
https://lib.uliege.be https://matheo.uliege.be

Travail de Fin d'Etudes : The use of learning algorithms for modeling of

transport phenomena

Auteur : Estrada Peñas, Joan

Promoteur(s) : Cools, Mario; Saadi, Ismaïl

Faculté : Faculté des Sciences appliquées

Diplôme : Cours supplémentaires destinés aux étudiants d'échange (Erasmus, ...)

Année académique : 2019-2020

URI/URL : http://hdl.handle.net/2268.2/9947

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

THE USE OF LEARNING

ALGORITHMS FOR MODELING OF

TRANSPORT PHENOMENA

University of Liège - Faculty of Applied Sciences

Graduation Studies conducted for obtaining the Master’s degree
in Civil Engineering

Promoter: Mario Cools

Co-promoter: Ismaïl Saadi

Joan Estrada Peñas
2019/2020

1

Master thesis

2

Master thesis

Abstract

From the 1990s to the present day, transportation modeling has experienced great development

thanks to numerous studies that have tried in one way or another to predict traffic flows,

synthesize populations, simulate transportation demand, etc. Within the transport models, the

activity-based one is the most popular nowadays, due to the great flexibility and high level of

detail it provides. At the same time, in the last ten years, another field dedicated to data

processing has had a great development, machine learning. Machine learning includes a wide

range of algorithms and statistical models that computer systems use to perform specific tasks

without using explicit instructions, relying on patterns and inference instead. It is considered as

a subset of artificial intelligence. Neural Networks are the most common machine learning

algorithms. Neural Networks are optimization models calibrated on the basis of sample data,

known as "training data", in order to make predictions or decisions without being explicitly

programmed. This project aims to bring together the two worlds. First, a review of the state of

the art in transportation models is presented, comparing trip-based and activity-based models.

On the other hand, a review of the state of the art of Neural Networks is also made, presenting

the current most efficient and developed models. To continue, a theoretical explanation of two

Neural Network-based chosen models is made, the first one consisting of a Variational

Autoencoder (VAE) and the second consisting of an Autoencoder based on Long Short-Term

Memory (LSTM) cells. Finally, both models are applied to a dataset stemming from the 2010

Belgian Household Daily Travel Survey (BELDAM) in order to calibrate the frameworks. The

model consisting in a Variational Autoencoder will be used to generate full daily activity

sequences. The model based on LSTM cells will be used to predict an individuals’ next steps in

an activity sequence, knowing the activities he/she has done before. The VAE achieves a very

good performance both in the training phase and in the inference phase. Results show very good

metrics compared to the original population, and it is also able to outperform a simpler model

based on a Frequency Analysis of the dataset. On the other hand, the model based in LSTM cells

it is able to train correctly with considerably good results, but when new predictions are done,

results are not very accurate in some cases.

Keywords: activity sequences, daily activity-travel patterns, Variational Autoencoder, Long

Short-Term Memory

3

Master thesis

Content

1 Introduction .. 10

2 Transport systems and models ... 12

2.1 Trip-based models ... 14

2.1.1 Definition ... 14

2.1.2 Deficiencies of trip-based models ... 15

2.2 Activity-based models ... 16

2.2.1 Main features of activity-based models .. 16

2.2.1.1 Individual travelers .. 16

2.2.1.2 Interrelated decision making .. 17

2.2.1.3 Detailed information ... 17

2.2.1.4 Integrated Travel Demand Model System .. 17

2.2.2 Examples of previous studies .. 18

3 Graph neural networks ... 22

3.1 Background.. 22

3.2 Definitions ... 23

3.2.1 Graph ... 23

3.2.2 Directed Graph .. 24

3.2.3 Spatial-Temporal Graph .. 24

3.2.4 Neurons ... 24

3.2.5 Activation functions .. 25

3.2.6 Layers .. 26

3.2.7 Back Propagation... 27

3.3 Categorization ... 27

3.3.1 Recurrent graph neural networks (RecGNNs) ... 27

4

Master thesis

3.3.2 Convolutional graph neural networks (ConvGNNs) .. 29

3.3.2.1 Spectral-based ConvGNNs... 29

3.3.2.2 Spatial-based ConvGNNs ... 31

3.3.2.3 Comparison between spectral-based and spatial-based models 33

3.3.2.4 Graph Pooling Modules ... 34

3.3.3 Graph autoencoders (GAEs) .. 34

3.3.3.1 GAEs for Network Embedding ... 35

3.3.3.2 GAEs for Graph Generation ... 37

3.3.4 Spatial-temporal graph neural networks (STGNNs) .. 38

4 Variational Autoencoders (VAEs) .. 40

4.1 Theoretical description ... 41

4.1.1 Latent variable models .. 41

4.1.2 The core of VAEs.. 42

4.2 Example of application and inspiration ... 46

5 Long-Short Term Memory for sequence to sequence modelling 48

5.1 Recurrent Neural Networks (RNNs) .. 48

5.1.1 The roots of RNN ... 48

5.1.2 RNN Unfolding/Unrolling .. 51

5.1.3 RNN training difficulties .. 52

5.2 The Long Short-Term Memory network ... 53

5.3 Example of application and inspiration ... 58

6 Modelling an activity-based transport dataset ... 60

6.1 The Belgium Daily Mobility (BELDAM) dataset ... 61

6.2 Generating activity schedules ... 62

6.2.1 Generation with a Frequency analysis of population ... 63

6.2.1.1 Description of the model ... 63

6.2.1.2 Results ... 64

5

Master thesis

6.2.2 Generation with VAE ... 66

6.2.2.1 Description of the model ... 66

6.2.2.2 Data preparation ... 71

6.2.2.3 Adjusting the model .. 72

6.2.2.4 Final model results .. 84

6.2.3 Comparison between Frequency Analysis and VAE .. 85

6.3 Predicting activity sequences .. 87

6.3.1 Description of the model ... 87

6.3.2 Data preparation ... 90

6.3.3 Results ... 91

7 Final comments and conclusions .. 97

7.1 Conclusions ... 97

7.2 Further Research ... 99

References ... 100

Appendices .. 111

Code for the Frequency Analysis model ... 111

Code for the Variational Autoencoder model ... 116

Code for the Encoder-Decoder LSTM model .. 124

6

Master thesis

List of figures

Figure 1: Basic integrated model components. (Source: Castiglione, Joe & Gliebe, John, 2015)

 ... 18

Figure 2: Schema of a neuron functioning (Source: (Torres, 2012)) ... 24

Figure 3: Sigmoid function. Very negative values will be clamped to zero, while very positive

numbers will pass through. ... 25

Figure 4: Hyperbolic tangent function (tanh). Very negative values will be clamped to -1, while

very positive numbers will pass as a 1 .. 25

Figure 5: Rectified Linear Unit function (ReLU). Very negative values are clamped to 0, while

positive values remain the same ... 26

Figure 6: Schematic of a neural network with the different layers (Source: (Blaauw & Emerencia,

2016)) .. 27

Figure 7: Recurrent graph neural networks (RecGNNs) (Source: (Z. Wu et al., 2019)) 29

Figure 8: Convolutional Graph Neural Networks (ConvGNNs) (Source: (Z. Wu et al., 2019)) 29

Figure 9: 2D Convolution (Source: (Z. Wu et al., 2019)) .. 31

Figure 10: Graph Convolution. Different from 2D Convolutions, the neighbors of a node are

unordered and variable in size (Source: (Z. Wu et al., 2019)) ... 31

Figure 11: Generated image by a neural network (Source: (Joglekar, 2017)) 40

Figure 12: Schematic of a VAE. Left side is without the “reparameterization trick”, and right with

it (Source: (Doersch, 2016)) .. 46

Figure 13: Examples of computer generated handwritten digits by a VAE (Source: (Mohr, 2017))

 ... 47

Figure 14: Canonical RNN cell. The bias parameters 𝜃𝑠, have been omitted for brevity. It can be

assumed to be included without the loss of generality by appending an additional element,

always set to 1, to the input signal vector, 𝑥𝑛, and increasing the row dimensions of 𝑊𝑥 by 1.

(Source: (Sherstinky, 2018)) .. 51

Figure 15: Sequence of steps generated by unrolling an RNN cell (Source: (Sherstinky, 2018)).

 ... 52

Figure 16: Three unrolled LSTM cells with the internal structure of one cell (Source: (Olah, 2015))

 ... 54

Figure 17: Notation for Figure 16 (Source: (Olah, 2015)) ... 54

Figure 18: The cell state vector line (Source: (Olah, 2015)) .. 55

7

Master thesis

Figure 19: Structure of the “forget gate” in the LSTM cell (Source: (Olah, 2015)) 56

Figure 20: Structure of the “input gate” in the LSTM cell (Source: (Olah, 2015)) 57

Figure 21: Updating the new cell state in the LSTM cell (Source: (Olah, 2015)) 57

Figure 22: Structure of the “output gate” in the LSTM cell (Source: (Olah, 2015)) 58

Figure 23: Inference mode for seq2seq prediction from English sentences to French sentences

(Source: (Chollet, 2017)) ... 59

Figure 24: Convolution between a 1-diemensional vector of shape (1,7) and a 1-dimensional

vector of shape (1,2) (Source: (Jeong, 2019)) ... 67

Figure 25: A (3x3 → 9x1) “Flatten” layer connected to several “Dense” layers of 4 nodes (Source:

(Jeong, 2019)) .. 68

Figure 26: Structure of the encoder with the shapes of each layer (the first member of the shape

in unknown until the batch size is defined) .. 69

Figure 27: Structure of the decoder with the shapes of each layer (the first member of the shape

is unknown until the batch size is defined) ... 70

Figure 28: Example of one-hot encoding (Source: (DelSole, 2018)) ... 72

Figure 29: Evolution of the reconstruction loss for the different number of epochs 75

Figure 30: Evolution of the difference (testing input data vs VAE’s decoded data) between the

number of daily trips for the different number of epochs ... 75

Figure 31: Evolution of the difference (testing input data vs VAE’s decoded data) between the

percentage of daily traveled time for the different number of epochs...................................... 75

Figure 32: Evolution of the difference (testing input data vs VAE’s decoded data) between the

number of daily different activities done outside from home for the different number of epochs

 ... 76

Figure 33: Evolution of the difference (testing input data vs VAE’s decoded data) between the

percentage of hours spent outside from home for the different number of epochs 76

Figure 34: Evolution of the difference (testing input data vs VAE’s decoded data) between the

average percentage dedicated to the studied activities for the different number of epochs ... 76

Figure 35: Evolution of the reconstruction loss for the different number of batch sizes and latent

space dimensions .. 78

Figure 36: Evolution of the difference (testing input data vs VAE’s decoded data) between the

number of daily trips for the different number of batch sizes and latent space dimensions 79

8

Master thesis

Figure 37: Evolution of the difference (testing input data vs VAE’s decoded data) between the

percentage of daily traveled time for the different number of batch sizes and latent space

dimensions .. 79

Figure 38: Evolution of the difference (testing input data vs VAE’s decoded data) between the

number of daily different activities done outside from home for the different number of epochs

 ... 80

Figure 39: Evolution of the difference (testing input data vs VAE’s decoded data) between the

percentage of hours spent outside from home for the different number of batch sizes and latent

space dimensions .. 80

Figure 40: Evolution of the difference (testing input data vs VAE’s decoded data) between the

average percentage dedicated to the studied activities for the different number of batch sizes

and latent space dimensions ... 81

Figure 41: Reconstruction loss for the batch sizes (32 and 64) and latent space dimensions (12

and 16) .. 82

Figure 42: Difference (testing input data vs VAE’s decoded data) between the number of daily

trips for the batch sizes (32 and 64) and latent space dimensions (12 and 16) 82

Figure 43: Difference (testing input data vs VAE’s decoded data) between the percentage of daily

traveled time for the batch sizes (32 and 64) and latent space dimensions (12 and 16) 83

Figure 44: Difference (testing input data vs VAE’s decoded data) between the number of daily

activities done outside from home for the batch sizes (32 and 64) and latent space dimensions

(12 and 16) .. 83

Figure 45: Difference (testing input data vs VAE’s decoded data) between the percentage of

hours spend outside from home for the batch sizes (32 and 64) and latent space dimensions (12

and 16) .. 83

Figure 46: Difference (testing input data vs VAE’s decoded data) between the average

percentage dedicated to the studied activities for the batch sizes (32 and 64) and latent space

dimensions (12 and 16) ... 84

Figure 47: Activity sequence of a full day generated by the FA model 86

Figure 48: Activity sequence of a full day generated by the VAE ... 87

Figure 49: Original activity sequence of individual 1 from 10:00 h to 21:00 h 92

Figure 50: Predicted activity sequence of individual 1 from 10:00 h to 21:00 h 92

Figure 51: Original activity sequence of individual 2 from 10:00 h to 21:00 h 93

Figure 52: Predicted activity sequence of individual 2 from 10:00 h to 21:00 h 93

9

Master thesis

Figure 53: Original activity sequence of individual 3 from 10:00 h to 21:00 h 94

Figure 54: Predicted activity sequence of individual 3 from 10:00 h to 21:00 h 95

Figure 55: Original activity sequence of individual 4 from 10:00 h to 21:00 h 95

Figure 56: Predicted activity sequence of individual 4 from 10:00 h to 21:00 h 96

List of tables

Table 1: Activity types considered in this project ... 62

Table 2: Value of the proposed metrics for the Frequency analysis model 65

Table 3: Value of the proposed metrics for the VAE model ... 85

10

Master thesis

1 Introduction

Transportation englobes a set processes with the aim of travel and communicate. To be able to

execute these processes, several transport modes have been developed over the years (cars,

trucks, planes, bicycles, trains, etc.) which circulate through different means (roads, railways,

water, air, etc.).

Transport engineering takes care of planning, designing, operating and administrating the

transport infrastructures, whatever the transport mode, with the aim of delivering a safe,

convenient, economic and environmentally friendly movement of goods and persons.

With the continuous growing of cities, the more frequent tendency to commute between job

and home, the increased offer in out-of-home activities, etc. the need of managing transport

systems has increased substantially. This has encouraged the appearance of numerous research

groups devoted to study transport systems.

From the 1950’s to nowadays, more and more systems and models had been done with the aim

of understanding, controlling, measuring, monitoring, and forecasting traffic and transport

behaviors. In the early 1990’s, there was a huge expansion when several pilot projects were

created in the USA (Rasouli & Timmermans, 2014).

In parallel, there is another field of science that has gained a huge development in the recent

years, machine learning (ML). ML includes a wide range of algorithms and statistical models that

computer systems use to perform specific tasks without explicit instructions, relying on patterns

and inference instead. It is considered as a subset of artificial intelligence. Machine learning

algorithms are optimization models calibrated on the basis of sample data, known as “training

data”, in order to make predictions or decisions without being explicitly programmed. The most

used approach in ML is what is called Graph Neural Networks (GNN). GNN are computer

architectures formed by layers of nodes, which act as neurons, connected between them by

edges. Nodes contain information and parameters and vertices express relationships between

nodes and describe their interactions.

The aim of this project is to set up two GNN models based on an activity-based transport dataset.

The first model is called a Variational Autoencoder and the second one consists of an Encoder-

Decoder structure based on Long Short-Term Memory cells. The first model will be used to

11

Master thesis

generate activity sequences and the second one will be used to predict the next activities an

individual will do, based on the previous activities he/she has done.

At first, a comprehensive literature review is conducted in order to identify the way transport

networks improvement has been operated over the past decades as well as the state-of-the-art

deep learning-based algorithms. Then, the mathematical structure of a Neural Network will be

defined according to the model specifications, in order to understand the underlying

mechanisms and the way a GNN can help us to understand the level of service of transport

networks. After describing and discussing the results, recommendations will be formulated in

order to improve the performance of the models and provide a better level of service of

transport networks in order to shift to more sustainable cities.

At a personal level, one of the first objectives that I wanted to pursuit when I took this project,

was to introduce myself in the world of transport modeling. At first, the original idea was to

make a transport study linked to DNA synthetizing algorithms. But then, thanks to a proposal of

the promoters of this project, it shifted to the area of machine learning and Neural Networks.

So, in addition of learning about transport, a second objective was introduced, which was

learning about the functioning, state of the art and development of Neural Networks, and see

how they can be applied to transport models.

12

Master thesis

2 Transport systems and models

When it comes to transport planning, it is often referred as a project which studies current and

future mobility demands of goods and persons. These projects are usually preceded by

movement studies and surveys and they necessarily involve the different transport modes.

Planning is the fundamental part of the developing process and the organization of transport,

because it is the part that allows to acknowledge the problems, design and create solutions and,

finally, optimize and organize the resources in order to meet the mobility demand. In transport

planning, there is not a single objective, but many. The purpose is to obtain a transport system

which is efficient, safe, accessible to everybody and in accordance to the environment. It is also

desirable that the transport system is consonance with the urban development. However, the

transport planner faces a trade-off between the service quality and the resources that need to

be used, searching for an equilibrium between the objectives achieved against the resources

spent.

In order to have a good transport system, modeling of the transport is necessary. Transport

modeling (or transport demand modeling) allows us to estimate the passenger’s flows or

vehicles in a specific transport network in each of the considered transport modes for future

scenarios. There are two main modeling groups: trip-based models and activity-based models.

In the first ones, the analysis unit is a trip between an origin and a destination. The second ones

study the trip chains in a specific period of time (usually a day) derived from taking part in

different activities along the time frame.

Transport models are always embedded in a system of other models which are integrated

between them. Mainly, transport models predict the demand per mode and the network models

predict how demand will affect the performance of transport provision. Also, nowadays

technologies with access to information of dynamical data, big data, etc., are making possible

the development of new algorithms that allow to improve substantially the predictability and

adjustment of those same algorithms in the real scenario that they are modeling.

Models allow to represent processes or more complex phenomena in a simple way. In other

words, they simplify reality. Transport demand modeling looks to forecast several factors for

future situations. Among these factors, we can count: the number of trips made in a specific

area, how trips are distributed among different areas, in which transport modes are trips done,

volume of travelers in public transport networks, vehicle flows in roads, etc. To be able to carry

13

Master thesis

out these forecasts, the application of several mathematical algorithms is needed. Mathematical

expressions are inferred from models that correlate variables or probabilistic models. These last

ones are used because it is very complicated to find established and defined relationships to

represent situations where person’s decisions take place.

As a result, transport models are used in the definition of transport policies and for its

planification and engineering: calculate infrastructure’s capacity, estimate the financial and

social viability of a project, use of cost-benefit analysis and social impact analysis, calculate

environmental impacts, etc.

A transport model, must comply with several basic conditions (Friedrich, M., 2007).

First of all, it has to be executable. Depending on the phenomena that we want to model, of the

results that we want to obtain and their precision and accuracy, we have to select all the relevant

variables that allow to recreate the current situation in a realistic way. Among all these variables,

there are some which are indispensable and there are a lot of them that, even though they may

have some effect, their value is minimum or marginal and if they were considered, they would

complicate in excess the model processing.

Secondly, it has to be logical and consistent. The model has to contain logical processes. The

results must be coherent, measurable and they must avoid discrepancies. For example, an

increase in population of an analyzed area should produce an increase in trips generation in this

area.

In third place, the model has to be transparent. The results outputted by the model should be

justified with expressions and mathematical terms that can be understood and controlled. A

non-transparent model means that the obtained results are difficult to justify and that there is

some uncertainty in the model parameters.

And finally, the model has to be sensitive to changes. This means that changes in the inputs must

deliver changes in the outputs.

As mentioned before, transport modeling comes from mathematical, physical and economical

principles that allow us to replicate in a rational way the behaviors of transport systems. Two

theories that support this are the utility theory and the gravitation theory.

Based on the principle that individuals act rationally, in transport, a traveler will only perform a

trip, if the utility of the same is higher than the one of not performing it (Fricker, Jon D. &

14

Master thesis

Whitford, Robert K., 2003). That is valid always while travelling is not a cost-free activity.

Meanwhile the activity that is to be done in the destination produces some benefit to the

traveler, the transport activity only generates costs. For that reason, transport engineering says

that transport demand is a derived demand. When it is said that traveling is not a cost-free

activity, it is not only referred at the direct costs of the trip (fuel, tolls, etc.), but also at the

consumption of a very valuable resource: time. It is very common that in transport models time

is considered as the main cost that users pay. Time evaluation by users is also quite complex.

Previous research (Abrantes & Wardman, 2011; Athira et al., 2016; Litman, 2002) indicated that

time is valued in different ways depending on for what it could be used (opportunity cost) or on

the income of the person in that time (the more income, the more valued the time).

Physical laws have also proven useful to recreate the situations that occur in the transport

phenomena. The gravitation law says that “the force that makes an object with mass 𝑚1 to

another object with mass 𝑚2 is directly correlated with the product of both masses, and

inversely correlated with the squared distance that separates them”. In an analogic way, for trips

distribution in a transport model, the quantity of trips between an origin and a destination it is

directly correlated with the attraction of each destination area and inversely correlated with the

generalized cost of travel between the two zones.

So as it has been mentioned before, there are two main transport models: models based in trips

between an origin and a destination and models based on activities chains during a time frame.

Both approaches have different ways of operating and different uses and will be explained

briefly below.

2.1 Trip-based models

2.1.1 Definition

In this model (Castiglione, Joe & Gliebe, John, 2015; McNALLY, 2000), the main analysis unit is

the trip per se. They are also known as four-steps models and they are accepted as valid tools

for transport planning. This procedure, originally developed in the 1950s uses aggregated data

from different subdivisions of territory to estimate trips with the current network.

The first step of the four is “trip generation”. In this step, the aim is to transform demographic,

economic and household attributes in each zone, in trips generated by this same zone. The total

prediction of trips is made by zone. It is usual that the transport authority has some traffic

analysis areas defined. Each area or zone produces or attracts trips. The number of generated

15

Master thesis

trips is associated to the population quantity and its features within the studied area, while trips

attraction is related with the rest of the economic activities that are performed within the area.

The second step is the “trip distribution”. In this step, pairs are created for each one of the

produced trips in the different areas in the previous step, with some of the different attraction

locations in other areas or in the same one. The result is a table of trips between the different

areas of the model, known as the origin-destination matrix (O-D matrix). The matrix shows the

number of trips from each one of the origins “i” to each one of the destinations “j”.

The third part of the four-step model is the “mode choice”. This step divides the total number

of trips between each pair of areas by transport mode. For this, detailed information of the

network needs to be possessed in addition of the public and private transport provision, along

with the number of trips between areas obtained in the second step. The result of this step are

several matrixes with trips, one for each mode.

And finally, the last step is “route assignment”. It assigns to a route a trip between an origin and

a destination in a particular transport mode. Often, Wardrop’s principle of user equilibrium is

applied (equivalent to a Nash equilibrium), where each driver chooses the shortest path, subject

to every other driver doing the same. The problem comes because travel times are a function of

demand, while demand is a function on travel time.

After the model is set up, it is evaluated according to some decision criteria and parameters.

One common criterion is cost-benefit analysis.

2.1.2 Deficiencies of trip-based models

Trip-based models have two major points that make them weak in terms of transport planning

and forecasting (Castiglione, Joe & Gliebe, John, 2015).

First of all, the independence assumptions that these models made. Transportation policies and

investment questions have become more complex. The ones responsible for taking decisions

have to face questions not only about how and where to expand transportation system capacity,

but they must also consider questions about how to best manage the existing transportation

system. Trip-based models are not able to provide information to address these policy questions

because they assume that all trips are made independently. Also, they lack details on individual

travelers and their coordination with other household members. Because trip-based models rely

on aggregation of persons and household, they are limited on their ability to represent how

16

Master thesis

different people may respond to small changes in inputs. They are limited in sensitivity

(Castiglione, Joe & Gliebe, John, 2015).

And the second weakness is the aggregation bias, which refers to the assumption that group

characteristics are shared by all the individuals who are members of that group. In other words,

that all households of the same type behave similarly. However, there is tremendous diversity

in how different types of persons and households make travel decisions depending on factors

such as income, transit accessibility, competition with other household members for vehicles,

travel times, etc. The use of aggregate values distorts a model’s sensitivity, as mentioned before

(Castiglione, Joe & Gliebe, John, 2015).

Although it may be theoretically possible to incorporate additional detail in trip-based models

through the use of additional market segmentation, zones or time period, it is practically

challenging because the aggregate trip-based model’s reliance on two dimensional origin-

destination (O-D) matrices causes model run times, storage, and memory requirements to

increase exponentially as segmentation increases (Castiglione, Joe & Gliebe, John, 2015).

2.2 Activity-based models

On the other hand, activity-based models (Castiglione, Joe & Gliebe, John, 2015) have gained

popularity in the last years, and they are the kind of models that will be used in this project. They

share some similarities with the classical four-step model mentioned before: activities are

generated, destinations for the activities are identified, travel modes are determined, and the

specific network facilities or routes used for each trip are predicted.

These models are based in the idea that travel demand derives from people’s needs and desires

to participate in activities. In some cases, these activities are located inside their homes, but in

many cases, they occur outside their homes, resulting in the need to travel. They are

distinguished from trip-based models by a number of features. They represent each person’s

activity and travel choices across a time frame (usually a day), setting priorities among them

when it comes to scheduling. As any individuals schedule becomes filled, the time available to

participate in and travel do additional activities diminishes.

2.2.1 Main features of activity-based models

2.2.1.1 Individual travelers

By functioning at the level of the individual traveler, activity-based models are able to represent

greater variation across the population than aggregate trip-based models. A key advantage is

17

Master thesis

that they can incorporate new explanatory variables and new sensitivities much more easily

because they are typically implemented using a microsimulation framework (Castiglione, Joe &

Gliebe, John, 2015).

2.2.1.2 Interrelated decision making

Activity-based models represent the interrelated aspect of activity and travel choices for all

travel conducted by a person or households during a day, including purpose, location, timing,

and travel modes, which results in a more detailed representation of how travelers may respond

to investment and policy alternatives, as well as land use and socioeconomic changes. These

models explicitly represent how individuals move from one geographic location to another

during the day – the destination of one trip becomes the origin of the following trip. This

geographic consistency realistically bounds where, how, and when travelers can travel.

Consistency in the representation of time of day also distinguishes activity-based models from

trip-based models. They also use information about tours and trips to impose plausible

constraints on the travel modes that are available to travelers. For example, it is highly unlikely

that a traveler who has used public transport to get to work is going to drive home alone,

because he or she does not have a vehicle to use (Castiglione, Joe & Gliebe, John, 2015).

2.2.1.3 Detailed information

Activity-based models incorporate significantly more detailed input information and produce

significantly more detailed outputs than trip-based models. They can use a wider range of

important explanatory variables to predict travel patterns than trip-based models. For example,

consistent representation of trips made jointly by household members is only possible using

activity-based models. These models also include explicit and detailed models of time-of-day

choices. The temporal information is especially critical given the travel demand and

transportation system management policy and investment choices faced by decision makers

(Castiglione, Joe & Gliebe, John, 2015).

2.2.1.4 Integrated Travel Demand Model System

Activity-based models are always embedded within an integrated model system in which there

is an interaction between the activity-based or trip-based models, which predict the demand for

travel, and network models, which predict how this demand affects the performance of the

transportation network supply. Most activity-based models are embedded within a basic

integrated model system that incorporates a limited number of essential components

(Castiglione, Joe & Gliebe, John, 2015):

18

Master thesis

• Population synthesis models create detailed, synthetic representations of populations

of individuals within households (agents) whose choices are simulated in activity-based

models.

• Activity-based travel demand models predict the long-term choices (such as work

location and automobile ownership) and the daily activity patterns of a given synthetic

population, including activity purposes, locations, timing, and modes of access.

• Auxiliary models provide information about truck and commercial travel, as well as

special purpose travel such as trips to and from airports or travel made by visitors.

• Network supply models are tightly linked with activity-based demand models. The flows

of travel by time of day and mode predicted by activity-based travel demand models

and auxiliary models are assigned to roadway, transit, and other networks to generate

estimates of volumes and travel times.

Figure 1: Basic integrated model components. (Source: Castiglione, Joe & Gliebe, John, 2015)

2.2.2 Examples of previous studies

Activity-based models developed at the beginning or currently being used today use one or more

decision-making criterion, which result in a great diversity of methodologies to model travel

behavior. Generally, this models include microeconomic optimizers, which assume that people

tend to minimize travel time or costs, computational process models, which try to mimic human

behavioral processes, naïve data-driven models, which derive models from observed data,

satisficing models, which try to set the number of options available to simulated individuals, and

cellular automata, which apply principles of physics to reproduce human behavior (Henson et

al., 2009).

The first models that began incorporating behavioral features were developed in the late 1970’s

and beginning of the 1980’s, such as BSP (Huigen, 1986) and the Computational Algorithms for

19

Master thesis

Rescheduling Lists of Activities (CARLA) (Jones et al., 1983). SCHEDULER (Gärling et al., 1994) was

the first model to incorporate a computational process model (CPM), adding psychometric

cognitive basis. In SCHEDULER, activities are selected from the long-term calendar which

searches to simulate a person’s long-term memory. These activities then conform a schedule

that is “mentally executed”.

However, it wasn’t until the mid-1990’s when the activity-based models started to grow in the

number of models and in the number of paradigms used in them. Ettema et al. (1996) presented

the Simulation Model of Activity Scheduling Heuristics (SMASH) and COMRADE (1995). “SMASH

is a CPM and econometric utility-based hybrid model that focuses on the pre-trip planning

process” (Henson et al., 2009). It was focused on the activity sequences, but not in its duration.

On the other hand, COMRADE was more focused on this area, and it is able to add the

continuous nature of decision making. The Model of Action Space in Time Intervals and Clusters

(MASTIC) (Dijst & Vidakovic, 1997) identifies clusters in the action space to carry out and

schedule activities. An optimization model called Household Activity Pattern Problem (HAPP)

(Recker, 1995) developed a variant of the pick-up and delivery time window problem, creating

activity schedules in an optimal way. Also, the GIS-Interfaced Computational-process modeling

for Activity Scheduling (GISICAS) (Kwan, 1997), a simplified version of SCHEDULER, uses a

Geographic Information System (GIS) to add spatial information in the model to create individual

schedules, starting with high priority activities (Henson et al., 2009).

In 1998, MatSIM, an econometric utility-based model with microsimulation, was published

(Balmer et al., 2008). The model uses a basic evolutionary (relaxation) strategy to develop travel

patterns. Initial activity schedules are used to generate traffic inside a microsimulation. The

actual travel times for the schedules are calculated and are used to update the previous

schedules. The process is repeated until the final equilibrium is obtained (Henson et al., 2009).

In the same year, ALBATROSS was released by Arentze and Timmermans (2000). “ALBATROSS is

a multi-agent CPM that predicts the time, location, duration, and with whom activities occur as

well as the type of mode utilized, subject to spatio-temporal, institutional, and household

constraints” (Henson et al., 2009). It is one of the most complete activity-based models, and it

includes a large number of choice features, using an accurate classification of activities while

including a large series of constraints. All of these models, among others that are not mentioned

here for the sake of brevity, have been used for many purposes at the time of analyzing transport

phenomena.

20

Master thesis

Among the studies that have tried to determine attitudes and behaviors of people in relation

with transport phenomena, Ruiz and Timmermans (2006, 2008) looked to determine how the

timing and the duration of activities was affected when resolving scheduling conflicts. Mars &

Ruiz also investigated (2018) which determinants influence the elimination of activities when it

comes to scheduling and which determinants affect rescheduling travel mode choice. In a similar

line, Ferrer and Ruiz (2014) inquired which factors influence the travel scheduling of driving trips

of habitual car users.

Regarding the issue of congestion pricing, for example, it can encompass a wide variety of

different pricing and toll schemes with the purpose of managing demand, improve travel time

reliability, reduce congestion, and increase usage of alternative modes such as public transport

or car-sharing. Activity-based models provide more flexibility to represent different alternatives,

because they show more accurately how people plan and organize their days (Henson et al.,

2009). The more precision we have with a model, the more important it is to evaluate how policy

changes will affect transportation. In this line, Cools et al. (2011) studied the effect of road

pricing on people’s tendency to adapt their current travel behavior using a two-stage

hierarchical model.

Another fact that can influence traveling times, modes and decisions is weather. In this line,

Cools and Creemers (2013) studied the dual role of weather forecasts on changes in activity-

travel behavior in the Flemish population. They found out that the forecasted weather has a

significant effect, creating changes in activity-travel behavior depending on the weather

forecasted. On the other hand, different methods of obtaining weather information (media

source, exposure, or perceived reliability) do not impact the probability of behavioral

adaptations. In a different paper (2015) they investigated the meteorological variation in

revealed preference travel data, trying to investigate the impact of weather conditions on daily

activity participation (trip motives) and daily modal choices in the Netherlands. In a quite

pioneering study, Saadi et al. (2018) investigated the impact of river floods on travel demand

based on an agent-based modeling approach in the city of Liège, Belgium. The findings showed

how travel times changed in response to the variations of levels of service in the transport

network and how traffic flows are re-distributed more uniformly across the network. Roads with

important traffic volumes are subjected to a decrease of activity on the contrary of roads with

low traffic volumes.

21

Master thesis

On a different approach, Saadi et al. (2016) used a Hidden Markov Model (HMM) to generate a

synthetic population. Synthetic populations consist of a set of agents characterized by

demographic and socio-economic features which are used in micro-simulation travel demand

and land use models. This HMM model outperformed the main groups of population synthesis

techniques, which are fitting methods and combinatorial optimization methods, capturing the

complete heterogeneity of the micro-data contrary to the standard fitting approaches.

Following this study, they also developed an integrated framework for forecasting travel

behavior using Markov Chain Monte Carlo simulation and profile HMMs, effectively capturing

the behavioral heterogeneity of travelers (Saadi, Mustafa, Teller, & Cools, 2016).

Henson et al. (2009) reviewed 53 activity-based models as candidates for operational studies,

disaster preparedness, and homeland security applications. They concluded that there has been

a great progress in the last 35 years in travel demand modeling and simulation. However, models

are being concentrated at two poles. They are either designed for the very short term such a

daily activity pattern or for the long term with yearly cycles. They proposed that with proper

data collection and analysis, other temporal dimensions such as weekly, monthly and seasonal

regularities could be also dealt with.

More recently, Anda et al. (2017) studied how transport modelling should be in the age of Big

Data. Since new data sources are available, such as mobile phone call records, smart card data

in public transport systems and geo-coded social media records, we are able to understand

mobility behavior on an unprecedented level of detail. However, despite the availability of all

these Big Data sources, transport models still, most of them, are based on conventional data

such as travel diaries and population census, and they normally only represent a small sample

of the population (around 1%) and they are usually only updated every 5-10 years. In the study,

they found out that future research should focus also in machine learning approaches which are

able to mine data from complex datasets, such as the ones mentioned before, to integrate them

with agent-based simulations.

So, in summary, we can see how different studies tried to address different topics related to

transport phenomena in order to obtain better information for traffic planners and decision

makers. However, there is still a lot of research than can be done, and for sure that machine

learning techniques operating with neural networks can be of great utility to improve the

existing models or even to create new ones.

22

Master thesis

3 Graph neural networks

Graph Neural Networks (GNNs) are a kind of mathematical representation that has gained

increased popularity in the recent years. The areas where they can be applied are very varied,

and they don’t seem to stop growing: social networks, knowledge graphs, sequence prediction,

text managing, image recognition, etc.

The recent success of neural networks has boosted research on data mining and pattern

recognition. Many machine learning tasks such as object detection (Redmon et al., 2016),

machine translation (Luong et al., 2015; Yonghui Wu et al., 2016), and speech recognition

(Hinton et al., 2012), which once heavily relied on handcrafted feature engineering to extract

informative feature sets, have recently been revolutionized by various end-to-end deep learning

paradigms, e.g., convolutional neural networks (CNNs) (Lecun & Bengio, 1995), recurrent neural

networks (RNNs) (Hochreiter & Schmidhuber, 1997), and autoencoders (Vincent et al., 2010).

The success of deep learning in many domains is in part thanks to the fast development there

has been in computational resources (e.g., GPU), the availability of big training data (Anda et al.,

2017), and the effectiveness of deep learning to extract latent representations from Euclidean

data (e.g., images, text, and videos).

While deep learning effectively captures hidden patterns of Euclidean data, there is an

increasing number of applications where data are represented in the form of graphs. For

examples, in e-commerce, graph-based learning system can exploit the interactions between

users and products to make highly accurate recommendations. In chemistry, molecules are

modeled as graphs, and their bioactivity needs to be identified for drug discovery. In a citation

network, papers are linked to each other via citationships and they need to be categorized into

different groups. The complexity of graph data has imposed significant challenges on existing

machine learning algorithms (Z. Wu et al., 2019).

3.1 Background

As mentioned in the research done on graph neural networks (Z. Wu et al., 2019), back in the

1990s, some studies (Sperduti & Starita, 1997) firstly applied neural networks do directed acyclic

graphs, and this started to motivate early studies on GNNs. The notion of graph neural networks

was initially outlined in Gori et al.(2005) and further elaborated in Scarselli et al. (2009), and

Gallicchio & Micheli (2010). These early studies fall into the category of recurrent graph neural

23

Master thesis

networks (RecGNNs). They learn a target node’s representation by propagating neighbor

information in an iterative manner until a stable point is reached.

Thanks to the success of convolutional neural networks (CNNs) in the field of computer vision,

a high number of methods that re-define the idea of convolution for data set in graphs are

parallelly developed. These insights are imbricated in the convolutional graph neural networks

(ConvGNNs). This kind of networks are separated into two principal groups, the spectral-based

and the spatial-based approaches.

First important study on spectral-based ConvGNNs was presented in the article “Spectral

Networks and locally connected networks on graphs” (Bruna et al., 2014). This article developed

a graph convolution based on the theory of spectral graphs. Since that moment, there have been

great improvements, approximations, end extensions on spectral-based ConvGNNs (Defferrard

et al., 2017; Henaff et al., 2015; Kipf & Welling, 2017; Levie et al., 2018).

On the other hand, investigation on spatial-based ConvGNNs started much earlier than spectral-

based ConvGNNs. In 2009 a study (Alessio Micheli, 2009) first addressed graph mutual

dependency by architecturally composite non-recursive layers while adopting ideas of message

passing from RecGNNs. Until nowadays, many spatial-based ConvGNNs have appeared (Atwood

& Towsley, 2016; Gilmer et al., 2017; Niepert et al., 2016).

Apart from the mentioned RecGNNs and ConvGNNs, many alternative GNNs have been

developed in the recent years. For example, we can find graph autoencoders (GAEs) and spatial-

temporal graph neural networks (STGNNs). These two learning structures can be built on

RecGNNs, ConvGNNs, or any other structure for graph modeling.

3.2 Definitions

Based on the study done in the paper by (Z. Wu et al., 2019), some mathematical and descriptive

definitions will be done to better understand how GNNs work.

3.2.1 Graph

A graph is represented as 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of vertices or nodes (we will refer mainly

as nodes in this study), and 𝐸 is the set of edges. Let 𝑣𝑖 ∈ 𝑉 to denote a node and 𝑒𝑖𝑗 =

(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸 to denote an edge pointing from 𝑣𝑗 to 𝑣𝑖. The neighborhood of a node 𝑣 is defined

as 𝑁(𝑣) = {𝑢 ∈ 𝑉|(𝑣, 𝑢) ∈ 𝐸}. The adjacency matrix A is a 𝑛 𝑥 𝑛 matrix with 𝐴𝑖𝑗 = 1 if 𝑒𝑖𝑗 ∈ 𝐸

and 𝐴𝑖𝑗 = 0 if 𝑒𝑖𝑗 ∉ 𝐸. Nodes in the graph can have attributes 𝑋, where 𝑋 ∈ 𝑅𝑛 𝑥 𝑑 is a node

24

Master thesis

feature matrix with 𝑥𝑣 ∈ 𝑅𝑑 representing the feature vector of a node 𝑣. Meanwhile, a graph

may have edge attributes 𝑋𝑒, where 𝑋𝑒 ∈ 𝑅𝑚 𝑥 𝑐 is an edge feature matrix with 𝑥𝑣,𝑢
𝑒 ∈ 𝑅𝑐

representing the feature vector of an edge (𝑣, 𝑢).

3.2.2 Directed Graph

If a graph is directed, it means that all edges are directed from one to another. Otherwise, if

there is a pair of edges with inverse directions, it may be considered as a special case of directed

graphs. In that case they are undirected graphs. A graph is directed if and only if the adjacency

matrix is symmetric.

3.2.3 Spatial-Temporal Graph

This kind of graph is an attributed graph where the attributes that the nodes have change

dynamically over time. It is defined as 𝐺(𝑡) = (𝑉, 𝐸, 𝑋(𝑡)) with 𝑋(𝑡) ∈ 𝑅𝑛 𝑥 𝑑.

3.2.4 Neurons

Each node of the graph acts as a neuron, inspired in the behavior observed in the axons of

neurons in the brains. A neuron is a local computing gadget that gets an input vector 𝑥𝑖 ∈ ℝ𝑛,

combines it with the local parameters (weights, 𝑤𝑖 ∈ ℝ𝑛 , and biases, 𝑏 ∈ ℝ𝑛) and outputs a

scalar number as a result. The input vector is a combination from the previous 𝑛 neurons. Once

the neuron state, 𝑧 = ∑ 𝑥𝑖 𝑛
𝑖=1 𝑤𝑖 + 𝑏, has been calculated, it is passed through the activation

function to get the output. The output can be the final result or can serve as an input to another

connected neuron.

Figure 2: Schema of a neuron functioning (Source: (Torres, 2012))

25

Master thesis

3.2.5 Activation functions

Activation functions are used to scale the neuron state to decide if the neuron has to output a

value or not, and in which measure. The most common activation functions used in the machine

learning field are: sigmoid, SoftMax, hyperbolic tangent (tanh), and Rectified Linear Unit (ReLU).

The sigmoid (also known as “logistic”) scales the values between 0 and 1. It is very used in models

where the output prediction is a probability, since probability is a value that goes from 0 to 1.

Figure 3: Sigmoid function. Very negative values will be clamped to zero, while very positive numbers will pass
through.

The SoftMax function is a more generalized sigmoidal function that is used in multiclass

classification problems (Sharma, 2019).

The tanh activation function is similar than the sigmoid function but the output values are

ranged from -1 to 1. The advantage is that very negative values will be mapped negatively and

the zero inputs will be mapped close to zero. It is very used in classification problems between

two classes of data.

Figure 4: Hyperbolic tangent function (tanh). Very negative values will be clamped to -1, while very positive numbers
will pass as a 1

26

Master thesis

Finally, the ReLU is the most used activation function in the machine learning area currently. It

is used in most of the convolutional neural networks. The ReLU is half rectified. 𝑓(𝑧) is zero

when 𝑧 is negative, and 𝑓(𝑧) = 𝑧 when 𝑧 is positive. The biggest advantage of ReLU is that the

gradient is not-saturated, which helps to accelerate convergence in stochastic gradient descent

compared to sigmoid and tanh function (Krizhevsky et al., 2017).

Figure 5: Rectified Linear Unit function (ReLU). Very negative values are clamped to 0, while positive values remain
the same

3.2.6 Layers

Neural networks (NN) are composed of different layers of neurons. Normally, the neurons or

nodes of one layer are only connected to the neurons of the next layer. So, there are three kinds

of layers:

• Input layer: It is the first layer of a NN representing the input of the model. Usually it is

not counted as a layer since it doesn’t do any operation, it just reads in the data that the

model is going to process.

• Output layer: It is the last layer of a NN, which computes the final result of the model

using a neuron for each output variable.

• Hidden layers: They are the layers in between the input and the output, and they can

be of all sorts and perform different kind of operations.

27

Master thesis

Figure 6: Schematic of a neural network with the different layers (Source: (Blaauw & Emerencia, 2016))

3.2.7 Back Propagation

The back-propagation algorithm is based on generalizing the Widrow-Hoff learning rule. It works

with supervised learning, that is that the algorithm is provided with the inputs and the outputs

that the network should complete, and after that, the error is calculated. The back-propagation

algorithm starts with random weights and biases, and the objective is to tune them in order to

reduce this error until the network has learned the training data. The standard back propagation

is a gradient descent algorithm where the weights of the network are moved along the negative

of the gradient performance function, in order to reduce it. The weights are changed each time

the whole network is calculated. After tuning them, the best combination of weights that

minimizes the error function is considered a solution to the learning problem (Puig-Arnavat &

Bruno, 2015).

3.3 Categorization

According to the paper by (Z. Wu et al., 2019), graph neural networks can be classified into four

big groups, which have already been mentioned before: recurrent graph neural networks

(RecGNNs), convolutional graph neural networks (ConvGNNs), graph autoencoders (GAEs), and

spatial-temporal graph neural networks (STGNNs). We will describe each one of them shortly.

3.3.1 Recurrent graph neural networks (RecGNNs)

They are the main pioneer works of graph neural networks. This kind of graphs assume that a

node is permanently exchanging information/messages with its neighbors until a stable

equilibrium is achieved. The concept of RecGNNs is pretty important in the field and it inspired

28

Master thesis

posterior research on ConvGNNs. At the beginning, due to computational limitations, the first

researches focused normally on directed acyclic graphs (A. Micheli et al., 2004; Sperduti &

Starita, 1997).

In RecGNNs, a node’s hidden state is recurrently updated by

ℎ𝑣
(𝑡)

= ∑ 𝑓 (𝑥𝑣 , 𝑥(𝑣,𝑢)
𝑒 , 𝑥𝑢, ℎ𝑢

(𝑡−1)

𝑢 ∈ 𝑁(𝑣)

)

where 𝑓(·) is a parametric function, and ℎ𝑣
(0)

 is initialized randomly. Thanks to the sum operation

GNN are able to be applied to all nodes, even if the number of neighbors is different and the

ordering of the neighborhood is not known. Then, when a convergence criterion is satisfied, the

last step node hidden states are sent to a readout layer. GNN makes an alternance of the stage

of node state propagation and the stage of parameter gradient computation to minimize a

training objective. This strategy enables GNN to handle cyclic graphs (Z. Wu et al., 2019).

On another direction, Gated Graph Neural Network (GGNN) (Yujia Li et al., 2017) use a gated

recurrent unit (GRU) (Cho et al., 2014) as a recurrent function, achieving a diminution in the

recurrences to a fixed number of steps. The main advantage is that it no longer demands to

constrain parameters in order to converge. A node hidden state is updated by its previous

hidden states and its neighboring hidden states:

ℎ𝑣
(𝑡)

= 𝐺𝑅𝑈(ℎ𝑣
(𝑡−1)

, ∑ 𝑊ℎ𝑢
(𝑡−1)

𝑢 ∈ 𝑁(𝑣)

)

where ℎ𝑣
(0)

= 𝑥𝑣. GGNN uses the back-propagation through time (BPTT) algorithm to learn

model parameters.

This BPTT algorithm can be a problem for large graphs. As GGNN needs to run the recurrent

function multiple times over all nodes, it needs to store in the memory the intermediate states

of all nodes.

To overcome this, Stochastic Steady-state Embedding (SSE) proposes a learning algorithm that

is more scalable to large graphs (Dai et al., 2018). SSE updates node hidden states recurrently in

a stochastic and asynchronous fashion. It alternatively samples a batch of nodes for updating

the states and a batch of nodes for gradient computation (Z. Wu et al., 2019).

29

Master thesis

3.3.2 Convolutional graph neural networks (ConvGNNs)

Convolutional graph neural networks make a generalization of the operation of convolution

from grid data to graph data. The key is to generate a node 𝑣’s representation by aggregating

its own features 𝑥𝑣 and neighbors’ features 𝑥𝑢 where 𝑢 ∈ 𝑁 (𝑣). In contrast with RecGNNs,

ConvGNNs stack multiple graph convolutional layers to extract high-level node representations.

Figure 7: Recurrent graph neural networks (RecGNNs) (Source: (Z. Wu et al., 2019))

As we can observe in Figure 7, RecGNNs use the same graph recurrent layer (Grec) in updating

node representations. On the other hand, as it can be seen in Figure 8, ConvGNNs use a different

graph convolutional layer (Gconv) in updating node representations.

Figure 8: Convolutional Graph Neural Networks (ConvGNNs) (Source: (Z. Wu et al., 2019))

Graph convolutions are more convenient and efficient to mix with other neural networks, and

for this reason the popularity of ConvGNNs has had a fast increase in recent years. There are

two categories for ConvGNNs, the spectral-based and the spatial-based ones.

3.3.2.1 Spectral-based ConvGNNs

Methods based in the spectral-based principle have a firm mathematical background in graph

signal processing (S. Chen et al., 2015; Sandryhaila & Moura, 2013; Shuman et al., 2013). They

make the assumption of graphs to be undirected. The normalized graph Laplacian matrix is a

mathematical representation of an undirected graph, defined as 𝐿 = 𝐼𝑛 − 𝐷−1/2𝐴𝐷−1/2,

where 𝐷 is a diagonal matrix of node degrees, 𝐷𝑖𝑖 = ∑ (𝐴𝑖𝑗)𝑗 . This matrix 𝐿 has the property of

being real symmetric positive semidefinite. With this property, the normalized Laplacian matrix

can be factored as 𝐿 = 𝑈Λ𝑈𝑇, where𝑈 = [𝑢0, 𝑢1, … , 𝑢𝑛−1] ∈ 𝑅𝑛 𝑥 𝑛 is the matrix of

eigenvectors ordered by eigenvalues and Λ is the diagonal matrix of eigenvalues (spectrum),

Λ𝑖𝑖 = 𝜆𝑖. The eigenvectors of the normalized Laplacian matrix form an orthonormal space, so

mathematically speaking, 𝑈𝑇𝑈 = 𝐼. In graph signal processing, a graph signal 𝑥 ∈ 𝑅𝑛 is a

30

Master thesis

feature vector of all the nodes of a graph where 𝑥𝑖 is the value of the 𝑖𝑡ℎ node. The graph Fourier

transform to a signal 𝑥 is defined as ℱ (𝑥) = 𝑈𝑇𝑥, and the inverse graph Fourier transform is

defined as ℱ−1 (�̂�) = 𝑈𝑇�̂�, where 𝑥 represents the resulted signal from the graph Fourier

transform. The graph Fourier transform arranges the input graph signal to the orthonormal

space where the basis is formed by eigen vectors of the normalized graph Laplacian. The

elements of the transformed signal 𝑥 are the coordinates of the graph signal in the new space

so that the input signal can be represented as 𝑥 = ∑ 𝑥𝑖𝑢𝑖𝑖 , that is exactly the inverse graph

Fourier transform. Then, the graph convolution of the input signal 𝑥 with a filter 𝑔 ∈ 𝑅𝑛 is

defined as:

𝑥∗𝐺𝑔 = ℱ−1 (ℱ (𝑥) ⊙ ℱ (𝑔)) = 𝑈(𝑈𝑇𝑥 ⊙ 𝑈𝑇𝑔)

where ⊙ denotes the element-wise product. If we denote a filter as 𝑔𝜃 = 𝑑𝑖𝑎𝑔(𝑈𝑇𝑔), then the

spectral graph convolution is simplified as:

𝑥∗𝐺𝑔𝜃 = 𝑈𝑔𝜃𝑈𝑇𝑥

Spectral based ConvGNNs all follow these definitions made. The main difference lies in choosing

the filter 𝑔𝜃 (Z. Wu et al., 2019).

This filter 𝑔𝜃 = Θ𝑖,𝑗
(𝑘)

 is a set of learnable parameters and considers graph signals with multiple

channels. The graph convolutional layer of Spectral CNN is defined as:

𝐻:,𝑗
(𝑘)

= 𝜎 (∑ 𝑈Θ𝑖,𝑗
(𝑘)

𝑓𝑘−1

𝑖=1

𝑈𝑇𝐻:,𝑖
(𝑘−1)

) 𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑓𝑘

where 𝑘 is the layer index, 𝐻(𝑘−1) ∈ 𝑅𝑛 𝑥 𝑓𝑘−1 is the input graph signal, 𝐻0 = 𝑋, 𝑓𝑘−1 is the

number of input channels and 𝑓𝑘 is the number of output channels, Θ𝑖,𝑗
(𝑘)

 is a diagonal matrix

filled with parameters that can be learned (Z. Wu et al., 2019).

Due to the eigen-decomposition of the Laplacian matrix, Spectral CNN faces three constraints

or drawbacks. First of all, any disturbance or modification to a graph results in a change of eigen

basis. Secondly, the learned filters are dependent on the domain, so they cannot be applied to

a graph with a different structure. And finally, eigen-decomposition requires 𝑂(𝑛3)

computational complexity.

31

Master thesis

3.3.2.2 Spatial-based ConvGNNs

Comparable to the convolutional operation of a conventional CNN of an image, spatial-based

methods define graph convolutions based on the spatial relationships of a node. Images can be

taken as a special kind of graph where each pixel represents a node. Each pixel is directly

connected to its nearby pixels, as it can be seen in Figures 9 and 10. The spatial-based graph

convolutions convolve the central node’s representation with its surrounding nodes to obtain

the updated representation for the central node, as shown in Figure 9. From another point of

view, spatial-based ConvGNNs participate in the same idea of information/message passing with

RecGNNs. The spatial graph convolutional operation basically propagates node information

along edges (Z. Wu et al., 2019).

Figure 9: 2D Convolution (Source: (Z. Wu et al., 2019))

Figure 10: Graph Convolution. Different from 2D
Convolutions, the neighbors of a node are unordered

and variable in size (Source: (Z. Wu et al., 2019))

Neural Network for Graphs (NN4G) (Alessio Micheli, 2009), proposed in parallel with GNN, is the

first work in the direction of spatial-based ConvGNNs. This kind of neural network learns graph

mutual dependency through incremental building of the architecture. NN4G does graph

convolutions by summing up the neighborhood of a node’s information directly. The next layer

node states in NN4G are generated by:

𝐻(𝑘) = 𝑓(𝑊(𝑘)𝑇
𝑥𝑣 + ∑ ∑ Θ(𝑘)𝑇

ℎ𝑢
(𝑘−1)

)

𝑢 ∈𝑁(𝑣)

𝑘−1

𝑖=1

where 𝑓(·) is an activation function and ℎ𝑣
(0)

= 0. This equation can also be written in a matrix

form:

32

Master thesis

𝐻(𝑘) = 𝑓(𝑋𝑊(𝑘) + ∑ 𝐴𝐻(𝑘−1)Θ(𝑘)

𝑘−1

𝑖=1

which resembles the form of Graph Convolutional Network (Kipf & Welling, 2017).

On a slight different approach, Diffusion Convolutional Neural Network (DCNN) (Atwood &

Towsley, 2016) regards graph convolutions as a diffusion process. It considers that information

is sent from one node to one of its neighbors with a certain transition probability, with the aim

that information allocation can reach equilibrium after several rounds. DCNN defines the

diffusion graph convolution as:

𝐻(𝑘) = 𝑓(𝑊(𝑘) ⊙ 𝑃𝑘𝑋)

where 𝑓(·) is an activation function and the probability transition matrix 𝑃 ∈ 𝑅𝑛 𝑥 𝑛 is

computed by 𝑃 = 𝐷−1𝐴 (Z. Wu et al., 2019).

Diffusion Graph Convolution (DGC) (Yaguang Li et al., 2018) summarizes outputs at each

diffusion step instead of concatenation. It defines the diffusion graph convolution by:

𝐻 = ∑ 𝑓(𝑃𝑘𝑋𝑊(𝑘))

𝐾

𝑘 =0

where 𝑊(𝑘) ∈ 𝑅𝐷 𝑥 𝐹 and 𝑓(·) is again an activation function (Z. Wu et al., 2019).

Also, it is important to mention that with the years, there have been improvements in terms of

training efficiency. Training ConvGNNs such as GCN (Atwood & Towsley, 2016) normally requires

to save the whole graph data and intermediate states of all nodes into memory. The algorithm

that trains the full-batch for ConvGNNs struggles considerably with the memory overflow

problem, especially when a graph contains millions of nodes. To save memory, GraphSage

(Hamilton et al., 2018) presents a batch-training algorithm for ConvGNNs. The algorithm

samples a tree rooted at each node by recursively expanding the root node’s neighborhood by

𝐾 steps with a sample size that is fixed. For each sampled tree, GraphSage calculates the root

node’s hidden representation by aggregating hidden nodes representations from bottom to top

in a hierarchical way (Z. Wu et al., 2019).

Fast Learning with Graph Convolutional Network (FastGCN) (Jie Chen et al., 2018) samples a

fixed number of nodes for each graph convolutional layer instead of sampling a fixed number of

neighbors for each node like GraphSage does. They use Monte Carlo approximation and variance

33

Master thesis

reduction techniques to make the training process easier. Since FastGCN samples nodes

independently for each layer, connections between layers are possibly few and scattered (Z. Wu

et al., 2019).

In a different project, Stochastic Training of Graph Convolutional Networks (StoGCN) (Jianfei

Chen et al., 2018) makes a reduction on the size of the receptive field of a graph convolution to

an arbitrary small scale using historical node representations as a control variate. Nonetheless,

StoGCN still has to save intermediate states of all nodes, which for large graphs, it consumes a

lot of memory (Z. Wu et al., 2019).

To continue, ClusterGCN (Chiang et al., 2019) samples a subgraph using an algorithm that

clusters graphs and performs graph convolutions to nodes within the samples subgraph. Since

the neighborhood search is constrained within the mentioned subgraph, ClusterGCN is capable

of handling larger graphs and using deeper architectures at the same time, in less time and with

less memory than the previous ones (Z. Wu et al., 2019).

3.3.2.3 Comparison between spectral-based and spatial-based models

Spectral models possess a theoretical foundation in graph signal processing. While they design

new graph signal filters new ConvGNNs can be built. On the other hand, though, spatial models

are preferred over spectral models thanks to their higher efficiency, generality, and flexibility

issues.

Spectral models are less efficient than spatial models because they need to perform eigenvector

computation or handle the whole graph at the same time. Spatial models are more suitable for

large graphs because they perform convolutions in the graph domain via information

propagation. Computations can be carried out in a batch of nodes instead of the whole graph,

and that saves time and memory.

Secondly, spectral models which rely on a graph Fourier basis generalize poorly to new graphs,

since they assume an invariable or fixed graph. Any perturbations and changes to the graph

would result in a change of the eigenbasis. On the other hand, spatial-based models make graph

convolutions locally on each node where weights can be shared easily across different locations

and structures.

Thirdly, and finally, spectral-based models are limited to operate on undirected graphs. Spatial-

based models can handle easier multi-source graph inputs such as edge inputs, directed graphs,

signed graphs, and heterogeneous graphs (Z. Wu et al., 2019).

34

Master thesis

3.3.2.4 Graph Pooling Modules

After a Graph Neural Network generates node features, they can be used for the final task.

However, using all these features directly can be computationally challenging, and for this

reason, a down-sampling strategy is needed. Depending on what we want to achieve and the

role this strategy takes in the neural network, different names are adopted.

First, the pooling operation aims to reduce the number of parameters by down-sampling the

nodes in order to generate smaller representations and achieving a firm structure ready to avoid

overfitting, permutation invariance, and computational complexity issues.

On the second place, the readout operation is mainly used to generate graph-level

representation based on node representations (Z. Wu et al., 2019).

Nowadays, mean/max/sum pooling is the oldest and effective way to implement down-sampling

because calculating the mean/max/sum value in the pooling window is fast:

ℎ𝐺 = 𝑚𝑒𝑎𝑛/𝑚𝑎𝑥/𝑠𝑢𝑚(ℎ1
(𝐾)

, ℎ2
(𝐾)

, … , ℎ𝑛
(𝐾)

)

where 𝐾 is the index of the last graph convolutional layer (Z. Wu et al., 2019).

In the paper “Deep Convolutional Networks on Graph-Structured Data” (Henaff et al., 2015) it is

shown that performing a simple max/mean pooling at the beginning of the network is especially

important to reduce the dimensionality in the graph and reduce also the cost of the expensive

Fourier transform operation. In addition, some works (Gilmer et al., 2017; Yujia Li et al., 2017)

also use attention mechanisms to enhance the mean/sum pooling (Z. Wu et al., 2019).

Attention mechanisms are used when in dealing with a node, we want to focus more on a

specific area, whether it is the node’s surroundings or another one, because the contribution of

the information present in this area is more valuable than the information other areas may have.

In general, pooling is an essential operation to reduce graph size. However, it is still an open

question how to improve the effectiveness and how to deal with the computational complexity

of pooling (Z. Wu et al., 2019).

3.3.3 Graph autoencoders (GAEs)

This kind of graphs are unsupervised learning structures which encode nodes/graphs into a

latent vector space and then reconstruct graph data from the encoded information. GAEs are

used to learn network embeddings and graph generative distributions, basically.

35

Master thesis

3.3.3.1 GAEs for Network Embedding

When we talk about network embedding, we refer to a low-dimensional vector representation

of a node which preserves a node’s topological information. Topology is the branch of

mathematics which studies the properties of geometrical bodies which remain unaltered by

continuous transformations. Also, mathematicians use topology as the reference of a certain

family of subgroups of a given set, a family that follows rules about unions and intersections.

GAEs learn network embeddings using an encoder to extract network connections to preserve

the graph topological information such as the PPMI (Positive Pointwise Mutual Information)

matrix and the adjacency matrix.

The first works on this line mainly employ multi-layer perceptrons to build GAEs for network

embedding learning (Z. Wu et al., 2019). Multi-layer perceptrons refer generally as any kind of

feedforward neural network, similar to the ones that we’ve been talking all the time. They

consist of at least one input layer, a hidden layer and an output layer.

Deep Neural Network for Graph Representations (DNGR) (Cao et al., 2016) uses a stacked

denoising autoencoder (Vincent et al., 2008) to encode and decode the PPMI matrix via multi-

layer perceptrons (Z. Wu et al., 2019).

Structural Deep Network Embedding (SDNE) (Wang et al., 2016) makes use of a stacked

autoencoder to preserve the node first-order proximity and second-order proximity together.

This network suggests two loss functions on the outputs of the encoder and the outputs of the

decoder separately. The loss function calculates the difference between the expected output

and the given current output, in a supervised learning way. The first loss function enables the

learned network embeddings to preserve the node first-order proximity by minimizing the

separation between a node’s network embedding and its neighbor’s network embeddings. This

loss function is 𝐿1𝑠𝑡 is defined as:

𝐿1𝑠𝑡 = ∑ 𝐴𝑣,𝑢

(𝑣,𝑢)∈𝐸

‖𝑒𝑛𝑐(𝑥𝑣) − 𝑒𝑛𝑐(𝑥𝑢)‖2

where 𝑥𝑣 = 𝐴𝑣,: and 𝑒𝑛𝑐(·) is an encoder which consists of a multi-layer perceptron (Z. Wu et

al., 2019).

The second loss function allows the learned network embeddings to preserve the node second-

order proximity by minimizing the distance between a node’s inputs and its reconstructed

inputs. Concretely, the second loss function 𝐿2𝑛𝑑 is defined as:

36

Master thesis

𝐿2𝑛𝑑 = ∑ ‖𝑑𝑒𝑐(𝑒𝑛𝑐(𝑥𝑣)) − 𝑥𝑣) ⊙ 𝑏𝑣‖
2

𝑣 ∈ 𝑉

where 𝑏𝑣,𝑢 = 1 if 𝐴𝑣,𝑢 = 0, 𝑏𝑣,𝑢 = 𝛽 > 1 if 𝐴𝑣,𝑢 = 1, and 𝑑𝑒𝑐(·) is a decoder which consists of

a multi-layer perceptron (Z. Wu et al., 2019).

DNGR and SDNE consider only node structural information which is about the connectivity

between pairs of nodes. They ignore that nodes may contain feature information that depicts

the attributes of nodes themselves. Graph Autoencoder (GAE*1) (Kipf & Welling, 2016) uses GCN

(Kipf & Welling, 2017) to encode structural information of a node and feature information of the

same node at the same time. The encoder of GAE* is based in two graph convolutional layers,

which take the form:

𝑍 = 𝑒𝑛𝑐(𝑋, 𝐴) = 𝐺𝑐𝑜𝑛𝑣(𝑓(𝐺𝑐𝑜𝑛𝑣(𝐴, 𝑋; Θ1)); Θ2)

where 𝑍 denotes the network embedding matrix of a graph, 𝑓(·) is a Rectified Linear Unit (ReLU)

activation function and the 𝐺𝑐𝑜𝑛𝑣(·) function is a graph convolutional layer. GAE* searches to

decode node relational information from their embeddings by reconstructing the graph

adjacency matrix, which is defined as:

�̂�𝑣,𝑢 = 𝑑𝑒𝑐(𝑧𝑣 , 𝑧𝑢) = 𝜎(𝑧𝑣
𝑇𝑧𝑢)

where 𝑧𝑣 is the embedding of node 𝑣. GAE* is trained by minimizing the negative cross entropy

given the real adjacency matrix 𝐴 and the reconstructed adjacency matrix �̂� (Z. Wu et al., 2019).

But, only by reconstructing the graph adjacency matrix we can face problems of overfitting due

to autoencoders’ capacity. Variational Graph Autoencoder (VGAE) (Kipf & Welling, 2016), which

will be explained in further detail later, is a variational version of GAE to learn the distribution

on data. VGAE optimizes the variational lower bound 𝐿:

𝐿 = 𝐸𝑞(𝑍|𝑋,𝐴)[log 𝑝(𝐴|𝑍)] − 𝐾𝐿[𝑞(𝑧|𝑋, 𝐴||𝑝(𝑍]

where 𝐾𝐿(·) is the Kullback-Leibler divergence function which measures the distance between

two distributions, 𝑝(𝑍) is a Gaussian prior 𝑝(𝑍) = ∏ 𝑝(𝑧𝑖) = ∏ 𝑁(𝑧𝑖|0, 𝐼)𝑛
𝑖=1 𝑛

𝑖=1 ,

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖 , 𝑧𝑗) = 𝑑𝑒𝑐(𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗), 𝑞(𝑍|𝑋, 𝐴) = ∏ 𝑞(𝑧𝑖|𝑋, 𝐴)𝑛

𝑖=1 with 𝑞(𝑧𝑖|𝑋, 𝐴) =

1 We name it GAE* to avoid ambiguity with the global definition

37

Master thesis

𝑁(𝑧𝑖|𝜇𝑖 , 𝑑𝑖𝑎𝑔(𝜎𝑖
2)). The mean vector 𝜇𝑖 is the 𝑖𝑡ℎ row of an encoder’s outputs and log 𝜎𝑖 is

derived similarly as 𝜇𝑖 with another encoder. VGAE assumes the empirical distribution 𝑞(𝑍|𝑋, 𝐴)

should be as close as possible to the prior distribution 𝑝(𝑍).

For the methods mentioned before, they basically learn network embeddings by solving a link

prediction problem. However, the sparsity of a graph originates the number of positive node

pairs to be far less than the number of negative node pairs. To minimize this problem, another

line of works converts a graph into sequences by random permutations or random walks. This

way, machine learning approaches which are related to sequences can be used to deal with

graphs. Deep Recursive Network Embedding (DRNE) (Tu et al., 2018) assumes a node’s network

embedding should approximate the aggregation of its neighborhood network embeddings. It

uses a Long Short-Term Memory (LSTM) network (Hochreiter & Schmidhuber, 1997), which will

be explained in detail later, to aggregate a node’s neighbors. DRNE learns network embeddings

via an LSTM network rather than using the LSTM network to generate network embeddings. It

avoids the problem that LSTM’s are not invariant to the permutation of node sequences (Z. Wu

et al., 2019).

3.3.3.2 GAEs for Graph Generation

When we have multiple graphs, GAEs can learn the generative distribution of graphs by encoding

them into hidden representations and decoding a graph structure given hidden representations.

Most GAEs are designed to solve the molecular graph generation problem, which is very useful

in drug discovery.

There are some approaches that generate graphs by proposing nodes and edges step by step, in

a sequential way. Also, alternative solutions are applicable to general graphs by iteratively

adding nodes and edges to a growing graph until a certain criterion is satisfied. Deep Generative

Model of Graphs (DeepGMG) (Yujia Li et al., 2018) assumes the probability of a graph is the sum

of all possible node permutations:

𝑝(𝐺) = ∑ 𝑝(𝐺, 𝜋)

𝜋

where 𝜋 denotes a node ordering. These models apprehend the complex joint probability of all

nodes and edges in the graph. DeepGMG creates graphs by making a sequence of decisions,

such as: whether to add a node, which node to add, whether to add an edge, and which node

38

Master thesis

to connect to the new one. The process of deciding all this things, is conditioned on the node

states and the graph state of a growing graph updated by a RecGNN (Z. Wu et al., 2019).

Some other approaches operate in a more global way, they output a graph all at once instead of

building it sequentially. Graph Variational Autoencoder (GraphVAE) (Simonovsky & Komodakis,

2018) models the existence of nodes and edges as independent variables which are random.

The GraphVAE optimizes the variational lower bound:

𝐿(𝜙, 𝜃; 𝐺) = 𝐸𝑞𝜙(𝑧|𝐺)[− log 𝑝𝜃(𝐺|𝑧)] + 𝐾𝐿[𝑞𝜙(𝑧|𝐺)||𝑝(𝑧)]

where 𝑝(𝑧) follows a Gaussian prior, 𝜙 and 𝜃 are learnable parameters. To do this, it assumes

the posterior distribution 𝑞𝜙(𝑧|𝐺) defined by an encoder and the generative distribution

𝑝𝜃(𝐺|𝑧) defined by a decoder (Z. Wu et al., 2019).

3.3.4 Spatial-temporal graph neural networks (STGNNs)

This last kind of structure of graph neural network looks for learning dynamic hidden patterns

from spatial-temporal graphs. This kind of graphs are becoming more important over the years

thanks of their varied application in many fields such as traffic speed forecasting (Yaguang Li et

al., 2018), driver maneuver anticipation (Jain et al., 2016), and human action recognition (B. Yu

et al., 2018).

There are two main approaches in STGNNs: RNN-based methods and CNN-based methods.

Most RNN-based approaches capture spatial-temporal dependencies by filtering inputs and

hidden states passed to a recurrent unit using graph convolutions (Yaguang Li et al., 2018; Seo

et al., 2016; Zhang et al., 2018). To better understand this, suppose a simple RNN which takes

the form:

𝐻(𝑡) = 𝜎(𝑊𝑋(𝑡) + 𝑈𝐻(𝑡−1) + 𝑏)

where 𝑋(𝑡) ∈ 𝑅𝑛 𝑥 𝑑 is the node feature matrix at time step 𝑡. After inserting graph convolution,

the last equation becomes:

𝐻(𝑡) = 𝜎(𝐺𝑐𝑜𝑛𝑣(𝑋(𝑡), 𝐴; 𝑊) + 𝐺𝑐𝑜𝑛𝑣(𝐻(𝑡−1), 𝐴; 𝑈) + 𝑏)

where 𝐺𝑐𝑜𝑛𝑣(·) is a graph convolutional layer. Nevertheless, RNN-based methods suffer from

time-consuming iterative propagation and gradient explosion/vanishing issues (Z. Wu et al.,

2019).

39

Master thesis

As an alternative, CNN-based methods deal with spatial-temporal graphs in a non-recursive way.

The advantages are that they can compute in parallel, gradients are stable, and memory

required is lower than in RNN-based methods. Let’s say that the inputs to a spatial-temporal

graph neural network is a tensor 𝜒 ∈ 𝑅𝑇𝑥 𝑛 𝑥 𝑑, the 1D-CNN layer slides over 𝜒[:,𝑖,;] along the

time axis to add temporal information for each node while the graph convolutional layer

operates on 𝜒[𝑖,:,;] to add spatial information at each time step.

40

Master thesis

4 Variational Autoencoders (VAEs)

In the recent years, Variational Autoencoders (VAEs) have become one of the most popular ways

to unsupervised learning of complicated distributions. Unsupervised learning is a kind of deep

learning that seeks for undetected patterns in a dataset with no pre-existing labels and with the

minimal human supervision (Hinton & Sejnowski, 1999). When we talk about labels, we refer

normally to the output the neural network is supposed to deliver. For example, in image

recognition, a set of pixels that represents an image of a dog will be labelled as “dog”. The neural

network will output what it thinks the set of pixels is, and it will compare it to the ground truth

label, in order to calculate the error and modify the parameters later.

As it has been explained in the last chapter, most of the machine learning models are “generative

models”. As a general rule, these models deal with distributions 𝑃(𝑋), defined over datapoints

𝑋 in some potentially high-dimensional space 𝜒. For instance, images are one popular type of

data used in generative modelling. Each “datapoint” (image) has thousands or millions of

dimensions (pixels), and the generative model’s job is to capture the dependencies between

those pixels: realistic shapes, similar colors between neighbor pixels, pixels organized into

objects, etc. (Doersch, 2016). Usually, the objective of generative models is to produce more

examples that are like those already in a database, but not exactly the same. For example, for a

database of images we could recreate new, unseen images. One way to formalize this setup is

by saying that we get objects 𝑋 distributed according to some unknown distribution 𝑃𝑔𝑡(𝑋), and

the goal is to learn a model 𝑃 which we can sample from, such that 𝑃 is as similar as possible to

𝑃𝑔𝑡 (Doersch, 2016).

Figure 11: Generated image by a neural network (Source: (Joglekar, 2017))

41

Master thesis

However, training these generative models has suffered many problems during the years. There

have been three serious drawbacks. First of all, they might require strong assumptions about

the structure in the data. Second, they might make extreme approximations, bringing it to

suboptimal models. Or third, they can rely on computationally expensive inference procedures

like Markov Chain Monte Carlo. These drawbacks have been reduced in the years that have

passed thanks to the use of backpropagation-based function approximators, since they helped

a lot in training neural networks.

In the VAE, backpropagation is used to train the model in a fast way. Also, VAEs deal with the

first drawback pretty well since the assumptions made on the models are weak. They also do

some approximations, but the error introduced by them is relatively small (Doersch, 2016).

4.1 Theoretical description

A mathematical description of VAEs and the way they operate will be done in this chapter,

according to the paper written by Carl Doersch, from the UC Berkeley.

4.1.1 Latent variable models

When a generative model is being trained, the more complicated the relations between the

dimensions, the more difficult is to train. For example, when trying to generate images of

handwritten digits 0-9, the model needs to decide some things. Let’s say that if it wants to

generate a 7, the left side cannot contain the right side of an 8, otherwise it will not look like any

real digit. So, in an intuitive way, the model first decides which character is going to generate

before start drawing it by assigning values to the pixels. This decision is formally called a latent

variable (Doersch, 2016). Latent variables, in statistics, are variables that are not directly

observed, they are inferred via a mathematical model from other variables that are measured

and observed. They are used to reduce the dimensionality of data, trying to summarize an

underlying concept.

There are many different techniques to infer latent variables: Hidden Markov Models, Factors

analysis, Principal component analysis, Partial least squares regression, Latent semantic analysis,

EM algorithms, Metropolis-Hastings algorithm, etc. Some of them have been used in the context

of transport models, as mentioned in section 2.2.2.

In order for us to be allowed to say that our model is representative of the dataset, we need to

make sura that for every datapoint 𝑋 in the dataset, it exists one (or many) dispositions of the

latent variables which let the model generate something very similar to 𝑋. Formalizing this

42

Master thesis

affirmation, say we have a vector of latent variables 𝑧 in a high-dimensional space 𝒵 which we

can easily sample according to some probability density function 𝑃(𝑧) defined over 𝒵. Then, say

we have a set of deterministic functions 𝑓(𝑧; 𝜃), parametrized by a vector 𝜃 in some space Θ,

where 𝑓: 𝒵 𝑥 Θ → 𝒳. 𝑓 is deterministic, but if 𝑧 is random and 𝜃 is fixed, then 𝑓(𝑧; 𝜃) is a

random variable in the space 𝒳. We want to optimize 𝜃 such that we can sample 𝑧 from 𝑃(𝑧)

and, with high probability, 𝑓(𝑧; 𝜃) will be like the 𝑋’s in the studied dataset (Doersch, 2016).

To do so, we search to maximize the probability of each 𝑋 in the training dataset under the

entire generative process, according to the equation:

𝑃(𝑋) = ∫ 𝑃(𝑋|𝑧: 𝜃)𝑃(𝑧) 𝑑𝑧

where 𝑓(𝑧; 𝜃) has been replaced by a distribution 𝑃(𝑋|𝑧; 𝜃). The main idea behind this is the

“maximum likelihood” criterion, which says that if the model is likely to produce training set

samples, then it is also likely to produce similar samples, and unlikely to produce dissimilar ones.

In VAEs, one usual way to choose this output distribution is a Gaussian one, i.e., 𝑃(𝑋|𝑧; 𝜃) =

 𝒩(𝑋|𝑓(𝑧; 𝜃), 𝜎2 ∗ 𝐼). That is, it has mean 𝑓(𝑧; 𝜃) and covariance equal to the identity matrix

𝐼 times some scalar 𝜎. This is done like that in order to have some 𝑧 which needs to result in

samples that are just like 𝑋. Since we have a Gaussian distribution, gradient descent can be used

to increase 𝑃(𝑋) by making 𝑓(𝑧; 𝜃)approach 𝑋 for some 𝑧. Note that the output distribution

does not need to be Gaussian. The most important feature is simply that 𝑃(𝑋|𝑧) can be

computed, and is continuous in 𝜃. From now on, we will omit 𝜃 from 𝑓(𝑧; 𝜃) to avoid confusion

(Doersch, 2016).

4.1.2 The core of VAEs

 The mathematical foundations of VAEs have relatively little to do with classical autoencoders.

VAEs approximately maximize the already mentioned equation (equation 1 from now on):

𝑃(𝑋) = ∫ 𝑃(𝑋|𝑧: 𝜃)𝑃(𝑧) 𝑑𝑧

The name “autoencoders” is taken because the final training objective derived from this setup

contains an encoder and a decoder, and looks like a traditional autoencoder. There are two main

issues that VAEs must deal with in order to solve equation 1: how to define the latent variables

(which information they represent), and how to deal with the integral over 𝑧. VAEs provide a

definite answer to both questions.

43

Master thesis

First of all, VAEs assume that it doesn’t exist a simple interpretation of the dimensions of 𝑧, and

instead affirm that samples of 𝑧 can be drawn from a sample distribution, i.e., 𝒩(0, 𝐼), where 𝐼

is the identity matrix. To achieve this, the point is to notice that any distribution in 𝑑 dimensions

can be generated by taking a set of 𝑑 variables that are normally distributed and mapping them

through a complicated enough function. Taking into account that:

𝑃(𝑋|𝑧; 𝜃) = 𝒩(𝑋|𝑓(𝑧; 𝜃), 𝜎2 ∗ 𝐼)

If 𝑓(𝑧; 𝜃) is a multi-layer neural network, then we can think of the network as using its first

layers to map 𝑧’s, which are normally distributed, to the latent values with exactly the

appropriate statistics. Then it can use later layers to map those latent values to a complete

output with the same shape like the input data.

Now we need to maximize equation 1, where 𝑃(𝑧) = 𝒩(𝑧|0, 𝐼). As it is usually done in machine

learning, if it is possible to find a mathematical formula for 𝑃(𝑋), and we can have the gradient

of that formula, then it is possible to optimize the model using stochastic gradient descent.

Remembering that the objective of VAEs is to produce data similar to the introduced one, there

is a problem because without labels that indicate which datapoints are similar to each other,

they are difficult to train. Instead, VAEs alter the sampling procedure to make it faster, without

changing the similarity metric (Doersch, 2016).

In order to achieve the objective, it would be nice to have a shortcut when sampling to compute

equation 1. In practice, for the majority of 𝑧, 𝑃(𝑋|𝑧) will be so close to zero, and hence

contribute almost nothing to the estimate of 𝑃(𝑋). The key is to try to sample values of 𝑧 that

which have a high probability of produce 𝑋, and compute 𝑃(𝑋) only from those. For this, we

need another function 𝑄(𝑧|𝑋) which can take a value of 𝑋 and supply a distribution over 𝑧 values

that are likely to produce 𝑋. Hopefully, the space of 𝑧 values that are likely under 𝑄 will be much

smaller than the space of all 𝑧’s that are likely under the first 𝑃(𝑧). Now, we can compute

𝐸𝑍∼𝑄𝑃(𝑋|𝑧) quite easily. However, 𝑧 is sampled from an arbitrary distribution with probability

density function 𝑄(𝑧), which is not 𝒩(0, 𝐼), so in order to optimize 𝑃(𝑋) we need to relate it to

𝐸𝑍∼𝑄𝑃(𝑋|𝑧).

To do so, we will define what is called the Kullback-Leibler divergence (KL divergence or 𝒟)

between 𝑃(𝑧|𝑋) and 𝑄(𝑧), for an arbitrary 𝑄 (which could or could not depend on 𝑋):

𝒟[𝑄(𝑧)‖𝑃(𝑧|𝑋) = 𝐸𝑍∼𝑄[𝑙𝑜𝑔𝑄(𝑧) − 𝑙𝑜𝑔𝑃(𝑧|𝑋)]

44

Master thesis

The KL divergence measures the difference from one probability distribution from a second one,

which acts as the reference probability distribution. In the simplest case, if the Kullback-Leibler

divergence is 0, it means that both probability distributions are identical.

We can introduce both 𝑃(𝑋) and 𝑃(𝑋|𝑧) into this equation by applying Bayes rule to 𝑃(𝑧|𝑋):

𝒟[𝑄(𝑧)‖𝑃(𝑧|𝑋) = 𝐸𝑍∼𝑄[𝑙𝑜𝑔𝑄(𝑧) − 𝑙𝑜𝑔𝑃(𝑋|𝑧) − 𝑙𝑜𝑔𝑃(𝑧)] + 𝑙𝑜𝑔𝑃(𝑋)

 Here, 𝑙𝑜𝑔𝑃(𝑋) comes out of the expectation because it doesn’t depend on 𝑧. After negating

both sides, rearranging and contracting part of 𝐸𝑍∼𝑄 into a KL-divergence terms yields:

log 𝑃(𝑋) − 𝒟[𝑄(𝑧)‖𝑃(𝑧|𝑋) = 𝐸𝑍∼𝑄[𝑙𝑜𝑔𝑃(𝑋|𝑧)] − 𝒟[𝑄(𝑧)‖𝑃(𝑧)]

Note that 𝑋 is fixed, and 𝑄 can be any distribution. Since we’re interested in inferring 𝑃(𝑋), it

makes sense to construct a 𝑄 which does depend on 𝑋, and in particular, one which makes

𝒟[𝑄(𝑧)‖𝑃(𝑧|𝑋) small:

log 𝑃(𝑋) − 𝒟[𝑄(𝑧|𝑋)‖𝑃(𝑧|𝑋) = 𝐸𝑍∼𝑄[𝑙𝑜𝑔𝑃(𝑋|𝑧)] − 𝒟[𝑄(𝑧|𝑋)‖𝑃(𝑧)]

This last equation is the core of the variational autoencoder. The left side has the quantity we

want to maximize: 𝑙𝑜𝑔𝑃(𝑋) (plus an error term, that makes 𝑄 produce 𝑧’s that can reproduce a

given 𝑋; this term will become small if 𝑄 is high capacity). The right part is something we can

optimize via stochastic gradient descent given the appropriate choice of 𝑄 (Doersch, 2016).

Going deeply into the left side of the equation, we want to maximize 𝑙𝑜𝑔𝑃(𝑋) while

simultaneously minimize 𝒟[𝑄(𝑧|𝑋)‖𝑃(𝑧|𝑋)]. 𝑃(𝑧|𝑋) is not something we can compute

analytically, since it describes the values of 𝑧 that are likely to produce a sample like 𝑋. However,

the second term of the left side is pulling 𝑄(𝑧|𝑥) to match 𝑃(𝑧|𝑋). Assuming we use an arbitrary

high-capacity model for 𝑄(𝑧|𝑥), then 𝑄(𝑧|𝑥) will hopefully match 𝑃(𝑧|𝑋), in which case this KL-

divergence term will be zero, and we will be optimizing directly 𝑙𝑜𝑔𝑃(𝑋).

How is it possible to carry out stochastic gradient descent on the right part of the

aforementioned core equation? First, it is needed to know more specifically about the

configuration that 𝑄(𝑧|𝑋) will take. Normally, 𝑄(𝑧|𝑋) = 𝒩(𝑧|𝜇(𝑋; 𝜗), Σ(𝑋; 𝜗)), where 𝜇 and

Σ are again implemented via neural networks, and Σ is forced to be a diagonal matrix. The reason

for this choice is merely computational, to make the calculations clearer. The final term

𝒟[𝑄(𝑧|𝑋)‖𝑃(𝑧)] results now in a KL-divergence between two multivariate Gaussian

distributions (Doersch, 2016).

45

Master thesis

The first term on the right part of the core equation is a bit more complicated. We could use

sampling methods to estimate 𝐸𝑍∼𝑄[𝑙𝑜𝑔𝑃(𝑋|𝑧)], but to have a good estimation a considerable

high number of samples would be needed of 𝑧 through 𝑓, which would be an expensive process.

As a result, as is standard in stochastic gradient descent, we take one sample of 𝑧 and treat

𝑃(𝑋|𝑧) for that 𝑧 as an approximation of 𝐸𝑍∼𝑄[𝑙𝑜𝑔𝑃(𝑋|𝑧)]. The full equation to optimize now

is:

𝐸𝑋∼𝐷[𝑙𝑜𝑔𝑃(𝑋) − 𝒟[𝑄(𝑧|𝑋)‖𝑃(𝑧|𝑋)]] = 𝐸𝑋∼𝐷[𝐸𝑍∼𝑄[𝑙𝑜𝑔𝑃(𝑋|𝑧)] − 𝒟[𝑄(𝑧|𝑋)‖𝑃(𝑧)]]

So, we can sample a single value of 𝑋 and a single value of 𝑧 from the distribution 𝑄(𝑧|𝑋), and

calculate the gradient of:

𝑙𝑜𝑔𝑃(𝑋|𝑧) − 𝒟[𝑄(𝑧|𝑋)‖𝑃(𝑧)]

We can then take an average of the gradient of this function over many samples of 𝑋 and 𝑧 taken

arbitrarily.

There is a significant problem with the last equation though. 𝐸𝑍∼𝑄[𝑙𝑜𝑔𝑃(𝑋|𝑧)] not only depends

on the parameters of 𝑃, but also on the parameters of 𝑄. But in the last equation this

dependency has disappeared! In order to make VAEs work, it’s very important to push 𝑄 to

produce codes for 𝑋 that 𝑃 can successfully decode. The forward pass of the neural network

works well and, if the output is averaged over many samples of 𝑋 and 𝑧, produces the correct

expected value. Nevertheless, the error needs to be back-propagated through a layer that

samples 𝑧 from 𝑄(𝑧|𝑋), which is a non-continuous operation and has no gradient.

To solve this, the so-called “reparameterization trick” is introduced, and it consists on moving

the sampling layer to an input later. Given 𝜇(𝑋) and Σ(𝑋) – the mean and covariance of 𝑄(𝑧|𝑋)

– we can sample from 𝒩(𝜇(𝑋), Σ(𝑋)) by first sampling 𝜖 ∼ 𝒩(0, 𝐼), then computing 𝑧 =

 𝜇(𝑋) + Σ1/2(𝑋) ∗ 𝜖. Thus, the equation we actually compute the gradient of is:

𝐸𝑋∼𝐷[𝐸𝜖∼𝒩(0,𝐼) [𝑙𝑜𝑔𝑃 (𝑋|𝑧 = 𝜇(𝑋) + Σ
1
2(𝑋) ∗ 𝜖)] − 𝒟[𝑄(𝑧|𝑋)‖𝑃(𝑧)]]

This equation is shown schematically in Figure 12 (right).

46

Master thesis

Figure 12: Schematic of a VAE. Left side is without the “reparameterization trick”, and right with it (Source: (Doersch,
2016))

4.2 Example of application and inspiration

Now that it has been observed how a Variational Autoencoder works, let’s see an example of

what it can actually do with real world data. In machine learning, one of the common things is

to work with a database of handwritten numerical digits, consisting of a series of images of

28x28 pixels with one color channel. This dataset is commonly named MNIST (Modified National

Institute of Standards and Technology), and it contains 60.000 training images and 10.000

testing images.

The network will learn to reconstruct these digits and output them. First, an encoder will apply

some convolutions to the input data, since it’s made of images. Then, the same encoder will

create two vectors containing data following a Gaussian distribution, which will be a vector of

means, 𝜇(𝑋), and a vector of covariance, Σ(𝑋). These two vectors will be used to create the 𝑧-

values from the latent space, which will be later fed to the decoder. The decoder does not care

about whether the input values are sampled from a Gaussian distribution that has been created

by us. It will simply try to reconstruct the input images, to this end, the network uses a series of

convolutions again (Mohr, 2017). For computing the image reconstruction loss, the network

uses squared difference. This loss is combined with the Kullback-Leibler divergence, which

makes sure the latent values will be sampled from a normal distribution. After training the

network, it is able to create new images of handwritten digits by simply sampling values from a

47

Master thesis

normal distribution and feeding them to the decoder. Surprisingly, most of the created digits

look like if they were created by humans.

Figure 13: Examples of computer generated handwritten digits by a VAE (Source: (Mohr, 2017))

To this end, we have thought to apply this methodology to a transport dataset. As it will be

explained in section 6.1 more in detail, the dataset used in this project consists on vectors of

activity sequences of different individuals. If the VAE is able to learn a distribution and the main

characteristics from a vector of pixels, then it should be able too to grasp the features of a vector

of activity sequences. Certainly, the shapes and the information contained in the vectors are

different, but after some adaptations are done, there should be no problem to encode the data

to a latent space. And after encoding it, we should be able to create new sequences of activities

just by sampling them from the latent space.

48

Master thesis

5 Long-Short Term Memory for sequence to

sequence modelling

LSTM (Long Short-Term Memory) units are a kind of Recurrent neural networks (RNN), in fact,

one of the most powerful and known subsets of them. RNNs are an artificial neural network

which can be used to recognize data patterns in sequences, such as numerical time series data,

stock markets prices, text, genomes, speeches, etc. What makes RNNs and LSTMs different from

other neural networks is that they take into account time and sequence order, so they include

a temporal dimension.

In the next sections, a theoretical description on RNNs will be done, based on a paper written

by Sherstinsky (2018), which developed deeply the current literature by presenting the training

formulas and justifying some concepts that had been presented before without complete

justification. To avoid an excess of mathematical demonstrations, some intermediate parts of

mathematical deductions will be omitted for the ease of the reader to follow the document.

5.1 Recurrent Neural Networks (RNNs)

5.1.1 The roots of RNN

In this section, Recurrent Neural Networks (RNNs) will be derived from differential equations.

Let 𝑠(𝑡) be the value of the 𝑑-dimensional state signal vector and consider the general nonlinear

first-order non-homogeneous differential equation, which describes the evolution of the state

signal as a function of time, 𝑡:

 d𝑠(𝑡)

𝑑𝑡
= 𝑓⃗⃗⃗ ⃗(𝑡) + �⃗⃗�

where 𝑓⃗⃗⃗ ⃗(𝑡) is a 𝑑-dimensional vector-valued function of time, 𝑡 ∈ ℝ+, and �⃗⃗� is a constant 𝑑-

dimensional vector. One canonical form of 𝑓⃗⃗⃗ ⃗(𝑡) is:

 𝑓⃗⃗⃗ ⃗(𝑡) = �⃗�(𝑡) + �⃗⃗�(𝑡) + 𝑐(𝑡)

whose constituent terms, �⃗�(𝑡), �⃗⃗�(𝑡), and 𝑐(𝑡), are 𝑑-dimensional vector-valued functions of

time, 𝑡. They are defined as follows:

49

Master thesis

�⃗�(𝑡) = ∑ �⃗�𝑘(𝑠(𝑡 − 𝜏𝑠(𝑘)))

𝐾𝑠−1

𝑘=0

�⃗⃗�(𝑡) = ∑ �⃗⃗�𝑘(𝑟(𝑡 − 𝜏𝑟(𝑘)))

𝐾𝑟−1

𝑘=0

𝑟(𝑡 − 𝜏𝑟(𝑘)) = 𝐺(𝑠(𝑡 − 𝜏𝑟(𝑘)))

𝑐(𝑡) = ∑ 𝑐𝑘(�⃗�(𝑡 − 𝜏𝑥(𝑘)))

𝐾𝑥−1

𝑘=0

where 𝑟(𝑡), the readout signal vector, is a warped version of the state signal vector, 𝑠(𝑡). A

common choice for the element-wise, nonlinear, saturating, and invertible “warping” (or

“activation”) function, 𝐺(𝑧), is an optionally scaled and/or shifter form of the hyperbolic tangent

(Sherstinky, 2018).

Hence, in the resulting system,

 d𝑠(𝑡)

𝑑𝑡
= ∑ �⃗�𝑘(𝑠(𝑡 − 𝜏𝑠(𝑘)))

𝐾𝑠−1

𝑘=0

+ ∑ �⃗⃗�𝑘(𝑟(𝑡 − 𝜏𝑟(𝑘)))

𝐾𝑟−1

𝑘=0

+ ∑ 𝑐𝑘 (�⃗�(𝑡 − 𝜏𝑥(𝑘))) + �⃗⃗�

𝐾𝑥−1

𝑘=0

the time rate of change of the state signal depends on three main parts plus the bias term �⃗⃗�.

The first “analog” component ∑ �⃗�𝑘(𝑠(𝑡 − 𝜏𝑠(𝑘)))
𝐾𝑠−1
𝑘=0 , is the combination of up to 𝐾𝑠 time-

shifted (by the delay time constants, 𝜏𝑠(𝑘)) functions, �⃗�𝑘(𝑠(𝑡)), where the term “analog”

underscores the fact that each �⃗�𝑘(𝑠(𝑡)) is a function of the (maybe shifted) state signal per se.

The second component ∑ �⃗⃗�𝑘(𝑟(𝑡 − 𝜏𝑟(𝑘)))
𝐾𝑟−1
𝑘=0 , is the combination of up to 𝐾𝑟 time-shifted

(by the delay time constants, 𝜏𝑟(𝑘)) functions, �⃗⃗�𝑘(𝑟(𝑡)), of the readout signal, the warped

(binary-valued in the extreme) version of the state signal.

And the third component, ∑ 𝑐𝑘 (�⃗�(𝑡 − 𝜏𝑥(𝑘)))
𝐾𝑥−1
𝑘=0 , represents the external input, composed

of the combination of up to 𝐾𝑥 time-shifted (by the delay time constants, 𝜏𝑥(𝑘)) functions,

𝑐𝑘(�⃗�(𝑡)), of the input signal.

The reason of selecting a form of the hyperbolic tangent as the activation function relies in the

possession of some useful properties. First, it is monotonic and negative-symmetric with a quasi-

linear region, whose slope can be regulated (Metropolis et al., 1953). On the other hand, it is

bipolarly-saturating (i.e. bonded at both the negative and the positive limits of its domain).

50

Master thesis

The quasi-linear mode aides in the design of the system’s parameters and in interpreting its

behavior in the “small signal” regime (i.e. when ‖𝑠(𝑡)‖ ≪ 1). The bipolarly-saturating

(“squashing”) aspect, together with the proper design of the internal parameters of the

functions �⃗�𝑘(𝑠(𝑡)) and �⃗⃗�𝑘(𝑟(𝑡)), helps to keep the state of the system (and thus, the output)

bounded.

Separately, the time delay terms on the right-hand side of the equation contain the “memory”

aspects of the system. They enable the quantity holding the instantaneous time rate of change

of the state signal
 d𝑠(𝑡)

𝑑𝑡
, to incorporate contributions from the state, the readout, and the input

signal values, measured at different points in time, relative to the current time, 𝑡 (Sherstinky,

2018).

Since time is an important factor in this networks, to accommodate “Back Propagation of Error”

to RNNs, both continuous-time and discrete-time versions of “Back Propagation Through Time”

(BPTT) have been developed and used to train the weights and time delays of these networks

(Elman, 1990; Jordan, 1986; Pearlmutter, 1989; Pineda, 1987). We will rely on BPTT for training

the systems analyzed in this section.

Let’s now suppose that �⃗�𝑘(𝑠(𝑡 − 𝜏𝑠(𝑘))), �⃗⃗�𝑘(𝑟(𝑡 − 𝜏𝑟(𝑘))), and 𝑐𝑘 (�⃗�(𝑡 − 𝜏𝑥(𝑘))) are linear

functions of 𝑠, 𝑟, and �⃗�, respectively. Then, the last equation become a nonlinear delay

differential equation (DDE) with linear coefficients.

 d𝑠(𝑡)

𝑑𝑡
= ∑ 𝐴𝑘(𝑠(𝑡 − 𝜏𝑠(𝑘)))

𝐾𝑠−1

𝑘=0

+ ∑ 𝐵𝑘(𝑟(𝑡 − 𝜏𝑟(𝑘)))

𝐾𝑟−1

𝑘=0

+ ∑ 𝐶𝑘 (�⃗�(𝑡 − 𝜏𝑥(𝑘))) + �⃗⃗�

𝐾𝑥−1

𝑘=0

After making some calculations, rearranging and making some simplifications, the canonical

Recurrent Neural Network (RNN) form results in (Sherstinky, 2018):

𝑠[𝑛] = 𝑊𝑠𝑠[𝑛 − 1] + 𝑊𝑟𝑟[𝑛 − 1] + 𝑊𝑥�⃗�[𝑛] + 𝜃𝑠

𝑟[𝑛] = 𝐺(𝑠[𝑛])

where 𝑊𝑠 = (𝐼 − (Δ𝑇)𝐴)−1, with Δ𝑇 being the sampling time step and 𝐴 = 𝐴0, 𝑊𝑟 =

(Δ𝑇)𝑊𝑠𝐵, with 𝐵 = 𝐵0, 𝑊𝑥 = (Δ𝑇)𝑊𝑠𝐶, with 𝐶 = 𝐶0, and 𝜃𝑠 = (Δ𝑇)𝑊𝑠�⃗⃗� .

The diagram of this equation can be seen in Figure 14:

51

Master thesis

Figure 14: Canonical RNN cell. The bias parameters 𝜃𝑠, have been omitted for brevity. It can be assumed to be
included without the loss of generality by appending an additional element, always set to 1, to the input signal

vector, �⃗�[𝑛], and increasing the row dimensions of 𝑊𝑥 by 1. (Source: (Sherstinky, 2018))

For the system in the canonical equation to be stable, every eigenvalue of �̂� = 𝑊𝑠 + 𝑊𝑟 must

be within the complex-valued unit circle. Since there is considerable flexibility in the choice of

the elements of 𝐴 and 𝐵 to satisfy this requirement, setting the sampling time step Δ𝑇 = 1 for

simplicity is acceptable. As another simplification, let 𝐴 be a diagonal matrix with large negative

entries on its main diagonal. Then, 𝑊𝑠 ≈ −𝐴−1 will be a diagonal matrix with small positive

entries,
1

|𝑎𝑖𝑖|
, on its main diagonal, which means that the explicit effect of the state signal’s value

from memory, 𝑠[𝑛 − 1], on the system’s trajectory will be negligible. Thus, ignoring the first

term of the equation, reduces it to the standard RNN definition:

𝑠[𝑛] = 𝑊𝑟𝑟[𝑛 − 1] + 𝑊𝑥�⃗�[𝑛] + 𝜃𝑠

𝑟[𝑛] = 𝐺(𝑠[𝑛])

Now, only the matrix �̂� ≈ 𝑊𝑟 ≈ −𝐴−1𝐵 is responsible for the stability of the RNN. However,

stability considerations will be later revisited in order to justify the need to evolve the RNN to a

more complex system, the LSTM.

5.1.2 RNN Unfolding/Unrolling

Is it convenient to use the term “cell” when referring to the last equation in the uninitialized

state. In other words, the sequence has been defined by these equations, but its terms not yet

computed. Then the cell can be said to be “unfolded” or “unrolled” by specifying the initial

52

Master thesis

conditions on the state signal, 𝑠[𝑛], and numerically evaluating the equation for a range of

discrete steps, indexed by 𝑛. This process is illustrated in Figure 15 below.

Figure 15: Sequence of steps generated by unrolling an RNN cell (Source: (Sherstinky, 2018)).

The RNN equation is recursive in the state signal, 𝑠[𝑛]. Hence, due to the repeated application

of the recurrence relation as part of the unrolling, the state signal, 𝑠[𝑛], at some value of the

index, 𝑛, no matter how large, encompasses the contributions of the state signal, 𝑠[𝑘], and the

input signal, �⃗�[𝑘], for all indices, 𝑘 < 𝑛, ending at 𝑘 = 0, the start of sequence (Elman, 1990;

Jordan, 1986).

5.1.3 RNN training difficulties

Once the infinite RNN sequence is truncated (or unrolled to a finite length), the resulting system

becomes inherently stable. However, RNN systems are problematic in practice, despite their

stability. During training, they struggle with the well-documented problems of “vanishing

gradients” and “exploding gradients” (Hochreiter & Schmidhuber, 1997; Pascanu et al., 2013).

Truncated unrolled RNN systems, are commonly trained using BPTT, which is the “Back

Propagation” technique adapted for sequences. Originally, Back Propagation was restricted to

feedforward networks only. Subsequently, it has been successfully applied to recurrent

networks by taking advantage of the fact that for every recurrent network there exists an

equivalent feedforward network with identical behavior for a finite number of steps (Sherstinky,

2018). As a supervised training algorithm, BPTT uses the available �⃗̃�𝑚[𝑛] and �̃⃗�[𝑛] data pairs in

the training set to compute the parameters of the system, Θ ≡ {𝑊𝑟, 𝑊𝑥 , 𝜃𝑠 }, so as to optimize

an objective function (i.e. the error function), 𝐸, which depends on the readout signal �̃⃗�[𝑛], at

one or more values of the index, 𝑛. If Gradient Descent is used to optimize 𝐸, then BPTT provides

a consistent procedure for deriving the elements of
𝜕𝐸

𝜕Θ
 through a repeated application of the

chain rule.

53

Master thesis

The problem comes when using the chain rule itself. In a network of 𝑛 hidden layers, 𝑛

derivatives will be multiplied together. If these derivatives are small, the gradient will start

decreasing exponentially as the error propagates through the model, until it eventually vanishes,

hence the “vanishing gradient” problem. On the other hand, if the derivatives are large, then

the gradient increases exponentially while propagating back through the model until it

eventually explodes, in terms of computational capacity.

The consequences of a vanishing gradient, is that the model is incapable of learning meaningful

insights, since the weights and biases of the initial layers, which tend to learn the core features

from the input data, will not be updated effectively. In the worst case, if the gradient is 0, the

network will stop training since there is no direction to update.

Alternatively, the problems of exploding gradients is that the model is very unstable and

incapable of effective learning. Weights and biases are changed drastically in every step, which

at some point become so large that cause an overflow causing NaN values that the computer

can no longer update (Pykes, 2020). The most effective solution so far is the Long Short-Term

Memory (LSTM) cell architecture (Graves, 2008; Hochreiter & Schmidhuber, 1997; Pascanu et

al., 2013).

5.2 The Long Short-Term Memory network

Long Short-Term Memory networks were introduced by (Hochreiter & Schmidhuber, 1997) and

have been later deeply developed. They are specially designed to overcome the problem of the

long-term dependency, since they are very capable of remembering information for long periods

of time.

For example, consider the case of an activity-based model, where we have a sequence of all the

activities a person carries out during a day. If we are trying to predict the activity that the person

will be doing at the end of the day, it will probably be being at home, no matter how confusing

or large the information on previous activities is. In this case, the gap between the previous

relevant information and the place that it’s needed is small, so RNNs can do this work. But for

example, consider trying to predict the activity someone will be doing at 19:00 h. If the person

has gone from home to work, traveling in between, then he/she has gone eating outside, etc.

and other sets of activities, but for example, shopping is not in between this set of previous

activities, it might be highly probable that this person might stop somewhere to shop. In this

case, information about previous activities is important, and the furthest this information goes,

54

Master thesis

the better. If we already know that the person has gone shopping, it is more unlikely he/she will

go shopping again that day, and so on. It’s entirely possible for the gap between the relevant

information and the point where it is needed to become very large. RNNs are not capable to

solve this, but fortunately, LSTMs can.

All RNNs have the form of a chain repeating cells as it can be seen in Figure 15. In standard RNNs,

these cells have a very simple structure only with a single hyperbolic tangent layer (Figure 14).

LSTMs are organized also in a chain-like structure, but the repeating cell is different on the

inside. Instead of having a single neural network layer, there are four, interacting in a quite

different and interesting way.

Figure 16: Three unrolled LSTM cells with the internal structure of one cell (Source: (Olah, 2015))

The notation used in the last diagram is the following:

Figure 17: Notation for Figure 16 (Source: (Olah, 2015))

In the diagram, each line is an entire vector, from the output of one cell to the input of the

following one. The pink circles are pointwise operations, for example vector addition, while the

yellow boxes are learned neural network layers (Olah, 2015).

The most important idea in LSTMs is the cell state 𝐶𝑡 (state signal, 𝑠[𝑛], in the RNN section), the

horizontal line running through the top of the entire diagram. This cell state operates as a

55

Master thesis

conveyor belt, running down the whole chain with small linear interactions. It’s very easy for

information flows to just go along being unchanged.

Figure 18: The cell state vector line (Source: (Olah, 2015))

The LSTM has the ability to add or remove information to the cell state, a process that is

regulated by structures that operate as gates. These gates are a way to optionally let information

through. They are composed out of a sigmoid neural net layer and a pointwise multiplication

operation.

The sigmoidal (also known as “logistic”) nonlinearity is a good choice, because it is bipolarly-

saturating between the values 0 and 1 and is monotonic, continuous, and differentiable. If the

value of the sigmoid layer is zero, the gate won’t let nothing through. Otherwise, if it’s one it will

let all the information through.

The LSTM has three gates, to protect and control the information contained in the cell state

(Olah, 2015).

To begin with, the LSTM has to decide which information is it going to throw away from the cell

state. This decision is made by a sigmoid layer called the “forget gate”, since it removes

information from the memory. This gate looks at the previous hidden state, ℎ𝑡−1, and at the

input signal, 𝑥𝑡, at time 𝑡, and delivers an output between 0 and 1 for each number in the cell

state 𝐶𝑡−1. As mentioned before, a 1 means that the cell has to completely keep this

information, and a 0 means that has to completely get rid of it.

Let’s go back to the example of trying to predict the next activities based on the previous ones.

In such a case, the cell state might include the activity of being at home, when it sees a new

activity, such as traveling, we want to forget that the person is at home for the new activity,

which is traveling, since traveling will certainly develop in doing a different activity than the prior

one.

56

Master thesis

The equation of the “forget gate” is formalized as:

𝑓𝑡 = 𝜎(𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

where 𝜎 represents the sigmoid function, 𝑊𝑓 the matrix of weights of the neural network, and

𝑏𝑓 the biases matrix of the neural network.

Figure 19: Structure of the “forget gate” in the LSTM cell (Source: (Olah, 2015))

Once it has been decided what will be forgotten and what will be kept, the next step is to decide

what new information is it going to be added in the cell state. This is done in a two-step process.

First, a sigmoid layer called the “input gate layer” takes the decision of which values will be

updated. To continue, a hyperbolic tangent layer creates a vector of new candidate values, �̃�𝑡
⃗⃗ ⃗⃗ ,

that could be added to the cell state. Then, they are combined to create an update to the state

(Olah, 2015).

In the example of the activities, we’d like to add the new activity, traveling, to the cell state, to

replace the old one, being at home, we’re forgetting.

The mathematical expression for the “input gate” is (vector arrows will be omitted for

simplicity):

𝑖𝑡 = 𝜎(𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

𝐶�̃� = tanh (𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

where 𝜎 represents the sigmoid function, 𝑊𝑖 and 𝑊𝐶 the matrix of weights of the sigmoidal

neural network and the hyperbolic tangent neural network, respectively, and 𝑏𝑖 and 𝑏𝐶 the

biases matrix of the sigmoidal and the hyperbolic tangent neural networks, respectively.

57

Master thesis

Figure 20: Structure of the “input gate” in the LSTM cell (Source: (Olah, 2015))

Now we need to update the old cell state, 𝐶𝑡−1, into the new one, 𝐶𝑡. The previous steps have

already decided what to do, now we just need to effectively do it.

First of all, the old state is multiplied by the output of the “forget gate”, 𝑓𝑡, forgetting the

information we decided to forget earlier. Then 𝑖𝑡 · �̃�𝑡 it’s added. This is the new candidate values,

scaled by how much we want to update each state value (Olah, 2015).

In the transport/activity case, we would drop the information that the person is at home and

add the new activity, as we decided in the previous steps.

So, the new cell state results as:

𝐶𝑡 = 𝑓𝑡 · 𝐶𝑡−1 + 𝑖𝑡 · �̃�𝑡

Figure 21: Updating the new cell state in the LSTM cell (Source: (Olah, 2015))

Finally, it needs to be decided what the output is going to be. This output will be based on the

cell state, but with a filtered version. First of all, a sigmoid layer is used, which decides what

parts of the cell state are going to be outputted. Them, the cell state, 𝐶𝑡, is run through a

58

Master thesis

hyperbolic tangent (to push the values to be between -1 and 1) and multiply the result by the

output of the mentioned sigmoid gate, so that only the parts that we decided to output are

actually taken (Olah, 2015).

The formalized equation results:

𝑜𝑡 = 𝜎(𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 · tanh (𝐶𝑡)

Figure 22: Structure of the “output gate” in the LSTM cell (Source: (Olah, 2015))

In the transport example, since it just saw a traveling activity, it might want to output

information relevant to a being to work activity, in case that’s the activity coming next.

5.3 Example of application and inspiration

One of the examples that served as an inspiration for this project is a model based on an

encoder-decoder system that provides a pattern for using LSTMs to address a sequence-to-

sequence prediction problem, such as machine translation (Brownlee, 2017b). Sequence-to-

sequence learning (Seq2Seq) is about training neural networks in order to convert sentences

from one domain (e.g. sentences in English) to sequences in another domain (e.g. the same

sentences translated to French) (Chollet, 2017).

If the input sequence and the output one don’t have the same length, the entire input sequence

is needed in order to start predicting the target. For this reason, a RNN layer such as a LSTM (or

several LSTMs unrolled) acts as an encoder, processing the input sequence and returning an

internal state. This state serves as the “context” for the decoder that comes next, which is also

a LSTM (or several unrolled) trained to predict the next characters of the target sequence, given

previous characters of the same sentence. More specifically, it turns the target sequences into

59

Master thesis

the same ones but offset by one timestep in the future, a training process called “teacher

forcing” (Chollet, 2017).

In inference mode, i.e. when we want to decode unknown input sequences, the process is

slightly different:

1) Encode the input sentence into state vectors in the latent space.

2) Start with a target sequence of size one (just the start-of-sequence character, which can

be a “_” character).

3) Feed the state vectors (ℎ𝑡 and 𝑐𝑡) and the one-character target sequence to the decoder

again, in a recursive way, to get the predictions for the next character.

4) Sample the next character with the last predictions (using a “SoftMax” function).

5) Add the sampled character to the target sequence

6) Repeat from point 3 until the end-of-sequence character is generated or the character

limit is reached.

Figure 23: Inference mode for seq2seq prediction from English sentences to French sentences (Source: (Chollet,
2017))

Following this model, we have thought that since we have sequences of activities during a whole

day, we could use the information on the first part of the sequence or 𝑋 timesteps to predict

the next 𝑌 timesteps or the whole last part of the sequence. For example, knowing what

activities the person has done from 00:00 h to 12:00 h, try to predict what activities he/she will

do during the rest of the day (i.e. from 12:00 h to 23:59 h) or for a specific time slot (e.g. from

12:00 h to 15:00 h). To do that, we would train the network using “teacher forcing” and then

use the inference mode similarly to the machine translation case to generate the next sequence

of activities.

60

Master thesis

6 Modelling an activity-based transport

dataset

As mentioned in the beginning of this work, the aim of the study is to try to model transport

phenomena from a population dataset. As it has been seen in section 2.2.2, this is a task that

has been done more or less successfully in the past with diverse methods. However, not much

approaches have addressed this issue with the perspective of machine learning with neural

networks.

Since it is a quite new approach, there is not a lot of literature on how to better address the

topic. Nevertheless, in this line, Karlaftis and Vlahogianni (2011) investigated the performance

of neural networks versus the classical statistical methods used in transportation research. They

found out that neural networks usually perform better when we try to model complex datasets,

since they are more flexible and able to deal with nonlinearities and missing data. The most

important machine learning methods include K-nearest neighbor (Cai et al., 2016), support

vector regression (Asif et al., 2013), etc. Also, nonparametric approaches, such as Kalman filters

(Chien et al., 2003), and matrix/tensor factorization methods (Tan et al., 2016) are also very used

in problems of predicting traffic. Deep learning models, as a branch of machine learning models,

have become popular and used in the traffic forecasting area (Cui et al., 2020). Most of the new

models proposed for traffic forecasting (Ma et al., 2015; Yuankai Wu & Tan, 2016; H. Yu et al.,

2017; Zhao et al., 2017) are based on RNNs and its improved version, the LSTMs. The mainly deal

with sequence data by keeping a chain-like structure and internal memory with loops. To deal

with the problem of missing data in LSTMs, Cui et al. (2020) proposed a model which can

improve traffic prediction accuracy and robustness. They also investigated how to capture

dependencies of traffic states series in a reverse chronological order, which was something that

had been not explored before. Also, Wei et al. (2019) proposed a model which combined an

Autoencoder with a LSTM network. The Autoencoder was used to capture the internal

relationships of traffic flow, and with this acquired data and the historical one, the LSTM network

predicted complex linear traffic flow data. All of these RNNs based models, generally

outperformed the current traffic forecasting systems implemented in the cities or regions where

the data was taken from. On a different approach, Ma et al. (2017) proposed a “convolutional

neural network (CNN)-based method that learns traffic as images and predicts large-scale,

network-wide traffic speed with high accuracy”. The spatiotemporal dynamics of traffic are

61

Master thesis

converted to images from where the CNN extracts traffic features and network-wide traffic

speed prediction. In summary, since traffic flow and speed prediction is a complicated task due

to the stochastic nature of the data, deep learning methods based on neural networks are being

implemented more and more recently, due to their ability to mine big data and discover internal

structures and potential features that the classical models are not able to discover.

Nevertheless, most of the studies focus on traffic flow prediction or in traffic speed prediction,

but few of them address the topic via the activity schedules derived from trip diaries.

As the object of this study, we will model a dataset provided by the promotors of this study,

which contains information about activity schedules from the Belgian population. From the

previously analyzed models of neural networks, the latter two different approaches will be used.

The first one consists on a Variational Autoencoder (VAE). The second one consists in an

encoder-decoder architecture based on Long-Short Term Memory (LSTM) cells.

After a brief description of the dataset, both models of neural networks will be explained and

we will analyze the obtained results.

6.1 The Belgium Daily Mobility (BELDAM) dataset

The Belgian National Household Survey BELDAM (Belgium Daily Mobility) was carried out from

December 2009 to December 2010 and portrayed the mobility behavior of Belgians. In total

information of 8,532 household (i.e. 15,821 people aged 6 and over) were collected (Cornelis et

al., 2010).

The dataset used in this thesis stems from the data obtained in this BELDAM project. The data

was filtered and restructured to serve the purposes of the thesis. The dataset consists of activity-

travel diary data of 11.302 individuals, primarily displaying the different activities they were

doing at each time step. Data was structured in time steps are of 2 minutes, having a total of

720 time step values for each individual (720 time steps of 2 minutes are equivalent to a full day,

24h). Thus, for each individual we have a vector of 720 values, each value representing the

activity he/she was doing at the considered time.

The activities are classified in 13 different types, and include the vast majority of things that a

person can do during a day.

62

Master thesis

Activity ID Activity definition

1 drop off / look for someone

2 being at home

3 being at work

4 work related displacement

5 follow a course (school, university, etc.)

6 have a meal outside

7 go to the supermarket/shopping

8 services (doctor, bank, etc.)

9 visiting family or friends

10 take a walk, do a tour

11 leisure, sports, culture

12 others

13 traveling

Table 1: Activity types considered in this project

6.2 Generating activity schedules

As it has been said in previous sections, transport demand modelling is a challenging task but

necessary if we want to develop a good transport organization which solves the problems of the

current situation and delivers new solutions for the future.

With the provided BELDAM dataset, which includes activity sequences from a set of individuals

during a whole day, we will try to grasp the main features of this population in order to get

metrics that can be useful for future transport modelling.

In this direction, we want to generate a new set of population based on the data obtained by

the BELDAM study, and see how different or similar is this generated population from the

original one. To do so, we will propose two different models. The first one will be a simplistic

model based on a frequency analysis of the population, which is a fast and easy way to catch the

main features of the set. The second one will be a model based on a Variational Autoencoder,

which is more tedious and slower to calculate, but it should deliver better results.

Finally, both models will be compared according to some pre-established metrics, which are the

following (all the metrics are referred per one day):

• Number of trips carried out by an individual

63

Master thesis

• Percentage of hours spent traveling by an individual

• Number of activities carried out outside from home by an individual

• Percentage of hours that a person spends outside from home

• Percentage of hours that a person spends at work

• Percentage of hours that a person spends at home

• Percentage of hours that a person spends at work trips

• Percentage of hours that a person spends following courses

• Percentage of hours that a person spends having a meal outside

• Percentage of hours that a person spends shopping

• Percentage of hours that a person spends taking services

• Percentage of hours that a person spends visiting family or friends

• Percentage of hours that a person spends walking or making a tour

• Percentage of hours that a person spends in leisure, culture or sports

Once both models have been analyzed, a comparison will be done to show which performs

better when trying to generate a population as similar as possible to the original one.

6.2.1 Generation with a Frequency analysis of population

Frequency analysis consists in the study of the frequency of data in a group or set. It is very used,

for example, in cryptanalysis, where they study the frequency of letters in a text. In human

languages, some letters appear more than others, and this changes with the language. In English,

for example, E, T, A, and O are the most common letters while Z, Q, X and J are rare. In a similar

way happens in activity-based models. From our set of activities, we could say that some are

more common, like being at home (2), going to work (3), or following courses (5), and some of

them occur more sporadically, like doing work related trips (4) or having a meal outside from

home (6).

The idea is to capture the frequencies of these activities during the day and try to generate a

synthetic population that replicates the model.

6.2.1.1 Description of the model

The model is quite simple. The main idea is to analyze the frequency of each activity in each

timestep of 2 minutes and from these probabilities, generate a new model by sampling data

from this probability distribution. For example, if at 11:00 h, probabilities are of 60% that people

are at work, 20% that they are at home, 10% that they are traveling and so on until 100%, we

64

Master thesis

would generate a random sample based on this vector of probabilities for the 11:00 h timestep.

We have generated the same number of samples that we will generate with the VAE, in order

to have comparable results.

6.2.1.2 Results

After having generated the population we will compute the means of each one of the

aforementioned metrics. The analyzed sample consists of 1375 generated individuals. In

summary, the mean for each metric of the Frequency Analysis (FA) can be found in Table 2. At

the rightest column, we can find the computed values of the original population from the

BELDAM dataset. We have to say that in this table, the values have been computed with a shifted

version of the whole dataset, where we have eliminated sequences from weekends and from

people older than 65 years old. The reason for this is because we thought that eliminating those

variables, data will have less variability and results would be more accurate. However, later we

discovered that this was not what was happening, but the contrary. Nonetheless, for

comparative purposes like the table below, if we calculate the results with the same dataset,

there is no problem.

Metric Value (FA) Value

(BELDAM)

Number of trips carried out by an individual 35,67 3,249

Number of activities carried out outside from home by an

individual
10,85 1,564

Percentage of hours spent traveling by an individual 5,477 % 5,641 %

Percentage of hours that a person spends outside from home 32,87 % 33,45 %

Percentage of hours that a person spends at work 13,93 % 14,08 %

Percentage of hours that a person spends at home 67,13 % 66,55 %

Percentage of hours that a person spends at work trips 0,9798 % 0,9722 %

Percentage of hours that a person spends following courses 5,053 % 6,217 %

Percentage of hours that a person spends having a meal

outside
0,3918 % 0,298 %

Percentage of hours that a person spends shopping 1,574 % 1,228 %

Percentage of hours that a person spends taking services 0,3843 % 0,4754 %

Percentage of hours that a person spends visiting family or

friends
1,764 % 1,557 %

65

Master thesis

Metric Value (FA) Value

(BELDAM)

Percentage of hours that a person spends walking or making

a tour
0,7716 % 0,3003 %

Percentage of hours that a person spends in leisure, culture

or sports
1.143 % 1,283 %

Table 2: Value of the proposed metrics for the Frequency analysis model

As it can be seen in the table, the model is quite capable to reproduce with reliability the

percentages of hours that individuals spend in each activity in an aggregate level. In some way,

this is perfectly understandable, taking into account the way the sequences were generated.

The generation method is based on the probabilities of doing each activity in each timestep, and

for this reason, the outputted percentages are quite similar to the original ones, with small

variations linked to the sampling randomness.

However, we can see that in the first two metrics, “number of daily trips carried out by an

individual” and “number of daily activities carried out outside from home by an individual”, the

results obtained are very different from the original data. Why does this happen? To find the

answer, we have to look at the data at a disaggregate level.

If we check out one sequence generated by this FA method, we will see that it lacks coherence.

It lacks coherence both in the travel patterns and in the activity sequences.

In the travel patterns, we can see that there is not an alternation between a number different

from 13 (any of the activities) and a 13 (traveling). In the original data, there is always a number

13 between two different activities, which indicates that the person made a trip to move from

one activity and/or place to the following one. In the FA model, we can find some generated

sequences where the person is at home from 17:08 h to 17:16 h. Then at 17:18 h he/she is

suddenly following a course, at 17:20 h the individual is at work, at 17:22 h he/she is shopping,

at 17:24 h he/she is following a course again, etc. Of course, this sequence is not humanly

possible, since from one activity to the other one there’s always has to be some traveling in

between. In other words, sequences are not subjected to time and space constraints, since the

person moves from one activity to the next one with no travel in between and in a considerably

short amount of time.

The previous example also serves to see that the activities don’t follow a coherent sequence.

Nobody goes to follow a course for 2 minutes and then he/she is at work, and 2 minutes after

66

Master thesis

having entered to work he/she is suddenly shopping. Activities use to last for a longer period of

time than a 2 minutes timestep. Also, there are some activities which normally precede others,

for example going to work after being at home (always with a trip in between). These

dependencies are not captured neither by the FA model.

In summary, the model is able to reproduce the percentage of activities that each person does

every day, but it’s very bad at the time of ordering those sequences and at the time of generating

trips, since it is not able to caption time and space constraints and neither the usual relationships

of precedence and posteriority between activities.

6.2.2 Generation with VAE

6.2.2.1 Description of the model

In this section, we will describe how the implementation of the Variational Autoencoder has

been done in practice. The set-up has been done in a Python language environment. The reason

for this choice is that there exists a high number of libraries and utilities in Python to develop

machine learning models, and for now it is the most common language to program neural

networks, and thus, there is a lot of information and references and trouble-shooting on the

internet. Two of the most important frameworks that have been used to implement the model,

and that are the most commonly used when it comes to machine learning, are “Tensorflow” and

“Keras”. “Tensorflow” was created by the Google Brain team, and it is an open source library for

large-scale machine learning problems and numerical computation. On the other hand, “Keras”

is a high-level neural networks library created by François Chollet that runs on the top of

“Tensorflow”.

To begin with, a sampling layer has been defined. As it has been said in section 4.1.2, this layer

samples 𝑧 from 𝑧 = 𝜇(𝑋) + Σ
1

2(𝑋) ∗ 𝜖 by using the “reparameterization trick”.

class Sampling(layers.Layer):

 """Uses (z_mean, z_log_var) to sample z, the vector encoding a

sequence."""

 def call(self, inputs):

 z_mean, z_log_var = inputs

 batch = tf.shape(z_mean)[0]

 dim = tf.shape(z_mean)[1]

 epsilon = tf.keras.backend.random_normal(shape=(batch, dim))

 return z_mean + tf.exp(0.5 * z_log_var) * epsilon

To continue, the encoder is defined. The first part of the encoder is an input layer, which allows

the network to create a total number of nodes equal to the dimension of the input data. In our

67

Master thesis

case, since we have sequences of 720 timesteps, the first dimension of the input layer is that

number. The second dimension is 14, which is the dimension of the data (13 activity types) plus

one.

Following this layer, two 1-dimensional convolutional layers are introduced. Convolution

between two functions (𝑓 and 𝑔) produces a third function (𝑓 · 𝑔) that expresses how the shape

of one is modified by the other. An example of 1-dimensional convolution can be seen in Figure

24. These convolutional layers are activated by a rectified linear unit (ReLU) function. We can

also see two additional parameters called padding and stride. In a convolution, we can observe

that the size of the output data is smaller than the input data. To keep the dimension the same,

we use padding, which consists on adding zeros to the input matrix symmetrically. If the padding

parameter is set to “same” like in our model, it will add the padding required to the input data

to generate an output that has the same shape than the input (Brownlee, 2019b). Stride refers

to the number of steps that we are moving at each convolution, and is set to one, which is the

default number, without making jumps, just going through all the data.

Figure 24: Convolution between a 1-diemensional vector of shape (1,7) and a 1-dimensional vector of shape (1,2)
(Source: (Jeong, 2019))

Then, one “Flatten” layer is added, which converts a matrix of nodes into a single vector, so from

a Conv1D layer of 720x32 dimension, we will go to a layer of dimension 23.040. Flattening is

used to convert the data into a 1-dimensional array for inputting it to the next layer. We flatten

the output of the convolutional layers to create a single long feature vector (Jeong, 2019).

Connected to this layer, it comes a fully-connected layer called “Dense” in the “Keras”

framework. When we refer to fully-connected layers, we talk about all nodes from the previous

layer being connected with an edge to all the nodes of the current layer. A combination of

flattening and fully-connected layers emerging from a matrix of data can be seen in Figure 25.

68

Master thesis

Figure 25: A (3x3 → 9x1) “Flatten” layer connected to several “Dense” layers of 4 nodes (Source: (Jeong, 2019))

The last two “Dense” layers are assigned to the mean and the covariance of 𝑄(𝑧|𝑋), 𝜇(𝑋) and

Σ(𝑋), respectively, which will be used in the “Sampling” layer that comes next. The complete

code for the encoder is as follows:

encoder_inputs = keras.Input(shape=(720, 14))

x = layers.Conv1D(64, 3, activation='relu', strides=1,

padding='same')(encoder_inputs)

x = layers.Conv1D(32, 3, activation='relu', strides=1,

padding='same')(x)

x = layers.Flatten()(x)

x = layers.Dense(32, activation='relu')(x)

z_mean = layers.Dense(latent_dim, name='z_mean')(x)

z_log_var = layers.Dense(latent_dim, name='z_log_var')(x)

z = Sampling()([z_mean, z_log_var])

encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z],

name='encoder')

encoder.summary()

69

Master thesis

Figure 26: Structure of the encoder with the shapes of each layer (the first member of the shape in unknown until the
batch size is defined)

Let’s now define the decoder. First of all, an input layer with the same shape like the last layer

of the encoder, which is the latent space dimension, is defined, in order to read in the encoded

data. To continue, a fully-connected “Dense” layer is added, followed by a “Reshape” layer which

allows us to undo what the “Flatten” layer did in the encoder, that is, go from a one single vector

to a matrix of nodes, which will be connected, in turn, to several convolutional layers. Let’s note

here that the last convolutional layer is activated by a “SoftMax” function, instead of a ReLU.

This is done because in the output, we only look for the maximum node value that the last layer

has delivered, the others will be discarded, since the prediction is singular.

latent_inputs = keras.Input(shape=(latent_dim,))

x = layers.Dense(720 * 32, activation='relu')(latent_inputs)

x = layers.Reshape((720, 32))(x)

x = layers.Conv1D(32, 3, activation='relu', strides=1,

padding='same')(x)

x = layers.Conv1D(64, 3, activation='relu', strides=1,

padding='same')(x)

70

Master thesis

decoder_outputs = layers.Conv1D(14, 3, activation='softmax',

padding='same')(x)

decoder = keras.Model(latent_inputs, decoder_outputs, name='decoder')

decoder.summary()

Figure 27: Structure of the decoder with the shapes of each layer (the first member of the shape is unknown until the
batch size is defined)

Finally, we define a customized training step, since we need to go through the

“reparameterization trick” in order to update the weights and biases of the network. This

training step uses gradient descent for Back Propagation of error. The total loss consists in the

sum of the reconstruction loss and the loss of the Kullback-Leibler divergence. In the

reconstruction loss, we will use the “categorical cross entropy” function of “Keras”, which is the

function used to multi-class classification problems, like in our case, where the target values are

ranged from 1 to 13 and each value indicates a different activity. The difference is calculated

between the original data and the generated one from the decoder.

def train_step(self, data):

 data = data[0]

 with tf.GradientTape() as tape:

 z_mean, z_log_var, z = encoder(data)

 reconstruction = decoder(z)

71

Master thesis

 reconstruction_loss =

tf.reduce_mean(keras.losses.categorical_crossentropy(data,

reconstruction))

 reconstruction_loss *= 720

 kl_loss = 1 + z_log_var - tf.square(z_mean) - tf.exp(z_log_var)

 kl_loss = tf.reduce_mean(kl_loss)

 kl_loss *= -0.5

 total_loss = reconstruction_loss + kl_loss

 grads = tape.gradient(total_loss, self.trainable_weights)

 self.optimizer.apply_gradients(zip(grads, self.trainable_weights))

 return {'loss': total_loss,

 'reconstruction_loss': reconstruction_loss,

 'kl_loss': kl_loss}

6.2.2.2 Data preparation

As we said, our dataset consists on sequences of activities carried out during a day by a

population of individuals. Apart from the activities carried out, we also have some descriptive

data about each individual, among those, the day of the week the sequence is done and the age

of the person studied. In a first approach, in order to have more consistent results with patterns

easier to identify, we decided to delete from the dataset all the sequences that had been done

during the weekend (Saturdays and Sundays) and those which were performed by people aged

more than 65 years old, which is a common age to retire from work. The reason to obviate these

individuals is to obtain more similar sequences with people that goes to work during the week.

With this, we have gone from a population of 11.303 individuals to 6.873. However, after the

first analysis has been done, we will add these individuals again in the dataset and see how the

results change.

In a more technical sense, the vectors of activity sequences had been changed into what is called

one-hot encoded vectors or “dummy variables”. This has been done because our data is

categorical, which means that variables contain label values instead of numeric values

(Brownlee, 2017a). The number of possible values is limited, in our case from 1 to 13, and each

value represents a different category, even though they are natural numbers. The problem is

that the vast majority of machine learning algorithms cannot operate with categorical data

directly, it needs to be converted into numbers. It’s true that in our case, categories are already

converted into numbers, but since no ordinal relationships exist between the numbers, the

integer encoding is not sufficient, because the network will assign more importance to some

numbers than others which may result in poor performance and unexpected results (predictions

halfway between categories) (Brownlee, 2017a). So what one-hot encoding does, is to create a

matrix with as much columns as different categories there are. Then, each sample is a vector of

14 categories, and only the 𝑖-th term of the vector that coincides with the category number is

72

Master thesis

filled with a 1, the rest is set to 0. An example of one-hot encoding of categorical data can be

seen in Figure 28.

Figure 28: Example of one-hot encoding (Source: (DelSole, 2018))

6.2.2.3 Adjusting the model

Once the model has been defined, there are still some parameters which may be subject to

variation and can affect the performance of the model.

The first parameter to consider is the “batch size” number that the model will take when it is

being trained on the training data. The batch size defines the number of samples to use when

training before updating the internal model parameters, such as the weights and biases of the

different layers (Brownlee, 2018). A sample is equal to a single row of data, in our case, one

sequence of 720 timesteps. The network iterates over one or more samples and makes

predictions. When the batch has been finished, the predicted values are compared to the

expected ones and the error is calculated to back propagate it via the stochastic gradient

descent. Usually, smaller batch sizes are used for two main reasons: “they are noisy, offering a

regularizing effect and lower generation error” and they “make it easier to fit one batch worth

of training data in memory” (Brownlee, 2019a). Usually, a batch size of 32 or lower works well

(Bengio, 2012; Masters & Luschi, 2018), however higher values like 64 or 128 may be fine for

some datasets. The batch size also influences the stability of the training process and how

quickly the model learns (Brownlee, 2019a).

The second parameter to consider is the number of “epochs”, which consists in the total number

of times that the network will train through the entire training dataset. An “epoch” is made of

one or more batches (if the batch size is as big as the whole dataset, then there is only one

batch). The number of epochs is usually large, letting the model run until the error is minimized

enough (Brownlee, 2018). While the error (loss) keeps descending considerably, the number of

epochs can be increased. The problem is that if it’s higher than needed, the model can incur in

73

Master thesis

overfitting. Overfitting means that the model performs very well on the training data, but when

new unseen data is presented, like the testing data, it is not able to deliver good results.

The third parameter to control is the latent space dimension created between the encoder and

the decoder. The latent space is an abstract multi-dimensional space containing vectors of

features from the encoded data, which cannot be interpreted directly but contain a lot of useful

information. In some way, it is the space where the encoded data lies, waiting to be outputted

to real-world data again by the decoder. The smaller the dimension of the latent space, the

bigger the compression of the data. However, an excessively small latent space may induct in

too much compression and we could lose some important information about the data that it

won’t be able to be reconstructed by the decoder later. The point is to find a right number for

the latent space dimension which allows us to compress the data without losing excessive

information.

A fourth parameter that is interesting to control is the percentage of training data and testing

data taken from the whole dataset. A common practice is to take 75/80% of the data for training

the dataset and 25/20% for testing it. In our case we will use 80% of the dataset for training and

20% for testing the results.

A fifth issue to take into account, which is not directly a parameter, is related to the population

studied. Since we have sociological data, we can select our samples based on age and on the day

of the week the sequence has been done. To this end, we can analyze if deleting the weekends

from the dataset, for example, the results are better or worse, since there should be less

variability. Also, with the ages, since retired people (aged more than 65, usually), may have more

variable activity sequences than people who goes to work with a daily routine. After having tried

different configurations, we have seen that with all the data (without eliminating samples based

on these sociological features), the model performs better. The reason is that with more

variability in the input data, we are able to explain better the behavior of the population.

To check how good the model is with different sets of the parameters, we will check two main

groups of metrics: the first one related to the training data and the second one related to the

testing data. Among the ones related to the training data we will check the value of the

reconstruction loss. The ones related to the testing data will be related to the metrics mentioned

at the beginning of section 6.2.

74

Master thesis

So, we will analyze the performance of the model based on different experiments with different

values for the aforementioned parameters.

The first thing we will do is analyze the performance on the model for different configurations

of the number of epochs. The batch size will be fixed to 16 and the latent space dimension to 16

too. We will deal with the whole dataset for this experiment, without excluding weekends and

sequences of individuals who are older than 65 years old. The number of epochs analyzed are:

15, 30, 60, and 100. For the training part, we will analyze how the reconstruction loss performs.

For the testing part, once the data has been run through the VAE, we will analyze the following

metrics related to the ones mentioned in section 6.2:

• Average difference between the testing input data and the one generated by the VAE in

the number of daily trips.

• Average difference between the testing input data and the one generated by the VAE in

the percentage of daily travel time.

• Average difference between the testing input data and the one generated by the VAE in

the number of different activities done outside from home.

• Average difference between the testing input data and the one generated by the VAE in

the percentage of hours outside from home.

• Average difference between the testing input data and the one generated by the VAE in

the average percentage of time spent in each activity2.

These metrics can be understood as a sort of Mean Average Error (MAE), which computes the

average of the absolute differences between the observed and the predicted data. They have

been calculated the same way as the equation below:

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̃�𝑖|

𝑁

𝑖

The results can be found on the following graphs.

2 For this metric, we will take an average of the metrics 5 to 14 mentioned in section 6.2. This has been
done in order to have a simpler metric that allows us to compare different sets of parameters faster.

75

Master thesis

Figure 29: Evolution of the reconstruction loss for the different number of epochs

Figure 30: Evolution of the difference (testing input data vs VAE’s decoded data) between the number of daily trips
for the different number of epochs

Figure 31: Evolution of the difference (testing input data vs VAE’s decoded data) between the percentage of daily
traveled time for the different number of epochs

0

20

40

60

80

100

15 30 45 60 75 90

R
ec

o
n

st
ru

ct
io

n
 lo

ss

Epochs

Reconstruction loss

1,5

1,7

1,9

2,1

2,3

2,5

2,7

2,9

15 30 45 60 75 90

D
if

f
n

º
tr

ip
s

d
ay

Epochs

Diff nº trips day

1,5

1,6

1,7

1,8

1,9

2

2,1

2,2

15 30 45 60 75 90

D
if

f
p

er
ce

n
ta

ge
 t

ra
ve

l d
ay

Epochs

Diff percentage travel day

76

Master thesis

Figure 32: Evolution of the difference (testing input data vs VAE’s decoded data) between the number of daily
different activities done outside from home for the different number of epochs

Figure 33: Evolution of the difference (testing input data vs VAE’s decoded data) between the percentage of hours
spent outside from home for the different number of epochs

Figure 34: Evolution of the difference (testing input data vs VAE’s decoded data) between the average percentage
dedicated to the studied activities for the different number of epochs

0,4

0,45

0,5

0,55

0,6

0,65

0,7

0,75

15 30 45 60 75 90

D
if

f
n

º
ac

ti
vi

ti
es

 d
ay

Epochs

Diff nº activities outside

1,1

1,15

1,2

1,25

1,3

1,35

1,4

1,45

15 30 45 60 75 90

D
if

f
p

er
ce

n
ta

ge
 h

o
u

rs
 o

u
ts

id
e

Epochs

Diff percentage hours outside

0,35

0,37

0,39

0,41

0,43

0,45

0,47

0,49

0,51

0,53

15 30 45 60 75 90

D
if

f
av

er
ag

e
p

er
ce

n
ta

ge
 a

ct
iv

it
ie

s

Epochs

Diff average percentage activities

77

Master thesis

As we can observe in the graphics, the higher is the number of epochs, the lower is the

reconstruction loss. That makes sense, since the more we train our network, the more it will be

able to learn from the data. However, as mentioned before, an excessive number of epochs can

produce an overfitting on the training data, and when new unseen data is presented to the

model, such as the reserved testing data, the model is not able to reproduce well the activity

sequences. And this is, indeed, what is happening. As we can see, the model with 100 epochs

almost always performs worse than with 30 or 60 epochs when it comes to reconstructing data,

that means differences between the inputted and de decoded data are higher (Figures 30, 31,

32, 33, and 34). On the other hand, with 15 epochs the model has a high reconstruction loss,

and effectively is less available to reconstruct the data in a close distribution to the inputted

data, in other words, it is not trained enough. In Figures 31, 33 and 34 we can observe how the

highest reconstructing error is with 15 epochs. So, we will discard 15 epochs for being a too low

number and 100 for being too high one which causes overfitting. Between 30 and 60 epochs,

generally 30 perform better than 60 in the testing data metrics (Figures 30, 32, and 34). Only in

two metrics (difference between percentage of daily traveled time and difference between

percentage of hours outside from home) 60 epochs perform better than 30, but the difference

is very small (0,02 in the first case and 0,05 in the second) (Figures 31 and 33). In addition, in the

difference of number of daily trips, the difference is quite high (1,73 trips in the case of 30 epochs

and 2,39 trips in the case of 60 epochs). Despite both numbers are relatively high, with 60 epochs

it is excessively higher. Having an average difference of 2,39 daily trips between the observed

and the predicted data means that for a travelling population of 5 million people, we would have

around 12 million more of trips a day, which is a high number that should be not

underestimated. However, this number would not be so high in reality, since we are taking

absolute differences here. For example, for a single individual, the VAE can generate less trips in

a day than the original sequence for the same individual (let’s say it generates 2 trips less). On

the other hand, for a different individual, the VAE can generate more trips for him compared to

the original one (let’s say it generates 2 trips more). In practice, these two individuals would

compensate between them, but since we are taking the absolute difference, we will get a

difference of
|−2|+2

2
= 2 trips, when the real difference is 0.

For all of these reasons mentioned, we will choose 30 epochs as the definitive number, since it

delivers the best performance in general terms.

78

Master thesis

The next thing to configure is the batch size and the latent space dimension. These two

parameters are not so simple to tune as the number of epochs. We will take the same metrics

as before. The analyzed batch sizes will be: 128, 64, 32, and 16. The analyzed latent space

dimensions will be: 24, 16, 12, 8, and 4. In this case, we analyzed the sequences on weekdays

(excluding weekends) and of people younger than 65 years old. As it has been explained, the

neural network performs better when all the population is considered, without any exclusions.

However, this discovery has been done later, and by the time of doing it, several experiments

on the batch sizes and latent space dimensions had already been computed, and if we were to

repeat them all it will consume a lot of time, since we would have had to train all the models

again. Nevertheless, for the comparative purposes in this section, this fact doesn’t suppose a

problem, since the comparatives are done all with the same population. In the next graphs the

results can be observed (B in the legend refers to the batch size).

Figure 35: Evolution of the reconstruction loss for the different number of batch sizes and latent space dimensions

30

80

130

180

230

280

24 16 12 8 4

R
ec

o
n

st
ru

ct
io

n
 lo

ss

Latent dimension

Reconstruction loss

B128

B64

B32

B16

79

Master thesis

Figure 36: Evolution of the difference (testing input data vs VAE’s decoded data) between the number of daily trips
for the different number of batch sizes and latent space dimensions

Figure 37: Evolution of the difference (testing input data vs VAE’s decoded data) between the percentage of daily
traveled time for the different number of batch sizes and latent space dimensions

1,4

1,5

1,6

1,7

1,8

1,9

2

2,1

2,2

2,3

24 16 12 8 4

D
if

f
n

ª
tr

ip
s

d
ay

Latent dimension

Diff nº trips day

B128

B64

B32

B16

1

1,5

2

2,5

3

3,5

24 16 12 8 4

D
if

f
p

er
ce

n
ta

ge
 t

ra
ve

l d
ay

Latent dimension

Diff percentage travel day

B128

B64

B32

B16

80

Master thesis

Figure 38: Evolution of the difference (testing input data vs VAE’s decoded data) between the number of daily
different activities done outside from home for the different number of epochs

Figure 39: Evolution of the difference (testing input data vs VAE’s decoded data) between the percentage of hours
spent outside from home for the different number of batch sizes and latent space dimensions

0,42

0,47

0,52

0,57

0,62

0,67

24 16 12 8 4

D
if

f
n

º
ac

ti
vi

ti
es

 o
u

ts
id

e

Latent dimension

Diff nº activities outside

B128

B64

B32

B16

0

0,5

1

1,5

2

2,5

3

3,5

4

24 16 12 8 4

D
if

f
p

er
ce

n
ta

ge
 h

o
u

rs
 o

u
ts

id
e

Latent dimension

Diff percentage hours outside

B128

B64

B32

B16

81

Master thesis

Figure 40: Evolution of the difference (testing input data vs VAE’s decoded data) between the average percentage
dedicated to the studied activities for the different number of batch sizes and latent space dimensions

As we can observe from Figures 35, 37, 38, 39, and 40, the model doesn’t perform well with the

latent space dimensions of 8 and 4. The compression done by the encoder into the latent space

is too big, and some information is lost in this process. Thus, the decoder is not able to decode

accurately, since the information provided to it is more incomplete than the other models with

a higher latent space dimension. Normally, with a higher dimension the results should be better,

since the compression done by the encoder is smaller. However, results show that there is not

a significant difference between latent dimensions of 24, 16, and 12 (Figures 38, 39, and 40). In

fact, the latent space dimension of 24 performs worse than the other two in the case of the

difference between the number of different activities done outside from home (Figure 38).

There is no big difference between a latent space dimension of 16 and 12, so both could be used

for the model. Between 12 and 16 for the latent space dimension, the best batch sizes are 64

and 32. A batch size of 128 causes a high reconstruction loss, which means that the model trains

worse. A batch size of 16 results in a lower reconstruction loss but in higher differences between

the testing data and the decoded data. Between a batch size of 32 and 64, usually 64 performs

better than 32 (Figures 42, 43, and 44), especially when it’s with a latent space dimension of 12

(Figures 41, 45, and 46).

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

1,2

24 16 12 8 4

D
if

f
p

er
ce

n
ta

ge
s

ac
ti

vi
ti

es

Latent dimension

Diff percentages activities

B128

B64

B32

B16

82

Master thesis

Figure 41: Reconstruction loss for the batch sizes (32 and 64) and latent space dimensions (12 and 16)

Figure 42: Difference (testing input data vs VAE’s decoded data) between the number of daily trips for the batch
sizes (32 and 64) and latent space dimensions (12 and 16)

30

40

50

60

70

80

90

100

16 12

R
ec

o
n

st
ru

ct
io

n
 lo

ss

Latent dimension

Reconstruction loss

B64

B32

1,4

1,5

1,6

1,7

1,8

1,9

16 12

D
if

f
n

ª
tr

ip
s

d
ay

Latent dimension

Diff nº trips day

B64

B32

83

Master thesis

Figure 43: Difference (testing input data vs VAE’s decoded data) between the percentage of daily traveled time for
the batch sizes (32 and 64) and latent space dimensions (12 and 16)

Figure 44: Difference (testing input data vs VAE’s decoded data) between the number of daily activities done outside
from home for the batch sizes (32 and 64) and latent space dimensions (12 and 16)

Figure 45: Difference (testing input data vs VAE’s decoded data) between the percentage of hours spend outside
from home for the batch sizes (32 and 64) and latent space dimensions (12 and 16)

1

1,5

2

2,5

3

3,5

16 12

D
if

f
p

er
ce

n
ta

ge
 t

ra
ve

l d
ay

Latent dimension

Diff percentage travel day

B64

B32

0,42

0,47

0,52

0,57

0,62

0,67

16 12D
if

f
n

º
ac

ti
vi

ti
es

 o
u

ts
id

e

Latent dimension

Diff nº activities outside

B64

B32

0

0,5

1

1,5

2

16 12

D
if

f
p

er
ce

n
ta

ge
 h

o
u

rs
 o

u
ts

id
e

Latent dimension

Diff percentage hours outside

B64

B32

84

Master thesis

Figure 46: Difference (testing input data vs VAE’s decoded data) between the average percentage dedicated to the
studied activities for the batch sizes (32 and 64) and latent space dimensions (12 and 16)

So finally, the parameters chosen will be 30 epochs, a latent space dimension of 12 and a batch

size of 64.

6.2.2.4 Final model results

Let’s now analyze the results for the final chosen model (30 epochs, latent space dimension of

12, and batch size of 64). To do so, we will analyze the metrics mentioned in section 6.2.

Metric Value (VAE) Value

(BELDAM)

Number of trips carried out by an individual 3,885 3,117

Number of activities carried out outside from home by an

individual
1,513 1,486

Percentage of hours spent traveling by an individual 5,45 % 5,379 %

Percentage of hours that a person spends outside from home 28,53 % 28,7 %

Percentage of hours that a person spends at work 9,889 % 9,921 %

Percentage of hours that a person spends at home 71,47 % 71,3 %

Percentage of hours that a person spends at work trips 0,656 % 0,653 %

Percentage of hours that a person spends following courses 4,217 % 4,287 %

Percentage of hours that a person spends having a meal

outside
0,4337 % 0,4399 %

Percentage of hours that a person spends shopping 1,781 % 1,741 %

Percentage of hours that a person spends taking services 0,4745 % 0,5103 %

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

16 12

D
if

f
p

er
ce

n
ta

ge
s

ac
ti

vi
ti

es

Latent dimension

Diff percentages activities

B64

B32

85

Master thesis

Metric Value (VAE) Value

(BELDAM)

Percentage of hours that a person spends visiting family or

friends
2,344 % 2,219 %

Percentage of hours that a person spends walking or making

a tour
0,6045 % 0,651 %

Percentage of hours that a person spends in leisure, culture

or sports
1,467 % 1,488 %

Table 3: Value of the proposed metrics for the VAE model

As we can derive from Table 3, the model based in a Variational Autoencoder is much better

than the one based in a Frequency Analysis at the time of generating new activity sequences.

Not only the differences of the metrics based in percentages are lower, but also the ones based

in the number of daily trips and in the number of different activities done outside from home.

This means that at the disaggregate level, the model is more able to grasp the features of the

data, and moreover, the alternance between an activity of any kind and a trip in between. Even

though this alternance is not always present, in the great majority of sequences, it is.

The negative point that we could consider about this VAE model, is that it generates 0,768 more

daily trips in average. Even though this difference is not very high in absolute numbers, for a big

population, like a whole country, this supposes a lot more of daily trips that need to be taken

into account. For a population of 7 million people, for example, this would suppose 5,376 million

trips more each day.

6.2.3 Comparison between Frequency Analysis and VAE

A total number of 35 average trips done in the FA in a day versus 3,2 average trips done by the

original data. And almost 11 different activities done daily outside of home in the FA results

versus 1,5 different activities done by the original population data. This is happening because

the model is not able to grasp the main features of the data. One of these features is that there

always exists an alternation between an activity of any kind and a trip, in other words, an

alternation between a number from 1 to 12 and a 13. In Figure 47 below, we can see a graph of

a daily activities sequence generated by the FA model, and we can observe how there is no clear

human pattern, since there are a lot of different activities in a short period of time. Also, the

alternation of numbers with 13 is not correctly done, as we can observe clearly from 13:10 h to

15:20 h, for example.

86

Master thesis

Figure 47: Activity sequence of a full day generated by the FA model

On the other hand, the VAE is capable of learning this feature, and usually intercalates a 13

between a pair of activities. In Figure 48, we can see an example of a daily sequence generated

by the VAE. The person is at home from 00:00 h until approximately 08:00 h. Then he does a trip

(13) to work (3), where he/she stays until 17:20 h. Then he/she takes another trip to go to visit

a relative or a friend (9). Then he takes another trip to go eating outside (6), and finally another

trip to return home at 19:20 h approximately, where he/she stays until the end of the day. In

addition of correctly adding trips between activities, also the timing of each activity makes sense.

Leaving home to work at 08:00 h is pretty common, and also leave work around 17:00 h. It is

also common to go visit a relative or a friend after work and after go pick up some food for

dinner. The hour of returning at home is also quite standard.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0
:0

0
:0

0

0
:4

4
:0

0

1
:2

8
:0

0

2
:1

2
:0

0

2
:5

6
:0

0

3
:4

0
:0

0

4
:2

4
:0

0

5
:0

8
:0

0

5
:5

2
:0

0

6
:3

6
:0

0

7
:2

0
:0

0

8
:0

4
:0

0

8
:4

8
:0

0

9
:3

2
:0

0

1
0

:1
6

:0
0

1
1

:0
0

:0
0

1
1

:4
4

:0
0

1
2

:2
8

:0
0

1
3

:1
2

:0
0

1
3

:5
6

:0
0

1
4

:4
0

:0
0

1
5

:2
4

:0
0

1
6

:0
8

:0
0

1
6

:5
2

:0
0

1
7

:3
6

:0
0

1
8

:2
0

:0
0

1
9

:0
4

:0
0

1
9

:4
8

:0
0

2
0

:3
2

:0
0

2
1

:1
6

:0
0

2
2

:0
0

:0
0

2
2

:4
4

:0
0

2
3

:2
8

:0
0

A
ct

iv
it

y
ty

p
e

Time

FA

87

Master thesis

Figure 48: Activity sequence of a full day generated by the VAE

For this reason, we are very proud about the performance of the Variational Autoencoder when

dealing with the BELDAM dataset. The model is able to capture the percentage of time dedicated

to each activity every day and also to sequence these activities in a proper way, alternating

activities with trips and positioning each activity in a time slot that makes sense for them. Clearly,

the VAE outperforms the FA model at the time of generating activity schedules.

6.3 Predicting activity sequences

6.3.1 Description of the model

As it has been said in section 5.2, the LSTM cells are very used in problems where we want to

predict a sequence based on a previous sequence of data (Seq2Seq), since they are capable of

keeping information from a considerable large amount of time, computationally speaking. Their

ability of letting important information in and eliminating useless information makes them a

perfect candidate for this kind of problems. As pointed out in section 5.3, we will try to create

an encoder-decoder LSTM-based neural network in order to predict activity sequences based on

the information of previous done activities in the same day. The idea is to predict the next 𝑌

timesteps based on the information provided in the previous 𝑋 timesteps (𝑋 + 𝑌 < 720). The

model is also developed in a Python language environment, with the “Tensorflow” and “Keras”

frameworks mentioned in section 6.2.2.1.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

0
:0

0
:0

0
0

:4
0

:0
0

1
:2

0
:0

0
2

:0
0

:0
0

2
:4

0
:0

0
3

:2
0

:0
0

4
:0

0
:0

0
4

:4
0

:0
0

5
:2

0
:0

0
6

:0
0

:0
0

6
:4

0
:0

0
7

:2
0

:0
0

8
:0

0
:0

0
8

:4
0

:0
0

9
:2

0
:0

0
1

0
:0

0
:0

0
1

0
:4

0
:0

0
1

1
:2

0
:0

0
1

2
:0

0
:0

0
1

2
:4

0
:0

0
1

3
:2

0
:0

0
1

4
:0

0
:0

0
1

4
:4

0
:0

0
1

5
:2

0
:0

0
1

6
:0

0
:0

0
1

6
:4

0
:0

0
1

7
:2

0
:0

0
1

8
:0

0
:0

0
1

8
:4

0
:0

0
1

9
:2

0
:0

0
2

0
:0

0
:0

0
2

0
:4

0
:0

0
2

1
:2

0
:0

0
2

2
:0

0
:0

0
2

2
:4

0
:0

0
2

3
:2

0
:0

0

A
ct

iv
it

y
ty

o
e

Time

VAE

88

Master thesis

The model developed in this section includes two recurrent neural networks, one to encode the

input sequence, the encoder, and one to decode the encoded sequence into the output

sequence, the decoder. Both are based on a LSTM neural network structure. To begin with, we

create a function to define the encoder-decoder structure and how it has to work, both in the

training part and in the inference one.

The function takes three arguments, which are:

• n_input: the cardinality of the input sequence, that is, the number of features for each

timestep. In our case the value is 14, which comes from 13 different activities plus one

(number 0).

• n_output: the cardinality of the output sequence, that is, the number of features for

each timestep. In our case the value is 14, which comes from 13 different activities plus

one (number 0).

• n_units: the number of cells to create in the encoder and decoder models. In our case

will be 128.

The function creates and returns three models, which are:

• train: model consisting in the encoder-decoder LSTM-bases structure that can be

trained given source, target, and shifted target sequences.

• inference_encoder: encoder model used when making a prediction for a new sequence.

• inference_decoder: decoder model used when making a prediction for a new sequence.

The training in the model happens by giving source and target sequences, where the model takes

both the source and a shifted version of the target sequence as input and predicts the whole

target sequence (Brownlee, 2017c). For example, one source sequence may be [2, 2, 13, 13, 3,

3] and the target sequence [3, 3, 13, 13, 6]. The inputs and outputs of the model during the

training phase would be:

• Input 1: [2, 2, 13, 13, 3, 3]

• Input 2: [0, 3, 3, 13, 13]

• Output: [3, 3, 13, 13, 6]

The model is called recursively when generating new sequences from source sequences. The

source sequence is encoded and the target sequence is created one element at a time, using a

“start of sequence” character such as “0” to start the process.

89

Master thesis

When we are predicting sequences, the inference_encoder model is used to encode the source

sequence, a process that generates a return states that are used to initialize the

inference_decoder model. From there, the inference_decoder is used to predict activities step

by step.

returns train, inference_encoder and inference_decoder models

def define_models(n_input, n_output, n_units):

 #n_input = number of features of input sequence

 #n_output = number of features of output sequence

 #n_units is the dimension of the latent space

 # define training encoder

 encoder_inputs = Input(shape=(None, n_input))

 encoder = LSTM (n_units, return_state = True)

 encoder_outputs, state_h, state_c = encoder(encoder_inputs)

 encoder_states = [state_h, state_c]

 #define training decoder

 decoder_inputs = Input(shape=(None, n_output))

 decoder_lstm = LSTM(n_units, return_sequences = True,

return_state=True)

 decoder_outputs, _, _= decoder_lstm(decoder_inputs,

initial_state=encoder_states)

 decoder_dense = Dense(n_output, activation='softmax')

 decoder_outputs = decoder_dense(decoder_outputs)

 model= Model([encoder_inputs, decoder_inputs], decoder_outputs)

 #define inference encoder

 encoder_model = Model(encoder_inputs,encoder_states)

 #define inference decoder

 decoder_state_input_h = Input(shape=(n_units,))

 decoder_state_input_c = Input(shape=(n_units,))

 decoder_states_inputs = [decoder_state_input_h,

decoder_state_input_c]

 decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs,

initial_state=decoder_states_inputs)

 decoder_states = [state_h, state_c]

 decoder_outputs = decoder_dense(decoder_outputs)

 decoder_model = Model([decoder_inputs] + decoder_states_inputs,

[decoder_outputs] + decoder_states)

 #return all models

 return model, encoder_model, decoder_model

After having defined the models, the function predict_sequence() can be used to generate a

target sequence given a source sequence. The functions take five arguments, which are:

• infenc: encoder model used for inference when making a new prediction.

• infdec: decoder model used for inference when making a new prediction.

• source: source sequence from which we will make the prediction.

• n_steps: number of timesteps to predict in the target sequence.

• cardinality: cardinality of the target sequence, the number of features, which as we said

before, is 14.

90

Master thesis

The function returns a vector containing the predicted target sequence.

def predict_sequence(infenc, infdec, source, n_steps, cardinality):

 #encode

 state = infenc.predict(source)

 #start of sequence input

 target_seq = np.array([0.0 for _ in

range(cardinality)]).reshape(1, 1, cardinality)

 #collect predictions

 output = list()

 for t in range(n_steps):

 #predict next char

 yhat, h, c = infdec.predict([target_seq] + state)

 #store prediction

 output.append(yhat[0,0,:])

 #update state

 state = [h,c]

 #update target sequence

 target_seq = yhat

 return np.array(output)

To train the model, we will use the “RMSPROP” optimizer from “Keras” and the loss function will

be calculated as the “categorical cross entropy” between the input and the output data.

6.3.2 Data preparation

As it has been stated, data for this kind of models needs to be prepared in a special way. We

don’t just need input and output sequences, but also a shifted version of the output sequence.

To do this, we defined the function split_sequence(), which splits a univariate sequence into the

three samples. The function takes three inputs, which are:

• sequence: the sequence from where to get split samples.

• n_steps_in: the number of timesteps for the source sequence (the 𝑋 from previous

section).

• n_steps_out: the number of timesteps to predict in the target sequence (the 𝑌 from

previous section).

It returns three sequences, the source one, the target one, and the shifted version of the target

sequence. The idea is to get smaller slices from the bigger sequence of 720 timesteps (a whole

day).

split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

 #X is input sequence, y is output sequence, y_1 is output sequence

one timestep forward

 #the last n_steps_in + n_steps_out are omitted because they would

be out of range (problem?)

91

Master thesis

 X, y, y_1 = list(), list(), list()

 i = 0

 end_ix = i + n_steps_in

 # gather input and output parts of the pattern

 seq_x = sequence[i:end_ix]

 seq_y_1 = sequence [end_ix:end_ix+n_steps_out]

 seq_y = np.concatenate((array([[0]]),seq_y_1[:-1]))

 if len(seq_y) == n_steps_out and len(seq_y_1) == n_steps_out:

 X.append(seq_x)

 y.append(seq_y)

 y_1.append(seq_y_1)

 return array(X), array(y), array(y_1)

In addition, after having the sequences prepared, we need to convert them to “dummy

variables” or one-hot encoded vectors, the same way as we did in section 6.2.2.2. Also, we have

gone from timesteps of 2 minutes to timesteps of 6 minutes, by eliminating the ones in between.

The reason to do this is to have shorter vectors which will be easier to predict. The good point

is that information is not lost in the process, since there are no activities nor trips that last for

only six minutes in our dataset. Furthermore, in order to not having sequences with long periods

being at home, we have cut the sequences from 10:00 h to 21:00 h. We will predict what the

person will do from 17:00 h to 21:00 h based on what he/she has done from 10:00 h to 17:00 h.

We have done that after realizing that long periods at home affected the training of the model,

with a tendency of delivering results consisting on being at home all the time. Finally, activity

sequences from weekends and from people older than 65 years old have been eliminated in

order to have less variability when training.

6.3.3 Results

When the model is trained, we observe considerable good results. At the end of the last epoch,

the value for the accuracy is 0,9630 (96,30 %) for the trained data, which consists of 4800

samples. The value for the validation accuracy for the validation data, which consists of 1200

samples, reaches a value of 0,9650 (96,50 %) at the end of the last epoch. So, at a first glance, it

seems that the model has been correctly defined and it trains properly. However, in these LSTMs

models, inference is the tricky part.

And effectively, when we start making predictions, results are not so satisfying. After analyzing

the testing data, consisting on 873 samples, we can observe three main drawbacks.

The first drawback is that the model is not able to detect small changes in the activity sequence.

In Figure 49 we can observe an original sequence from an individual from 10:00 h to 21:00 h.

We can see that he/she is at work (3) until 16:12 h, then he makes a trip (13) to go pick/drop

92

Master thesis

someone (1), and then he does another trip to return back home at 17:36 approximately (2).

Probably, on the same way back home, he picked up or dropped someone, which is a common

practice, among co-workers, for example.

Figure 49: Original activity sequence of individual 1 from 10:00 h to 21:00 h

Now, when we observe the predicted sequence from 17:00 h to 21:00 h for this person, we can

see that the picking up/dropping activity doesn’t appear (Figure 50).

Figure 50: Predicted activity sequence of individual 1 from 10:00 h to 21:00 h

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1
0

:0
0

:0
0

1
0

:2
4

:0
0

1
0

:4
8

:0
0

1
1

:1
2

:0
0

1
1

:3
6

:0
0

1
2

:0
0

:0
0

1
2

:2
4

:0
0

1
2

:4
8

:0
0

1
3

:1
2

:0
0

1
3

:3
6

:0
0

1
4

:0
0

:0
0

1
4

:2
4

:0
0

1
4

:4
8

:0
0

1
5

:1
2

:0
0

1
5

:3
6

:0
0

1
6

:0
0

:0
0

1
6

:2
4

:0
0

1
6

:4
8

:0
0

1
7

:1
2

:0
0

1
7

:3
6

:0
0

1
8

:0
0

:0
0

1
8

:2
4

:0
0

1
8

:4
8

:0
0

1
9

:1
2

:0
0

1
9

:3
6

:0
0

2
0

:0
0

:0
0

2
0

:2
4

:0
0

2
0

:4
8

:0
0

Original (1)

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1
0

:0
0

:0
0

1
0

:2
4

:0
0

1
0

:4
8

:0
0

1
1

:1
2

:0
0

1
1

:3
6

:0
0

1
2

:0
0

:0
0

1
2

:2
4

:0
0

1
2

:4
8

:0
0

1
3

:1
2

:0
0

1
3

:3
6

:0
0

1
4

:0
0

:0
0

1
4

:2
4

:0
0

1
4

:4
8

:0
0

1
5

:1
2

:0
0

1
5

:3
6

:0
0

1
6

:0
0

:0
0

1
6

:2
4

:0
0

1
6

:4
8

:0
0

1
7

:1
2

:0
0

1
7

:3
6

:0
0

1
8

:0
0

:0
0

1
8

:2
4

:0
0

1
8

:4
8

:0
0

1
9

:1
2

:0
0

1
9

:3
6

:0
0

2
0

:0
0

:0
0

2
0

:2
4

:0
0

2
0

:4
8

:0
0

Predicted (1)

93

Master thesis

From these observation and similar ones, we deduce that the model is not able to detect these

small changes in the activity sequence, in other words, it is only able to work with simple

sequences, with not a lot of changes in between. In the example below, we can see how the

model predicts correctly the sequence. It is a very simple sequence from a student who is

following a course (5) until 15:42 h, then he/she makes a trip (13) for 24 minutes to return back

home (2) at 16:18 h.

Figure 51: Original activity sequence of individual 2 from 10:00 h to 21:00 h

Figure 52: Predicted activity sequence of individual 2 from 10:00 h to 21:00 h

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1
0

:0
0

:0
0

1
0

:2
4

:0
0

1
0

:4
8

:0
0

1
1

:1
2

:0
0

1
1

:3
6

:0
0

1
2

:0
0

:0
0

1
2

:2
4

:0
0

1
2

:4
8

:0
0

1
3

:1
2

:0
0

1
3

:3
6

:0
0

1
4

:0
0

:0
0

1
4

:2
4

:0
0

1
4

:4
8

:0
0

1
5

:1
2

:0
0

1
5

:3
6

:0
0

1
6

:0
0

:0
0

1
6

:2
4

:0
0

1
6

:4
8

:0
0

1
7

:1
2

:0
0

1
7

:3
6

:0
0

1
8

:0
0

:0
0

1
8

:2
4

:0
0

1
8

:4
8

:0
0

1
9

:1
2

:0
0

1
9

:3
6

:0
0

2
0

:0
0

:0
0

2
0

:2
4

:0
0

2
0

:4
8

:0
0

Original (2)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1
0

:0
0

:0
0

1
0

:2
4

:0
0

1
0

:4
8

:0
0

1
1

:1
2

:0
0

1
1

:3
6

:0
0

1
2

:0
0

:0
0

1
2

:2
4

:0
0

1
2

:4
8

:0
0

1
3

:1
2

:0
0

1
3

:3
6

:0
0

1
4

:0
0

:0
0

1
4

:2
4

:0
0

1
4

:4
8

:0
0

1
5

:1
2

:0
0

1
5

:3
6

:0
0

1
6

:0
0

:0
0

1
6

:2
4

:0
0

1
6

:4
8

:0
0

1
7

:1
2

:0
0

1
7

:3
6

:0
0

1
8

:0
0

:0
0

1
8

:2
4

:0
0

1
8

:4
8

:0
0

1
9

:1
2

:0
0

1
9

:3
6

:0
0

2
0

:0
0

:0
0

2
0

:2
4

:0
0

2
0

:4
8

:0
0

Predicted (2)

94

Master thesis

The second drawback that the model has when making predictions is that it shows a tendency

to end sequences with a trip (13) to return back home (2). This is probably due to an overfitting

on the data because it has seen that it is very common to end the day like this. We have tried to

reduce the number of epochs and changing the batch size but this problem still persists. It could

be related to the nature of the data and the way the model is defined. In the two graphs below

we can see how the model directly cuts the sequence that there is supposed to be from 17:00 h

to 21:00 h and inputs a sequence of a trip (13) followed by being at home (2). In the original

sequence (Figure 53), the individual takes a work-related trip (4) for three hours approximately,

then he/she goes back to work (3) for a while, and then takes another trip to return back home

(2). But in the predicted sequence (Figure 54), after being at work (4), the work-related trip only

lasts for 1 hour (10 timesteps of 6 minutes), and then he/she makes a trip (13) of 1 hour and 12

minutes to go back home (2). And this happens for a considerably high number of samples.

Figure 53: Original activity sequence of individual 3 from 10:00 h to 21:00 h

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1
0

:0
0

:0
0

1
0

:2
4

:0
0

1
0

:4
8

:0
0

1
1

:1
2

:0
0

1
1

:3
6

:0
0

1
2

:0
0

:0
0

1
2

:2
4

:0
0

1
2

:4
8

:0
0

1
3

:1
2

:0
0

1
3

:3
6

:0
0

1
4

:0
0

:0
0

1
4

:2
4

:0
0

1
4

:4
8

:0
0

1
5

:1
2

:0
0

1
5

:3
6

:0
0

1
6

:0
0

:0
0

1
6

:2
4

:0
0

1
6

:4
8

:0
0

1
7

:1
2

:0
0

1
7

:3
6

:0
0

1
8

:0
0

:0
0

1
8

:2
4

:0
0

1
8

:4
8

:0
0

1
9

:1
2

:0
0

1
9

:3
6

:0
0

2
0

:0
0

:0
0

2
0

:2
4

:0
0

2
0

:4
8

:0
0

Original (3)

95

Master thesis

Figure 54: Predicted activity sequence of individual 3 from 10:00 h to 21:00 h

The third drawback observed, is that the model is not capable of understanding human behavior,

as the VAE is able to do. For example, if someone is at work, at some point, he/she has to make

a trip to leave the office, normally at home. But in our model, if there is a relatively long

sequence of being at work and it continues further than the border point (17:00 h), the predicted

sequence stays at the same point all the time until the end (21:00 h), without adding any activity

nor a trip. We can see an example below.

Figure 55: Original activity sequence of individual 4 from 10:00 h to 21:00 h

0

1

2

3

4

5

6

7

8

9

10

11

12

13
1

0
:0

0
:0

0

1
0

:2
4

:0
0

1
0

:4
8

:0
0

1
1

:1
2

:0
0

1
1

:3
6

:0
0

1
2

:0
0

:0
0

1
2

:2
4

:0
0

1
2

:4
8

:0
0

1
3

:1
2

:0
0

1
3

:3
6

:0
0

1
4

:0
0

:0
0

1
4

:2
4

:0
0

1
4

:4
8

:0
0

1
5

:1
2

:0
0

1
5

:3
6

:0
0

1
6

:0
0

:0
0

1
6

:2
4

:0
0

1
6

:4
8

:0
0

1
7

:1
2

:0
0

1
7

:3
6

:0
0

1
8

:0
0

:0
0

1
8

:2
4

:0
0

1
8

:4
8

:0
0

1
9

:1
2

:0
0

1
9

:3
6

:0
0

2
0

:0
0

:0
0

2
0

:2
4

:0
0

2
0

:4
8

:0
0

Predicted (3)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1
0

:0
0

:0
0

1
0

:2
4

:0
0

1
0

:4
8

:0
0

1
1

:1
2

:0
0

1
1

:3
6

:0
0

1
2

:0
0

:0
0

1
2

:2
4

:0
0

1
2

:4
8

:0
0

1
3

:1
2

:0
0

1
3

:3
6

:0
0

1
4

:0
0

:0
0

1
4

:2
4

:0
0

1
4

:4
8

:0
0

1
5

:1
2

:0
0

1
5

:3
6

:0
0

1
6

:0
0

:0
0

1
6

:2
4

:0
0

1
6

:4
8

:0
0

1
7

:1
2

:0
0

1
7

:3
6

:0
0

1
8

:0
0

:0
0

1
8

:2
4

:0
0

1
8

:4
8

:0
0

1
9

:1
2

:0
0

1
9

:3
6

:0
0

2
0

:0
0

:0
0

2
0

:2
4

:0
0

2
0

:4
8

:0
0

Original (4)

96

Master thesis

Figure 56: Predicted activity sequence of individual 4 from 10:00 h to 21:00 h

For these three reasons, we conclude that the model is not ready enough to be applied in real-

life applications. However, with further training, investigation, and preparation of the data, it

could be possible to get acceptable results. All in all, for now, we can only consider these

predictions as early results, that show us a path of predicting activity sequences based on the

activities realized previously during the day with the Neural Networks approach. Sadly, there is

no more time to keep investigating with the model at the due date of this project. Also, one of

the promotors got sick in the last stage of this project and he was not able to follow the work,

and this considerably affected this part dedicated to the LSTM architecture.

0

1

2

3

4

5

6

7

8

9

10

11

12

13
1

0
:0

0
:0

0

1
0

:2
4

:0
0

1
0

:4
8

:0
0

1
1

:1
2

:0
0

1
1

:3
6

:0
0

1
2

:0
0

:0
0

1
2

:2
4

:0
0

1
2

:4
8

:0
0

1
3

:1
2

:0
0

1
3

:3
6

:0
0

1
4

:0
0

:0
0

1
4

:2
4

:0
0

1
4

:4
8

:0
0

1
5

:1
2

:0
0

1
5

:3
6

:0
0

1
6

:0
0

:0
0

1
6

:2
4

:0
0

1
6

:4
8

:0
0

1
7

:1
2

:0
0

1
7

:3
6

:0
0

1
8

:0
0

:0
0

1
8

:2
4

:0
0

1
8

:4
8

:0
0

1
9

:1
2

:0
0

1
9

:3
6

:0
0

2
0

:0
0

:0
0

2
0

:2
4

:0
0

2
0

:4
8

:0
0

Predicted (4)

97

Master thesis

7 Final comments and conclusions

This final chapter looks back on the main achievements of this master thesis. The summary of

the proposed objectives and the obtained results are presented. Finally, some

recommendations for further research are formulated.

7.1 Conclusions

This master thesis deals with the human activity sequence generation and forecasting for

transport purposes. As it has been shown in the state of the art (sections 2.2 and 6), research in

this line has been very active in the last 40 years. This is because traffic prediction and human

behavior play a key role in mitigating some traffic and transportation problems. In particular,

this project is focused on activity sequences generation and prediction using activity sequences

derived from trip diaries from the BELDAM report about the Belgian population. The objectives

presented in section 1 are going to be revised and some conclusions about them are going to be

stated.

Thus, the main objective of this master thesis was to set up a machine learning Neural Network

based on a transport problem. In the project, a comprehensive state of the art is done in order

to study which methods exist and are used nowadays, both in the transport area and in the

machine learning area. It has been seen that in transport modelling, activity-based models are

generally better suited for solving the numerous kinds of problems there might be, because they

incorporate more detailed and variable information at a disaggregate level like the trip purpose,

location, time, transport mode, etc. For this reason, they are more able to explain social

behaviors and how people may react to new policies or external inputs like weather, change of

plans, terrorist attacks or natural catastrophes, etc.

On the other hand, the state of the art on Graph Neural Networks (GNNs) shows that there has

been a huge development in the last 10 years. The recent success of GNNs has boosted research

on data mining and pattern recognition, being able to develop tasks such as object detection,

machine translation, image recognition and generation, and speech recognition that once relied

in handcrafted feature engineering models to extract informative feature sets.

On this basis, two deep learning models are developed and analyzed in order to bring the two

worlds together and try to solve some classical transport problems with the new approach of

Neural Networks.

98

Master thesis

The first model one consists in a Variational Autoencoder (VAE), which recently has become one

of the most popular ways to unsupervised learning of complicated distributions. VAEs overcome

the main drawbacks that generative models have suffered in the last years since

backpropagation allows them to be trained in a fast way and also the assumptions they made in

the model are relatively weak, which gives them a great flexibility to fit numerous kinds of data.

In this line, a VAE has been defined in order to deal with activity-based sequences of data, which

represented 13 different activities that individuals carried out during a day. The main objective

was to capture the nature of the data and recognize patterns among it. After that, the VAE has

been set to generate new sequences of data based on the encoded features on the latent space.

To show VAEs potential, a simpler model based on a Frequency Analysis (FA) of the population

from the dataset has been created too. The results presented in sections 6.2.2.4 and 6.2.3 show

that the VAE is a very powerful and useful tool to deal with these activity sequences, since the

new generated sequences are very close to the original ones and also, they are ordered and

positioned in time in an appropriate way, clearly outperforming the FA model.

The second model consists in a Long Short-Term Memory (LSTM) encoder-decoder architecture

designed for sequence to sequence prediction. One of the examples that inspired this model are

the neural networks dedicated to machine translation from sentences of one language to

sentences from another language. The model is to be trained in a way to find some hidden

correlations about an input sequence and an output sequence, in a way that when a new unseen

sequence of data is presented, it is able to predict the sequence that will come next. In this line,

we created a model that is set to predict the next 𝑌 timesteps according to the information

provided by an input sequence of the previous 𝑋 timesteps. However, early results show that

predictions are not being very accurate. Also, there had not been more time to continue

developing this model for various reasons, but this first results show that this is a line of work

where there can be a very interesting further development, since it will allow traffic planners to

have more and better information about social mobility.

All in all, the personal objectives of this project have been achieved. First, I have been able to

discover the state of the art in transport modeling, as well as the main models that are being

used nowadays, together with the importance of activity-based models. Second, I have been

able to introduce myself into the fascinating world of machine learning and to visualize all the

potential this new data mining field offers.

99

Master thesis

7.2 Further Research

Although the proposed goals and the exposed objectives have been achieved, this project opens

some further research lines to extend the obtained results. This section exposes some of the

most interesting ones.

First of all, the use of a Sequence Alignment Method (SAM) could be used in order to compare

the activity sequences, the original one and the new one, whether it has been completely

generated by the Variational Autoencoder or it has been predicted from certain point by the

LSTM model. SAMs are very used in bioinformatics in order to arrange sequences of DNA, RNA

or protein. In non-biological sequences, SAMs are used to calculate the distance cost between

characters, for example. They are also used to align long, highly variable sequences that cannot

be aligned manually. It could be especially useful in the LSTM part, to help or “force” the

predicted sequences be more similar to the original one.

Secondly, the sequences generated by the Variational Autoencoder could be used for agent-

based modeling (ABM). These models are used to simulate actions and interactions between

autonomous agents (could be persons, companies, organizations, groups, etc.) with the aim to

observe their effects on a system. In transport, they are used, for example, to explore daily

commuting. Balmer et al. (2008) developed an agent-based model based on the toolkit MATSim-

T to model traffic demand and traffic flow and their interactions in the Greater Zürich Area.

And third, the even though the LSTM model developed in this project has not achieved very

good results, with more investigation and time, it could deliver very interesting results that may

be worth the effort. The fact of being able to predict activity sequences could be very useful for

transport planers to know people’s mobility and transport demand. In addition, it could serve

not only for transport related purposes, but also to know demand on other activities, like

shopping or taking a meal outside.

100

Master thesis

References

Abrantes, P. A. L., & Wardman, M. R. (2011). Meta-analysis of UK values of travel time: An

update. Transportation Research Part A: Policy and Practice, 45(1), 1–17.

https://doi.org/10.1016/j.tra.2010.08.003

Anda, C., Erath, A., & Fourie, P. J. (2017). Transport modelling in the age of big data. International

Journal of Urban Sciences, 21(sup1), 19–42. https://doi.org/10.1080/12265934.2017.1281150

Arentze, T. A., Harry, & Timmermans, J. P. (2000). 1 Albatross – a Learning-Based Transportation

Oriented Simulation System.

Asif, M. T., Dauwels, J., Goh, C. Y., Oran, A., Fathi, E., Xu, M., Mohan, D., Mitrovic, N., & Jaillet, P.

(2013). Spatiotemporal Patterns in Large-Scale Traffic Speed Prediction. ResearchGate.

https://www.researchgate.net/publication/259624533_Spatiotemporal_Patterns_in_Large-

Scale_Traffic_Speed_Prediction

Athira, I. C., Muneera, C. P., Krishnamurthy, K., & Anjaneyulu, M. V. L. R. (2016). Estimation of

Value of Travel Time for Work Trips. Transportation Research Procedia, 17, 116–123.

https://doi.org/10.1016/j.trpro.2016.11.067

Atwood, J., & Towsley, D. F. (2016). Diffusion-Convolutional Neural Networks. NIPS.

Balmer, M., Meister, K., Rieser, M., Nagel, K., & Axhausen, K. W. (2008). Agent-based simulation

of travel demand: Structure and computational performance of MATSim-T [Application/pdf]. 37

p. https://doi.org/10.3929/ETHZ-A-005626451

Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures.

ArXiv:1206.5533 [Cs]. http://arxiv.org/abs/1206.5533

Blaauw, F., & Emerencia, o. (2016). Deep learning the beautiful mind | Mindwise.

https://mindwise-groningen.nl/deep-learning-the-beautiful-mind/

Brownlee, J. (2017a, July 27). Why One-Hot Encode Data in Machine Learning? Machine Learning

Mastery. https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-

learning/

101

Master thesis

Brownlee, J. (2017b, October 25). How to Develop a Seq2Seq Model for Neural Machine

Translation in Keras. Machine Learning Mastery. https://machinelearningmastery.com/define-

encoder-decoder-sequence-sequence-model-neural-machine-translation-keras/

Brownlee, J. (2017c, November 1). How to Develop an Encoder-Decoder Model for Sequence-

to-Sequence Prediction in Keras. Machine Learning Mastery.

https://machinelearningmastery.com/develop-encoder-decoder-model-sequence-sequence-

prediction-keras/

Brownlee, J. (2018, July 19). Difference Between a Batch and an Epoch in a Neural Network.

Machine Learning Mastery. https://machinelearningmastery.com/difference-between-a-batch-

and-an-epoch/

Brownlee, J. (2019a, January 20). How to Control the Stability of Training Neural Networks With

the Batch Size. Machine Learning Mastery. https://machinelearningmastery.com/how-to-

control-the-speed-and-stability-of-training-neural-networks-with-gradient-descent-batch-size/

Brownlee, J. (2019b, April 18). A Gentle Introduction to Padding and Stride for Convolutional

Neural Networks. Machine Learning Mastery. https://machinelearningmastery.com/padding-

and-stride-for-convolutional-neural-networks/

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral Networks and Locally Connected

Networks on Graphs. ArXiv:1312.6203 [Cs]. http://arxiv.org/abs/1312.6203

Cai, P., Wang, Y., Lu, G., Chen, P., Ding, C., & Sun, J. (2016). A spatiotemporal correlative k-nearest

neighbor model for short-term traffic multistep forecasting. ResearchGate.

https://www.researchgate.net/publication/285459003_A_spatiotemporal_correlative_k-

nearest_neighbor_model_for_short-term_traffic_multistep_forecasting

Cao, S., Lu, W., & Xu, Q. (2016). Deep neural networks for learning graph representations.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 1145–1152.

Castiglione, Joe, B., Mark, & Gliebe, John. (2015). Activity-Based Travel Demand Models: A

Primer. https://doi.org/10.17226/22357

Chen, Jianfei, Zhu, J., & Song, L. (2018). Stochastic Training of Graph Convolutional Networks

with Variance Reduction. ArXiv:1710.10568 [Cs, Stat]. http://arxiv.org/abs/1710.10568

102

Master thesis

Chen, Jie, Ma, T., & Xiao, C. (2018). FastGCN: Fast Learning with Graph Convolutional Networks

via Importance Sampling. ArXiv:1801.10247 [Cs]. http://arxiv.org/abs/1801.10247

Chen, S., Varma, R., Sandryhaila, A., & Kovačević, J. (2015). Discrete Signal Processing on Graphs:

Sampling Theory. IEEE Transactions on Signal Processing, 63(24), 6510–6523.

https://doi.org/10.1109/TSP.2015.2469645

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., & Hsieh, C.-J. (2019). Cluster-GCN: An Efficient

Algorithm for Training Deep and Large Graph Convolutional Networks. Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 257–266.

https://doi.org/10.1145/3292500.3330925

Chien, S. I. J., Liu, X., & Ozbay, K. (2003). Predicting Travel Times for the South Jersey Real-Time

Motorist Information System. Transportation Research Record, 1855(1), 32–40.

https://doi.org/10.3141/1855-04

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio,

Y. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine

Translation. ArXiv:1406.1078 [Cs, Stat]. http://arxiv.org/abs/1406.1078

Chollet, F. (2017). A ten-minute introduction to sequence-to-sequence learning in Keras.

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-

keras.html

Cools, M., Brijs, K., Tormans, H., Moons, E., Janssens, D., & Wets, G. (2011). The socio-cognitive

links between road pricing acceptability and changes in travel-behavior. Transportation

Research Part A: Policy & Practice, 45(8), 779–788. https://doi.org/10.1016/j.tra.2011.06.006

Cools, M., & Creemers, L. (2013). The dual role of weather forecasts on changes in activity-travel

behavior. Journal of Transport Geography, 28, 167–175.

https://doi.org/10.1016/j.jtrangeo.2012.11.002

Cornelis, E., Hubert, M., Huynen, P., Lebrun, K., Patriarche, G., De Witte, A., Creemers, L.,

Declercq, K., Janssens, D., Castaigne, M., Hollaert, L., & Walle, F. (2010). La mobilité en Belgique

en 2010: Résultats de l’enquête BELDAM.

Creemers, L., Wets, G., & Cools, M. (2015). Meteorological variation in daily travel behaviour:

Evidence from revealed preference data from the Netherlands. Theoretical & Applied

Climatology, 120(1–2), 183–194. https://doi.org/10.1007/s00704-014-1169-0

103

Master thesis

Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2020). Stacked Bidirectional and Unidirectional LSTM Recurrent

Neural Network for Forecasting Network-wide Traffic State with Missing Values.

ArXiv:2005.11627 [Cs, Eess, Stat]. http://arxiv.org/abs/2005.11627

Dai, H., Kozareva, Z., Dai, B., Smola, A. J., & Song, L. (2018). Learning Steady-States of Iterative

Algorithms over Graphs. 9.

Defferrard, M., Bresson, X., & Vandergheynst, P. (2017). Convolutional Neural Networks on

Graphs with Fast Localized Spectral Filtering. ArXiv:1606.09375 [Cs, Stat].

http://arxiv.org/abs/1606.09375

DelSole, M. (2018, April 24). What is One Hot Encoding and How to Do It. Medium.

https://medium.com/@michaeldelsole/what-is-one-hot-encoding-and-how-to-do-it-

f0ae272f1179

Dijst, M., & Vidakovic, V. (1997). Activity-Based Approaches to Travel Analysis. 117–134.

Doersch, C. (2016). Tutorial on Variational Autoencoders. ArXiv:1606.05908 [Cs, Stat].

http://arxiv.org/abs/1606.05908

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.

https://doi.org/10.1016/0364-0213(90)90002-E

Ettema, D., Borgers, A., & Timmermans, H. (1995). Competing risk hazard model of activity

choice, timing, sequencing, and duration.

https://scholar.google.com/scholar_lookup?hl=en&publication_year=1995&pages=101-

109&author=D.F+Ettemaauthor=A.+W.+J.+Borgers&author=H.+J.+P.+Timmermans&title=Com

peting+risk+hazard+model+of+activity+choice%2C+timing%2C+sequencing+and+duration

Ettema, D., Borgers, A., & Timmermans, H. (1996). SMASH (Simulation Model of Activity

Scheduling Heuristics): Some Simulations. Transportation Research Record: Journal of the

Transportation Research Board, 1551(1), 88–94.

https://doi.org/10.1177/0361198196155100112

Ferrer, S., & Ruiz, T. (2014). Factors influencing the travel scheduling of driving trips of habitual

car users. Transportation Research Record, 2412, 100–108. Scopus.

https://doi.org/10.3141/2412-12

104

Master thesis

Fricker, Jon D., & Whitford, Robert K. (2003). Fundamentals of Transportation Engineering: A

Multimodal Systems Approach: Amazon.es: Fricker, Jon D., Whitford, Robert K.: Libros en idiomas

extranjeros. https://www.amazon.es/Fundamentals-Transportation-Engineering-Multimodal-

Approach/dp/0130351245

Friedrich, M. (2007). Multimodal Transport Planning and Modelling | Institute for Road and

Transport Science | University of Stuttgart. https://www.isv.uni-

stuttgart.de/en/vuv/courses/multimodal/

Gallicchio, C., & Micheli, A. (2010). Graph Echo State Networks. The 2010 International Joint

Conference on Neural Networks (IJCNN). https://doi.org/10.1109/IJCNN.2010.5596796

Gärling, T., Kwan, M.-P., & Golledge, R. G. (1994). Computational-process modelling of

household activity scheduling. Transportation Research Part B: Methodological, 28(5), 355–364.

https://doi.org/10.1016/0191-2615(94)90034-5

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural Message Passing

for Quantum Chemistry. ArXiv:1704.01212 [Cs]. http://arxiv.org/abs/1704.01212

Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains.

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.

https://doi.org/10.1109/IJCNN.2005.1555942

Graves, A. (2008). Supervised Sequence Labelling with Recurrent Neural Networks. Springer-

Verlag. https://doi.org/10.1007/978-3-642-24797-2

Hamilton, W. L., Ying, R., & Leskovec, J. (2018). Inductive Representation Learning on Large

Graphs. ArXiv:1706.02216 [Cs, Stat]. http://arxiv.org/abs/1706.02216

Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep Convolutional Networks on Graph-Structured

Data. ArXiv:1506.05163 [Cs]. http://arxiv.org/abs/1506.05163

Henson, K., Goulias, K., & Golledge, R. (2009). An assessment of activity-based modeling and

simulation for applications in operational studies, disaster preparedness, and homeland

security. Transportation Letters, 1(1), 19–39. https://doi.org/10.3328/TL.2009.01.01.19-39

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Vanhoucke, V., Nguyen, P., Sainath,

T., & Kingsbury, B. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition.

27.

105

Master thesis

Hinton, G., & Sejnowski, T. J. (1999). Unsupervised Learning | The MIT Press. The MIT Press.

https://mitpress.mit.edu/books/unsupervised-learning

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8),

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Jain, A., Zamir, A. R., Savarese, S., & Saxena, A. (2016). Structural-RNN: Deep Learning on Spatio-

Temporal Graphs. ArXiv:1511.05298 [Cs]. http://arxiv.org/abs/1511.05298

Jeong, J. (2019, July 17). The Most Intuitive and Easiest Guide for CNN. Medium.

https://towardsdatascience.com/the-most-intuitive-and-easiest-guide-for-convolutional-

neural-network-3607be47480

Joglekar, S. (2017, February 3). How Neural Networks generate Visual Art from inspiration.

Sachin Joglekar’s Blog. https://codesachin.wordpress.com/2017/02/03/how-neural-networks-

generate-visual-art-from-inspiration/

Jordan, M. I. (1986). SERIAL ORDER: A PARALLEL DISTRmUTED PROCESSING APPROACH. 46.

Karlaftis, M. G., & Vlahogianni, E. I. (2011). Statistical methods versus neural networks in

transportation research: Differences, similarities and some insights. Transportation Research

Part C: Emerging Technologies, 19(3), 387–399.

Kipf, T. N., & Welling, M. (2016). Variational Graph Auto-Encoders. ArXiv:1611.07308 [Cs, Stat].

http://arxiv.org/abs/1611.07308

Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional

Networks. ArXiv:1609.02907 [Cs, Stat]. http://arxiv.org/abs/1609.02907

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84–90.

https://doi.org/10.1145/3065386

Kwan, M.-P. (1997). GISICAS: AN ACTIVITY-BASED TRAVEL DECISION SUPPORT SYSTEM USING A

GIS-INTERFACED COMPUTATIONAL-PROCESS MODEL. ACTIVITY-BASED APPROACHES TO

TRAVEL ANALYSIS. https://trid.trb.org/view/570134

Lecun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time-series. The

Handbook of Brain Theory and Neural Networks.

106

Master thesis

https://nyuscholars.nyu.edu/en/publications/convolutional-networks-for-images-speech-and-

time-series

Levie, R., Monti, F., Bresson, X., & Bronstein, M. M. (2018). CayleyNets: Graph Convolutional

Neural Networks with Complex Rational Spectral Filters. ArXiv:1705.07664 [Cs].

http://arxiv.org/abs/1705.07664

Li, Yaguang, Yu, R., Shahabi, C., & Liu, Y. (2018). Diffusion Convolutional Recurrent Neural

Network: Data-Driven Traffic Forecasting. ArXiv:1707.01926 [Cs, Stat].

http://arxiv.org/abs/1707.01926

Li, Yujia, Tarlow, D., Brockschmidt, M., & Zemel, R. (2017). Gated Graph Sequence Neural

Networks. ArXiv:1511.05493 [Cs, Stat]. http://arxiv.org/abs/1511.05493

Li, Yujia, Vinyals, O., Dyer, C., Pascanu, R., & Battaglia, P. (2018). Learning Deep Generative

Models of Graphs. ArXiv:1803.03324 [Cs, Stat]. http://arxiv.org/abs/1803.03324

Litman, T. (2002). Transportation Cost and Benefit Analysis: Techniques, Estimates and

Implications.

Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective Approaches to Attention-based

Neural Machine Translation. ArXiv:1508.04025 [Cs]. http://arxiv.org/abs/1508.04025

Ma, X., Dai, Z., He, Z., Na, J., Wang, Y., & Wang, Y. (2017). Learning Traffic as Images: A Deep

Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction.

ArXiv:1701.04245 [Cs, Stat]. http://arxiv.org/abs/1701.04245

Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long short-term memory neural network for

traffic speed prediction using remote microwave sensor data. Transportation Research Part C:

Emerging Technologies, 54(0). https://trid.trb.org/view/1350260

Mars, L., & Ruiz, T. (2018). Determinants of elimination decisions in the activity scheduling

process. Transportation Letters, 10(4), 185–201. Scopus.

https://doi.org/10.1080/19427867.2016.1242882

Masters, D., & Luschi, C. (2018). Revisiting Small Batch Training for Deep Neural Networks.

ArXiv:1804.07612 [Cs, Stat]. http://arxiv.org/abs/1804.07612

McNALLY, M. (2000). The Four Step Model.

107

Master thesis

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation

of State Calculations by Fast Computing Machines. The Journal of Chemical Physics, 21(6), 1087–

1092. https://doi.org/10.1063/1.1699114

Micheli, A., Sona, D., & Sperduti, A. (2004). Contextual processing of structured data by recursive

cascade correlation. IEEE Transactions on Neural Networks, 15(6), 1396–1410.

https://doi.org/10.1109/TNN.2004.837783

Micheli, Alessio. (2009). Neural Network for Graphs: A Contextual Constructive Approach. IEEE

Transactions on Neural Networks, 20(3), 498–511. https://doi.org/10.1109/TNN.2008.2010350

Mohr, F. (2017, November 9). Teaching a Variational Autoencoder (VAE) to draw MNIST

characters. Medium. https://towardsdatascience.com/teaching-a-variational-autoencoder-vae-

to-draw-mnist-characters-978675c95776

Niepert, M., Ahmed, M., & Kutzkov, K. (2016). Learning Convolutional Neural Networks for

Graphs. ArXiv:1605.05273 [Cs, Stat]. http://arxiv.org/abs/1605.05273

Olah, C. (2015). Understanding LSTM Networks. http://colah.github.io/posts/2015-08-

Understanding-LSTMs/

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural

networks. Proceedings of the 30th International Conference on International Conference on

Machine Learning - Volume 28, III–1310–III–1318.

Pearlmutter, B. A. (1989). (PDF) Learning State Space Trajectories in Recurrent Neural Networks.

ResearchGate.

https://www.researchgate.net/publication/238833309_Learning_State_Space_Trajectories_in

_Recurrent_Neural_Networks

Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural networks. Physical

Review Letters, 59(19), 2229–2232. https://doi.org/10.1103/PhysRevLett.59.2229

Puig-Arnavat, M., & Bruno, J. C. (2015). Backpropagation Algorithm—An overview |

ScienceDirect Topics. https://www.sciencedirect.com/topics/engineering/backpropagation-

algorithm

108

Master thesis

Pykes, K. (2020, May 17). The Vanishing/Exploding Gradient Problem in Deep Neural Networks.

Medium. https://towardsdatascience.com/the-vanishing-exploding-gradient-problem-in-deep-

neural-networks-191358470c11

Rasouli, S., & Timmermans, H. (2014). Activity-based models of travel demand: Promises,

progress and prospects. International Journal of Urban Sciences, 18(1), 31–60.

https://doi.org/10.1080/12265934.2013.835118

Recker, W. W. (1995). The household activity pattern problem: General formulation and

solution. Transportation Research Part B: Methodological, 29(1), 61–77.

https://doi.org/10.1016/0191-2615(94)00023-S

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time

Object Detection. ArXiv:1506.02640 [Cs]. http://arxiv.org/abs/1506.02640

Ruiz, T., & Timmermans, H. (2006). Changing the timing of activities in resolving scheduling

conflicts. Transportation, 33(5), 429–445. Scopus. https://doi.org/10.1007/s11116-006-0010-8

Ruiz, T., & Timmermans, H. (2008). Changing the duration of activities in resolving scheduling

conflicts. Transportation Research Part A: Policy and Practice, 42(2), 347–359. Scopus.

https://doi.org/10.1016/j.tra.2007.10.007

Saadi, I., Mustafa, A., Teller, J., & Cools, M. (2016). Forecasting travel behavior using Markov

Chains-based approaches. Transportation Research: Part C, 69, 402–417.

https://doi.org/10.1016/j.trc.2016.06.020

Saadi, I., Mustafa, A., Teller, J., & Cools, M. (2018). Investigating the impact of river floods on

travel demand based on an agent-based modeling approach: The case of Liège, Belgium.

Transport Policy, 67, 102–110. https://doi.org/10.1016/j.tranpol.2017.09.009

Saadi, I., Mustafa, A., Teller, J., Farooq, B., & Cools, M. (2016). Hidden Markov Model-based

population synthesis. Transportation Research: Part B, 90, 1–21.

https://doi.org/10.1016/j.trb.2016.04.007

Sandryhaila, A., & Moura, J. M. F. (2013). Discrete Signal Processing on Graphs. IEEE Transactions

on Signal Processing, 61(7), 1644–1656. https://doi.org/10.1109/TSP.2013.2238935

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). The graph neural

network model. IEEE Transactions on Neural Networks.

109

Master thesis

Seo, Y., Defferrard, M., Vandergheynst, P., & Bresson, X. (2016). Structured Sequence Modeling

with Graph Convolutional Recurrent Networks. ArXiv:1612.07659 [Cs, Stat].

http://arxiv.org/abs/1612.07659

Sharma, S. (2019, February 14). Activation Functions in Neural Networks. Medium.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Sherstinky, A. (2018). (PDF) Fundamentals of Recurrent Neural Network (RNN) and Long Short-

Term Memory (LSTM) Network. ResearchGate.

https://www.researchgate.net/publication/326988050_Fundamentals_of_Recurrent_Neural_

Network_RNN_and_Long_Short-Term_Memory_LSTM_Network

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., & Vandergheynst, P. (2013). The Emerging

Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and

Other Irregular Domains. IEEE Signal Processing Magazine, 30(3), 83–98.

https://doi.org/10.1109/MSP.2012.2235192

Simonovsky, M., & Komodakis, N. (2018). GraphVAE: Towards Generation of Small Graphs Using

Variational Autoencoders. ArXiv:1802.03480 [Cs]. http://arxiv.org/abs/1802.03480

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures.

IEEE Transactions on Neural Networks, 8(3), 714–735. https://doi.org/10.1109/72.572108

Tan, H., Wu, Y., Shen, B., Jin, P. J., & Ran, B. (2016). Short-Term Traffic Prediction Based on

Dynamic Tensor Completion. IEEE Transactions on Intelligent Transportation Systems, 17(8).

https://trid.trb.org/view/1422586

Torres, J. (2012). Master in Innovation and Research in Informatics | FIB - Barcelona School of

Informatics. https://www.fib.upc.edu/en/studies/masters/master-innovation-and-research-

informatics

Tu, K., Cui, P., Wang, X., Yu, P. S., & Zhu, W. (2018). Deep Recursive Network Embedding with

Regular Equivalence. Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2357–2366. https://doi.org/10.1145/3219819.3220068

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust

features with denoising autoencoders. Proceedings of the 25th International Conference on

Machine Learning, 1096–1103. https://doi.org/10.1145/1390156.1390294

110

Master thesis

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked Denoising

Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising

Criterion. 38.

Wang, D., Cui, P., & Zhu, W. (2016). Structural Deep Network Embedding. Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1225–

1234. https://doi.org/10.1145/2939672.2939753

Wei, W., Wu, H., & Ma, H. (2019). An AutoEncoder and LSTM-Based Traffic Flow Prediction

Method. Sensors, 19(13), 2946. https://doi.org/10.3390/s19132946

Wu, Yonghui, Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,

Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Kaiser, Ł., Gouws, S., Kato, Y.,

Kudo, T., Kazawa, H., … Dean, J. (2016). Google’s Neural Machine Translation System: Bridging

the Gap between Human and Machine Translation. ArXiv:1609.08144 [Cs].

http://arxiv.org/abs/1609.08144

Wu, Yuankai, & Tan, H. (2016). Short-term traffic flow forecasting with spatial-temporal

correlation in a hybrid deep learning framework. ArXiv:1612.01022 [Cs].

http://arxiv.org/abs/1612.01022

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A Comprehensive Survey on Graph

Neural Networks. ArXiv:1901.00596 [Cs, Stat]. http://arxiv.org/abs/1901.00596

Yu, B., Yin, H., & Zhu, Z. (2018). Spatio-Temporal Graph Convolutional Networks: A Deep Learning

Framework for Traffic Forecasting. 3634–3640.

Yu, H., Wu, Z., Wang, S., Wang, Y., & Ma, X. (2017). Spatiotemporal Recurrent Convolutional

Networks for Traffic Prediction in Transportation Networks. ArXiv:1705.02699 [Cs].

http://arxiv.org/abs/1705.02699

Zhang, J., Shi, X., Xie, J., Ma, H., King, I., & Yeung, D.-Y. (2018). GaAN: Gated Attention Networks

for Learning on Large and Spatiotemporal Graphs. ArXiv:1803.07294 [Cs].

http://arxiv.org/abs/1803.07294

Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2017). LSTM network: A deep learning

approach for short-term traffic forecast. https://doi.org/10.1049/IET-ITS.2016.0208

111

Master thesis

Appendices

Code for the Frequency Analysis model

import pandas as pd

from datetime import timedelta

import numpy as np

load the data

df_yg = pd.read_csv("dataset_belgium/merged.csv", sep=';')

df_wkd = df.loc[(df.weekday > 1.0) & (df.weekday < 7.0)]

df_yg = df_wkd.loc[(df.age < 65.0)]

del df_yg['g_regi']

del df_yg['age']

del df_yg['mainmode']

del df_yg['t_withchild']

del df_yg['weekday']

del df_yg['h_hierarchie_urbaine']

df_yg = df_yg.transpose()

df_yg = df_yg[1:]

timeline = []

for timestep in range(0,len(df_yg.index)):

 time = timedelta(seconds=timestep*2*60)

 time = str(time)

 timeline.append(time)

td = pd.TimedeltaIndex(timeline, unit = 'm', freq = 'infer', name =

'timeline')

df_yg = df_yg.set_index(td)

df_t = df_yg.transpose()

train_size = int(df_t.shape[0]*0.8)

df = df_t[:train_size]

d = {}

numbers = [0,1,2,3,4,5,6,7,8,9,10,11,12,13]

for column in df:

 probs = df[column].value_counts(normalize = True)

 l = []

 for number in numbers:

 if number in probs:

 t = (number, probs[number])

 l.append(t)

 else:

 t = (number, 0.0)

 l.append(t)

 d[column] = l

def generate_samples(l, n_samples):

 weights = []

 for elem in l:

 weights.append(elem[1])

112

Master thesis

 samples = np.random.choice(14, n_samples, p = weights)

 return samples

data = {}

n_samples = 1375

for key in d.keys():

 samples = generate_samples(d[key], n_samples)

 data[key] = samples

freq_df = pd.DataFrame(data)

freq_df.to_csv("dataset_belgium/frequency_analysis_all_population.csv"

)

def trips_per_day(serie):

 l = serie.tolist()

 count = 0

 for i, value in enumerate(l):

 if l[i] == 13 and len(l) == 0:

 count += 1

 elif l[i] == 13 and l[i-1] != 13:

 count += 1

 return count

def percentage_travel_per_day(serie):

 se = serie.value_counts(normalize=True)

 if 13 in se.index:

 return se.loc[13]*100

 else:

 return 0

def n_activities_outside(serie):

#only takes into account the activity one time

 se = list(serie.unique())

 if 13 in se:

 se.remove(13)

 if 2 in se:

 se.remove(2)

 return len(se)

def n_hours_out_home(serie):

 l = serie.tolist()

 ll = [i for i in l if i != 2]

 hours = (len(ll)*2)/60

 return hours

def percentage_hours_out_home(serie):

 l = serie.tolist()

 ll = [i for i in l if i != 2]

 hours = (len(ll)*2)/60

 p = (hours/24)*100

 return p

def n_hours_at_work(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 3]

 hours = len(ll)*2/60

 return hours

def percentage_hours_at_work(serie):

113

Master thesis

 l = serie.tolist()

 ll = [i for i in l if i == 3]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_at_home(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 2]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_work_trip(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 4]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_courses(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 5]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_eat_outside(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 6]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_shopping(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 7]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_services(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 8]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_family_visit(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 9]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_walk_tour(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 10]

 hours = len(ll)*2/60

114

Master thesis

 p = (hours/24)*100

 return p

def percentage_hours_sport_leisure(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 11]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

analysed_data = []

for index in freq_df.index:

 di = {}

 di['n_trips_day_in'] = trips_per_day(freq_df.iloc[index])

 di['percentage_travel_day_in'] =

percentage_travel_per_day(freq_df.iloc[index])

 di['n_activities_outside_in'] =

n_activities_outside(freq_df.iloc[index])

 di['percentage_hours_outside_in'] =

percentage_hours_out_home(freq_df.iloc[index])

 di['percentage_hours_at_work_in'] =

percentage_hours_at_work(freq_df.iloc[index])

 di['percentage_hours_at_home_in'] =

percentage_hours_at_home(freq_df.iloc[index])

 di['percentage_hours_work_trip_in'] =

percentage_hours_work_trip(freq_df.iloc[index])

 di['percentage_hours_courses_in'] =

percentage_hours_courses(freq_df.iloc[index])

 di['percentage_hours_eat_outside_in'] =

percentage_hours_eat_outside(freq_df.iloc[index])

 di['percentage_hours_shopping_in'] =

percentage_hours_shopping(freq_df.iloc[index])

 di['percentage_hours_services_in'] =

percentage_hours_services(freq_df.iloc[index])

 di['percentage_hours_family_visit_in'] =

percentage_hours_family_visit(freq_df.iloc[index])

 di['percentage_hours_walk_tour_in'] =

percentage_hours_walk_tour(freq_df.iloc[index])

 di['percentage_hours_sport_leisure_in'] =

percentage_hours_sport_leisure(freq_df.iloc[index])

 analysed_data.append(di)

115

Master thesis

freq_analysis_df = pd.DataFrame(analysed_data)

freq_analysis_df.to_csv("dataset_belgium/freq_analysis_metrics_all.csv

")

116

Master thesis

Code for the Variational Autoencoder model

#with timesteps of 2 mins

#not binary, one-hot-encoded

#all data (not deleting weekends and retired people)

import numpy as np

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

import pandas as pd

from datetime import timedelta

from numpy import array

from sklearn.preprocessing import OneHotEncoder

"""## Create a sampling layer"""

class Sampling(layers.Layer):

 """Uses (z_mean, z_log_var) to sample z, the vector encoding a

sequence."""

 def call(self, inputs):

 z_mean, z_log_var = inputs

 batch = tf.shape(z_mean)[0]

 dim = tf.shape(z_mean)[1]

 epsilon = tf.keras.backend.random_normal(shape=(batch, dim))

 return z_mean + tf.exp(0.5 * z_log_var) * epsilon

"""## Build the encoder"""

#tuning parameters

latent_dim = 12

EPOCHS = 30

BATCH_SIZE = 64

TRAIN_SPLIT = 0.8

encoder_inputs = keras.Input(shape=(720, 14))

x = layers.Conv1D(64, 3, activation='relu', strides=1,

padding='same')(encoder_inputs)

x = layers.Conv1D(32, 3, activation='relu', strides=1,

padding='same')(x)

x = layers.Flatten()(x)

x = layers.Dense(32, activation='relu')(x)

z_mean = layers.Dense(latent_dim, name='z_mean')(x)

z_log_var = layers.Dense(latent_dim, name='z_log_var')(x)

z = Sampling()([z_mean, z_log_var])

encoder = keras.Model(encoder_inputs, [z_mean, z_log_var, z],

name='encoder')

encoder.summary()

"""## Build the decoder"""

latent_inputs = keras.Input(shape=(latent_dim,))

x = layers.Dense(720 * 32, activation='relu')(latent_inputs)

x = layers.Reshape((720, 32))(x)

117

Master thesis

x = layers.Conv1D(32, 3, activation='relu', strides=1,

padding='same')(x)

x = layers.Conv1D(64, 3, activation='relu', strides=1,

padding='same')(x)

decoder_outputs = layers.Conv1D(14, 3, activation='softmax',

padding='same')(x)

decoder = keras.Model(latent_inputs, decoder_outputs, name='decoder')

decoder.summary()

"""## Define the VAE as a `Model` with a custom `train_step`"""

class VAE(keras.Model):

 def __init__(self, encoder, decoder, **kwargs):

 super(VAE, self).__init__(**kwargs)

 self.encoder = encoder

 self.decoder = decoder

 self.probas = keras.layers.Dense(10, activation="softmax")

 @tf.function(input_signature=[

 tf.TensorSpec(shape=[None], dtype=tf.string)])

 def serve(self, serialized):

 expected_features = {

 "image": tf.io.FixedLenFeature([28 * 28],

dtype=tf.float32)

 }

 examples = tf.io.parse_example(serialized, expected_features)

 return self.probas(examples["image"])

 def call(self, inputs):

 return self.probas(inputs)

 def train_step(self, data):

 data = data[0]

 with tf.GradientTape() as tape:

 z_mean, z_log_var, z = encoder(data)

 reconstruction = decoder(z)

 reconstruction_loss =

tf.reduce_mean(keras.losses.categorical_crossentropy(data,

reconstruction))

 reconstruction_loss *= 720

 kl_loss = 1 + z_log_var - tf.square(z_mean) -

tf.exp(z_log_var)

 kl_loss = tf.reduce_mean(kl_loss)

 kl_loss *= -0.5

 total_loss = reconstruction_loss + kl_loss

 grads = tape.gradient(total_loss, self.trainable_weights)

 self.optimizer.apply_gradients(zip(grads,

self.trainable_weights))

 return {'loss': total_loss,

 'reconstruction_loss': reconstruction_loss,

 'kl_loss': kl_loss}

"""## Train the VAE"""

load the data

df_yg = pd.read_csv("dataset_belgium/merged.csv", sep=';')

df_wkd = df.loc[(df.weekday > 1.0) & (df.weekday < 7.0)]

118

Master thesis

df_yg = df_wkd.loc[(df.age < 65.0)]

del df_yg['g_regi']

del df_yg['age']

del df_yg['mainmode']

del df_yg['t_withchild']

del df_yg['weekday']

del df_yg['h_hierarchie_urbaine']

df_yg = df_yg.transpose()

df_yg = df_yg[1:]

timeline = []

for timestep in range(0,len(df_yg.index)):

 time = timedelta(seconds=timestep*2*60)

 time = str(time)

 timeline.append(time)

td = pd.TimedeltaIndex(timeline, unit = 'm', freq = 'infer', name =

'timeline')

df_yg = df_yg.set_index(td)

df = df_yg.transpose()

X = []

for index in df.index:

 X.append(df.loc[index])

dta = array(X)

X = np.expand_dims(dta, axis=2)

train_len = int(TRAIN_SPLIT * len(X))

x_train_b, x_test_b = X[:train_len], X[train_len:]

x_train_flat = x_train_b.reshape(-1)

x_test_flat = x_test_b.reshape(-1)

nb_classes = 14

def indices_to_one_hot(data, nb_classes):

 return np.eye(nb_classes)[data]

xt1 = indices_to_one_hot(x_train_flat, nb_classes)

x_train =

xt1.reshape(x_train_b.shape[0],x_train_b.shape[1],nb_classes)

xt2 = indices_to_one_hot (x_test_flat, nb_classes)

x_test = xt2.reshape(x_test_b.shape[0],x_test_b.shape[1],nb_classes)

train

vae = VAE(encoder, decoder)

vae.compile(optimizer=keras.optimizers.Adam(), run_eagerly=True)

vae.fit(x_train, epochs=EPOCHS, batch_size=BATCH_SIZE)

#infer data

encoded_seqs = encoder.predict(x_test)

decoded_seqs = decoder.predict(encoded_seqs)

#pass decoded_seqs to a dataframe comparable to the original

119

Master thesis

td = pd.TimedeltaIndex(timeline, unit = 'm', freq = 'infer', name =

'timeline')

td = td.to_frame()

x_test_df = td.transpose()

decoded_df = td.transpose()

x_test_df = x_test_df[1:]

decoded_df = decoded_df[1:]

#undo one-hot encoding

x_test_undone = np.argmax(x_test, axis=2)

decoded_seqs_undone = np.argmax(decoded_seqs, axis=2)

x_test_final = x_test_undone.reshape(x_test.shape[0],

x_test.shape[1],1)

decoded_seqs_final =

decoded_seqs_undone.reshape(decoded_seqs.shape[0],

decoded_seqs.shape[1],1)

#insert in the new dataframes

for i, seq in enumerate(x_test_final):

 seq = seq.flatten()

 x_test_df.loc[i] = seq

for i, seq in enumerate(decoded_seqs_final):

 seq = seq.flatten()

 decoded_df.loc[i] = seq

x_test_df.to_csv("dataset_belgium/VAE_m42v3/x_test.csv")

decoded_df.to_csv("dataset_belgium/VAE_m42v3/decoded.csv")

x_test_df = pd.read_csv("dataset_belgium/VAE_m42v3/x_test.csv")

x_test_df = x_test_df.transpose()

x_test_df = x_test_df[1:]

x_test_df = x_test_df.transpose()

x_test_df.head()

decoded_df = pd.read_csv("dataset_belgium/VAE_m42v3/decoded.csv")

decoded_df = decoded_df.transpose()

decoded_df = decoded_df[1:]

decoded_df = decoded_df.transpose()

decoded_df.head()

def trips_per_day(serie):

 l = serie.tolist()

 count = 0

 for i, value in enumerate(l):

 if l[i] == 13 and len(l) == 0:

 count += 1

 elif l[i] == 13 and l[i-1] != 13:

 count += 1

 return count

def percentage_travel_per_day(serie):

 se = serie.value_counts(normalize=True)

 if 13 in se.index:

 return se.loc[13]*100

 else:

 return 0

def n_activities_outside(serie):

120

Master thesis

#only takes into account the activity one time

 se = list(serie.unique())

 if 13 in se:

 se.remove(13)

 if 2 in se:

 se.remove(2)

 return len(se)

def n_hours_out_home(serie):

 l = serie.tolist()

 ll = [i for i in l if i != 2]

 hours = (len(ll)*2)/60

 return hours

def percentage_hours_out_home(serie):

 l = serie.tolist()

 ll = [i for i in l if i != 2]

 hours = (len(ll)*2)/60

 p = (hours/24)*100

 return p

def n_hours_at_work(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 3]

 hours = len(ll)*2/60

 return hours

def percentage_hours_at_work(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 3]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_at_home(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 2]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_work_trip(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 4]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_courses(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 5]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_eat_outside(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 6]

 hours = len(ll)*2/60

121

Master thesis

 p = (hours/24)*100

 return p

def percentage_hours_shopping(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 7]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_services(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 8]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_family_visit(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 9]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_walk_tour(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 10]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

def percentage_hours_sport_leisure(serie):

 l = serie.tolist()

 ll = [i for i in l if i == 11]

 hours = len(ll)*2/60

 p = (hours/24)*100

 return p

data = []

for index in x_test_df.index:

 d = {}

 d['n_trips_day_in'] = trips_per_day(x_test_df.iloc[index])

 d['n_trips_day_out'] = trips_per_day(decoded_df.iloc[index])

 d['percentage_travel_day_in'] =

percentage_travel_per_day(x_test_df.iloc[index])

 d['percentage_travel_day_out'] =

percentage_travel_per_day(decoded_df.iloc[index])

 d['n_activities_outside_in'] =

n_activities_outside(x_test_df.iloc[index])

 d['n_activities_outside_out'] =

n_activities_outside(decoded_df.iloc[index])

 d['percentage_hours_outside_in'] =

percentage_hours_out_home(x_test_df.iloc[index])

122

Master thesis

 d['percentage_hours_outside_out'] =

percentage_hours_out_home(decoded_df.iloc[index])

 d['percentage_hours_at_work_in'] =

percentage_hours_at_work(x_test_df.iloc[index])

 d['percentage_hours_at_work_out'] =

percentage_hours_at_work(decoded_df.iloc[index])

 d['percentage_hours_at_home_in'] =

percentage_hours_at_home(x_test_df.iloc[index])

 d['percentage_hours_at_home_out'] =

percentage_hours_at_home(decoded_df.iloc[index])

 d['percentage_hours_work_trip_in'] =

percentage_hours_work_trip(x_test_df.iloc[index])

 d['percentage_hours_work_trip_out'] =

percentage_hours_work_trip(decoded_df.iloc[index])

 d['percentage_hours_courses_in'] =

percentage_hours_courses(x_test_df.iloc[index])

 d['percentage_hours_courses_out'] =

percentage_hours_courses(decoded_df.iloc[index])

 d['percentage_hours_eat_outside_in'] =

percentage_hours_eat_outside(x_test_df.iloc[index])

 d['percentage_hours_eat_outside_out'] =

percentage_hours_eat_outside(decoded_df.iloc[index])

 d['percentage_hours_shopping_in'] =

percentage_hours_shopping(x_test_df.iloc[index])

 d['percentage_hours_shopping_out'] =

percentage_hours_shopping(decoded_df.iloc[index])

 d['percentage_hours_services_in'] =

percentage_hours_services(x_test_df.iloc[index])

 d['percentage_hours_services_out'] =

percentage_hours_services(decoded_df.iloc[index])

 d['percentage_hours_family_visit_in'] =

percentage_hours_family_visit(x_test_df.iloc[index])

 d['percentage_hours_family_visit_out'] =

percentage_hours_family_visit(decoded_df.iloc[index])

 d['percentage_hours_walk_tour_in'] =

percentage_hours_walk_tour(x_test_df.iloc[index])

 d['percentage_hours_walk_tour_out'] =

percentage_hours_walk_tour(decoded_df.iloc[index])

 d['percentage_hours_sport_leisure_in'] =

percentage_hours_sport_leisure(x_test_df.iloc[index])

 d['percentage_hours_sport_leisure_out'] =

percentage_hours_sport_leisure(decoded_df.iloc[index])

 data.append(d)

dfa = pd.DataFrame(data)

123

Master thesis

dfa['diff_n_trips_day'] = abs(dfa['n_trips_day_out'] -

dfa['n_trips_day_in'])

dfa['diff_percentage_travel_day'] =

abs(dfa['percentage_travel_day_out'] -

dfa['percentage_travel_day_in'])

dfa['diff_n_activities_outside'] = abs(dfa['n_activities_outside_out']

- dfa['n_activities_outside_in'])

dfa['diff_percentage_hours_outside'] =

abs(dfa['percentage_hours_outside_out'] -

dfa['percentage_hours_outside_in'])

dfa['diff_perc_hours_at_work'] =

abs(dfa['percentage_hours_at_work_out'] -

dfa['percentage_hours_at_work_in'])

dfa['diff_perc_hours_at_home'] =

abs(dfa['percentage_hours_at_home_out'] -

dfa['percentage_hours_at_home_in'])

dfa['diff_perc_hours_work_trip'] =

abs(dfa['percentage_hours_work_trip_out'] -

dfa['percentage_hours_work_trip_in'])

dfa['diff_perc_hours_courses'] =

abs(dfa['percentage_hours_courses_out'] -

dfa['percentage_hours_courses_in'])

dfa['diff_perc_hours_eat_outside'] =

abs(dfa['percentage_hours_eat_outside_out'] -

dfa['percentage_hours_eat_outside_in'])

dfa['diff_perc_hours_shopping'] =

abs(dfa['percentage_hours_shopping_out'] -

dfa['percentage_hours_shopping_in'])

dfa['diff_perc_hours_services'] =

abs(dfa['percentage_hours_services_out'] -

dfa['percentage_hours_services_in'])

dfa['diff_perc_hours_family_visit'] =

abs(dfa['percentage_hours_family_visit_out'] -

dfa['percentage_hours_family_visit_in'])

dfa['diff_perc_hours_walk_tour'] =

abs(dfa['percentage_hours_walk_tour_out'] -

dfa['percentage_hours_walk_tour_in'])

dfa['diff_perc_hours_sport_leisure'] =

abs(dfa['percentage_hours_sport_leisure_out'] -

dfa['percentage_hours_sport_leisure_in'])

dfa.to_csv("dataset_belgium/VAE_m42v3/analysis.csv")

124

Master thesis

Code for the Encoder-Decoder LSTM model

LSTM not binary

#all data

#only from 10:00 to 21:00

import pandas as pd

from datetime import timedelta

import tensorflow as tf

import numpy as np

from numpy import array, concatenate

from keras.models import Sequential, Model

from keras.layers import Input, LSTM, Dense

load the data

df = pd.read_csv("dataset_belgium/merged.csv", sep=';')

df_wkd = df.loc[(df.weekday > 1.0) & (df.weekday < 7.0)]

df_yg = df_wkd.loc[(df.age < 65.0)]

del df_yg['g_regi']

del df_yg['age']

del df_yg['mainmode']

del df_yg['t_withchild']

del df_yg['weekday']

del df_yg['h_hierarchie_urbaine']

df_yg = df_yg.transpose()

df_yg = df_yg[1:]

timeline = []

for timestep in range(0,len(df_yg.index)):

 time = timedelta(seconds=timestep*2*60)

 time = str(time)

 timeline.append(time)

td = pd.TimedeltaIndex(timeline, unit = 'm', freq = 'infer', name =

'timeline')

df_yg = df_yg.set_index(td)

#take only timesteps multiple of 4 to make calculations easier after

timestep_6 = []

for i in range (0,720,3):

 timestep_6.append(i)

df_10 = df_yg.iloc[timestep_6]

df = df_10.transpose()

#from pandas dataframe to array of rows

L = []

for index in df.index:

 #only from 10:00 to 21:00

 L.append(df.loc[index][100:210])

dta = array(L)

X_ini = np.expand_dims(dta, axis=2)

#get sequences of n_steps_in timesteps and predict the next

n_steps_out timesteps

125

Master thesis

split a univariate sequence into samples

def split_sequence(sequence, n_steps_in, n_steps_out):

 #X is input sequence, y is output sequence, y_1 is output sequence

one timestep forward

 #the last n_steps_in + n_steps_out are omitted because they would

be out of range (problem?)

 X, y, y_1 = list(), list(), list()

 for i in range(len(sequence)):

 # find the end of this pattern

 """check"""

 end_ix = i + n_steps_in

 # check if we are beyond the sequence

 if end_ix > len(sequence)-1:

 break

 # gather input and output parts of the pattern

 seq_x = sequence[i:end_ix]

 seq_y_1 = sequence [end_ix:end_ix+n_steps_out]

 seq_y = np.concatenate((array([[0]]),seq_y_1[:-1]))

 if len(seq_y) == n_steps_out and len(seq_y_1) == n_steps_out:

 X.append(seq_x)

 y.append(seq_y)

 y_1.append(seq_y_1)

 return array(X), array(y), array(y_1)

choose a number of time steps

n_steps_in = 70 #from 10:00 to 17:00

n_steps_out = 40 #from 17:00 to 21:00

#prepare the data

encoder_input_data, decoder_input_data, decoder_target_data =

array([]), array([]), array([])

number_of_samples_to_train_on = 6000

for i, seq in enumerate(X_ini[:number_of_samples_to_train_on]):

 x, y, y_1 = split_sequence (seq, n_steps_in, n_steps_out)

 if i == 0:

 encoder_input_data = x

 decoder_input_data = y

 decoder_target_data = y_1

 else:

 encoder_input_data = np.append(encoder_input_data, x, axis=0)

 decoder_input_data = np.append(decoder_input_data, y, axis=0)

 decoder_target_data = np.append(decoder_target_data, y_1,

axis=0)

X_flat = encoder_input_data.reshape(-1)

y_flat = decoder_input_data.reshape(-1)

y_1_flat = decoder_target_data.reshape(-1)

nb_classes = 14

def indices_to_one_hot(data, nb_classes):

 return np.eye(nb_classes)[data]

#one-hot encode variables

xt1 = indices_to_one_hot(X_flat, nb_classes)

126

Master thesis

X =

xt1.reshape(encoder_input_data.shape[0],encoder_input_data.shape[1],nb

_classes)

yt2 = indices_to_one_hot(y_flat, nb_classes)

y =

yt2.reshape(decoder_input_data.shape[0],decoder_input_data.shape[1],nb

_classes)

yt2_1 = indices_to_one_hot(y_1_flat, nb_classes)

y_1 =

yt2_1.reshape(decoder_target_data.shape[0],decoder_target_data.shape[1

],nb_classes)

returns train, inference_encoder and inference_decoder models

def define_models(n_input, n_output, n_units):

 #n_input = number of features of input sequence

 #n_output = number of features of output sequence

 #n_units is the dimension of the latent space

 # define training encoder

 encoder_inputs = Input(shape=(None, n_input))

 encoder = LSTM (n_units, return_state = True)

 encoder_outputs, state_h, state_c = encoder(encoder_inputs)

 encoder_states = [state_h, state_c]

 #define training decoder

 decoder_inputs = Input(shape=(None, n_output))

 decoder_lstm = LSTM(n_units, return_sequences = True,

return_state=True)

 decoder_outputs, _, _= decoder_lstm(decoder_inputs,

initial_state=encoder_states)

 decoder_dense = Dense(n_output, activation='softmax')

 decoder_outputs = decoder_dense(decoder_outputs)

 model= Model([encoder_inputs, decoder_inputs], decoder_outputs)

 #define inference encoder

 encoder_model = Model(encoder_inputs,encoder_states)

 #define inference decoder

 decoder_state_input_h = Input(shape=(n_units,))

 decoder_state_input_c = Input(shape=(n_units,))

 decoder_states_inputs = [decoder_state_input_h,

decoder_state_input_c]

 decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs,

initial_state=decoder_states_inputs)

 decoder_states = [state_h, state_c]

 decoder_outputs = decoder_dense(decoder_outputs)

 decoder_model = Model([decoder_inputs] + decoder_states_inputs,

[decoder_outputs] + decoder_states)

 #return all models

 return model, encoder_model, decoder_model

#generate target given source sequence

def predict_sequence(infenc, infdec, source, n_steps, cardinality):

 #encode

 state = infenc.predict(source)

 #start of sequence input

 target_seq = np.array([0 for _ in range(cardinality)]).reshape(1,

1, cardinality)

 #collect predictions

 output = list()

127

Master thesis

 for t in range(n_steps):

 #predict next char

 yhat, h, c = infdec.predict([target_seq] + state)

 #store prediction

 output.append(yhat[0,0,:])

 #update state

 state = [h,c]

 #update target sequence

 target_seq = yhat

 return np.array(output)

configure problem

n_features = 14

latent_dim = 128

define model

train, infenc, infdec = define_models(n_features, n_features,

latent_dim)

train.compile(optimizer='rmsprop', loss='categorical_crossentropy',

metrics=['accuracy'])

train model

train.fit([X, y], y_1, batch_size=32, epochs=10, validation_split=0.2

time_in = []

for column in df.columns[100:170]:

 time_in.append(column)

t_in = pd.TimedeltaIndex(time_in, unit = 'm', freq = 'infer', name =

'timeline')

t_in = t_in.to_frame()

time_out = []

for column in df.columns[170:210]:

 time_out.append(column)

t_out = pd.TimedeltaIndex(time_out, unit = 'm', freq = 'infer', name =

'timeline')

t_out = t_out.to_frame()

input_df = t_in.transpose()

output_df = t_out.transpose()

predicted_df = t_out.transpose()

input_df = input_df[1:]

output_df = output_df[1:]

predicted_df = predicted_df[1:]

for i in range(0,873):

 #get one sample of the dataset

 sample_number = number_of_samples_to_train_on+i

 n_steps_in = 70

 n_steps_out = 40

 x_pred, y_pred, y_1_pred = split_sequence (X_ini[sample_number],

n_steps_in, n_steps_out)

 #one-hot encode the sample

 x_pred_flat = x_pred.reshape(-1)

 xt = indices_to_one_hot(x_pred_flat, nb_classes)

 X_pred = xt.reshape(x_pred.shape[0], x_pred.shape[1], nb_classes)

128

Master thesis

 #make a prediction (inference)

 target = predict_sequence(infenc, infdec, X_pred, n_steps_out,

n_features)

 #one-hot decode sequences

 decoded_target = np.argmax(target, axis=1)

 input_sentence = np.argmax(X_pred, axis=2)

 input_sentence = list(input_sentence.flatten())

 y_1_pred = list(y_1_pred.flatten())

 decoded_target = list(decoded_target.flatten())

 input_df.loc[i] = input_sentence

 output_df.loc[i] = list(y_1_pred)

 predicted_df.loc[i] = list(decoded_target)

input_df.to_csv("dataset_belgium/LSTM/input_seqs.csv")

output_df.to_csv("dataset_belgium/LSTM/output_seqs.csv")

predicted_df.to_csv("dataset_belgium/LSTM/predicted_seqs.csv")

