic field) and effective potential terms consisting of the Hartree potential
VH [ρ] and the exchange-correlation potential V̂xc[ρ] .41 These one electron operator then acts
on a one electron wavefunction, that is just dependent on three space coordinates instead of a
wavefunction, that was dependent on 3×Nel coordinates. These then act onto the independent
Kohl-Sham electron wavefunction φ(~r).

ENel [ρ(~r)] =
N∑
i=1

ĥKSi |φ1, φ2, ..., φNel〉 = EN |φ1, φ2, ..., φNel〉 (4.17)

ENel [ρ(~ri)] =

∫
Vext(~ri)ρ(~ri)d~ri −

Nel∑
n

∫
φ∗n(~ri)

∇2

2
φn(~ri) +

1

2

∫ ∫
ρ(~ri)ρ(~rj)

|~ri − ~rj |
d~rid~rj + Exc[ρ(~ri)]

(4.18)

ρ(~r) = 2

Nel/2∑
k=1

φ∗k(~r)φk(~r) (4.19)

For metals, one can calculated the density in a different manner, using a smearing function
around the Fermi level, with a distribution function S(εs) with a defined smearing value εs:

ρ(~r, εs) =
∑
n

S(εs)|φk(r)|2 (4.20)

The smearing function can be a Fermi-Dirac (FD) distribution, a Gaussian function, a cold
smearing or it can be fixed with the tetrahedron method. One can simplify the above equation
to get:

E[ρ(~r)] = 2
∑
n

S(εs)εn −
e2

2

∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d~rd~r′ + Exc[ρ]−

∫
ρ(~r)Vxc(~r)d~r (4.21)

This equation not only allows for calculation of the ground state energy but also the perfor-
mance of derivations needed to get to the dynamical matrix.1

The terms of the energy can now be calculated self consistently. Just the exchange correlation
functional Exc[ρ(~ri)] is hard to evaluate. It accounts for the difference between the classical and
quantum mechanical electron-electron repulsion and the difference in kinetic energy between
the fictitious non-interacting system and the real system.
Most modern functionals do not attempt to solve this term, but either ignore it, try to add
the kinetic energy difference between the non-interacting and interacting system separately
or add empirical parameters.40 The Jacob’s ladder describes the levels of approximations.42
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The lowest rung is the ’local density approximation’ (LDA). Here the exchange energy density
depends only on the density at a point and is that of the uniform electron gas of that density.
It is used for metals and in material sciences, but is usually a bad approximation for chemical
applications. The next rung includes a generalized gradient approximations (GGAs). These
formulas use the density and its gradient, which leads to a higher computational cost, but
also to a more exact solution. Famous examples for functionals using GGAs are the BLYP and
PBE.43,44,45,46 In the following work we will use a PBE pseudopotential. The next step are
the meta-GGAs, which include the dependance on the Kohn-Sham kinetic energy density. The
fourth category of functionals incorporates a part of exact exchange in combination with GGAs.
The most popular functional used on that level of DFT is the B3LYP. It mixes a fraction of exact
exchange (about 20 %) with GGAs. The hybrid analogue to the PBE is the PBE0.43,44,45,46,47,48

This type of functionals is called hybrid-functionals. In the following work, we make use of the
PBE exchange correlation typed Pseudopotential.
Now we have all tools in hand to get all the information about the energy of the system. A
electronic density of states (DOS) can be produced through adding the flag 1 into the input file.
Usually it is of importance to converge the DOS with respect to the K-point grid. Here, a non-
self consistent calculation with the wanted k-point grid suffices when having a wavefunction
(WFK)-file and density (DEN)-file from a previous, lower k-point mesh SCF calculation. A flag
inducing this kind of NSCF-calculation is iscf−3. Furthermore, the calculation of a band struc-
ture requires giving Abinit k-points defined by kptbounds at which the band structure should
be calculated. These high symmetry points have been produced by abistruct.py with a Abinit
input file of the compound in question. With the flag ndivsm one can set how many points
are calculated in between the high-symmetry points. kptopt has to be set to the number of
kptbounds-points multiplied by -1. iscf −2 indicates that this calculation is a NSCF-calculation
again, while the same k-point grid like for the GS-calculation can be used.[App. 12]

4.4 Density Functional Perturbation Theory

Density Functional Perturbation Theory (DFPT) is needed in our case, not only to calculate the
phonon frquencies and to gain the electron-phonon matrix elements but also to optimize the
system. The trick here is to perturb the ground state Hamiltonian Ĥ0 by an atomic displace-
ment (also works with any perturbation λ). The Hellmann-Feynmann theorem states that the
perturbed first order Hamiltonian Ĥ1 = Ĥ0 + Vext(λ) and the ground state wavefunction Ψi

0,
given by DFT, are enough to give the first order energy of the system:

〈Ψi
0 |Ĥ1|Ψi

0〉 = εi1 (4.22)

Extending this simple equation on terms of DFT, one yields the first order energy from which
the electron-phonon matrix elements can be calculated:

Eel1 =

Ne∑
i=1

〈Ψi
0|Ĥ1|Ψi

0〉 =

Ne∑
i=1

〈Ψi
0|(T + Vext)1|Ψi

0〉+
dExc[ρ0]

dλ
|λ=0 (4.23)

With the help of the Sternheimer equation, one can then access the first order wavefunctions
iteratively:

(H0 − εi0)|Ψi
1〉 = −(H1 − εi1)|Ψi

0〉 (4.24)

Essentially, the second order energy can be accessed through following the same framework. In
order to calculate the second order energy, one just need the first order wavefunction, ground
state wavefunction, the first order energy and ground state energy of the system.
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4.4.1 Optimisation

Through deriving the total energy, one can obtain a plentora of physical parameters. One of
those are the forces, that can be calculated with the help of the Hellmann-Feynman theorem49:

Fαi = − ∂E

∂uαi (~q)
(4.25)

uαi (~q) is the displacement of atom i at position α by a vector ~q. With help of these parameters
one can relax the system and find new cell parameters and atomic coordinates at lower ener-
gies. This is explicitly important if vibrational parameters are of interest, for a not fully relaxed
structure will affect the atomic vibrations. There are several parameters defining the relax-
ation in Abinit. optcell defines which parameters will be relaxed, ionmov denotes the type, in
the following project the Broyden-Fletcher-Goldfarb-Shanno minimization (BFGS) is used and
ntime, which limits the number of iterations. The parameter dilatmx helps avoiding a too dras-
tic change of the cell size and ecutsm imposes a smearing on the energy cut-off, so the edges
of the plane wave basis are smoothed and the energy cut-off stay consistent with the new size.
An example can be seen in the appendix [App. 12.2.3].

4.4.2 Phonon calculation

Following a second order perturbation approach, the energy is again derived by a displacement
of the atoms. This derivation gives the interatomic force constants. These give the dynamical
matrix and with solving the dynamical equation that is a eigenvalue problem, one can calcu-
late the phonon eigenvectors and phonon frequencies. In order to gain information about the
vibrational properties, one has to take the nuclear Schrödinger equation into account:[

−
∑
i

~2

2Mi
∇2
i + E(~R)

]
Ψ(~R) = εΨ(~R) (4.26)

Here the system is defined solely by the nuclear coordinates ~R, the nuclear mass Mi and the
energy E(~R) at fixed positions defining the Born-Oppenheimer energy surface. E(~R) is the
ground state energy gained from the DFT. Electronic transitions induced by ionic motion are
neglected and nuclear interaction with the electrons is instantaneous due to the BOA. The struc-
ture needs to be optimized to give a equilibrium geometry so that the forces acting on the nu-
clei equal to zero. The second derivative then gives the vibrational frequencies in the harmonic
approximation. It can also be called the Hessian matrix that can be diagonalized to give the
phonon frequencies:

det

∣∣∣∣∣ 1√
MiMj

∂2E(~R)

∂Ri∂Rj
− ω2

∣∣∣∣∣ = 0 (4.27)

In terms of a periodic normalized displacement uαi (~q) of the atom i with wavevector ~q, one can
write:

det

∣∣∣∣∣ 1√
MiMj

C̃αβij (~q)− ω2(~q)

∣∣∣∣∣ = 0 (4.28)

C̃αβij (~q) =
∂2E

∂uαi (~q)∂uβj (~q)
(4.29)

The DFPT calculations are done per q-point, which describes the wavevector ~q. These are
the limiting factor in the calculations for it takes a lot of computational time but still has to be
converged. It denotes how many unit cells are taken into account for the periodic displacement.
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The interatomic force constants C̃αβij give the dynamical matrix and with solving the following
dynamical equation, one can access the phonon frequencies ω:

D̃αβ
ij =

C̃αβij
MiMj

(4.30)∑
D̃αβ
ij γ

β
j = ω2γαi (4.31)

α and β are the cartesian components of the displacement.1

The information about the dynamical matrix can be found in the DDB-files, which are calcu-
lated by Abinit for each q-point, described by qpt and each irreducible perturbation described
by rfdir (direction x,y,z) and rfatpol (atom). The flag rfphon = 1 denotes the phonon-type
perturbation, while optdriver = 1 induces a response-function calculation. These produced
DDB-files then have to be merged with mrgddb. With the help of anaddb the phonon fre-
quencies and density of states can be extracted. In order to calculate the phononfrequencies at
Γ-point, one just needs the DDB-file at qpt000, which stands for the Γ-point. An important flag
are here the ifcflag, that turns on the calculation of the interatomic force constants. For the
phonon dispersion, one needs more q-points. Again the q-point grid is described with ngqpt.
The ngpath and qpath flag describes the points on which the phonon band structure and line
width are interpolated (0 for Γ-point calculation). In order to get an accurate phonon denisty
of state, the variable ng2qptx, y, z denotes the Monkhorst-Pack grid linear dimensions so that
a finer q-point grid is calculated to achieve the needed accuracy for the DOS, this factor has to
be converged as well. prtdos1 leads to the printing of the phDOS. All scripts that are used and
that inhibit the previously explained information can be seen in the appendix [App. 12.2.4].

4.4.3 Electron-phonon calculation

The new Abinit driver is used to calculate the electron-phonon interactions. It is indicated with
the variable optdriver7 in the input script. The electron phonon coupling matrix elements are
obtained as a byproduct from the phonon calculation as they are obtained by the first order per-
turbation by atomic displacement of the potential (δVqν . The electron phonon matrix elements
are calculated in terms of the k and q-points like shown in equation (6).
The first order change in potential consists of the Hartree exchange correlation potential V Hxc

qν (~r)
and a mix of local/non-local terms from the pseudopotentials V e−n

qν (~r, ~r′). It can be calculated
from the POT-files that are an output of the DFPT calculation(V scf

qν (~r)) and a part depending
on the pseudopotential and the geometry, also called the "frozen" part V nl

qν (~r, ~r′):

δVqν = V Hxc
qν (~r) + δV e−n

qν (~r, ~r′) = V scf
qν (~r) + V nl

qν (~r, ~r′) (4.32)

Similar like the DDB-files, the POT-output has to be merged to gain a DVDB-file. The first order
change of potential can be therefore calculated per q-point and irreducible atomic perturbation
:

δVqν =
∑
Rs

∂V

∂uRs
· uqν

s e
iq·R (4.33)

After merging the input file for the electron-phonon calculation is called a DVDB-file. The
electron-phonon coupling strength λ and the Eliashberg function is then calculated like shown
in equation (4) and (5):
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λqν =
1

NFωqν

∑
mnk

|gνmn(q,k)|2δεnkδ(εmk+q) (4.34)

α2F (ω) =
∑
qν

ωqνλqνδ(ω − ωqν) (4.35)

With that information one can obtain the average logatrithmic frequency ωlog and the critical
temperature like shown in equations (1) and (2).
Throughout the electron-phonon calculation, there are several kinds of interpolations to inter-
polate for better grids. Firstly, by setting the variable ph_ngqpt, one can use Fourier interpola-
tion to obtain a fine grid of q-points. Secondly, by setting eph_ngqpt_fine one can interpolate
the potential, this is avoided with using the same set of points like for ph_ngqpt. Generally,
the interpolation grids were set: ph_ngqpt = eph_ngqpt = ngkpt for maximum accuracy and
to avoid the interpolation of the matrix elements. From the electron-phonon calculation one
gets two sets of superconducting parameters, the first one is the simply summed DFPT to the
a finer q-point that is then integrated, which we will call ’Explicit Interpolation’. The second
one that we will call the ’Fourier interpolation’ interpolated the electron-phonon matrix ele-
ments onto a finer set of q-points. When displaying the Eliashberg spectral function these are
called A2FW (Fourier interpolation) and NOINTO_A2FW (explicit interpolation). So to put ev-
erything in a nutshell, for a successful electron-phonon calculation, the following framework
has to be followed: The first step is a ground state calculation in order to get the ground state
wavefunction (WFK) and density (DEN) file. NSCF-calculations can be concluded in order
to gain a denser k-point mesh. A k-point convergence is needed here because it is just the
electrons at the Fermi-surface that contribute to the electron-phonon interaction, so that just a
small part of the BZ does contribute. The default smearing method is the tetrahedron method
set with eph_intmeth2, that does not need the definition of a smearing factor. But one can also
experiment with the Gaussian smearing eph_intmeth1, so that a k-point convergence can be
investigated with various smearing values eph_fsmear0.01. Afterwards the earlier calculated
DDB-files and POT-files are merged ( withmrgddb andmrgdv) together to give the information
about the phonon frequencies (input file:_xi_DDB), and the electron-phonon coupling (input
file: _xi_DVDB) respectively. Here, the density of the q-point mesh is essential, while it has
to be a multiple of the k-point mesh. In our case because of the rather big unit cell, each per-
turbation for each q-point was calculated separately and then merged. In order to be able to
calculate the electron-phonon calculations, a smart parallelization scheme had to be set with
the help of eph_np_pqbks 12 1 1 20 1. The first number stand for the irreducible perturbation,
the second for the q-point grid, the third for the bands, the fourth for the k-point grid and the
last for the spin. The calculation is split on the different nodes. For the calculations with k-point
grid: 8x8x24 and 10x10x30, 240 cores were sufficient with the above mentioned parallelization
scheme. For the grid 12x12x36, 480 cores were used with a set-up of eph_np_pqbks 20 1 1 24 1.
The memory on each node was the limiting factor. Again, the appendix shows how the script
looks in the end [App. 12.2.5].

4.5 Technical information

The Pseudopotentials are taken from the website Pseudo Dojo and they are Perdew-Burke-
Ernzerhof (PBE) exchange-correlation typed Pseodopotentials.50,51

Table 4.5.1: Technical information about the calculation

Compound Section k-point
grid

Smearing
[Ha]

Energy
cut-off
[Ha]
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η- Ta2N3 Convergence study varied varied varied
η- Ta2N3 Optimisation 10x10x30 0.01 40
η- Ta2N3 Electronic structure 8x8x24

10x10x30
(DOS)

0.01 40

η- Ta2N3 Phononfrequencies at
Γ-point

8x8x24
varied

0.01
varied

40

η- Ta2N3 Phonon investigation 6x6x18
8x8x24
8x8x24

0.005
0.01
0.05

40

η- Ta2N3 Investigation of the
instability at Z-point

6x6x18
varied

0.005
varied

40
varied

η- Ta2N3 Investigation of the
influence of
computational
parameters on the
electronic structure

6x6x18
varied

0.005
varied

40
varied

η- Ta2N3 Superconductivity 10x10x30 varied 40
η- Ta2N3 at 26.065 GPa Optimisation 10x10x30 0.01 40
η- Ta2N3 at 26.065 GPa Electronic structure 6x6x18

10x10x30
(DOS)

0.05
0.05

40

η- Ta2N3 at 26.065 GPa Vibrational properties 6x6x18
6x6x18

0.005
0.05

40

η- Ta2N3 at 26.065 GPa Superconductivity 10x10x30 varied 40
Tetragonal Ta2N3 Convergence study varied varied varied
Tetragonal Ta2N3 Optimisation 12x12x12 0.01 40
Tetragonal Ta2N3 Optimisation 12x12x12

16x16x16
(DOS)

0.01 40

Tetragonal Ta2N3 Vibrational properties 12x12x12
8x8x8

0.01
0.01

40
40

η- Nb2N3 Convergence study varied varied varied
η- Nb2N3 Optimisation 10x10x30 0.01 40
η- Nb2N3 Electronic structure 8x8x24 0.01 0.05 40
η- Nb2N3 Vibrational properties 8x8x24

6x6x18
0.01
0.05

40
40

η- Nb2N3 Superconductivity 10x10x30 0.01
0.005

40
40

η- V2N3 Convergence study varied varied varied
η- V2N3 Optimisation 10x10x30 0.01 40
η- V2N3 Electronic structure 12x12x36 0.01 40
η- V2N3 Vibrational properties 8x8x24 0.01 40

Trigonal V2N3 Convergence study varied varied varied
Trigonal V2N3 Optimisation 8x8x8 0.01 40
Trigonal V2N3 Electronic structure 8x8x8 0.01 40
Trigonal V2N3 Vibrational properties 8x8x8 0.01 40
Trigonal V2N3 Superconductivity 24x24x24 varied 40

A "Cold smearing” of N. Marzari, with a=-0.5634 (minimization of the bump) smeared delta
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function: exp (−xx · 2)/
√
π ·(1.5+xx ·(−a ·1.5+xx ·(−1.0+a ·xx))) is used. A test is conducted

with Fermi-Dirac smearing developed for finite-temperature metals. Smeared delta function:
0.25/(cosh xx

2.0
2). Furthermore, the Gaussian smearing is used for superconductivity calcula-

tions corresponding to the 0 order Hermite polynomial of Methfessel and Paxton. Smeared
delta function: 1.0 · exp(−xx2)/

√
π.

30



5 Orthorhombic Ta2N3

The first compound of interest is the orthorhombic Ta2N3, that was synthesized through a
high-pressure/ high-temperature route by Zerr et al.7 First-principle calculations were already
performed by Jiang et al.9 performing random structural search and investigating the stability
of the Ta2N3 and other metal nitrides with the same stoichiometry. In the same work the tetrag-
onal Ta2N3 was found to have lower energy at ambient conditions, while at pressures above
7̃.7 GPa, the orthorhombic Ta2N3 becomes the more favorable structure. Further investigations
assumed that a low oxygen content in the orthorhombic Ta2N3 could impact the stability of this
compound and mechanical instability was predicted.9

5.1 Convergence study

The k-points and the smearing were converged together in order to find the lowest possible
k-point grid that can be used with the most appropriate smearing value. The energy cut-off
was also investigated:

Figure 5.1.1: Convergence study for choosing the right set of k-points and smearing factor for the Gaussian smear-
ing. Upper left handed graph shows all the set-up’s used while the over graphs are zooming in on the different
results. First in the right handed upper graph, a smearing of 0.001 Ha (black) and 0.005 Ha (blue) is shown. Left
handed bottom graph depicts a smearing of 0.01 Ha and on the right handed lower part, one can observe the
behavior of 0.05 Ha smearing.

One can see that Smearing = 0.001 is too low to represent the electronic states, much more
k-points are needed for a convergence and the values still vary strongly. Therefore, the other
smearing values are examined. For each smearing, convergence with respect to the k-point grid
is reached very fast. Even a grid of 6x6x18 is acceptable, the difference with the grid 8x8x24 is
in the order of around 10−5 eV.
The figure for smearing=0.01 shows a positive slope. The difference in total energy for the three
smearing values of 0.001, 0.005 and 0.01 and their sets of k-points is negligible. Interestingly, a
smearing of 0.05 Ha is showing a negative slope and the ground state energy is 0.1 eV lower
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due to the entropic term. The smearing does influence the ground state energy (± 0.1 eV),
while the k-point grid does play a minor role for accuracy of the electronic calculation giving
a max. error of ±5 · 10−5 eV. The results for 0.05 Ha smearing give an even smaller error of
±5 · 10−6 eV

Figure 5.1.2: Energy cut-off convergence study.

An energy-cutoff of 40 Ha was chosen for further calculations. The error is of the size of ±5 ·
10−1 eV, which is of higher order then the change one can find when playing around with the
smearing and the k-point grid.

5.2 Optimisation

The optimisation gave a new set of cell parameters and atomic coordinates, used for further
calculations:

Table 5.2.1: Optimized atomic coordinates and previously theoretically calculated atomic coordinates by Jiang et al.9

and experimental results by Zerr et al.7 while the z-values stay constant due to symmetry restrictions. The values
are shown rounded off to three significant digits showing the accuracy of the calculation. An error of ±5 · 10−4 is
found.

Atom x y z

Ta1 0.313 (0.313, 0.313) -0.021 (-0.21, -0.20) 0.25
Ta2 0.505 (0.505, 0.505) 0.306 (0.306, 0.307) 0.25
N1 0.875 (0.875, 0.875) 0.046 (0.046, 0.025) 0.25
N2 0.549 (0.549, 0.585) 0.879 (0.879, 0.890) 0.25
N3 0.200 (0.200, 0.201) 0.220 (0.220, 0.248) 0.25

The new cell parameter are the following:

• a = 8.18 Å

• b = 8.22 Å

• c = 3.00 Å

The unit cell parameter are in good agreement with previous theoretical results by Jiang et al.9

( a = 8.19 Å, b = 8.24 Å, c = 3.00 Å) and previous experimental results by Zerr et al.7 (a = 8.19 Å,
b = 8.18 Å, c = 2.98 Å). Again, the values are rounded off accordingly to their accuracy with an
error of ±5 · 10−3. The unit cell volume is 201.72 Å3.
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5.3 Electronic structure

The density of states for the electronic structure were calculated for a set of 8x8x24 k-points
and 0.01 Ha cold smearing. The results were compared with other set’s with different smearing
value (0.005, 0.05) or different k-point grid (6x6x18,12x12x36) and no difference could be found.
The electronic DOS was also converged with a higher k-point grid that also did not show any
noteworthy changes validating the convergence of the following result. Therefore, only one set
is shown below that is shown with the help of abipy’s abiopen.py, that produces a interface to
the AbiPy objects, that are produced through Abinit.52

Figure 5.3.1: Electron band structure and a zoomed up version for Ta2N3 at ambient pressure. The Fermi-level of
13.716 eV is set as zero-point.

Figure 5.3.2: Density of states for Ta2N3 at ambient pressure. The Fermi-level of 13.716 eV is set as zero-point.

5.4 Phononfrequencies at Γ-point

The Phononfrequencies were calculated for the Γ-point and their activity was denoted by the
means of point group theory. 60 Phononmodes were found. A k-point grid of 8x8x24 and
a smearing of 0.01 was used for the following result, while results for the two other set-up’s
that were investigated were also produced and compared for the Raman active modes. The
phonon modes converged within ±10−11Ha. The digits were reduced so that the solutions can
be comparable to the experimental data, that are not as accurate.
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Table 5.4.1: 23 IR-active Phononmodes at Γ-point.

Phonon energy [cm−1] Activity D2h Phonon energy[cm−1] Activity D2h

61.4 y B2u 482.3 y B2u

151.9 z B1u 501.7 y B2u

127.8 x B3u 525.3 x B3u

132.9 z B1u 552.5 z B1u

179.3 x B3u 558.3 x B3u

179.8 y B2u 617.0 z B1u

200.8 y B2u 620.5 y B2u

212.9 x B3u 635.6 x B3u

359.8 y B2u 638.7 y B2u

385.0 x B3u 670.1 y B2u

402.7 z B1u 763.9 x B3u

479.0 x B3u

Table 5.4.2: Silent modes at Γ-point.

Phonon energy [cm−1] Activity D2h Phonon energy[cm−1] Activity D2h

0.0 x2, y2, z2 Ag 127.1 / Au

0.0 yz, Jx B3g 445.8 / Au

0.0 x B3u 535.2 / Au

115.4 / Au 603.3 / Au

The following table describes the frequencies at the Γ-point that are Raman active, a compari-
son with the different set-up’s is conducted to show the influence of the parameter.

Table 5.4.3: 29 Raman active Phononmodes at Γ-point for the different experimental set-up’s.

Phononenergy[cm−1]
12x12x36 6x6x18 8x8x24 8x8x24 Expt Activity D2h

0.005 Ha 0.005 Ha 0.01 Ha 0.05 Ha
64.5 64.3 53.5 68.1 xy, Jz B1g

101.0 101.0 100.8 98.6 107 xz, Jy B2g

122.6 122.6 122.5 122.8 xz, Jy B2g

128.8 128.8 128.7 134.5 135 x2,y2,z2 Ag

140.3 140.3 140.1 136.0 yz,Jx B3g
153.0 153.0 153.0 155.9 x2,y2,z2 Ag

157.5 157.5 157.6 161.0 162 x2,y2,z2 Ag

168.0 168.1 166.4 184.3 180 xy,Jz B1g

191.8 191.9 191.5 203.2 198 xy,Jz B1g

220.9 220.9 220.0 224.7 228 xy,Jz B1g

236.5 236.6 236.3 246.5 245 x2,y2,z2 Ag

388.2 388.2 383.7 386.5 x2,y2,z2 Ag

393.8 393.9 394.9 394.6 xz, Jy B2g

420.2 420.2 420.5 420.6 418 yz, Jx B3g

453.0 453.0 451.3 465.0 x2, y2, z2 Ag

466.4 466.5 464.7 465.8 469 xy, Jz B1g

470.4 470.5 470.5 480.6 yz, Jx B3g
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500.1 500.1 500.4 506.0 510 xz,Jy B2g

528.5 528.6 528.7 539.1 xy, Jz B1g

550.6 550.6 551.6 549.8 xz, Jy B2g

554.0 554.0 554.2 565.6 yz, Jx B3g

591.6 591.6 590.3 591.7 x2, y2, z2 Ag

605.5 605.6 602.9 601.3 xy, Jz B1g

609.6 609.7 609.3 612.8 610 xy, Jz B1g

620.5 620.5 620.5 636.1 x2, y2, z2 Ag

646.5 646.6 644.1 658.5 xy, Jz B1g

654.4 654.5 654.8 664.1 671 x2, y2, z2 Ag

713.1 713.1 712.1 727.3 xy, Jz B1g

729.3 729.3 729.7 740.1 759 x2, y2, z2 Ag

One can see from the first two columns, how the k-point grid does not influence the frequen-
cies noteworthy (±0.1 cm−1) when keeping the smearing constant. The results from smearing
0.005 Ha to 0.01 Ha do change up to around (±2 cm−1). Comparing the change from smear-
ing 0.1 Ha to 0.05 Ha, the difference aggravates leading to changes up to around (±20 cm−1).
The smearing 0.05 Ha is already very high. The reason for taking it into account is the lower
ground state energy and the interesting behavior that will be shown in the next sections. A
Raman spectrum is calculated and compared to experimental results.

Figure 5.4.1: Experimental Raman spectrum (blue) in comparison with the theoretically calculated Raman-active
phonon modes without a shift (green) and with a constant shift of +25 cm−1 (red). A light wavelength of 830 nm
was used at pressure 0.8 GPa to obtain the experimental curve.

The shift was chosen empirically with trying to fit the theoretical result onto the experimental
ones. Various shifts and stretches were trying while a shift of +25 cm−1 gave the best result. One
can see that the theoretical peaks are slightly red shifted. Physically, it is hard to explain a rigid
shift, a stretch blue shifting the frequencies could be explained through thermal expansion. The
experimental values are calculated at ambient temperature and pressure, while the theoretical
values are calculated for 0 K.
When comparing the experimental Raman modes with the Raman modes from the calculation
with the smearing=0.05 Ha, one can get similar results, while a shift of +20 cm−1 is sufficient.

5.5 Phonon Investigation

For calculation of the phonondispersion, the k-point grid was reduced to 6x6x18. A q-point
grid of 2x2x6 was used to achieve the following results:
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Figure 5.5.1: Phonondispersion for Ta2N3 at ambient pressure for 6x6x18 and 0.005 smearing with a q-point grid of
2x2x6.

One can see a significant instability at the Z-point. A optimisation of the structure with higher
SCF-criterion was repeated following the phonon dispersion calculation in order to make sure
the structure was sufficiently relaxed. No considerable changes were found, leading to the fact
that the structure is relaxed enough. The forces on the atoms were of the order of 10−6 eV/Å3.

If the smearing is changed to higher values, one can see a stabilization of the mode at the
Z-point.

Figure 5.5.2: Phonondispersion for Ta2N3 at ambient pressure using a k-point grid of 8x8x24 and 0.01 (left) or 0.05
(right) smearing with a q-point grid of 2x2x6.

One explanation could be, that the Fermi surface is highly sensitive to changes in the tem-
perature. It could explain the instability disappearing at higher smearing. But the used cold
smearing does not induce a physical meaning. Furthermore, it was mentioned in literature that
a small amount of oxygen stabilizes the structure.9 This oxygen doping has not been taken into
account in these calculations.
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Figure 5.5.3: Phonon density of states for Ta2N3 at ambient pressure for 6x6x18, 0.005 smearing (left) and 8x8x24,
0.01 smearing

Figure 5.5.4: Phonon density of states for Ta2N3 at ambient pressure for k-point grid 8x8x24 and 0.05 smearing

The phonon density of states was calculated with interpolation on a higher grid of q-points.
A grid of 24x24x72 was used. A convergence test was conducted, whereas no difference to a
q-point grid of 16x16x48 was found.

5.6 Investigation of the instability at Z-point

One can see instabilities at Z. Therefore, the q-point (0,0,0.5) is further investigated. The eigen-
vectors for that q-point are calculated and frozen into the structure. One can find two degener-
ate instabilities at Z, therefore, two sets of eigendisplacements can be simulated and compared:
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Unstable mode 1 Unstable mode 2

Figure 5.6.1: Ta2N3-structure with its Eigendisplacement coming from the two unstable modes are shown and
compared. In the top part, two Ta2N3 unit cells along Z-direction are shown with the Eigendisplacements. On the
bottom, the view of 2x2x2 unit cells is shown. (Red = Eigendisplacement, Blue=Nitrogen, Grey=Tantalum).

One can see how the two modes are correlated through symmetry, for the two Eigenvectors
produced by the instability show some degree of similarity. After freezing of the displace-
ments, one gets a unit cell with 40 atoms, where the cell parameter a and b stay constant, while
the cell parameter c is doubled, as shown in figure 3.6 or 3.9 without any major changes of the
atomic coordinates (± 0.01). Therefore, the calculation parameters are further investigated, to
try to explain the exhibited behavior.

The k-points and energetic cut-off are varied to see the evolution of the unstable mode:
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Table 5.6.1: Evolution of the wavenumber with the change of k-point grid, energy cut-off and smearing.

k-points Smearing [Ha] Energy cut-off [Ha] ωmin [cm−1]

8x8x24 0.001 40 -76.346
4x4x4 0.005 40 -72.401
6x6x12 0.005 40 -75.550
6x6x18 0.005 40 -72.593
6x6x18 0.005 60 -72.576
8x8x24 0.005 40 -71.951

12x12x12 0.005 40 -75.330
12x12x36 0.005 40 -71.766

6x6x18 0.01 40 4.880
8x8x24 0.01 40 3.958
6x6x18 0.05 40 105.890
8x8x24 0.05 40 105.918
8x8x24 0.00001 (Fermi-Dirac) 40 -69.586
8x8x24 0.0001 (Fermi-Dirac) 40 -69.735
8x8x24 0.001 (Fermi-Dirac) 40 -70.211
8x8x24 0.01 (Fermi-Dirac) 40 99.594

Energy cut-off:
When changing the energy cut-off to 60 Ha while keeping the original k-point grid of 6x6x18,
the unstable phonon modes are similar to the previous ones, indicating convergence of the en-
ergy cut-off like predicted in section 5.1.

Spin-Orbit coupling (SOC) influence:
Another test was conducted with a Pseudo potential including spin-orbit coupling because
Tantalum is a heavy atom that could display this effect influencing the calculation. A k-
point grid of 6x6x18 and smearing=0.005 Ha was used. The modes remained unstable and
unchanged: -72.593 cm−1.

Adding empty bands:
After adding 15 additional empty bands for the calculation, one gets a phonon frequency of
4.043 cm−1 for 8x8x24 and 0.01 smearing showing a sufficient amount of bands included by
default.

Smearing:
The smearing was varied, to see its influence. It impacts the phononmode extraordinarily. It
shows, how the structure is highly sensitive in the Z-direction. With higher smearing, the mode
stabilizes. With a smearing of 0.05, which is very high, the previously unstable phononmode
reaches wavenumber in the order of 100 cm−1. Interestingly, if the smearing is lowered, the
change of frequency is not as big as when it is increased (see difference between 0.001, 0.005
and 0.01). Furthermore, the kind of smearing was changed from Cold-smearing to Fermi-Dirac
smearing. Similar behavior was found, although Fermi-Dirac smearing shows an exponential
growth, while cold smearing consists of Gaussian-kind growth. As expected, at 0.01 Ha smear-
ing, the Fermi-Dirac variant leads to a more stable structure.

k-point grid:
Seems to play a minor role regarding the unstable phononmode.
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5.7 Investigation of the influence of computational parameter on the
electronic structure

The phononmode at the Z-point shows high sensitivity, for it changes from being unstable at a
low smearing to being stable at high smearing, where it goes from being very soft to showing
a more typical bahavior at higher smearing like e.g. 0.05 Ha. A thorough investigation of the
bandstructure and the fermisurface is needed and conducted. The Fermi-energy is: 13.716 eV.
92 bands were calculated, whilst band 84 is the lowest unoccupied band. Bands 81, 82 ,83 have
varying occupation levels for each k-point calculated and they do cross Fermi-level partially,
these are therefore further investigated:

Figure 5.7.1: The three bands 81, 82, 83 being the highest occupied bands.

Figure 5.7.2: The Fermi-surface for the highest occupied bands 81, 82, 83 (left) in comparison with the the lowest
unoccupied bands 84 (right).

The bands between the Γ- and Z-point were further investigated for different experimental set-
up’s, whereas the eigenvalues were taken from the SCF ground state calculations, that were
based on the phonon mode calculation.
The bands 80-86 were chosen for the following graphs, to show the behavior of the occupied
band 80, the partially occupied bands 81,82,83 and the two unoccupied bands 84 and 85. Band
84 seems to be partially occupied for the high smearing cases, due to the change of Fermi-level.
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Figure 5.7.3: Comparison of the bands 80-85 for k-point grids 6x6x18 and 8x8x24 with different cold smearing
values. The Fermi-level is shown as a straight line. The values overlap and therefore not all the colors are visible.
Therefore a second diagram showing a close-up is produced.

One can see in the figure 5.7.3, how the bands are almost identical. The bands are not notably
influenced by the k-point change from 6x6x18 and 8x8x24 except right after 14.2 eV at around
0.33 K-path length to the Z-point, where the k-point grid of 8x8x24 shows a crossing while it
can’t be seen for a k-point grid of 6x6x18. The Fermi-level is another difference that can be
seen, which could lead to a different behavior of the material. This especially impacts the two
bands 83 and 84 that start at Γ-point in between the different two Fermi-level values. For the
higher Fermi-level, these bands start beneath the Fermi-level and vice versa. Afterwards, these
two bands gain in energy towards Z-point. The lower Fermi-level appears with high smearing
factors of 0.05 Ha. The occupation can’t be seen in the band structure, but one can find the
occupations in an density of states output. It becomes clear that much more are partly filled
bands (≈ 25) appear for the higher smearing then for the low smearing (≈ 3). It is possible, to
have an instability at very low temperatures for the Ta2N3.
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Table 5.7.1: Fermi-levels for the different calculation set-up’s.

K-points Smearing [Ha] Fermi level [eV]

8x8x24 0.001 13.7178
8x8x24 0.001 (Fermi-Dirac) 13.7151
6x6x18 0.005 13.7154
8x8x24 0.005 13.7162

12x12x12 0.005 13.7143
12x12x36 0.005 13.7162
6x6x18 0.01 13.7162
8x8x24 0.01 13.7159
6x6x18 0.05 13.5292
8x8x24 0.05 13.5292

To get a more accurate value for the Fermi level, one must usually do a NSCF calculation with
a more dense k-point grid, which could be an error source. But for comparison in order to see
the trend it should be sufficient.
The band structure was thoroughly investigated and to conclude, the smearing change does
only impact the Fermi-level. The change in k-point grid shows differences in the band structure
when looking closely but they are of very small magnitude, even when comparing a grid of
6x6x18 and 12x12x36:

Figure 5.7.4: Comparison of the bands 80-84 for k-point grids 6x6x18, 8x8x24 and 12x12x36 with smearing 0.005 Ha

A direct comparison between two calculations that just differ by the kind of smearing was also
concluded. If one compares cold smearing and Fermi-Dirac smearing, both using a smearing
factor of 0.001 Ha, the band structure does not change notably, the max difference between the
energy is in the order of 10−4 eV and therefore definitely negligible.

To conclude everything, the small differences ( around ±5 · 10−1 ) between the bands come
from the change of the k-point grid which also influences one crossing close to the Fermi-level.
The bands do not vary with changing the sensitive parameter which is the smearing. The
smearing is mainly influencing the occupational levels leading for more bands being partially
filled for higher smearing, which does make sense from a physical perspectives. Because finally,
smearing can be seen as adding temperature to the system, that enables population of bands
laying in higher energies. And although the cold smearing does not populate the states in a
physical manner, it is shown to lead to more accurate result. It’s behavior is also shown to be
similar to the Fermi-Dirac smearing leading to a physical-like population of the states.
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5.8 Superconductivity

5.8.1 Convergence study

In the following, the DDB-files and POT-files produced by a calculation with the smearing
0.05 Ha are used to conduct the convergence study. Later the results are compared with results
that are acquired with using the DDB-file/POT-files produced with a smearing 0.01 Ha, while
we assume same convergence behavior. For all the electron-phonon calculations, a empirical
parameter of 0.12 was used. In order to calculate the important parameters accurately, a smear-
ing and k-point calculation has to be conducted again for the electron-phonon calculation to
find the correct experimental set-up:

Figure 5.8.1: Convergence for different smearing types and values and k-point grids of the isotropic electron-
phonon coupling constant λ and the logarithmic frequency ωlog .The additionally Fourier interpolated results are
featured in the convergence studies.

Each smearing leads to a different converged isotropic electron-phonon coupling constant λ,
while the Gaussian smearing with the smearing factor 0.001 Ha is probably needs more k-
points to represent the superconducting parameter correctly. One can see how convergence is
reached with a k-point grid of 10x10x30 for the tetrahedron smearing, the Gaussian smearing
with the smearing factors= 0.005 Ha, 0.01 Ha regarding the electron-phonon coupling constant
λ.
The logarithmic frequency ωlog is unrealistically small, therefore the calculation of the critical
temperature is also wrong. Nevertheless it is shown and taken into account for convergence
reasons. The values converge well showing how the ωlog underestimation is probably a system-
atic numerical error. A k-point grid of 10x10x30 is used for further calculations with the three
smearing methods that give a well-converged value (Tetrahedron method, Gaussian smearing
with the smearing factor 0.005 Ha, 0.01 Ha). They are compared to each other.

5.8.2 Further investigations and results

In order to conduct the electron-phonon calculation, the previously calculated files have to be
used as an input. The DDB-files and POT-files are products of the phonon calculation and as
described before, they show major differences between the smearing values. Therefore, two
data sets are investigated. Other input files needed are the ground state calculation WFK- and
DEN-file, for which a new convergence study was conducted in the previous section. From the
electron-phonon calculation one gets two sets of superconducting parameters, the first one is
the simply summed DFPT to the a finer q-point that is then integrated, which we will call ’Ex-
plicit Interpolation’. The second one that we will call the ’Fourier interpolation’ interpolated the
electron-phonon matrix elements onto a finer set of q-points. When displaying the Eliashberg
spectral function these are called A2FW (Fourier interpolation) and NOINTO_A2FW (explicit
interpoltion).
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Data set 0.05 Ha

The results for the k-point grid 10x10x30 are shown in the following table.

Table 5.8.1: Results for the isotropic parameters for different interpolation techniques and smearing techniques.
The first column per smearing method called "Explicit interpolation" is interpolated but then the matrix elements
are taken explicitly on the k-point grid and the second one is Fourier interpolated with respect to the DDB q-points
(interpolated by ph_ngqpt).

Tetrahedron
smearing

Gaussian
smearing 0.01 Ha

Gaussian
smearing 0.005 Ha

Explicit In-
terpolation

Fourier in-
terpolation

Explicit In-
terpolation

Fourier in-
terpolation

Explicit In-
terpolation

Fourier in-
terpolation

Tc [K] 4.06 · 10−3 4.08 · 10−3 6.82 · 10−3 6.41 · 10−3 5.00 · 10−3 4.82 · 10−3

Isotropic λ 0.7735 0.8188 0.9131 0.9695 0.8002 0.8519
ωlog [K] 0.1077 0.0951 0.1272 0.1073 0.1225 0.1032
Positive moments of α2F (ω)

λ (ω2) 1.04· 10−6 1.04 ·10−6 1.261 ·
10−6

1.26 ·10−6 1.11 · 10−6 1.11 ·10−6

λ (ω3) 2.32· 10−9 2.34 ·10−9 2.80· 10−9 2.82 ·10−9 2.49· 10−9 2.51 ·10−9

λ (ω4) 5.93 · 10−12 6.05 · 10−12 7.14 · 10−12 7.27 · 10−12 6.36 · 10−12 6.50 · 10−12

λ (ω5) 1.60 · 10−14 1.66 · 10−14 1.92 · 10−14 1.98 · 10−14 1.72 · 10−14 1.78 · 10−14

The Eliashberg function α2F evaluates the phonon density of states weighted by electron
phonon interactions.1 Therefore, it can be compared to the phonon density of states. It is shown
interpolated, whilst the q-points are Fourier interpolated, so that they are given for a grid that
equals the k-point grid. The electron-phonon matrix elements are therefore automatically also
calculated for a grid that equals the k-point grid. In order to understand better, the α2F spec-
trum is shown and compared below:

Figure 5.8.2: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing
(top,left) and Gaussian smearing with the factors 0.01 (bottom, left) and 0.005 (bottom,right) in comparison with
the phonon density of states (top, right). A2FW stands for the additionally Fourier interpolated results, while
NOINTP_A2FW stands for the explicitly interpolated results.
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One can see one major difference, which is that the frequency at which the highest spectral den-
sity occurs is different from where the biggest peak for the phonon density is. Furthermore, it
seems that the low frequency for the spectral function α2F shows partly linear behavior, while
it should show a parabolic like curve like for the phonon density of states. This is investi-
gates further for it could be the numerical reason behind this unreasonably low logarithmic
frequency ωlog.
In order to do so, the ωlog is solved by hand, whereas the low frequency parts of the α2F func-
tion are removed or substituted by the phDOS part that is fitted to the spectral function. For
that reason, the trapezoidal rule is deployed to calculate the integral found in equation (4).
The integration method is compared to the Simpson’s rule, but the differences were negligi-
ble. This framework will be deployed for the rest of this work for the underestimation of the
logarithmic frequency is probably due to a numerical error stemming from, we suspect, wrong
interpolation.

Figure 5.8.3: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing.
The left picture shows the original low frequency part of the spectral function. In the middle (red) the phonon DOS
low frequency curve has been fitted to the spectral function until 12 meV in comparison with the phonon density
of states beginning (right in blue).The three bottom graphs stand for when the spectral density curve until 12 meV
is substituted by a function y = xp with the power p= 1 (left, 5.ωlog, linear), p=3 (middle, 6. ωlog, cubic) and p = 100
(right, 7. ωlog, upper limit).

It is also tried to substitute the low frequency part with a function y = xp with the power p=
1, reproducing extremely nonphysical linear behavior, p=3 to see how a cubic function would
influence the ωlog and p = 100, to see how the logarithmic frequency will change for this extreme
case. The results are presented in the following table:
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Table 5.8.2: Recalculated results, while the isotropic λ is kept. The differently calculated ωlog stand for when the
spectral density is neglected until 9.5 meV, 10.9 meV, 12 meV. The forth ωlog stands for when the first part until
12 meV is substituted by a phonon DOS-like curve. The following three ωlog-values stand for when the spectral
density curve until 12 meV is substituted by a function y = xp with the power p= 1 (5.ωlog, linear), p = 3 (6. ωlog)
and p = 100 (7. ωlog upper limit). The first column per smearing method called "Explicit interpolation" is interpolated
but then the matrix elements are taken explicitly on the k-point grid and the second one is Fourier interpolated with
respect to the DDB q-points (interpolated by ph_ngqpt).

Tetrahedron
smearing

Gaussian
smearing 0.01 Ha

Gaussian
smearing 0.005 Ha

Explicit
Interpola-
tion

Fourier
interpola-
tion

Explicit
Interpola-
tion

Fourier
interpola-
tion

Explicit
Interpola-
tion

Fourier
interpola-
tion

Isotropic λ 0.773 0.8188 0.9131 0.9695 0.8002 0.8519
1. ωlog [K] 3.7377 7.0081 1.6492 3.3455 2.3230 4.7624
2. ωlog [K] 11.5453 20.3360 5.1030 9.6936 7.2109 13.7991
3. ωlog [K] 39.9635 65.7114 20.7292 36.2945 26.7961 47.3532
4. ωlog [K] 1.1450 2.2924 0.2730 0.6148 0.4783 1.0793
5. ωlog [K] 0.0049 0.0133 0.0004 0.0013 0.0015 0.0048
6. ωlog [K] 0.3514 0.7510 0.0978 0.1820 0.1851 0.4424
7. ωlog [K] 1.8764 3.6552 0.8398 1.7717 1.2182 2.5974

The first three values of ωlog stand for when a part of the low frequency part is neglected. This
is rather not physically reasonably, but it also shows the big influence of the low frequency
part. The average logarithmic frequency ωlog is getting higher the more low frequency part is
neglected due to the logarithmic part. The function was cut at different parts and substituted
for the phonon density of state function, which did impact the ωlog, the value is rising, but still
not high enough. Using the phonon DOS is physical for the Eliashberg function is the weighted
phonon DOS. Due to the fact that the average logarithmic frequency is still not high enough,
the numerical error is probably not only affecting the low frequency part. Lastly, it is attempted
to model the low frequency behavior to see its effect on the logarithmic frequency ωlog. The first
value that is calculated for perfectly linear behavior is very small and it is calculated to show
the lower limit of ωlog when just changing the low frequency part. This 5. ωlog will not be taken
into account for the final table. When applying a function with the power 100, the ωlog is rising
towards more realistic values, but still not sufficiently large. The value for ωlog is most realistic
with neglecting the low frequency part, but doing this is hardly physically justifiable. This also
leads to a less accurate description. Therefore, the 3. ωlog is neglected for the results because
it seems unrealistic to take away all the frequencies until 12 meV. Furthermore, it is hard to
compare with next results that do not neglect such a big part of the spectral density.
From the shown data, one can deduce following superconducting parameter:

Table 5.8.3: superconducting parameters found for taking into account a smearing for the input phonon files of
0.05 Ha. The Debye temperature is an output from the phonon density of states calculation and the two values stem
from the calculation from partial sums and the second value stems from the phDOS directly.

Isotropic λ 0.77-0.97
ωlog 0.13-20.34 K

Empirical parameter µ∗ 0.1
McMillan critical temperature 0.01-1.35 K

Debye-temperature from partial sums-phDOS 169.66-193.75 K
Critical temperature calculated from equation (3.79) 6.07-10.65 K
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One can see how the Debye-temperature is much higher then the logarithmic frequency ωlog.
The originally calculated ωlog is too small to be realistic and from estimating another low fre-
quency part, one can gain more realistic results that lead to a critical temperature that is closer
to the experimentally found critical temperature of 3 K.2 The calculation of the critical tem-
perature with equation (3.79) leads to a overestimation of the critical temperature for it does
not take the low frequency part of the spectral function correctly into account, which we have
shown to be calculated wrongly anyways.

Data set smearing 0.01 Ha

The convergence is assumed to be similar like for the previous data sets. Therefore, the results
for the k-point set 10x10x30 are further investigated in the same fashion like in the previous
section.

Table 5.8.4: Results for the isotropic parameters for different interpolation techniques and smearing techniques. 1.
ωlog stands for neglecting the low frequency beneath 6.8 meV, 2. ωlog neglects the spectra density beneath 8 meV,
while the third value integrates the phonon density of states values fitted accordingly until a frequency of 8 meV.
The following three ωlog-values stand for when the spectral density curve until 8 meV is substituted by a function
y = xp with the power p = 1 (4. ωlog, linear), p =3 (5. ωlog) and p =100 (6. ωlog upper limit). The first column per
smearing method called "Explicit interpolation" is interpolated but then the matrix elements are taken explicitly
on the k-point grid and the second one is Fourier interpolated with respect to the DDB q-points (interpolated by
ph_ngqpt).

Tetrahedron
smearing

Gaussian
smearing 0.01 Ha

Gaussian
smearing 0.005 Ha

Explicit In-
terpolation

Fourier in-
terpolation

Explicit In-
terpolation

Fourier in-
terpolation

Explicit In-
terpolation

Fourier in-
terpolation

Tc [K] 2.022 ·
10−2

3.506 ·
10−2

4.18 · 10−3 3.43 · 10−3 3.05 · 10−3 2.57 · 10−3

Isotropic λ 0.8729 9.9436 1.1572 1.2469 0.9727 1.0588
ωlog [K] 0.04119 0.03506 0.0531 0.0394 0.0507 0.0372
1. ωlog [K] 3.5351 8.3086 2.1366 5.0336 2.6017 8.3138
2. ωlog [K] 17.5298 36.5412 11.0723 23.1718 13.2917 30.1719
3. ωlog [K] 0.3094 0.8730 0.1365 0.3919 0.1982 0.6335
4. ωlog [K] 0.0001 0.0003 0.0000 0.0001 0.0000 0.0002
5. ωlog [K] 0.0383 0.1264 0.0220 0.0720 0.0270 0.1017
6. ωlog [K] 0.3640 1.0145 0.2757 0.7526 0.2913 0.9022
Positive moments of α2F (ω)

λ (ω2) 7.79· 10−7 7.79 ·10−7 1.01· 10−6 1.01 ·10−6 8.77 · 10−6 8.77 ·10−7

λ (ω3) 1.69· 10−9 1.72 ·10−9 2.16· 10−9 2.19 ·10−9 1.90· 10−9 1.93 ·10−9

λ (ω4) 4.25 · 10−12 4.38 · 10−12 5.38 · 10−12 5.55 · 10−12 4.76· 10−12 4.91 · 10−12

λ (ω5) 1.13 · 10−14 1.18 · 10−14 1.42 · 10−14 1.49 · 10−14 1.26 · 10−14 1.32 · 10−14

Again the calculated logarithmic frequency ωlog is unrealistically small, even smaller then for
the smearing 0.05 Ha data set. Therefore, again tests were made where the low frequency part
has been neglected. One sees how neglecting parts is impacting the ωlog positively, but the
low frequency parts play an important role due to the logarithm. In the following figure a
description of the deployed substitution is shown.
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Figure 5.8.4: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing.
The left picture shows the original low frequency part of the spectral function. In the middle (red) the phonon DOS
low frequency curve has been fitted to the spectral function until 8 meV in comparison with the phonon density of
states beginning (right in blue). The bottom three spectral density estimations stand for when the spectral density
curve until 8 meV is substituted by a function y =p with the power p =1 (left, bottem 4.ωlog, linear), p =3 (middle,
bottom 5. ωlog) and p =100 (right, bottom 6. ωlog upper limit).

One can see how the slope of the α2F -function is much steeper at low frequencies for this data
set. This comes from the unstable phonon mode that leads to more population of lower laying
bands. Fitting the phonon DOS curve onto the spectral function curve, does impact the curve
a little as can be seen. The value of ωlog is rising as well. But this still leads to a very low ωlog. It
shows how big the impact of the low frequency modes is. A small change leads to an around
2-10 times bigger ωlog (Compare calculated ωlog with 3. ωlog in table 5.8.4). This could mean
that even when deploying a more parabolic kind of low frequency spectral function, it might
still not be parabolic enough. The behavior is also shown for fitting a function like described
in the previous section. We see similar tendencies, where the ωlog is going from very low for
a linear growth to more realistic, but still too low values for a more extreme parabolic growth,
that also resembles the phonon DOS more.

Figure 5.8.5: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smear-
ing (top,left) and Gaussian smearing with the factors 0.01 (bottom, left) and 0.005 (bottom,right) in comparison
with the phonon density of states (top, right).A2FW stands for the additionally Fourier interpolated results, while
NOINTP_A2FW stands for the explicitly interpolated results.
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Here, it becomes very clear how, like for the data set 0.05 Ha, the peak highest peak for the
phonon density of states is not the highest peak in the spectral function. The following super-
conducting parameters are recalculated:

Table 5.8.5: superconducting parameters found for taking into account a smearing for the input phonon files of
0.05 Ha. The Debye temperature is an output from the phonon density of states calculation and the two values stem
from the calculation from partial sums and the second value stems from the phDOS directly.

Isotropic λ 0.87-1.16
ωlog 0.04-36.54 K

Empirical parameter µ∗ 0.1
McMillan critical temperature 0.00-3.14 K

Debye-temperature from phDOS-partial sums 82.06-161.20 K
Critical temperature calculated from equation (3.79) 3.74-11.46 K

The values for the ωlog are again roughly estimated. The calculated ωlog from the calculation
are lower, for the Eliashberg function curve lays in lower levels then for the data set 0.05 Ha,
but this does not impact the final results for the ωlog had to be approximated. The estimation
of the critical temperature is acceptable. The calculation with the Debye-temperature gives a
good estimation of the critical temperature and furthermore, is the Debye-temperature, much
more accurate then the estimated logarithmic frequency because it is gained through the very
highly converged phonon DOS.

Final results

In the spectral function, one can see how the low frequency phonon modes have a big impact
on the superconductivity. These stem mainly from the tantalum. Therefore, one can compare
the results with the elemental Tantalum, that has the following superconducting parameters,
that were calculated previously:10

Table 5.8.6: Superconducting parameters predicted in this work in comparison with experimental results for η-
Ta2N3

2 and also compared to the known superconducting parameters of Tantalum.10

Predicted η-Ta2N3 Experimental
η-Ta2N3

2
Predicted Ta10 Experi-

mental
Ta53

Isotropic λ 0.77-1.16 / 0.80-0.85 /
ωlog 0.04-36.54 K / 122-125 K /
Empirical parameter µ∗ 0.1 / 0.1 /
McMillan critical tem-
perature

0.00-3.14 K ≈ 3 K 5.0-6.7 K 4.457 ±
0.003 K

Debye-temperature
from phDOS

82.06-193.75 K / / /

Critical temperature
calculated from equa-
tion (3.79)

3.74-10.65 K / / /

The critical temperature is well underestimated due to the systematic underestimation of the
ωlog. But nevertheless, a rough approximation did lead to a results being close to experimental
findings. One can see how the originally calculated ωlog is not correct and how small estima-
tions of the low frequency part leads to more accurate results, that are closer to reality. Still,
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more in depth understanding of the numerical error behind must be build, especially seeing
how the logarithmic frequency ωlog still differs strongly in comparison to the elemental Tanta-
lum, although one could assume that the lower atomic mass nitrogen rather tends to bring the
logarithmic frequency to higher values. The isotropic λ is on the other hand in the same range.
Seeing how a logarithmic ωlog of 36.54 K leads to a critical temperature of 3.14 K, we can assume
that it should be around that value rather then the lower limit we set for it. Furthermore, it is
interesting to see how the critical temperature given by the original McMillan formula (3.79)
is also very accurate. It is suggested that using this equation for predictive purposes might be
more meaningful. For calculation of the following system it is kept in mind, that the critical
temperature calculated with the logarithmic frequency ωlog is rather strongly underestimated,
while the critical temperature calculated with the Debye temperature is overestimated.
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6 Orthorhombic Ta2N3 at 26.065 GPa

The η-Ta2N3 is investigated under pressure in order to compare the results with experimen-
tal ones by Zerr et al.2. Furthermore, it is of interest to see the superconducting behavior in
dependence on the pressure

6.1 Optimisation

In the following, the structure under pressure was optimized twice. First of all, the atomic co-
ordinates were optimized with keeping the literature cell parameter (for the ambient structure)
constant and afterwards a relaxation of both the atomic coordinates and the cell parameter was
conducted at 26.065 GPa pressure. The following cell parameters and atomic coordinates were
used for further calculations:

Table 6.1.1: Final atomic coordinates for the η-Ta2N3 under pressure in comparison with the atomic coordinates in
brackets found for the ambient structure shown in section 5.1.

Atom x y z

Ta1 0.312 (0.313) -0.021 (-0.021) 0.25
Ta2 0.507 (0.505) 0.307 (0.306) 0.25
N1 0.873 (0.875) 0.047 (0.046) 0.25
N2 0.546 (0.549) 0.879 (0.879) 0.25
N3 0.191 (0.200) 0.216 (0.220) 0.25

The new cell parameter are the following:

• a = 8.57 Å (8.18 Å)

• b = 8.46 Å (8.22 Å)

• c = 3.08 Å (3.00 Å)

The unit cell parameter are compared to the unit cell parameters found for the ambient struc-
ture. They are smaller as expected for a structure under pressure. This leads to a volume of
170.52 Å3, which is as expected smaller then the unit cell volume at ambient pressure.

6.2 Electronic structure

The density of states for the electronic structure were calculated for two smearing values 0.005 Ha
and 0.05 Ha. Like for the ambient structure one could only notice a change in Fermi-level. For
the low smearing factor the Fermi-level was 11.990 eV while for the high smearing, the value
was lower (11.759 eV). The result is shown for the high smearing for in the next section, major
instabilities are discovered for the low smearing. In comparison with the η-Ta2N3 at ambient
conditions, this structure shows higher levels of DOS, but same characteristics.
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Figure 6.2.1: Electron band structure and Density of states for Ta2N3 at 26.065 GPa for a smearing of 0.05 Ha, k-point
grid 6x6x18. The Fermi-level of 11.759 eV is set as zero-point

6.3 Vibrational properties

The frequencies at Γ were calculated. The three unstable modes were found for smearing = 0.005 Ha.
One can freeze these modes and a new optimization of the structure can be repeated in search
for a stable structure. When propagating the displacement of the atoms, the maximum change
in reduced atomic coordinates was 0.02, while the cell parameter changed around 0.005 Å,
which is rather negligible.
As for the Ta2N3, a test regarding different smearing parameters were made. Choosing a smear-
ing of 0.01 revealed two unstable Phonon modes at around -51 cm−1, which is a bit higher in
energy then for the smearing 0.005. A new calculation with a higher smearing of 0.05 revealed
stability at Γ-point. The structure might follow a stability curve in a pressure/temperature de-
pendent phase diagram, which would explain the higher smearing needed for stabilization for
the structure under pressure. The phonon modes at Γ do change a lot for the two smearing
values. The results are shown in the following tables:

Table 6.3.1: Raman active Phonon modes at Γ-point for different cold smearing factors shown with their activities
and symmetry groups.

6x6x18,
0.005Ha

6x6x18,
0.05Ha

6x6x18,
0.005Ha

6x6x18,
0.05Ha

Phonon
energy[cm−1]

Phonon
energy[cm−1]

Activity D2h Phonon
energy[cm−1]

Phonon
energy[cm−1]

Activity D2h
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-56.83 49.8 xy,Jz B1g 370.6 357.2 yz, Jx B3g

75.93 72.4 xz, Jy B2g 398.7 402.1 xy,Jz B1g

97.22 104.5 x2,y2,z2 Ag 421.1 431.2 xy,Jz B1g

97.63 97.0 xz, Jy B2g 423.7 421.0 xz, Jy B2g

106.4 99.5 yz, Jx B3g 446.0 443.0 xz, Jy B2g

126.1 128.8 x2, y2, z2 Ag 464.1 465.0 yz, Jx B3g

127.4 160.1 xy,Jz B1g 487.6 491.1 x2,y2,z2 Ag

130.8 135.2 x2,y2,z2 Ag 503.2 513.2 xy,Jz B1g

153.0 166.0 xy,Jz B1g 514.5 528.1 xy,Jz B1g

174.5 176.4 xy,Jz B1g 523.6 562.3 xy,Jz B1g

190.2 206.0 x2,y2,z2 Ag 532.3 544.3 x2,y2,z2 Ag

285.7 286.4 xz, Jy B2g 572.7 586.4 x2,y2,z2 Ag

312.2 332.6 yz, Jx B3g 626.9 643.2 xy,Jz B1g

315.2 327.5 x2,y2,z2 Ag 638.6 650.4 x2,y2,z2 Ag

349.6 361.2 x2,y2,z2 Ag

Table 6.3.2: IR-active Phonon modes at Γ-point or different cold smearing factors shown with their activities and
symmetry groups.

6x6x18,
0.005Ha

6x6x18,
0.05Ha

6x6x18,
0.005Ha

6x6x18,
0.05Ha

Phonon
energy[cm−1]

Phonon
energy[cm−1]

Activity D2h Phonon
energy[cm−1]

Phonon
energy[cm−1]

Activity D2h

-76.70 73.4 y B2u 396.7 394.7 x B3u

77.03 74.0 z B1u 405.7 424.2 x B3u

4 95.16 104.5 x B3u 407.1 412.4 y B2u

108.7 114.5 z B1u 446.8 468.4 z B1u

126.2 162.9 x B3u 458.3 476.6 x B3u

141.8 145.0 y B2u 500.8 540.0 y B2u

159.8 178.2 y B2u 510.7 502.5 z B1u

169.2 181.4 x B3u 544.0 559.7 y B2u

285.0 295.9 x B3u 544.1 570.0 z B3u

286.7 274.9 y B2u 589.5 603.8 y B2u

331.0 325.3 z B1u 660.4 675.1 x B3u

359.0 372.9 y B2u

One can see how due to the smearing, the phonon modes at Γ not only stabilize but also change
their value noteworthy. The instability at the Z-point seems to influence all the other modes as
well.
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Table 6.3.3: Silent modes at Γ-point.

6x6x18,
0.005Ha

6x6x18,
0.05Ha

6x6x18,
0.005Ha

6x6x18,
0.05Ha

Phonon en-
ergy [cm−1]

Phonon
energy[cm−1]

Activity D2h Phonon en-
ergy [cm−1]

Phonon
energy[cm−1]

Activity D2h

0.0 0.0 yz, Jx B3g 96.41 100.2 / Au

0.0 0.0 y B2u 382.2 393.4 / Au

0.0 0.0 z B3u 423.3 437.0 / Au

88.67 92.9 / Au 495.5 490.9 / Au

The phonondispersion was computed for a lower k-point grid of 6x6x18 for 0.005 Ha smearing.
It shows various unstable modes. Their origin might be the unstable K-point mode at ambient
pressure.

Figure 6.3.1: Phonondispersion for Ta2N3 at 26.065 GPa with a smearing of 0.005 Ha.

A new calculation was conducted, for as previously described, the modes become stable at
higher smearing which is necessary to be able to conduct a superconductivity calculation.

Figure 6.3.2: Phonondispersion and phonon density of states for the Ta2N3 at 26.065 GPa with smearing=0.05 Ha.
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Due to the stability, the DDB-files for smearing 0.05 Ha are used to compute the superconduc-
tivity parameters.

6.4 Superconductivity

The convergence is assumed to be similar like for the previous datasets. Therefore, the results
for the k-point set 10x10x30 are further investigated in the same fashion like in the previous
section. ωlog is again calculated with the help of the trapezoid rule. We do not include a dataset
for 0.01 Ha smearing for it shows instabilities at Γ-point leading to the fact that no supercon-
ductivity calculation can be realized.

Table 6.4.1: Results for the isotropic parameters for different interpolation techniques and smearing techniques. 1.
ωlog stands for neglecting the low frequency beneath 5.4 meV, 2. ωlog neglects the spectra density beneath 8.1 meV,
while the third value integrates the phonon density of states values fitted accordingly until a frequency of 8.1 meV.

Tetrahedron
smearing

Gaussian
smearing 0.01 Ha

Gaussian
smearing 0.005 Ha

Explicit
Interpola-
tion

Fourier
interpola-
tion

Explicit
Interpola-
tion

Fourier
interpola-
tion

Explicit
Interpola-
tion

Fourier
interpola-
tion

Tc [K] 2.172344 ·
10−3

2.247395 ·
10−3

5.29 · 10−3 4.77 · 10−3 3.17 · 10−3 2.99 · 10−3

Isotropic λ 0.8248 0.8650 1.2743 1.3498 0.8952 0.9554
ωlog [K] 0.0498 0.0466 0.0591 0.0499 0.0615 0.0513
1. ωlog [K] 0.5891 1.0863 0.2128 0.5276 0.3049 0.7298
2. ωlog [K] 7.7830 12.7327 3.4610 6.5525 3.8109 7.77984
3. ωlog [K] 0.3490 0.6595 0.0917 0.2128 0.1475 0.3696

Positive moments of α2F (ω)

λ (ω2) 5.79 · 10−7 5.79·10−7 8.60· 10−7 8.60 ·10−7 6.67 · 10−7 6.67 ·10−7

λ (ω3) 1.04 · 10−9 1.05 ·10−9 1.52 · 10−9 1.54·10−9 1.21· 10−9 1.22 ·10−9

λ (ω4) 2.20 ·
10−12

2.29 ·
10−12

3.22 ·
10−12

3.29· 10−12 2.57 ·
10−12

2.64 ·
10−12

λ (ω5) 5.03 ·
10−15

5.36· 10−15 7.35 ·
10−15

7.62· 10−15 5.87 ·
10−14

6.18 ·
10−14

Again the calculated logarithmic frequency ωlog is unrealistically small. Therefore, again tests
were made where the low frequency part has been neglected. One sees how neglecting parts
is impacting the ωlog positively, but the low frequency parts play an important role due to the
logarithm, therefore neglecting the low frequency part is still not justifiable physically. The
modelling of the low frequency part like shown for the structure at ambient pressures, is not
repeated here, for they did not impact eh final result. In the following figure a description of
the deployed substitution is shown:
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Figure 6.4.1: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing.
The left picture shows the original low frequency part of the spectral function. In the middle (red) the phonon DOS
low frequency curve has been fitted to the spectral function until 8.1 meV in comparison with the phonon density
of states beginning (right in blue).

Fitting the phonon DOS curve onto the spectral function curve, does lead to an improvement
of the logarithmic frequency ωlog. The value rises almost in any case more then 10-times. The
value is still very low, so that it is assumed that the numerical error does not only impact the
low frequency part.

Figure 6.4.2: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smear-
ing (top,left) and Gaussian smearing with the factors 0.01 (bottom, left) and 0.005 (bottom,right) in comparison
with the phonon density of states (top, right).A2FW stands for the additionally Fourier interpolated results, while
NOINTP_A2FW stands for the explicitly interpolated results.

In figure 6.4.2 we can see how the low frequency part is indeed very linear and steep, while
it should be more parabolic. In the following the results are listed. The smearing seems to be
a very sensitive parameter and therefore, we just compared to the results achieved in similar
fashion. The results are in good agreement, while the EPC seems to be higher for the structure
under pressure. All in all all values are in similar ranges. For many compounds, one can see a
rise in critical temperature with pressure applied. This could not be confirmed in our case, but
it also can’t be ruled out.
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Table 6.4.2: Superconducting parameters compared for the η-Ta2N3 at ambient pressures and under 26.065 GPa
pressure, while only data sets with 0.05 Ha smearing factor for the input files are taken into account.

η-Ta2N3 at ambient pressure η-Ta2N3 under pressure

Isotropic λ 0.77-0.97 0.82-1.35
ωlog 0.27-20.34 K 0.09-12.73 K
Empirical parameter µ∗ 0.1 0.1
McMillan critical tempera-
ture

0.012-1.350 K 0.006-1.305 K

Debye-temperature from ph-
DOS/partial sums

169.66-193.75 K 94.31-139.48 K

Critical temperature calcu-
lated from equation (3.79)

6.07-10.65 K 3.38-11.83 K
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7 Tetragonal Ta2N3

Random search sampling performed by Jiang et al.9 unveiled a low energy structure of the
Ta2N3 displaying a less densely packed tetragonal structure of the space group 115 P4m2. It
is predicted to have a higher stability at ambient conditions then the orthorhombic Ta2N3. It
is predicted that this structure transforms into the orthorhombic Ta2N3 at low pressures of
7.7 GPa.9

From previous work, a calculation was already conducted around this compound and super-
conductivity was predicted. In the following the old results calculated with Quantum Espresso
are compared with the new ones that are obtained from Abinit to get to the bottom of the wrong
logarithmic frequencies that are obtained.16,17,10

7.1 Convergence study

Figure 7.1.1: K-point and Smearing convergence (left) and Energy cut-off convergence (right).

Due to the size of the system, the variation of k-points was not limiting the calculation as much
as for the big orthogonal Ta2N3 system. Therefore, a k-point set of 12x12x12 was chosen with
a smearing of 0.01 Ha, for the curve converges and does not change much for higher a k-point
grid. The error stemming from the difference towards the next higher total energy is ± 5 ·
10−6 eV. All in all, the k-point and smearing convergence does not look very typical. And
also for very low smearing, the energy lays much higher while the other three smearing values
show almost same behavior. For the energy cut-off, a value of 40 Ha has been chosen producing
an error of ± 5 · 10−4 eV.

7.2 Optimisation

In order to avoid forces acting onto the atoms, an optimization has been conducted giving the
following atomic coordinates and cell parameter.

Table 7.2.1: Optimized atomic coordinates with the literature values shown in the brackets.9

Atom x y z

V1 0.500 0.000 0.756 (0.756)
N1 0.500 0.000 0.140 (0.140)
N2 0.500 0.500 0.500
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The atomic coordinates are exactly the same like in the literature, while one has to note that the
results are rounded off to 3 significant digits.9 The new cell parameter are the following:

• a = b = 2.98 Å

• c = 5.81 Å

Jiang et al.9 found the unit cell parameter to be 2.99 Å and 5.82 Å, which differs 0.01 Å from our
optimized factors. The cell volume is 51.59 Å which is around 1

4 th of the unit cell volume of the
orthorhombic Ta2N3.

7.3 Electronic structure

The electronic parameters were further investigated and compared with previous results, while
as mentioned earlier, a k-point grid of 12x12x12 was used in combination with a cold smear-
ing factor of 0.01 Ha. The result is compared with previous results, that utilized the Quan-
tum Espresso program, where a k-point grid of 8x8x8 was used in combination with Marzari-
Vanderbilt smearing with a factor of 0.01 Ha for the band calculation.

Figure 7.3.1: Calculated electron band structure for Ta2N3 with 8x8x8 k-points (top,right), on the bottom with a
k-point grid of 12x12x12. And left, top in blue results of previous calculations with Quantum Espresso (k-points:
8x8x8).10

Differences between the electron band structures calculated with Abinit are negligible, while
the bands structure calculated with Quantum Espresso does show slightly different behaviors
and crossings. A electronic density of state is calculated for the k-point grid of 16x16x16 with a
smearing of 0.01 Ha. Convergence is tested with a higher k-point set that did not influence the
DOS meaningfully.
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Figure 7.3.2: Density of states for the tetragonal Ta2N3 for a k-point grid of 16x16x16 with a smearing of 0.01 Ha,
where the Fermi-level of 12.998 eV is set as zero point.

The density of states are in good agreement with previously calculated DOS from the litera-
ture.9 Especially the important part around the Fermi-level that shows a small peak is of similar
order and depicts a smaller DOS at Fermi level then for the orthorhombic Ta2N3.

7.4 Vibrational properties

The phonon frequencies are calculated and shown at the Γ-point.

Phonon energy[cm−1]
0.00 222.47 514.95
0.00 451.44 595.58
0.00 451.44 595.58

125.79 461.36 598.67
125.79 514.95 761.19

In order to calculate the phonon dispersion, a q-point grid of 4x4x4 was used with Abinit.
A phonon dispersion was also calculated for 6x6x6 q-points and compared in order to prove
convergence of the q-points:
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Figure 7.4.1: Phonon dispersion for tetragonal Ta2N3 for 4x4x4 q-points (left) and for 6x6x6 q-points.

One can see convergence because the phonon dispersion do not differ. The phonon DOS are
also compared. A phonon density of states was calculated for a interpolated k-point grid of
36x36x36.

Figure 7.4.2: Phonon density of states for tetragonal Ta2N3 for 4x4x4 q-points and 6x6x6 q-points (right).

Furthermore, the calculation was also compared with last year’s result that were produced
with Quantum Espresso. They were not converged so a q-point grid of 2x2x2 was used with a
k-point grid of 8x8x8.
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Figure 7.4.3: Phonon dispersion for tetragonal Ta2N3. Right in blue results of previous calculations with Quantum
Espresso (k-points: 8x8x8, q-points 2x2x2) in comparison with new results produced in the frame of this work, also
with k-points: 8x8x8, q-points 2x2x2.

One can see how the 2x2x2 q-points is not enough for the computation with Abinit, while
the result through Quantum Espresso gives acceptable results that can be compared with the
phonon dispersion in figure 7.4.1. Therefore, for the comparison between the superconductiv-
ity results, we use a q-point grid of 4x4x4 calculated with a k -point grid of 12x12x12

7.5 Superconductivity

One reason for recalculating the tetragonal Ta2N3 is to understand why the superconducting
parameters, especially the logarithmic frequency are so low. Furthermore, these calculations
attempt to predict more accurate superconducting parameter, for the calculations done with
Quantum Espresso are rarely a broad estimation and not converged. We also do not attempt
to prove perfect convergence but rather try to understand the numerical reasons for these big
differences between the two outputs.

7.5.1 Convergence study

Nevertheless, a convergence study is conducted:

Figure 7.5.1: Convergence study with respect the the isotropic electron phonon coupling parameter λ and the
logarithmic frequency ωlog.
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We can see a very nice convergence towards the same value. It seems the tetragonal Ta2N3

is less sensitive with regards to the smearing then the other compounds. As seen are the two
factor 0.005 Ha and 0.01 Ha quite well converged already for 12x12x12 k-points. The smearing
0.001 Ha shows more varying behavior.

7.5.2 Results and Comparison

First of all, the spectral densities are compared in figure 7.5.1:

Figure 7.5.2: The predicted spectral function α2F as a function of the frequency ω is calculated with Abinit with a
k-point grid of 12x12x12, a q-point grid of 4x4x4 and a Gaussian smearing of 0.01 Ha (top,left). It is compared out
phonon DOS calculation (top,right). On the bottom, left, the spectral density for a Gaussian smearing of 0.005 Ha
is shown and compared with last years Quantum Espresso spectral density, whereas only a k-point grid of 8x8x8
and a q-point grid of 2x2x2 was used with a Gaussian smearing of 0.005 Ha. The red color denotes the total spectral
density α2F and the black lines show the mode resolved spectral density α2F .

One can see how again the low frequency part of the spectral density function that is pre-
dicted with Abinit is too linear, even more linear then the broad estimation made by Quantum
Espresso. The spectral density calculated by Quantum Espresso shows very little points in
comparison with our result. Interestingly, the peaks themselves have a lot of linear character.
The low frequency part seems highly parabolic. The logarithmic frequency is probably overes-
timated for the peaks have too much of a triangular form leading to higher spectral densities,
although the peaks should have more of a form comparable for the phonon DOS. In the fol-
lowing the results are not only compared but again, it is tried to estimate the low frequency
spectral function bit to find a good compromise leading to more exact results.
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Table 7.5.1: Results for the isotropic parameters for different interpolation techniques and smearing techniques.
The first column per smearing method called "Explicit interpolation" is interpolated but then the matrix elements
are taken explicitly on the k-point grid and the second one is Fourier interpolated with respect to the DDB q-points
(interpolated by ph_ngqpt). The different values for the logarithmic frequency ωlog are recalculated results, while
the isotropic λ is kept. The differently calculated ωlog stand for when the spectral density is neglected until 13.6 meV
(1. ωlog). The 2. ωlog stands for when the first part until 13.6 meV is substituted by a phonon DOS-like curve. The
following three ωlog-values stand for when the spectral density curve until 13.6 meV is substituted by a function
y = xp with the power p= 1 (3.ωlog, linear), p = 3 (4. ωlog) and p = 100 (5. ωlog upper limit).

Quantum Espresso out-
put

Abinit Output

Gaussian
smearing

0.005 Ha 0.01 Ha 0.005 Ha 0.01 Ha

Explicit Fourier Explicit Fourier
λ 4.6127 3.093 0.5857 0.5425 0.4897 0.4624
ωlog [K] 317.734 294.920 0.2560 0.2729 0.2670 0.2788
1. ωlog [K] / / 14.9086 6.7474 0.2796 0.1230
2. ωlog [K] / / 4.6940 1.9377 0.0817 0.0334
3. ωlog [K] / / 0.5851 0.2047 0.0039 0.0013
4. ωlog [K] / / 3.9325 1.6007 0.0473 0.0187
5. ωlog [K] / / 8.2963 3.5836 0.1254 0.0526

Tc [K] 64.856 52.065 0.0022-0.3239

Debye tem-
perature
[K]

/ / 343.64-588.03

Debye Tc
[K]

/ / 2.4287-10.5726

One can see how the logarithmic frequency is 100 times smaller when calculated through Abinit
then the result from Quantum Espresso. But also the EPC is 10 times smaller leading to com-
pletely different predictions. It is important to mention that the results acquired through Abinit
are much more dependable for they are well converged. But looking the result, the risk of un-
derestimation of the EPC is possible for the Abinit calculations. When trying to estimate the
logarithmic frequency better through changing the low frequency part, one gets more realistic
results. This is shown in detail in the following figure:
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Figure 7.5.3: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing with
a smearing of 0.01 Ha. The left picture shows the original low frequency part of the spectral function. In the middle
(red) the phonon DOS low frequency curve has been fitted to the spectral function until 13.6 meV in comparison
with the phonon density of states beginning (right in blue). The bottom three spectral density estimations stand for
when the spectral density curve until 13.6 meV is substituted by a function y = xp with the power p=1 (left, bottom
3.ωlog, linear), p=3 (middle, bottom 4. ωlog) and p=100 (right, bottom 5. ωlog upper limit).

Again, the neglected part gave for previous calculations a more realistic ωlog, therefore it is
taken into account although it is not physical. This leads to a very rough estimate of the ωlog.
The second value is physically motivated, but still too low, implying that there is more to the
numerical error then just the low frequency part. A function is applied to see how the logarith-
mic frequency varies showing how sensitive it is to the low frequency part change. The linear
results are not taken into account for they are very far away from reality. Interestingly, these
estimations give even smaller values for the logarithmic frequency ωlog when taking a 0.01 Ha
Gaussian smearing into account. The same framework was used like for the orthorhombic
Ta2N3, but the result differ drastically from what one calculates with Quantum Espresso. But
the Quantum Espresso results are a rough estimate and one can see on the spectral density func-
tion α2F , that it is not accurate at all. Nevertheless, this big difference has to be investigated
further. We see here on one side an overestimation and on the other side an underestimation.
For a compound like the Ta2N3, the logarithmic frequency should be much higher then what
is found. So again, it is proposed to use the Debye temperature instead of the logarithmic
frequency, with the thought kept in mind that it usually also overestimates the critical temper-
ature. With it one can predict superconductivity at very low critical temperature of about ≈
2 K. But this prediction is not strong enough, so there is still a possibility that the compound is
not superconductive at all.

Table 7.5.2: Superconducting parameters found from the electron-phonon calculation. The Debye temperature is
an output from the phonon density of states calculation and the two values stem from the calculation from partial
sums and the second value stems from the phDOS directly.

Isotropic λ 0.46-0.59
ωlog 0.26-14.91 K

Empirical parameter µ∗ 0.1
McMillan critical temperature 0.00-0.32 K

Debye-temperature from phDOS-partial sums 343.64-588.03 K
Critical temperature calculated from equation (3.79) 2.43-10.57 K
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8 Orthorhombic Nb2N3

Due to the successful synthesis of the η-Ta2N3, more attention was drawn towards this group
of metal nitrides. The possibility to use it at ambient conditions and their display of exceptional
properties like high hardness and superconductivity, these materials are interesting for applica-
tions are hard and fracture-resistant materials etc.3 Jiang et al.3 investigated with the help of first
principle methods the class of metal nitrides with the stoichiometry M2N3 whereas M=Nb, V.
They identified their structure with the help of random structure search of the η-Nb2N3 which
will be investigated in the following regarding its superconductivity. Therefore, the electronic
and vibrational parameters are firstly deduced. It is a promising candidate due to its lower
atomic mass atom Niobium which was assumed to lead to a higher critical temperature then
for the η-Ta2N3.

8.1 Convergence study

Like for Ta2N3, convergence tests regarding the k-point grid, the smearing and the energy cut-
off were conducted:

Figure 8.1.1: K-points convergence for different smearing values. The smearing factors of 0.001 Ha (black), 0.005 Ha
(blue), 0.01 Ha (red) and 0.05 Ha (green) are explored for Cold smearing.

For the smearing factor 0.001,0.005 and 0.01 Ha, one can say that the higher the smearing is, the
faster a convergence is reached. The differences in the total energy are of the order of 10−4 eV.
Therefore, a k-point grid of 8x8x24 is used with 0.01 Ha smearing for further calculations. The
smearing of 0.05 Ha leads to a different, divergent behavior. It seems this structure is also quite
sensitive to the smearing for the convergence values are differing per smearing factor/method.
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Figure 8.1.2: Energy cut-off convergence test.

An energy cut-off of 40 Ha was chosen for the value converged an error of ±5·10−3.

8.2 Optimisation

A optimisation was conducted of the atomic coordinates and the unit cell parameter, where the
optimised values for Ta2N3 were used.

Table 8.2.1: Optimized atomic coordinates and previous theoretical results in brackets by Jiang et al.3

Atom x y z

Nb1 0.313 (0.313) -0.022 (-0.022) 0.25 (0.25)
Nb2 0.504 (0.504) 0.305 (0.305) 0.25 (0.25)
N1 0.874 (0.874) 0.046 (0.046) 0.25 (0.25)
N2 0.548 (0.548) 0.879 (0.879) 0.25 (0.25)
N3 0.202 (0.202) 0.221 (0.221) 0.25 (0.25)

The literature atomic coordinates resemble the found optimized values.
The new cell parameter are the following:

• a = 8.14 Å

• b = 8.25 Å

• c = 3.00 Å

The cell parameter are in good agreement with previous theoretical result by Jiang et al.3 (a =
8.20 Å, b = 8.31 Å, c = 3.02 Å) and by Zhang et al.54 (a = 8.14 Å, b = 8.24 Å, and c = 3.00 Å at).
This leads to a volume of the unit cell of 201.47 Å3.

8.3 Electronic structure

The electronic structure and density of states was calculated for 8x8x24 and smearing of 0.01
Ha. It was compared to the calculation with smearing 0.05 Ha and like for the Ta2N3 one could
could only find a difference in Fermi-level.
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Figure 8.3.1: Electron band structure for Nb2N3 with a Fermi-level of 14.049 eV set to the zero point.

The DOS are an important parameter to predict superconductivity. Specifically, the DOS at the
Fermi-level is importnat which can be found in the DOS of Nb2N3.

Figure 8.3.2: Density of states for Nb2N3 with a Fermi-level of 14.049 eV set to the zero point.

8.4 Vibrational properties

The Phononfrequencies at Γ-point were calculated and listed in the following. A k-point grid
of 8x8x24 was used with a smearing factor of 0.01 Ha.
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Table 8.4.1: 22 IR-active Phononmodes at Γ-point.

Phonon energy [cm−1] Activity D2h Phonon energy[cm−1] Activity D2h

106.2 y B1u 483.1 y B1u

168.6 x B3u 514.8 y B1u

178.6 z B1u 523.9 x B3u

237.0 y B1u 532.9 z B1u

255.3 x B3u 553.2 x B3u

273.1 y B1u 593.2 z B1u

284.4 x B3u 594.7 y B1u

352.3 y B1u 617.7 x B3u

372.8 y B1u 629.8 y B1u

387.3 x B3u 648.5 y B1u

470.1 x B3u 743.3 x B3u

Table 8.4.2: Silent modes at Γ-point.

Phonon energy [cm−1] Activity D2h Phonon energy[cm−1] Activity D2h

0.00 / / 170.6 / Au

0.00 / / 429.5 / Au

0.00 / / 506.3 / Au

150.3 / Au 577.8 / Au

155.8 / Au

Table 8.4.3: Raman active modes at Γ-point.

Phonon energy [cm−1] Activity D2h Phonon energy[cm−1] Activity D2h

102.6 xy, Jz B1g 456.3 xy, Jz B1g

133.6 xz, Jy B2g 462.1 x2,y2,z2 Ag

165.1 xz, Jy B2g 483.4 xz,Jy B2g

169.7 x2,y2,z2 Ag 507.7 xy,Jz B1g

188.9 yz,Jx B3g 535.1 yz, Jx B3g

207.1 x2,y2,z2 Ag 536.6 xz,Jy B2g

211.5 x2,y2,z2 Ag 564.0 x2, y2, z2 Ag

235.7 xy,Jz B1g 579.6 xy, Jz B1g

252.8 xy,Jz B1g 596.0 x2,y2,z2 Ag

292.1 xy,Jz B1g 604.1 xy,Jz B1g

314.3 x2,y2,z2 Ag 634.9 xy, Jz B1g

373.0 xz, Jy B2g 638.1 x2, y2, z2 Ag

376.5 x2,y2,z2 Ag 683.3 xy, Jz B1g

416.9 yz, Jx B3g 701.5 x2, y2, z2 Ag

446.0 yz, Jx B3g

After producing the phonondispersion with the same experimental set-up, a soft mode at Z-
point could be seen. Therefore, the phonondispersion with a smearing factor of 0.05 Ha was
also produced and both results were compared.
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Figure 8.4.1: Phonondispersion for Nb2N3 at ambient pressure for k-point grid 8x8x24 with smearing 0.01 Ha and
k-point grid 6x6x18 with a smearing of 0.05 Ha

One can see a soft mode appearing at the Z-point, that disappears for higher smearing like for
the Ta2N3. This also impacts the phonon density of states.

Figure 8.4.2: Density of states for Nb2N3 at ambient pressure for k-point grid 8x8x24 with smearing 0.01 Ha and
k-point grid 6x6x18 with a smearing of 0.05 Ha

8.5 Superconductivity

8.5.1 Convergence study

Like in the previous chapter, a convergence study is conducted in order to produce realistic
superconducting parameter. In the following, the dataset with 0.05 Ha is taken into account for
the convergence study and it is assumed to produce the same results for 0.01 Ha.
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Figure 8.5.1: Convergence study for different set-up’s with respect to the calculated EPC λ (left) and the logarithmic
frequency ωlog (right). The k-point grid and the smearing factor and method are varied to choose the most accurate
set-up. If there are smearing factors given, then the smearing method is the Gaussian smearing. One does not need
a smearing factor for the tetrahedron smearing. The Fourier interpolated results are featured in this convergence
study.

One can see how the values converge slowly for the EPC. The only value for a k-point grid of
12x12x36 that is accessible shows divergent behavior. Also for the Gaussian smearing factor
0.001 Ha, the behavior is less convergent like for the other smearing values. When looking at
the right figure 7.5.1, one can see for the Gaussian smearing method, how the values tend to
converge towards a around 0.135 K. The tetrahedron smearing shows a different behavior in
which it tends to go towards lower logarithmic frequencies. It is still possible that it would rise
again and oscillate around the same value. For the following, the k-point grid of 10x10x30 is
used for further calculations, while a smearing factor of 0.005 Ha is used and compared to the
tetrahedron smearing.

8.5.2 Further investigation and Results

Data set smearing 0.05 Ha

After isotropic evaluation of the parameters from the electron-phonon coupling, the follow-
ing indicators were found regarding the superconductivity. A Coulomb screening of 0.12 was
chosen for the calculation of the critical temperature via Abinit. One can see again how the
ωlog is unrealistically small again. The first column per smearing method called "Explicit inter-
polation" is interpolated but then the matrix elements are taken explicitly on the k-point grid
(NOINTP_A2FW) and the second one is Fourier interpolated with respect to the DDB q-points
(interpolated by ph_ngqpt (A2FW)).
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Table 8.5.1: Results for the isotropic parameters for different interpolation techniques and smearing techniques. The
numbered ωlog are recalculated results, while the isotropic λ is kept. The differently calculated ωlog stand for when
the spectral density is neglected until 9.5 meV (1), 10.9 meV (2) and 12 meV (3). The forth ωlog stands for when the
first part until 12 meV is substituted by a phonon DOS-like curve. The values 5-7. ωlog stand for substitution of the
low frequency bit until 12 meV with a function x = yp with the power of p = 1 (5.ωlog, strictly linear, lower limit),
p = 3 (6.ωlog, cubic) and p = 100 (6.ωlog,, upper limit).

Tetrahedron smearing Gaussian smearing 0.005 Ha
Explicit
Interpolation

Fourier
interpolation

Explicit
Interpolation

Fourier
interpolation

Tc [K] 2.74· 10−2 2.46 · 10−2 2.84 · 10−2 2.51· 10−2

Isotropic λ 3.3406 3.4957 3.2116 3.3666
ωlog [K] 0.1502 0.1323 0.1581 0.1371
1. ωlog [K] 1.0311 1.8061 0.8915 1.6052
2. ωlog [K] 1.6739 2.8696 1.4097 2.4854
3. ωlog [K] 3.5352 5.0906 2.3874 4.1082
4. ωlog [K] 0.2642 0.4915 0.1968 0.3799
5. ωlog [K] 0.0076 0.0165 0.0082 0.0183
6. ωlog [K] 0.4098 0.7478 0.3678 0.6898
7. ωlog [K] 1.7036 2.9182 1.4313 2.9182
Positive moments of α2F (ω)

λ (ω2) 3.64· 10−6 3.64 ·10−6 3.58· 10−6 3.58 ·10−6

λ (ω3) 6.58· 10−9 6.57 ·10−9 6.49· 10−9 6.48 ·10−9

λ (ω4) 1.47 · 10−11 1.47 · 10−11 1.448395 · 10−11 1.46 · 10−11

λ (ω5) 3.64 · 10−14 3.69 · 10−14 3.60 · 10−14 3.65 · 10−14

Again, one can see how the ωlog is too small. Therefore, a similar approach is again used to
make a better approximation of the low frequency bit of the spectral function. Firstly, the low
frequency parts are neglected again, which is as explained not very physical. But this leads to
higher, more realistic logarithmic frequencies ωlog. Secondly the phonon DOS is fitted. This is
the most physically useful result, but the values become up to 5 times bigger not reaching very
realistic results showing how the assumed wrong interpolation does probably affect more then
just the low frequency bit. Furthermore, obviously the phonon DOS is not electron-phonon
coupling weighted. Lastly it is tried to fit a new low frequency bit, to explore the sensitivity
of the logarithmic frequency ωlog. The logarithmic frequency does not rise as much as for the
Ta2N3-analogue. The linear function does lead to much smaller values, while the extremely
steep applied function of y = x100 leads to values up to around 3 K, which is more probable.
The values are much more stable between the different experimental set-up’s and sensitivity
to smearing is also lower. In the next figure one can see the spectral function and how the low
frequency part is linear, while the phonon DOS shows parabolic behavior.
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Figure 8.5.2: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing
(top,left) and Gaussian smearing with the factor 0.005 (top,right) in comparison with the phonon density of states
(bottom).A2FW stands for the additionally Fourier interpolated results, while NOINTP_A2FW stands for the ex-
plicitly interpolated results.

Again, we try to fit a new kind of function in order to investigate the change of logarithmic
frequency. Interestingly, it does not change as massively as for the previous Ta2N3-analogue.
This leads to the conclusion that the numerical issue might not only be one of the low frequency
components. Further investigations to answer that question are needed.

Figure 8.5.3: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing. The
top, left picture shows the original low frequency part of the spectral function giving ωlog. In the top, middle (red)
the phonon DOS low frequency curve has been fitted to the spectral function until 12 meV (4. ωlog) in comparison
with the phonon density of states beginning (top,right in blue). On the bottom we see the case for which a function
y = xpwas fitted (power p= 1 (5. ωlog), p=3 (6. ωlog), p=100 (7. ωlog)).

The superconducting parameters found for taking into account a smearing for the input phonon
files of 0.05 Ha are shown in table 7.5.2. The Debye temperature is an output from the phonon
density of states calculation and the two values stem from the calculation from partial sums
and the second value stems from the phonon DOS directly.
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Table 8.5.2: superconducting parameters found for taking into account a smearing for the input phonon files of
0.05 Ha. The Debye temperature is an output from the phonon density of states calculation and the two values stem
from the calculation from partial sums and the second value stems from the phDOS directly.

Isotropic λ 3.21-3.50
ωlog 0.13-5.09 K

Empirical parameter µ∗ 0.1
McMillan critical temperature 0.02-0.97 K

Debye-temperature from phDOS-partial sums 218.12-263.36 K
Critical temperature calculated from equation (3.79) 33.43 - 41.75 K

Data set smearing 0.01 Ha

The behavior is investigated for another smearing factor used for generation of the input files
to see how that will impact the superconductive behavior. For the orthorhombic Ta2N3 the
results with this smearing impacted the final results positively by letting them be closer to
experimental values. We assume same convergence behavior like for the data set of 0.05 Ha
smearing.

Table 8.5.3: Results for the isotropic parameters for different interpolation techniques and smearing techniques.
The numbered ωlog are recalculated results, while the isotropic λ is kept. The differently calculated ωlog stand for
when the spectral density is neglected until 9.5 meV (1), 10.9 meV (2) and 12 meV (3). The forth ωlog stands for
when the first part until 12 meV is substituted by a phonon DOS-like curve.

Tetrahedron smearing Gaussian smearing 0.005 Ha
Explicit
Interpolation

Fourier
interpolation

Explicit
Interpolation

Fourier
interpolation

Tc [K] 2.300408 · 10−2 2.18 · 10−2 2.56 · 10−2 2.34 · 10−2

Isotropic λ 5.6941 5.8213 8.2774 8.5293
ωlog [K] 0.1067 0.1007 0.1103 0.1006
1. ωlog [K] 0.7175 0.9531 0.5004 0.7423
2. ωlog [K] 1.5717 2.0523 1.0944 1.5864
3. ωlog [K] 5.1950 6.6086 3.8080 5.3204
4. ωlog [K] 0.6717 0.8935 0.0541 0.0857
Positive moments of α2F (ω)

λ (ω2) 4.33· 10−6 4.33 ·10−6 5.88 · 10−6 5.88 ·10−6

λ (ω3) 7.19· 10−9 7.23 ·10−9 9.26· 10−9 9.33 ·10−9

λ (ω4) 1.54 · 10−11 1.57 · 10−11 1.93 · 10−11 1.96 · 10−11

λ (ω5) 3.74 · 10−14 3.84 · 10−14 4.61 · 10−14 4.74 · 10−14

We see much higher values for the EPC λ indicating a strong electron-phonon coupling. Fur-
thermore, the electron phonon coupling parameter λ varies strongly between the tetrahedron
and Gaussian smearing (≈ .5.7←−≈ 8.5 indicating that the convergence might have a different
form then for the 0.01 Ha smearing data set. The logarithmic frequency is again attempted to
be estimated, while here the same low frequency parts are either neglected or the phonon DOS
is fitted onto the function, which is the most physical estimate. Neglecting parts of the low
frequency components it justified just so that the logarithmic frequency takes on more realistic
values comparable to the other calculations made in this work.
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Figure 8.5.4: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing
(top,left) and Gaussian smearing with the factor 0.005 (top,right) in comparison with the phonon density of states
(bottom).A2FW stands for the additionally Fourier interpolated results, while NOINTP_A2FW stands for the ex-
plicitly interpolated results.

The Eliashberg function α2F looks unusual. The low frequency peak is is reaching very high
values. Main contributor to this peak is the Niobium, which can be seen in figure 7.4.2. In the
next figure, the low frequency bit is shown and its estimates:

Figure 8.5.5: The spectral function α2F as a function of the frequency ω is shown here for tetrahedron smearing.
The left picture shows the original low frequency part of the spectral function giving ωlog. In the middle (red) the
phonon DOS low frequency curve has been fitted to the spectral function until 12 meV (4. ωlog) in comparison with
the phonon density of states beginning (right in blue).

The results of this data set are summarized in table 7.5.4 and the critical temperature is recal-
culated. One can see the McMillan critical temperature being very low, which is due to the
very low logarithmic frequency ωlog that is just roughly approximated and is certainly still too
low. The critical temperature calculated through equation (3.79) is much closer to what can
be expected for a value with such a high EPC and low atomic mass atoms like Niobium and
nitrogen.
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Table 8.5.4: Superconducting parameters found for taking into account a smearing for the input phonon files of
0.01 Ha. The Debye temperature is an output from the phonon density of states calculation and the two values stem
from the calculation from partial sums and the second value stems from the phDOS directly.

Isotropic λ 5.69-8.53
ωlog 0.05-6.61 K

Empirical parameter µ∗ 0.1
McMillan critical temperature 0.011-1.57 K

Debye-temperature from phDOS-partial sums 215.16-262.17 K
Critical temperature calculated from equation (3.79) 39.30-51.57 K

Final result

Finally, all results from the two data set’s are presented together in the following. They are
compared to the results for the η-Ta2N3.

Table 8.5.5: superconducting parameters for the η-Nb2N3 in comparison with the η-Ta2N3.

η-Ta2N3 at ambient pressure η-Nb2N3

Isotropic λ 0.77-1.16 3.21-8.53
ωlog 0.04-36.54 K 0.05-6.61 K
Empirical parameter µ∗ 0.1 0.1
McMillan critical tempera-
ture

0.00-3.144 K 0.01-1.57 K

Debye-temperature from ph-
DOS/partial sums

82.06-193.75 K 215.16-263.36 K

Critical temperature calcu-
lated from equation (3.79)

3.74-10.65 K 32.97-51.81 K

The result of the EPC is surprisingly high. It is very probable that this structure does show a
very high EPC. The logarithmic frequency is a vague approximations, while the upper limit is
achieved through neglecting parts of the Eliashberg function which can’t be justified physically.
Therefore, this leads to a very low overall critical temperature. Again, the critical temperature
calculated through calculation (3.79) is much more realistic, although probably overestimated.
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9 Orthorhombic V2N3

In parallel with the structural investigations of the η-Nb2N3, Jiang et al. investigated the η-
V2N3. It was shown how there are other structures then the orthorhombic one that are energet-
ically more favorable, whereas the most energetically stable is the trigonal V2N3. Nevertheless,
in the following sections, the η-V2N3 is further investigated regarding its vibational and elec-
tronic parameters.

9.1 Convergence study

Like previously, convergence tests were conducted to get the optimal values for the k-point
grid, the smearing and the energy cut-off.

Figure 9.1.1: K-points and Smearing convergence study seen in the top left. One can see on the top, right the
k-points convergence for Smearing=0.005 and bottom, left the k-points convergence for Smearing=0.05. On the
bottom right, one can see the energy cut-off convergence.

Following calculations were conducted with a grid of 8x8x24 k-points, 0.01 Ha smearing and
an energy cut-off of 40 Ha. The energy cut-off introduces an error of ± 5 ·10−4 eV.

9.2 Optimisation

The atomic parameter and the atomic coordinates of the η-Nb2N3 were used and optimized to
give the structural information for the η-V2N3.
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Table 9.2.1: Optimized atomic coordinates.

Atom x y z

V1 3.123 -2.506 0.25
V2 4.994 3.030 0.25
N1 0.872 0.044 0.25
N2 0.549 0.881 0.25
N3 0.195 0.220 0.25

The new cell parameter are the following:

• a = 7.69 Å

• b = 7.74 Å

• c = 2.79 Å

The new volume is 166.00 Å3, which is smaller then the previous unit cell volumes found which
makes sense due to the low atomic mass atom Vanadium.

9.3 Electronic structure

The density of states for the electronic structure were calculated.

Figure 9.3.1: Electronic band structure and DOS for V2N3

9.4 Vibrational properties

The phononfrequencies at the Γ point were calculated and two unstable modes were found.
This is an indicator that the structure is not stable, like previously predicted by Jiang et al.3.

Table 9.4.1: Calculated phonon frequencies at the Γ-point.

Phonon energy [cm−1]
-79.9 446.8 278.6 567.8
-63.1 452.8 284.2 575.9
0.0 464.4 291.7 577.4
0.0 479.0 292.8 583.7
0.0 487.7 322.1 591.1

161.5 494.7 344.1 603.0
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181.2 499.1 348.6 621.4
193.0 503.4 351.4 624.5
199.7 519.5 357.3 641.2
212.6 539.7 369.6 651.0
212.8 545.3 377.7 657.9
223.9 547.3 379.8 669.8
234.0 563.4 381.2 698.5
236.6 564.6 405.4 725.6
257.2 567.6 428.2 743.9

The phonon dispersion is calculated in the following and one can see instabilities in at Γ and
instabilities going towards the Y -point.

Figure 9.4.1: Phonon dispersion and the phonon DOS for V2N3 at ambient pressure for 8x8x24 and 0.05 smearing.

The structure is not further investigated, and the instability of the orthorhombic V2N3 is in
agreement with predictions of Jiang et al.3
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10 Trigonal V2N3

The stable trigonal V2N3 is investigated for its superconductivity in the following. Jiang et al.3

found this stable form of the V2N3 in a random search as mentioned previously.

10.1 Convergence study

Figure 10.1.1: K-points and Smearing factor convergence (left). The smearing factor is chosen for the Cold smearing
method. The energy cut-off convergence is also shown (right).

A k-point grid of 8x8x8 was chosen, which introduced an error of ± 5 · 10−3 eV. A smearing
of 0.01 Ha seemed to be converged faster for energy diverges less with respect to an increse in
k-point grid then for other lower smearing factor. An energy cut-off of 40 Ha was chosen for
further calculations giving the same accuracy like the k-point/smearing convergence.

10.2 Optimisation

An optimisation was conducted in order to find the ground state structure, while the input
were the values produced by Jiang et al.3

Table 10.2.1: Optimized atomic coordinates in comparison with the literature findings in brackets.3

Atom x y z

V1 1
3

2
3 0.698 (0.698)

N1 0.000 0.000 1
2

N2 0.000 0.000 0.892 (0.893)

The new cell parameter are the following:

• a = b = 2.81 Å

• c = 6.24 Å

The new volume is 109.51 Å3, which is smaller then the previous unit cell volumes found. The
cell parameter are in good agreement with previous theoretical result by Jiang et al.3 (a = b =
2.82 Å, c = 6.25 Å).

83



Alexandra Dudzinski CHAPTER 10. TRIGONAL V2N3

10.3 Comparison with the orthorhombic V2N3

The structure for the orthorhombic V2N3 is compared with the trigonal structure. One can see
how the trigonal structure shows alternating V-N-V stacking and a N-N dimer layer in the z-
direction. This is a major difference for the orthorhombic structures do not form N-N dimers,
that are anyways unusual for the transition metal nitrides.3 The orthorhombic structure, as well
as the tetragonal structure, shows a helpta-coordinated metal atom by nitrogen atoms. For the
trigonal V2N3, the Vanadium is coordinated by just six nitrogen atoms leading to a octahedron.

Figure 10.3.1: Orthorhombic structure (left) in comparison with the trigonal structure (right).

10.4 Electronic structure

The electronic bands structure and density of states for the were calculated for the electron
density at Fermi-level plays an important role for the electron-phonon calculation.
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Figure 10.4.1: Electron band structure for V2N3

Figure 10.4.2: Density of states for the trigonal V2N3

The DOS is not perfectly in agreement with the literature DOS. The DOS all together lay in
much lower DOS levels then in the literature.3 While the highest peak can be found here at
over 2.5 states/eV, the same peak reaches over 6 states/eV in the literature. The position of the
peaks is in good agreement, while the intensities differ.

10.5 Vibrational properties

The Phononfrequencies at Γ-point are calculated and shown in the following table:

Phonon energy[cm−1]
0.0 526.53
0.0 526.53
0.0 557.89

200.52 557.89
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200.52 637.22
415.19 714.26
415.19 1132.1
424.60

In the next step, the phonondispersion is also produced for a q-point grid of 4x4x4.

Figure 10.5.1: Phonondispersion for trigonal V2N3 at ambient pressure.

The phonon density of states were calculated with a interpolation to a grid of 48x48x48 q-
points. A convergence test was conducted with 40x40x40 q-points showing no difference.

Figure 10.5.2: Phonon density of states for trigonal V2N3.

The phononmodes are stable for the trigonal V2N3, while 4x4x4 q-points are needed for a cor-
rect representation.
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10.6 Superconductivity

The DDB-file and DVDB-files were produced from a calculation with 8x8x8 k-points, Smearing:
0.01 Ha and 4x4x4 q-points. They were used in the following to get a correct electron phonon
calculation.

10.6.1 Convergence study

In order to converge the system, the ground state wave function was taken as an input and
a new non self consistent calculation was performed with high k-point grids to get a new,
more exact ground state wave function for the electron-phonon calculation. In that fashion, a
convergence study with respect to the k-point grid and the smearing for tetrahedron smearing
and the Gaussian smearing was conducted.

Figure 10.6.1: The convergence of the k-point grid and the smearing was conducted for the superconducting pa-
rameter EPC λ and for the logarithmic frequency ωlog.

One can see how the the value varies strongly for the tetrahedron smearing method. It seems
the values are quite well converged, but it becomes clear how the values converge towards a
different final value per smearing type. Therefore, we will investigate the tetrahedron smearing
and also the Gaussian smearing with a smearing factor of 0.005 and a k-point grid of 24x24x24
to get behind the difference of there superconductive parameters.

10.6.2 Further Investigations and Results

After isotropic evaluation of the parameters from the electron-phonon coupling, the follow-
ing indicators were found regarding the superconductivity. A Coulomb screening of 0.1 was
chosen. The change of the Coulomb screening to 0.12 does not impact the results noteworthy.
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Table 10.6.1: Results for the isotropic parameters for different interpolation techniques. The first one is interpolated
but then the matrix elements are taken explicitly on the k-point grid and the second one is Fourier interpolated with
respect to the DDB q-points (interpolated by ph_ngqpt). A k-point grid of 24x24x24 is used.

Tetrahedron smearing Gaussian smearing 0.005 Ha
Explicit
Interpolation

Fourier
interpolation

Explicit
Interpolation

Fourier
interpolation

Tc [K] 2.45 · 108 1.87· 1012 6.22· 10−3 8.59 · 10−3

Isotropic λ 0.06899729 0.08784677 0.4887713 0.5768210
log(ω) [K] 0.7377 0.4487 0.7871 0.5421

Positive moments of α2F (ω)

λ (ω2) 2.78· 10−7 2.82·10−7 1.76·10−6 1.77·10−6

λ (ω3) 6.90· 10−10 6.84·10−10 4.13·10−9 4.07·10−9

λ (ω4) 1.84 · 10−12 1.81· 10−12 1.08· 10−11 1.05· 10−11

λ (ω5) 5.29· 10−15 5.13 · 10−15 3.09· 10−14 2.97 · 10−14

The McMillan temperature exploded due to the Coulomb repulsion being bigger then the
electron-phonon coupling parameter λ for the tetrahedron smearing.

Figure 10.6.2: The spectral function α2F as a function of the frequency ω calculated with tetrahedron smearing
(top,left) and Gaussian smearing with a factor of 0.005 Ha (bottom) in comparison with the phonon DOS. A2FW
denotes the explicit interpolation while NOINTP_A2FW shows the Fourier interpolation.

The spectral density does look very unusual for the tetrahedron smearing. Not only is the low
frequency bit extremely linear, but also in comparison with the phonon DOS, the characteris-
tics do differ massively, especially in between the peaks. Based on the result obtained through
using tetrahedron method, which leads to the very low EPC λ, the trigonal V2N3 does not
display superconducting behaviors. But tests with Gaussian smearing were conducted, giving
very low superconducting parameters, but a sligthy higher EPC going up to 0.58. Furthermore,
due to the low atomic mass, the logarithmic frequency should be much higher then the value
obtained. But as seen previously, the logarithmic frequency calculated is massively underes-
timated. And the very high Debye temperature is another indicator that superconductivity
might still be present, although it does not include the low frequencies sufficiently. The Eliash-
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berg function for the Gaussian smearing looks much more dependable and it is very similar to
the phonon DOS. When looking at the results, for the Explicitly interpolated (NOINPT_A2FW)
Eliashberg function one can see a parabolic low frequency part for the Gaussian smearing func-
tion, which comes close to reality. Therefore, the results from the Gaussian smeared calculations
will be taken and a EPC will be approximated. All three different Gaussian smearing factor re-
sults are taken into account to gain a range for the EPC. Further investigations are needed. A
prediction of the logarithmic frequency will not be given and the same problem like in previ-
ous calculations remains, while the EPC remains questionable. All in all, it is probable that this
structure does not display superconductivity or superconductivity with very low critical tem-
perature. This could also be explained with the N-N dimers that are present in this structure.
They might play a major role in lowering the electron phonon coupling.

Table 10.6.2: Superconducting parameters found for taking into account a Gaussian smearing for the electron-
phonon calculation. The Debye temperature is an output from the phonon density of states calculation and the two
values stem from the calculation from partial sums and the second value stems from the phDOS directly.

Isotropic λ 0.11-0.58
ωlog /

Empirical parameter µ∗ 0.1
McMillan critical temperature /

Debye-temperature from phDOS-partial sums 551.64 - 606.92 K
Critical temperature calculated from equation (3.79) 0.00-9.40 K
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11 Conclusion

The research around superconductivity at room temperature is still an ongoing venture, while
superconductors under pressure play a major role since the discovery of superconductivity in
sulfur hydride in 2014 because they still display a high and unknown potential. This project is
motivated by exactly this potential of novel superconductors.
This project sheds light on one group of novel materials, the metal nitrides with a stoichiometry
of M2N3 while the following group 5 metals are investigated: M = Tantalum, Niobium and
Vanadium. Density functional theory is used to explore the electronic structure of the materials.
The vibrational properties are then extracted with the help of perturbation approaches, that also
give all the crucial input to calculate the superconducting parameter. For that reason, the first
principle software Abinit was used.11,12,13,14,15

For all compounds, the following systematic framework was used: Firstly, a k-point and smear-
ing convergence study was conducted, while a Cold smearing method was used, followed by
a convergence of the energy cut-off. An optimization of the unit cell parameter is important
to find the ground state atomic parameters and atomic coordinates. Once the correct set-up
was picked, the electronic structure and vibrational properties were investigated, which give
crucial input to the electron-phonon calculations. It was attempted then to use the following
McMillan formula to gain information about the critical temperature, while all the parameter
were accessible through first principles:

Tc =
ωlog

1.2
exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
(11.1)

Due to the lack of accuracy of the logarithmic frequency, the following, original McMillan for-
mula was taken into account for prediction:

Tc =
ωD
1.45

exp

[
− 1.04(1 + λ)

λ− µ∗(1 + 0.62λ)

]
(11.2)

It uses the Debye temperature to gain a second critical temperature estimation. The Debye tem-
perature is given by the very well converged phonon DOS calculation and it just varied due to
two different methods used to gain it leading to another range. This prediction of superconduc-
tivity does not fully take the low frequency components of the spectral function into account
and so it leads to an overestimation of the critical temperature, which is partially fixed due to
the higher divisor (1.2 =⇒ 1.45). The superconductivity has been explored for the material class
M2N3, with M=Ta,Nb,V and to put all the results in a nutshell, a final table is produced.

Table 11.0.1: superconducting parameters predicted in this work for a µ∗=0.1. The range is gained by summarizing
various experimental set-up’s and approximations that lead to different values. It indicates that the results are not
perfectly converged and a final value can not be given.

Details Isotropic
λ

ωlog [K] McMillan
Critical
tempera-
ture (Eq.
11.1) [K]

Debye tem-
perature
[K]

McMillan
Critical
tempera-
ture (Eq.
11.2) [K]

η-Ta2N3 Input
smearing:
0.01

0.87-1.16 0.13-36.54 0.01-3.14 82.06-
161.20

3.74-11.46
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η-Ta2N3 Input
smearing:
0.05

0.77-0.97 0.27-20.34 0.012-1.350 169.66-
193.75

6.07-10.65

η-Ta2N3

under
pressure

Input
smearing:
0.05

0.82-1.35 0.09-12.73 0.006-1.305 94.31-
139.48

3.38-11.83

Tetragonal
Ta2N3

Quantum
Espresso

3.09-4.62 294.92-
317.73

52.07-64.85 / /

Tetragonal
Ta2N3

Abinit 0.46-0.59 0.26-14.91 0.00-0.32 343.64-
588.03

2.43-10.57

η-Nb2N3 Input
smearing:
0.05

3.21-3.50 0.13-5.09 0.02-0.97 218.12-
263.36

33.43-41.75

η-Nb2N3 Input
smearing:
0.01

5.69-8.53 0.05-6.61 0.011-1.57 215.16-
262.17

39.30-51.57

η-V2N3 Unstable
Trigonal
V2N3

0.11-0.58 / / 551.64-
606.92

0.00-9-40

Making predictions about superconducting behavior is still a challenging task, that has been
just recently been made possible due to the development of new numerical and computational
methods. It is still complicated to give definite numbers as results, especially predicting the
critical temperature has to be always handled with highest care. The materials that are investi-
gated in this work all had a complicated unit cell with up to 20 atoms which lead to very long
computational times and less accurate results. As explained does density functional theory
and density perturbation include various approximations, one noteworthy is the harmonic ap-
proximation, that might introduce an error source due to the fairly low atomic mass nitrogen.
Furthermore, the McMillan formula itself is of empirical character, that might not be fully legiti-
mate for our complicated systems, especially for systems with a high electron-phonon coupling
like the Nb2N3 might be. There are more error sources, that can be further mentioned, like e.g.
the lack of introduction of doping that apparently might play a major role for these structures.
Nevertheless, it was possible to get close the experimental results and first tendencies of these
materials were predicted. The electron phonon calculation, especially the interpolation used,
has to be reviewed further to lead to more accurate values, as it is explained in this work. In the
end, meaningful results could be obtained, the numerical power of Abinit was tested and the
superconductivity of the η-Ta2N3 was confirmed. Especially the η-Nb2N3 is a promising candi-
date as a superconductor at ambient pressures with a very high electron-phonon coupling. The
tetragonal Ta2N3 and the trigonal V2N3 are probably not showing superconductivity at all or
just at rather low critical temperatures, but the vibrational properties were predicted and sta-
bility confirmed, making them potential candidates for industrial use due to their interesting
mechanical properties, like e.g. high elastic stiffness, described by Jiang et al..3 In the following,
the presented predictions are concluded and evaluated per material investigated.

Orthorhombic Tantalumnitride [Chapter 5,6,7]

This work was motivated by the high pressure and high temperature synthesis of the novel
η-Ta2N3 superconductor, that has a critical temperature of ≈ 3 K.7,2. Therefore, a thorough in-
vestigation of the orthorhombic Ta2N3 was conducted. The found electronic structure and the
ground state structure are in good agreement with literature.97 A predicted Raman spectrum
is produced for the η- Ta2N3 being in agreement with experimental Raman spectra.2 For the
orthorhombic Ta2N3, an interesting behavior was found. For low smearing, an unstable mode
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appeared at the Z-point, which became stable for higher smearing. The compound is found
to be very sensitive with regards to the smearing. Therefore, Fermi-Dirac smearing was also
tested in order to gain valuable information about the potential physics leading to this behav-
ior. Various tests made sure that the instability is tightly bound to the smearing and not another
parameter. The Fermi-surface shows high sensitivity in Z-direction. Another set of calculations
was conducted for the same material but at 26.065 GPa. For that compound a higher smearing
was needed for stabilization. One possible explanation is, that the compound could be unsta-
ble at very low temperature, which is also dependent on the pressure. It could be explained
through a pressure and temperature dependent stability curve. Another reason could also be,
that the calculation itself does not take e.g. the doping into account that, as proposed by Jiang
et al.9, stabilizes the orthorhombic structure.
The electron-phonon calculation that followed strongly tends to underestimate the logarithmic
frequency ωlog and potentially also the electron-phonon coupling parameter λ which was care-
fully investigated. A numerical error, probably a wrong interpolation, leads to a bad estima-
tion of the low frequency spectral density. In order to correct it, the low frequency components
were neglected, substituted with more parabolic like curves or directly with a phonon DOS-like
curve. To neglect the low frequency part of the curve is highly nonphysical and not very close
to reality, but it leads to the most realistic values for the logarithmic frequency ωlog, while fitting
the phonon DOS curve is an acceptable approximation because the spectral density function or
Eliashberg function is the phonon DOS weighted by the electron-phonon coupling. The fitting
of a function y = xp with different powers p was conducted to test the limits of the logarithmic
frequency that can be gained with just changing the low frequency part. With the help of these
estimations, a range of the logarithmic frequency ωlog is predicted. The electron phonon cou-
pling constant λ is taken from the original calculation without further approximations because
it shows realistic values. It also varies, depending on which smearing method is used for the
electron phonon calculation and therefore, a range is given. Therefore, a critical temperature
range is recalculated that contains the experimental critical temperature. Although a good es-
timation of the EPC can be stated, the logarithmic coupling and the spectral function do need
further investigation and tests to prove their accuracy. The values are shown in table 11.0.1. In-
terestingly, the electron-phonon coupling and critical temperature estimated tends to be lower
if a high smearing factor is used for the input files, which is also the case for the η-Nb2N3 that
will be discussed later. For the η-Ta2N3 under pressure, a high smearing had to be used due to
its instability at low smearing. The results gained are comparable to the results for the ambient
structure. The electron-phonon coupling parameter λ seems converged well enough and with
all of that in mind, it is proposed to use the critical temperature calculated with formula 11.2
instead of formula 11.1 in order to predict the superconducting temperature.

Tetragonal Tantalumnitride [Chapter 7]

In order to fully understand the numerical background and its effects on the result, the tetrago-
nal Ta2N3 was also taken into account. Previously calculated result with the software Quantum
Espresso were accessible and were used for comparison.16,17,10 Furthermore, this structure is
of interest for it was shown how the structure is energetically more stable then the orthorhom-
bic Ta2N3 leading to a potential to be synthesized. Again, the atomic parameters, coordinates
and the electronic structure are in good agreement with literature.9 The vibrational properties
are comparable to the results gained by Quantum Espresso. The electron-phonon coupling cal-
culation differ very strongly. Both results displayed questionable behaviors. The results from
Quantum Espresso are not converged enough, so that the spectral density function and the
superconducting parameters are roughly estimated. Interestingly, the superconducting param-
eters seems to be overestimated, showing opposite behavior then what is found for the results
gained with Abinit. On the other hand, Abinit strongly underestimates the logarithmic fre-
quency in every electron-phonon calculation conducted in this work. Again, the low frequency
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part of the spectral density function α2F seems to be too linear and an attempt to estimate it
better was conducted and the logarithmic frequency ωlog was recalculated leading to more real-
istic results that are probably still too low. Finally, the calculation made by Quantum Espresso
is less accurate then the Abinit calculation due to the fact that the Abinit calculation is well
converged. Following equation 11.1, the tetragonal Ta2N3 is rather not superconducting or su-
perconducting at very low temperatures. Using the Equation 11.2 utilizing the more accurate
Debye temperature, one can predict a critical temperature of around 2-3 K, because the real crit-
ical temperature is usually a tad below the predicted critical temperature by Equation (11.2).
The possibility that the tetragonal Ta2N3 is not superconducting at all cannot be excluded.

Orthorhombic Niobiumnitride [Chapter 8]

Now that the accuracy of the electron phonon calculation is known more, the next compounds
of interest were explored. The main driving force behind conducting these calculations is,
that due to the exchange with lower atomic mass atoms, it is assumed that also the phonon
frequencies are of higher order leading to a higher critical temperature. The next material that
was investigated was the orthorhombic Nb2N3, whose predicted atomic parameter and coordi-
nates, as well as the electronic structure are in agreement with the literature.3 Noteworthy here
is, that the Z-point soft mode did appear again for low smearing values, but less dominantly
like for the η-Ta2N3. Like explained previously, a unrealistically low logarithmic frequency ωlog

was produced again. However, the electron-phonon coupling constant λwas much higher than
for the Ta2N3-analog indicating strongly coupled behavior of electrons and phonons. Follow-
ing the same framework like before, the logarithmic frequency is tried to be estimated more
accurately, still leading to very low values, being against all expectations lower then for the
η-Ta2N3. It seems that due to the weighting by the EPC, the low frequency components are
highly favored. Due to the very low accuracy of the logarithmic frequency ωlog and further-
more, due to the yet partially unknown origin of that numerical issue, it is proposed to use the
Debye-temperature again to predict a critical temperature in the order of around 30 K. Further
calculations have to be conducted to back up this hypothesis.

Vanadiumnitride [Chapter 9, 10]

Now following the principle that lower atomic mass atoms lead to higher frequencies and
therefore higher critical temperatures, the Niobium atom was further substituted and the or-
thorhombic V2N3 was investigated. Literature predicts the η-V2N3 to be unstable, which is
confirmed in this work. Jiang et al. predicted a stable trigonal form for the V2N3.3 Again, the
structural parameters as well as the electrical parameters are in acceptable agreement with the
literature values, although the electron DOS does display lower levels. The superconductivity
calculation varies a lot with the smearing method and factor chosen. The tetrahedron smearing
shows unusual behavior of the Eliashberg function, while the Gaussian smearing seems to be
giving a more realistic depiction. Therefore, the Gaussian smearing is used to predict a range
for the electron-phonon coupling parameter, that seems to be very low and variable. The log-
arithmic frequency ωlog is again massively underestimated. Due to the lower atomic mass of
Vanadium and the low atomic mass nitrogen, one would expect much higher averaged loga-
rithmic frequencies ωlog. Therefore, no estimate is given for this superconducting parameter.
The Debye temperature is as expected very high and with equation (11.2), on can get a critical
temperature up to around 9 K. As previously stated, this equation tends to overestimate the
critical temperature. Finally, it is predicted that this compound is either not superconducting
or superconducting with a very low critical temperatures. This could be due to the different
structure. As explained in section 10.3, one can find N-N dimers in the unit cell, which is not the
case for all the other structures investigated in this work. This might lower the EPC leading to
a low superconducting potential for the N-N dimers do not display superconducting behavior.

94



12 Appendix

12.1 General

Abinit is run with the help of a file indicating the the input and output, called in the following
t.files:

ta2n3.in
ta2n3.out
ta2n3_xi
ta2n3_xo
ta2n3_x
Ta.psp8
N.psp8

The psp8-files are Pseudopotentials downloaded from PseudoDojo.51,50

12.2 Case study: Orthorhombic Ta2N3

12.2.1 Groundstate (GS) calculation with varying k-points and smearing-values

autoparal 1
paral_kgb 1

ndtset 16 udtset 4 4
getwfk -1
getden -1

occopt 4

tsmear?1 0.001
tsmear?2 0.005
tsmear?3 0.01
tsmear?4 0.05

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 1

ngkpt1? 6 6 18
ngkpt2? 8 8 24
ngkpt3? 10 10 30
ngkpt4? 12 12 36

#Definition of the unit cell
acell 8.19 8.24 3.00 Angstr
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5
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#Definition of the atom types
ntypat 2
znucl 73 7

#Defnition of the atoms
natom 20
typat 8*1 12*2
xred
0.313 -0.021 0.25
0.505 0.306 0.25
0.813 0.521 0.75
1.005 0.194 0.75
-0.313 0.021 0.75
-0.505 -0.306 0.75
0.187 0.479 0.25
-0.0050 0.806 0.25
0.875 0.046 0.25
0.549 0.879 0.25
0.2 0.22 0.25
1.375 0.454 0.75
1.049 -0.379 0.75
0.7 0.28 0.75
-0.875 -0.046 0.75
-0.549 -0.879 0.75
-0.2 -0.22 0.75
-0.375 0.546 0.25
-0.0490 1.379 0.25
0.3 0.72 0.25

#Definition of the planewave basis set
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-12

12.2.2 GS calculation with varying energy cut-off

autoparal 1
paral_kgb 1

ndtset 5

getwfk -1
getden -1

occopt 4

tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 1
ngkpt 10 10 30

#Definition of the unit cell
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#acell 15.57134 15.47686 5.66918
acell 8.19 8.24 3.00 Angstr
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2

#Defnition of the atoms
natom 20
typat 8*1 12*2
xred
0.313 -0.021 0.25
0.505 0.306 0.25
0.813 0.521 0.75
1.005 0.194 0.75

-0.313 0.021 0.75
-0.505 -0.306 0.75
0.187 0.479 0.25

-0.0050 0.806 0.25
0.875 0.046 0.25
0.549 0.879 0.25
0.2 0.22 0.25
1.375 0.454 0.75
1.049 -0.379 0.75
0.7 0.28 0.75

-0.875 -0.046 0.75
-0.549 -0.879 0.75
-0.2 -0.22 0.75
-0.375 0.546 0.25
-0.0490 1.379 0.25
0.3 0.72 0.25

#Definition of the electronic cut-off
ecut?1 20.0
ecut?2 30.0
ecut?3 40.0
ecut?4 50.0
ecut?5 60.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-12

12.2.3 Optimisation

autoparal 1
paral_kgb 1

getwfk -1
getden -1

occopt 4
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tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 1

ngkpt 10 10 30

#Definition of the unit cell
acell 8.19 8.24 3.00 Angstr
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

#Optimization of the lattice parameters
optcell 2
ionmov 2
ntime 30

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 73 7

#Defnition of the atoms
natom 20
typat 8*1 12*2
xred
0.313 -0.021 0.25
0.505 0.306 0.25
0.813 0.521 0.75
1.005 0.194 0.75

-0.313 0.021 0.75
-0.505 -0.306 0.75
0.187 0.479 0.25

-0.0050 0.806 0.25
0.875 0.046 0.25
0.549 0.879 0.25
0.2 0.22 0.25
1.375 0.454 0.75
1.049 -0.379 0.75
0.7 0.28 0.75

-0.875 -0.046 0.75
-0.549 -0.879 0.75
-0.2 -0.22 0.75
-0.375 0.546 0.25
-0.0490 1.379 0.25
0.3 0.72 0.25

#Definition of the electronic cutt-off
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-12
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12.2.4 Vibrational properties

A GS-calculation was performed a priori and the WFK/DEN output filename was changed into
a input filename and indicated in the t.files-file (ta2n3_xo_WFK to ta2n3_xi_WFK). The calcu-
lation for the frequencies at Γ-point were split into 15 calculations representing three degrees
of freedom per irreducible atom (3N (N = number of atoms)), defined by rfatpol and rfdir.
The irreducible representation can be acquired through running a quick calculation with nstep
1, rfatpol 1 2 (over all atoms) and rfdir 1 1 1 (all directions). This step was necessary in order
to be able to split the calculation due to the big unit cell to increase efficiency. In the following
the script is shown for one perturbation at the Γ-point (qpt 0 0 0).

utoparal 1
paral_kgb 1

#Response-function calculation
rfphon 1

rfatpol 1 1
rfdir 1 0 0
nqpt 1
qpt 0 0 0

optdriver 1

prtpot 1

getwfk 1
getden 1

occopt 4

tsmear 0.005

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 3
ngkpt 12 12 36

#Definition of the unit cell
acell 1.5460538263E+01 1.5534456499E+01 5.6626368033E+00
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 73 7

#Defnition of the atoms
natom 20
typat 8*1 12*2
xred
3.1289205513E-01 -2.0733250545E-02 2.5000000000E-01
5.0511572192E-01 3.0574506751E-01 2.5000000000E-01
8.1289205513E-01 5.2073325055E-01 7.5000000000E-01
1.0051157219E+00 1.9425493249E-01 7.5000000000E-01
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-3.1289205513E-01 2.0733250545E-02 7.5000000000E-01
-5.0511572192E-01 -3.0574506751E-01 7.5000000000E-01
1.8710794487E-01 4.7926674945E-01 2.5000000000E-01

-5.1157219200E-03 8.0574506751E-01 2.5000000000E-01
8.7474076014E-01 4.6457910000E-02 2.5000000000E-01
5.4910275390E-01 8.7922858942E-01 2.5000000000E-01
1.9984580594E-01 2.1996617194E-01 2.5000000000E-01
1.3747407601E+00 4.5354209000E-01 7.5000000000E-01
1.0491027539E+00 -3.7922858942E-01 7.5000000000E-01
6.9984580594E-01 2.8003382806E-01 7.5000000000E-01
-8.7474076014E-01 -4.6457910000E-02 7.5000000000E-01
-5.4910275390E-01 -8.7922858942E-01 7.5000000000E-01
-1.9984580594E-01 -2.1996617194E-01 7.5000000000E-01
-3.7474076014E-01 5.4645791000E-01 2.5000000000E-01
-4.9102753901E-02 1.3792285894E+00 2.5000000000E-01
3.0015419406E-01 7.1996617194E-01 2.5000000000E-01

#Definition of the planewave basis set
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-10

After finishing the calculations for all the perturbations needed, one needs to merge the DDB-
files to acquire the full dynamical matrix. The MRGDDB-utility is here used:

Ta2n3_total_DDB

15
../ta1/ta2n3_xo_DDB
../ta2/ta2n3_xo_DDB
../ta3/ta2n3_xo_DDB
../ta4/ta2n3_xo_DDB
../ta5/ta2n3_xo_DDB
../ta6/ta2n3_xo_DDB
../ta7/ta2n3_xo_DDB
../ta8/ta2n3_xo_DDB
../ta9/ta2n3_xo_DDB
../ta10/ta2n3_xo_DDB
../ta11/ta2n3_xo_DDB
../ta12/ta2n3_xo_DDB
../ta13/ta2n3_xo_DDB
../ta14/ta2n3_xo_DDB
../ta15/ta2n3_xo_DDB

This is then followed by running ANADDB with the help of the "ddb.files" to get the phonon-
frequencies:

i.anaddb
o.anaddb
ta2n3_total_DDB
ta2n3band2eps
ta2n3dummy1
ta2n3dummy2
ta2n3dummy3

"ANADDB-file" to calculate the phononmodes at Γ-point for which one just has to merge the
15 perturbations at qpt 0 0 0:
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asr 2
dipdip 0
chneut 0
ifcflag 1
ifcana 1
brav 1

nqpath 1
qpath
0 0 0

ngqpt 1 1 1
q1shft 0 0 0

The phonondispersion are calculated in the same style like the phononfrequencies at the Γ-
point. But the variable qpt is varied according to how many q-points one wants to include.
These can be gained through running a quick GS-calculation (nstep =1) with a k-point grid
that equals the wanted q-point grid. The log-file will contain the wanted q-point grid un-
der kpt. Again, the DDB-files are all merged and the ANADDB-utility is used to acquire the
phonondispersion:

ifcflag 1
ifcout 0

brav 1
ngqpt 2 2 6
nqshft 1
q1shft 3*0.0

chneut 1

dipdip 0
eivec 4

nqpath 9
qpath
0.5 0 0 # X
0 0 0 # Gamma
0 0.5 0 # Y
0 0.5 0.5 # MYZ
0 0 0.5 # Z
0 0 0 # Gamma
0.5 0.5 0 # MXY
0.5 0.5 0.5 # R
0.5 0 0.5 # MXZ

In order to obtain the phonon density of states, one includes in the "i.anaddb"-file the variables
ng2qpt 24 24 72 and prtdos 2 so that a interpolation onto 24 24 72 q-points is achieved and the
phonon density of states is printed.

ifcflag 1
ifcout 0

brav 1
ngqpt 2 2 6
nqshft 1

ng2qpt 24 24 72

prtdos 2
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chneut 1
dipdip 0

eivec 4

nqpath 9
qpath
0.5 0 0 #X
0 0 0 #Gamma
0 0.5 0 # Y
0 0.5 0.5 #MYZ
0 0 0.5 #Z
0 0 0 #Gamma
0.5 0.5 0 #MXY
0.5 0.5 0.5 #R
0.5 0 0.5 #MXZ

12.2.5 Superconductivity

To calculate the critical temperature based on the electron-phonon coupling, one has to merge
the DDB-files to gain a xi_DDB input file with mrgddb and all the POT-files to get a xi_DVDB
input file with mrgdv. One also needs a file describing the wavefunction (xi_WFK) and the den-
sity (xi_DEN), whereas a groundstate calculation was conducted with kptopt 1, which means
that the symmetry is taken fully into account to generate the k points in the Irreducible Brillouin
Zone only, with the appropriate weights. After all four input files are obtained, the electron-
phonon calculation can be started with the following script:

optdriver 7

irdwfk 1
eph_np_pqbks 12 1 1 20 1

ddb_ngqpt 2 2 6

ddb_shiftq 0 0 0
getddb 1

eph_mustar 0.12
eph_ngqpt_fine 8 8 24
eph_intmeth 2 # Tetrahedron smearing = 2, Gaussian smearing = 1
#eph_fsmear 0.005

ph_nqpath 16
ph_ngqpt 8 8 24
ph_nqshift 1
ph_qshift 0 0 0
ph_qpath
5.00000000E-01 0.00000000E+00 3.33333333E-01
0.00000000E+00 5.00000000E-01 3.33333333E-01
5.00000000E-01 5.00000000E-01 3.33333333E-01
0.00000000E+00 0.00000000E+00 5.00000000E-01
5.00000000E-01 0.00000000E+00 5.00000000E-01
0.00000000E+00 5.00000000E-01 5.00000000E-01
5.00000000E-01 5.00000000E-01 5.00000000E-01
0 0 0
5.00000000E-01 0.00000000E+00 0.00000000E+00
0.00000000E+00 5.00000000E-01 0.00000000E+00
5.00000000E-01 5.00000000E-01 0.00000000E+00

102



CHAPTER 12. APPENDIX Alexandra Dudzinski

0.00000000E+00 0.00000000E+00 1.66666667E-01
5.00000000E-01 0.00000000E+00 1.66666667E-01
0.00000000E+00 5.00000000E-01 1.66666667E-01
5.00000000E-01 5.00000000E-01 1.66666667E-01
0.00000000E+00 0.00000000E+00 3.33333333E-01

dipdip 0
chneut 1

tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 1
ngkpt 8 8 24

#Definition of the unit cell
acell 1.5460538263E+01 1.5534456499E+01 5.6626368033E+00
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 73 7

#Defnition of the atoms
natom 20
typat 8*1 12*2
xred

3.1289205513E-01 -2.0733250545E-02 2.5000000000E-01
5.0511572192E-01 3.0574506751E-01 2.5000000000E-01
8.1289205513E-01 5.2073325055E-01 7.5000000000E-01
1.0051157219E+00 1.9425493249E-01 7.5000000000E-01

-3.1289205513E-01 2.0733250545E-02 7.5000000000E-01
-5.0511572192E-01 -3.0574506751E-01 7.5000000000E-01
1.8710794487E-01 4.7926674945E-01 2.5000000000E-01

-5.1157219200E-03 8.0574506751E-01 2.5000000000E-01
8.7474076014E-01 4.6457910000E-02 2.5000000000E-01
5.4910275390E-01 8.7922858942E-01 2.5000000000E-01
1.9984580594E-01 2.1996617194E-01 2.5000000000E-01
1.3747407601E+00 4.5354209000E-01 7.5000000000E-01
1.0491027539E+00 -3.7922858942E-01 7.5000000000E-01
6.9984580594E-01 2.8003382806E-01 7.5000000000E-01

-8.7474076014E-01 -4.6457910000E-02 7.5000000000E-01
-5.4910275390E-01 -8.7922858942E-01 7.5000000000E-01
-1.9984580594E-01 -2.1996617194E-01 7.5000000000E-01
-3.7474076014E-01 5.4645791000E-01 2.5000000000E-01
-4.9102753901E-02 1.3792285894E+00 2.5000000000E-01
3.0015419406E-01 7.1996617194E-01 2.5000000000E-01

#Definition of the planewave basis set
ecut 40.0

For the convergence, a NSCF-calculation was started for higher k-point grids with including
a lower k-point xi_WFK input file. The NSCF-calculation is started with the flags iscf -2,
getwfk 1 and getden 1. The new WFK- and DEN-file can then be used for the electron-phonon
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calculation. In order to change the smearing method, one has to change the flag eph_intmeth
2 (tetrahedron method) to 1 and for the Gaussian smearing which is turned on when defining
eph_intmeth 1, one has to define a smearing factor with e.g. eph_fsmear 0.005.

12.3 Tetragonal Ta2N3

12.3.1 Groundstate calculation

The groundstate calculation input file is shown in the following after conducted k-point, smear-
ing, energy cut-off convergence and optimization in the same fashion like for the orthorhombic
Ta2N3.

occopt 4

tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 1

ngkpt 12 12 12

getwfk 1
getden 1

#Definition of the unit cell
acell 5.6402825167E+00 5.6402825167E+00 1.0971498106E+01
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 73 7

#Defnition of the atoms
natom 5
typat 2*1 3*2
xred
5.0000000000E-01 0.0000000000E+00 7.5635027836E-01
0.0000000000E+00 5.0000000000E-01 -7.5635027836E-01
5.0000000000E-01 0.0000000000E+00 1.4028931669E-01
0.0000000000E+00 5.0000000000E-01 -1.4028931669E-01
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01

#Definition of the planewave basis set
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-12
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12.3.2 Vibrational properties

The rest of the calculations are conducted in the same order like for the orthorhombic Ta2N3,
just that for the vibrational property calculations, the calculation was only split into one calcu-
lation per q-point while all the irreducible perturbations were always calculated at once:

#Response-function calculation
rfphon 1
rfatpol 1 5
rfdir 1 1 1
nqpt 1
qpt 0.00000000E+00 0.00000000E+00 0.00000000E+00

optdriver 1

prtwf 0
prtpot 1

getwfk 1
getden 1

occopt 4

tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.
kptopt 3

ngkpt 12 12 12

#Definition of the unit cell
acell 5.6402825167E+00 5.6402825167E+00 1.0971498106E+01
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 73 7

#Defnition of the atoms
natom 5
typat 2*1 3*2
xred
5.0000000000E-01 0.0000000000E+00 7.5635027836E-01
0.0000000000E+00 5.0000000000E-01 -7.5635027836E-01
5.0000000000E-01 0.0000000000E+00 1.4028931669E-01
0.0000000000E+00 5.0000000000E-01 -1.4028931669E-01
5.0000000000E-01 5.0000000000E-01 5.0000000000E-01

#Definition of the planewave basis set
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-12
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The "i.anaddb" input file for ANADDB, looked like the following for the 4x4x4 q-point case:

ifcflag 1
ifcout 0

brav 1
ngqpt 4 4 4
nqshft 1
q1shft 3*0.0

chneut 1

dipdip 0

eivec 4

nqpath 9
qpath
0.00000 0.00000 0.00000 # $\Gamma$
0.0000000000 0.5000000000 0.0000000000 #X
0.5000000000 0.5000000000 0.0000000000 #M
0.00000 0.00000 0.00000 # $\Gamma$
0.0000000000 0.0000000000 0.5000000000 #Z
0.0000000000 0.5000000000 0.5000000000 #R
0.5000000000 0.5000000000 0.5000000000 #A
0.0000000000 0.0000000000 0.5000000000 #Z

For calculating the phonon DOS, the flags ng2qpt 48 48 48 and prtdos 2 were simply included.

12.4 Orthorhombic Nb2N3

For the orthorhombic Nb2N3, the same framework like the the Orthorhombic Ta2N3 was used
except that the atomic coordinates (xred), atomic parameter (acell) and the atomic mass was
changed to znucl 41 7. Due to the same symmetry of the unit cell and similar size, the scripts
are easily reused. Therefore, just a ground state calculation script is presented after k-point,
smearing and energy cut-off convergence.

occopt 4

tsmear 0.05

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 1
ngkpt 6 6 18

#Definition of the unit cell
acell 1.5394867066E+01 1.5598921780E+01 5.6695759203E+00
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 41 7
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#Defnition of the atoms
natom 20
typat 8*1 12*2
xred

3.1317926267E-01 -2.1631480756E-02 2.5000000000E-01
5.0429140654E-01 3.0561764278E-01 2.5000000000E-01
8.1317926267E-01 5.2163148076E-01 7.5000000000E-01
1.0042914065E+00 1.9438235722E-01 7.5000000000E-01
-3.1317926267E-01 2.1631480756E-02 7.5000000000E-01
-5.0429140654E-01 -3.0561764278E-01 7.5000000000E-01
1.8682073733E-01 4.7836851924E-01 2.5000000000E-01
-4.2914065412E-03 8.0561764278E-01 2.5000000000E-01
8.7352233205E-01 4.6194995046E-02 2.5000000000E-01
5.4813385178E-01 8.7877990050E-01 2.5000000000E-01
2.0151345075E-01 2.2143572274E-01 2.5000000000E-01
1.3735223321E+00 4.5380500495E-01 7.5000000000E-01
1.0481338518E+00 -3.7877990050E-01 7.5000000000E-01
7.0151345075E-01 2.7856427726E-01 7.5000000000E-01
-8.7352233205E-01 -4.6194995046E-02 7.5000000000E-01
-5.4813385178E-01 -8.7877990050E-01 7.5000000000E-01
-2.0151345075E-01 -2.2143572274E-01 7.5000000000E-01
-3.7352233205E-01 5.4619499505E-01 2.5000000000E-01
-4.8133851778E-02 1.3787799005E+00 2.5000000000E-01
2.9848654925E-01 7.2143572274E-01 2.5000000000E-01

#Definition of the planewave basis set
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-12

12.5 Orthorhombic V2N3

A ground state calculation script is presented after k-point, smearing and energy cut-off con-
vergence.

getwfk 1
getden 1

occopt 4

tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 3
ngkpt 8 8 24

#Definition of the unit cell

acell 1.4535038632E+01 1.4625149356E+01 5.2696875045E+00
rprim 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0
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dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 23 7

#Defnition of the atoms
natom 20
typat 8*1 12*2
xred

3.1232931698E-01 -2.5061906728E-02 2.5000000000E-01
4.9943017558E-01 3.0302227673E-01 2.5000000000E-01
8.1232931698E-01 5.2506190673E-01 7.5000000000E-01
9.9943017558E-01 1.9697772327E-01 7.5000000000E-01
-3.1232931698E-01 2.5061906728E-02 7.5000000000E-01
-4.9943017558E-01 -3.0302227673E-01 7.5000000000E-01
1.8767068302E-01 4.7493809327E-01 2.5000000000E-01
5.6982441832E-04 8.0302227673E-01 2.5000000000E-01
8.7210464357E-01 4.4330388663E-02 2.5000000000E-01
5.4966442446E-01 8.8132024789E-01 2.5000000000E-01
1.9515383776E-01 2.2062015556E-01 2.5000000000E-01
1.3721046436E+00 4.5566961134E-01 7.5000000000E-01
1.0496644245E+00 -3.8132024789E-01 7.5000000000E-01
6.9515383776E-01 2.7937984444E-01 7.5000000000E-01
-8.7210464357E-01 -4.4330388663E-02 7.5000000000E-01
-5.4966442446E-01 -8.8132024789E-01 7.5000000000E-01
-1.9515383776E-01 -2.2062015556E-01 7.5000000000E-01
-3.7210464357E-01 5.4433038866E-01 2.5000000000E-01
-4.9664424456E-02 1.3813202479E+00 2.5000000000E-01
3.0484616224E-01 7.2062015556E-01 2.5000000000E-01

#Definition of the planewave basis set
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-10

12.6 Trigonal V2N3

12.6.1 Ground state calculation

A ground state calculation script is presented after k-point, smearing and energy cut-off con-
vergence.

occopt 4

tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 1
ngkpt 8 8 8
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#Definition of the unit cell
acell 5.3182111211E+00 5.3182111211E+00 1.1796921858E+01
rprim 0.86602540378 0.5 0.0

-0.86602540378 0.5 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 23 7

#Defnition of the atoms
natom 5
typat 2*1 3*2
xred

3.3333333333E-01 6.6666666667E-01 6.9822313377E-01
6.6666666667E-01 3.3333333333E-01 -6.9822313377E-01
1.5745180509E-28 3.1490361018E-28 5.0000000000E-01
1.4170137260E-28 2.4466185515E-28 8.9240154632E-01
1.0792355752E-28 2.5458800511E-28 -8.9240154632E-01

#Definition of the planewave basis set
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-10

12.6.2 Vibrational calculation

Like for the tetragonal Ta2N3 case, we have a small sized system. Therefore, only the q-point
flag (qpt) is changed.

#Response-function calculation
rfphon 1

rfatpol 1 5
rfdir 1 1 1
nqpt 1
qpt 0 0 0

optdriver 1

prtwf 0
prtpot 1

getwfk 1
getden 1

occopt 4

tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 3
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ngkpt 8 8 8

#Definition of the unit cell
acell 5.3182111211E+00 5.3182111211E+00 1.1796921858E+01
rprim 0.86602540378 0.5 0.0

-0.86602540378 0.5 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 23 7

#Defnition of the atoms
natom 5
typat 2*1 3*2
xred

The "i.anaddb" input file for ANADDB, looked like the following for the 4x4x4 q-point case.
For calculating the phonon DOS, the flags ng2qpt 48 48 48 and prtdos 2 were simply included.

ifcflag 1
ifcout 0

brav 1
ngqpt 4 4 4
nqshft 1
q1shft 3*0.0

!ng2qpt 48 48 48
!prtdos 2

chneut 1

dipdip 0

eivec 4

nqpath 8
qpath

+0.00000 +0.00000 +0.00000 # $\Gamma$
+0.50000 +0.00000 +0.00000 # M
+0.33333 +0.33333 +0.00000 # K
+0.00000 +0.00000 +0.00000 # $\Gamma$
+0.00000 +0.00000 +0.50000 # A
+0.50000 +0.00000 +0.50000 # L
+0.33333 +0.33333 +0.50000 # H
+0.00000 +0.00000 +0.50000 # A

12.6.3 Superconductivity

A electron-phonon calculation script is included in the following. Like for the previous cases,
the smearing method and factor were varied and the k-points were also varied (after produc-
tion of a new xi_WFK with the help of a NSCF-ground state calculation (indicated with iscf -2,
getwfk 1 and getden 1).

110



CHAPTER 12. APPENDIX Alexandra Dudzinski

optdriver 7

irdwfk 1

ddb_ngqpt 4 4 4
ddb_shiftq 0 0 0
getddb 1

eph_mustar 0.1
eph_intmeth 2 #Tetrahedron method (1 Gaussian method)
#eph_fsmear 0.001

eph_ngqpt_fine 8 8 8

ph_nqpath 11
ph_ngqpt 8 8 8
ph_nqshift 1
ph_qshift 0 0 0
ph_qpath

+0.00000 +0.00000 +0.00000 # $\Gamma$
+0.50000 +0.00000 +0.00000 # M
+0.33333 +0.33333 +0.00000 # K
+0.00000 +0.00000 +0.00000 # $\Gamma$
+0.00000 +0.00000 +0.50000 # A
+0.50000 +0.00000 +0.50000 # L
+0.33333 +0.33333 +0.50000 # H
+0.00000 +0.00000 +0.50000 # A
+0.50000 +0.00000 +0.50000 # L
+0.50000 +0.00000 +0.00000 # M
+0.33333 +0.33333 +0.00000 # K
+0.33333 +0.33333 +0.50000 # H

dipdip 0
chneut 1

tsmear 0.01

#Definition of the k-point grids
nshiftk 1
shiftk 0. 0. 0.

kptopt 1
ngkpt 8 8 8

#Definition of the unit cell
acell 5.3182111211E+00 5.3182111211E+00 1.1796921858E+01
rprim 0.86602540378 0.5 0.0

-0.86602540378 0.5 0.0
0.0 0.0 1.0

dilatmx 1.05
ecutsm 0.5

#Definition of the atom types
ntypat 2
znucl 23 7

#Defnition of the atoms
natom 5
typat 2*1 3*2
xred

3.3333333333E-01 6.6666666667E-01 6.9822313377E-01
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6.6666666667E-01 3.3333333333E-01 -6.9822313377E-01
1.5745180509E-28 3.1490361018E-28 5.0000000000E-01
1.4170137260E-28 2.4466185515E-28 8.9240154632E-01
1.0792355752E-28 2.5458800511E-28 -8.9240154632E-01

#Definition of the planewave basis set
ecut 40.0

#Definition of the SCF procedure
nstep 100
toldfe 1.0d-10
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