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Nomenclature

Λ quarter-chord sweep angle (˝) or (rad)

λ Taper ratio (-)

ε Residual between the observed and the fitted flutter indices (-)

ζ Damping ratio (-)

AR Aspect ratio (-)

b Half-root chord (m)

cr Wing root chord (m)

ct Wing tip chord (m)

ff Flutter frequency (Hz)

k “
ωb

V8
Reduced frequency (-)

m Number of independent variables (-)

MSE Mean squared error (-)

n Number of experiments (-)

p Number of model’s parameters (-)

R2 Multiple correlation coefficient (-)

S Wing surface (m2)

s Wing span (m)

SSE Sum of the squares of the errors (-)

SST Total sum of squares (-)

Vf Flutter velocity (m/s)

V ˚f Flutter index (-)
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Abstract

Assessing exactly the flutter speed and frequency is of prior importance when designing an aircraft

to ensure a safe flight envelope and to this purpose, experimental and numerical tests have been

developed throughout the years. To simplify the computation of the critical speed and frequency,

this master thesis proposes to build a mathematical model for flutter characterisation as a function

of geometrical parameters of cantilever flat plates namely the Aspect Ratio, the taper ratio and

the sweep angle, on the basis of the unsteady Vortex Lattice Method (VLM). The investigation of

the hump mode activation as a function of those parameters is carried out in first place to assess

its conditions of appearance and it is concluded that a straight discontinuity line can be drawn on

the domain to distinguish the zone where the hump is active from the zone where it is not. Then,

the linear regression theory is used for building the model and three different polynomial orders are

compared. and conclusion is made that a incomplete second order model provides results reliable

up to 99%. A comparison is made with experimental results obtained in wind tunnel. To do so, an

excitation system is designed so that its eigenfrequencies do not interfere with those of the tested

plates. Several issues encountered due to lack of time because of the sanitary crisis prevented to

perform more than two tests for which the different problems could not all be checked and solved.

In the end, a proper conclusion about the practical validity of the model could not be drawn.
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1 Introduction

1.1 Problem definition

Flutter is an aeroelastic phenomenon that results from an unfavorable interaction between the aero-

dynamic, elastic and structural forces that causes undamped oscillations often leading to structural

failure. Such a phenomenon appeared in the early 1920s with the increase of aircraft speed and

from then, characterising the flutter has been of prior importance in the design of aircraft. At

this time, no proper flutter tests existed and the aircraft was simply flown to cover the whole flight

envelope to ensure that it was flutter free. The first flutter test was created in 1953 by Von Schlippe

and it consisted in vibrating the aircraft at its eigenfrequencies, starting at low speed and then

increasing progressively. The response amplitude was measured and plotted as a function of the

airspeed. when this amplitude was becoming high enough suggesting a very low or even a null

damping, the flutter speed was obtained [1]. Throughout the years, the flutter tests quality has

improved until eventually coming to a numerical characterisation of the phenomenon. Simplifying

the process to get an accurate estimation of the flutter properties is therefore very appreciated to

avoid risks of failure and costly simulations.

Several types of flutter exist depending on the application and on the configuration that is consid-

ered. In this master thesis, focus is made on the most common one that aircraft can encounter,

namely the wing bending-torsion flutter. As the name suggests, the phenomenon involves both the

bending and torsion modes of the wing which combine to extract the energy from the free stream

and create the flutter phenomenon when the critical speed is reached. At this specific speed, the

energy extracted from the free stream is exactly dissipated so that the motion amplitude remains

constant but when going for higher speeds, the whole energy is not dissipated increasing the motion

of the wing until structural failure. The motion of the wing is shown in Fig. 1, the wing flaps up

and down and rotates at the same time around its rotation axis.

As flutter is an aeroelastic phenomenon, it combines inertial, structural and aerodynamic forces

that are directly impacted by the geometry of the structure. It is therefore expected that the flutter

speed and frequency greatly depend on the geometry and characterizing this dependency becomes

of prior interest in the design of aircraft. Furthermore, this would bring the flutter characterisation

back to the earliest stages of the design which can be very interesting. The goal of this master

thesis is thus to provide a mathematical model that relates the flutter speed and frequency to

1



Figure 1: Wing bending-torsion flutter [2]

geometrical parameters of a wing. A wing’s geometry is fully described by several parameters that

are the camber, the thickness, the span, the root and tip chords and the sweep angle.

However, some simplifying assumptions are made.

• No camber is considered.

• Only flat plates are considered. Given that it is impossible to get plates that are infinitely

thin, a constant thickness of 0.001m is imposed in the modelling process.

• The plates are expected to be fixed on an excitation system for wind tunnel experiments so

that the root chord is set to a constant croot “ 0.2m.

• Only geometric dependency is investigated here, the material is set to be aluminium for all

the plates, with the following properties

Density ρ 2,700 kg/m3

Young modulus E 70,000 MPa

Poisson ratio ν 0.33

Table 1: Aluminium mechanical properties of the plates.

After those simplifications, the parameters that remain are the span, the tip chord and the sweep

angle. To get rid of the units, dimensionless parameters are used namely the aspect ratio, the taper

ratio and the quarter-chord sweep angle expressed in radians in the model.

λ “
ct
cr

(1)

AR “
s2

S
“

s2

1

2
¨ bpcr ` ctq

“
2s

crp1` λq
(2)

2



Note that in this context, cantilever plates are modelled so that the aspect ratio corresponds to

that of a half-wing and must be doubled to get the aspect ratio that would exhibit a full wing.

Throughout this thesis, nondimensional independent variables are used. The flutter speed and

frequencies being respectively expressed in m/s and Hz, the results are shown under the form of a

flutter index defined as

V ˚f “
Vf

ff b
(3)

so that units mismatch issues are avoided.

1.2 Vortex Lattice Method

The numerical results used to build the mathematical model are obtained using a modal frequency

domain version of the Vortex Lattice Method (VLM) in an unsteady configuration described in [4]

based on the work proposed by Katz and Plotkin in [3]. The general procedure consists in solving

the modal aeroelastic equations written on the basis of Lagrange’s equation

d

dt

´

BL

B 9ri

¯

´
BL

Bri
“ Qi (4)

where L “ T ´ V is the total energy of the structure, ri is the ith generalised coordinate and Qi is

the generalised aerodynamic force term.

As shown in Fig. 2, the wing is flattened on its camber surface and geometrical panels are used to

discretise the structure. On each of those panels, vortex rings with circulation Γ are imposed so

that their leading edge corresponds to the quarter-chord of the panel. The wake is also paneled

up to enforce the unsteady Kutta condition and its influence on the wing is computed through

the use of influence coefficients. The goemetries of both the wing and its wake remain the same

for the whole time history and the out-of-plane structural motion is modelled using downwash

term in the aerodynamic loads on the basis of the structural mode shapes obtained using a FE

model. Note that the in-plane motions are not considered. The mode shapes are interpolated on

the control points located at the center of each vortex ring, i.e. on the three-quarter-chord of each

aerodynamic panel so that it matches with the aerodynamics discretisation on the basis of which

the aerodynamic loading is computed.

3



Figure 2: Illustration of the aerodynamic discretisation of the wing from reference [3].

Starting from the general equation 4, the impermeability and Kutta conditions are enforced and

following the mathematical developments proposed in [4], the complete set of modal aeroelastic

equations is obtained under the matrix forme as

A:r` Er “ Qptq (5)

with A and E respectively the modal mass and stiffness matrices corresponding to mode shape

Wi.

In the frequency domain, the modal equations become
˜

´

ˆ

kQ8
b

˙2

A` E´ ρQ2
8Q1pkq

¸

“ ´ρQ2
8Q0p0q (6)

with Q0p0q “
`

L0p0q
TW

˘T and Q1pkq “
`

L1pkq
TW

˘T.

The flutter speed and frequencies are finally obtained by setting the flutter determinant to zero

det

˜

´

ˆ

kfQf

b

˙2

A` E´ ρQ2
8Qfpkfq

¸

“ 0 (7)

In practice, the determination of the conditions under which the flutter determinant becomes zero

is made using a Newton-Raphson procedure. This requires to select initial values of speed and

reduced frequency that are near the exact solution to ensure a rapid and correct convergence.

Furthermore, a certain amount of information is needed for the method to provide the expected

results. Even though the bending-torsion flutter involves the first three vibration modes, at least

five of them must be provided to the VLM code for the results to be reliable.
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2 Numerical simulations

This section is dedicated to the numerical part of the work on which the model is built comprising

the Finite Elements (FE) and aeroelastic modelling of the plates. Also, the selection of the model

is proposed after having analysed the results and investigated the presence of hump modes.

2.1 Design domain

The first task to achieve is the selection of the initial set of geometrical parameters. The purpose

is to create a mathematical model that best reflects reality so that a certain number of simulations

must be carried out. Continuous variables are considered and the number of configurations can

become enormous which is prohibited. It is necessary to find a moderate sized set of initial values

that provides as much information as possible.

The bounds of the domain are selected in first place so that a rather large field is covered that

comprises many of the classical aircraft wings configurations

• AR: as mentioned above, the aspect ratios considered here correspond to cantilever plates.

Setting the bounds to ARmin “ 2 and ARmax “ 5 therefore corresponds to the domain from

4 to 10 for a full wing.

• taper ratio: most of the time, the taper ratio is comprised between 0 for delta wings and 1

for rectangular ones with some exceptions going above 1. The taper ratio’s bounds are set to

be λmin “ 0.25 and λmax “ 1 .

• quarter-chord sweep angle: no forward-swept wings are considered so that the lower bound

is Λmin “ 0˝. The upper bound is set arbitrarily to Λmax “ 30˝.

For exploring the domain uniformly, each factor is divided into four levels which creates orthogonal

grids that generate the cubic domain presented in Fig. 3 corresponding to the 64 plates presented

in Fig. 4.

5



Figure 3: Design domain.

2.2 Structural analysis

The UVLM requires the modal mass and stiffness matrices of each plate as well as the eigenmodes.

Those information are obtained using the FEA solver Nastran available in the Siemens NX

software. The data are then extracted and written under the desired format using MatLab as

described in the Appendix. FE models of the plates have to be constructed and the question arises

about the type and number of elements to be used for the solver to provide accurate results.

The plates are all 1 mm thick making the use of shell elements adapted to the situation. Addition-

ally, only linear structural problems are considered and no curvature exists in the plates models.

Having a mid-side node on each element does not present any real advantage and is expected to

make the computation more costly even though the models are quite simple. Finally, the triangular

elements generally present the drawback to be too much stiff in bending when used in small num-

ber. This number is expected not to be too high for making both the the structural and aeroelastic

analyses of the 64 plates not too much time costly so that using triangular elements is probably

6
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Figure 4: Representation of the 64 plates obtained with the orthogonal design domain.

not adapted for the present application. Given that bending modes are of interest, the choice is

made to use CQUAD4 elements in a structured mesh. The modal analysis is then achieved using

the "SOL 103 Real eigenvalues" solution type proposed by Nastran and the root chord is fixed

to create the clamping boundary condition of cantilever plates.

The discretisation in finite elements is investigated on the plate having the smallest surface i.e. the

most rigid one corresponding to the plate 1. A convergence study of the eigenfrequencies computed

with NX Nastran is performed in terms of the elements size and presented in fig. 5. The upper

graph shows the evolution of the frequencies as the size decreases until 1mm. The lower one depicts

the relative difference with the results obtained at size 1mm. When reaching 5mm, the maximum

relative difference is obtained for the 5th frequency and is of order 0.1%. It is concluded that con-
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vergence has been achieved.
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Figure 5: Structural convergence study of the five first eigenfrequencies of plate 1 in terms of the

elements size.

However, for the sake of simplicity in the extraction of the stiffness and mass matrices and the

eigenmodes, it could be useful to get the same number of nodes, i.e. the same number of elements

for each plate. having 5mm elements on plate 1 corresponds to 2200 elements or again 40 elements

chordwise and 55 elements spanwise. A similar convergence study is achieved on the plate having

the largest surface i.e. the plate 16, to verify that 2200 elements are enough to provide accurate

results. The variation of the first five eigenfrequencies in terms of the number of elements this time

is presented in Fig. 6.
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Figure 6: Structural convergence study of the five first eigenfrequencies of plate 16 in terms of the

number of elements.

As for plate 1, the frequencies are provided in the upper graph while the lower one presents the

relative difference with the frequencies obtained for 1mm elements (200,000 elements). With 2200

elements the maximum relative difference is again obtained for the 5th frequency and is of order

0.35%. It is therefore assumed that 2200 elements are sufficient to obtain accurate results for all

the plates.

Fig.7 depicts the variation of the wind-off natural frequencies as a function of the selected param-

eters. It shows that the frequencies do almost not depend on the sweep angle. For a constant

span and tip chord, i.e. constant aspect and taper ratios, sweeping the wing back slightly increases

its mass and decreases its stiffness. As a result, the eigenfrequencies decrease very slightly with

the sweep angle at the point of appearing almost constant over the range of values considered.

Nevertheless, the two other parameters are affecting more importantly the obtained values. The

aspect ratio is the one having the greatest impact. The longer the plate the earlier in frequency it
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vibrates given that its rigidity decreases greatly while its mass increases. Both effects combine to

rapidly lower the wind-off frequencies. Similarly, the taper ratio modifies both the mass and the

stiffness of the structure. the higher the taper ratio, the higher the mass and the lower the stiffness

and again, both effects combine but to a lesser extent.
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Figure 7: Variation of the first three natural frequencies as a function of the three geometrical

parameters. (a) λ “ 0.25, Λ “ 0˝; (b) AR “ 4, Λ “ 0˝; (c) AR “ 4, λ “ 0.25.
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The 64 plates are modelled using 40 chordwise and 55 spanwise finite elements and Tab.2 illustrates

the FE discretisation and the first five eigenmodes of plate 1.

FE discretisation mode 1, f1 “ 19.28 Hz mode 2, f2 “ 89.66 Hz

mode 3, f3 “ 99.25 Hz mode 4, f4 “ 228.61 Hz mode 5, f5 “ 256.81 Hz

Table 2: Modal analysis of plate 1.
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2.3 Aeroelastic analysis

To solve the generalised aeroelastic force matrix problem, the plates are divided into m chordwise

and n spanwise aerodynamic panels and the aeroelastic results depend on this discretisation.

First of all, the convergence proposed in [4] is made with a sine distribution of the spanwise panels.

Here, a linear distribution is used trying to match with the structural discretisation for allowing a

better interpolation of the mode shapes on the aerodynamic mesh. Indeed, having more aerody-

namic panels than structural ones is meaningless and can result in bad interpolation so that the

finest resolution that can be achieved a priori is mmax = 40 and nmax = 55. The VLM method mir-

rors the plate around its root chord aiming to set up a symmetric flowfield. The spanwise number

of aerodynamic panels is therefore twice that of the structural panels which gives nmax = 110.

The number of chordwise aerodynamic panels is set exactly the same way as the structural ones

(along the root chord) so that selecting the maximum allowable value does not cause any trouble

in the results. Concerning the number of spanwise panels, the number of finite elements have been

imposed along the leading edge that is swept while the number of aerodynamics panels is set along

the span that is a pure vertical line and mismatch can therefore occur between structural and aero-

dynamic panels. Analysing the convergence of the results before selecting a spatial resolution is

thus necessary. Fig. 8 shows that when reaching n “ 100, the results stop following the convergence

curve. This issue is explained because the two discretisations are not made the same way. The

structural panels have been imposed along the leading edge that is swept back while the aerody-

namic ones are imposed along the span that is not swept. Because of this, when refining the VLM

mesh too much i.e. when its number of elements becomes close to that of the structural mesh, the

aerodynamic panels are becoming smaller than the structural ones in the spanwise direction. This

does therefore lead to the problem of having two aerodynamic panels for a single finite element one

resulting in a bad interpolation ([4]).

With this issue being highlighted, the most converged results are obtained for n “ 90 for the se-

lected FE discretisation and the relative difference is computed with respect to those results for

the plates 1 and 16.

For n “ 70, this difference is of order 0.48% for the plate 1 and 0.63% for the plate 16 while the

computation times are respectively 74.4s and 86.8s. Taking into account that the computation

time grows exponentially and that 64 plates are expected to be modelled, it has been decided to

not spend too much time for slightly getting closer to the most converged value and the number of

spanwise aerodynamic panels has been set to n “ 70 for all the plates. Note that a refinement of
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Figure 8: Aerodynamic convergence study in terms of spanwise elements linearly distributed. (a)

variation of the flutter index for plate 1; (b) variation of the flutter index for plate 16.

the mesh could be carried out but it must be done in parallel with the refinement of the structural

mesh to avoid any possible interpolation error between the two meshes.

2.4 Flutter index model construction

The model developed in this work is called a black box model meaning that the goal is to relate

the output to the input with an empirical law on the basis of the experiments. No real use is made

of the physics of the phenomenon to build the prediction law. The objective is therefore to fit a

set of surfaces to the numerical flutter index data that depend on the Aspect ratio, the taper ratio

and the quarter-chord sweep angle with the physical properties of the material, the thickness and

the root chord that are kept constant for all the cases.

Until now, nothing is known a priori on the form of the equation that best fits the numerical results.

The first objective is therefore to investigate the dependency of the phenomenon on the selected
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factors, also called independent variables, to determine whether a linear or nonlinear law in terms

of the model’s parameters has to be used. Then, the quality of the model is assessed and an analysis

of each term’s necessity is eventually proposed leading to a simpler law with an acceptable level of

accuracy.

It is important to mention that all the mathematical development proposed here has been obtained

with the sweep angle being expressed in radians.

2.4.1 VLM results

As mentioned earlier, the flutter phenomenon considered here is an interaction between bending

and torsion modes so that only the damping curves corresponding to those modes are of interest.

To illustrate the typical results obtained with the VLM, the curves are provided in Fig.9 for plate

1.
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Figure 9: Frequency and damping curves for the first three modes obtained with VLM for plate 1.

The critical flutter speed and frequency are obtained when the damping curve crosses the zero

axis meaning that the aerodynamic damping perfectly counterbalances the structural one so that
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the total damping becomes zero preventing the motion amplitude to decrease. Going for higher

airspeed makes the aerodynamic damping greater and the total damping becomes negative which

has the consequence to amplify any vibration occurring in the structure until it breaks.

Following the definition proposed in Eq.3, the 64 flutter indices are obtained and shown in Fig.10.

Figure 10: Flutter indices obtained for the 64 plates and shown for each level of sweep angle.

It appears that for Λ “ 20˝ and 30˝, the results follow a smooth increasing tendency as the aspect

and taper ratios both increase. For the two lower levels of sweep angle, the same tendency is

observed on a portion of the domain only. Indeed in a zone, that is different in both cases, where

the aspect ratio becomes larger, a sudden drop of the values occurs.

This drop exists due to the activation of what is called a hump mode that is characterised by a

decrease in the damping below zero followed by an increase. This activation is shown in Fig. 11.

The curves on the left shows the apparition the hump but it remains positive and does not activate

and then on the right, one of the parameters value has changed, forcing the hump to go below zero

and the third mode to become the critical one.
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With this jump from mode two to mode three, the flutter speed drops suddenly resulting in a

sudden drop down of the flutter index. The dependency of the activation of the hump mode on
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Figure 11: Comparison of the frquency and damping curves obtained for the three first eigenmodes

for two different designs. (a) AR “ 3, λ “ 0.5 and Λ “ 0˝; (b) AR “ 4, λ “ 0.5 and

Λ “ 0˝.

the parameters therefore needs deeper investigation before trying to fit any model. Note that the

hump mode is unstable over a range of airspeeds only but it is directly followed by the classical

hard flutter as shown in the figure that never stabilises. The critical flutter speed of the plate is

therefore that of the hump mode activation.
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2.4.2 Hump mode activation

To understand the discontinuity in the results, additional plates are modelled in the transition

zone where the hump mode becomes active, for both Λ “ 0˝ and Λ “ 10˝. 27 plates are added

to the initial domain which gives a total of n “ 91 test cases on the basis of which the model

is built. Use can be made of the results to try to deepen the understanding of the hump mode

appearance and the reason of its activation. The classical bending-torsion flutter results from the

complex coupling of the first torsion with bending. When the torsion corresponds to the second

mode of the plate, the coupling is made with the first mode that corresponds to the first bending

and the plate exhibits the classical flutter. Nevertheless, for all the plates that activate the hump

mode (i.e. when the bump goes below the zero damping axis), the first three vibration modes are

the first and second bending and the first torsion in ascending order of frequency. Note that for

each mode, no perfect bending or torsion is obtained and they are always slightly mixed with a

dominance of one or the other. In those cases, it is always the torsion mode that flutters. Other

plates exhibit the appearance of the hump mode even if does not activate (as for plates 10 and

15) and for those, the torsion mode is again the third vibration mode. It is therefore the second

bending mode that flutters in those cases. The hump mode appearance always comes with this

specific order in the first threeeigenmodes. This could therefore be explained by a different cou-

pling than the classical one of the torsion mode with the two bending modes whose frequencies are

lower. As a consequence, the damping of the torsion mode would decrease until this special cou-

pling stops making the damping increase again. Then, the classical bending torsion coupling takes

place and the second bending mode damping decreases until the critical point and the wing flutters.

As shown, for some cases the hump mode is present and in addition to that the bump in the

torsion mode damping curve crosses the zero axis making the mode flutters before the classical

phenomenon takes place. The hump mode is thus active. Fig.12 depicts the variation of the

frequency and damping curves of the first three modes for six different configurations. It appears

that the hump mode becomes active when the difference between the wind-off natural frequencies

corresponding to the third mode (first torsion) and the first one (first bending) decreases. The

appearance of the hump could therefore result from the coupling between the first and third modes

while its end would corresponds to the beginning of the coupling between the third and second

mode. The activation would occur when the wind-off frequencies are close enough to each other

strengthening the coupling that allows the bump to cross the zero axis.
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Figure 12: (a) AR “ 3, λ “ 0.5, Λ “ 0˝; (b) AR “ 4, λ “ 0.75, Λ “ 0˝; (c) AR “ 4, λ “ 0.25,

Λ “ 10˝; (d) AR “ 4, λ “ 0.5, Λ “ 0˝; (e) AR “ 5, λ “ 0.75, Λ “ 0˝; (f) AR “ 5,

λ “ 0.25, Λ “ 10˝.
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Note that a possibility to get rid of the hump mode activation would be to increase the damping

of the wing. The third mode damping curve would be translated upward and the bump would

therefore not be able to cross the zero axis anymore.

With the flutter indices obtained, it appears that the two zones can be separated with a vertical

plane as illustrated in Fig.13. The vertical planes delimiting the before and after hump activation

Figure 13: Illustration of the discontinuity plane in the results. (a) Λ “ 0˝; (b) Λ “ 10˝.

zones are generated with a first order equation in both cases in terms of the aspect and taper ratios
$

’

&

’

%

λ “ 0.31AR ´ 0.56 for Λ “ 0˝

λ “ 0.42AR ´ 1.505 for Λ “ 10˝
(8)

To generalise those equations to any value of sweep angle, it is first assumed that both the slope

and the intercept evolves linearly in terms of Λ so that if Λ “ 5˝,

m “
0.31` 0.42

2
“ 0.365 and p “

0.56` 1.505

2
“ 1.0325
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giving the discontinuity equation

λ “ 0.365AR ´ 1.0325 (9)

To validate this equation, four more plates are modelled at the considered sweep angle and verifi-

cation is made that the results are located in the expected zone. As shown in Tab.3, the cases for

which the taper ratio is below the discontinuity line have undergone the transition of critical mode

due to the hump mode activation. The assumption of linear evolution of the discontinuity line as

a function of the sweep angle is then validated.

AR λ Λ V˚
f Hump activated

4 0.4 π/36 16.23 Yes

4 0.44 π/36 25.08 No

5 0.77 π/36 19.84 Yes

5 0.81 π/36 31.3 No

Table 3: Verification of the hump mode activation for Λ “ 5˝.

The equations of the variation of the slope and the intercept with the sweep angle can be obtained

mpΛq “ 0.63025Λ` 0.31 and ppΛq “ ´5.41445Λ´ 0.56 (10)

and eventually, the general equation for the discontinuity line is given by

λpAR,Λq “ p0.63025Λ` 0.31qAR ´ 5.41445Λ´ 0.56 (11)

The condition for the hump activation is to have a taper ratio below the discontinuity line.

The question that might come at this stage concerns the limit of the activation of the hump mode.

Indeed, it has been shown in the previous section that when considering higher sweep angles, the

discontinuity does not appear so that there must be a limit above which the phenomenon does not

occur anymore on the design domain.

Looking at the variation of the discontinuity line, the last configuration of the design domain that

should undergo hump activation is AR “ 5 and λ “ 0.25. Injecting those values in Eq.11, the

hump activation is not expected to occur if Λ ą 0.327 « 18.73˝. However, it appears that for a

configuration with AR “ 5, λ “ 0.25 and Λ “ 0.314 « 18˝, the critical mode is the second one
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Figure 14: Frequency and damping curves obtained for the first three modes of configuration AR “

5, λ “ 0.25 and Λ “ 18˝.
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because the hump mode crosses the zero line for higher speeds as shown in Fig.14. Therefore,

eventhough the hump mode is activated, it is not the critical one.

The first phenomenon that has been investigated consists in a vertical descent of the third mode

damping curve until the hump crosses zero and becomes active which depends on the three variables

but a second phenomenon takes place. With the sweep angle increasing, the damping curves of

mode 2 and mode 3 moves horizontally with respect to each other so that their respective critical

points end up switching their position making the second mode the critical one. This second

phenomenon appears to be mostly depending on the sweep angle.

To illustrate this displacement of the curves with respect to each other and to assess its dependency

on the three parameters, six configurations are compared and illustrated in Fig.15.
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Figure 15: Damping curves obtained for the first three modes for configurations, (a) AR “ 5,

λ “ 0.25, Λ “ 0˝; (b) AR “ 5, λ “ 0.25, Λ “ 10˝; (c) AR “ 5, λ “ 0.25, Λ “ 20˝; (d)

AR “ 4, λ “ 0.25, Λ “ 0˝; (e) AR “ 5, λ “ 0.5, Λ “ 10˝; (f) AR “ 4, λ “ 0.5, Λ “ 20˝.

As expected from the discussion made above, the vertical displacement of the third mode curve

depends on the three parameters. However, it appears clearly that the horizontal displacement of
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the second and third modes curves with respect to each other is a phenomenon that is mainly sweep

angle dependent. It is therefore assumed that only this parameters is responsible of the switch.

The sweep angle value for which the critical point switches from one mode to the other is obtained

by plotting the curves of the critical speed obtained for both modes in Fig.16. Three configurations

where hump is activated having the same aspect and taper ratios but different sweep angles are

available. Two second order polynomials proposed in Eq.12 are used to fit the results for both

modes and the residuals are respectively 1.2307 ¨ 10´14 and 7.1054 ¨ 10´15 for the second and third

modes. As a consequence using higher order terms is not necessary and no additional configuration

is required.

The two curves crosses each other for Λ “ 0.276 « 15.81˝ which corresponds to the flutter speed

Vf “ 34.14 m/s.
$

’

&

’

%

Vf “ 26.155Λ2 ´ 36.668Λ` 42.27 for mode 2

Vf “ 16.765Λ2 ` 4.1041Λ` 31.734 for mode 3
(12)

To summarise the discussion proposed, the hump mode is active up to Λ “ 0.327. However, it

remains the critical mode for flutter only up to Λ “ 0.276 because for higher values, it is the second

mode damping curve that crosses the zero axis for the lowest airspeed.

With the two phenomena limits being understood, the domain is divided into two distinct zones

• if Λ ă 0.276 the hump mode is activated and is the critical mode if

λpAR,Λq ă p0.63025Λ` 0.31qAR ´ 5.41445Λ´ 0.56.

• if Λ P r0.276; 0.327s, the hump mode is active but it is not the critical flutter mode not matter

the values selected for the aspect and taper ratios on the design domain considered here.

• if Λ ą 0.327, the hump mode is never active and the second mode is the critical one.

2.4.3 Selection of the model

With the discontinuity being accurately defined, the model for the flutter index can be built. To

this purpose, the linear regression theory is used in first place and the two zones of the domain are

modelled separately. It must be reminded that the sweep angle Λ is taken in radians when building

the models.
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Figure 16: Variation of the critical flutter speeds for mode 2 and mode 3 as a function of the sweep

angle. The three configurations have AR “ 5 and λ “ 0.25.

The general expression for any model is

Y pxq “ Ŷ pxq ` εpxq (13)

where Y pxq and Ŷ pxq are respectively the observed and computed values depending on the factors

contained in vector x and εpxq is the error term. In this context where no experiment has been

used to build the model, no error can exist on the response or on the factor measurements and the

error term is only the residual i.e. the difference between Y pxq and Ŷ pxq due to the lack of fit.

Eq.13 can be written under the linear matrix form

Ypxq “ Ŷpxq ` εpxq “ Xβ ` εpxq (14)

where β is the vector of the model’s parameters that must be computed, X is the model’s matrix

and the product Xβ is the expectation function. The linearity is in term of the model parameters

meaning that the derivative of Ypxq with respect to β is independent of β.
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First order polynomial

The first and most simple model that can be used is the first order polynomial given by

Ŷ pxq “ β0 `
m
ÿ

i“1

βixi (15)

where

• β0 represents the mean effect i.e. the intercept of the model

• βi represents the linear effect of the ith factor

and the number of parameters that must be computed is p “ 4. Using the matrix form of Eq.14,

the model’s matrix is built as

X “

»

—

—

—

—

—

—

—

–

1 AR1 λ1 Λ1

1 AR2 λ2 Λ2

...
...

...
...

1 ARn λn Λn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pnˆ pq (16)

with the first column is made of 1’s that multiply the mean effect β0. To find the parameters values,

use is make of the least square estimates which provides the estimators β̂ according to

β̂ “ pXTXq´1XTY (17)

In a classical statistical context, the use of least squares estimates requires to verify several assump-

tions to produce the best possible estimates. Those assumptions mainly concern the error term

but here, they are only made of the residuals existing between the response and the expectation

function so that they can not be analysed as classical experimental errors.

Nevertheless, as shown in Eq.17, it is required to compute the inverse of XTX which imposes that

the matrix in not singular. To avoid the singularity problem, the model’s matrix should be of full

rank so that the computation of the estimators is possible and accurate.

As mentioned previously the two zones of the domain must be modelled separately. Using Eq.17

in both cases, the model’s parameters are obtained and the first order model is written under the

conditional form

• if Λ P
“

0 ; 0.276
‰
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§ if λ ă p0.63025Λ` 0.31qAR ´ 5.41445Λ´ 0.56, the hump mode is the critical one and

V̂ ˚f “ 4.4228` 1.6895 ¨ AR ` 7.224 ¨ λ` 13.036 ¨ Λ (18)

§ else, the hump mode is not activated and

V̂ ˚f “ 9.4001` 3.0199 ¨ AR ` 8.7992 ¨ λ´ 1.7893 ¨ Λ (19)

• if Λ ą 0.276, the critical points have switched their locations so that the hump mode is not

the critical one and Eq.19 is to be used.

Fig.17 presents the results obtained with the first order model under the form of surfaces for each

value of sweep angle. The independent variables being taken alone in the model, curvature in the

Figure 17: First order model without interaction term. (a) Λ “ 0˝; (b) Λ “ 10˝; (c) Λ “ 20˝; (d)

Λ “ 30˝.

surfaces can not exist which limits the possibility to get close to each of the VLM results. With

this first order polynomial, the maximum residual obtained where the hump mode is not active
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is εno hump “ 2.59 while for the zone where the activation took place, it is εhump “ 0.904 which

correspond respectively to 9.66% and 6.51% of the corresponding observed response.

Second order polynomial without direct terms

To enhance the quality of the results, some curvature can be brought by adding 2nd order terms

through the interaction between the factors. The second order with interaction terms polynomial

takes the general form

Ŷ pxq “ β0 `
m
ÿ

i“1

βixi `
ÿ

i ă

ÿ

j

βijxixj (20)

where βij represents the interaction effect between factors i and j.

The total number of parameters to be estimated is p “ 7 and the model’s matrix is constructed as

X “

»

—

—

—

—

—

—

—

–

1 AR1 λ1 Λ1 AR1 ¨ λ1 AR1 ¨ Λ1 λ1 ¨ Λ1

1 AR2 λ2 Λ2 AR2 ¨ λ2 AR2 ¨ Λ2 λ2 ¨ Λ2

...
...

...
...

...
...

...

1 ARn λn Λn ARn ¨ λn ARn ¨ Λn λn ¨ Λn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(21)

The model’s parameters estimators are again obtained using the least square estimates and the

model takes the form

• if Λ P
“

0 ; 0.276
‰

§ if λ ă p0.63025Λ` 0.31qAR ´ 5.41445Λ´ 0.56

V̂ ˚f “ ´0.5328` 2.8805 ¨ AR ` 18.0192 ¨ λ` 71.4015 ¨ Λ

´2.4927 ¨ AR ¨ λ´ 15.45 ¨ AR ¨ Λ` 32.6467 ¨ λ ¨ Λ
(22)

§ else

V̂ ˚f “ 10.7734` 2.4343 ¨ AR ` 11.0768 ¨ λ´ 10.4523 ¨ Λ

´0.4436 ¨ AR ¨ λ` 2.965 ¨ AR ¨ Λ´ 1.8488 ¨ λ ¨ Λ
(23)

• if Λ ą 0.276, Eq.23 is to be used.

whose results are shown in Fig.18.

With this model comprising the interaction terms, the maximum residuals become εno hump “

1.008 and εhump “ 0.889 which represents respectively 4.15% and 6.4% of the corresponding VLM
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Figure 18: Second order polynomial without direct terms. (a) Λ “ 0˝; (b) Λ “ 10˝; (c) Λ “ 20˝;

(d) Λ “ 30˝.

results which shows that the added terms have significantly improved the quality of the model for

the zone where the hump is not active. For the hump-activated zone, maximum residual has been

decreased from 0.11% only. Note that the maximum residuals are not obtained for the same VLM

results for each tested model.
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Complete second order polynomial

The two models presented above are often lacking of accuracy because no direct quadratic term

exists to create curvature where it is required. To overcome this problem, a solution is to use a

complete second order polynomial that has higher flexibility to adapt to the observed response

points since it can take a lot of functional forms. Some of them are presented in Fig.19.

Figure 19: Examples of functional forms defined by second order models, taken from [6].

A complete second order model takes the general form

Ŷ pxq “ β0 `
m
ÿ

i“1

βixi `
m
ÿ

i“1

βiix
2
i `

ÿ

i ă

ÿ

j

βijxixj (24)

where βii represents the quadratic effect of the ith factor.

The total number of parameters to be estimated is p “ 10 and the model’s matrix takes the form

X “

»

—

—

—

—

—

—

—

–

1 AR1 λ1 Λ1 AR2
1 λ21 Λ2

1 AR1 ¨ λ1 AR1 ¨ Λ1 λ1 ¨ Λ1

1 AR2 λ2 Λ2 AR2
2 λ22 Λ2

2 AR2 ¨ λ2 AR2 ¨ Λ2 λ2 ¨ Λ2

...
...

...
...

...
...

...
...

...
...

1 ARn λn Λn AR2
n λ2n Λ2

n ARn ¨ λn ARn ¨ Λn λn ¨ Λn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(25)
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With this model, the problem of having the model’s matrix that is not of full rank appears. Indeed,

when adding the direct quadratic terms, collinearity occurs which reduces the rank of the matrix

and this trouble takes place when modelling the zone after the hump activation. A complete second

order polynomial can therefore not be used in this zone.

• Incomplete second order polynomial

A way of improving the quality of the results and overcoming the problem of collinearity is to start

with the second order model with the interaction terms only and try to add second order terms

as long as the model’s matrix remain of full rank which is called forward selection. In fact, the

trouble arises when adding the Λ2 term. Consequently, the incomplete second order polynomial

model with a full rank model’s matrix is the same as for the complete second order one with the Λ2

term removed. The total number of model’s parameters is therefore p “ 9 and the model’s matrix

is given by

X “

»

—

—

—

—

—

—

—

–

1 AR1 λ1 Λ1 AR2
1 λ21 AR1 ¨ λ1 AR1 ¨ Λ1 λ1 ¨ Λ1

1 AR2 λ2 Λ2 AR2
2 λ22 AR2 ¨ λ2 AR2 ¨ Λ2 λ2 ¨ Λ2

...
...

...
...

...
...

...
...

...
...

1 ARn λn Λn AR2
n λ2n ARn ¨ λn ARn ¨ Λn λn ¨ Λn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(26)

The zone where the hump mode is not active is modelled with a complete second order polynomial

while the hump-activated zone is modelled with an incomplete second order one. The model takes

the form

• if Λ P
“

0 ; 0.276
‰

§ if λ ă p0.63025Λ` 0.31qAR ´ 5.41445Λ´ 0.56

V̂ ˚f “ ´9.1804` 8.7093 ¨ AR ` 7.3569 ¨ λ` 38.5296 ¨ Λ

´0.7797 ¨ AR2
` 5.1404 ¨ λ2

´1.4957 ¨ AR ¨ λ´ 9.2776 ¨ AR ¨ Λ` 42.3495 ¨ λ ¨ Λ

(27)

§ else

V̂ ˚f “ 13.1303` 0.4705 ¨ AR ` 14.4587 ¨ λ´ 14.8645 ¨ Λ

`0.3275 ¨ AR2
´ 2.4899 ¨ λ2 ` 10.3014 ¨ Λ2

´0.6197 ¨ AR ¨ λ` 2.4378 ¨ AR ¨ Λ´ 1.0534 ¨ λ ¨ Λ

(28)
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• if Λ ą 0.276, Eq.28 is to be used.

With this second order model whose results are shown in Fig.20, the maximum residuals are

εno hump “ 0.72 and εhump “ 0.502 which represents respectively 2.69% and 2.9% of the corre-

sponding VLM results. Again, the quality of the results in the zone before the hump activation has

been significantly improved. Moreover, it appears that the addition of the direct quadratic terms

have improved a lot more significantly the fit in the zone after the hump activation in comparison

to the model comprising the interaction terms only. A decrease of the maximum residual of 3.5%

is observed.

Figure 20: Complete second order model for the zone before the discontinuity and incomplete

second order model for the zone after the discontinuity. (a) Λ “ 0˝; (b) Λ “ 10˝; (c)

Λ “ 20˝; (d) Λ “ 30˝.
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Comparison of the models

As the problem of collinearity appeared in the second order model’s matrix, trying to fit a higher

order polynomials brings the risk of suffering from singularity problem in Eq.17 computing the

estimators for the model’s parameters. Additionally, the computation of the flutter indices could

become much heavier when adding higher order terms without improving the results significantly.

Therefore, It has been decided to compare the three models described above for the linear regres-

sion theory before potentially trying to fit a nonlinear prediction law on the results if necessary.

Two methods for comparing the models are used

• comparison of the maximum residual:

the maximum residuals as well as their percentages relative to the corresponding responses

have been given for each model type and for the two zones of the domain. For the first order

model, the maximum error for the zone where the hump is not active goes up to almost 10%

of the response which is due to the absence of curvature. This types of model is mainly used

when there are a lot of independent variables that might have an impact on the response to

determine which ones are the most important to take into account (screening experiment).

In this context, the factors have been selected at the very beginning knowing that each one

of them is of prior importance in the flutter phenomenon and the others have been fixed

for all the tests. It was expected that a first order model could not represent perfectly the

phenomenon.

Going from a second order model with the interaction terms only to the second order model

containing direct terms allows to reduce the maximum residuals of 35% and 55% respectively

for the before and after hump activation zones which shows that the direct quadratic terms

enhance significantly the quality of the results and especially on the area where the hump

mode is active. Nevertheless, it must be noticed that the maximum residuals are not obtained

at the same location for the three model’s types.

In the end, from the residuals point of view, selecting a model constructed with the second

order polynomials is the best choice. It provides the most accurate results with an error that

remains below 3% of the observed flutter index.

• Multiple linear correlation coefficient:

the quality of the model can be assessed more generally by computing the sum of the mean
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squared error obtained for each observed value. Following the definition proposed in [7], the

mean squared error is given by

MSE “
SSE

n´ p
“

řn
i“1pYi ´ Ŷiq

2

n´ p
(29)

where SSE is the Sum of the Squares of the Errors and n´ p corresponds to the number of

degree of freedom. The total number of test cases are reespectively n “ 64 and n “ 27 for

the zones before and after the hump activation.

Again, the two zones of the domain are treated separately and the SSE and MSE values are

given for each model in Tab.4

1st order 2st order with interaction only 2nd order

SSE (/) MSE (/) SSE (/) MSE (/) SSE (/) MSE (/)

Inactive hump

mode

40.85 0.68 17.655 0.31 5.4 0.1

Active hump

mode

7.03 0.306 2.6 0.13 1.03 0.057

Table 4: SSE and MSE values for the two zones of the three models.

The best model is the one that minimises the MSE i.e., the difference between the fitted and

the observed results. As for the analysis of the maximum residuals, the 2nd order model is

the one providing the most accurate results. However, some criterion is required to be able

to make a selection that should result from a trade off between accuracy and complexity of

the model and a threshold value needs to be selected.

To this purpose, the multiple linear correlation coefficient is defined

R2
“ 1´

SSE

SST
“ 1´

SSE
řn

i“1pYi ´ Ȳ q
2

(30)

with SST the Sum of the Squares Total and the closer R2 gets to 1, the better the model.

For the three models, the correlation coefficients are provided in Tab.5 and they all provide

results that are generally very accurate.
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1st order 2st order with interaction only 2nd order

Inactive hump

mode

0.9644 (/) 0.9846 (/) 0.9953 (/)

Active hump

mode

0.9569 (/) 0.9841 (/) 0.9937 (/)

Table 5: Multiple linear correlation coefficients R2 for the two zones of the three models.

From the correlation coefficient point of view, the three models provide highly reliable results.

However, it is to be noted that the correlation coefficient is a general value computed for the whole

set of data points. As a consequence, having a large number of data could attenuate too much

the few results that are badly modelled despite their importance in the modelling process. The

analysis of the maximum residual has therefore to be used to ensure that all the points are modelled

separately with enough accuracy.

On the one hand, the first order model has a maximum error of 10% of the observed value due to

the absence of curvature so that this model can not be selected. On the other hand, the second

order model with the direct terms is the one providing the most accurate results from both a local

and a general points of view. However, all the terms are probably not bringing a significant amount

of information to the model and the discussion about which terms must be retained is made in the

following section.

2.4.4 Backward elimination

In the previous section, the second order model has been obtained by adding direct second order

terms so that the model’s matrix remains of full rank. Starting from this polynomial, a backward

elimination can be done to remove the terms that do not bring useful information in the model.

In this analysis, given that the second order model ensures up to 99.53% and 99.37% of accuracy

respectively for the before and after hump activation zones, it has been decided to not go below

99% for the two zones. Also, the maximum allowed residual is set to be 3.5% of the observed

response.

To determine which terms can be removed, use is made of the model’s parameters given that the

importance of each term in the model is illustrated by the value of the coefficient. However, the do-

main has not been normalised so that a direct comparison can not be made and each coefficient has
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to be multiplied by the maximum value of the independent variable it multiplies. The elimination

is then achieved step by step, removing the terms having the smallest normalised coefficient and

assessing the quality of the model using the multiple linear correlation coefficient and the maximum

residuals.

In the end,

• for the zone where the hump mode is inactive, the 2nd, 6th and 10th terms corresponding

respectively to AR, λ2 and λ ¨ Λ can be removed. The correlation coefficient is equal to

R2 “ 0.9936 and the maximum residual corresponds to 2.17% of the response.

• For the zone where the hump mode has been activated, the 6th and 7th terms, corresponding

respectively to λ2 and AR ¨ λ can be removed. The correlation coefficient is equal to R2 “

0.9914 and the maximum residual corresponds to 3.2% of the response.

2.4.5 Final model

With the comparison being made between the models and the elimination of the useless terms,

the final model characterising the flutter index of flat cantilever plates of thickness 1 mm and root

chord 200 mm is obtained as an incomplete second order polynomial

• if Λ P
“

0 ; 0.276
‰

§ if λ ă p0.63025Λ` 0.31qAR ´ 5.41445Λ´ 0.56

V̂ ˚f “ ´9.6713` 9.0035 ¨ AR ` 6.1663 ¨ λ` 35.4463 ¨ Λ´ 0.8803 ¨ AR2

´7.7487 ¨ AR ¨ Λ` 30.3958 ¨ λ ¨ Λ
(31)

§ else

V̂ ˚f “ 14.8434` 11.1095 ¨ λ´ 15.6228 ¨ Λ` 0.4039 ¨ AR2
` 10.7252 ¨ Λ2

´0.6591 ¨ AR ¨ λ` 2.356 ¨ AR ¨ Λ
(32)

• if Λ ą 0.276, Eq.32 is to be used.

whose results are illustrated in Fig.21.
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Figure 21: Final model. (a) Λ “ 0; (b) Λ “ π{18; (c) Λ “ π{9; (d) Λ “ π{6.

With this final model consisting in two different incomplete second order polynomials for the

two zones of the domain, the maximum residuals are 2.17% and 3.22% respectively for the zone

before and after the hump activation. The multiple correlation coefficients for those two zones are

respectively equal to R2 “ 0.9936 and R2 “ 0.9914 so that on the basis of the numerical results,

the model is highly reliable.
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3 Experimental comparison

At the beginning of this work it was expected to perform practical experiments at the wind tunnel

of the University of Liege to validate the model presented in the previous section. To this

purpose an excitation system has been designed and several plates were expected to be tested.

However, the sanitary crisis of the Covid-19 prevented most of the experimental tests from being

carried out. Consequently, only two plates have been tested. Also, the tests had to be performed

within a short period of time which prevented them to be conducted as accurately as it should have

been.

The following is therefore dedicated to the discussion about the experimental tests and the com-

parison of their results with the model constructed previously.

3.1 Excitation system

The flutter phenomenon consists in an amplification of the motion’s amplitude when the critical

speed has been reached. Therefore, the plates are expected to be tested at different airspeeds until

flutter is reached. To do so, use is make of an excitation system on which the plate is fixed at its

root. This system allows to properly identify the vibration modes whose frequencies vary with the

airspeed despite the increase of the damping due to the airflow at subcritical speeds. It has been

designed for this master thesis and assembled by V2I Company located in the Science Park of Liège.

The system is expected to be fixed on the turning table of the wind tunnel so that a circular fixation

plate supports the whole device. The excitation is delivered by a shaker whose reference is TV

51075-M Vibration Test System, from the Tira Company, that is linked to a mobile cart through a

connecting rod. This cart is made of four linear bearings that slide on fixed steel shafts. The whole

system is covered by a large circular plate acting as an end plate to avoid interference between the

airflow coming onto the excitation system and that coming onto the tested plate. Finally, to fix

the plate on the system and reproduce a clamping boundary condition, a squeezing plate of 5cm

high is pressed against the upper part of the cart with the wing in between and four screws are

used for tightening.

All the components are made of aluminium except the shafts and their supports that are made of

steel.

It is expected that the eigenmodes of the system do not interfere with the measurements so that
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the dimensions and the materials have been selected, with a certain amount of safety, in adequacy

with the range of frequencies that were of interest for observing flutter. Again, the modal analysis

has been achieved with NX Nastran and the first three eigenmodes of the system as well as its

design are illustrated in Tab.6. The blue part of the first drawing shows the cart i.e. the moving

part of the system while the green one corresponds to the shaker.

mode 1, f1 “ 117.87 Hz

mode 3, f2 “ 134.28 Hz mode 4, f3 “ 141.04 Hz

Table 6: Illustration and modal analysis of the excitation system.

Four measurement devices are used. A load cell located on the rod connecting the cart and the

shaker measures the force that is delivered by the shaker which is the input signal used to compute

the Frequency Response Functions (FRF’s). At the same location, an accelerometer measures the

acceleration of the cart. The displacments of the plates are measured using two lasers having a

range of 0.5m. The distance is measured with the light that is reflected on the plates and pieces of

tapes are used to reduce the diffusivity of the reflection due to the aluminium. The noise existing

in the signals is therefore reduced. Also, The shaker being connected to the ground of the wind

tunnel, the support of the lasers is fixed to ceiling to avoid any transmission of the vibrations

through the ground.

Finally, bending and torsion are expected to be captured correctly. To this purpose, the two lasers

are not located on the same horizontal or vertical lines. One is pointing near the leading edge and

near the tip chord while the other one is pointing near the trailing edge and closer to the root
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chord. In this configuration, subtracting the two signals should highlight the torsion mode and

higher order bending modes. The complete setup is illustrated in Fig.22 with a rectangular plate.

Figure 22: Experimental setup used for the wind tunnel experiments.

3.2 Experimental modal analysis

The signals obtained during the tests in the temporal domain are converted in the frequency do-

main through the use of the Fourier transform and the FRF’s are computed using the force signal

that corresponds to the input one. Then to extract the useful information from those data, use

is made of the Polyreference Least Squares Complex Frequency (Polymax) method described in

[10] and the MatLab code has been written by Prof. G. Dimitriadis. The poles of the FRF’s are

obtained on the basis of a so-called right matrix-fraction model.

The rows of the right matrix-fraction model are written as

xĤpωqy “ xBpωqy rApωqs´1 (33)

where

xBpωqy “
p
ÿ

r“0

Ωrpωqxβry and rApωqs “
p
ÿ

r“0

Ωrpωqrαrs (34)
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with Ωrpωq the polynomial basis functions and p the model’s order i.e. the number of modes

considered in the model.

The coefficients can be identified by minimising the nonlinear weighted least-squares (NLS) equation

error

εNLS
pωk, α, βq “ ωpωkq

`

Ĥpωk, α, βq ´Hpωkq
˘

“ ωpωkq
`

Bpωk, βqA
´1
pωk, αq ´Hpωkq

˘

(35)

where ω is the scalar weighting function and Hpωkq is the measured FRF. The equation errors are

combined in a scalar cost function

lNLS
pα, βq “

ÿ

output

N
ÿ

k“1

trtpεNLS
pωk, α, βqq

HεNLS
pωk, α, βqu (36)

where p..qH is the complex conjugate transpose and N the number of points at which the FRF

measurements are available.

This equation can be linearised by right-multiplying with the matrix A and the linear equation

errors and cost function are respectively

εLS
pωk, α, βq “ ωpωkq

`

Bpωk, α, βq´HpωkqApωk, αq
˘

“ ωpωkq

p
ÿ

r“0

`

Ωrpωkqβr´ΩrpωkqHpωkqαr

˘

(37)

and

lLS
pα, βq “

ÿ

output

N
ÿ

k“1

trtpεLS
pωk, α, βqq

HεLS
pωk, α, βqu (38)

The coefficients are obtained by minimising the linear cost function which leads to a weighted linear

least squares problem.

In the end, the poles can be computed for different model orders and compared together. If the

difference existing between the results obtained with two consecutive model orders is small enough,

the pole is declared stable. Eventually, those poles are complex values that contain the informa-

tion of both the eigenfrequency and the damping and stabilisation diagrams are used to select the

adequate results.

Note that with this method, negative values of damping can not be obtained so that the results can

be trusted up until the critical flutter velocity. For higher airspeeds, negative damping is expected

but the method is not able to compute them.

This method allows, through the stabilisation diagrams, to select the results so that unexpected

features appearing in the FRF’s like the buffeting of the lasers support when the airspeed becomes

higher are not taken into account for the final results.
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3.3 Experimental plates

As mentioned above, two plates are tested in the wind tunnel and the results are compared with

the model that has been constructed in the first part of this work. Due to the uncertainty of

being able to carry out the tests because of the sanitary crisis and the lockdown, it has not been

possible to cut new plates. Those presented below have been re-used from a previous work on

flutter characterisation. The mechanical properties are thus slightly different from the ones used

to build the model.

The two tested plates are characterised by a span of 0.5m. However, 0.05m are placed within the

vibration system to create the clamping boundary condition and the span that is considered is

therefore s “ 0.45m. The first plate is a rectangular one characterised by AR “ 2.25, λ “ 1 and

Λ “ 0˝ and the second one is tapered so that the root chord that must be considered is no longer

equal to 0.2m given that 0.05m of the span are inside the squeezing area. The root chord for this

plate is equal to cr “ 0.19 and the tip chord is equal to ct “ 0.1 so that the plate is characterised

by AR “ 3.1, λ “ 0.526 and Λ “ 0.149 « 8.54˝. With this test, the limitations of the model due

to the assumption of constant root chord can be investigated. The two plates are illustrated in

Fig.23.
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Figure 23: Experimental plates tested in wind tunnel.

To compare the experimental curves of damping and frequency to those provided by the VLM, the

FE models of the two plates are required to perform the numerical modal analysis. The validity

of those models is assessed by comparing the computed eigenfrequencies to those obtained with

theoretical formula and experimental measurements.

From Ref.[9], the eigenfrequencies can be obtained for a uniform beam, i.e. in bending, according

to

fk “
1

2π
µ2
k

c

EI

ml4
(39)

with I “
t ¨ c3r
12

(m4) the second moment of area, m (kg/m) the sectional mass and l (m) the length

of the beam i.e. the span of the plate. For a clamped-free beam, µ1 “ 1.875, µ2 “ 4.694 and

µ3 “ 7.855 so that the three first theoretical eigenfrequencies of bending obtained for the experi-

mental plate 1 are equal to f1 “ 4.061Hz, f2 “ 25.35Hz and f3 “ 71.28Hz. Note that the formula

holds for uniform beams only so that the eigenfrequencies of the tapered plate can not be computed.
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The FE models are constructed in the exact same way as described in section 2.2, i.e. 55 spanwise

and 40 chordwise shell elements of 0.001m thickness are used. The first five eigenfrequencies

obtained for the two models are collected in Tab.7

Experimental plate 1 Experimental plate 2

f1pHzq 4.18 (1st bending) 4.98 (1st bending)

f2pHzq 19.63 (1st torsion) 27.23 (2nd bending)

f3pHzq 26.03 (2nd bending) 34.11 (1st torsion)

f4pHzq 63.28 (2nd torsion) 73.49 (3rd bending)

f5pHzq 73.15 (3rd bending) 90.14 (2nd torsion)

Table 7: First five eigenfrequencies obtained with the FE models of the two experimental plates.

Comparing the theoretical eigenfrequencies with those obtained using the FE model of plate 1, the

errors for the three first bending modes are respectively ε1 “ 2.85%, ε2 “ 2.61% and ε3 “ 2.56%.

To complete the modal analysis of the plates and the assessment of the FE models quality, experi-

mental measurements are taken without wind. To do so, the plunge DoF of the cart is blocked to

ensure that the root of the plates are fixed. Four hammer impacts are used to excite the structure

and those are made so that both bending and torsion are activated. However, it appeared that for

modes higher than the third one, this excitation is not adapted so that mode 4 and 5 have not

been obtained in practice. The signal being analysed in the frequency domain, the experimental

eigenfrequencies are collected in Tab.8.

Experimental plate 1 Experimental plate 2

f1pHzq 3.8 (1st bending) 4.62 (1st bending)

f2pHzq 19.31 (1st torsion) 26.69 (2nd bending)

f3pHzq 24.4 (2nd bending) 33.87 (1st torsion)

Table 8: First three eigenfrequencies obtained with the experimental measurements for the two

experimental plates.

As expected, a difference exists between numerical and experimental results. The material used for

the experimental tests has slightly different properties than that used for the numerical simulations.

The problem is that the experimental material’s properties are not well known given that the plates

come from previous work and they have already been tested which can have modified their internal
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structure. Nevertheless, the difference between the experimental and numerical results remaining

quite small (a maximum difference of 9% is obtained for the first mode of the first plate), the FE

models are eventually validated with respect to the theoretical and practical results.

3.4 Measurements validation

The system is controlled with an acquisition software developed by V2I. The measurements are

taken using an accelerometer fixed on the cart and two lasers that measure the displacement of the

plate. It is therefore of prior importance to assess the validity of the measurements taken by the

lasers. To do so, the signal provided by the lasers when measuring the displacements of the cart

are compared to that of the accelerometer. More precisely, it is their FRF’s that are compared.

The shaker delivers a force that is measured at the same location as the acceleration. When the

Fourier transforms of each signal has been computed, the FRF’s are defined as

Hpωq “
Y pωq

Xpωq
(40)

where Y pωq is the output signal in frequency domain, i.e. the signals provided by the lasers or the

accelerometer in this context, while Xpωq is the input signal in the frequency domain, i.e. the force

delivered by the shaker.

In the frequency domain, the displacement and the acceleration are related as follows

:Xpωq “ ´ω2Xpωq (41)

so that taking Eq.40, the FRF’s of the displacement measured by the lasers and that of the accel-

eration measured by the accelerometer are linked as

H :Xpωq “ ´ω
2HXpωq (42)

With this being said, the two FRF’s are compared in absolute values in Fig.24 with the FRF of

the displacement multiplied by the circular frequency to the square.

The excitation delivered by the shaker is not very good at low frequencies which explains the

unexpected variations observed below 5Hz. For the rest of the curve, the two FRF’s are almost

exactly the same. The proof is therefore made that the lasers provide the same information as the

accelerometer and the validity of the measurements taken for the rest of this work is confirmed.
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Figure 24: Comparison of the FRF’s obtained from the signal provided by the lasers and that of

the accelerometer.

3.5 Sensitivity to the acquisition parameters

Several parameters are not fixed in the acquisition system. Indeed, the amplitude of the signal

delivered to the shaker is limited by the maximum allowable motion of the cart but different pos-

sibilities remain. Also, the acquisition frequency and time are expected to have an impact on the

results which has to be evaluated to make a proper selection on the input parameters. This evalu-

ation is achieved on the first plate in wind off conditions.

Five levels of amplitude are allowed for the input signal’s voltage. Having a too high voltage

results in a high motion amplitude so that the cart could hit the edges of the circular upper plate’s

rectangular hole. Additionally the amplitude has to be high enough to get significant displacements

that can be measured correctly by the lasers but the higher the amplitude, the higher the risk to

encounter undesired nonlinear phenomenon. The FRF’s corresponding to the five levels are shown
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in Fig.25.
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Figure 25: Comparison of the FRF’s obtained with the five levels of amplitude of the input signal

delivered to the shaker.

No significant nonlinear phenomenon appears no matter the amplitude of the signal. In the end, it

is the amplitude of 0.3V that is selected given that the peaks at the three eigenfrequencies appear

clearly enough and the corresponding FRF seems to be the one having the less noise.

Several acquisition frequencies can be used among which specific ones are proposed by the software

that correspond to the clock frequencies of the acquisition card. To determine whether those specific

frequencies are necessary to obtain good results or not, a comparison is made between the results

obtained for two clock frequencies of the acquisition card 1651.61Hz and 2048Hz and those obtained

with a random frequency 1000Hz. The comparison is again made on the basis of the FRF’s and is

illustrated in Fig.26.
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Figure 26: Comparison of the FRF’s obtained with the three different acquisition frequencies.

The three FRF’s are almost the same and conclusion is therefore made that for the present ex-

periments, the difference between the selected acquisition frequency has a negligible impact on the

results. For the rest of the work, it is set to facq “ 2048Hz.

Finally, the duration of the sine sweep could also have an impact on the quality of the results.

Accuracy is needed but it is necessary to avoid taking too much time for each test when it is not

necessary. The FRF’s obtained with a long test (20s for each frequency of the sweep), a medium

one (2s for each frequency) and a short one (1s for each frequency) are compared in Fig.27.

The results appear to contain more noise for the longest test so that taking too much time for each

frequency does not bring useful additional information. The two other tests look pretty much the

same eventhough the shortest one seems to encounter more troubles when reaching higher frequen-

cies. In the end, it is chosen to spend 2s for each frequency of the sine sweep.

It is interesting to note that eventhough the excitation system provides an excitation that is way
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Figure 27: Comparison of the FRF’s obtained for three values of the time spent on each frequency.

more accurate than that used for previous works on the same topic that consisted in an impulse

provided with a rope attached to the trailing edge that was vigorously pulled, the temporal and

frequency-domain signals are of similar quality. A first thing that could explain this issue is that the

same lasers of range 0.5m have been used for the measurements and conclusion could be drawn that

they are not accurate enough to get a cleaner signal even with a better way of exciting the structure.

They would therefore be the limiting part of the setup. Also, as mentioned in the introduction of

the experimental comparison, the sanitary crisis prevented the tests to be checked properly. The

excitation system had to be tested alone within a short period of time so that its quality could be

poorer than expected and the lack of time prevented to check and solve all the possible problems.

Among those problems, the rod connecting the shaker to the cart was not perfectly perpendicular

to the cart so that the excitation was a bit out of alignment. Consequently, an unexpected friction

has been observed between the cart’s bearings and the cylindrical supports and the damping was

higher than expected. Finally, the excitation is only made in plunge so that the torsion mode is

not directly excited in wind off conditions making it less visible in the curves.
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The same goes for the tested plates that should have been new ones but the situation was such

that no time could be wasted for that and older plates of probably poorer quality had to be tested.

3.6 Wind on results.

In this section, the tests at increasing airspeeds are carried out. The goal is to get the frequencies

and dampings for each tested speed and plot them to get the curves predicting the flutter.

Three equal tests have been performed for both wings for redundancy and the airspeed is measured

using a Pitot tube. In the end, the experimental curves are obtained and compared with those

predicted by the VLM code and illustrated respectively for the rectangular and tapered plate in

Figs.28 and 29
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Figure 28: Experimental and numerical frequency and damping curves obtained for plate 1 with

configuration AR “ 2.25, λ “ 1 and Λ “ 0.

When analysing the curves, it must be kept in mind that as mentioned above, the experimental
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Figure 29: Experimental and numerical frequency and damping curves obtained for plate 2 with

configuration AR “ 3.1, λ “ 0.526, Λ “ 0.149 and cr “ 0.19.

plates do not have the same mechanical properties as those used for the numerical simulations.

Additionally, those plates have already suffered from shocks (rope pulling) which could have lo-

cally modify the internal structure. Finally, the support of the lasers is fixed to the ceiling of

the wind tunnel meaning that its end is not attached. Therefore, when the airspeed becomes high

enough, it starts oscillating which can pollute the measured signal making the analysis less obvious.

• Plate 1

With this plate, the mode that is fluttering is the first torsion one, i.e. the second mode. About

the variation of the frequency with the airspeed for the first plate, the experimental results are

pretty well matching the numerical curves for the first and third modes. Concerning the torsion,

the tendency of the curves is the same but the experimental results are lower by almost a constant

value that is the difference between the numerical and the experimental wind-off natural frequen-
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cies. However, when the airspeed reaches 23.3m/s, the experimental points come closer to the

VLM curve. The excitation is only made in plunge so that only the bending modes are activated

correctly, the torsion needs an external load namely the aerodynamic one in this context to be

activated. The matching of the curves could therefore result from the airspeed that became high

enough for a proper activation and thus a proper measurement of the torsion.

Concerning the damping curves, for low airspeed, the results for the first and third modes are

close to the numerical ones. Below 19.7m/s, the maximum difference in the damping percentage is

2.9% for mode 1 and 1.55% for mode 3. When considering higher airspeeds, the damping obtained

for the first mode is expect to increase rapidly. However, in a practical context, this means that

the response is highly damped so that the correct identification of the first mode becomes more

difficult which could explain the weird variations between two consecutive airspeeds. For the third

mode, the dampings are always slightly overestimated but the experimental and numerical curves

are following the same tendency. Concerning the second mode, the experimental results are overes-

timated for almost all the airspeed range. Nevertheless, the general tendency is exactly the same.

The differences could result from the difference existing between the experimental and numerical

plates properties.

The last experimental point, obtained at airspeed V “ 29.3m/s, is diverging from the general

tendency. This result therefore shows that something occurred and in fact, the plate is fluttering.

As expected, the Polymax method is not able to compute the negative damping so that the results

are no longer reliable for higher airspeeds. The critical flutter speed is located between 28.3m/s

and 29.3m/s. The damping obtained for V “ 28.3m/s is equal to 1.3% so that the flutter speed

is very close to that point. Given that no additional information is available and that a regression

curve between the points provides a flutter speed above V “ 29.3m/s which is not realistic, it

has been decided to fix the experimental flutter speed for the first plate to Vf,plate1 “ 28.3m/s.

Consequently, the experimental flutter frequency is equal to ff,plate1 “ 14.06Hz and the flutter

index can be computed

V ˚f,plate1 “
28.3

0.1 ¨ 14.06
“ 20.128 (43)

• Plate 2

With the second plate, it is the second bending mode that encounters flutter which again corre-

sponds to the second vibration mode. No constant difference appears between the experimental

and numerical results for the frequency curves. Moreover, except for the first mode at higher air-
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speeds, the results are very close to what was expected even for the torsion mode while a significant

difference was observed for the previous plate.

For the damping curves, again the results for the first mode starts variating a lot when reaching

21.3m/s. For the second and third modes respectively corresponding to second bending and first tor-

sion, the experimental damping follows pretty well the numerical predictions up until V “ 19.6m/s.

After this airspeed, the values suddenly slightly jump up but keep following the same tendency as

what is expected.

Here, two post-critical tests have been performed so that the two last points correspond to fluttering

ones and do not bring meaningful information for the present work. For this plate, it is possible

to build a 5th order polynomial using the points before flutter that gives an approximation of the

exact experimental critical flutter speed shown in Fig.30.
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Figure 30: Experimental damping obtained for the second mode of plate 2 fitted with a 5th order

polynomial.

Such a polynomial crosses the zero damping axis at Vf,plate2 “ 37.87m/s which corresponds to a
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flutter frequency equal to ff,plate2 “ 20.47Hz. Note that this plate has the specificity to have a root

chord that is not the same as all the plates considered until here. The goal was to investigate the

limitation imposed by the constant root chord assumption and therefore the flutter index is

V ˚f,plate2 “
37.87

0.095 ¨ 20.47
“ 19.474 (44)

3.7 Comparison with the model’s prediction

First of all, the experimental results can be compared to those provided by the VLM. This com-

parison is made in Tab.9

Plate 1 Plate 2

Vf (m/s) ff (Hz) Vf (m/s) ff (Hz)

VLM 32.3 11.97 40.5 18.4

Experimental 28.3 14.06 37.87 20.47

Difference (%) 12.38 14.86 6.49 10.11

Table 9: Comparison of the flutter speed and frequency obtained from VLM and from the experi-

ments in wind tunnel for both the rectangular (1) and the tapered (2) plates.

Again, the differences existing between the experimental plates properties and those used for the

numerical simulations are likely to be a major cause of the observed differences in the results.

Nevertheless, those errors all remain below 15% which can still be considered as a relatively small

error. The problem here is that the VLM slightly overestimates the flutter speed while for safety,

underestimating it would probably be a better solution for building a flight envelope where flutter

shall never appear.

The experimental results in terms of the flutter index can be compared to the model that has been

built in this work. None of the plates activate the hump mode so that the flutter index is given by

Eq.32 and the model results are

$

’

&

’

%

V ˚f “ 26.51 for plate 1

V ˚f “ 22.19 for plate 2
(45)
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The difference between the experimental and theoretical flutter indices are respectively equal to

6.382 and 2.716 which corresponds respectively to 24.07% and 12.24%. The differences existing

between the VLM and the experimental speeds and frequencies combine when computing the flutter

indices moving them further from each other. Surprisingly, it is the plate that does not verify the

condition of cr “ 0.2m that is the closest to the model results so that this modification seems to

alleviate the contrast between the numeric and the experiment.

Looking at those experimental results only, the model built on the basis of numerical simulations

can not be validated. Nevertheless, with all the limitations existing on the experimental setup due

to lack of time, this model can not be concluded inaccurate neither. More verification with wind

tunnel tests should be carried out to conclude properly on the validity of the model for a practical

application.

4 Conclusion

The goal of this master thesis was to provide a mathematical model predicting the flutter index of

flat cantilever plates on the basis of numerical results obtained with the Vortex Lattice Method.

To this purpose, the dependency of the flutter phenomenon on three geometrical parameters of

the wings namely the Aspect Ratio, the taper ratio and the quarter-chord sweep angle has been

investigated. The thickness, the root chord and the material properties have been kept constant

and no camber has been considered. The design domain has been first divided into four levels for

each of the three factors generating a starting set of 64 plates. Those plates have been modelled

on NX and a modal analysis was performed using the solver Nastran to get the eigenmodes

and the stiffness and mass matrices required in the VLM. Then, the numerical simulations have

been carried out and the flutter indices have been computed and plotted as a function of the three

geometrical parameters.

With this plot, it appeared that an unexpected phenomenon occurred creating a sudden drop of

the flutter indices values for a certain portion of the design domain. This phenomenon has been

called hump mode activation and results from the fact that under certain geometrical conditions,

the third mode damping curve featured a hump that crossed the zero axis before going back to pos-

itive values before the classical bending-torsion flutter occurs. The critical flutter mode therefore

changed suddenly. Consequently, following its definition, the flutter index values were suddenly

decreasing creating a discontinuity in the results. The activation of the hump mode has then been
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investigated and an attempt to explain its appearance has been proposed. Finally, this activation

has been modelled as a discontinuity straight line dividing the design domain into two distinct zone

whose variation is given by Eq.11. The consideration of the hump mode on the design domain is

limited to a maximum sweep angle of Λ “ 0.27376 « 15.6˝ given that above this value, the damping

curves of the second and third modes switch their critical points eventhough the hump mode is still

active.

Then, the linear regression theory has been used separately for the two zones of the domain. Three

different models have been tested namely a simple first order polynomial, a second order polynomial

with interaction terms only and a complete second order polynomial. Use has been made of the

least-squares estimates to get the model’s coefficients which required to have a model’s matrix of

full rank. It appeared that for the zone after the hump activation, this matrix was not of full rank

for the complete second order model and the term corresponding to Λ2 had to be removed. The

three models have then been compared in terms of maximum residuals and multiple correlation

coefficient R2 and as expected the second order model was the closest one to the numerical results.

In the end, starting from this model, a backward elimination has been carried out to remove all

the terms that did not bring significant information. The final model described by Eqs.31 and

32 was ensuring maximum residuals of 2.17% and 3.22% and multiple correlation coefficients of

R2 “ 0.9936 and R2 “ 0.9914 respectively for the zone before and after the hump activation en-

suring that the model is highly reliable within the design domain.

With the final model being established, it is possible to determine which parameters are influencing

the most the flutter phenomenon. For the zone where the hump is not active, it is the second mode

that is responsible of flutter. For this zone, it is the taper ratio and the aspect ratio that are the

main factor responsible of the flutter respectively under the linear and the quadratic forms. The

critical flutter index mainly vary as a linear function of λ but curvature is needed in terms of AR

which appears clearly in Fig.21. With the root chord being kept constant, from Eqs.1 and 2, it

is consequently the tip chord and the span of the plate that dominate the flutter characterisation.

The less important term corresponds to the sweep angle under its quadratic form showing that V ˚f
is mainly varying linearly with Λ. For the zone where the hump mode is the critical one, the two

most important term corresponds to the aspect ratio under both its linear and quadratic forms

showing again that the span is of prior importance for characterising flutter. The less important

term corresponds to the interaction between the taper ratio and the sweep angle.

Eventhough the sweep angle does not represent the main factor influencing the critical flutter in-
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dex for the two zone separately, it takes a major role in the apparition of the hump mode and to

determine its zone of validity. As a consequence, under its linear form, the sweep angle is of major

importance for modelling correctly the phenomenon.

To validate the model, two experimental tests have been carried out in the wind tunnel of the

University of Liege using an excitation system in plunge. The sanitary crisis prevented those

tests to be carried out as accurately as expected so that some potential sources of difference could

not be investigated. Those potential sources are the plates having not well known mechanical

properties to which is added the fact that they had already been tested for previous works and as a

consequence their characteristics could already have been modified. Also the excitation system has

not been checked properly before starting the tests, the lasers used to measure the displacements

of the plate were not perfectly accurate so that the temporal and frequency domain signals were

not so clean. Finally, the support for the lasers was fixed to the wind tunnel ceiling so that it

started vibrating with the airflow becoming more important. The frequencies and dampings curves

obtained with the experimental tests have then been compared to the curves provided by the

VLM showing that they were following the same tendency eventhough some constant difference

were sometimes appearing. In terms of flutter speeds and frequencies, the experimental results

were quite close to those expected from the VLM and a maximum difference of order 15% has

been observed for flutter frequency of the rectangular plate. Finally, the flutter indices from both

numerical simulations and experimental tests have been compared. The differences for the two

plates were of order 24.07% and 12.24% respectively for the rectangular and the tapered one due

to the combination of the differences observed for both the speed and the frequency. Consequently

the model could not be validated for the practical tests. Nevertheless, with the potential sources

of difference and error mentioned above that have not been checked and solved, the model could

neither be said not valid neither. Note that only the zone before the hump activation has been

checked so that no conclusion can be drawn for the other one. Finally, despite the impossibility of

drawing a proper conclusion about the model, it is very likely that the VLM would provide results

that are close to those measured in wind tunnel when the errors will be solved.

4.1 Improvements and future work

For future work, the first task that could be achieved is a proper investigation of the hump mode

activation in order to understand correctly the reasons of its appearance. Its existence could there-
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fore be deleted allowing the critical flutter speed to be increased. Also, it might be useful to select

test cases that are beyond the limits of the design domain selected here to verify is the model

is valid for any input values and if the limitation of the hump mode activation proposed here is

true no matter the configuration. Moreover, this work could be used as a basis for completing the

model with all the parameters that have been kept constant. A new regression analysis could be

used with the material properties and the thickness varying while keeping the aspect ratio, taper

ratio and the sweep angle constant. The results would then be added to those presented here to

complete the model. Finally, given that the VLM is able to deal with camber, its dependency can

also be investigated so that the final model would therefore be adapted for flutter characterisation

of classical wings. With a model comprising those parameters, the troubles observed with the

experimental plates could be alleviate given that any type of material could be modelled so that

there would be less restriction for the experimental tests.

Concerning the practical validation, major improvements can be made. First of all, it has been

observed that the excitation system was not perfect. The excitation was not delivered perfectly

parallel to the axis of the linear bearings bringing an excessive amount of friction. A correction of

the excitation direction could help for getting cleaner signals and for a better identification of the

vibration modes. Also, new plates with well known properties should be cut to conduct a proper

validation with respect to the numerical work. Concerning the measurement system, the lasers

used were limited in range so that they had to be kept near the plates which could have modified

the airflow around the plates. Having a larger range of detection would be useful to remove the

lasers away from the system and avoid unwanted interaction. More accuracy in the signal could

also be appreciated for properly identify the modes of interest and maybe capture those at higher

frequencies. Finally, attaching the lasers support to both end at the ceiling and the floor of the

wind tunnel should prevent its vibration when the airspeed becomes large enough. This should

result in a better identification of the vibration modes.

For future work, it is necessary to test plates that have configurations located on both sides of

the discontinuity line characterising the activation of the hump mode. In this work, only the zone

where it is not active has been tested and experimental tests covering the whole design domain are

needed to perform a proper validation of the numerical results. Finally, once the practical issues

are corrected, with experimental tests covering the selected design domain, a correction could be

brought to the numerical model so that it would represent the real phenomenon with more accuracy.
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APPENDIX
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A Modal extraction from NX

The software NX Nastran provides the modal characteristics of any model but the extraction of

these data is not obvious. Here is a brief summary of the procedure followed in this paper

A.1 NX Nastran

• First simulation: once the wing is modelled and mapped with finite elements, the modal

analysis can be performed.

§ Select the "Real eigenvalues" solution type.

§ Fix the nodes that have to be clamped.

§ Select "Edit solution attributes", go to "Bulk data", parameter "EXTEOUT" and set

it to "DMIGPCH". This will create a punch file containing the stiffness and mass

information for each node.

§ Once the simulation is complete, save the punch file as a text file to be processed easily.

• Second simulation: the nodal displacements and coordinates have to be extracted.

§ "EXTEOUT" is set back to "none".

§ Once the simulation is achieved, select the displacements mode by mode. Click on

"identify results" and "select all". Then click on the option "Export selection to a file

(.csv)". This creates a file containing the nodal displacements and coordinates.

A.2 MatLab

In this work, all the data are processed using MatLab.

• save the csv file containing the nodal coordinates and displacements as a matrix

§ 2nd column contains the x-coordinates with respect to the origin of the coordinate system

of NX

§ 3rd column contains the y-coordinates with respect to the origin of the coordinate system

of NX

§ 4th column contains the z-coordinates with respect to the origin of the coordinate system

of NX

§ 5th column contains the x-displacements
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§ 6th column contains the y-displacements

§ 7th column contains the z-displacements

• The punch file is presented under columns form.

§ If the first column is "DMIG* KAAX" or "DMIG* MAAX" then the following column

gives the concerned node’s group of columns respectively in the stiffness and mass matrix

(each node has 6 columns, one for each dof).

In this case, the third column of the punch file corresponds to the component out of the

group of 6 columns.

Example: if the line line is "DMIG* KAAX 2 5" then in the stiffness matrix, it is the

5th column out of the 2nd group of 6 columns that is concerned. This corresponds to the

11th column of the matrix.

§ If the first column is "*" then the following number indicates the node’s group of lines

that is concerned. Then the third column corresponds to the component out of the

group of 6 lines and the fourth one is the value to be assigned at the column and line

that have been specified.

Example: if the line is "* 1 2 1.3105E+08" then it is the 2nd line of the 1st group of 6

lines that is concerned (i.e. the 2nd line of the matrix) and the value to be assigned is

1.3105 ¨ 108.

§ Once this is done, the symmetry of the matrix has to be taken into account so that the

same value must be assigned at the symmetric location.

§ Finally, attention must be paid to the fact that the clamped node are also taken into

account in the matrices making them singular.
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