Faculté des Sciences appliquées
Faculté des Sciences appliquées

Master's Thesis : Machine learning techniques applied to sleep-disordered breathing diagnosis

Simar, Julien ULiège
Promotor(s) : Sacré, Pierre ULiège
Date of defense : 25-Jun-2020/26-Jun-2020 • Permalink :
Title : Master's Thesis : Machine learning techniques applied to sleep-disordered breathing diagnosis
Author : Simar, Julien ULiège
Date of defense  : 25-Jun-2020/26-Jun-2020
Advisor(s) : Sacré, Pierre ULiège
Committee's member(s) : Beckers, Bernard 
Drion, Guillaume ULiège
Geurts, Pierre ULiège
Louppe, Gilles ULiège
Language : English
Discipline(s) : Engineering, computing & technology > Multidisciplinary, general & others
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée en "signal processing and intelligent robotics"
Faculty: Master thesis of the Faculté des Sciences appliquées


[fr] Sleep-disordered breathing (SDB) is a family of pathologies caused by a total or partial collapse of the upper airways. They are characterized by certain breathing patterns. One paradigm to identify these patterns is the one of the Nomics company that created the Jawac sensor, enabling to measure mandibular lowering. In 2008, in his PhD, Frédéric Senny developed for Nomics an automatic analysis based on this sensor to help doctors in their diagnosis. His algorithm proceeded in 2 phases, a first phase in charge of differentiating between wake and sleep from the Jawac sensor and a second phase finding Sleep-disordered breathing in these sleep zones. The first phase showed a number of limitations that had to be corrected over the years by a consequent post-processing by Nomics.

In recent years, deep learning methods have proven themselves in many fields such as image classification and music classification. This thesis is therefore intended to explore these methods in order to try to find one that will improve sleep/wake classification based on the Jawac.

In this thesis, we start by identifying the limitations of the current Nomics algorithm to motivate the new approach. Then, we build a pipeline to build supervised learning datasets related to the Jawac signal. Next, we test algorithms from Random Forest (RF), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Convolutional Recurrent Neural Networks (CRNN) on this problem in order to find the best architecture. We show that the best performances are obtained from a CRNN type network inspired from the literature with which we finally get 95.82% of AUC (Area Under the Curve) on the test set used. For comparison, Senny's algorithm only obtains 83.27% of AUC on the same test set.



Access Master_Thesis_20143580.pdf
Description: -
Size: 3.17 MB
Format: Adobe PDF
Access Erratum_Master_Thesis_20143580.pdf
Description: -
Size: 227.37 kB
Format: Adobe PDF


  • Simar, Julien ULiège Université de Liège > Master ingé. civ. électr., à fin.


Committee's member(s)

  • Beckers, Bernard Nomics
  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Total number of views 169
  • Total number of downloads 20

All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.