Feedback

Faculté des Sciences
Faculté des Sciences
MASTER THESIS
VIEW 22 | DOWNLOAD 4

Automatic OilSpill detection and monitoring with supervised machine learning and SAR remote sensing

Download
Stock, Damien ULiège
Promotor(s) : Defrere, Denis ULiège ; Van Droogenbroeck, Marc ULiège
Date of defense : 7-Sep-2020/8-Sep-2020 • Permalink : http://hdl.handle.net/2268.2/9940
Details
Title : Automatic OilSpill detection and monitoring with supervised machine learning and SAR remote sensing
Author : Stock, Damien ULiège
Date of defense  : 7-Sep-2020/8-Sep-2020
Advisor(s) : Defrere, Denis ULiège
Van Droogenbroeck, Marc ULiège
Committee's member(s) : Kirkove, Murielle ULiège
Marée, Raphaël ULiège
Orban, Anne ULiège
Language : English
Number of pages : 96
Keywords : [en] Oil spill detection SAR Convolutional neural network
Discipline(s) : Physical, chemical, mathematical & earth Sciences > Space science, astronomy & astrophysics
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences spatiales, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences

Abstract

[en] This master thesis had as aim the analysis of the possibility of making an oil spill detection automation tool based on SAR images and convolutional neural network.


File(s)

Document(s)

File
Access Oil_Spill_Detection.pdf
Description: Stock Damien
Size: 23.28 MB
Format: Adobe PDF

Author

  • Stock, Damien ULiège Université de Liège > Master sc. spatiales, à fin.

Promotor(s)

Committee's member(s)

  • Total number of views 22
  • Total number of downloads 4










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.