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Introduction

Quantum entanglement is a feature of quantum mechanics that has risen numerous philo-
sophical, physical and mathematical questions since the early days of the quantum theory.
It can be seen as the most non-classical feature of quantum mechanics and has absolutely
no classical equivalent. Consequently, debates took place when it has been described in
1935 by Einstein, Podolsky and Rosen in Ref. [1] and by Schrödinger in Ref. [2] for the
first time. In the latter paper, Schrödinger wrote the now famous citation ‘I would not
call [entanglement] one but rather the characteristic trait of quantum mechanics, the one
that enforces its entire departure from classical lines of thought.’ Indeed, Schrödinger
acknowledged the existence of global states of bipartite systems (systems made of two
subsystems) that cannot be factorized, i.e. that cannot be written as a tensor product of
states of the subsystems. Therefore, for entangled states, only a common description of
the subsystems exists.

Einstein, Podolsky and Rosen proposed in Ref. [1] a thought experiment known today
as the EPR paradox, with the aim of proving the incompleteness of quantum mechanics.
The thought experiment goes as follows: consider two particles prepared in an entangled
state. The particles are then spatially separated and one performs a measurement on
one of them, say the first particle. Given the laws of quantum mechanics, the state of
the other particle collapses in a state dictated by both the outcome of the measurement
on the first particle and the initial state of the composite system. Then, it appears
that the correlations between both particles are stronger then the correlations one could
classically expect. So, EPR argued that the measurement outcomes of both particles
were determined at the creation of the pair and that quantum mechanics missed some
(local) hidden variable that should make the theory a causal and local one. This was in
contradiction with Bohr and Heisenberg’s interpretation of quantum mechanics, known
as Copenhagen interpretation.

This paradox induced many debates within the scientific community but even outside
of it. Indeed, a daily newspaper also reported the EPR paper [3]. The EPR paradox was
resolved in 1964 by Bell, by showing that a local hidden variable theory is incompatible
with the statistical predictions of quantum mechanics [4]. In order to do this, he proved
an inequality (known as Bell’s inequality) that all local theories have to verify. However,
he also showed that the predictions of quantum mechanics violate this inequality. It
meant that the quantumly correlations between entangled states are impossible to obtain
within a classical theory. Then, in 1982, Aspect, Grangier and Roger carried out the first
experimental violation of this inequality [5]. This experiment, called Aspect’s experiment,
confirmed the predictions of quantum mechanics, and thus confirmed its incompatibility
with local theories.

Aspect’s experiment helped the transition of quantum entanglement from purely the-
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oretical considerations and philosophical debates to practical experiments, and it began
to be considered as a powerful resource that enables tasks not permitted by classical
resources. For instance, one can mention quantum cryptography [6], quantum teleporta-
tion [7] and quantum computing [8]. Additionally to the fundamental reason, all these
practical perspectives were a reason why a strong entanglement theory was needed.

However, determining whether a given state is entangled or not is still an open problem
today, both from the theoretical and experimental points of view. This is known as
the separability problem (states with no entanglement are called separable and form a
convex subset of all the quantum states). Theoretically, entanglement is defined by a
mathematical property of quantum states that are described by density operators acting
on Hilbert spaces. Although a general solution is still lacking, the separability problem
has been solved for pure states [9], and for 2 × 2 and 2 × 3 systems [10]. We also note
that from a philosophical point of view, characterising the set of separable states could
answer the question whether the world is more quantum or more classical, i.e. does the
set of states contain more quantum correlated (i.e. entangled) or classically correlated
states?

The aim of this work is to give a selective but up to date review of the separability
problem. Indeed, the two most-cited reviews on this topic were published in 2009 [11,
12]. Keeping this goal in mind, we present and analyse several separability criteria that
appeared relevant to us. We focus on the theoretical perspective of the problem. The
manuscript is structured as follows.

In the first chapter, we present some basic notions of quantum mechanics used through-
out the Chapters 2 and 3. We first introduce quantum states and make the distinction
between pure states (described by state vectors) and mixed states (described by density
operators). Then, we present several concepts used to treat bipartite systems, namely
partial trace, Bloch representation and Schmidt decomposition of quantum states. In
the same section, we get to the heart of the matter by giving the mathematical defini-
tions of entanglement for bipartite systems. Finally, we generalize these definitions to
multipartite systems (systems composed of two or more subsystems).

The second chapter is dedicated to the first separability criteria that have historically
been presented in literature. We begin with the celebrated positive partial transpose cri-
terion, then introduce criteria based on entanglement witnesses and entanglement mea-
sures. The latter are used to detect entanglement, but also to quantify it. The next
section of this chapter is devoted to concurrences, which, as we will see, solve the separa-
bility problem for multipartite pure states. We close the second chapter by introducing
another celebrated criterion, namely the computable cross-norm or realignment criterion.
The positive partial transpose criterion and the computable cross-norm or realignment
criterion are the most well-known separability criteria.

Finally, Chapter 3 is devoted to more recent separability criteria, developed from
2007 to the present year. We begin this last chapter with the correlation matrix criterion
and with the covariance matrix criterion, which are both strong separability criteria
that make use of the Bloch representation of quantum states. Then comes an enhanced
version of the computable cross-norm or realignment criterion, followed by a family of
separability criteria. The next section of this chapter is dedicated to a necessary and
sufficient criterion, but to our knowledge non-computable, developed in 2018. Then
we present a criterion based on positive operator-valued measures. Ultimately, the last
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section is again dedicated to a family of criteria, which appears to unify several of the
above mentioned criteria. We conclude our work by comparing and contrasting the
criteria exposed in both Chapters 2 and 3.
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Notations

Throughout this manuscript, we encounter the following sets build on finite dimensional
Hilbert spaces H:

– L(H): the complex vector space of all linear operators acting on H1;

– HS(H): (called the Hilbert-Schmidt space) the real vector space of all Hermitian
operators acting on H;

– S(H): the set2 of all positive operators acting on H with unit trace, i.e. the set of
all density operators acting on H.

Note that S(H) ⊂ HS(H) ⊂ L(H). For an operator Â ∈ L(H), we denote its complex
conjugate by Â∗, its transpose by ÂT and its Hermitian conjugate (or adjoint) by Â†. Let
|Ψ〉 ∈ H, Â, B̂ ∈ L(H) and {λi}, {σi} be the sets of the eigen- and singular values of Â
respectively (see Appendix A.1). On L(H), we define the standard Hilbert-Schmidt (or
Frobenius) inner product 〈Â|B̂〉 = Tr(Â†B̂). This inner product is well defined since we
are working on finite dimensional spaces and therefore the trace is well defined. We also
define the following norms:

– Euclidian norm: ||Ψ|| ≡
√
〈Ψ|Ψ〉 =

√
Ψ†Ψ;

– Trace (or Ky Fan) norm: ||Â||Tr ≡ Tr
(√

Â†Â
)

=
∑

i σi;

– Hilbert-Schmidt (or Frobenius) norm: ||Â||HS ≡
√

Tr(Â†Â) =
√∑

i σ
2
i ;

Since for a Hermitian operator Â, its singular values are the absolute values of its eigenval-
ues, one has ||Â||Tr =

∑
i |λi| and ||Â||HS =

√∑
i λ

2
i . We denote with Mn(C) (Mn(R))

and with Mn,m(C) (Mn,m(R)) the set of n × n and n × m complex (real) matrices
respectively.

1L(H) is equal to the complex vector space of all bounded operators acting on H since all linear
operators defined on finite-dimensional Hilbert spaces are bounded.

2Note that S(H) is not a vector space.
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Chapter 1

Basic notions of quantum mechanics

In this chapter, basic notions of quantum mechanics are introduced, in order to enable
the full understanding of the separability criteria exposed in Chapters 2 and 3. We
also introduce notations, that hold throughout all chapters. In the first section, we
introduce density operators and their properties. We also introduce the notions of pure
and mixed states, and present a special representation of quantum states, namely the
Bloch representation. The second section is devoted to bipartite systems and we define
in it the partial trace, expand the Bloch representation to bipartite states, present the
Schmidt decomposition and then define the notion of quantum entanglement that sets
the ground for Chapters 2 and 3. Finally, in the last section we expand the definitions of
quantum entanglement to multipartite systems.

1.1 Quantum states and density operators

1.1.1 Pure states

In classical mechanics, a system is completely characterised by its position and momentum
at any time. Given these two quantities at a certain time t0, one can determine the
position and momentum of the system at any other time by solving the classical equations
of motion as given by Newton’s Second Law,

dp

dt
=
∑
i

Fi, (1.1)

with p being the momentum of the system and {Fi} being the set of all external forces
applied to the system. In quantum mechanics, this is no longer true. The concepts of
position and momentum lose their classical meanings and the system is now characterised
by a normalised state vector belonging to a Hilbert space. The evolution of the state
vector is given by the Schrödinger Equation,

i~
d

dt
|Ψ〉 = Ĥ |Ψ〉 , (1.2)

with |Ψ〉 being the state vector of the system and Ĥ being the Hamiltonian of the system.
If the state of the system is truly known, the system is said to be in a pure state. However,
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pure states are not the most general states one could think about. A quantum system
can also be in a classical probabilistic mixture of pure states. The system is then said to
be in a mixed state [13].

Let |Ψ〉 be the state vector (also called the state |Ψ〉) of a system belonging to a
Hilbert space H of dimension d. As we have seen before, state vectors are normalised.
Thus we only consider vectors with unit norm in this work. We can define the density
operator ρ̂, an operator acting on H associated to the state vector |Ψ〉, as the projection
operator

ρ̂ ≡ |Ψ〉 〈Ψ| . (1.3)

Its action on state vectors is

ρ̂ |φ〉 = |Ψ〉 〈Ψ|φ〉 = 〈Ψ|φ〉 |Ψ〉 , ∀ |φ〉 ∈ H. (1.4)

The density operator, also often called density matrix or even state of the system, has a
unit trace and is positive semi-definite. Indeed, if {|i〉 : i = 1, ..., d} is an orthonormal
basis of H, we have

Tr(ρ̂) =
d∑
i=1

〈i|ρ̂|i〉 =
d∑
i=1

〈i|Ψ〉 〈Ψ|i〉 =
d∑
i=1

〈Ψ|i〉 〈i|Ψ〉 = 〈Ψ|1|Ψ〉 = 1, (1.5)

〈φ|ρ̂|φ〉 = 〈φ|Ψ〉 〈Ψ|φ〉 = 〈φ|Ψ〉 〈φ|Ψ〉∗ = |〈φ|Ψ〉|2 ≥ 0, ∀φ ∈ H (1.6)

and

〈φ|ρ̂|χ〉∗ = (〈φ|Ψ〉 〈Ψ|χ〉)∗ = 〈Ψ|φ〉 〈χ|Ψ〉
= 〈χ|Ψ〉 〈Ψ|φ〉 = 〈χ|ρ̂|φ〉 ∀ |φ〉 , |χ〉 ∈ H ⇔ ρ̂ = ρ̂†

(1.7)

where in Eq. (1.5) we used the completeness relation of basis in vector states,
∑

i |i〉 〈i| =
1. Since the density operator is a projector, one has Tr(ρ̂2) = 1. In the next section, we
see that this is no longer true for mixed states. The expectation value of an observable
represented by a Hermitian operator Â acting on H is given by 〈Â〉Ψ = 〈Â〉ρ = Tr(Âρ̂)
and if the state |Ψ〉 evolves accordingly to Eq. (1.2), then the evolution of ρ̂ is given by

i~
d

dt
ρ̂ = [Ĥ, ρ̂]. (1.8)

1.1.2 Mixed states

Now, let us suppose that the state of a system is not perfectly known and that the system
is in a classical probabilistic mixture of pure states. This means that the system is in
some state |ψ1〉 with a probability p1, in some state |ψ2〉 with a probability p2, and so on,
with all probabilities summing to one and all states belonging to the same Hilbert space
H. This is what is called a mixed state. The state can then no longer be described by a
single state vector since it is characterised by a set of states vectors, together with their
respective probabilities. A convenient object to represent these states is the mixed state
density operator, an operator acting on the Hilbert space H defined as

ρ̂ ≡
L∑
i=1

pi |ψi〉 〈ψi| =
L∑
i=1

piρ̂i (1.9)
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with L > 1, pi > 0,
∑L

i=1 pi = 1 (the pis are called convex weights) and where ρ̂i is the
density operators of the pure state |ψi〉 ∈ H, i = 1, . . . , L. The density operator of a
mixed state has also a unit trace and is also positive semi-definite. Indeed,

Tr(ρ̂) =
L∑
i=1

piTr(ρ̂i) =
L∑
i=1

pi = 1, (1.10)

〈φ|ρ̂|φ〉 =
L∑
i=1

pi 〈φ|ρ̂i|φ〉 ≥ 0, ∀ |φ〉 ∈ H (1.11)

and ρ̂ is Hermitian since it is a real linear combination of Hermitian operators. As
mentioned before, density operators of mixed states are not projectors and one has, in
general, Tr(ρ̂2) ≤ 1 with Tr(ρ̂2) = 1 for pure states and Tr(ρ̂2) < 1 for mixed states.

Proof. Let ρ̂ be a state as in Eq. (1.9). One has

Tr(ρ̂2) =
d∑
i=1

〈i|ρ̂2|i〉 =
d∑
i=1

L∑
j,k=1

pjpk 〈i|ψj〉 〈ψj|ψk〉 〈ψk|i〉

=
d∑
i=1

L∑
j,k=1

pjpk 〈ψj|ψk〉 〈ψk|i〉 〈i|ψj〉

=
L∑

j,k=1

pjpk| 〈ψj|ψk〉 |2 ≤
L∑

j,k=1

pjpk = 1,

(1.12)

where the equality holds if and only if L = 1, i.e. for pure states.

It is proven in Section 1.1.3 that Tr(ρ̂2) ≥ 1/d, where the equality holds only for states
proportional to the identity, i.e. for ρ̂ = 1/d. So, one can write

1

d
≤ Tr(ρ̂2) ≤ 1. (1.13)

Quantum states can be either pure or mixed, and in order to quantify how much a given
state is mixed, the notion of purity has been defined.

Definition 1 (Purity [14]). The (standard) purity Π of a state ρ̂ acting on a Hilbert
space H of dimension d is

Π(ρ̂) ≡ dTr(ρ̂2)− 1

d− 1
.

Eq. (1.13) yields
0 ≤ Π(ρ̂) ≤ 1 (1.14)

with
Π(ρ̂) = 0⇔ ρ̂ is pure (1.15)

and

Π(ρ̂) = 1⇔ ρ̂ =
1

d

∑
i

|i〉 〈i| = 1

d
1. (1.16)
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The latter state is called maximally mixed state.
For mixed states, the expectation value of an observable Â is also given by Tr(Âρ̂) and

the evolution of ρ̂ is given by Eq. (1.8) as well. So far, we wrote that a density operator
is defined as in Eq. (1.9) and has, as properties, a unit trace and semi-definite positivity.
Conversely, if an arbitrary operator is positive semi-definite and has a unit trace, it may
represent a system in a probabilistic mixture of pure states.

Proof. Let ρ̂ be a positive semi-definite operator with unit trace. Using the spectral
decomposition of operators, one can write

ρ̂ =
d∑
i=1

λi |φi〉 〈φi| , (1.17)

where λi (i = 1, . . . , d) and |φi〉 (i = 1, . . . , d) are respectively the eigenvalues and eigen-
vectors of ρ̂. The right hand side of Eq. (1.17) is indeed a density operator since

〈χ|ρ̂|χ〉 ≥ 0 ∀ |χ〉 ∈ H ⇒ 〈φi|ρ̂|φi〉 = λi 〈φi|φi〉 = λi ≥ 0, ∀i (1.18)

and

Tr(ρ̂) = 1⇔
∑
i

λiTr(|φi〉 〈φi|) = 1⇔
∑
i

λi 〈φi|φi〉 = 1⇔
∑
i

λi = 1. (1.19)

Therefore, ρ̂ represents a system in a probabilistic mixture of pure states with a prob-
ability λi to be in the state |φi〉, ∀i. It should be noted that some eigenvalues may be
zero. The states represented by eigenvectors associated to zero eigenvalues are obviously
not a part of the probabilistic mixture.

1.1.3 Bloch representation of quantum states

The Bloch (sphere) representation of quantum states was first introduced in the context
of quantum information theory, for two-dimensional systems. It turned out to be a very
useful tool in this context and has thus been expanded to higher dimensional systems [15].
Respecting that, in this section we first introduce this representation for two-dimensional
systems (qubits), then generalise the concept to arbitrary d-dimensional systems (d ≥ 2,
qudits).

Single qubit

In quantum information, the basic object is the quantum bit, shortened qubit. A qubit is
a two-level (two-dimensional) system described by a state vector belonging to a Hilbert
space H of dimension 2. First, let us focus on pure states. The state of a qubit can be
written as

|Ψ〉 = α |0〉+ β |1〉 (1.20)

with α, β being complex numbers that verify |α|2 + |β|2 = 1 (called normalisation con-
dition, since state vectors are normalised) and where {|0〉 , |1〉} is an orthonormal basis
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|Ψ〉

x1

x2

|0〉
x3

|1〉

φ

θ

Figure 1.1: Bloch sphere

of the Hilbert space called computational basis1. From the normalisation condition, one
can choose α = eiφ1 cos

(
θ
2

)
and β = eiφ2 sin

(
θ
2

)
(with φ1, φ2 ∈ [0, 2π[ and θ ∈ [0, π] being

real parameters) and therefore rewrite Eq. (1.20) as

|Ψ〉 = eiφ1 cos

(
θ

2

)
|0〉+ eiφ2 sin

(
θ

2

)
|1〉

= eiφ1
[
cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉
] (1.21)

with φ = φ2 − φ1, and since two quantum states are indistinguishable from one another
if they only differ from a global phase [13], one can write

|Ψ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉 . (1.22)

The real parameters θ and φ can be interpreted as angles and can therefore be used to
represent the state |Ψ〉 on a 3D-sphere of radius 1. This sphere is called Bloch sphere
and is represented in Figure 1.1. The vector (1; θ;φ) is called Bloch vector (or coherence
vector) of the state |Ψ〉.

As we have seen in Section 1.1.2, some quantum systems cannot be described by state
vectors and hence all qubits states cannot be written as in Eq. (1.20). Let us consider a
qubit in a mixed state described by a density operator ρ̂. This density operator can be
written as (see Ref. [16] or see single qudit case hereafter)

ρ̂ =
1

2
1+

1

2
r · σ̂, (1.23)

1In a two-dimensional Hilbert space H, the computational basis states are |0〉 and |1〉. They form
an orthogonal basis of H, {|0〉 , |1〉}. This basis generalises to d-dimensional Hilbert spaces as {|i〉 : i =
0, . . . , d − 1}, where all basis states are orthogonal. Then, for N -partite systems with Hilbert space
Htot = H1 ⊗ · · · ⊗ HN and with dn, dimension of Hn (n = 1, . . . , N), the computational basis reads
{|i1, . . . , iN 〉 ≡ |i〉 : in = 0, . . . , dn − 1 : n = 1, . . . , N}, again with an orthonormality relation between all
basis elements [16].
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where σ̂ = (σ̂1; σ̂2; σ̂3) is a vector of operators containing the three Pauli operators (see
Appendix A.2.1) and where r ∈ R3 is a real vector called the Bloch vector of the state
ρ̂. We note that together with the identity operator, the Pauli operators from a basis
of HS(H) and therefore any hermitian operator of HS(H) can be written as a linear
combination of these four operators. The decomposition of Eq. (1.23) is called Bloch
representation of the state ρ̂. The Pauli operators are traceless, which assures the unit
trace of ρ̂ in Eq. (1.23). However, in order to assure the positivity of ρ̂ in Eq. (1.23), one
needs to introduce the following condition on the Bloch vector r:

|r| ≤ 1, (1.24)

where the equality holds if and only if the state represented by the Bloch vector is pure.

Proof. Let ρ̂ be the state of a qubit system and consider its Bloch representation as in
Eq. (1.23). Since Tr(ρ̂2) ≤ 1, one has

Tr(ρ̂2) =
1

4
Tr(1) +

1

2

3∑
i=1

riTr(λ̂i) +
1

4

3∑
i,j=1

rirj Tr(λ̂iλ̂j)︸ ︷︷ ︸
2δij

=
1

2
+

1

2

3∑
i=1

r2
i︸ ︷︷ ︸

|r|2

≤ 1

⇔ |r| ≤1,

(1.25)

using σ̂i
2 = 1, ∀i, and the trace properties of the Pauli matrices, that is (see Appendix

A.2.1)

Tr(σ̂i) = 0, ∀i (1.26)

Tr(σ̂iσ̂j) = 2δij ∀i, j. (1.27)

We note that for two-dimensional systems, the positivity condition is equivalent to
Tr(ρ̂2) ≤ 1 [17]. For higher dimensional systems, this is no longer true.

This means that pure states are on the surface of the Bloch sphere of Figure 1.1,
whereas mixed states are inside the sphere. We call Bloch-vector space the set of all
vectors with |r| ≤ 1, i.e. all vectors inside the ball delimited by the Bloch sphere.

Single qudit (d ≥ 2)

Now, let us expand the notion of Bloch representation to qudits. First, we notice that
the set of traceless Hermitian SU(d) generators (see Appendix A.2)

{λ̂i : i = 1, . . . , d2 − 1} (1.28)

is a set of d2 − 1 linearly independent Hermitian operators, which verify the following
orthogonality relation:

Tr(λ̂iλ̂j) = 2δij. (1.29)
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Together with the identity operator 1, they form a basis of the real Hilbert space HS(H).
Indeed, the set

B = {1, λ̂i : i = 1, . . . , d2 − 1} (1.30)

is made of d2 linearly independent Hermitian operators. Since the generators are traceless,
they all are orthogonal to the identity operator,

Tr(1λ̂i) = 0 ∀i = 1, . . . , d2 − 1. (1.31)

Within this basis B, every density operator ρ̂ acting on H of dimension d can be
decomposed as2

ρ̂ =
1

d
1+

1

2

d2−1∑
i=1

riλ̂i, (1.32)

where the real coefficients ri are equal to Tr(λ̂iρ̂). Indeed,

Tr(λ̂iρ̂) =
1

d
Tr(λ̂i) +

1

2

∑
j

rjTr(λ̂iλ̂j) = ri. (1.33)

We notice that for any operator Â ∈ HS(H) developed in the basis B, the coefficient in
front of the identity operator is always equal to the trace of Â divided by the dimension
of H (here d).

The decomposition of Eq. (1.32) is the Bloch representation of the state ρ̂ and the
vector r = (r1, ..., rd2−1) is the Bloch vector of the state ρ̂. Bloch vectors are real vectors,
since their components are nothing but the expectation values of the generators of SU(d),
which are Hermitian operators. Note that the Bloch vector r completely characterises
the state ρ̂. There is a one-to-one correspondence between r and ρ̂. When d = 2, one
naturally finds Eq. (1.23).

From Eq. (1.32) it is easy to show that Tr(ρ̂2) ≥ 1/d. Indeed, one has

Tr(ρ̂2) =
1

d2
Tr(1) +

1

d

∑
i

riTr(λ̂i) +
1

4

∑
i,j

rirjTr(λ̂iλ̂j)

=
1

d
+

1

2
|r|2 ≥ 1

d
.

(1.34)

This also shows that Tr(ρ̂2) = 1/d⇔ ρ̂ = 1/d.

Positivity condition

As stated above, every density operator of a qudit system can be written in the form
of Eq. (1.32). However, the converse is not necessarily true, i.e. every operator of the
form of Eq. (1.32) does not automatically represent a physical system. This derives
from the conditions that operators have to verify in order to be density operators. The
Hermiticity and unit trace conditions are immediately satisfied by Eq. (1.32), but the
positivity condition adds restrictions to the Bloch vectors. For two-dimensional systems,

2We recall that ρ̂ ∈ HS(H).
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the positivity condition is equivalent to Tr(ρ̂2) ≤ 1 [17], which has been proven to be
equivalent to

|r| ≤ 1, (1.35)

where the equality holds if and only if ρ̂ is a pure state. This leads to the Bloch sphere (of
radius 1), which contains all physical states of dimension 2 and thus is called Bloch-vector
space. For d-dimensional systems, the condition expressed by Eq. (1.35) generalises as

|r| ≤
√

2(d− 1)

d
. (1.36)

Proof.

Tr(ρ̂2) =
1

d2
Tr(1) +

1

d

∑
i

riTr(λ̂i) +
1

4

∑
ij

rirj Tr(λ̂iλ̂j)︸ ︷︷ ︸
2δij

=
1

d
+

1

2

∑
i

r2
i︸ ︷︷ ︸

|r|2

≤ 1

⇔ |r| ≤
√

2(d− 1)

d

(1.37)

However, for d > 2, the condition Tr(ρ̂2) ≤ 1 is no longer equivalent to the positivity
of ρ̂ and therefore Eq. (1.36) is only a necessary condition on Bloch vectors. This means
that the Bloch-vector space for d-dimensional systems (d > 2) is a subset of a ball of
radius

√
2(d− 1)/d, in which all vectors give rise to positive and traceless operators, i.e.

density operators. The Bloch-vector space is given by the following theorem:

Theorem 1 (Bloch-vector space theorem [17]). Let r = (r1, . . . , rd2−1) be the Bloch vector
of a state ρ̂ ∈ S(H) and let {λ̂i : i = 1, . . . , d2 − 1} be the set of the SU(d) generators.
Let ai(r) be the coefficients of the characteristic polynomial

det(x1− ρ̂) = det

((
x− 1

d

)
1− 1

2

∑
i

riλ̂i

)
.

The Bloch-vector space for a d-dimensional system is

B(Rd2−1) = {r ∈ Rd2−1|ai(r) ≥ 0, ∀i = 1, . . . , d}.
In order to represent a physical system, a vector r associated to an operator ρ̂ through

Eq. (1.32) has to be in B(Rd2−1), i.e. verify the d conditions ai(r) ≥ 0. These conditions
have been explicitly written down in Ref. [17] and read

a1(r) = 1 ≥ 0, (1.38)

a2(r) =
1

2!

(
1− Tr(ρ̂2)

)
≥ 0, (1.39)

a3(r) =
1

3!

(
1− 3Tr(ρ̂2) + 2Tr(ρ̂3)

)
≥ 0, (1.40)

a4(r) =
1

4!

(
1− 6Tr(ρ̂2) + 8Tr(ρ̂3) + 3

(
Tr(ρ̂2)

)2 − 6Tr(ρ̂4)
)
≥ 0, (1.41)

a5(r) = ... (1.42)
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Note that the first inequality is trivially satisfied, which leaves us with d− 1 inequalities
and that second inequality is nothing else than Tr(ρ̂2) ≤ 1 which is equivalent to Eq.
(1.36). This set of inequalities can also be expressed using the Bloch vector r and the
constants gijk of SU(d) group given in Eq. (A.6) (again, see Appendix A.2). One gets

a1(r) =1 ≥ 0, (1.43)

a2(r) =
1

2!

(
d− 1

d
− 1

2
|r|2
)
≥ 0, (1.44)

a3(r) =
1

3!

(
(d− 1)(d− 2)

d2
− 3(d− 2)

2d
|r|2 +

1

2

∑
ijk

gijkλ̂iλ̂jλ̂k

)
≥ 0, (1.45)

a4(r) =
1

4!

(
(d− 1)(d− 2)(d− 3)

d3
− 3(d− 2)(d− 3)

d3
|r|2 +

3(d− 2)

4d
|r|4

+
2(d− 2)

d

∑
ijk

gijkλ̂iλ̂jλ̂k −
3

4

∑
ijklm

gijkgklmλ̂iλ̂jλ̂lλ̂m

)
≥ 0,

(1.46)

a5(r) =... (1.47)

Note that ai has meaning only for i ≤ d. For d = 2, we obtain the norm condition on
r leading to the Bloch sphere. For d-dimensional systems with d > 2, the structures
generated by this set of inequalities are not symmetric [17]. It means that unlike the two-
dimensional scenario where the Bloch-vector space is a ball, higher dimensional Bloch-
vector spaces are non-trivial structures. We can conclude this section by saying that any
operator of the form of Eq. (1.32) with r = (r1, . . . , rd−1) satisfying Eqs. (1.43) to (1.47)
is a density operator, i.e. that it represents a physical system.

1.2 Bipartite systems

In this section, we define notions linked to bipartite systems, i.e. systems that are com-
posed of two subsystems. In Section 1.2.4, we define bipartite entanglement, which is at
the heart of this work.

Consider a bipartite system AB composed of two subsystems, A and B. The Hilbert
space HAB associated to the global system is given by the tensor product of the Hilbert
spaces associated to the subsystems i.e.

HAB = HA ⊗HB, (1.48)

where HA and HB are the Hilbert spaces associated to the subsystems A and B, respec-
tively. The dimension dAB of HAB is given by the product of the dimensions dA of HA

and dB of HA, dAB = dAdB. These notations hold throughout the whole manuscript.
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1.2.1 Partial trace

Let ρ̂ be the state of the global system AB and let

{|ai〉 : i = 1, . . . , dA}, {|bk〉 : k = 1, . . . , dB} (1.49)

be orthonormal basis of HA and HB, respectively. Hence the set of product states3

{|ai, bk〉 : i = 1, . . . , dA; k = 1, . . . , dB} is a basis of HAB [13]. The state ρ̂ can be
expanded as

ρ̂ =

dA∑
i,j=1

dB∑
k,l=1

cijkl |ai, bk〉 〈aj, bl| , (1.50)

where cijkl are complex coefficients. We define the partial trace operators TrB and TrA
by their actions on the density operator,

TrB(ρ̂) ≡ ρ̂(A), 〈ai|ρ̂(A)|aj〉 =

dB∑
k=1

〈ai, bk|ρ̂|aj, bk〉 ∀i, j = 1, . . . , dA (1.51)

and

TrA(ρ̂) ≡ ρ̂(B), 〈bk|ρ̂(B)|bl〉 =

dA∑
i=1

〈ai, bk|ρ̂|ai, bl〉 ∀k, l = 1, . . . , dB. (1.52)

So, from Eq. (1.50), we get

ρ̂(A) =
∑
m

∑
ijkl

cijkl 〈bm|ai, bl〉 〈aj, bk|bm〉 =
∑
ijm

cijmm |ai〉 〈aj| , (1.53)

and analogously for ρ̂(B). The operators ρ̂(A) and ρ̂(B) are positive and of trace 1, so they
potentially represent states in HA and HB respectively.

Proof. The operators ρ̂(A) and ρ̂(B) are indeed positive, since

〈χ|ρ̂|χ〉 ≥ 0 ∀ |χ〉 ∈ HAB ⇒
∑
m

〈φ, bm|ρ̂|φ, bm〉 ≥ 0 ∀ |φ〉 ∈ HA

⇔
∑
m

∑
ijkl

cijkl 〈φ, bm|ai, bk〉 〈aj, bl|φ, bm〉 ≥ 0 ∀ |φ〉 ∈ HA

⇔
∑
m

∑
ijkl

cijkl 〈φ|ai〉 〈bm|bk〉 〈aj|φ〉 〈bl|bm〉 ≥ 0 ∀ |φ〉 ∈ HA

⇔
∑
ijm

cijmm 〈φ|ai〉 〈aj|φ〉 ≥ 0 ∀ |φ〉 ∈ HA

⇔〈φ|ρ̂(A)|φ〉 ∀ |φ〉 ∈ HA

(1.54)

and analogously for ρ̂(B). They are of trace 1,

Tr(ρ̂(A)) =
∑
i

〈ai|ρ̂(A)|ai〉 =
∑
i

∑
k

〈ai, bk|ρ̂|ai, bk〉 = Tr(ρ̂) = 1 (1.55)

and analogously for ρ̂(B).

3A product state |ψ〉 is a state in HAB that can be written as |ψ〉 = |φ〉⊗ |χ〉 ≡ |φ⊗ χ〉 = |φ, χ〉, with
|φ〉 ∈ HA and |χ〉 ∈ HB .
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The operators ρ̂(A) and ρ̂(B) are called the reduced states of the state ρ̂. The point in
these operators is that, for operators of the form Â ⊗ 1 (1 ⊗ B̂), the subsystem A (B)
can be seen as if it were in the state ρ̂(A) (ρ̂(B)).

Proof. Let ρ̂ be a bipartite density operator and let ρ̂(A) be its partial trace on the second
subsystem.

Tr((Â⊗ 1)ρ̂) =
∑
ik

〈ai, bk|(Â⊗ 1)ρ̂|ai, bk〉

=
∑
ik

∑
jl

〈ai, bk|Â⊗ 1|aj, bl〉 〈aj, bl|ρ̂|ai, bk〉

=
∑
ik

∑
jl

〈ai|Â|aj〉 〈bk|bl〉 〈aj, bl|ρ̂|ai, bk〉

=
∑
ij

〈ai|Â|aj〉
∑
k

〈aj, bk|ρ̂|ai, bk〉

=
∑
ij

〈ai|Â|aj〉 〈aj|ρ̂(A)|ai〉

=
∑
i

〈ai|Âρ̂(A)|ai〉

= Tr(Âρ̂(A)).

(1.56)

This proof goes analogously for ρ̂(B).

We note that in general, ρ̂ 6= ρ̂(A) ⊗ ρ̂(B).

1.2.2 Bipartite Bloch representation

The Bloch representation introduced in Section 1.1.3 can be expanded to bipartite sys-
tems, and is widely used in separability criteria. Let us consider a density operator ρ̂
associated to a dA × dB bipartite system AB. This operator acts on HAB = HA ⊗HB.
Let

BA =
{
1, λ̂i : i = 1, . . . , d2

A − 1
}

and BB =
{
1, σ̂j : j = 1, . . . , d2

B − 1
}

(1.57)

be orthogonal basis of the real Hilbert spaces HS(HA) and HS(HB) respectively, with
{λ̂i : i = 1, . . . , d2

A − 1}, generators of SU(dA) and {σ̂j : j = 1, . . . , d2
B − 1}, generators of

SU(dB) as in Section 1.1.3 (see Appendix A.2). Then

BAB =
{
1⊗ 1, λ̂i ⊗ 1,1⊗ σ̂j, λ̂i ⊗ σ̂j : i = 1, . . . , d2

A − 1; j = 1, . . . , d2
B − 1

}
(1.58)

is a basis ofHS(HAB)4. One can develop ρ̂ on BAB as the following real linear combination

ρ̂ =
1

dAdB
1⊗ 1+

1

2dB

d2A−1∑
i=1

riλ̂i ⊗ 1+
1

2dA

d2B−1∑
j=1

sj1⊗ σ̂j +
1

4

d2A−1∑
i=1

d2B−1∑
j=1

Tijλ̂i ⊗ σ̂j, (1.59)

4We note that HS(HAB) = HS(HA) ⊗HS(HB). Indeed, both HS(HAB) and HS(HA) ⊗HS(HB)
are of dimension (dAdB)2 and one can easily show that HS(HA)⊗HS(HB) ⊆ HS(HAB).
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where ri = Tr
(

(λ̂i ⊗ 1)ρ̂
)

, sj = Tr
(

(1⊗ σ̂j)ρ̂
)

and Tij = Tr
(
λ̂i ⊗ σ̂j)ρ̂

)
. Indeed,

Tr((λ̂i ⊗ 1)ρ̂) =
1

dAdB
Tr(λ̂i ⊗ 1) +

1

2dB

d2A−1∑
j=1

rjTr(λ̂jλ̂i ⊗ 1)

+
1

2dA

d2B−1∑
j=1

sjTr(λ̂i ⊗ σ̂j) +
1

4

d2A−1∑
j=1

d2B−1∑
k=1

TjkTr(λ̂jλ̂i ⊗ σ̂k)

=
1

2dB

d2A−1∑
j=1

rjTr(λ̂jλ̂i)Tr(1) = ri, ∀i = 1, . . . , d2
A − 1,

(1.60)

with analogous proofs for sj and Tij (i = 1, . . . , d2
A − 1; j = 1, . . . , d2

B − 1). Eq. (1.59)
is the bipartite Bloch representation of the bipartite state ρ̂. In general, the N -partite
Bloch representations of N -partite systems5 are easy to find, although tedious to write
down for N > 2. The vectors r = (r1, . . . , rd2A−1) and s = (s1, . . . , sd2B−1) are the Bloch
vectors of the reduced states of ρ̂.

Proof. Keeping in mind that the generators of SU(d) groups are traceless, one gets

ρ̂(A) = TrB(ρ̂) =
1

dA
1+

1

2

d2A−1∑
i=1

riλ̂i (1.61)

and

ρ̂(B) = TrA(ρ̂) =
1

dB
1+

1

2

d2B−1∑
j=1

sjσ̂j, (1.62)

which is nothing but the Bloch representation of states of S(HA) and S(HB) respectively
(see Eq. (1.32)).

The matrix T of matrix elements Tij accounts for the possible correlations between
the subsystems and is therefore called the correlation matrix. Note that if T = 0 then
the state is separable, but the converse is not true.

Normal form

As we will see in Chapters 2 and 3, Bloch representations of density operators are widely
used in separability criteria. However, Eq. (1.59) is somewhat heavy and can be lightened.
Let ρ̂ be a density operator associated to a dA × dB bipartite system AB in the form of
Eq. (1.59). It has been shown in Ref. [18] that every full local rank density operator
can be transformed into a density operator with maximally mixed subsystems6, i.e., for

5Systems composed of N subsystems.
6All bipartite mixed states with non-full local ranks are either reducible to states with full local rank

or entangled [19], so we will not investigate non-full local ranks density operators, for which the normal
form does not always exist. Moreover, for non-full local ranks density operators, normal forms can be
reached arbitrarily closely.
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bipartite states,

ρ̂ −→ ˆ̃ρ =
1

dAdB
1+

1

4

d2A−1∑
i=1

d2B−1∑
j=1

T̃ij(λ̂i ⊗ σ̂j). (1.63)

This transformation is achieved through stochastic local operations assisted by classical
communication, SLOCC7 (also called local filtering operations). This is called the filter
normal form (or simply normal form) of the state ρ̂. The normal form is unique (up to
local unitary transformations) and always non-zero for full-rank states [18]. In practice,
one gets to the normal form using invertible operators F̂A and F̂B with determinants
equal to one8 and applying them to ρ̂ accordingly to

ˆ̃ρ =
(F̂A ⊗ F̂B)ρ̂(F̂A ⊗ F̂B)†

Tr
(

(F̂A ⊗ F̂B)ρ̂(F̂A ⊗ F̂B)†
) . (1.64)

The transformation preserves the entanglement properties of the state ρ̂ and from a
separable decomposition of ˆ̃ρ, it is easy to obtain a separable decomposition of ρ̂.

Proof. First, we notice that Eq. (1.64) can be rewritten as

ρ̂ =
(F̂A ⊗ F̂B)−1 ˆ̃ρ

(
(F̂A ⊗ F̂B)†

)−1

Tr

(
(F̂A ⊗ F̂B)−1 ˆ̃ρ

(
(F̂A ⊗ F̂B)†

)−1
) . (1.65)

We recall that if ˆ̃ρ is separable, it can be written as in Definition 5

ˆ̃ρ =
∑
i

p̃i ˆ̃ρ
(A)
i ⊗ ˆ̃ρ

(B)
i (1.66)

with ˆ̃ρ
(A)
i and ˆ̃ρ

(B)
i being pure states. So, if ˆ̃ρ is separable, then

ρ̂ =

∑
i p̃i

(
F̂−1
A

ˆ̃ρ
(A)
i (F̃ †A)−1

)
⊗
(
F̂−1
B

ˆ̃ρ
(B)
i (F̃ †B)−1

)
∑

j p̃jTr
(
F̂A ˆ̃ρ

(A)
j (F̂ †A)−1

)
Tr
(
F̂B ˆ̃ρ

(B)
j (F̂ †B)−1

)
=
∑
i

p̃iTr(Ai)Tr(Bi)∑
j p̃jTr(Aj)Tr(Bj)

ρ̂Ai ⊗ ρ̂Bi

=
∑
i

piρ̂
A
i ⊗ ρ̂Bi

(1.67)

where we defined

Âi ≡ F̂−1
A

ˆ̃ρ
(A)
i (F̃ †A)−1, B̂i ≡ F̂−1

B
ˆ̃ρ

(B)
i (F̃ †B)−1, (1.68)

7Local operations are operations of the form Â⊗ B̂, i.e. an operation Â on the first subsystem and an
operation B̂ on the second subsystem, that can be applied independently. The term stochastic means
that these operations give unpredictable outcomes. Then, assisted by classical communication means that
the results of the measures of Â and B̂ can be communicated through classical communication. When
the outcomes are predictable, these operations are simply called local operations assisted by classical
communication, LOCC.

8There exist algorithms to obtain to these operators [18].
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ρ̂Ai ≡
F̂−1
A

ˆ̃ρ
(A)
i (F̃ †A)−1

Tr(Âi)
, ρ̂Bi ≡

F̂−1
B

ˆ̃ρ
(B)
i (F̃ †B)−1

Tr(Bi)
, (1.69)

pi ≡
p̃iTr(Ai)Tr(Bi)∑
j p̃jTr(Aj)Tr(Bj)

. (1.70)

The decomposition of Eq. (1.67) is indeed the decomposition of a density operator since∑
i

pi =
∑
i

p̃iTr(Ai)Tr(Bi)∑
j p̃jTr(Aj)Tr(Bj)

= 1, (1.71)

pi ≥ 0 ∀i = 1, ..., L. (1.72)

and the sets {ρ̂(A)
i } and {ρ̂(B)

i } are sets of unit trace and positive operators.

Normal forms are often used to enhance separability criteria, hence are of a great use.

1.2.3 Schmidt decomposition

Let’s consider a bipartite state vector |Ψ〉 ∈ HAB and without loss of any generality let
us assume dA ≤ dB. The state can be decomposed in an arbitrary basis {|ai, bk〉} of HAB

as

|Ψ〉 =

dA∑
i=1

dB∑
k=1

cik |ai, bk〉 , (1.73)

where cik = 〈ai, bk|Ψ〉 are complex coefficients. For any state |Ψ〉, there exist two or-
thonormal basis {|ui〉 : i = 1, . . . , dA} and {|vk〉 : k = 1, . . . , dB} of HA and HB respec-
tively such that

|Ψ〉 =

dA∑
i=1

σi |ui〉 ⊗ |vi〉 =
r∑

i=1:
σi 6=0

σi |ui〉 ⊗ |vi〉 , σi = 〈ui, vi|Ψ〉 , (1.74)

where the coefficients σi ≥ 0 (i = 1, . . . , dA) satisfy
∑

i σ
2
i = 1 and are the singular values

of the matrix C, with matrix elements cij of Eq. (1.73) [16]. These coefficients σi are
called Schmidt coefficients of |Ψ〉. The number r of non-zero Schmidt coefficients is called
Schmidt rank of |Ψ〉 and Eq. (1.74) is called Schmidt decomposition of |Ψ〉. The Schmidt
rank r ≤ dA gives an idea of the amount of entanglement of a system [16]. Indeed, pure
product states are the only pure states with Schmidt rank of 1 and thus the Schmidt
rank of a bipartite pure state can be used to determine whether the state is separable or
entangled. We say that a pure state is maximally entangled if r = dA and σi = 1/

√
dA

for all i = 1, . . . , dA. For bipartite mixed states, the notion of Schmidt rank generalises
as the Schmidt number.

Definition 2 (Schmidt number [20]). The Schmidt number of a bipartite density operator
ρ̂ is the number k

k ≡ min
{pi,|ψi〉}

{
max
i

{
r
(
|ψi〉

)}}
where the minimum is taken over all decompositions

∑
i pi |ψi〉 〈ψi| of ρ̂.

18



It follows from Definition 2 that for a pure state, its Schmidt rank and Schmidt number
are equal. One can also write the Schmidt decomposition for density operators. For a
density operator ρ̂ acting on HAB with dimension dA × dB (again assuming dA ≤ dB),

there exist two orthonormal basis {Ĝ(A)
i : i = 1, . . . , d2

A} and {Ĝ(B)
k : k = 1, . . . , d2

B} of
SH(HA) and SH(HB) respectively such that [11]

ρ̂ =

(dA)2∑
i=1

σiĜ
(A)
i ⊗ Ĝ

(B)
i , σi = 〈Ĝ(A)

i ⊗ Ĝ
(B)
i 〉ρ , (1.75)

where σi ≥ 0 are the Schmidt coefficients of ρ̂. Elements of {Ĝ(A)
i } and {Ĝ(B)

k } verify the
following orthonormality relation:

Tr
(
Ĝ

(A)
i Ĝ

(A)
j

)
= Tr

(
Ĝ

(B)
i Ĝ

(B)
j

)
= δij. (1.76)

Remark 1. The state ρ̂ may be written as

ρ̂ =

d2A∑
i=1

d2B∑
k=1

CikÂi ⊗ B̂k, (1.77)

where {Âi⊗ B̂k : i = 1, . . . , d2
A; k = 1, . . . , d2

B} is an orthonormal basis of HS(HAB). The
σis are the singular values of the matrix C, with entries Cij [20].

We note that the Schmidt decomposition of any state is easily computable. Indeed,
it is done by applying a singular value decomposition on the matrix C for pure states,
and on the matrix C for mixed states [16, 11].

1.2.4 Bipartite entanglement

In this subsection we define quantum entanglement for bipartite systems. We first focus
on pure states, then expand the definitions to mixed states.

Pure states

As stated previously, a bipartite system can be described by a state vector |Ψ〉 belonging
to the Hilbert space HAB, which can be written as in Eq. (1.73), i.e.

|Ψ〉 =

dA,dB∑
i,j=1

cij |ai, bj〉 , (1.78)

where cij are complex coefficients, {|ai〉 : i = 1, ..., dA} is a basis of HA and {|bi〉 : i =
1, ..., dB} is a basis of HB. The definition of entanglement of bipartite pure states is the
following:

Definition 3 (Separable pure state). A bipartite pure state |Ψ〉 ∈ HAB is called separable
(or product state) if there exist two states |φ〉 ∈ HA and |χ〉 ∈ HB such that |Ψ〉 =
|φ〉 ⊗ |χ〉. Otherwise, the state is called entangled.
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This definition is purely mathematical. From a physical point of view, if a bipartite
state |Ψ〉 is separable, it means that its two subsystems are physically independent. A
separable state |Ψ〉 can be produced locally using classical communication, i.e. produced
by creating two states |ψ〉 and |χ〉 independently. The global state is then |Ψ〉 = |φ〉⊗|χ〉.
The two subsystems may only be classically correlated. So, if one makes a measure Â
the first subsystem and a measure B̂ the second subsystem, i.e. a measure Â⊗ B̂ on |Ψ〉,
one gets

〈Â⊗ B̂〉Ψ = 〈Ψ|Â⊗ B̂|Ψ〉 = 〈φ, χ|Â⊗ B̂|φ, χ〉 = 〈φ|Â|φ〉 〈χ|B̂|χ〉 = 〈Â〉φ 〈B̂〉χ , (1.79)

i.e. the measures on the two subsystems can only be classically correlated. On the other
hand, if the bipartite state |Ψ〉 is entangled, the measurement outcomes are quantumly
correlated. Since entanglement is a purely quantum feature, one says that the measure-
ment outcomes are quantumly correlated (as opposed to classically correlated). The two
subsystems are no longer physically independent and an interaction between them is
needed in order to create the global state |Ψ〉.

Mixed states

A bipartite system in a mixed state is described by a density operator ρ̂ acting on the
Hilbert space HAB,

ρ̂ =
L∑
i=1

pi |ψi〉 〈ψi| , (1.80)

where L > 0 and where pis are convex weights.

Definition 4 (Product state). A bipartite mixed state represented by a density operator
ρ̂ acting on HAB is called a product state if there exist two density operators ρ̂A and ρ̂B
acting on HA and HB respectively such that ρ̂ = ρ̂A ⊗ ρ̂B.

Definition 5 (Separable mixed states). A bipartite mixed state represented by a density
operator ρ̂ acting on HAB is called separable if there exist two sets of L pure density
operators {ρ̂(A)

i } and {ρ̂(B)
i } and a set of convex weights {pi > 0 :

∑L
i=1 pi = 1} such that

ρ̂ =
∑L

i=1 pi ρ̂
(A)
i ⊗ ρ̂

(B)
i , i.e. if ρ̂ can be written as a convex combination9 of separable

pure states. Otherwise, the state is called entangled.

From these definitions, we see that a product state is always a separable state.

1.3 Multipartite systems

In this section, we expand the definitions of quantum entanglement of bipartite systems
to multipartite systems. A multipartite system is a system composed of N subsystems
(called a N-partite system). The Hilbert space Htot associated to the global system is the
tensor product of the Hilbert spaces associated to all the parts of the multipartite system
i.e.

Htot = H1 ⊗ · · · ⊗ HN , (1.81)

9A convex combination is a linear combination where all coefficients are non-negative and sum to one.
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where Hn is the Hilbert space associated to the subsystem n (n = 1, . . . , N). The
dimension dtot of Htot is given by the product of the dimensions dn of all Hn, dtot =∏N

n=1 dn.

1.3.1 Multipartite entanglement

Again, we first define entanglement for pure states and then expand the definitions to
mixed states.

Pure states

A pure N -partite system can be described by a state vector belonging to the Hilbert
space Htot

|Ψ〉 =

d1,...,dN∑
i1,...,iN=1

ci1,...,iN |a
(1)
i1
〉 ⊗ ...⊗ |a(N)

iN
〉 , (1.82)

where ci1,...,iN are complex coefficients and where {|a(n)
in
〉 ; i = 1, ..., dn} is a basis of Hn

(n = 1, ..., N). This state can be either fully separable, m-separable or entangled.

Definition 6 (Fully separable pure state). A N -partite pure state |Ψ〉 ∈ Htot is called
fully separable (or product state) if there exist N states |φn〉 ∈ Hn (n = 1, . . . , N) such
that |Ψ〉 = |φ1〉 ⊗ ...⊗ |φN〉.

If a state is not fully separable, it contains some entanglement, i.e. some (or all) of
the subsystems are entangled.

Definition 7 (m-separable pure state). A N -partite pure state |Ψ〉 ∈ Htot is called
m-separable with respect to a given partition {I1, . . . , Im} (1 < m < N) where Ii are
disjoint subsets of I = {1, . . . , N},

⋃k
j=1 Ij = I if there exists m states |φIi〉 ∈ HIi such

that |Ψ〉 = |φI1〉 ⊗ ...⊗ |φIm〉.
Definition 8 (Entangled pure state). A N -partite pure state is called entangled if it is
neither fully-separable nor m-separable (1 < m < N).

Mixed states

In order to obtain the definitions of entanglement of a N -partite mixed state ρ̂ acting on
Htot, we generalise the definitions of entanglement for pure states using convex combina-
tions.

Definition 9 (Fully separable mixed state). A N -partite mixed state ρ̂ acting on Htot is
called fully separable if ρ̂ can be written as a convex combination of fully separable pure
states.

Definition 10 (m-separable mixed state). A N -partite mixed state ρ̂ acting on Htot

is called m-separable with respect to a given partition if it can be written as a convex
combination of m-separable (with respect to the same partition) pure states.

Finally, we have the definition of entangled mixed states.

Definition 11 (Entangled mixed states). A N -partite mixed state is called entangled if
it is neither fully-separable nor m-separable (1 < m < N).
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Chapter 2

First separability criteria

In this chapter, we expose several relevant separability criteria that have historically been
the first to appear in literature. We focus on the well-known separability criteria that are
essential to the topic of quantum entanglement. So far, since the separability problem is
still an open one, separability criteria are either necessary and sufficient, but not practical
(i.e. redefinitions of entanglement) or are (easily) computable, but only necessary or
sufficient. For each criterion, we explicitly state to which category it belongs. All criteria
exposed here first focus on bipartite entanglement, and some are later generalised to
multipartite entanglement. In this chapter, we try to present the separability criteria
in chronological order, which makes it easier to highlight the links between them. In
order to compare the different criteria, we define the following relative strengths: two
separability criteria C1 and C2 can be

– equivalent: C1 and C2 detect exactly the same states;

– complementary: C1 can detect states not detected by C2 and vice versa;

– C1 is stronger than C2: C1 can detect all states detected by C2 and at least one
more;

– C1 is weaker than C2: all states detected by C1 are detected by C2 and C2 can
detect at least one more.

Throughout this chapter, we mainly consider bipartite systems. Unless otherwise stated,
the states representing the systems belong to a Hilbert space HAB = HA⊗HB of dimen-
sion dAB = dAdB, with HA (HB) of dimension dA (dB) being the Hilbert space associ-
ated to the first (the second) subsystem. We will also denote by {|ai〉 : i = 1, . . . , dA}
({|bk〉 : k = 1, . . . , dB}) an arbitrary basis of HA (HB). In the case of multipartite sys-
tems, systems are composed of N subsystems, each one associated to a dn-dimensional
Hilbert space Hn (n = 1, . . . , N). The Hilbert space associated to the global multipartite
system is Htot = H1 ⊗ · · · ⊗ HN , of dimension dtot = d1 . . . dN .

2.1 Positive partial transpose criterion

The most remarkable entanglement criterion is probably the positive partial transpose
(PPT) criterion (also called Peres-Horodecki criterion), due to its simplicity and effi-
ciency. In order to write the criterion, we first need to introduce the operation of partial
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transposition1. Consider a bipartite system of two subsystems, namely A and B. Let us
recall that any bipartite density operator ρ̂ acting on HAB can be written in the form of
Eq. (1.50), that is to say

ρ̂ =
∑
i,j

∑
k,l

cijkl |ai, bk〉 〈aj, bl| . (2.1)

The partial transposition of ρ̂ is an operation on the subsystem A or on the subsystem
B. We denote the partial transposition on A (on B) by ρ̂TA (ρ̂TB). These operations are
defined by their actions on ρ̂ as

ρ̂TA ≡
∑
i,j

∑
k,l

cjikl |ai, bk〉 〈aj, bl| ,

ρ̂TB ≡
∑
i,j

∑
k,l

cijlk |ai, bk〉 〈aj, bl| .
(2.2)

We note that partial transpositions are related to the usual transposition operation
through (

ρ̂TA
)TB = ρ̂T , (2.3)

and that
(
ρ̂TA
)TA = ρ̂ =

(
ρ̂TB
)TB . Now, a state ρ̂ is said to be PPT (or that it has a

positive partial transpose) when its partial transposition is positive semi-definite, i.e.

ρ̂TA ≥ 0 (2.4)

which is equivalent to ρ̂TB ≥ 0. The PPT criterion reads

Theorem 2 (PPT criterion [10]). If a state ρ̂ is separable, then it is PPT.

In other words, if a state ρ̂ is not PPT (called NPT, for negative partial transpose),
then it is entangled. This simple criterion was first introduced by Peres in 1996 [21]
as a necessary condition for the separability of a quantum state. In the same paper, he
conjectured that it was also a sufficient condition. The same year, Horodecki et al. proved
that it is indeed a necessary and sufficient condition for the separability of 2×2 and 2×3
systems, but not for higher dimensional systems (the condition is then only necessary,
as in Theorem 2 [10]), making the PPT criterion an easy computable necessary criterion
for separability. This means there exist PPT entangled states2. Thus, we may consider
that the separability problem is reduced to checking whether a PPT state is entangled
or separable. We note that in general, the knowledge of the whole density operator is
needed in order to apply the PPT criterion.

1Not to be mistaken with the partial trace, introduced in Section 1.2.1.
2PPT entangled states are sometimes abusively referred to as bound entangled states. Bound entangled

states are undistillable entangled states, i.e. states that are entangled but for which there exists no LOCC
protocol that allows us to extract a maximally entangled state (see Ref.[15]) from them, or their copies
[15]. All PPT entangled states are indeed bound entangled but the converse is not true, there exists
NPT bound entangled states [15].
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2.2 Entanglement witnesses

One way to characterise entanglement is to call on an entanglement witness [20, 11].
This term, first used by Terhal in 2000 [20], refers to operators that can detect entangled
states. The separability criterion based on entanglement witnesses belongs to the first
category of criteria, i.e. necessary and sufficient criteria but not practical. An important
property of this criterion is that it does not require the knowledge of the whole density
operator, but only the expectation value of one operator, the entanglement witness. We
fist discuss these operators for bipartite entanglement, then analyse their relations with
positive maps and finally briefly discuss multipartite entanglement.

2.2.1 Definitions and properties

In order to accurately define entanglement witnesses, we first need to introduce the con-
cept of block-positive operators

Definition 12 (Ref. [20]). A Hermitian operator Ŵ acting onHAB is called block-positive
if

〈φ⊗ χ|Ŵ |φ⊗ χ〉 ≥ 0 ∀ |φ〉 ⊗ |χ〉 ∈ HAB.

From this definition, it is clear that if a Hermitian operator is positive, it is also
block-positive. We can now properly define entanglement witnesses

Definition 13 (Ref. [20]). A Hermitian operator Ŵ acting on HAB is called an entan-
glement witness if it is block-positive but not positive, i.e.

〈φ⊗ χ|Ŵ |φ⊗ χ〉 ≥ 0 ∀ |φ〉 ⊗ |χ〉 ∈ HAB

∃ |ψ〉 ∈ HAB : 〈ψ|Ŵ |ψ〉 < 0.

Definition 13 of entanglement witnesses is equivalent to the following definition:

Definition 14 (Ref. [11]). A Hermitian operator Ŵ acting on HAB is called an entan-
glement witness if

Tr(Ŵ ρ̂s) ≥ 0 for all separable states ρ̂s ∈ S(HAB),

Tr(Ŵ ρ̂e) < 0 for at least one entangled state ρ̂e ∈ S(HAB).

Proof. Let {|jk〉} be a basis of HAB, let Ŵ be an entanglement witness as in Definition

13 and let ρ̂s =
∑

i pi |ψ
(A)
i , ψ

(B)
i 〉 〈ψ

(A)
i , ψ

(B)
i | be an arbitrary separable state. One has

Tr(Ŵ ρ̂s) = Tr

(
Ŵ
∑
i

pi |ψ(A)
i , ψ

(B)
i 〉 〈ψ

(A)
i , ψ

(B)
i |

)
=
∑
i

piTr
(
Ŵ |ψ(A)

i , ψ
(B)
i 〉 〈ψ

(A)
i , ψ

(B)
i |
)

=
∑
i

pi
∑
jk

〈jk|Ŵ |ψ(A)
i , ψ

(B)
i 〉 〈ψ

(A)
i , ψ

(B)
i |jk〉

=
∑
i

pi 〈ψ(A)
i , ψ

(B)
i |Ŵ |ψ

(A)
i , ψ

(B)
i 〉

≥ 0 for all separable ρ̂s

(2.5)
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Figure 2.1: Set of all bipartite states S(HAB) and 2 witnesses, Ŵ1 and Ŵ2.

and

∃ρ̂e = |ψ〉 〈ψ| ∈ S(HAB) : Tr(Ŵ |ψ〉 〈ψ|) =
∑
jk

〈jk|Ŵ |ψ〉 〈ψ|jk〉

= 〈ψ|Ŵ |ψ〉
< 0

(2.6)

so from Eq. (2.5), ρ̂e has to be entangled.

Definition 14 makes it clear that, as stated above, entanglement witnesses refer to
operators that can detect entangled states. Indeed, if there is an entanglement witness
Ŵ such that Tr(Ŵ ρ̂) < 0, then the state ρ̂ is entangled. The strength of entanglement
witnesses comes from the following theorem:

Theorem 3 (Ref. [10]). A bipartite state ρ̂ acting on HAB is entangled if and only if
there exists an entanglement witness Ŵ such that Tr(Ŵ ρ̂) < 0.

In other words, this necessary and sufficient criterion means that each entangled state
can be detected by an entanglement witness. We recall that Hermitian operators acting
on HAB form a vector space, the Hilbert-Schmidt space HS(HAB), provided with the
Hilbert-Schmidt inner product 〈Â|B̂〉 = Tr(ÂB̂), Â, B̂ ∈ HS(HAB). Each Hermitian
operator can be represented by a point in this vector space. The set of density operators
S(HAB) ⊂ HS(HAB) in a convex hull in HS(HAB), which means that for a given set of
density operators {ρ̂i} and convex weights pis, the operator

ρ̂ =
∑
i

piρ̂i (2.7)

is still a density operator. Then, the set of separable density operators is a convex hull in
the set of density operators itself, as is represented in Figure 2.1. Therefore, Tr(Ŵ ρ̂) =
〈Ŵ |ρ̂〉 = 0 describes a hyperplane in HS(HAB) [11]. With this representation, it is clear
that for a certain entangled state, there is always a hyperplane (i.e. an entanglement
witness) containing it. Of course, finding the witness that detect entanglement for a
certain entangled state is not an easy task (otherwise the separability problem would be
solved). Therefore, the separability problem may also be reduced to constructing the
witnesses. Most witnesses are built using known entanglement criteria [11]. Indeed, if
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an entangled state is detected by a separability criterion, an entanglement witness also
detecting it can usually easily be found (see e.g. Section 2.5). There are several advantages
to having an entanglement witness for a given criterion. The main one is that, as we have
seen before, detection of entanglement through an entanglement witness does not require
the knowledge of the full density operator even if the criterion does.

Types of entanglement witnesses

Some widely encountered entanglement witnesses and their properties deserves to be
introduced.

Definition 15 (Ref. [22]). An entanglement witness Ŵ is called decomposable if it can
be expressed in the form

Ŵ = X̂ + Ŷ TB

with X̂ and Ŷ being positive semi-definite operators.

Definition 16 (Ref. [20]). An entanglement witness Ŵ is called a k-Schmidt witness if

Tr(Ŵ ρ̂k−1) ≥ 0 for all ρ̂k−1 ∈ Sk−1

Tr(Ŵ ρ̂k) < 0 for at least one ρ̂k ∈ Sk

where Sk is the set of states whose Schmidt numbers are smaller or equal to k, ∀k ∈
{1, . . . , rmax = min(dA, dB)}, with S1 ⊂ S2 ⊂ ... ⊂ Srmax .

Using these entanglement witnesses, we have the following results [11]:

– a state ρ̂ acting on HAB has a Schmidt number greater or equal to 0 if and only
if there exists a k -Schmidt witness Ŵ such that Tr(Ŵ ρ̂) < 0. Since we know that
Schmidt numbers are linked to entanglement, this is an interesting property;

– Ŵ is a decomposable entanglement witness if and only if Tr(Ŵ ρ̂) ≥ 0 for all PPT
states ρ̂;

– if Ŵ is an entanglement witness and if Tr(Ŵ ρ̂) < 0 with ρ̂ being a PPT state, then
Ŵ is non-decomposable and ρ̂ is an entangled PPT state;

– if dAdB ≤ 6, then all entanglement witnesses are decomposable.

The second property implies that decomposable witnesses can only detect NPT states
(but not all NPT states, which means that decomposable witnesses are weaker than the
PPT criterion for the detection of entanglement). However, from the third property we
can clearly see that non-decomposable entanglement witnesses are useful to detect PPT
entangled states, thus states not detected by the PPT criterion. The last property is a
consequence of the PPT criterion being necessary and sufficient for 2×2 and 2×3 systems,
that is there exists no PPT entangled states for these systems. Indeed, if all entanglement
witnesses are decomposable, then there exists no PPT state such that Tr(Ŵ ρ̂) < 0, i.e.
all entangled states are NPT.
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Optimal witnesses

The role of entanglement witnesses is to detect entangled states. As we can see in Figure
2.1, Ŵ1 seems to be a ‘better’ witness than Ŵ2. This leads to the following definition:

Definition 17. An entanglement witness Ŵ1 is called finer than an entanglement witness
Ŵ2 if Ŵ1 detects all entangled states detected by Ŵ2 and if it detects at least one more
than Ŵ2.

Therefore, if
DŴi

= {ρ̂ ∈ S(HAB) : Tr(Ŵiρ̂) < 0} i = 1, 2 (2.8)

is the set of entangled states detected by Ŵ1 (respectively Ŵ2) and if Ŵ1 is finer than
Ŵ2, then one has DŴ2

⊂ DŴ1
. Moreover, Ŵ1 can be written as

Ŵ1 = Ŵ2 + P̂ , (2.9)

where P̂ is a positive operator. Eq. (2.9) leads to Tr(Ŵ1ρ̂) ≤ Tr(Ŵ2ρ̂) and from that we
can define an optimal entanglement witness.

Definition 18. An entanglement witness Ŵ is called optimal if there is no entanglement
witness that is finer than Ŵ , i.e. X̂ = Ŵ + P̂ is no longer a witness, for all positive
operators P̂ .

Physically, optimal witnesses are ‘the best detectors’, i.e. there is no other witness
that detect more entangled states [20]. Indeed, optimal witnesses are the closest to the
set of separable states. Hence all entangled states can be detected only using optimal
entanglement witnesses. From this definition, we see that for an optimal witness Ŵ , one
has [20]

〈φ⊗ χ|Ŵ |φ⊗ χ〉 = 0 ∀ |φ〉 ⊗ |χ〉 ∈ HAB (2.10)

or equivalently that the set of product states {|φ〉 ⊗ |χ〉 ∈ HAB : 〈φ⊗ χ|Ŵ |φ⊗ χ〉 = 0}
span the whole Hilbert space [11]. Eq. (2.10) is a necessary and sufficient condition for
Ŵ to be an optimal witness [11]. From Eq. (2.10), one gets that for an optimal witness
Ŵ there exist separable states ρ̂s such that [20]

Tr(Ŵ ρ̂s) = 0. (2.11)

However, this is obviously not a sufficient condition for Ŵ to be an optimal witness.
Witnesses that satisfy Eq. (2.11) but are not optimal witnesses are called weakly optimal
[20]. We note that given an entanglement witness, finding the corresponding optimal
witness is not an easy task as it is shown in Ref. [11]. It has even been shown that it
is equivalent to the separability problem: determining whether a given state is separable
or not is equivalent to determining whether some entanglement witness in a higher-
dimensional space is weakly optimal or not [11].
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2.2.2 Link with positive maps

Entanglement witnesses have close relations with positive (but not completely positive)
linear maps. Positive maps are also used to detect entanglement, but we do not investigate
this in detail here. First, let us recall that a linear map

Λ : L(HA)→ L(HB) (2.12)

is called positive if it preserves positivity, i.e. Â ≥ 0⇒ Λ(Â) ≥ 0 for all Â ∈ L(HA).

Remark 2. A positive linear map Λ is called completely positive if the induced map
Λ ⊗ 1n : L(HA) ⊗Mn → L(HB) ⊗Mn is positive for all n, with Mn being the set of
n× n complex matrices [10].

The relation between entanglement witnesses and positive maps is given by the
Choi–Jamio lkowski isomorphism, an isomorphism between linear maps from L(HA) to
L(HB) and bipartite operators of L(HAB). This means that for each operator Ô in
L(HAB), there exists a corresponding positive linear map Λ and vice versa (for more de-
tails, see Ref. [20]). The Choi–Jamio lkowski isomorphism is interesting for many reasons
that are not discussed here but can be found in Refs. [20, 11]. Among these are the
following properties [11], linked to entanglement witnesses:

– the map Λ is positive but not completely positive if an only if L̂ is an entanglement
witness,

– the map Λ is a decomposable map if and only if L̂ is a decomposable entanglement
witness.

Using these properties, entanglement witnesses can be used to construct positive maps.
But if one takes an entanglement witness Ŵ and its corresponding positive map Λ(Ŵ ),
it has been shown [11] that Ŵ detects a larger set of entangled states than Λ(Ŵ ).

2.2.3 Geometric entanglement witnesses

Entanglement witnesses that are of great use are the so-called geometric entanglement
witnesses. They are defined as follows

Definition 19 (Geometric entanglement witnesses [23]). A geometric entanglement wit-
ness ŴG is an entanglement witness of the form

ŴG(ρ̂1, ρ̂2) ≡ ρ̂1 − ρ̂2 − Tr
(
ρ̂1(ρ̂1 − ρ̂2)

)
1,

with ρ̂1, ρ̂2 ∈ S(HAB) and ρ̂1 6= ρ̂2.

From this definition, one gets

Tr(ŴG(ρ̂1, ρ̂2) ρ̂1) = Tr(ρ̂2
1)− Tr(ρ̂2ρ̂1)− Tr

(
ρ̂1(ρ̂1 − ρ̂2)

)
= 0

(2.13)
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and

Tr(ŴG(ρ̂1, ρ̂2) ρ̂2) = Tr(ρ̂1ρ̂2)− Tr(ρ̂2
2)− Tr

(
ρ̂1(ρ̂1 − ρ̂2)

)
= 2Tr(ρ̂1ρ̂2)− Tr(ρ̂2

2)− Tr(ρ̂2
1)

= −Tr
(
(ρ̂1 − ρ̂2)2

)
= −||ρ̂1 − ρ̂2||2HS

< 0.

(2.14)

This means that ρ̂2 has to be entangled to assure that ŴG is an engagement witness. We
note that it is not trivial to find a ρ̂1 such that Tr(ŴG(ρ̂1, ρ̂2) ρ̂s) ≥ 0 for all separable
states ρ̂s ∈ S(HAB). Since ŴG is an entanglement witness, the hyperplane in HS(HAB)
given by Tr(ŴG ρ̂) = 0 divides S(HAB) into two regions, one with Tr(ŴG ρ̂) ≥ 0 that
contains all separable states and one with Tr(ŴG ρ̂) < 0 where all states are entangled.
The point in geometric entanglement witnesses comes from the following theorems:

Theorem 4 (Ref. [23]). All entangled states can be detected by a geometric entanglement
witness.

Theorem 5 (Ref. [23]). If

Ŵ λ
G ≡ ρ̂λ − ρ̂− Tr

(
ρ̂λ(ρ̂λ − ρ̂)1

is a geometric entanglement witness with a parametrized family of states

ρ̂λ ≡ λρ̂− (1− λ)ρ̂′, λ ∈ [λi, 1[ (λi ≥ 0), ρ̂, ρ̂′ ∈ S(HAB),

then state ρ̂λ is entangled for λ ∈ ]λi, 1].

The latter theorem is particularly efficient when used in the following way: taking a
known separable state and a known entangled state as ρ̂′ and ρ̂ of Theorem 5 respectively.
Then, it is possible to detect entangled states along the line inHS(HAB) between ρ̂ and ρ̂′

by ‘shifting’ the geometric entanglement witness Ŵ λ
G , as we can see on Figure 2.2. Other

methods build on geometric entanglement witness exist, see e.g. [23] for examples. By
choosing a PPT entangled state for ρ̂, this method allows to find PPT entangled states,
which is of great interest [23].

2.2.4 Multipartite entanglement

Entanglement witnesses can be generalised to the multipartite scenario (with states be-
longing to a Hilbert spaceHtot = H1⊗· · ·⊗HN). Of course, since there are different types
of multipartite entanglements, there are different types of entanglement witnesses. The
natural generalisation of Definition 13 using Definition 10 of multipartite entanglement
is

Definition 20 (Ref. [20]). An operator Ŵ acting on Htot is called a multipartite entan-
glement witness for a partition {I1, . . . , Im} if

〈φI1 ⊗ · · · ⊗ φIm|Ŵ |φI1 ⊗ · · · ⊗ φIm〉 ≥ 0 ∀ |φIl〉 ∈ HIl ,

where HIl are subsets of HAB.

29



Figure 2.2: Illustration of a detection method in the set of all bipartite states S(HAB)
[23].

Remark 3. A state ρ̂e such that Tr(Ŵ ρ̂e) < 0 cannot be written as

ρ̂e =
∑

i pi |φ
(i)
I1
⊗ · · · ⊗ φ(i)

Im
〉 〈φ(i)

I1
⊗ · · · ⊗ φ(i)

Im
| and therefore is not m-separable with re-

spect to the partition {I1, . . . , Im}.
Witnesses that detect all non-fully separable operators satisfy

〈φ1 ⊗ · · · ⊗ φN |Ŵ |φ1 ⊗ · · · ⊗ φN〉 ≥ 0 ∀ |φj〉 ∈ Hj, j = 1, . . . , N. (2.15)

We notice that the definition of entanglement witnesses generalises quite naturally and
therefore the rest of the theory also does. More details can be found in Refs. [20, 11, 12].

2.3 Entanglement measures

Entanglement measures are real functions of states that quantify ‘how much entangle-
ment’ is contained in a given state [12]. In order to be an entanglement measure for
bipartite states, a function E : S(HAB)→ R : ρ̂ 7→ E(ρ̂) has to verify some properties.

Vanishing on separable states

Since entanglement measures have to quantify entanglement of a given state, it seems
natural to impose that an entanglement measure vanishes for separable states, i.e. that
E(ρ̂s) = 0 for all separable ρ̂s acting on HAB. This means that entanglement measures
lead to necessary criteria for separability.

Monotonicity

Then, it is known that entanglement cannot be created or increased by any LOCC pro-
cedure [15]. In particular, starting with two separated states, one can never obtain an
entangled states via a LOCC procedure. Therefore, we do not allow E(ρ̂) to increase if a

LOCC operation Λ̂ is applied to ρ̂, i.e. E
(

Λ̂(ρ̂)
)
≤ E(ρ̂) for all LOCC operations Λ̂ acting
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on HAB [12]. This property is called monotonicity under LOCC. Usually, entanglement
measures satisfy an even stronger condition, that is∑

i

piE(ρ̂i) ≤ E(ρ̂), (2.16)

for all sets {pi, ρ̂i} such that
∑

i piρ̂i = ρ̂, with ρ̂i being density operators of pure states
[12]. Eq. (2.16) means that entanglement measures do not increase on average.

These two properties are the ones that are necessarily required, but other properties
may also be verified by some entanglement measures [11, 12]. For instance, there is the
property of convexity : most known entanglement measures are convex [11], which means
that they verify

E

(∑
i

piρ̂i

)
≤
∑
i

piE(ρ̂i), (2.17)

with pis being convex weights and ρ̂i ∈ S(HAB), ∀i.

2.3.1 Entropy of entanglement

A widely used entanglement measure in quantum information is entropy of entanglement,
which is defined for pure bipartite states. It is defined using the von Neumann entropy,
which is, for state ρ̂ ∈ S(H) [15]

S(ρ̂) ≡ −Tr (ρ̂log2(ρ̂)) = −
∑
i

λilog2(λi), (2.18)

where ρ̂ =
∑

i λi |φi〉 〈φi| is the spectral decomposition of ρ̂, with λis being its eigenvalues
and |φi〉s being its eigenvectors. The von Neumann entropy has the following properties:

1. S is zero only for pure states,

2. S is maximal for maximally mixed states, i.e. for ρ̂ = 1
d
1⇒ S(ρ̂) = −

∑
i

1
d
log2

(
1
d

)
=

log2 (d),

3. S is concave, that is for a set of density operator {ρ̂i} and convex weights pis one
has S (

∑
i piρ̂i) ≥

∑
i piS(ρ̂i),

4. S(ρ̂(A) ⊗ ρ̂(B)) = S(ρ̂(A)) + S(ρ̂(B)), with ρ̂(A,B) ∈ S(HA,B),

5. S(ρ̂) ≤ S(ρ̂(A)) +S(ρ̂(B)) with ρ̂ ∈ S(HAB) and ρ̂(A,B) ∈ S(HA,B), the partial traces
of ρ̂.

The last property means that the entropy of the subsystems is greater than the entropy
of the entire system, this may be seen as a signature of entanglement [15]. We can now
define the entropy of entanglement for any pure state ρ̂ = |Ψ〉 〈Ψ| ∈ S(HAB)

EE(ρ̂) ≡ S(ρ̂(A)) = S(ρ̂(B)), (2.19)

with ρ̂(A) ∈ S(HA) (ρ̂(B) ∈ S(HB)), the partial trace ρ̂TB (ρ̂TA) of ρ̂. The equality between
S(ρ̂(A)) and S(ρ̂(B)) comes from the fact that ρ̂(A) and ρ̂(B) have the same eigenvalues
[16]. The entropy of entanglement cancels for separable states.
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Proof. Let ρ̂s ∈ S(H) be a pure separable state. It can be written as ρ̂s = |φ, χ〉 〈φ, χ|
and one has

EE(ρ̂s) = S(|φ〉 〈φ|) = S(|χ〉 〈χ|) = 0, (2.20)

due to the first property of S.

Many entanglement measures reduce to the entropy of entanglement when they are
computed for pure states.

Remark 4. The von Neumann entropy does not verify the conditions to be an entangle-
ment measure (it does not vanish for separable states), it may however be directly used
to detect entanglement. Indeed, if

S(ρ̂) < S(ρ̂(A)), (2.21)

holds with ρ̂ ∈ S(HAB) and ρ̂(A) = ρ̂TB , then the state ρ̂ in entangled [15].

2.3.2 Negativity

An interesting entanglement measure is the negativity of a state. Indeed, this measure
is easily computed for any mixed state, which is not always the case for entanglement
measures. It is defined as [24]

N (ρ̂) ≡ ||ρ̂
TA||Tr − 1

2
=

∑
i |λi| − 1

2
∀ρ̂ ∈ HAB (2.22)

with {λi} being the eigenvalues of ρ̂TA . We recall that || · ||Tr is the trace norm, which
is equal to the sum of the singular values and equal to the sum of the absolute values of
the eigenvalues for Hermitian operators. This quantity is equal to the absolute value of
sum of the negative eigenvalues of ρ̂TA , i.e.

N (ρ̂) =

∣∣∣∣∣ ∑
i:λi<0

λi

∣∣∣∣∣ =
∑
i:λi<0

|λi|. (2.23)

Indeed, since Tr(ρ̂TA) = 1, the trace norm of ρ̂TA reads

||ρ̂TA||Tr =
∑
i

|λi| =
∑
i

λi︸ ︷︷ ︸
Tr(ρ̂TA )

+2
∑
i:λi<0

|λi| = 1 + 2
∑
i:λi<0

|λi| (2.24)

and therefore one has Eq. (2.23). It is clear that for separable states, the negativity is
zero. It has been proven in Ref. [24] that negativity also verifies monotonicity under
LOCC. The negativity can be seen as a measure of ‘how much a given state is NPT’, i.e.
a quantification of the PPT criterion. Let us also notice that N verifies the convexity
condition, due to the fact that it is defined using the trace norm which is a convex function
[24].

Remark 5. Negativity can also be used to characterise entanglement of multipartite sys-
tems. For a three-party system, there are 6 quantities that can be defined on the basis
of bipartite negativity. For a four-party system, there are 26, and so one (see Ref. [24]).
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2.3.3 Convex roof construction

Some entanglement measures can be build using a convex roof construction. One starts
by defining the measure for pure states, i.e. E(φ) for all pure states |φ〉 ∈ HAB, and then
expands it to mixed states as follows

E(ρ̂) ≡ inf
{pi,|φi〉}

{∑
i

piE(φi)

}
(2.25)

where the infimum is taken over all sets {pi, |φi〉} such that ρ̂ =
∑

i pi |φi〉 〈φi|. It is
obvious that a convex roof measure vanishes for separable states. Indeed, E(φs) vanishes
for all separable pure states, which implies that for a separable mixed state ρ̂ (i.e. a state

that can be written as ρ̂ =
∑

i pi |φ
(i)
s 〉 〈φ(i)

s |, with separable states |φ(i)
s 〉), the entanglement

measure E(ρ̂) vanishes. It has also been proven that all convex roof measures verify
monotonicity. Due to the infinitum, convex roof constructions are not always computable
[12]. An example of a computable convex roof measure is concurrence, which is developed
in the next section.

2.4 Concurrence criterion

As stated before, concurrence is an entanglement measure defined using convex roof
construction. This measure was first introduced by Wootters in 1998 [25] for two-qubit
systems, in order to prove a formula for entanglement of formation, EF , which is also
built using a convex roof construction with entropy of entanglement

EF(ρ̂) ≡ inf
{pi,|φi〉}

{∑
i

piEE
(
|φi〉 〈φi|

)}
. (2.26)

The rough physical interpretation of entanglement of formation EF is, for bipartite pure
states, the number of qubits that must have been exchanged by two observers in order
to obtain a given state. In the same paper, Wootters derived a necessary and sufficient
criterion for the separability of two qubits based on the concurrence. Therefore, con-
currence turned out to be interesting on its own and has been expanded to multipartite
systems by introducing generalised concurrences. This leads to a necessary and sufficient
criterion for the separability of multipartite pure states, and to a necessary criterion for
the mixed state scenario.

2.4.1 Two-qubit concurrence

First, let us focus on Wootters’s two-qubit concurrence. This entanglement measure is
defined for two-qubit systems, i.e. 2 × 2 systems. The Hilbert space HAB = HA ⊗ HB

is of dimension 4, with HA and HB both of dimension 2. Let us introduce the spin flip
operation for pure states of single qubits, which is

|Ψ̃〉 ≡ σ̂2 |Ψ∗〉 , |Ψ〉 ∈ HA (2.27)

where |Ψ〉 is expressed in the computational basis and where σ̂2 is the second Pauli
operator(see Appendix A.2.1). This operation is generalisable to N -partite systems of
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qubits, by applying it to each individual qubit. Thus, for bipartite systems of qubits the
spin-flipped state reads

ˆ̃ρ = (σ̂2 ⊗ σ̂2)ρ̂∗(σ̂2 ⊗ σ̂2), ρ̂ ∈ S(HAB). (2.28)

The two-qubit concurrence for bipartite pure states is defined as

C(|Ψ〉) ≡ | 〈Ψ|Ψ̃〉 | = | 〈Ψ|σ̂2 ⊗ σ̂2|Ψ∗〉 |, ∀ |Ψ〉 ∈ HAB (2.29)

and for mixed states, it is defined using the convex roof construction. Interestingly, this
entanglement measure can be analytically computed, even for mixed states, which is not
always the case for convex roof constructions, as stated in the previous section. Here, the
convex roof construction simplifies to

C(ρ̂) = max{0, λ1 − λ2 − λ3 − λ4}, ∀ρ̂ ∈ S(HAB), (2.30)

where {λi} is the set of the square roots of the eigenvalues of ρ̂ ˆ̃ρ, sorted in the decreas-
ing order3, all non-negative [25]. With the two-qubit concurrence comes the following
necessary and sufficient criterion for separability:

Theorem 6 (Two-qubit concurrence criterion [25]). A 2 × 2 system represented by a
density operator ρ̂ acting on a Hilbert space HAB is separable if and only if its concurrence
is zero, i.e.

ρ̂ is separable⇔ C(ρ̂) = 0.

Remark 6. The two-qubit concurrence for pure states can also be defined as C(ψ) ≡√
2 (1− Tr(ρ̂2

A)), where ρ̂A is the partial trace of ρ̂ over the second subsystem, and then
again using a convex roof construction for mixed states [11]. This definition holds for all
bipartite systems, not only 2× 2 systems.

2.4.2 Generalised concurrences

When it comes to general bipartite or multipartite systems, one needs to use a set of
generalised concurrences Cα (α ∈ N0). These concurrences are defined for pure states as
in Eq. (2.29) but with an appropriated generalised spin flip operation for each α. Then,
again, this definition is expanded for mixed states using a convex roof construction. Using
this set of generalised concurrences, one can obtain a separability criterion for both pure
and mixed states. We first focus on pure states and then expand our analyse to mixed
states.

Pure states

Let |Ψ〉 be some state in the Hilbert space Htot = H1 ⊗ · · · ⊗ HN . This state can be
written in the computational basis as

|Ψ〉 =
∑
i

ai |i〉 =

d1−1∑
i1=0

· · ·
dN−1∑
iN=0

ai1,...,iN |i1, . . . , iN〉 . (2.31)

3The λi’s can also be seen as the eigenvalues of

√√
ρ̂ ˆ̃ρ
√
ρ̂.
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The generalised concurrences for |Ψ〉 are defined as

Cα(Ψ) ≡ | 〈Ψ|Ŝα|Ψ∗〉 |, ∀ |Ψ〉 ∈ Htot, (2.32)

where each Ŝα corresponds to a generalised spin flip operator of the form

Ŝα = Ŝi,i′,j,j′ = |i〉 〈i′| − |j〉 〈j′|+ h.c., (2.33)

where h.c. stands for the Hermitian conjugate of the previous terms. Hence, to each
index α corresponds a quadruplet (i, i′, j, j′) (see Ref. [9] for a detailed description).
For two qubits, there is only one concurrence and the generalised spin flip operator is
Ŝ1 = |00〉 〈11| − |10〉 〈01|+ h.c. = σ̂2 ⊗ σ̂2, which is the two-qubit concurrence defined in
the previous subsection [9]. The generalisation of Theorem 6 for multipartite pure states
is

Theorem 7 (Concurrence criterion for pure states [9]). A pure state |Ψ〉 ∈ Htot is
separable if and only if all its concurrences are zero, i.e.

|Ψ〉 is separable⇔ Cα(|Ψ〉) = 0 ∀α = 1, . . . , Q,

with Q being the number of generalised concurrences for a given system.

For a d×N system4, the number of generalised concurrences is [9]

Q = dN+1d− 1

4

(
1− 2

(
1 +

1

d

)N
+

(
1 +

2

d

)N)
. (2.34)

Theorem 7 gives rise to a system of Q independent equations which are all computable
and therefore gives rise to a practical necessary and sufficient separability criterion for
multipartite pure states. From that, we can consider that generalised concurrences solve
the separability problem for multipartite pure states.

Mixed states

Now, let us focus on multipartite mixed states. The set of generalised concurrences for
mixed states is defined using the convex roof construction, that is

Cα(ρ̂) ≡ inf
{pi,|ψi〉}

{∑
i

piCα(ψi)

}
, (2.35)

where the infimum is taken over all sets {pi, |ψi〉} such that ρ̂ =
∑

i pi |ψi〉 〈ψi|. We
note that the generalised concurrences can also be computed through Eq. (2.30) with
the appropriate ˆ̃ρ. For the mixed state scenario, the separability criterion based on the
set of generalised concurrences is no longer necessary and sufficient, but only necessary.
Indeed, for a separable state ρ̂s acting on Htot, there exists a decomposition of the form∑

i pi |ψ
(s)
i 〉 〈ψ

(s)
i |, with |ψ(s)

i 〉 ∈ Htot being a separable state ∀i. Hence, since Cα(ψ
(s)
i ) = 0,

∀α, i, we have that Cα(ρ̂) = 0, ∀α. Conversely, if Cα = 0, ∀α, that means that for all α,
there exists a decomposition of ρ̂ such that Cα(ρ̂) = 0, but the decomposition for which
this occurs may be different for each α. We can therefore write

4The number of equations for general multipartite systems is given in Ref. [9].
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Theorem 8 (Concurrence criterion for mixed states [9]). If a state ρ̂ defined on Htot is
separable, then all its concurrences are zero, i.e.

ρ̂ is separable⇒ Cα(ρ̂) = 0 ∀α.

Of course, the fact that there is no necessary and sufficient criterion based on the
generalised concurrences was predictable since the separability problem for mixed states
is still an open problem, as seen before.

2.5 Computable cross-norm or realignment criterion

The computable cross norm or realignment (CCNR) criterion is a necessary separability
criterion that was discovered in two different forms, by Rudolph [26] and by Chen and Wu
[27], both in 2003. The separability criterion is given either by defining a new norm (a
cross norm) or by ‘realigning’ the density operator and then taking the usual trace norm
of the realigned matrix. Then, an enhanced CCNR criterion was proposed by Zhang et
al. [28] in 2008, with a generalisation to the multipartite scenario. The latter criterion
is discussed in Section 3.3. In this section, we first investigate the criterion via the cross
norm and then via the realignment of the density operator.

Cross norm criterion

First, we define a new norm, the greatest cross norm.

Definition 21 (Ref. [26]). The greatest cross norm of a density operator ρ̂ ∈ S(HAB) is
defined by

||ρ̂||γ ≡ inf
{ûi,v̂i}

{∑
i

||ûi||Tr · ||v̂i||Tr

}
,

where the infimum is taken over all sets {ûi, v̂i} such that ρ̂ =
∑

i ûi ⊗ v̂i is a finite
decomposition of ρ̂ into elementary tensors.

With this definition, we can obtain the following criterion:

Theorem 9 (Ref. [26]). A state ρ̂ acting on HAB is separable if and only if its greatest
cross norm is equal to one, i.e.

ρ̂ is separable⇔ ||ρ̂||γ = 1.

This is a necessary and sufficient criterion for the separability of quantum states.
As stated in the introduction of Chapter 2, this means that so far, the criterion is not
computable. Indeed, computing the greatest cross norm is not an easy task, due to the
infimum taken over all finite decompositions of ρ̂. A computable criterion based on this
was found by Rudoph, but is not necessary and sufficient any more. In order to obtain
this criterion, we need to use the Schmidt decomposition of a density operator ρ̂, which
is given by Eq. (1.75) that we recall to be

ρ̂ =
∑
i

σiĜ
(A)
i ⊗ Ĝ

(B)
i . (2.36)

The necessary criterion is the following:
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Theorem 10 (Computable cross norm criterion [26]). If a state ρ̂ acting on HAB is
separable and has the Schmidt decomposition (see Eq. (1.74))

ρ̂ =
∑
i

σiĜ
(A)
i ⊗ Ĝ

(B)
i ,

then ∑
i

σi ≤ 1

must hold.

It means that if
∑

i σi > 1, then the state ρ̂ is entangled. Since the decomposition of
ρ̂ in Eq. (2.36) is computable (see Section 1.2.3), it follows that Theorem 10 also is.

Remark 7. Recall that the coefficients σis are the singular values of the matrix C of Eq.
(1.77), which means that the computable cross norm criterion criterion can be written as

||C||Tr ≤ 1.

Realignment criterion

Then, the CCNR criterion can also be formulated in terms of the trace norm of a realigned
matrix, computed from the density operator. Let us introduce this realigned matrix R(ρ̂)
whose matrix elements are

〈ai, bl|R(ρ̂)|bk, aj〉 = 〈ai, bk|ρ̂|aj, bl〉 , (2.37)

where {|ai, bk〉 , i = 1, . . . , dA, k = 1, . . . , dB} is a basis of HAB. Equivalently, if ρ̂ is
written as in Eq. (1.50), i.e. as

ρ̂ =
∑
i,j

∑
k,l

cijkl |ai, bk〉 〈aj, bl| , (2.38)

then
R(ρ̂) =

∑
i,j

∑
k,l

cijkl |ai, bl〉 〈bk, aj| . (2.39)

The realigned matrix is also of dimension dAdB × dAdB. The realignment criterion based
on the matrix R(ρ̂) reads

Theorem 11 (Realignment criterion [12]). Consider a bipartite state ρ̂ acting on HAB

as in Eq. (2.38) and its realigned matrix R(ρ̂) as in Eq. (2.39). If the state is separable,
then

||R(ρ̂)||Tr ≤ 1,

must hold.

These two criteria (Theorems 10 and 11) are equivalent and known under computable
cross norm or realignment criterion. Both of them are operational and simple to compute,
which makes the CCNR criterion interesting. The CCNR criterion is proved to be non
equivalent to the PPT criterion and neither weaker nor stronger, but complementary [26].
Indeed, the criterion can detect some entangled PPT states but cannot detect all states
detected by the PPT criterion (see Refs. [27, 26] for examples).
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CCNR and entanglement witnesses

The CCNR criterion also gives rise to an entanglement witness. One can construct the
following operator acting on HAB:

Ŵ (CCNR) = 1⊗ 1−
∑
i

Ĝ
(A)
i ⊗ Ĝ

(B)
i . (2.40)

where {Ĝ(A)
i } and {Ĝ(B)

k } are the orthonormal basis that lead to the Schmidt decompo-

sition of a given state ρ̂ ∈ S(HAB). The operator Ŵ (CCNR) is an entanglement witness
for the state ρ̂. Indeed, it is block positive (see Ref. [20]) and if the state ρ̂ is detected
to be entangled by the CCNR criterion, then

Tr
(
Ŵ (CCNR)ρ̂

)
= 1−

∑
i

σi

< 0,

(2.41)

which means that any entangled state ρ̂ detected by the CCNR criterion is detected by
the entanglement witness Ŵ (CCNR), defined with the appropriate basis.

Proof. Let us prove Eq. (2.41). Let ρ̂ be an entangled state detected by the CCNR

criterion whose Schmidt basis are {Ĝ(A)
i } and {Ĝ(B)

i }. One has

ŴCCNRρ̂ =
∑
i

σiĜ
(A)
i ⊗ Ĝ

(B)
i −

∑
i

(Ĝ
(A)
i ⊗ Ĝ

(B)
i )

∑
j

(σjĜ
(A)
j ⊗ Ĝ

(B)
j )

= ρ̂−
∑
ij

σj(Ĝ
(A)
i ⊗ Ĝ

(B)
i )(Ĝ

(A)
j ⊗ Ĝ

(B)
j ).

(2.42)

Then,

Tr(ŴCCNRρ̂) = Tr(ρ̂)−
∑
ij

σj Tr
(

(Ĝ
(A)
i ⊗ Ĝ

(B)
i )(Ĝ

(A)
j ⊗ Ĝ

(B)
j )
)

︸ ︷︷ ︸
=δij

= 1−
∑
i

σi.

(2.43)

since

Tr
(

(Ĝ
(A)
i ⊗ Ĝ

(B)
i )(Ĝ

(A)
j ⊗ Ĝ

(B)
j )
)

= Tr
(

(Ĝ
(A)
i Ĝ

(A)
j )⊗ (Ĝ

(B)
j Ĝ

(B)
i )
)

= Tr
(
Ĝ

(A)
i Ĝ

(A)
j

)
Tr
(
Ĝ

(B)
j Ĝ

(B)
i

)
= δijδij = δij,

(2.44)

from the relation between two orthonormal basis elements.
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Chapter 3

Recent separability criteria

In this chapter, we introduce more recently developed criteria that appear to be promising
in the search for a necessary and sufficient criterion for the separability of quantum states.
We end the chapter by comparing the criteria exposed in this chapter, but also in the
previous one. The notations of Chapter 2 hold in this chapter as well.

3.1 Correlation matrix criterion

The correlation matrix (or de Vicente) criterion is a surprisingly simple criterion involving
the Bloch representation of density operators, which was introduced in Section 1.1.3. The
criterion, developed in 2007, is a necessary condition and can detect PPT entangled states
[29]. First, it is useful to express the definition of entanglement in terms of the Bloch
representation of states through the following theorem:

Theorem 12 (Ref. [29]). A bipartite state with Bloch representation

ρ̂ =
1

dAdB
1⊗ 1+

1

2dB

d2A−1∑
i=1

riλ̂i ⊗ 1+
1

2dA

d2B−1∑
j=1

sj1⊗ σ̂j +
1

4

d2A−1∑
i=1

d2B−1∑
j=1

Tijλ̂i ⊗ σ̂j

(see Eq. (1.59)) is separable if and only if there exist Bloch vectors ui ∈ Rd2A−1 and
vi ∈ Rd2B−1 and if there exist convex weights pis such that

r =
∑
i

piui, s =
∑
i

pivi, T =
∑
i

piuiv
T
i .

where r = (r1, . . . , rd2A−1), s = (s1, . . . , sd2B−1) and T is the matrix with entries Tij.

Proof. Consider the bipartite Bloch representation of a state ρ̂ ∈ S(HAB). Now, the state

ρ̂ is separable if and only if there exist sets of pure states {ρ̂(A)
i } and {ρ̂(B)

i } and convex

weights pis such that ρ̂ =
∑

i piρ̂
(A)
i ⊗ ρ̂

(B)
i . The states ρ̂

(A)
i and ρ̂

(B)
i can be written as

ρ̂
(A)
i =

1

dA
1+

1

2

∑
k

(ui)kλ̂k =
1

dA
1+

1

2
ui · λ̂, (3.1)
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and

ρ̂
(B)
i =

1

dB
1+

1

2

∑
k

(vi)kσ̂k =
1

dB
1+

1

2
vi · σ̂. (3.2)

Then, putting Eqs. (3.1) to (3.2) in
∑

i piρ̂
(A)
i ⊗ ρ̂

(B)
i , one has: ρ̂ is separable if and only

if

ρ̂ =
∑
i

pi1⊗1+
1

2dB

∑
i,k

pi(ui)kλ̂k⊗1+
1

2dA

∑
i,l

pi(vi)l1⊗ σ̂l +
1

4

∑
i,k,l

pi(ui)k(vi)lλ̂k⊗ σ̂l.

(3.3)
Comparing with its Bloch representation, this means that ρ̂ is separable if and only if

rk =
∑
i

pi(ui)k, sl =
∑
i

pi(vi)l, Tkl =
∑
i

pi(ui)k(vi)l (3.4)

⇔ r =
∑
i

piui, s =
∑
i

pivi, T =
∑
i

piuiv
T
i . (3.5)

Again, this redefinition of separability can be seen as a necessary and sufficient condi-
tion for the separability of bipartite states although non-computable. From this definition,
de Vicente was able to prove the following criterion:

Theorem 13 (Correlation matrix criterion [29]). Consider a bipartite state of dimension
dA × dB with Bloch representation

ρ̂ =
1

dAdB
1⊗ 1+

1

2dB

d2A−1∑
i=1

riλ̂i ⊗ 1+
1

2dA

d2B−1∑
j=1

sj1⊗ σ̂j +
1

4

d2A−1∑
i=1

d2B−1∑
j=1

Tijλ̂i ⊗ σ̂j

(see Eq. (1.59)). If the state is separable, then the inequality

||T ||Tr ≤

√
4(dA − 1)(dB − 1)

dAdB

must hold, with T the matrix of matrix elements Tij.

Hence, if ||T ||Tr >
√

4(dA − 1)(dB − 1)/(dAdB), the state is entangled. Physically,
this necessary condition means that there is an upper bound to the amount of correlation
contained in a separable state1, i.e. that the correlations in separable states cannot be
‘too large’. From Definition 12, it is possible to obtain several sufficient criteria for
separability. The most relevant one is the following:

Theorem 14 (Ref. [29]). Consider a bipartite state of dimension dA × dB in its normal
form

ρ̂ =
1

dAdB
1+

1

4

d2A−1∑
i=1

d2B−1∑
j=1

Tij(λ̂i ⊗ σ̂j).

1We recall that all the information about the correlations is contained in T and that ||T ||Tr is invariant
under local unitaries.
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Figure 3.1: Gap as a function of dA and dB.

If the state satisfies

||T̃ ||Tr ≤

√
4

dAdA(dA − 1)(dB − 1)
,

then it is separable.

Here, the physical interpretation in the opposite, if the correlations are low enough,
then the state is automatically separable2. Combining Theorems 13 and 14 for a two-
qubit system in its normal form (Theorem 13 obviously also holds for states in their
normal forms), one gets a necessary and sufficient criterion, which is that such a state is
separable if and only if

||T̃ ||Tr ≤ 1. (3.6)

Then, for a 2× 3 system, one has

if ||T̃ ||Tr ≥
2
√

3

3
⇒ the state is entangled,

if ||T̃ ||Tr ≤
√

3

3
⇒ the state is separable,

(3.7)

which means that in the region 2
√

3/3 ≤ ||T̃ ||Tr ≤
√

3/3, the combined correlation matrix
criteria cannot tell whether the state is entangled or separable. The ”gap” between the
upper bound and the lower bound is zero for 2× 2 systems, which is why one can obtain
a necessary and sufficient criterion for these systems. It gets bigger with dA and dB, as
we can see on the left figure of Figure 3.1. It saturates at 2,

lim
dA,dB→∞

√4(dA − 1)(dB − 1)

dAdB
−

√
4

dAdA(dA − 1)(dB − 1)

 = 2, (3.8)

as shown on the right figure of Figure 3.1. The correlation matrix criterion detects states
that are detected neither by PPT nor by CCNR, which makes it complementary to the
duo PPT / CCNR and hence improves the entanglement detectability [30].

2The generalisation of Theorem 14 for non-normal form states can be found in Ref. [30].
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3.2 Covariance matrix criterion

Another criterion complementary to the PPT criterion has been proposed in 2007 by
Gühne et al., namely the covariance matrix (CM) criterion [31]. This criterion allows to
detect many PPT entangled states and can be connected to several other criteria, e.g. to
the CCNR criterion or to the correlation matrix criterion exposed in the previous section
[31]. First, let us define the covariance matrices. Let ρ̂ be a state defined on HAB and
let {M̂i : i = 1, . . . n} be a set of observables on HAB. We define the covariance matrix γ
by its matrix elements γij

γij(ρ̂) ≡
〈M̂iM̂j〉ρ + 〈M̂jM̂i〉ρ

2
− 〈M̂i〉ρ 〈M̂j〉ρ . (3.9)

This matrix is real, positive definite, symmetric and has a concavity property [32], which
is

ρ̂ =
∑
i

piρ̂i ⇒ γ(ρ̂) ≥
∑
i

piγ(ρ̂i). (3.10)

Let {Âi} ({B̂i}) be a set of d2
A (d2

B) observables that form an orthonormal basis on
HS(HA) (on HS(HB)). From these operators, one can construct the set {M̂i} = {Âi ⊗
1,1⊗ B̂i} of d2

A + d2
B observables. With this set, the covariance matrix then reads

γ
(
ρ̂, {M̂i}

)
=

(
A C
CT B

)
, (3.11)

where A = γ
(
ρ̂(A), {Âi}

)
and B = γ

(
ρ̂(B), {B̂i}

)
are the covariance matrices of the re-

duced states and C is defined by its matrix elements Cij = Tr(Âi⊗B̂j ρ̂)−Tr(Âiρ̂)Tr(B̂j ρ̂)
[31]. From this, the definition of entanglement can be reformulated through the following
theorem:

Theorem 15 (Covariance matrix criterion [31]). Let γ(ρ̂) be the covariance matrix of a
state ρ̂ ∈ S(HAB) as in Eq. (3.11). If the state ρ̂ is separable, then there exist pure states

ρ̂
(A)
i ∈ S(HA) and ρ̂

(B)
i ∈ S(HB) and convex weights pi such that

γ
(
ρ̂, {M̂i}

)
=

(
A C
CT B

)
≥

(∑
i piγ

(
ρ̂

(A)
i

)
0

0
∑

i piγ
(
ρ̂

(B)
i

))

holds. If no such decomposition exists, ρ̂ must be entangled.

This criterion does not depend on the choice of the sets {Âi} and {B̂i}, but can
be more efficient with some suitable basis, e.g. the Schmidt basis3 [31]. The covariance
matrix criterion is not directly computable, but it leads to several other criteria that are
computable. First, a consequence of the covariance matrix criterion involving the singular
values of the matrix C can be found. Indeed, one has

3The Schmidt basis of a state ρ̂ is the basis that leads to the Schmidt decomposition (see Eq. (1.74))
of the state.
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Theorem 16 (CM and singular values criterion [32]). Let γ(ρ̂) be the covariance matrix
of a state ρ̂ ∈ S(HAB) as in Eq. (3.11). If the state ρ̂ is separable, then

||C||Tr ≤

√(
1− Tr

(
(ρ̂(A))2

))(
1− Tr

(
(ρ̂(B))2

))
must hold, with ρ̂(A) and ρ̂(B) being the reduced states of ρ̂. Otherwise, the state is entan-
gled.

Then, in Ref. [32], it has been shown that Theorem 15 leads to the correlation
matrix criterion. From Âi and B̂i we build the matrix C with entries {ij} equal to

Tr
(

(Âi ⊗ B̂j)ρ̂
)

, then we take C, omit its first row and first column and from that we

build the matrix Cred. A corollary from the covariance matrix criterion reads

Theorem 17 (CM and correlation matrix criterion [32]). Let γ(ρ̂) be the covariance
matrix of a state ρ̂ ∈ S(HAB) as in Eq. (3.11). If the state ρ̂ is separable, then

||Cred||Tr ≤

√
(dA − 1)(dB − 1)

dAdB

must hold.

The matrix Cred is nothing but the correlation matrix T (up to a factor 2) with
observables Âi = λ̂i and B̂i = σ̂i, as in the previous section4. So, Theorem 17 is in fact
the correlation matrix criterion.

The covariance matrix criterion also leads to a criterion involving the traces of the
matrices A, B and C (CM and traces criterion) which is however strictly weaker than
the CM and singular values criterion [32] and thus not worth explicitly writing down.

Using the Schmidt decomposition in operator space, one obtains the following theorem
as a consequence of the covariance matrix criterion:

Theorem 18 (CM and Schmidt decomposition criterion [32]). Let γ(ρ̂) be the covariance
matrix of a state ρ̂ ∈ S(HAB) as in Eq. (3.11) and let ρ̂ be in its Schmidt decomposition

ρ̂ =

(dA)2∑
i=1

σiĜ
(A)
i ⊗ Ĝ

(B)
i

(see Eq. (1.74)). If the state ρ̂ is separable, then

2
∑
i

∣∣∣σi − σ2
i Tr

(
Ĝ

(A)
i

)
Tr
(
Ĝ

(B)
i

)∣∣∣ ≤ 2−
∑
i

σ2
i

(
Tr2
(
Ĝ

(A)
i

)
+ Tr2

(
Ĝ

(B)
i

))
must hold, with Tr2(·) ≡

(
Tr(·)

)2
.

As mentioned before, the CCNR criterion can be deduced from the covariance matrix
criterion. Indeed, from Theorem 18, one can easily obtain Theorem 10.

4The factor 2 comes from the orthogonality relation of SU(d) generators.
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Proof. Using
a2 + b2 ≥ 2|ab| and |a− b| ≥ |a| − |b|, (3.12)

and Theorem 18, we get

2
∑
i

∣∣∣σi − σ2
i Tr

(
Ĝ

(A)
i

)
Tr
(
Ĝ

(B)
i

)∣∣∣ ≤ 2−
∑
i

σ2
i

(
Tr2
(
Ĝ

(A)
i

)
+ Tr2

(
Ĝ

(B)
i

))
⇔2

∑
i

∣∣∣σi − σ2
i Tr

(
Ĝ

(A)
i

)
Tr
(
Ĝ

(B)
i

)∣∣∣ ≤ 2−
∑
i

σ2
i 2
∣∣∣Tr
(
Ĝ

(A)
i

)
Tr
(
Ĝ

(B)
i

)∣∣∣
⇔
∑
i

∣∣∣σi − σ2
i Tr

(
Ĝ

(A)
i

)
Tr
(
Ĝ

(B)
i

)∣∣∣+
∑
i

σ2
i

∣∣∣Tr
(
Ĝ

(A)
i

)
Tr
(
Ĝ

(B)
i

)∣∣∣ ≤ 1

⇔
∑
i

σi − σ2
i

∣∣∣Tr
(
Ĝ

(A)
i

)
Tr
(
Ĝ

(B)
i

)∣∣∣+ σ2
i

∣∣∣Tr
(
Ĝ

(A)
i

)
Tr
(
Ĝ

(B)
i

)∣∣∣ ≤ 1

⇔
∑
i

σi ≤ 1,

(3.13)

keeping in mind that the σi’s are positive.

Finally, one can obtain an interesting criterion involving the normal form of the density
operator. By applying the CM and traces criterion to a state in its normal form, one gets
the following criterion:

Theorem 19 (Filter CM criterion [32]). Let ρ̂ ∈ S(HAB) be a state with dA < dB whose
filter normal form is

ρ̂ =
1

dAdB
1+

1

4

d2A−1∑
i=1

d2B−1∑
j=1

Tij(λ̂i ⊗ σ̂j)

(see Eq. (1.63)). If the state ρ̂ is separable, then

||T ||Tr ≤ 1− 1

dA
+
d2
A − 1

dB
+ min

[
0, 1− dB −

d2
A − d2

B

dB

]
must hold.

Remark 8. Hereafter and in general, when the covariance matrix criterion is mentioned,
it implies the filter covariance matrix criterion.

As stated in Section 1.2.2, normal forms are very useful in separability criteria. For
instance, the filter CM criterion is strictly stronger than the criterion it is deduced from,
i.e. the CM and traces criterion [32]. It has been shown [30, 31] that the filter CM
criterion is stronger than the correlation matrix criterion for states in their normal form
when dA << dB, but weaker when dA ∼ dB. We note that for dA = dB, the criteria are
equivalent. So, the filter CM criterion and the correlations matrix criterion of previous
section are complementary. Note that the correlation matrix criterion is a corollary of
Theorem 15, which is not directly computable, thus the correlation matrix criterion is
not strictly weaker than the practical CM criteria.

Physically, all these criteria, consequences of the covariance matrix criterion, express
the same idea: if the correlations between the two subsystems are ‘too large’, then the
global state is entangled. The correlations are represented in the different theorems by
the matrices C, Cred and T̃ . This was already the idea in the correlation matrix criterion.
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3.3 Enhanced CCNR criterion

In 2008, Zhang et al. proposed a necessary condition for the separability of bipartite
systems that is quite similar to the CCNR criterion in its structure, although stronger.
Hence it is called enhanced CCNR criterion. Their criterion also generalises to the multi-
partite scenario. First, we note that for the regular CCNR criterion, a family of non-linear
entanglement witnesses has been developed. These are strictly stronger than the original
CCNR criterion and are of the form [28]

F(ρ̂) = 1− ||T ||Tr −
1

2

(
Tr
(
(ρ̂(A))2

)
− Tr

(
(ρ̂(B))2

))
, (3.14)

where T is a d2
A× d2

B matrix with matrix elements Tij = Tr((ρ̂− ρ̂(A)⊗ ρ̂(B))Ĝ
(A)
i ⊗ Ĝ

(B)
j )

and where ρ̂(A) and ρ̂(B) are the reduced density operators. This is a family of (non-linear)
entanglement witnesses, which means that

∀ separable state ρ̂s ∈ S(HAB) : F(ρ̂s) ≥ 0

and ∃ an entangled state ρ̂e ∈ S(HAB) : F(ρ̂e) < 0.
(3.15)

The enhanced CCNR criterion goes as follows

Theorem 20 (Enhanced CCNR criterion [28]). Consider a bipartite density operator ρ̂
and the realignment operator R as in Eq. 2.37. If the state ρ̂ is separable, then∣∣∣∣∣∣∣∣R(ρ̂− ρ̂(A) ⊗ ρ̂(B)

)∣∣∣∣∣∣∣∣
Tr

≤
√(

1− Tr
(
ρ̂(A)

))(
1− Tr

(
ρ̂(B)

))
must hold.

Clearly, we recognise here the structure of the CCNR criterion. As stated above, the
enhanced CCNR criterion is stronger than the regular CCNR criterion and its non-linear
witnesses, which was proven in Ref. [28]. Moreover, the authors of Ref. [28] have proven
that Theorem 20 is stronger than the correlation matrix criterion, although equivalent
in the case of states in their normal form. The enhanced CCNR criterion is completely
analytical (unlike normal forms that are computed numerically), which makes it still
useful. Then, we note than Theorem 20 is complementary to the filter CM criterion, and
is a corollary of the regular CM criterion (which, we recall, is not directly computable).
Indeed, if |dA−dB| is large, then Theorem 19 is better than Theorem 20, but if |dA−dB|
is small, it is the opposite. The enhanced CCNR criterion has been generalised to 2N -
partite systems but the notations used are somewhat laborious so we are not going into
greater details. More information can be found in Ref. [28].

3.4 LWFL family of criteria

We present in this section a family of criteria derived in 2014 by Li et al. [33] that we
refer to as the LWFL family of criteria. Again, it is based on the Bloch representation of
quantum states. The criterion states that:
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Theorem 21 (LWFL family of criteria [33]). Consider a bipartite state ρ̂ and its Bloch
representation

ρ̂ =
1

dAdB
1⊗ 1+

1

2dB

d2A−1∑
i=1

riλ̂i ⊗ 1+
1

2dA

d2B−1∑
j=1

sj1⊗ σ̂j +
1

4

d2A−1∑
i=1

d2B−1∑
j=1

Tijλ̂i ⊗ σ̂j.

(see Eq. (1.59)). If the state is separable, then for any d2
A × d2

B matrix X and any
(d2
A − 1) × (d2

B − 1) matrix Y with real matrix elements Xij and Yij respectively, the
following inequalities must hold:∣∣∣∣ 1

dAdB
X00 +

1

2dB

∑
i

riXi0 +
1

dA

∑
j

sjX0j +
1

4

∑
ij

TijXij
∣∣∣∣

≤
√

(d2
A − dA + 2) (d2

B − dB + 2)

2dAdB
σmax(X ),∣∣∣∣∣∑

ij

TijYij

∣∣∣∣∣ ≤
√

4(dA − 1)(dB − 1)

dAdB
σmax(Y)

where σmax(X ) and σmax(Y) are the maximal singular values of the matrices X and Y
respectively.

For each matrices X and Y , one gets two conditions, which is why Theorem 21 is
called a family of criteria. By using a certain matrix Y based on the singular value
decomposition of T , one can prove that the second inequality of Theorem 21 implies the
correlation matrix criterion [33]. This means that one of the many criteria that comes
with the LFWL family of criteria is the correlation matrix criterion. Moreover, in Ref.
[33], the authors have shown through an example that a specific LWFL criterion can
detect states not detected by the correlation matrix criterion. Then, through the same
example, they have shown that this LWFL criterion is able to detect entanglement for
states that are neither detected by the PPT criterion nor by the CCNR criterion, which
makes it complementary to the duo PPT/CCNR. With these criteria arises the question
of how to find the matrices X and Y that lead to a good entanglement detection. The
LWFL family of criteria can further be extended to the multipartite case, which gives a
necessary criterion for the full separability of multipartite states5.

3.5 Li-Qiao criterion

In 2018, Li and Qiao published a paper about a new necessary and sufficient criterion for
the separability of quantum states [34]. Consider a density operator of a dA×dB bipartite
system with full local ranks. It can be written in its normal form, that we recall to be

ρ̂ =
1

dAdB
1+

1

4

d2A−1∑
i=1

d2B−1∑
j=1

Tijλ̂i ⊗ σ̂j (3.16)

5Again, this criterion is not explicitly exposed since it requires a lot of new notation.
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(see Eq. (1.63)). Let

T = (u1, ...,uN2−1)Λτ (v1, ...,vM2−1)T =
l∑

i=1

τiuiv
T
i (3.17)

be the singular value decomposition of T , with l = rank(T )6 (see Appendix A.1). In the
basis of ui and vi, the matrix T is diagonal and its diagonal elements are its singular
values. As we recall from Definition 5, if the state ρ̂ is separable, then there exists a
number L such that ρ̂ can be decomposed as follows

ρ̂ =
L∑
i=1

piρ̂
(A)
i ⊗ ρ̂

(B)
i (3.18)

with

ρ̂
(A)
i =

1

dA
1+

1

2
riλ̂, (3.19)

ρ̂
(B)
i =

1

dB
1+

1

2
siλ̂, (3.20)

and pis being convex weights. The operators ρ̂
(A)
i and ρ̂

(B)
i represent physical systems

in their respective Hilbert spaces and therefore are positive semi-definite operators with
unit trace. Using the Bloch vectors of both subsystems and the convex weights of Eq.
(3.18), we build three matrices

Mr ≡ {r1, . . . , rL}, Ms ≡ {s1, . . . , sL} and Dp ≡ diag{p1, . . . , pL}, (3.21)

and from these, we build the following matrices:

Mrp ≡Mr

√
Dp and Msp ≡Ms

√
Dp. (3.22)

We can now reformulate the definition of entanglement through the following theorem:

Theorem 22 (Ref. [34]). Consider a bipartite state with matrices Mrp and Msp as in
Eq. (3.22). The state is separable if and only if there exists a number L such that the
matrix T can be decomposed as

T = MrpM
T
sp

with the following conditions:

L∑
i=1

piri = 0 and
L∑
i=1

pisi = 0.

This theorem is nothing but Theorem 12 for states in their normal forms. As proven
in Ref. [34], this decomposition exists if and only if the following equations hold:

Mrp = (u1, . . . ,uL)XDαQ
(1), Msp = (v1, . . . ,vL)Y DβQ

(2) (3.23)

6Note that for states in their normal forms, rank(ρ̂) ≡ r = l + 1, see Appendix A.3
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and
Dτ = XDαQ

(1)Q(2)TDβY
T (3.24)

where X, Y , Q(1) and Q(2) are L × L orthogonal matrices with determinant 1, Dα =
diag{α1, . . . αL}, Dβ = diag{β1, . . . βL}, Dτ = diag{τ1, . . . τL}, are diagonal matrices with
as diagonal elements, the singular values of Mrp, Msp and T respectively, arranged in
decreasing order. Furthermore, the condition expressed by Eq. (3.24) is satisfied if and
only if the following set of inequalities is satisfied:∏

k∈K

τk ≤
∏
i∈I

αi
∏
j∈J

βj ∀ (I, J,K) ∈ TLq , q < L. (3.25)

These inequalities are called Horn inequalities7.

Remark 9 (The sets I, J and K [34]). The sets I, J and K are subsets of the set of the
n first non-zero natural numbers, i.e. subsets of {1, . . . , n}, of the form I = {i1, . . . , iq},
J = {j1, . . . , jq} and K = {k1, . . . , kq} where the elements are arranged in increasing
order. Then, we define F(I) ≡

(
iq − q, iq−1 − (q − 1), . . . , i1 − 1

)
and build the triplet

(λ, µ, ν) ≡
(
F(I),F(J),F(J)

)
. Finally, we define the set of triplets T nq ≡ {(I, J,K)} by

saying that a triplet (I, J,K) is in T nq if and only if the corresponding triplet (λ, µ, ν)
occurs as eigenvalues of the triplet of q × q Hermitian matrices, with the third being the
sum of the first two.

Again, the separability condition states that the correlations in separable states ”can-
not be too large”. Note that the αis and βjs cannot be too large either, or they would
correspond to non-physical Bloch vectors. We synthesise all the above conditions in the
following theorem:

Theorem 23 (Li-Qiao criterion [34]). Consider a bipartite state with matrices Mrp and
Msp as in Eq. (3.22). The state is separable if and only if

– there exists a number L such that Mrp and Msp can be decomposed as in Eq. (3.23),
i.e.

Mrp = (u1, . . . ,uL)XDαQ
(1), Msp = (v1, . . . ,vL)Y DβQ

(2),

– Eq. (3.25), i.e. ∏
k∈K

τk ≤
∏
i∈I

αi
∏
j∈J

βj ∀ (I, J,K) ∈ TLq , q < L

is satisfied,

– the conditions
∑

i piri = 0 and
∑

i pisi = 0 are satisfied.

Let us try to arrive to a practical criterion from Theorem 23. Note that the first
condition of Theorem 23 is trivially satisfied when working in the {ui,vj} basis8, which
leaves us with the second and third conditions. Eq. (3.25) gives us a set of inequalities
on the singular values of Mrp and Msp. We generated these inequalities and we got, for

7This comes from the fact that they are the solutions to the Horn problem, see Ref. [34] for more
details.

8Indeed, this leaves us with the singular value decomposition of Mrp and Msp.
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d× d systems with d from two to ten, 3, 12, 41, 142, 522, 2062, 8752, 39716 and 191353
inequalities respectively. The number of inequalities is increased by a factor of ∼ 4 each
time d becomes bigger. For 2× 2 and 3× 3 systems, the set of inequalities are

τ1 ≤ α1β1

τ2 ≤ α1β2

τ2 ≤ α2β1

(3.26)

and 

τ1 ≤ α1β1

τ2 ≤ α1β2

τ3 ≤ α1β3

τ2 ≤ α2β1

τ3 ≤ α2β2

τ3 ≤ α3β1

τ1τ2 ≤ α1α2β1β2

τ1τ3 ≤ α1α2β1β3

τ2τ3 ≤ α1α2β2β3

τ1τ3 ≤ α1α3β1β2

τ2τ3 ≤ α1α3β1β3

τ2τ3 ≤ α2α3β1β2

(3.27)

We recall that the τis are known, since they are the singular values of T . So, given
two sets of L singular values {αi} and {βi} satisfying Eq. (3.25), we can construct the
matrices Mrp and Msp and we have, in the {ui,vj} basis,

(Mr)ij =
L∑
k=1

L∑
l=1

L∑
m=1

Xik(Dα)klQ
(1)
lm(D−1/2

p )mj

=
L∑
k=1

Xik · αk · p−1/2
j ·Q(1)

kj

(3.28)

and analogously

(Ms)ij =
L∑
k=1

Yik · βk · p−1/2
j ·Q(2)

kj (3.29)

Knowing that Mr = (r1, ..., rL) and Ms = (s1, ..., sL), we have

ri =
1
√
pi


∑L

k=1X1k · αk ·Q(1)
ki

...∑L
k=1XN2−1,k · αk ·Q(1)

ki

 (3.30)

and

si =
1
√
pi


∑L

k=1 Y1k · βk ·Q(2)
ki

...∑L
k=1 YM2−1,k · βk ·Q(2)

ki

 . (3.31)
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The two sets {ri} and {si} are sets of L vectors of size d2
A−1 and d2

B−1 respectively. To

make ρ̂
(A)
i and ρ̂

(B)
i of Eqs. (3.19)–(3.20) represent physical systems, the vectors ri and

si of Eqs. (3.19)–(3.20) have to verify a set of d positivity conditions, exposed in Section
1.1.3, and the last conditions of Theorem 23. If the conditions are satisfied by the vectors
ri and si of Eqs. (3.30)–(3.31), then these vectors belong to Bloch-vector spaces and hence
the state ρ̂ is separable since it can be written in the form of Eq. (3.18), with acceptable
Bloch vectors. Otherwise, the hypothesis of ρ̂ being a separable state does not hold and
therefore ρ̂ is entangled.

Remark 10. Note that we worked in the {ui,vj} basis. Therefore, in the case of ρ̂
being separable, we need to perform a change of basis in order to obtain the separable
decomposition in a more common basis.

Unfortunately, Theorem 23 does not say how to determine all the parameters involved
in the separable decomposition of ρ̂. So, to the best of our knowledge, the Li and Qiao
criterion is rather a reformulation of the definition of entanglement, as stated in the
introduction of Chapter 2. This comes from the fact that there are too many degrees
of freedom, hence too many decompositions to test. For instance, the theorem does not
give any constrains on the number L and on the corresponding set of convex weights pis,
which leaves us with an infinity of combinations to test.

In practice, one could test if a separable decomposition is obtained for a number
L ∈ [r, r2]. If not, the state is entangled. Indeed, it is known that L ≥ r [35] and that,
for a separable state, there always exists a separable decomposition with L ∈ [r, r2] [36].
So this drastically constrains the number probabilistic distributions to test even if it is
still infinite.

Moreover, the inequalities of Eq. (3.25) allow many different sets of singular values
{αi}, {βj} and {τk}. By gathering the inequalities given in Eqs. (1.43) to (1.47) and in
Eq. (3.25), one might obtain stronger conditions for the values of the different singular
values.

Remark 11. We note from Theorem 22 that the authors of Ref. [34] where able to obtain
the PPT criterion and both correlation matrix criteria, i.e. Theorems 2, 13 and 14.

3.6 Symmetric informationally complete measures cri-

terion

The next criterion involves a special kind of measurement, the symmetric informationally
complete positive operator-valued measures (SIC POVMs), which are defined hereafter.
The criterion was proposed in 2018 and has been proven to be stronger than the CCNR
criterion [37].

Symmetric informationally complete positive operator-valued measures

First, let us define positive operator-valued measures (POVMs).

Definition 22 (POVM [16]). A set of operators {Êi} is called a POVM if

– each operator Êi is positive, which also means each operator is Hermitian;
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– the completeness relation
∑

i Êi = 1 if verified.

Operators Êi are called POVM elements.

A POVM applied to a state ρ̂ ∈ S(HAB) gives the outcome i with probability pi =
Tr(Êiρ̂) and thus a given POVM is sufficient to determine the probabilities of the different
measurement outcomes. The POVM does not determine the measurement operators
associated to it uniquely [16].

A POVM in a d-dimensional Hilbert space is called informationally complete if the
probabilities pi uniquely determine the density operator [15], which means that it must
contain at least d2 elements in order to span HS(H), where d is the dimension of H, as
usual. Now, a POVM is called symmetric informationally complete (SIC) if it is composed
of d2 elements Π̂i = 1

d
|ψi〉 〈ψi| with

| 〈ψi|ψj〉 |2 =
dδij + 1

d+ 1
, i, j = 1, . . . , d2. (3.32)

It is conjectured that SIC POVMs exist in all finite dimensions. Indeed, analytical proofs
and strong numerical evidence that SIC POVMs exist for some specific dimensions9 have
been found, but a general proof is still lacking [37]. The density operator ρ̂ can effectively
be determined using the probabilities pi = Tr(Π̂iρ̂), [37]

ρ̂ =
d2∑
i=1

(
d(d+ 1)pi − 1

)
Π̂i

= d(d+ 1)
d2∑
i=1

piΠ̂i − 1.

(3.33)

Moreover, one has
d2∑
i=1

p2
i =

1 + Tr(ρ̂2)

d(d+ 1)
≤ 2

d(d+ 1)
(3.34)

where the equality holds if and only if ρ̂ is pure. Let us introduce the renormalized SIC
POVM {Êi} with elements

Êi ≡
√
d(d+ 1)

2
Π̂i =

√
d+ 1

2d
|ψi〉 〈ψ1| . (3.35)

and ‘renormalized probabilities’

ei = Tr(Êiρ̂) =

√
d(d+ 1)

2
pi, (3.36)

which leads to
d2∑
i=1

e2
i =

1 + Tr(ρ̂2)

2
≤ 1. (3.37)

Again, the equality holds if and only if ρ̂ is pure.

9Analytically for dimensions d = 2−24, 28, 30, 31, 35, 37, 39, 43, 48, 124, and numerically up to dimen-
sion d = 151.
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Entanglement criterion

Now that SIC POVMs have been introduced, we can expose the entanglement criterion
based on them, called the ESIC criterion. Let ρ̂ ∈ S(HAB) be the density operator of

a bipartite system AB, of dimension dAB = dA × dB and let {Ê(A)
i , i = 1, . . . , (dA)2}

and {Ê(B)
i , i = 1, . . . , (dB)2} be normalised SIC POVMs for the subsystems A and B

respectively. The linear correlations between the two SIC POVMs are

Pij(ρ̂) ≡ Tr
(

(Ê
(A)
i ⊗ Ê(B)

j )ρ̂
)

(3.38)

from which one can obtain the ESIC criterion.

Theorem 24 (ESIC criterion [37]). Consider a bipartite state with matrix P of matrix
elements as in Eq. (3.38). If the state is separable, then

||P||Tr ≤ 1

must hold. This condition is independent of the choice of the SIC POVMs.

Remark 12. Note that in terms of SIC POVMs {Π̂(A)
i } and {Π̂(B)

i } instead of normalised
SIC POVMs, this criterion states that if a bipartite state ρ̂ ∈ S(HAB) is separable, then∣∣∣∣∣∣∣∣ [Tr

(
(Π̂

(A)
i ⊗ Π̂

(B)
j )ρ̂

)] ∣∣∣∣∣∣∣∣
Tr

≤

√
4

dAdB(dA + 1)(dB + 1)
, (3.39)

must hold, where [Aij] represents the matrix A.

3.7 SSC family of criteria

Finally, we introduce again a family of separability criteria, proposed very recently in
2020. Interestingly, these criteria are linear with respect to the density operator. This
family of criteria (that we call the SSC family of criteria) is based on the matrix C of a
bipartite state ρ̂ ∈ S(HAB) that we recall has the matrix elements Cαβ

Cαβ = Tr
(

(Ĝ(A)
α ⊗ Ĝ

(B)
β )ρ̂

)
, (3.40)

where {Ĝ(A)
α : α = 0 . . . , d2

A − 1} and {Ĝ(B)
β : β = 0 . . . , d2

B − 1} are orthonormal basis

of HS(HA) and HS(HB) respectively. If one chooses basis elements such that Ĝ
(A)
0 =

1/
√
dA and Ĝ

(B)
0 = 1/

√
dB, one can write

ρ̂ =C00
1√
dA
⊗ 1√

dB
+

d2A−1∑
i=1

Ci0Ĝ(A)
i ⊗

1√
dB

+

d2B−1∑
j=1

C0j
1√
dA
⊗ Ĝ(B)

j +

d2A−1∑
i=1

d2B−1∑
j=1

CijĜ(A)
i ⊗ Ĝ

(B)
j

=

d2A−1∑
α=0

d2B−1∑
β=0

Ccan
αβ Ĝ

(A)
α ⊗ Ĝ

(B)
β .

(3.41)
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We call this type of basis canonical basis. Obviously, since the trace norm is independent
of the basis choice, we have that ||C(can)||Tr = ||C||Tr. Then, we introduce two square
diagonal matrices of dimensions d2

A × d2
A and d2

B × d2
B respectively,

D(A)
x = diag{x, 1, . . . , 1} and D(B)

y = diag{y, 1, . . . , 1}, (3.42)

with x and y being real positive parameters. We now obtain the family of separability
criteria

Theorem 25 (SSC family of criteria [38]). Consider a bipartite state as in Eq. (3.41)
and matrices as in Eq. (3.42). If the state is separable, then

||D(A)
x CcanD(B)

y ||Tr ≤

√
dA − 1 + x2

dA

√
dB − 1 + y2

dB

must hold, for arbitrary x, y ≥ 0.

Link with other entanglement criteria

This criterion is a set of criteria, as for each pair of (x, y) one gets a different separability
criterion. For the pair (1, 1), one gets

||Ccan||Tr = ||C||Tr ≤
√
dA
dA

√
dB
dB

= 1, (3.43)

which is the CCNR criterion. Then, the pair (0, 0) leads to

||D(A)
0 CcanD

(B)
0 ||Tr =

1

2
||T ||Tr ≤

√
dA − 1

dA

√
dB − 1

dB

⇔||T ||Tr ≤

√
4(dA − 1)(dB − 1)

dAdB
,

(3.44)

which is the correlation matrix criterion. The pair
(√

2
dA
,
√

2
dB

)
gives the LWFL family of

criteria and finally, the authors of Ref. [38] have shown that the pair (
√
dA + 1,

√
dB + 1)

leads to the ESIC criterion. We note that the SSC family of criteria is not stronger than
the filter CM criterion but that it detects states note detected by the filter CM criterion
and thus these criteria are complementary.

In a recent preprint, Sarbicki et al. have proven that the enhanced CCNR criterion is
perfectly equivalent to the SSC family of criteria [39]. First, the authors proved that a
state satisfying the enhanced CCNR criterion satisfies Theorem 25 for all x, y ≥ 0. Then,
they proved that an entangled state detected by the enhanced CCNR is also detected by
Theorem 25 for some x, y ≥ 0. So, this means all states detected by enhanced CCNR
criterion are detected by Theorem 25 and states not detected by enhanced CCNR criterion
are not detected by Theorem 25, which makes both criteria equivalent. However, as we see
below, Theorem 25 gives rise to a class of entanglement witness, whereas enhanced CCNR
criterion is clearly non-linear in ρ̂, which makes Theorem 25 definitively interesting.
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Entanglement witnesses

Sarbicki et al. have proven in Ref. [38] that Theorem 25 gives rise to a class of witnesses
parametrised by d2

A × d2
B isometry10 matrices O and by two positive numbers x and y.

They have proven that Theorem 25 is equivalent to

Tr(Ŵ
(x,y)
O ρ̂) ≥ 0 (3.45)

where the entanglement witness Ŵ
(x,y)
O has the structure

Ŵ
(x,y)
O =

∑
α,β

wαβĜ
(A)
α ⊗ ĜB

β (3.46)

with
w00 =

√
(dA − 1 + x2)(dB − 1 + y2) + xyO00,

w0j = xO0j, wi0 = yOi0, wij = Oij, (3.47)

for i = 1, . . . , d2
A − 1 and j = 1, . . . , d2

B − 1.

Proof. First, we note that the definition of the trace norm of any m × n matrix X can
be given by [38]

||X||Tr = max
O∈O(m,n)

{
Tr(X†O)

}
(3.48)

where the maximum is taken over all isometry m× n matrices O. Then, from Theorem
25, one has for a separable state ρ̂s and with x, y two positive parameters,√

dA − 1 + x2

dA

√
dB − 1 + y2

dB
− ||D(A)

x CcanD(B)
y ||Tr ≥ 0

⇔

√
dA − 1 + x2

dA

√
dB − 1 + y2

dB
− max
O∈O(d2A,d

2
B)

{
Tr
(
(D(A)

x CcanD(B)
y )†O

)}
︸ ︷︷ ︸

+ min
O∈O(d2

A
,d2
B

)

{
Tr
(

(D
(A)
x CcanD

(B)
y )†O

)}
≥ 0,

(3.49)

since for O ∈ O(m,n) such that Tr(X†O) is maximal, Tr(X†(−O)) is minimal. Then,√
dA − 1 + x2

dA

√
dB − 1 + y2

dB
+ min

O∈O(d2A,d
2
B)

{
Tr
(
(D(A)

x CcanD(B)
y )†O

)}
≥ 0

⇔

√
dA − 1 + x2

dA

√
dB − 1 + y2

dB
+ Tr

(
(D(A)

x CcanD(B)
y )†O

)
≥ 0 ∀O ∈ O(d2

A, d
2
B)

⇔

√
dA − 1 + x2

dA

√
dB − 1 + y2

dB
Tr(1⊗ 1 · ρ̂s) + Tr

(
(D(A)

x CcanD(B)
y )†O

)︸ ︷︷ ︸
(∗)

≥ 0 ∀O ∈ O(d2
A, d

2
B)

(3.50)

10Distance preserving matrices.
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(∗) = Tr
(
(D(B)

y )†(Ccan)†(D(A)
x )†O

)
=
∑
α

(
(D(B)

y )†(Ccan)†(D(A)
x )†O

)
αα

=
∑
α,β,γ,σ

(D(B)
y )∗βα(Ccan)∗γβ(D(A)

x )∗σγOσα

=
∑
α,β,γ,σ

(D(B)
y )βα (Ccan)γβ︸ ︷︷ ︸

Tr(Ĝ
(A)
γ ⊗ĜBβ ·ρ̂s)

(D(A)
x )σγOσα

= Tr

[(∑
β,γ

∑
α,σ

(D(A)
x )σγOσα(D(B)

y )βαĜ
(A)
γ ⊗ Ĝ

(B)
β

)
ρ̂s

]

= Tr

[(∑
β,γ

(D(A)
x )γγOγβ(D(B)

y )ββĜ
(A)
γ ⊗ Ĝ

(B)
β

)
ρ̂s

]

= Tr

[(
xyO00Ĝ

(A)
0 ⊗ Ĝ(B)

0 +
∑
j>0

xO0jĜ
(A)
0 ⊗ Ĝ(B)

j

+
∑
i>0

yOi0Ĝ
(A)
i ⊗ Ĝ

(B)
0 +

∑
i,j>0

OijĜ
(A)
i ⊗ Ĝ

(B)
j

)
ρ̂s

]
,

(3.51)

using the fact that D
(A)
x , D

(B)
y and Ccan are real matrices. So Eq. (3.49) reads

Tr

[(√
dA − 1 + x2

√
dB − 1 + y2

1√
dA
⊗ 1√

dB
+ xyO00

1√
dA
⊗ 1√

dB
+
∑
j>0

xO0j
1√
dA
⊗ Ĝ(B)

j

+
∑
i>0

yOi0Ĝ
(A)
i ⊗

1√
dB

+
∑
i,j>0

OijĜ
(A)
i ⊗ ĜB

j

)
ρ̂s

]
≥ 0 ∀O ∈ O(d2

A, d
2
B)

⇔ Tr
(
Ŵ

(x,y)
O ρ̂s

)
≥ 0 ∀O ∈ O(d2

A, d
2
B)

(3.52)

Then, in Ref. [39], the authors have shown that for each entangled state detected by
the enhanced CCNR criterion, it is possible to construct an entanglement witness that
will also detect the state. This class of entanglement witnesses is characterised by

Ŵ∞ =
∑
αβ

w∞αβĜ
(A)
α ⊗ ĜB

β , (3.53)

with

w∞00 =
1

2

(
(dB − 1)cotg(θ) + (dA − 1)tg(θ) + η2sin(θ)cos(θ)

)
,

w∞0j = ηcos(θ)vj, w∞i0 = ηsin(θ)ui, w∞ij = Oij, (3.54)

55



for i = 1, . . . , d2
A − 1 and j = 1, . . . , d2

B − 1, with η ≥ 0 and θ, two real parameters. The
matrix O is a (d2

A − 1) × (d2
B − 1) isometry. The vectors u and v are normalised and

satisfy u = Ov. We note that the subscript ‘∞’ on Ŵ∞ is there to remind of the fact
that Ŵ∞ was found by taking the limit of Ŵ

(x,y)
O with x, y →∞.

Multipartite entanglement

The SSC family of criteria generalises to a necessary condition in the multipartite case.
For this purpose, we need to generalise some quantities. The hypermatrix C of a N -partite
state ρ̂ acting on Htot = H1 ⊗ · · · ⊗ HN reads

C(N)
α1...αN

= 〈Ĝ(1)
α1
⊗ · · · ⊗ Ĝ(N)

α1
〉
ρ̂
. (3.55)

The two diagonal matrices used above are generalised to N diagonal matrices of dimen-
sions d2

i × d2
i

D(i)
xi

= diag{xi, 1, . . . , 1} (3.56)

Then, one has

Theorem 26. Consider a N-partite state with hypermatrix C as in Eq. (3.55) and ma-
trices as in Eq. (3.56). If the state is fully separable, then∣∣∣∣∣∣C(N)

α1...αN
(D(1)

x1
)i1i1 . . . (D

(N)
xN

)iN iN

∣∣∣∣∣∣
Tr
≤

√
d1 − 1 + x2

1

d1

. . .

√
dN − 1 + x2

N

dN

must hold, for arbitrary xi ≥ 0 (i = 1, . . . , N).

We notice that the SSC family of criteria unifies a lot of criteria described in the pre-
vious sections, that is the CCNR criterion of Section 2.5, the correlation matrix criterion
of Section 3.1, the enhanced CCNR criterion of Section 3.3, the LWFL family of criteria
of Section 3.4 and the ESIC criterion of Section 3.6.

3.8 Comparing the criteria

In this section, we try to give an overview of the previous sections. The following table
summarises the relative strength of various computable criteria encountered throughout
the manuscript:

PPT / compl. compl. compl. compl. compl. compl. compl.
CCNR compl. / compl. ? weaker compl. ? weaker

Corr. M11 compl. compl. / compl. weaker weaker ? weaker
filter CM compl. ? compl. / compl. ? ? compl.
eCCNR12 compl. stronger stronger compl. / stronger stronger equiv.

LWFL compl. compl. stronger ? weaker / ? weaker
ESIC compl. ? ? ? weaker ? / weaker
SSC compl. stronger stronger compl. equiv. stronger stronger. /

× PPT CCNR Corr. M filter CM eCCNR LWFL ESIC SSC

11Stands for correlation matrix criterion.
12Stands for enhanced CCNR criterion.
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– equiv.: line criterion is equivalent to row criterion i.e. line criterion and row criterion
detect exactly the same states;

– compl.: line criterion is complementary to row criterion i.e. line criterion can detect
states not detected by row criterion and vice versa;

– stronger: line criterion is stronger than row criterion i.e. line criterion can detect
all states detected by row criterion and at least one more;

– weaker: line criterion is weaker than row criterion i.e. all states detected by line
criterion are detected by row criterion and the latter can detect at least one more.

First, we notice the strength of the PPT criterion, which is to date still not supplanted.
Indeed, there is no known to us criterion that is strictly stronger than the PPT criterion.
It is also worth recalling the simplicity of this necessary criterion, and the fact that
is solves the separability problem for 2 × 2 and 2 × 3 systems. Then, this table also
highlights the strength of the SSC family of criteria. It has been proven to recover four
other criteria by means of simple inequalities. We note however that these inequities
require the knowledge of the whole density operator. The whole SSC family is equivalent
to the enhanced CCNR criterion. This is somehow surprising since the enhanced CCNR
criterion does not seem to have been strongly investigated by the entanglement theory
community. Indeed, literature is scarce on the subject. From this equivalence, one can
deduce that the enhanced CCNR criterion is stronger than the LWFL family of criteria
and than the ESIC criterion.

It seems that the trio of criteria PPT / filter CM / enhanced CCNR is the most
efficient to detect entanglement. We favour the enhanced CCNR to the SSC family since
applying the latter to a state for all x, y ≥ 0 is hardly doable whereas the former only
gives one inequality to check. However, we note that the SSC family gives rise to a new
class of entanglement witnesses and thus expands the entanglement witness theory. We
recall that the great benefit of entanglement witnesses is that they do not require the
knowledge of the whole density operator contrary to most of the criteria. Finally, we
must note that if we allow ourselves to consider states in their filter normal form, the
correlation matrix criterion is equivalent to the enhanced CCNR criterion, which means
it is also equivalent to the SSC family of criteria. This emphasises again the enhancement
capability of filter normal forms, and thus the trio of criteria PPT / filter CM / filter
correlation matrix may also be considered.
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Conclusion

The theory of quantum entanglement is still under construction and has generated great
interest over the last thirty years. The aim of the present manuscript was to review
several relevant existing separability criteria, with an emphasis on criteria developed in
the last ten years. We analysed these criteria following chronological order of appearance
in literature and finally compared and contrasted them in the last section of this work.

In the first chapter, we summarised the notions of quantum mechanics required to
enable the full understanding of the separability criteria developed in the next chapters.
In Section 1.1, we defined quantum states and their representations on Hilbert spaces,
which are density operators. We distinguished pure states from mixed states, the former
being a special case of the latter. We introduced the Bloch representation of quantum
states, a representation that is involved in many different criteria, as we saw in Chapter 3.
Section 1.2 was devoted to bipartite systems and their particularities, the most important
one being the heart of this manuscript, quantum entanglement. In the same section, the
operation of partial trace was introduced, such as the bipartite Bloch representation and
the Schmidt decomposition of quantum states. The last section, was dedicated to the
generalization of the definitions of entanglement to multipartite systems. This chapter
was essential to the good understanding of the following chapters.

Chapter 2 was devoted to the analysis of separability criteria developed from 1996 to
2003. We began the chapter with the most celebrated one, namely the positive partial
transpose criterion. We recall that this criterion is necessary and sufficient for 2 × 2
and 2 × 3 systems and is still not, to our knowledge, supplanted by any other criterion.
Section 2.2 was devoted to entanglement witnesses, powerful tools to detect entangled
states, which does not require the full knowledge of the density operator. Then, in
Section 2.3, we defined entanglement measures and presented the most relevant ones in
this context, namely entropy of entanglement, negativity and in Section 2.4, concurrences.
Concurrences allowed us to consider the separability problem for pure states solved. The
second chapter was ended by the computable cross norm or realignment criterion, which
is complementary to the PPT criterion and is able to detect many PPT entangled states.

In the last chapter, we developed and analysed seven more recently developed separa-
bility criteria. In Section 3.1, two criteria based on the correlation matrix are presented.
Together, they are necessary and sufficient for the separability of 2× 2 systems, however
not of 2×3 systems. We also noted that the correlation matrix criterion is complementary
to the duo PPT / CCNR. Section 3.2 was dedicated to the covariance matrix criterion,
a necessary and sufficient but non-computable criterion that led to several computable
criteria. The third criterion that was exposed in this chapter is an enhanced version of
the CCNR criterion. Section 3.4 was dedicated to a family of criteria, which recovered
the correlation matrix criterion. Then, in Section 3.5, we analysed a necessary and suffi-
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cient but (to our knowledge) non-computable criterion, the Li-Qiao criterion. In Section
3.6, we presented the ESIC criterion. The last criterion introduced was the SSC family
of criteria, an impressively strong family of criteria. Indeed, it led to the recovering of
several strong criteria, namely the CCNR criterion, the correlation matrix criterion, the
LWFL family of criteria and the ESIC criterion. It has been shown that the SSC family
of criteria is equivalent to the enhanced CCNR criterion. Moreover, it has been proven
that the family of criteria lead to a new class of entanglement witnesses.

The last section of Chapter 3, that is to say Section 3.8, ended the present manuscript
with an original comparison of several computable criteria previously analysed. In this
section, based on the relative strengths of the criteria, we reached the conclusion that the
trio of criteria PPT / filter CM / enhanced CCNR is the most efficient in this manuscript
to detect entanglement. When considering normal forms, this trio is equivalent to PPT
/ filter CM / filter correlation matrix criteria. Lastly, we want to stress that a further
analysis of the Li-Qiao criterion could lead to a better characterization of the set of
separable states. Indeed, the link between the positivity condition of Section 1.1.3 and
the Horn inequalities of Section 3.5 has not been analysed in depth and could reveal a
bit more on the structure of the set of separable states.
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Appendix A

Appendix

A.1 Singular value decomposition

The following theorem is completely taken from Ref. [40], with slightly adapted notations:

Theorem 27 (Singular value decomposition [40]). Let A ∈ Mn,m(C) be given, let q =
min{m,n}, and suppose that rank(A) = r.

1. There are unitary matrices V ∈ Mn(C) and W ∈ Mm(C), and a square diagonal
matrix

Σq =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σq


such that σ1 ≥ σ2 ≥ . . . σr > 0 = σr+1 = · · · = σq and A = V ΣW †, in which

Σ = Σq if m = n,

Σ =
(
Σq 0

)
∈Mn,m(R) if m > n and

Σ =

(
Σq

0

)
∈Mn,m(R) if n > m.

The decomposition A = V ΣW † is called the singular value decomposition of the
matrix A.

2. The parameters σ1, ..., σr are the positive square roots of the decreasingly ordered
non-zero eigenvalues of AA†, which are the same as the decreasingly ordered non-
zero eigenvalues of A†A. They are called the singular values of the matrix A.

Note that rank(A) is equal to the number of its non-zero singular values whereas it is
smaller or equal to the number of its non-zero eigenvalues. If σ1, . . . , σn are the singular
values of A ∈Mn,m(C) with n ≤ m, then

|det(A)| =
n∏
i=1

σi,
√

Tr(A†A) =

√√√√ n∑
i=1

σ2
i and Tr(

√
A†A) =

n∑
i=1

σi. (A.1)
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We recognize in Eq. (A.1) the definitions of the Hilbert-Schmidt and trace norms. We
also note that in the case of Hermitian matrices, the absolute value of the eigenvalues are
the singular values [40].

A.2 Special unitary group

In this section, we give some basic notions about the special unitary group SU(d) (d ≥ 1)
in order to understand this work. First, we recall the definition of a group, a Lie group
and a Lie algebra.

Definition 23 (Group). A group G is a set together with a map

· : G×G→ G : (a, b) 7→ a · b

that satisfies the following properties:

– associativity : ∀a, b, c ∈ G : (a · b) · c = a · (b · c);
– existence of a neutral element : ∃ e ∈ g : e · a = a = a · e,∀a ∈ G;

– existence of an inverse : ∀a ∈ G,∃ b ∈ G : a · b = e = b · a.

Definition 24 (Lie group). A Lie group G is a group that is also a differential manifold,
such that the multiplication and inversion operations are differential maps.

Definition 25 (Lie algebra). A K-Lie algebra g of a Lie group G is the tangent K-vector
space at the unit element of the group together with a bilinear, anti-symmetric map[

·, ·
]
L : g× g→ g : (x, y) 7→

[
x, y
]
L

called the Lie bracket that verifies the Jacobi identity[
x,
[
y, z
]
L

]
L

+
[
y,
[
z, x
]
L

]
L

+
[
z,
[
x, y
]
L

]
L

= 0 ∀x, y, z ∈ g.

As mentioned, the special unitary group of degree d SU(d) is the Lie group of d× d
unitary complex matrices of unit determinant. In other words, a matrix A ∈ Md(C)
belongs to SU(d) if and only if

A†A = 1 = AA†, det(A) = 1. (A.2)

The Lie algebra of SU(d), denoted su(d), can be identified with the real vector space of
traceless anti-Hermitian1 d×d complex matrices, with the regular commutator [·, ·] as Lie
bracket. However, su(d) may also be isomorphically identified with the real vector space
of traceless, Hermitian d×d complex matrices, with 1/2i times the regular commutator as
Lie bracket. In physics, this is the usual convention and hence this convention is adopted
here. The Lie algebra su(d) is a real vector space of dimension d2 − 1 equipped with the
inner product 〈x|y〉 = Tr(xy). Conventionally, an orthogonal basis of this vector space
{λi : i = 1, . . . , d2 − 1} is chosen such that

〈λi|λj〉 = Tr(λiλj) = 2δij ∀i, j = 1, . . . , d2 − 1. (A.3)

1A matrix A is called anti-Hermitian if A† = −A.
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The product of the basis elements is given by, for all i, j = 1, . . . , d2 − 1, [15]

λiλj =
2

d
δij +

∑
k

gijkλk + i
∑
k

fijkλk, (A.4)

where fijk is totally anti-symmetric in its indices and gijk is totally symmetric and trace-
less (i.e. giik = 0), for all i, j, k = 1, . . . , d2 − 1. The coefficients fijk are the structure
constants of su(d) with respect to the chosen basis. They can be computed through [15]

[λi, λj] ≡ λiλj − λjλi = 2i
∑
k

fijkλk (A.5)

[λi, λj]+ ≡ λiλj + λjλi =
4

d
δij + 2

∑
k

gijkλk, (A.6)

for all i, j = 1, . . . , d2 − 1.
The basis elements λi (i = 1, . . . , d2 − 1) are called generators of the SU(d) group.

Together with the identity matrix, they form the following set of d× d matrices

{1, λ̂i : i = 1, . . . , d2 − 1}, (A.7)

which forms a basis of the real vector space of d×d Hermitian matrices and of the complex
vector space of d× d matrices.

Every element A of SU(d) can be generated by an element λ =
∑

i ciλi of su(d)
through

A = eiλ = ei
∑
i ciλi , (A.8)

which justifies their name. Indeed, det(A) = eiTr(λ) = 1 for any traceless λ.

A.2.1 SU(2) group

The SU(2) group is the group of unitary 2 × 2 matrices with determinant equal to
one. The conventionally chosen generators of SU(2) are the 22 − 1 = 3 Pauli matrices,
σ = (σi, σ2, σ3), given by [15]

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.9)

They form an orthogonal basis of the Lie algebra su(d), since they are of the number of
the dimension of the vector space, linearly independent and verify

Tr(σiσj) = 2δij. (A.10)

Together with the 2× 2 identity matrix,(
1 0
0 1

)
, (A.11)

they form a basis for the real vector space of 2×2 Hermitian matrices, and of the complex
vector space of 2× 2 matrices. The constants fijk and gijk are given by [17]

fijk = εijk,

gijk = 0
(A.12)

for all i, j, k = 1, 2, 3, where εijk is the Levi-Civita symbol.
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A.2.2 SU(3) group

The conventionally chosen generators of the SU(3) group are the 32 − 1 = 8 Gell-Mann
matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 ,

(A.13)

that can be seen as a generalisation of the Pauli matrices. One can easily check that they
verify Tr(λiλj) = 2δij. The non-vanishing constants fijk and gijk are given by [17]

f123 = 1,

f458 = f678 =

√
3

2
,

f147 = f246 = f257 = f345 = −f156 = −f367 =
1

2
,

g118 = g228 = g338 = −g888 =

√
3

3
,

g448 = g558 = g668 = g778 = −
√

3

6
,

g146 = g157 = g256 = g344 = g355 = −g247 = −g366 = −g377 =
1

2
.

(A.14)

A.2.3 SU(d) group (d ≥ 1)

For arbitrary d, the conventionally chosen set of SU(d) generators {λi : i = 1, . . . , d2−1}
is given by the set of matrices {Akl, Bkl, Ck : k = 1, . . . , d− 1; l = k + 1, . . . , d− 1} with,
∀m,n = 1, . . . , d, 

(Akl)mn = δm,lδn,k + δm,kδn,l

(Bkl)mn = i (δm,lδn,k − δm,kδn,l)
(Ck)mn =

√
2

k(k+1)

(∑k
k′=1 δm,k′ − kδm,k+1

)
δm,n.

(A.15)

The number of Akl matrices is given by
∑d−1

k′=1(d− k′) =
∑d−1

k′=1 k
′ = d(d− 1)/2, which is

identical to the number of Bkl matrices. The number of Ck matrices is equal to d − 1,
hence the total number of Akl, Bkl and Ck matrices is equal to d2 − 1. One easily checks
that, ∀k, k′ = 1, . . . , d− 1; l = k + 1, . . . , d− 1; l′ = k′ + 1, . . . , d− 1,

Tr(AklAk′l′) = Tr(BklBk′l′) = 2δk,k′δl,l′ , (A.16)

Tr(CkCk′) = 2δk,k′ , (A.17)

Tr(AklBk′l′) = Tr(AklCk′) = Tr(BklCk′) = 0 (A.18)
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Eqs. (A.16)–(A.18) imply that Tr(λiλj) = 2δi,j.

Proof. We consider hereafter arbitrary k, k′ = 1, . . . , d − 1; l = k + 1, . . . , d − 1; l′ =
k′ + 1, . . . , d− 1. First, let us prove Eq. (A.16):

Tr(AklAk′l′) =
∑
m

(AklAk′l′)mm =
∑
m,n

(Akl)mn(Ak′l′)nm

=
∑
mn

(δm,lδn,k + δm,kδn,l)(δn,l′δm,k′ + δn,k′δm,l′)

= 2(δl,k′δk,l′ + δk,k′δl,l′)

= 2δk,k′δl,l′

(A.19)

The proof of Tr(BklBk′l′) = 2δk,k′δl,l′ goes analogously. Then, we prove Eq. (A.17):

Tr(CkCk′) =
∑
m

(CkCk′)mm =
∑
m

(Ck)mm(Ck′)mm

=
2√

k(k + 1)k′(k′ + 1)

∑
m

[(
k∑
l=1

δm,l − kδm,k+1

)(
k′∑
l′=1

δm,l′ − k′δm,k′+1

)]

=
2√

k(k + 1)k′(k′ + 1)

∑
m

[
k∑
l=1

k′∑
l′=1

δm,lδm,l′ − k′
k∑
l=1

δm,lδm,k′+1 − k
k′∑
l′=1

δm,k+1δm,l′

+ kk′δm,k+1δm,k′+1

]

=
2√

k(k + 1)k′(k′ + 1)

[
k∑
l=1

k′∑
l′=1

δl,l′︸ ︷︷ ︸
=min(k,k′)

− k′
k∑
l=1

δl,k′+1︸ ︷︷ ︸
=1 if k<k′,=0 otherwise

−k
k′∑
l′=1

δl′,k+1︸ ︷︷ ︸
=1 if k′<k,=0 otherwise︸ ︷︷ ︸

=−min(k,k′)(1−δk,k′ )︸ ︷︷ ︸
=min(k,k′)δk,k′=kδk,k′

+kk′δk,k′

]

=
2(k + k2)

k(k + 1)
δk,k′

= 2δk,k′

(A.20)

We now prove Eq. (A.18) by three calculations:

Tr(AklBk′l′) =
∑
m

(AklBk′l′)mm =
∑
m,n

(Akl)mn(Bk′l′)nm

=
∑
mn

(δm,lδn,k + δm,kδn,l)i(δn,l′δm,k′ − δn,k′δm,l′)

= 0

(A.21)
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Tr(AklCk′) =
∑
m

(AklCk′)mm =
∑
m,n

(Akl)mn(Ck′)nm

=

√
2

k′(k′ + 1)

∑
mn

(δm,lδn,k + δm,kδn,l)

(
k′∑

k′′=1

δn,k′′ − k′δn,k′+1

)
δm,n

=

√
2

k′(k′ + 1)

∑
m

2δm,lδm,k

(
k′∑

k′′=1

δm,k′′ − k′δm,k′+1

)

=

√
2

k′(k′ + 1)
2δk,l

(
k′∑

k′′=1

δk,k′′ − k′δk,k′+1

)
= 0

(A.22)

and finally

Tr(BklCk′) =
∑
m

(BklCk′)mm =
∑
m,n

(Bkl)mn(Ck′)nm

=

√
2

k′(k′ + 1)

∑
m,n

i (δm,lδn,k − δm,kδn,l)

(
k′∑

k′′=1

δn,k′′ − k′δn,k′+1

)
δm,n

=

√
2

k′(k′ + 1)

∑
m

i (δm,lδm,k − δm,kδm,l)

(
k∑

k′=1

δm,k′ − kδm,k+1

)
= 0

(A.23)

which ends the proof.
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Explicitly, the generators of Eq. (A.15) are given by

0 1 0 . . . 0 0
1 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0


,



0 0 1 . . . 0 0
0 0 0 . . . 0 0
1 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0


, . . . ,



0 0 0 . . . 0 1
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
1 0 0 . . . 0 0


,



0 0 0 . . . 0 0
0 0 1 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0


, . . . ,



0 0 0 . . . 0 0
0 0 0 . . . 1 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 1 0 . . . 0 0
0 0 0 . . . 0 0


,



0 0 0 . . . 0 0
0 0 0 . . . 0 1
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 1 0 . . . 0 0


,

. . . ,

0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1
0 0 0 . . . 1 0


,



0 −i 0 . . . 0 0
i 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0


,



0 0 −i . . . 0 0
0 0 0 . . . 0 0
i 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0


, . . . ,



0 0 0 . . . 0 −i
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
i 0 0 . . . 0 0


,



0 0 0 . . . 0 0
0 0 −i . . . 0 0
0 i 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 0 0


, . . . ,



0 0 0 . . . 0 0
0 0 0 . . . −i 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 i 0 . . . 0 0
0 0 0 . . . 0 0


,



0 0 0 . . . 0 0
0 0 0 . . . 0 −i
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 i 0 . . . 0 0


,

. . . ,

0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 −i
0 0 0 . . . i 0


,



1 0 0 0 . . . 0
0 −1 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


,

1√
3



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 −2 0 . . . 0
0 0 0 0 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 0


, . . . ,

√
2

d(d− 1)



1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . −d+ 1


.

(A.24)
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A.3 From the basis decomposition to the Bloch rep-

resentation

Let ρ̂ ∈ S(HAB) be a state, and let {Ĝ(A)
α , α = 0, . . . , d2

A−1} and {Ĝ(B)
α , α = 0, . . . , d2

B−1}
be orthonormal basis ofHS(HA) andHS(HB) respectively that verify the orthonormality
relation

Tr(Ĝ(A)
α Ĝ

(A)
β ) = Tr(Ĝ(B)

α Ĝ
(B)
β ) = δαβ. (A.25)

The state ρ̂ can be written as

ρ̂ =

d2A−1∑
α=0

d2B−1∑
β=0

CαβĜ(A)
α ⊗ Ĝ

(B)
β

=C00Ĝ
(A)
0 ⊗ Ĝ(B)

0 +

d2A−1∑
i=1

Ci0Ĝ(A)
i ⊗ Ĝ

(B)
0

+

d2B−1∑
j=1

C0jĜ
(A)
0 ⊗ Ĝ(B)

j +

d2A−1∑
i=1

d2B−1∑
j=1

CijĜ(A)
i ⊗ Ĝ

(B)
j ,

(A.26)

with Cαβ = Tr
(

(Ĝ
(A)
α ⊗ Ĝ(B)

β )ρ̂
)

. Then, we take the following orthonormal basis of

HS(HA) and HS(HB) respectively:{
1√
dA
1,

λ̂i√
2

: i = 1, . . . , d2
A − 1

}
and

{
1√
dB
1,

σ̂i√
2

: i = 1, . . . , d2
B − 1

}
, (A.27)

where the λ̂is and σ̂is are the generators of the SU(dA) and SU(dB) groups respectively
that verify the orthogonality relation

Tr(λ̂iλ̂j) = Tr(σ̂iσ̂j) = 2δij. (A.28)

So the Eq. (A.26) reads

ρ̂ =C00
1√
dA
⊗ 1√

dB
+

d2A−1∑
i=1

Ci0
λ̂i√

2
⊗ 1√

dB
+

d2B−1∑
j=1

C0j
1√
dA
⊗ σ̂j√

2
+

d2A−1∑
i=1

d2B−1∑
j=1

Cij
λ̂i√

2
⊗ σ̂j√

2

=
1

dAdB
1⊗ 1+

1

2dB

d2A−1∑
i=1

riλ̂i ⊗ 1+
1

2dA

d2B−1∑
j=1

sj1⊗ σ̂j +
1

4

d2A−1∑
i=1

d2B−1∑
j=1

Tijλ̂i ⊗ σ̂j,

(A.29)

where

C00 =
1√
dAdB

,
Ci0√
2dB

=
1

2dB
ri,

C0j√
2dA

=
1

2dA
sj and

Cij
2

=
1

4
Tij. (A.30)

Remark 13. The coefficient C00 has been chosen such that ρ̂ remains of trace 1, since
generators of SU(d) groups are traceless.
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Remark 14. For states in their normal form, the matrix C reads, in the basis of Eq.
(A.27),

C =


1√
dAdB

0 . . . 0

0
... T
0

 (A.31)

which means that rank(ρ̂) = rank(C) = rank(T ) + 1.
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