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Abstract

In this study we investigate the formation of the self-trapped hole (STH) in two high
and low-temperature phases of NaNbO3 (cubic and rhombohedral phases) by using
both DFT with application of local potentials and HSE06. In both phases, we first
investigate the existence of polaron in the lattice which is manually distorted and
one electron is removed from its system. Then various energy regimes of formed STH
is calculated using DFT+U and HSE06 in order to investigate the stability of the
formed STH. Comparing trapping energy of STH in rhombohedral and cubic phase
shows that the appeared STH in rhombohedral phase of NaNbO3 is noticeably more
stable compared to the one in cubic phase in condition which U parameter applied
on Nb and O atoms in both cases are equal. It is then shown that applying various
U parameters on Nb and O atoms, yield a piecewise linear behaviour of the total
energy with respect to fractional charge. In order to find the best U parameter
which can be used for future works, lattice parameters and band gap obtained from
different composition of U parameter on Nb and O are compared to the available
experimental results. In the case of rhombohedral phase, U(Nb4d)= 4,6 eV and
U(O2p)= 4 eV gives a very good linear response in total energy curves with respect
to fractional charge and have a good agreement with experimental data. For cubic
phase, U(Nb4d)= 4 eV and U(O2p)= 6 eV is in best agreement with experimental
studies.
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Chapter 1

Introduction

In polarised materials, with partial ionic properties, the charges can be localized
to a special site and form a polaron [1, 2]. Depending on the size of distortion
that polaron cause in the system it is categorized into small (Holstein polaron) and
large (Fröhlich) polaron [3]. The polaron transport mechanism unlike free charges in
simple metals, is by a hopping mechanism which is a thermally activated process and
it is exponentially dependent on temperature [4,5]. Unlike typical semiconductors,
the energy barrier for motion of polarons is not the band gap energy but it is
the energy difference between the conduction band minimum (CBM) and polaronic
band state which will be smaller compared to energy gap [5]. However, since polaron
transport mechanism is dependent on temperature, their mobility is not high and it
is extremely disadvantageous for materials application [6]. Therefore, investigation
of appearance of polaron in different materials is of great importance as it directly
affects its properties. Formation of polarons in transition metal oxides is favorable
due to strong phonon-electron interactions.

NaNbO3 is a transition metal oxide with perovskite structure which has attracted
widespread attention as it is environmental friendly, non-toxic, low cost, low den-
sity and shows outstanding chemical, physical, mechanical and electronic proper-
ties which makes it a good candidate for various technological applications [7–10].
NaNbO3 goes through a very complex sequence of phase transitions in different tem-
peratures [11, 12]. Different high and low temperature phases of this material has
been studied both experimentally and theoretically [13,14]. Although, there is not
much debate on high temperature phases of NaNbO3 among researchers, there is
strong controversies regarding low and room temperature phases of NaNbO3 [13,14].
NaNbO3 has a cubic (Pm3̄m) crystal structure and paraelectric properties in tem-
peratures above 913 k. At low temperatures below 173 K, NaNbO3 has a rhombo-
hedral crystal system with space group R3c/R3̄ and ferroelectric (FE) properties.
It is widely accepted that in a wide range of low temperatures, there is co-existence
of both rhombohedral and orthorhomic phases [11,12].

Since formation of polarons directly affects different properties of NaNbO3 such
as electronic and optoelectronic properties, studying the appearance of polaron in
this perovskite material can be very beneficial to its application in electronics and
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photocatalysis [15–17]. The formation of a small polaron which is bound to a de-
fect inside the lattice structure in various perovskites including NaNbO3 is already
studied [8, 18, 19]. However, the self-trapped hole/electron polarons are harder to
detect and not enough information is available in this subject. There has been
studies which have detected the small polarons in different similar perovskite mate-
rials such as BaTiO3, and SrT iO3, which provided the motivation for the present
research [6]. We investigate the formation of STH polarons in cubic and rhombo-
hedral phases of NaNbO3 by using two different functionals of DFT+U and hybrid
functionals (HSE06). Since exploring the polaronic effect is highly sensitive to the
method that has been used, results from these two functional are compared. The
stability of the polarons in two phases are investigated by comparing their differ-
ent energy regimes. The optimum values of U parameter on both Nb and O are
investigated using piecewise linearity method.
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Chapter 2

Theory

2.1 Physics of Polaron

Polarons have attracted a great attention during the last 50 years. There has been
both theoretical and experimental studies of polaron properties. Polarons form in
polar crystals namely as ionic crystal and polar semiconductors [20].

Electron/hole transport inside a material directly affects its electronic properties.
An electron can be a free charge in a fermi gas or it can be localized to the atoms
in its surrounding. Neglecting forces between conduction electrons (or free charge
carriers) with ions in the material, is no more valid and electron-ion Coulombic
forces need to be considered [5, 20]. Depending on the type of material which is
under study, there are three types of interaction between a charge carrier and lattice
[20]:

• Fröhlich coupling: This type of interaction occurs in polar crystals where
charge carrier strongly couples with Longitudinal Optical (LO) phonons.

• Piezoelectric coupling: In materials with a specific symmetry, charge carrier
couples with acoustic phonons which is addressed as piezoelectric coupling.

• Deformation coupling: In all type of crystal structures, electron energy can be
affected by the deformation in the system. This deformation is caused due to
acoustic phonons.

Fröhlich coupling is a strong coupling and the focus of this study. This mechanism
can cause the formation of polarons in the system. When there is a free charge carrier
in the lattice structure, it polarizes the atoms in its neighborhood and move them
from their original position. This adds an additional potential well around subjected
charge carrier and free charge becomes bound to the distorted site. This local
distortion and polarization formed in the system, move along when the charge start
moving under an electric field. This charge carrier and its associated local distortion
and polarization is referred to as polaron. If the localization of charge carrier to a
distorted site has higher gain in energy compared to the energy required to move
the atoms from their equilibrium sites, a stable polaron can form [2,20,21].
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Polaron has different effective mass compared to the free charge that initially caused
its formation. Formation of polarons in Transition metal oxides (TMO) have been
widely investigated due to their various technological applications in photovoltaics,
thermoelectrics, transistors, sensors, and more [22–25]. Therefore, studying charge
transport and electron-phonon coupling is of great importance and electronic prop-
erties of TMOs can be improved by energy barrier engineering.

The associated distortion in the system in compounds with strong phonon-electron/
hole coupling is small and limited to the unit cell. In these cases, where there
is small distortion compared to the lattice parameters, small polarons (Holstein
polaron) is formed [5, 26]. Fig.2.1.a shows a small polaron in TMO lattice. In
the case of Holstein polaron, electron-phonon coupling is strong which restricts the
formed distortion to its neighborhood. When distortion caused by the trapped
charge carrier is large compared to unit cell parameters, large polarons (Fröhlich
polaron) form [5, 27]. In such case, phonon-electron interaction is weaker, long
range interactions become noticeable and distortion caused by the charge carrier is
spatially extended [5, 27].

2.1.1 Polarons in ionic crystals

In ionic crystals, there is a strong coupling between the charge carrier and lattice
(Fröhlich coupling) which forms a dielectric medium [2, 21]. Charge carrier in the
polar ionic crystal, induce a displacement field [28]:

D(r, rel) = −∇ e

|r − rel|
(2.1)

Where D is the displacement field caused by the charge carrier, e is electric charge
value, r is the spatial coordinate and rel is the position of the charge carrier. Cou-
pling of this displacement field with lattice phonons (lattice dynamics in general)
forms a Polarization field [28]:

P (r) =
1

4π
∇Vpol (2.2)

Where P (r) is polarization field at position r and Vpol is polarization potential. In
order to investigate polarons in the material, we need to define a frequency dependent
dielectric constant [28]:

D = ε(ω)E (2.3)

Where ε is dielectric constant, ω is frequency and E is the electric field inside
dielectric medium. It is worth mentioning that dielectric constant is only dependent
on frequency while equation 2.3 shows that the produced electric field is dependent
on dielectric constant. Displacement field, polarization field and electric field are
related given equation 2.5 [28]:

4πP (r) = D(r)− E(r) (2.4)

The response to the produced electric field in dielectric medium has two contribu-
tions:
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(i) High frequency contribution: This type of contribution is produced by high
frequency oscillations of electron clouds around atomic positions.

(ii) Low frequency contributions: Oscillation of positive and negative ions cause a
low frequency contribution.

Polarization field can then be written as [28]:

P (r) = P0(r) + P∞(r) (2.5)

Where P0(r) and P∞(r) are polarization field caused by low frequency and high
frequency contributions, respectively. Low frequency contribution to the polariza-
tion field is roughly independent from high frequency perturbations which is an
important assumption for investigation of polarons.

In order to understand the nature of polarons, a dielectric continuous medium is
considered. A charge carrier with velocity υ is constrained to a small volume with
radius R1. The characteristic time for ions oscillations is 2π

ω0
. The motion of charge

carrier can be static or dynamic. Both cases will be discussed. Charge carrier motion
is assumed to be static if it is further away from 2π

ω0
υ (outside the sphere) while its

motion is dynamic inside the sphere with constant potential [2,21,28] The potential
energies of charge carrier in and out of the imaginary volume (with radius R1) are
defined as:

(i) Inside the imaginary sphere [28]:

Epot =
−e2

ε̃R1

(2.6)

(ii) Outside the imaginary sphere [28]:

Epot =
−e2

ε̃r
(2.7)

If we minimize the total energy with respect to R1, considering static motion of
electron [28]:

R1 =
(2πh̄)2ε̃

me2
(2.8)

Investigation of polaron in a dynamic fashion, where characteristic wavelength of
electron is smaller than 2π

ω0
υ, radius of trapping potential is obtained [28]:

R1 = 2π(
h̄

mω0

)
1
2 (2.9)

The potential energies for static and dynamic motion of electron are related to each
other by equation 2.10 [28]:

− U1

h̄ω0

= (
U2

h̄ω0

)2 =
1

2π2
αF

2
r (2.10)
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Where U1 and U2 corresponds to potential energies of electron in static and dynamic
fashion, respectively. αF r is a dimensionless coupling constant defined by Fröhlich
as [2, 21,28]:

αF r =
e2

ε̃
√

2

√
m

h̄3ω0

(2.11)

αF r can vary between 0.1-5, depending on the type of material. Large values of
αF r refers to the static motion of charge carrier and small values correspond to the
dynamic motion [28].

2.2 Polaron transport in solids

Electron transport in a system can be categorized into two cases:

• Free electron/hole which is the typical behavior of simple metals,

• Electrons/holes which are localized inside a defective site of the lattice (dis-
tortion or vacancy).

Second scenario will be discussed with more details in this section. The idea that
a self-trapped charge can be formed was initially proposed by Landau [2]. As it is
already discussed in the previous section, trapping of the hole is restriction of charge
to a quite deep potential well in a specific site which it can no more move freely
and cause the formation of a distortion inside the lattice structure. The polaron
transport mechanism can change electrical conductivity behavior of the material
and it transfers by a hopping mechanism. In materials which the mobility of charges
are dominated by a hopping mechanism, since the charge carrier needs energy to
overcome the band gap and this can be provided by thermal energy, the conductivity
is an Arrhenius-type temperature dependent [4,5]. In normal semiconductors (band
semi-conductors), the charge carriers need an energy equal to their band gap energy
in order to be activated. In materials where polarons form, the activation energy
is the energy difference between local band state of polaron and the conduction
band [29, 30]. Fig. 2.1.a schematically shows how the polaron is formed inside the
lattice structure of a TMO. As it can be seen in the image, localization of negative
charge to one of the cations caused a distortion in that site which as a result, O
atoms are moving further away and cations are moving closer to the center. Fig. 2.1.b
shows the hopping mechanism of a small polaron in a TMO moving from one site to
a neighbouring site. As polaron moves along the bond length, it needs to overcome
an energy barrier (WH) which is shown in Fig. 2.1.c. The deformation in Fig. 2.1.c
is equal and reversible in both sites, consequently, the hopping mechanism indicated
in Fig. 2.1.c is adiabatic and the energy barrier for transport of polaron from the
atom on the right to the atom in the left is equal to the energy barrier for a case
which the opposite occurs.
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(a) (b)

(c)

Figure 2.1: (a) Schematic illustration of polaron formation with its associated lattice dis-
tortion, (b) Change of bond length during polaron hopping mechanism, (c) Energy diagram
illustration for electron moving from one lattice site to its neighbour site [5].

Fig. 2.2 shows the formation of polaron in cubic phase of SrT iO3. Erhart. et al [6].
shows that STH in SrT iO3 is formed on 2p orbital of an O atom. As it can be seen
in Fig. 2.2.a, all the other O atoms are moving closer to the one with major positive
charge localization while cations (Sr and Ti) are moving further away from the O
atom in the center. Fig. 2.2.b clearly shows the charge localization with a 2p nature
on the O in the center.

Figure 2.2: Polaron formation in cubic phase of SrT iO3; (a) geometric illustration of
formed distortion in the polaronic site, (b) partial charge density on each atom in the
polaronic site (c) band structure of cubic phase of SrT iO3 showing a STH band level [6].
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Fig. 2.3 shows the band diagram of a material with polaron, schematically. The
activation energy barrier for a charge is sum of:

• J : Electron transfer integral,

• ES: Energy required for generation of a charge carrier,

• WH : Hopping energy barrier.

While ES and WH are determined by thermal activation process which is discussed
in this section, J is determined by overlap between wavefunction of neighbouring
sites [5]. These different energy regimes are shown in Fig. 2.3.

Figure 2.3: Schematic illustration of band diagram in materials with localized charge car-
riers [5].

2.3 Review on formation of polarons in oxides

As it is discussed earlier, the formation of polaron is along with the change in the
oxidation state of atoms and a distortion in the lattice. DFT calculations overdelo-
calizes the charge in the system, while for obtaining a polaronic state in the system,
charge needs to be localized. Geneste et al. investigated the formation of both STH
polarons and oxygen-type hole polarons in BaSnO3 using modified Hubbard model
(DFT+U) and occupation matrix control. The reported formation energy of STH
polaron in BaSnO3 is 0.20 eV while oxygen-type hole polarons has a formation
energy of -0.3 eV. Deskins et al. has shown that in TiO2 with oxygen vacancies,
applying a Hubbard U-parameter on the O(2p) states can change the oxidation state
of Ti4+ to Ti3+ by adding one electron to the system. Ding et al. showed that in-
troducing a Li atom into the MoO3 cell, can change the oxidation state of Mo6+ to
Mo5+. In both TiO2 and MoO3, the lattice structure is distorted. Erhart et al. also
reported the formation of STH polarons in SrTiO3 and BaTiO3 by using DFT+U
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and hybrid functional. The obtained formation energy of STH polaron in SrTiO3

using DFT+U (U parameter of 8 eV on O(2p) states) and HSE06 is -0.09 eV. The
formation energy of polarons in BaTiO3, reported by Erhart et al. is -0.20 eV with
application of DFT+U and hybrid functional. the formation energy of STH polaron
in PbTiO3 reported by Erhart et al is +0.24 eV (using LDA+U) which implies that
STH polarons does not form in this perovskite oxide. The reason for metastable
polaronic state in PbTiO3 can be attributed to the strong coupling between Pb(6s)
and O(2p) orbitals. This strong coupling puts VBM of PbTiO3 in higher energy
levels compared to BaTiO3 and SrTiO3.

2.4 NaNbO3 (NaNbO3)

2.4.1 Phase Transitions in NaNbO3

Sodium Niobate with chemical formula (NaNbO3) is among some of the most
attractive materials due to its application in wide range of optics, optoelectron-
ics, thermoelectrics, sensors, and photocatalysis. NaNbO3 is a ferroelectric (at
room temperature) perovskite material which similar to other perovskite struc-
tures, it goes through several phase transitions [12,31]. The perovskite structure of
NaNbO3 consists of NaO6 octahedras with Na atoms in between them (shown in
Fig. NaNbO3fig:phases of NaNbO3. Both phase transitions in high and low tem-
peratures are due to tilting of NaO6 octahedra [12,13]. Due to NaNbO3 appealing
electronic and mechanical properties, it is a good option for technological applica-
tions.

Figure 2.4: Schematic illustration of different crystal systems of NaNbO3; (a) The rhom-
bohedral R3c phase, (b) the orthorhombic Pbcm phase, (c) monoclinic Pm phase, and (d)
cubic Pm3̄m phase [12].

Table NaNbO3tab:phase-transitions-in-NaNbO3hows that NaNbO3 has an AFE
properties in room temperature (below 633 K). NaNbO3 has a cubic structure with
space group of Pm3̄m with paraelectric properties (PE) at temperatures higher
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than 913 K [12]. At 913 K the crystal structure changes to tetragonal system with
P4/mbm space group. By decreasing the temperature to 633 K, NaNbO3 goes
through several phase transitions, having orthorhombic crystal structure while it
shows antiferroelectric (AFE) behavior in temperature range of 633-753 K. NaNbO3

has ferroelectric (FE) properties in temperatures lower than room temperature.
There is not much debate on high-temperature phases of NaNbO3 while researches do
not completely agree on low-temperature phases of this material [12,32]. Although,
there are plenty of studies available on experimental investigation of NaNbO3 phase
transitions in low-temperatures, there are several controversies regarding FE behav-
ior of NaNbO3 in low temperatures. Data obtained from X-ray and neutron powder
diffraction shows that it has a mixture of monoclinic Pm phase to Orthorhombic
crystal structure with Pbcm space group at room temperature. Experimental stud-
ies also reveal that NaNbO3 shows both FE (R3c phase) and AFE (Pbcm) behavior
in a wide range of temperatures as these phases have a very small energy difference.
Fig. NaNbO3fig:phases of NaNbO3hows the cubic, rhombohedral, monoclinic and
orthorhombic crystal structures of NaNbO3 [33]. In order to improve the use of
NaNbO3 in technical applications, both theoretical and experimental investigations
of room temperature phases of this perovskite material is necessary.

Table 2.1: Phase transitions of NaNbO3 in various temperatures [12, 33, 34].

Temperature [K] Ferroelectric properties Crystal system Space group
T >913 PE Cubic Pm3̄m
913 PE Tetragonal P4/mbm
848 PE Orthorhombic Cmcm
793 PE Orthorhombic (S phase) Pnmm
753 AFE Orthorhombic (R phase) Pmnm
633 AFE Orthorhombic (P phase) Pbcm
173 FE Rhombohedral (N phase) R3c/R3̄

2.4.2 Simple Cubic NaNbO3 (Pm3̄m)

Fritsch et al. [12] obtained total energy curves for unit cell of simple cubic, rhom-
bohedral, orthorhombic and monoclinic phases of NaNbO3 by using experimental
lattice parameters as initial values. Different exchange-correlation functionals have
been applied. Fig. 2.5 shows total energy curves of different phases of NaNbO3 with
respect to equilibrium unit-cell volume obtained by applying different functionals.
They calculated lattice parameter (a) and bulk moduli (B) using these energy curves
for different phases of NaNbO3.
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Figure 2.5: Total Energy curves for multiple crystal structures of NaNbO3 computed by
using PBE, PBEsol, AM05, and PBE0 functionals; (a) rhombohedral R3c phase, (b) or-
thorhombic Pbcm, (c) monoclinic Pm, and (d) simple cubic Pm3̄m phase. The dashed
line in the middle of each graph is experimental value of equilibrium unit-cell volume [12].

Table 2.2 shows computed lattice parameter and bulk moduli of cubic NaNbO3

using PBE, PBEsol, AM05 and hybrid functional (PBE0) in order to compare to the
experimental results. Comparing the computed unit-cell volume with the available
experimental results, implies that PBEsol, AM05 and PBE0 functionals yield a
closer result in calculation of the lattice parameter and equilibrium unit cell volume
compared to PBE functional, while they all highly overestimates the bulk moduli
value. Compared to the other three functionals, PBE gives a better result regarding
the value of bulk moduli when it is compared to the experimental value.

Table 2.2: Electronic and structural properties of cubic Pm3̄m NaNbO3 [12].

Cubic Pm3̄m PBE PBEsol AM05 Hybrid functional (PBE0) Experimental values

a [Å] 3.975 3.944 3.947 3.931 3.95
V [Å3] 62.807 61.349 61.490 60.745 61.66
Band gap energy [eV] - Indirect 1.65 1.63 1.64 3.75 3.29

Fig. 2.6 shows computed band structure of cubic NaNbO3 by different exchange-
correlation functionals. The experimental band gap of cubic NaNbO3 is measured
as an indirect band gap of 3.29 eV. The calculated indirect Kohn Sham band gap of
cubic NaNbO3 reported by Fritsch et al. [12] (shown in table. 2.2), is 1.65, 1.63, 1.64,
and 3.75 eV for PBE, PBEsol, AM05, and hybrid functional (PBE0), respectively.
Comparing these values to the experimental band gap of cubic NaNbO3, shows that
PBE, PBEsol and AM05 functionals, highly underestimate the energy gap (up to
50%) while hybrid functional overestimate the band gap by around 15%.
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Figure 2.6: Band structures of cubic NaNbO3 computed by using different functionals; (a)
PBE, (b) PBEsol, (c) AM05, and (d) hybrid functional (PBE0) [35].

2.4.3 Rhombohedral NaNbO3 (R3c/R3̄)

Unit cell of R3c phase of NaNbO3 consists of 30 atoms. Fig. 2.5.a shows total energy
curve of rhombohedral R3c phase of NaNbO3 by application of different exchange-
correlation functionals. From total energy curves, lattice parameters and unit-cell
volume are calculated. In Fig. 2.5.a and table NaNbO3tab:Electronic and structural
properties of rhombohedral R3c NaNbO3 it is clear that in rhombohedral phase of
NaNbO3 similar to cubic phase, PBE functional overestimate unit cell volume and
the other two functionals (PBEsol and AM05) yields a closer result to the observed
value in experimental studies [12, 36, 37]. This is worth mentioning that reported
experimental values of lattice parameters in R3c phase of NaNbO3 by Fritsch et
al. is different with what has been reported by other experimentalists [38]. Lattice
parameters of a = b = 5.33 Å and c = 15.62 Å is also reported by Boukriba et al. [38]
obtained from crystalline phase of rhombohedral NaNbO3 using X-ray diffraction
patterns.
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Table 2.3: Electronic and structural properties of rhombohedral NaNbO3 (R3c) [12].

Rhombohedral R3c PBE PBEsol AM05 Experimental values

a [Å] 5.55 5.48 5.50 5.48
c [Å] 13.88 13.72 13.76 13.68
V [Å3] 371.27 357.99 361.314 356.06
Band gap energy [eV] - direct 2.81 2.66 2.709 N.A.

Fig. 2.7 shows computed band structure of rhombohedral R3c phase of NaNbO3

using PBEsol functional. Unfortunately, there is no experimental data available
on the band gap of this phase. The calculated direct band energies of R3c phase
using PBE, PBEsol, and AM05 are significantly larger than the indirect band gap
of cubic phase. The valence bandwidth in both cubic and rhombohedral phases are
very similar.

Figure 2.7: Electronic band structure of rhombohedral phase (R3c) of NaNbO3, obtained
by using PBEsol functional [12].
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Chapter 3

Technical background

3.1 Density Functional Theory (DFT)

Density Functional Theory (DFT) is first suggested by Thomas and Fermi in 1927-
1928 [39]. Based on their publication, this time atomic properties are completely
described by electron density n(r). DFT nowadays is a powerful tool in order to
understand electronic and magnetic properties in solids and molecules. This method
is used to approximately solve the Schrödinger equation for a many-body system.
Schrödinger equation basically contains all the useful information to understand
state of the system. It is solvable for simple 2D systems or Hydrogen atoms but it
is not absolutely solvable for N-body systems. However, DFT makes some accurate
approximations in order to solve the Schrödinger equation [40].

In DFT, instead of using wavefunction of each single electron, electron density is
used (unlike HF method where the wavefunction of electron is the main function).
Consider an interacting system of the electrons with an external potential of V (r).
Hamiltonian operator can then be written as:

Ĥ = T̂ + Û + V̂ (3.1)

Where T̂ is the kinetic energy operator and Û is Coulomb interaction operator. V̂
is the external potential. T̂ consists of kinetic energy of both N electrons and N
nuclei. Û has contribution of electron-electron interactions, nuclei-nuclei interaction
and electron-nuclei interactions. Since mass of nuclei is significant compared to
electron mass, based on Born-Oppenheimer (BO) approximation, we can neglect
contribution of nuclei kinetic energy in T̂ term. Consequently, nuclei position is
fixed and position vector of nuclei is a constant [39–43].

3.1.1 Hohenberg-Kohn theories (HK)

In DFT, interactions between two electrons (placed in a gas of electrons) is cal-
culated by classical Coulomb potential. Based on Hohenberg-Kohn theorems (HK
theorems), any potential that is not electron-electron potential is considered as an
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external potential. Ground state wavefunction (Ψ) and electron density n(r) can
then be calculated by substitution of Hamiltonian operator (contribution from ex-
ternal potentials is considered) in Schrödinger equation. Hohenberg-Kohn I and II
theorems are as follow:

• HK I theorem: The potential of a system which is exposed to an external
potential can be calculated using electron density. By having ground state
density, all properties of a system can be calculated using Hamiltonian. It
suggests that ground state wave function of a many body system is equal to
the function of a ground state density (3.2).

Ψ0(r1, r2, r3, ..., rN) = Ψ(n0(r)) (3.2)

Where n0(r) is ground state electron density.

• HK II theorem: “A universal functional for the energy in terms of the
density can be defined such that the exact ground-state energy is the global
minimum of this functional and that the density that minimizes the functional
is the ground-state density”(3.3) [44,45]:

E[n0] ≤ E[n′] (3.3)

Where n′ is any other density.

3.1.2 Kohn-Sham method (KS)

In a Kohn-Sham (KS) system, particles are non-interacting and they produce same
density as a system with interacting particles. It is clear that finding such system
will be a challenge. In KS method, we consider two systems of interacting and
non-interacting particles. These two systems have the same electronic density of
n(r). External potential of the interacting system and non-interacting system are
Vi[n] and VN.i[n], respectively. Kinetic energy functional of an interacting system
(Ti[n]) is sum of the kinetic energy of a non-interacting system (TN.i[n]) plus kinetic
correlation energy (Tc[n]), shown in equation 3.4 [46,47].

Ti[n] = TN.i[n] + Tc[n] (3.4)

In order to get the total energy of an interacting system (Ei[n]) we need to get the
sum of its kinetic energy (Ti[n]), Coulomb potential (Ui[n]) and external potential
(Vi[n]).

Ei[n] = Ti[n] + Ui[n] + Vi[n] (3.5)

Coulomb potential of an interacting system (Ui[n]) is contribution of exchange po-
tential energy of electrons based on Pauli principle (Ux[n]), Hartree potential (UH [n])
which shows Coulomb interaction of a single electron with all the N-1 electrons, and
correlation potential (Uc[n]).

Ui[n] = Ux[n] + UH [n] + Uc[n] (3.6)
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By substitution of Coulomb potential term of interacting system from 3.6 into 3.5,
total energy of an interacting system will be:

Ei[n] = Ti[n] +Ui[n] + Vi[n] = TN.i[n] + Tc[n] +Ux[n] +UH [n] +Uc[n] + Vi[n] (3.7)

Sum of Ux[n], Uc[n], and Tc[n] is defined as a new term named total exchange energy
(Ex[n]):

Ex[n] = Tc[n] + Uc[n] + Ux[n] (3.8)

The total energy of an interacting system will be then turned into:

Ei[n] = UH [n] + TN.i[n] + Ex[n] + Vi[n] (3.9)

In order to calculate the exchange energy, we need to use approximations. Local
Density Approximation (LDA), suggests that if charge density changes slowly inside
a material, we can consider that we have a homogeneous electron gas. Therefore,
in the exchange energy only electronic density term is considered. However, in
Generalized Gradient Approximation (GGA), along with electron density, gradient
of electronic density is also considered for calculation of exchange energy. Depending
on the type of material, we can use either LDA or GGA approximation. It is
important to know that although GGA approximation is quite accurate in predicting
the properties of molecules, it is not very precise when it comes to materials free
charges such as metals or strongly correlated systems [48]. Later on, another
approximation for GGA was proposed in order to calculate exchange correlation
energy which includes second order gradient of electron density (PW91) [49]. PBE
functional is then proposed as a more simplified GGA approximation for calculation
of exchange correlation energy [50].

3.2 DFT+U method for investigation of po-

larons

Density Functional Theory (DFT) is a great way to predict structural properties of
different materials while it fails in predicting electronic properties of semiconductors.
It is impossible to calculate the precise total energy of a system using DFT as in
calculation of total energy a simple approximation which is briefly discussed in
section 3.1 is used for obtaining exchange correlation energy (Ex). In order to have
a good approximation on total energy of the system, Ex term has to cover all the
correlations and spin interactions of the system. Since it is very difficult to get
to a model which Ex can precisely describe its dependence on electronic density,
DFT fails in predicting the electronic properties of a system where its properties
are highly controlled by many-body electronic interactions. The reason behind this
error can be attributed to the fact that the applied Ex term in DFT, over-delocalize
the valence electrons due to its inability to complete cancellation of electronic self-
interactions. Consequently, DFT fails in predicting the properties of materials with
localized charges in their system [51–53].
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3.2.1 Band gap problem

The inaccuracy of DFT in predicting the electronic structure of the correlated
systems is addressed as “band gap problem” [47]. The so called “Mott insula-
tors” [54] are a group of materials which are introduced as conductive materials
when their properties are measured using conventional DFT while in experimental
studies they appear as insulators. This error can be due to the neglecting of elec-
tronic interactions as repulsion between electrons can localize them to the atomic
orbitals and produce the observed band gap. The error is coming from the fact that
the self-interaction of electrons in conventional DFT is not considered and over-
delocalization of existing electrons leads to appearance of a conducting behavior.
This Coulomb potential which is responsible for localization of electrons to atomic
orbitals is called “U parameter”. This U parameter considers the localization of
charge in d and f orbitals quite well while treating the s and p orbitals by normal
DFT approximations [55].

For localized electrons, charge transport occurs by a hopping mechanism where the
electron jumps to its neighbor atom site. Consequently, the energy gap can be
defined as [56]:

Egap = U − 2zt (3.10)

Where t is the hopping amplitude and z is the number of nearest neighbors. Equation
3.10 shows that as the U parameter increases, energy gap increases as well, which is
sensible since higher U parameter cause high degree of electron localization to atomic
orbitals. When hopping amplitude decreases, energy gap increases, consequently [56,
57].

Other models are also presented in order to describe the band structure of a corre-
lated system. One of the simplest ones is “Hubbard model” [56], where a new term
is defined in Hamiltonian to account for repulsion forces between electrons in the
same atomic orbital. DFT+U method is inspired by Hubbard model in order to get
a better approximation for exchange correlation functional.

In order to predict the properties of a system with localized charges LDA+U is used.
Since DFT+U method treats s and p with normal DFT and Hubbard model is im-
plemented only for d and f orbitals, the total energy of such system is summation of
the total energy of the system using normal LDA plus an energy term for correlated
systems (Hubbard model) [56]:

ELDA+U = ELDA + U [ρ(r)] = ELDA[ρ(r)] + EHub[nmm
Iσ]− Edc[nIσ] (3.11)

Where Edc[n
Iσ] is the error that needs to be deducted from the total energy as energy

for correlated states has been counted twice, both in normal energy term using LDA
(ELDA[ρ(r)]) and Hubbard term for correlated states (EHub[nmm

Iσ]).

As already mentioned above, DFT+U method is applicable on strongly correlated
states in materials such as Transition Metal Oxides (TMO) where they have localized

25



atomic orbitals (d and f orbitals). It is worth to mention that U value needs to be
kept in an optimum range as increasing U value cause over-localization of charge
on the specific atomic orbital and over-flattening of band states [58]. Fig. 3.1 shows
application of DFT (LDA) and DFT+U (LDA+U) for calculation of Density of
States (DOS) in MnO (Fig. 3.1.a) and FeO (Fig. 3.1.b). Band energies of both
MnO and FeO are underestimated using LDA, while a more precise estimation is
obtained using LDA+U [59].

Figure 3.1: DOS plots of (a) MnO, and (b) FeO using LDA and LDA+U [59].

Different DFT parameters such as k-points mesh, cut-off energy and applied pseu-
dopotential is very decisive in choosing the best U parameter for the desired sys-
tem. Thus, calculations have to be converged with respect to both k-points mesh
and cut-off energy. Presence of charge localization obtained by applying DFT+U,
clearly, decrease the symmetry of system and larger k-points mesh needs to be
used [58].

3.2.2 Optimization of U parameter: Piecewise linearity
method

In order to use an optimum value of U parameter, computed properties can be com-
pared to related experimental results. A theoretical alternative for optimization of
U parameter for a specific system, can be piecewise linearity method where the total
energy of the system is calculated with respect to the fractional charge [60].

An exact DFT method should lead to a piecewise linear response of total energy with
respect to the fractional charge. However, due to the stated error in conventional
DFT, there is a deviation from linear response and a convex curvature in total energy
versus fractional charge patterns is observed which is due to the self-interaction
error in correlated systems. In this method, total energy is obtained with respect
to fractional charge of the system. Total ground-state energy of a system which
consists of the fractional charge is [60]:
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EN = (1− α)EN0 + αEN0+1 (3.12)

Where EN 0 is the energy of the system with N0 (integer) electrons, EN is the energy
of a system with fractional charge (N = N0+α), and α is the fractional charge.

If an exact functional was used as the exchange correlation functional instead of
an approximation in DFT, a derivative discontinuity would be observed while the
results obtained from normal DFT has deviation from linearity. In order to optimize
U parameter, the total energy of a system with fractional charge is plotted by
applying various U parameters. The U value which has a better linear response is
the best choice for the studied system.

3.2.3 Hybrid functional

Most of the first principle calculations using DFT in 90s, has been done by using
LDA or GGA as exchange correlation functional. These functionals give a good ap-
proximation on various electronic and structural properties of materials. Compared
to the experimental data, LDA functional underestimate the lattice parameters by
1% or 2%. This may not be considered as a large error in studying different class of
materials, however, for ferroelectric properties which structural properties are highly
dependent on the lattice parameters (cell volume), the LDA and GGA functionals
both impose some limitations on predicting the materials properties. Both LDA
and GGA underestimate the electronic band structure by considering the particles
independent from each other. The hybrid functionals is used to get a better pre-
diction on bond length, atomization energy, band gaps, and excitation energies of
various molecules and solids. This functional gives a better estimation on electronic
properties of FE materials as well. In this section, the concept of hybrid functional
is briefly discussed. As it is mentioned earlier, DFT relies on the approximation of
exchange correlation functional (EXC). The Hamiltonian of a system with several
electron-electron interaction can be written as:

Hel(λ) = T̂ + λÛ ee + υλ (3.13)

Where T̂ e is the kinetic energy operator, Û ee is the potential energy operator, and υλ
is a parameter which its addition to the Hamiltonian, will cause all the Hamiltonians
to produce the same ground state electron density. λ (coupling strength) is a defined
parameter which shows the limit of interaction of particles. λ = 0 defines a non-
interacting system while λ = 1 defines a complete interacting system. When λ = 1
and the system is fully interacting, υλ = V , where V is the external potential. In a
case where λ = 0, the υλ = VKS. VKS is the Kohn-Sham potential. This way, the
EXC can be defined as:

EXC =

∫ 1

0

EXC,λdλ (3.14)

Where EXC,λ is defined as:

EXC,λ =
〈

Ψλ

∣∣∣Û ee

∣∣∣Ψλ

〉
− EH (3.15)
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Where Ψλ is the ground state wave functions, and EH is the Hartree energy. The
exhange correlation energy can be obtained from exact exchange correlation energgy
(EXC,λ=0) and many-body exchange correlation energy (EXC,λ=1). If EXC,λ has a
linear relation with

λ

, the exchange correlation energy could be calculated precisely as:

EXC,λ =
1

2
(EXC,λ=0 + EXC,λ=1) (3.16)

The simple hybrid functional is then:

Ehyb
XC,λ =

1

2
(EXC,λ=0 + ELDA

XC,λ=1) (3.17)

This mixing scheme is suggested by Becke. The so called mixing scheme B3PW
and B3LYP are:

EB3LY P
XC,λ = ELDA

XC,λ=0 + A(EXC,λ=0 − ELDA
XC,λ=0) + (1− A)B(EGGA

XC,λ=0

−ELDA
XC,λ=0) + ELDA

C + C(EGGA
C − ELDA

C )
(3.18)

A=0.2, B=0.8, and C=0.81 are Becke’s mixing parameters for B3LYP hybrid func-
tional and they are obtained by using experimental data. The mixing parameters
for B1 hybrid functional are B=1 and C=1. Substituting these values in equation
3.18, results in:

EB1
XC = EGGA

XC + A(EXC,λ=0 − EGGA
XC,λ=0) (3.19)

Where now the equation 3.19 is more simplified with only A value as the missing
parameter. The value of A is dependent on the GGA functional used in equation
3.19 [61].
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Chapter 4

Technical details

DFT simulations in this thesis are done with the Vienna Ab initio Simulation Pack-
age (VASP) using projector augmented wave (PAW) pseudopotentials. Both atomic
positions and cell volumes are relaxed until the maximum force acting on each atom
is smaller than 0.05 eV/Å using PBE, PBEsol, and HSE06 functional. In order to
visualize the atomic structures, Visualization for Electronic and Structural Analysis
(VESTA) [?,?] and Open Visualization Tool (OVITO) are employed.

4.1 Rhombohedral NaNbO3

4.1.1 PBE+U simulations

In the first step, atomic positions and shape of the conventional 10-atoms unit-cell of
rhombohedral NaNbO3 (R3̄) is relaxed by applying U parameter of 4 eV on Nb(4d)
states with energy cut off of 400 eV and k-points grid of 6 × 6 × 6. In order to
investigate the formation of polarons, 2 × 2 × 3 supercell is then created based on
the obtained relaxed structure and manually distorted. The energy of the system is
then calculated in these manners by applying various U parameters:

• Epur0e: Relaxation of atomic positions (not its volume) with a non-spin polar-
ized calculation, energy cut off of 400 eV and k-points grid of 2 × 2 × 2 on
2× 2× 3 uniform supercell (120 atoms) of rhombohedral NaNbO3 (number of
electrons:720) created from relaxed 10-atoms cell in the first step..

• Edisloc(+1)
t : Relaxation of atomic positions (not its volume) with a spin polar-

ized calculation, energy cut off of 400 eV and k-points grid of 2 × 2 × 2 on
2 × 2 × 3 distorted supercell (120 atoms) of rhombohedral NaNbO3 (number
of electrons:719) created from relaxed 10-atoms cell.

• Edisdeloc(+1)
t :Relaxation of atomic positions (not its volume) with a non-spin

polarized calculation, energy cut off of 400 eV and k-points grid of 2 × 2 × 2
on 2× 2× 3 supercell from former step with 719 electrons in the system.

• Epurdeloc(+1)
e : Relaxation of atomic positions (not its volume) with a non-spin
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polarized calculation, energy cut off of 400 eV and k-points grid of 2 × 2 × 2
on 2× 2× 3 uniform supercell (120 atoms) of rhombohedral NaNbO3 (number
of electrons:720) created from relaxed 10-atoms cell in the first step.

For investigation of polaron, in cases where no polaron was detected, the calcula-
tion is repeated by using relaxed system of a configuration which U(Nb4d)=4 and
U(O2p)=8 is applied. This was the case for U parameters on Nb/O lower than 6
eV.

For lattice parameter comparisons, Atomic strcutre is relaxed using PBE+U starting
with 10-atoms unit-cell (both atomic positions and volume are relaxed).

4.1.2 PBEsol+U simulations

In order to obtain the lattice parameters of the systems where different compositions
of U parameter on Nb and O is applied, 10-atoms unit cell of rhombohedral NaNbO3

is relaxed both in shape and volume with a non-spin polarized calculation, energy
cut off of 400 eV and k-points grid of 6× 6× 6.

4.1.3 Hybrid functional calculations (HSE06)

HSE06 calculations are carried out by using same energy cut off (400 eV), and k-
points mesh (2 × 2 × 2) on 120-atoms supercell. Unrelaxed created pure structure
at the very first step and polaronic configuration obtained by applying U(Nb4d)=4
and U(O2p)=8 using PBE+U functional are used in order to simulate a uniform
structure with delocalized charge and a polaronic configuration, respectively.

4.1.4 Piecewise linearity diagrams

In order to get the total energy curves with respect to fractional charge, first the
pure/distorted 120-atoms supercell is fully relaxed with removal of one electron
(number of electrons:719) using PBE+U functional and resulted structure is then
used for getting the energy of systems with fractional charges of 0, 0.2, 0.4, 0.6, and
0.8 eV by a single self-consistent step.

4.2 Cubic NaNbO3 (NaNbO3)

4.2.1 PBE+U simulations

In the first step, atomic positions and shape of the conventional 5-atoms unit-cell
of cubic NaNbO3 (Pm3̄m) is relaxed by applying U parameter of 4 eV on Nb(4d)
states with energy cut off of 400 eV and k-points grid of 6 × 6 × 6. In order to
investigate the formation of polarons, 3 × 3 × 3 supercell is then created based on
the obtained relaxed structure and manually distorted. The energy of the system is
then calculated in the exact same way mentioned in section 4.1.1.

For investigation of polaron, in cases where no polaron was detected, the calcu-
lation is repeated by using relaxed system of a configuration which U(Nb4d)=4
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and U(O2p)=8 is applied. Same as rhombohedral phase, this was the case for U
parameters on Nb/O lower than 6 eV.

For lattice parameter comparisons, PBE+U calculations on 5-atoms unit-cell are
carried out to fully relax the structure (both atomic positions and volume are re-
laxed).

4.2.2 PBEsol+U simulations

In order to obtain the lattice parameters of the systems where different compositions
of U parameter on Nb and O is applied, 5-atoms unit cell of cubic NaNbO3 is relaxed
both in shape and volume with a non-spin polarized calculation, energy cut off of
400 eV and k-points grid of 6× 6× 6.

4.2.3 Hybrid functional calculations (HSE06)

HSE06 calculations are carried out by using the same energy cut off (400 eV) in the
entire simulation, and k-points mesh (3× 3× 3) on 135-atoms supercell. Unrelaxed
created pure structure at the very first step and polaronic configuration obtained by
applying U(Nb4d)=4 and U(O2p)=8 using PBE+U functional are used in order to
simulate a uniform structure with delocalized charge and a polaronic configuration,
respectively.

4.2.4 Piecewise linearity diagrams

Similar to the method applied on R3̄, in order to get the total energy curves with
respect to fractional charge, first the pure/distorted 120-atoms supercell is fully
relaxed with removal of one electron (number of electrons:719) using PBE+U func-
tional and resulted structure is then used for getting the energy of systems with
fractional charges of 0, 0.2, 0.4, 0.6, and 0.8 eV by a single self-consistent step.
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Chapter 5

Results and Discussion

NaNbO3 is investigated in its two phases of rhombohedral (R3̄) and simple cubic
(Pm3̄m) in order to shed light on the existence of self-trapped hole-polarons (STH)
by using DFT+U and hybrid functional (HSE06).

5.1 Rhombohedral NaNbO3

5.1.1 Pure structure

In order to avoid any misconception, the relaxed lattice structure of NaNbO3 ob-
tained by relaxing the supercell of NaNbO3 with no charge or distortion in the
system, is referred to as pure structure/ideal structure in this Master thesis. The
structure which hole-polaron appears as a result of an applied distortion and removal
of one electron from the lattice, is addressed as polaronic configuration. Similarly,
other configurations can be easily defined based on these two configurations.

Fig. 5.1 shows band structure and density of states in the pure structure of rhom-
bohedral NaNbO3 using PBE+U and PBEsol+U functionals. Fig. 5.1.a and b show
band structure (BS) and density of states (DOS) of R3̄ NaNbO3 using PBE+U
functional with U parameter of 4 eV on Nb(4d) states. The obtained band gap
using PBE+U and PBEsol+U functionals are indirect band gap of 4.49 eV and
4.21 eV, respectively. Due to the application of PBE+U functional the band gap
energy is not highly underestimated in contrast with the use of conventional PBE.
Unfortunately, there is no data available on experimental results regarding band en-
ergy of rhombohedral NaNbO3. The computed band gap of R3̄ phase using HSE06
calculations is 5.15 eV.
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Figure 5.1: Electronic properties of pure structure of rhombohedral NaNbO3 obtained using
(a, b) PBE functional, and (c, d) PBEsol functional.

5.1.2 Polaron appearance

For studying the formation of polaron in rhombohedral NaNbO3, 2×2×3 supercell
(120 atoms) is employed. Initial relaxation is done on pure lattice structure of
NaNbO3 using PBE+U by applying U parameter of 4 eV on Nb(4d) states. At
the next step, in order to get a self-trapped hole polaron (STH), relaxed lattice is
manually distorted. Three oxygen atoms are randomly displaced toward Nb atom
in the center by 0.15 Å (7.5 %) . Fig. 5.2 shows how lattice is manually distorted
compared to the pure relaxed structure. One electron is then removed from the
lattice. The structure is re-relaxed using PBE+U functional with U parameters of
4 eV on Nb(4d) states and 2, 4, 6, 8, 10, and 12 eV on O(2p) states.
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Figure 5.2: Applied manual distortion on relaxed pure structure of rhombohedral NaNbO3

in 2×2×3 supercell. Oxygen atoms are displaced by 0.15 Å (7.5 %) inward toward Nb
atom in the center.

Acquired results from PBE+U calculations show the localization of charge on 2p
orbital of an O atom around target Nb (atom number 46) for cases where U param-
eter of 4 eV is applied on Nb atoms and where U parameter on O is larger than 2
eV.

Fig. 5.3 shows the final displacements of atoms in 2×2×3 supercell of rhombohedral
NaNbO3 after full relaxation of the system and table 5.1 shows the magnetisation of
O atoms in the polaronic site and their relative displacement compared to the ideal
supercell. Due to concentration of positive charge on O atom (number 101) which
has magnetization of 0.766, some O atoms has moved toward this large positive
charge (O number 114 and 117) and cations have moved away. Displacement of
atoms toward and further away from the O atom 101 is indicated with + and - sign
in the table 5.1, respectively.
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Figure 5.3: Schematic illustration of displacement of atoms after relaxation of ideal super-
cell with one excess positive charge in the rhombohedral system; O atoms around the O in
the center are slightly displaced. The O atom which polaron is formed on, is circumvented
by a dashed line.

Table 5.1: Displacements and magnetization of Nb, Na and O atoms in the polaronic site
in 2×2×3 supercell of rhombohedral NaNbO3.

Atom type Number Displacement [Å] Magnetisation
Nb 46 -0.198683 0
Na 23 -0.132857 0
O 101 0.0153877 0.766
O 114 +0.0783173 0.03
O 117 +0.0567183 0.03

Fig. 5.4 shows partial charge density on different atoms in pure and polaronic config-
urations. The localization of hole mostly on a single O atom is obvious in Fig. 5.4.b,
unlike equal distribution of positive charge density on all the O atoms in the pure
structure of NaNbO3 (Fig. 5.4.a). Positive charge is highly localized on one O atom
in polaronic configuration. This charge localization is formed due to the strong cou-
pling of charge to the lattice (Fig. 5.4.b). This leads to smaller charge density on
neighbouring O atoms. O atoms around the one which contains the highest local-
ization of charge, has higher magnetisation compared to the rest of the O atoms in
the system (5.1).
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Figure 5.4: Schematic illustration of partial charge density in (a) pure structure, and (b)
polaronic configuration of rhombohedral NaNbO3.

Fig. 5.5 shows PDOS plots and BSs in 2×2×3 supercell of distorted rhombohedral
NaNbO3, obtained by applying U parameter of 4 eV on Nb(4d) states and various U
parameters of 2, 4, 6, 8, 10, and 12 eV on O(2p) states. Applied manual distortion
shown in Fig. 5.2 along with one positive charge (hole) in the lattice has led to the
appearance of a localized level, shown in Fig. 5.4, which is located on 2p orbital of
one oxygen atom. As indicated in Fig. 5.5a and b, U=2 eV on O(2p) states does not
lead to formation of polaronic level in 2×2×3 supercell of rhombohedral NaNbO3 as
this U value is too small to maintain the charge in a localized state. In-gap STH level
is clearly observed for U parameters larger than 2 eV on O. Table 5.2 shows that
how position of the STH level is changing with respect to the VBM by increasing
the U parameter on O(2p) states. As mentioned in section 3.2, DFT tends to
over-delocalize the valence electrons/holes in the lattice. Applying U parameter on
atomic orbitals leads to compensation for self-interaction error caused by the use of
DFT and encourages the system to localize the charges. By increasing U parameter
on 2p states of O atoms, the system tends to localize the charge relative to applied
value of U parameter which accounts for acquired results shown in table 5.2. In
high values of U (O2p) namely 8, 10, and 12 eV, the in-gap STH level is closer to
the CBM which is due to higher localization of STH. It is worth mentioning that
both too high and too low values of U, leads to unrealistic data in the final results.
Inspecting magnetization of each system with different U parameter according to
the table 5.2, shows that the additional positive charge is distributed over the whole
lattice for a case where U parameter is small and charge is still over-delocalized.
As a result, no polaron is formed, while for higher values of U, charge density is
mostly concentrated on a single oxygen in the distorted area and remaining charge
is delocalized through other O atoms.
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Table 5.2: Total magnetization, STH level with respect to VBM for polaronic configurations
of 2×2×3 supercell in rhomboheral NaNbO3 with U(Nb4d)=4 eV and various U(O2p).

U (O2p) [eV] U(Nb4d) [eV] STH level with respect to VBM Total Magnetisation Magnetisation on O (atom 101)
4 2 - 0.840 0.017
4 4 0.57 0.809 0.695
4 6 1.25 0.808 0.742
4 8 1.83 0.812 0.766
4 10 2.32 0.817 0.783
4 12 2.71 0.824 0.798
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Figure 5.5: Partial density of states (PDOS) and band structure (BS) obtained by applying
U parameter of 4 eV on Nb(4d) states and different U parameters on O(2p) states in
2×2×3 supercell in rhomboheral NaNbO3; (a) PDOS for U=2 eV on O(2p) states, (b) BS
for U=2 eV on O(2p) states, (c) PDOS for U=4 eV on O(2p) states, (d) BS for U=4 eV
on O(2p) states, (e) PDOS for U=6 eV on O(2p) states, (f) BS for U=6 eV on O(2p)
states, (g) PDOS for U=8 eV on O(2p) states, (h) BS for U=8 eV on O(2p) states, (i)
PDOS for U=10 eV on O(2p) states, (j) BS for U=10 eV on O(2p) states, (k) PDOS for
U=12 eV on O(2p) states, (l) BS for U=12 eV on O(2p) states.
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5.1.3 Polaron energy regimes and configuration coordinate
diagram

In order to investigate the stability of the aforementioned polaron, studying energet-
ics and structural distortions of the lattice is necessary. To better understand various
definitions discussed in the literature, we first further discuss how to characterize a
polaronic system. In the polaronic system, the excess charge carrier appears to be
an integer which is localized on one atom (specific orbital), that is why DFt+U or
hybrid functional calculations need to be done in a spin-polarized manner. On the
other hand, when the excess charge is delocalized, the charge density is distributed
through the whole lattice and is in the form of a fractional charge [62,63].

A polaron is energetically stable in the system when the energy of the system as-
sociating with a localized charge and structural distortion is lower compared to the
system where the charge is delocalized over the whole lattice. Total energy of the
system associated with existence of a localized or a delocalized charge carrier can
be computed using different energy regimes. Since there are many misnomers for
the definition of different configurations, each configuration is defined with details
in this section [63]:

• E0
pure: Total energy of a system where lattice is uniform and there is no excess

charge in the system.

• Eloc
dist: Total energy of a system where lattice is distorted and excess charge

is localized to a single site. In this study such configuration is referred to as
polaronic configuration.

• Edeloc
dist :Total energy of a system where lattice is distorted and excess charge

carrier is delocalized.

• Edeloc
pure : Total energy of a system where lattice is uniform and the excess charge

carrier is delocalized.

This needs to be taken into account that in order to have a localized charge in the
system, computations have to be done in a spin polarized manner while delocal-
ized charge in a distorted system can be achieved by a non-spin polarized calcula-
tion.

Considering definitions above, trapping energy of a polaron (Etrap), strain energy
(Eε), and electronic energy (Eel) are defined as follow [63]:

• ET rap: Trapping energy of a polaron is defined as the energy difference of

the distorted system with a localized charge (Edis
loc(+1)
t ) and uniform lattice

with delocalized charge (Epur
deloc(+1)
e ). The polaron is energetically stable if

the total energy of the polaronic configuration (Edis
loc(+1)
t ) is more negative

compared to the Epur
deloc(+1)
e . This means that the system prefers to be in the

state where charge is localized on one site rather than being distributed over
the entire structure.

Etrap = Edis
loc(+1)
t − Epurdeloc(+1)

e (5.1)
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• Eε: Strain energy is attributed to the amount of energy needed to distort the
lattice in a way that it can trap the excess charge carrier.

Eε = Edis
deloc(+1)
t − Epurdeloc(+1)

e (5.2)

• Eel: Electronic energy is the gained amount of energy due to localization of
charge.

Eel = Edis
loc(+1)
t − Edisdeloc(+1)

t (5.3)

Normally, the STH formation energy can be calculated using ET rap, by the en-
ergy difference of the configuration with distorted lattice plus a localized charge
(Edis

loc(+1)
t ) and a neutral system (ideal supercell) with a delocalized charge

(Epur
deloc(+1)
e ). These configurations have both same number of electrons in their

system. Since there is a half-filled state in computation of energy for Epur
deloc(+1)
e ,

the value we obtain from equation 5.1 is dependent on k-point grids of the calcula-
tion. Alternatively, by considering the polaron as a defect in the supercell, we can
calculate the formation energy of STH using defect thermodynamics by equation
5.4 [6]:

Ef orm = Edis
loc(+1)
t − Epur0e + qEV BM (5.4)

Where Ef orm is the formation energy of the STH, Epur
0
e is the energy of ideal

supercell with no excess charge, q is the excess charge (which in this study is equal
to +1) and EV BM is the VBM in the ideal supercell. In this case since all the states
are either fully-empty or fully-occupied, the dependence on k-point grid will vanish.
Since in this study, the formation energy of STH is not converged with respect to
number of k-points grid, for having a better approximation on formation energy of
STH, it is calculated using both equations 5.1 and 5.4.

Table 5.3 shows different energy regimes of 2×2×3 supercell in rhombohedral
NaNbO3. Trapping energy can be obtained by sum of the electronic energy and
strain energy. By increasing U parameter and localization of charge density to a
specific atom, the energy gained due to the localization of charge increases and the
charge will be more bound to the formed potential well. Consequently, trapping
energy of polaron will increase by increasing relative U parameter.

Trapping energy for the configuration where U parameter on both Nb(4d) states and
O(2p) states is 4 eV, is very small amount of 0.04 eV which implies that the appeared
polaron might be a metastable configuration. For higher U parameters on O(2p)
states, trapping energy significantly increases and makes the polaronic configuration
stable compared to the pure structure with a delocalized charge. Since trapping
energy and formation energy calculated by using thermodynamics of defects (5.4)
are very close to each other, it can be deduced that the error for using equation 5.1
is very small and expensive computations of increasing k-points grid of the system
is not necessary.

Configuration coordinate diagram of a stable STH is shown in Fig. 5.6 where U
parameter of 4 eV on Nb(4d) states and 6 eV on O(2p) states is applied.
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Table 5.3: Polaron energy regimes for various U parameters in 2×2×3 supercell of rhom-
boheral NaNbO3.

U (Nb4d) [eV] 4 4 4 4 4
U (O2p) [eV] 4 6 8 10 12
Trapping Energy [eV] -0.08 -0.38 -0.74 -1.11 -1.50
Strain Energy [eV] 0.00 +0.03 +0.04 +0.04 +0.05
Electronic energy [eV] -0.08 -0.41 -0.78 -1.15 -1.55
Formation Energy based on Eq. 5.4 [eV] -0.07 -0.41 -0.78 -1.16 -1.56

Figure 5.6: Configuration coordinate diagram for formation of stable small polaron in
2×2×3 distorted supercell of rhomboheral NaNbO3 by applying U parameter of 4 eV on
Nb(4d) states and U parameter of 6 eV on O(2p) states.

5.1.4 Piecewise linearity diagrams

Fig. 5.7 shows piecewise linearity behavior of 2×2×3 supercell of rhombohedral
NaNbO3 with the use of polaronic configuration as the initial structure. U parameter
on Nb(4d) is kept constant to the values of 2, 4, 6, 8, 10 and 12 eV while U parameter
on O(2p) states is changing. The optimum value of U parameter applied on a system
with an initial distortion (Fig. 5.7.a) is U(Nb4d) = 2 eV and U(O2p) = 2, 6, and
8 eV. For U parameter of 4 eV on Nb(4d) states, optimum value of U parameter
on O(2p) states are 2, 6, and 8 eV, respectively (shown in the Fig. 5.7.b). For U
parameter of 6 eV on Nb(4d) states, optimum value of the U parameter on O(2p)
states are similarly 2, 6, and 8 eV, respectively (Fig. 5.7.c). U parameter of 8 eV on
Nb(4d) states, yields the same result as U(Nb4d)=4 eV and U(Nb4d)=6 eV. The
best U on O(2p) states for U(Nb4d) equal to 10 and 12 eV, are 2, 4, and 6 eV,
respectively. U parameters larger than 6 eV on O(2p) is too large and may results
in overlocalization of charge. All the proper U parameters applied on Nb and O
atoms are compared in Fig. 5.8. Since several composition of U parameters on Nb
and O are in agreement with the criteria of piecewise linearity method:

• U(Nb4d)=4 eV, U(O2p)=4 eV
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• U(Nb4d)=4 eV, U(O2p)=2 eV

• U(Nb4d)=6 eV, U(O2p)=4 eV

• U(Nb4d)=6 eV, U(O2p)=2 eV

lattice parameters and energy band gap of each system need to be compared to the
available experimental values. Table 5.4 shows the existence of polaron, computed
lattice parameters by using PBE and PBEsol functional and band gap energy (by
PBE) for different compositions of U parameter on Nb and O. Considering the
experimental lattice parameters of rhombohedral NaNbO3 as a = 5.332Å and c =
15.62Å ( [38]), since the STH polaron does not exist when U parameter of 2 eV is
applied on O, the best options for choice of U parameter is:

• U(Nb4d)=4 eV, U(O2p)=4 eV

• U(Nb4d)=6 eV, U(O2p)=4 eV

Both options above, yield the band gap energy which are in a good agreement with
the data proposed by Fritsch et al.
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Figure 5.7: Application of various U parameters on Nb(4d) and O(2p) states, simultane-
ously on polaronic configuration of 2×2×3 supercell of rhombohedral NaNbO3.
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Figure 5.8: Comparison of piecewise linearity behavior of the total energy with respect to
the fractional charge of 2×2×3 supercell in rhombohedral NaNbO3 by applying different
U parameters on both Nb(4d) and O(2p) states using the polaronic configuration as the
initial system.
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5.1.5 HSE06 calculations

The formation of the polaron is also investigated using HSE06 functional. The po-
laronic configuration of PBE+U with U parameter of 4 eV on Nb(4d) states and U
parameter of 8 eV on O(2p) states is used as the initial configuration in order to
do a hybrid functional calculation. Fig. 5.9 shows the density of states plots of the
polaronic configuration of rhombohedral NaNbO3 and its pure structure with a de-
localized charge. The polaronic state is clearly observable at the energy level of 2.01
with respect to VBM. the magnetisation on O(2p) is 0.733 which is in a very good
agreement with PBE+U functional with application of U(Nb4d)=4 and U(O2p)=8
eV. The trapping energy of polaron is calculated by using the equation 5.1 and
comparison of the total energy of the polaronic configuration and the ideal cell with
a delocalized charge. The Etrap of STH with application of HSE06 functional is
+0.25 eV. The positive trapping energy implies that polaronic state in this phase
is a metastable phase which is not in consistent with the data obtained by PBE+U
functional. This inconsistency can be due to the use of PBE+U configuration for
the initial atomic positions of HSE06 calculations. The relaxation procedure is once
tested by HSE06 along with the applying a manual distortion (5.1.2) to the system,
however, the applied distortion which leaded to the formation of polaron in PBE+U
functional, did not result in formation of STH polaron with the use of HSE06. The
formation energy of polaron calculated by using equation 5.4 is -0.62 eV. as men-
tioned earlier, the formation energy of STH polaron obtained by using PBE+U with
U(Nb4d)=4 and U(O2p)=8 eV, is -0.78 eV. The data obtained from these two func-
tionals are in reasonable agreement, considering that HSE06 calculations takes 2-3
orders of magnitude more computing time. Regarding the

Figure 5.9: PDOS plots of rhombohedral NaNbO3 obtained by using HSE06 functional;
(a) PDOS plot of the STH configuration, and (b) PDOS plot of ideal supercell with a
delocalized hole.

5.2 Cubic NaNbO3

The existence of polaron using DFT+U is also investigated in cubic phase of NaNbO3

(Pm3̄m). Cubic phase of NaNbO3 has paraelectric properties as mentioned in the
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section 2.4.1. the formation of polaron is investigated using PBE+U and HSE06
functionals. However, the applied manual distortion did not lead to appearance of
any polaron in the supercell of cubic NaNbO3. Other types of distortions can be
investigated in the future studies.

5.2.1 Pure structure

Fig. 5.10 shows band structure and density of states in the pure structure of cubic
NaNbO3 using PBE+U and PBEsol+U functionals. Fig. 5.10.a and b show band
structure (BS) and density of states (DOS) of Pm3̄m NaNbO3 using PBE+U func-
tional with U parameter of 4 eV on Nb(4d) states. The obtained band gap using
PBE+U and PBEsol+U functionals are indirect band gap of 1.39 eV and 2.09 eV,
respectively. These values are in agreement with the data reported by Fritsch et al.
the experimental band gap energy of Pm3̄m is 3.29 eV and as expected both PBE+U
and PBEsol+U highly underestimated the band gap energy. eV [12,38].

Figure 5.10: Electronic properties of pure structure of cubic NaNbO3 obtained using(a, b)
PBE functional, and (c, d) PBEsol functional.

5.2.2 Polaron appearance

Same method as rhombohedral NaNbO3 is used for investigation of existence of
polaron in the cubic phase. The unit cell of cubic NaNbO3 is relaxed both in atomic
positions and shape with PBE+U functional with U parameter of 4 eV on Nb(4d)
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states. The relaxed structure is then used to create a 3×3×3 supercell with 135
atoms. Fig. 5.11 shows how the created supercell is manually distorted by moving
O atoms toward an O atom in the center (the one circumvented by dashed line) and
cations (Nb and Na) are moved further away from it.

Figure 5.11: Applied manual distortion on relaxed pure structure of 3×3×3 supercell of
cubic NaNbO3. Oxygen atoms are displaced by 0.1 Å inward toward O atom in the center,
Nb and Na atoms are displaced further away from O atom in the center.

The manually distorted supercell is then used as the initial configuration for inves-
tigation of polaron in this phase. One electron is removed from the system and U
parameter of 4 eV on Nb(4d) states and U parameter of 2, 4, 6, 8, 10, and 12 eV is
applied on O(2p) states. For U parameters of 2, 10, and 12 eV on O(2p) states no
polaron is observed. Fig.5.12 shows the distribution of charge on different atoms in
distorted and ideal structure of cubic NaNbO3. Fig. 5.12.a shows that since there is
no distortion in the system, the excess positive charge is almost equally distributed
over all the O atoms in the system while Fig. 5.12.b shows that charge is majorly
localized on a single O atom (on 2p orbital). O atoms around the one with po-
laron, have higher charge localization compared to all the other O atoms in the
system.
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Figure 5.12: Schematic illustration of partial charge density in (a) pure structure, and (b)
polaronic configuration of cubic NaNbO3.

Fig. 5.13 shows how atoms are displaced through relaxation after application of
manual distortion and removal of one electron from the system. Table 5.5 shows
the value for displacements of O atom having the polaron (which charge is mainly
localized on it) and its neighboring O atoms. Compared to rhombohedral phase,
neighbouring O atoms have higher displacement and polarisation. The O atom
which polaron is formed on its 2p orbital is number 103. As shown in the table 5.5,
the magnetization of this O (number 103) is 0.728 which clearly indicates that
charge is mainly localized on this site and the rest of the charge is distributed over
O atoms in its vicinity. Charge density on the rest of the O atoms in the system
is in the range of 0.000-0.003 eV. Based on the displacements in Fig. 5.13, the O
atoms around polaronic site are moved closer to the O atom in the center. Reported
displacements and magnetization belong to the configuration where U parameter of
4 and 8 eV is applied on Nb(4d) and O(2p) states, respectively.
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Figure 5.13: Schematic illustration of displacement of atoms after relaxation of ideal su-
percell with one excess positive charge and manual distortion in the 3×3×3 supercell of
cubic NaNbO3; O atoms around the O atom in the center where polaron is formed (the
one which is circumvented by a dashed line) are displaced significantly.

Table 5.5: Displacements and magnetization of O atoms in the polaronic site in the 3×3×3
supercell of cubic NaNbO3.

Atom type Number Displacement [Å] Magnetisation
O 103 0.29147 0.728
O 127 +0.263331 0.07
O 128 -0.25351 0.07
O 130 +0.262393 0.07
O 131 -0.253452 0.07

Fig. 5.14 indicates PDOS and BS of 3×3×3 cubic supercell of NaNbO3 where STH
band state is clearly shown for application of DFT+U with various U parameters on
O(2p) states. Fig. 5.14.a and b show PDOS and BS of systems which U(Nb4d)=4 eV
and U(O2p)=4 eV, respectively. Fig. 5.14.c and d show same plots for U parameter
of 4 eV on Nb(4d) states and U parameter of 6 on O(2p) states. In Fig. 5.14.e and f,
the U parameter on Nb(4d) states is again kept constant on 4 eV while U parameter
on O(2p) states is increased to 8 eV. PDOS and BS for a configuration where U
parameter of 4 eV on Nb(4d) and U parameter of 10 eV on O(2p) states is shown in
Fig. 5.14.g and f. The applied manual distortion (shown in Fig. 5.11) plus removal
of one electron from the system has lead to the formation of a polaronic state in
3×3×3 supercell of cubic NaNbO3. Regarding U parameter of 2 eV on O(2p) states
no polaron is formed, since this U value is too small for maintaining a charge in a
localized state.
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Figure 5.14: Partial density of states (PDOS) and band structures (BS) obtained by ap-
plying U parameter of 4 eV on Nb(4d) states and different U parameters on O(2p) states;
(a) PDOS for U=4 eV on O(2p) states, (b) BS for U=4 eV on O(2p) states, (c) PDOS
for U=6 eV on O(2p) states, (d) BS for U=6 eV on O(2p) states, (e) PDOS for U=8
eV on O(2p) states, (f) BS for U=8 eV on O(2p) states, and (g) PDOS for U=10 eV on
O(2p) states, (h) BS for U=10 eV on O(2p) states.

Position of STH band level with repect to VBM is shown in table 5.5. Similar to
the results obtained for the rhombohedral phase, increasing the U parameter cause
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the band level to move further away from VBM. By going through the value of
magnetization for the atoms in the polaronic site (close to O with number 103), it is
clearly observed that the charge is mainly localized on single O atom and localization
increases by increasing the U parameter from 4 to 8 eV. Similar to rhombohedral
phase, increasing the U parameter moves the STH level closer to CBM.

Table 5.6: STH band level with respect to VBM, total magnetization and magnetization
on O atom number 103 for various U parameters on O(2p) states in 3×3×3 supercell of
cubic NaNbO3.

U (O2p) [eV] U(Nb4d) [eV] STH level with respect to VBM Total Magnetisation Magnetisation on O (atom 103)
4 4 0.45 0.873 0.569
4 6 1.07 0.877 0.673
4 8 1.71 0.880 0.728
4 10 2.21 0.882 0.762

5.2.3 Polaron energy regimes and configuration coordinate
diagram

Table 5.7 shows the calculated formation energy based on equation 5.1 and equa-
tion 5.4. U parameter of 4 eV on O(2p) leads to a positive formation energy from
both equations which can be interpreted as such polaron in the structure is in a
metastable state. Similar to obtained results from rhombohedral phase of NaNbO3,
trapping energy noticeably increases as the U parameter on O(2p) increases which
was expected. By increasing the U parameter, the excess charge becomes more
bound to the polaronic site and trapping energy increases. Comparing the trapping
energy obtained from equation 5.1 and formation energy acquired from equation 5.4,
shows that the difference is somehow noticeable and choice of 2×2×2 as k-points
grid may not be the good option. In order to have a better accuracy on polaron
energy regimes, a convergence test on k-points grid needs to be done.

Table 5.7: Polaron energy regimes for various U parameters in 3×3×3 supercell of cubic
NaNbO3.

U (Nb4d) [eV] 4 4 4
U (O2p) [eV] 4 6 8
Trapping Energy [eV] +0.09 -0.13 -0.39
Strain Energy [eV] +0.03 +0.04 +0.06
Electronic energy [eV] +0.06 -0.17 -0.46
Formation Energy based on Eq. 5.4 [eV] +0.01 -0.21 -0.55

Fig. 5.15 shows configuration coordinate diagram of a configuration where U pa-
rameter of 4 eV and 6 eV is applied on Nb(4d) and O(2p) states, respectively.
Comparing this diagram with the one belongs to rhombohedral phase (Fig. 5.6)
where in both the same composition of U parameter is applied on Nb and O, in-
dicates that the polaronic state in rhombohedral phase is significantly more stable
than the polaron in the cubic phase. Trapping energy for application of U(Nb4d)=4
eV and U(O2p)=6 eV in cubic and rhombohedral phase of NaNbO3 are -0.13 and
-0.38 eV, respectively.
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Figure 5.15: Configuration coordinate diagram for formation of stable small polaron in
3×3×3 distorted supercell of cubic NaNbO3 by applying U parameter of 4 eV on Nb(4d)
states and U parameter of 6 eV on O(2p) states.

5.2.4 Piecewise linearity diagrams

Fig.5.17 shows variation of the total energy with respect to fractional charge by
applying various U parameters on Nb(4d) and O(2p) states, simultaneously. In all
the plots, U parameter on Nb(4d) states is kept constant with 4, 6, 8 eV while the
U parameter on O(2p) states is changing between 2, 4, 6, 8, 10, and 12 eV. For the
U parameter of 4 eV on Nb(4d) states, the optimum U parameter which shows a
better piecewise linear behavior are 2, 4, and 6 eV, respectively. For U parameter of
6 eV on Nb, U parameters of 2, 4, and 6 eV are optimum U values on O(2p) states.
For the U parameter of 8 eV on Nb, similar results as U parameter of 4 eV on Nb
is obtained.

Fig. 5.16 shows all the good options of the U parameters applied on Nb and O
(Fig. 5.16) which can be beneficial for choosing the final value. The following com-
position of U on Nb and O:

• U(Nb4d)=8 eV, U(O2p)=2 eV

• U(Nb4d)=6 eV, U(O2p)=6 eV

show better linear behavior compared to others. At this stage, it is also advanta-
geous to compare the lattice parameters of the current systems with the available
experimental data.
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Figure 5.17: Application of various U parameters on Nb(4d) and O(2p) states simultane-
ously, using the polaronic configuration as the initial structure in the 3×3×3 supercell of
cubic NaNbO3.]
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Figure 5.16: Comparison of piecewise linearity behavior of the total energy with respect
to the fractional charge of 3×3×3 supercell of the cubic NaNbO3 by applying different U
parameters on both Nb(4d) and O(2p) states using polaronic configuration as the initial
system.

Table 5.8 shows lattice parameters of cubic NaNbO3 using PBE and PBEsol func-
tional. As already stated by Fritsch et al. [12] lattice parameter values obtained
from PBEsol are closer to the experimental value of 3.95 Å. By comparing lattice
parameters obtained using PBE and PBEsol in the systems with different U param-
eters and considering the very good linear behavior of a wide range of U parameters,
both:

• U(Nb4d)=4 eV, U(O2p)=4 eV,

• U(Nb4d)=4 eV, U(O2p)=6 eV,

can be acceptable options. However, the first composition leads to a positive trap-
ping energy and metastable polaronic state. Although, DFT+U can slightly reduce
the band gap error of DFT, however, as it can be seen in the table 5.8, the band
gap of cubic system is significantly underestimated compared to the experimental
value of 3.29 eV (which this was not the case for rhombohedral phase). Although
increasing the U parameter may lead to a better estimation for band energy of the
system as it covers for over-delocalization of DFT method, the piecewise linear be-
havior of the total energy with respect to fractional charge is less reliable using high
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unrealistic U parameter on the atomic orbitals.

Table 5.8: Lattice parameters and energy band gap obtained using PBE and PBEsol in
3×3×3 supercell of cubic NaNbO3.

U(Nb4d) [eV] U(O2p) [eV] Existence of Polaron
Lattice Parameter [Å]

(PBEsol-unitcell)
Lattice Parameter [Å] (PBE-supercell)

Band Gap [eV]
(PBE)

Band Gap [eV]
(PBEsol)

4 2 No 3.970 3.993 2.12 2.11
4 4 Yes 3.966 3.991 2.18 2.16
4 6 Yes 3.962 3.982 2.23 2.21
4 8 Yes 3.957 3.982 2.29 2.26
4 10 No 3.952 3.977 2.35 2.32
4 12 No 3.946 3.971 2.42 2.38
6 2 No 3.984 4.008 2,41 2.38
6 4 Yes 3.980 4.005 2.46 2.44
6 6 Yes 3.975 4.003 2.51 2.50
6 8 Yes 3.970 3.995 2.58 2.56
6 10 No 3.965 3.990 2.65 2.62
6 12 No 3.960 3.985 2.73 2.69
8 2 No 4.002 4.023 2.68 2.65
8 4 No 3.994 4.019 2.74 2.72
8 6 Yes 3.989 4.014 2.81 2.78
8 8 Yes 3.984 4.008 2.88 2.85
8 10 Yes 3.979 4.005 2.95 2.92
8 12 No 3.973 4.002 3.02 3.00
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Chapter 6

Conclusion and outlook

In summary, we have demonstrated that application a manual distortion in the lat-
tice structure along with removal of one charge at both low and high temperature
phases of NaNbO3, can encourage the formation of small polarons in the system
using both HSE06 and PBE+U functionals. Simulations has shown that increas-
ing the U parameter on O, can significantly increase the trapping energy of STH
which is due to the fact that addition of Hubbard U parameter will cancel out
the self-interaction error of DFT and successfullly localise the charges at the site
of distortion. However, application of U parameter separately on O(2p) states has
shown that increasing the U parameter cause large deviation from piecewise linear
behaviour. Consequently, U parameters larger than 6 eV are not considered as a
good option for U value on O since it only consists of s and p orbitals.

Comparing different energy regimes of cubic and rhombohedral phases show that
rhombohedral phase has higher gain in energy compared to the cubic phase for the
same value of U parameter on Nb and O which leads to the fact that STH polarons
are more probable to be observed in the rhombohedral phase of NaNbO3 through
experimental studies. Various compositions of U parameter on Nb and O have
shown a good agreement with piecewise linearity of total energy versus fractional
charge.

In order to choose the optimum value of U for application on Nb and O atoms,
the piecewise linear behavior of a system which the composition of U parameter on
both Nb and O is applied, has been investigated by plotting the total energy versus
fractional charge density. In order to narrow down the available options which are all
in good agreement with piecewise linearity method, other properties of each system
such as lattice parameters and band gap is also investigated using PBE and PBEsol.
For rhombohedral phase of NaNbO3, choice of U(Nb4d)= 4,6 eV and U(O2p)=4 eV
have a good agreement with experimental data. For cubic phase, U(Nb4d)= 4 eV
and U(O2p)= 6 eV is the best choice of U value which yields a good picewise linear
behavior along with more precise prediction of lattice parameters.

In this work, formation of polaron in both cubic and rhombohedral phases is con-
firmed while the optimum value of U parameter is chosen by precise comparsion
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between polaronic energy regimes. Our proposed scheme for continuing this re-
search would be the use of Occupation Matrix Control (OMC) in order to place the
polaron without manually distorting the lattice and more flexibility in choosing the
polaronic site. Using OMC can pave the way for investigation of hopping energy
using Nudge Elastic Band (NEB) method as by specifying two neighbouring sites
which polaron can move between them, the activation energy barrier for hopping
mechanism can be calculated. Having access to hopping energy barrier of polaron
in NaNbO3 is very important because it is one of the decisive factors regarding the
mobility of charges in the system. Due to the time limitation, this study is only
done for a supercell system of 2×2×3 for the rhombohedral phase and 3×3×3 for
cubic phase. Interesting result is expected by doing finite size correction.
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[2] L. D. Landau. Über Die Bewegung der Elektronen in Kristallgitter.
Phys.Z.Sowjetunion, 3:644–645, 1933.

[3] David Emin. Optical properties of large and small polarons and bipolarons.
Physical Review B, 48(18):13691–13702, November 1993. Publisher: American
Physical Society.

[4] Nevill Francis Mott and Edward A. Davis. Electronic Processes in Non-
Crystalline Materials. Oxford Classic Texts in the Physical Sciences. Oxford
University Press, Oxford, New York, February 2012.

[5] Yuriy Natanzon, Amram Azulay, and Yaron Amouyal. Evaluation of Polaron
Transport in Solids from First-principles. Israel Journal of Chemistry, n/a(n/a).
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijch.201900101.

[6] Paul Erhart, Andreas Klein, Daniel Åberg, and Babak Sadigh. Efficacy of the
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