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Abstract

During preliminary design of an aircraft, high fidelity simulations are not ideal due to their computational
cost. Even, RANS simulations are of the order of hours and are not suitable for rapid modifications in
the design during early stages. Methods have been developed to lower the computational cost such as
the full potential equation. This equation allows to simulate flow in the transonic regime but neglects the
viscosity of the fluid. Therefore, the method is not able to predict interesting features such as stall or an
accurate drag coefficient.

The purpose of this master’s thesis is to implement a viscous correction into a finite element full potential
solver Flow. A viscous-inviscid interaction scheme has been implemented. The first goal of this work is
to define a theoretical model which can handle either incompressible or compressible, attached or sepa-
rated flows. The viscous formulation is based on the two-equations dissipation integral boundary layer
method coupled with a transition formulation of the e9 type. The viscous solver is coupled to the inviscid
solver by a quasi-simultaneous interaction method. This coupling method provides an easy integration
without modifying the inviscid solver and allows to compute weak separation regions.

The second goal of the thesis is the numerical implementation of the scheme. The fully coupled non
linear system of the viscous solver is discretized by a finite-difference method and is resolved by a robust
Newton solution procedure. The results presented demonstrate the ability of Flow to predict with accu-
racy aerodynamic loads and laminar to turbulent transition for attached incompressible and compressible
flow cases. Moreover, Flow is able to simulate with accuracy separated or highly compressible flows.
However, some limits of Flow are reached by these extreme cases and are presented in this work. A
concise summary of the main outcomes and few hints for future work are provided in the conclusion.
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Chapter 1

Introduction

1.1 Motivation

Today, computational fluid dynamics is a powerful aid to aerodynamic design. This tool allows to reduce
the wind-tunnel tests and even actual flight tests which are time consuming and expensive, especially for
transonic aircraft. Therefore, the amount of time used for design refinement is improved. Depending on
the design stage, simulations with various levels of fidelity are applied. The higher order fidelity is the
Direct Numerical Simulation (DNS) which solves the Navier-Stokes equations. This kind of simulation
is extremely costly since all the turbulence scales are resolved. To lower the computational time, the
Large Eddy Simulation (LES) can be applied. By filtering out the smallest turbulence scales, LES allows
to use coarser grids. However, both methods capture the chaotic nature of the flow, which is unattractive
during the early design stages. At this point in the aircraft design, the Reynolds Average Navier-Stokes
(RANS) equations represent the highest level of fidelity that can be of practical interest. These equations
allow a statistical representation of the turbulence. RANS simulations reduce the computational costs of
the order of hours.
However, it is still not ideal during the preliminary design of the aircraft. To further reduce the compu-
tational costs, lower fidelity model where the viscosity of the fluid is neglected were developed. Such
models are the Euler equations and by assuming the irrotationality of the flow, the full potential equation.
The latter reduces the computational costs in the order of the seconds for subsonic flows and in the order
of minutes in the case of transonic flows. The main drawbacks of these inviscid methods are an overesti-
mation of the lift coefficient and their inability to predict a correct drag coefficient.
Therefore, a method that could combine the accurate predictions of a higher fidelity simulation such as
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1.2. VISCOUS-INVISCID INTERACTION

RANS to the low computational costs of the inviscid models is interesting. It would make it possible
to correctly estimate the aerodynamic loads during the preliminary design of the aircraft. Then, aircraft
performance such as the fuel consumption, the lift generated during take-off and landing would be more
predictable and this would reduce the time spent in the early stages of design.
This method is called a viscous-inviscid interaction and the aim of this master’s thesis is to implement
such a method into Flow, an inviscid full potential solver developed at the University of Liège by Crovato
[1].

1.2 Viscous-inviscid interaction

The viscous-inviscid interaction proposes to split the flow domain into two distinct regions. The first one,
the external region, consists in an inviscid flow where the viscosity is neglected. The second one, the
internal region, is the viscous region where the viscosity is taken into account. This region models the
boundary layer of the body as illustrated in Fig. 1.2.1 and developed by Prandtl [2].

External region

External region

Internal region

Figure 1.2.1: Separation of the domain in two flow regions, an external, inviscid region and an internal,
viscous region.

Both inviscid and viscous models are derived from the Navier-Stokes equations. In the external region,
the fluid is considered inviscid and the flow is assumed to be steady, three-dimensional and isentropic.
Therefore, the flow is irrotational and the velocity derives from a potential. Thus, the full potential
equation is used. The isentropic assumption restricts the flow to the transonic regime with weak shocks.
The inviscid formulation is discretized by a finite-element method.

In the internal region, the fluid is viscous and the flow is assumed to be steady, two-dimensional and
under the transonic regime. Moreover, the region is extremely thin compared to the length of the body.
Therefore, the compressible boundary layer equations are defined. Then, by assuming that the details
of the flow inside the boundary layer are not interesting, the boundary layer equations can be integrated
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along the thickness of the boundary layer. This gives the so-called integral equations which reduce the
number of dimension by one. In the case of this work, there is only one dimension remaining.

However, the splitting of the flow into two regions is only a modeling approach, it does not represents
the reality. Therefore, the continuity between the variables at the edge of the inviscid and viscous re-
gions must be enforced. This can be performed by a smart coupling method. Both flows are intrinsically
coupled. The boundary layer decelerates the flow due to the viscous effects. Hence, the boundary layer
thickens along the body and modifies the velocity inside the inviscid domain. The two variables mea-
suring these effects are the displacement thickness δ∗ and the velocity at the edge of the boundary layer

ue. The first coupling method is the direct method. The velocity at the edge of the boundary layer is
prescribed by the inviscid solver and then, the viscous solver derives a displacement thickness. In an
iterative procedure, the flow in both regions is solved until a solution is found. The main drawback of
this method is that it cannot handle separated flows. Hence, an inverse method was defined and the dis-
placement thickness is now prescribed to the boundary layer to handle the separation. This method is not
suited for this project since it increases drastically the computational time. Finally, a mixture between
both methods was introduced with the semi-inverse method where the boundary layer displacement is
used as an input for the inviscid and viscous solvers. Then, the output is the velocity and the displace-
ment thickness for the next iteration is determined via a relaxation formula. All of the previous methods
are called weak interaction methods since they assume a hierarchy between the inviscid and the viscous
flows.

Viscous

Inviscid

𝛿∗ 𝑢𝑒

Viscous

Inviscid

𝛿∗ 𝑢𝑒
Relaxation

Inviscid

𝛿∗ 𝑢𝑒

Viscous

Figure 1.2.2: Weak interaction methods. From the left to the right: the direct interaction, the inverse
interaction and the semi-inverse interaction.

However, no hierarchy can be assumed when the flow separates. The velocity and the displacement
thickness are equally important and are both unknowns of the system. Hence, a simultaneous method
was developed to solve the inviscid flow equations and the boundary layer flow equations simultaneously.
The main drawback of this method is the complexity of the system in terms of algorithm. Moreover, a
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requirement of this work was to be able to implement a viscous correction without modifying the existing
inviscid solver.

The last coupling technique is the quasi-simultaneous method developed by Veldman [3] and is employed
in this work. It assumes that the velocity is an approximation of the external flow. This approximation
is modeled as a function of the displacement thickness and is solved simultaneously with the boundary
layer equations. The function is called the interaction law and its purpose is to help the convergence
without influencing the results.

Inviscid + Viscous

𝛿∗ , 𝑢𝑒

Inviscid

𝛿∗ 𝑢𝑒

Viscous + Interaction

Figure 1.2.3: Strong interaction methods. From left to right: the simultaneous interaction and the quasi-
simultaneous interaction.

1.3 Thesis objectives and outlook

The main purpose of the work is to develop a code which can compute a two-dimensional steady attached
and separated compressible but not transonic flow around a body by taking into account the viscosity
effects. Hence, the various objectives of the master’s thesis are the following:

• Establishing the theoretical model which can handle attached and separated, incompressible and
compressible flows. Moreover, the model must predict an accurate laminar to turbulent transition.
Chapter 2 is consecrated to the derivation of such a model from the Navier-Stokes equations. In a
first time, the inviscid model is introduced from the work of Crovato [1]. Then, the viscous model
is introduced from the literature. The boundary layer equations are presented and used to derive the
integral boundary layer equations. The laminar and turbulent closure relations are given to close
the set of equations and the transition model is explained. Chapter 3 focuses on the interaction
method used to couple the inviscid and viscous solvers. The blowing velocity and its implementa-
tion into the inviscid solver are presented. All the methods are detailed and an interaction law for
the quasi-simultaneous interaction is determined.
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• Developing the numerical model based on the framework of Crovato [1]. First, the numerical
procedure is presented in Chapter 4. The input parameters, the initial and boundary conditions
are presented. Then, the equations are discretized with a finite-difference method and the Newton
iteration is explained. The procedure to deal with the transitional interval and the wake is shown.
After that, the numerical procedure is applied to case studies. The first case is the simulation of an
attached incompressible and compressible flow around a NACA 0012 airfoil. Then, the same airfoil
is used to simulate a separated flow. The last case study is a simulation of a highly compressible
flow around a RAE 2822 airfoil.

Finally, conclusions of the different sections are given in Chapter 6 and hints for future works are intro-
duced.
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Chapter 2

Flow models

The aim of the viscous-inviscid interaction is to split the computational domain into two distinct regions.
An external region where the flow is assumed to be inviscid and an internal region close to the airfoil
where the viscosity is taken into account. Assuming an inviscid external flow helps to reduce the compu-
tational cost of the simulation. Two different models are then used to simulate the two regions.
The first section of this chapter will introduce the inviscid formulation. The governing equations are
derived and the domain on which the equations are discretized is shown. The second section is conse-
crated to the formulation of the viscous region which is mainly based on the boundary layer concept. The
discretization of this region will be explained in Chapter 4.
The two flow models are based on simplifications of the Navier-Stokes equations. The system is given
here in the conservative form

∂ρ

∂t
+∇ · (ρu) = 0, (2.0.1a)

∂ρu

∂t
+∇ · (ρu× u) = −∇p+∇ · τ + F, (2.0.1b)

∂ρE

∂t
+∇ · (ρE) = ∇ · (k∇T ) +∇ · (−pu + τ · u) + u · F +Q, (2.0.1c)

where ρ is the density, u is the flow velocity, p is the pressure, τ is the viscous shear stress tensor, F
represents the body accelerations acting on the continuum which will be neglected in this work, E is the
total energy per unit mass, k is the thermal conductivity coefficient, T is the temperature and Q is the
heat source.
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The stress tensor for a Newtonian fluid is given by

τ = µ

(
∇u +∇uT − 2

3
I∇ · u

)
. (2.0.2)

The system of equations is closed with state equations from the perfect gas assumption

E = cvT +
1

2
u2, (2.0.3)

p = ρRT, (2.0.4)

where cv is the specific heat capacity at constant volume and R is the ideal gas constant.

2.1 Inviscid flow model

This section summarizes the work done by Crovato [1] [4]. The inviscid formulation is already im-
plemented in Flow at the beginning of this thesis. Its purpose is the simulation of three-dimensional
transonic and inviscid flows.

2.1.1 Full potential equation

First the lagrange identity, the vorticity vector and the first law of thermodynamics are defined respec-
tively

u · ∇u = (∇× u) +
1

2
∇ (u · u) , (2.1.1)

ω = ∇× u, (2.1.2)
1

ρ
∇p = ∇h− T∇s, (2.1.3)

where h is the enthalpy and s is the entropy of the flow.
Implementing the previous relations into the momentum equation (Eq. 2.0.1b) gives the Crocco’s equa-
tion

∂u

∂t
+ ω × u = T∇s−∇h0 − 1

ρ
∇ · τ, (2.1.4)
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2.1. INVISCID FLOW MODEL

where H = h+ 1
2
u2 is the total enthalpy.

Assuming a smooth, steady, inviscid and isentropic flow leads to

ω × u = 0. (2.1.5)

Hence, the flow is irrotational and the velocity derives from a potential φ such that

u = ∇φ, (2.1.6)

and the mass conservation (Eq. 2.0.1a) yields to the full potential equation

∇ · (ρ∇φ) = 0. (2.1.7)

The fluid density is formulated by the isentropic relation

ρ = ρ∞

[
1 +

γ − 1

2
M2
∞
(
1− |∇φ|2

)] 1
γ−1

, (2.1.8)

where ρ∞ is the freestream fluid density, γ is the heat capacity ratio and M∞ is the freestream Mach
number.

However, the full potential equation is limited to isentropic flow. Since the entropy produced through a
shock-wave is related to ∇s = O (M2

n − 1)
3, where Mn is the normal Mach number. The assumption is

valid for transonic flow with weak shock up to Mn < 1.3, as explained in Crovato [4].

2.1.2 Solver implementation

The weak formulation of the full potential equation is obtained by multiplying Eq. 2.1.7 by a test function
ψ and integrating by part over the domain Ω∫

Ω

ρ∇φ · ∇ψdV −
∫

Γ

ρ∇φ · nψdS = 0, ∀ψ, (2.1.9)

where Γ is the boundary of the volume Ω, n is the normal to the boundary pointing inside the domain
and ρ∇φ is the known mass-flux through the boundary. Finite element method is used to discretize the
domain Ω and the weak formulation of the full potential equation (Eq. 2.1.9) is defined on each element.
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As seen in Fig. 2.1.1, the surface boundary Γ is split into a farfield Γf and a body Γb boundaries on which
a Neumann condition is imposed∫

Γf

ρ∇φ · nψdS =

∫
Γf

ρ∞u∞ · nψdS, (2.1.10a)∫
Γb

ρ∇φ · nψdS = 0, (2.1.10b)

where ρ∞ is the density and u∞ is the velocity vector in the freestream. The body boundary will be
modified during the viscous-inviscid interaction to take into account the effect of the boundary layer
on the external region as seen in Chapter 3. Finally, a Dirichlet condition is applied on the upstream
boundary Γu

φ̄
∣∣
Γu

= φ∞, (2.1.11)

where φ∞ is the freestream potential.

Figure 2.1.1: Computational domain of the inviscid external region. Taken from Crovato [4].

Finally, the Kutta condition must be implemented to allow a potential flow to generate lift. In Flow, a flat
wake sheet Γw from the trailing edge of the lifting body to the farfield boundary downstream is created.
Then, different conditions are imposed in order to enforce the Kutta condition. The first condition is to
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ensure the continuity of the mass flux on both sides of the wake∫
Γw

ρu∇φu · nudS = −
∫

Γw

ρl∇φl · nldS, (2.1.12)

where the subscript u refers to the upper side of the wake and the subscript l refers to the lower side of
the wake.
The second condition is the zero-pressure jump. For potential flows, this condition simplifies to continuity
in the velocity magnitude ∫

Γ

(ψ + Ψ)
[[
|∇φ|2

]]
dS = 0, (2.1.13)

where the double brackets represent a jump between the upper and lower sides of the wake. The test
function is enhanced with

Ψ =
1

2

h

u∞
(u∞ · ∇φ) . (2.1.14)

where u∞ is the norm of the freestream velocity vector u∞ and h is a characteristic length. Ψ can be set
to zero when dealing with two-dimensional flow, as explained in Crovato [1].

2.2 Viscous flow model

The aim of this section is to derive a theoretical model dealing with steady, two-dimensional, attached
and separated compressible flows. Since transonic flows are beyond the scope of the present work, the
compressibility effects are taken into account up to the high subsonic limit.

2.2.1 Boudary layer equations

The first major development of viscous-inviscid interaction occurred in 1904 when Prandtl presented
the boundary layer model [2]. This model describes the thin layer close to the surface of a body where
viscosity cannot be neglected. The first assumption of this model is that the ratio between the inertial and
the viscous forces is large. The latter is given by the Reynold number

Re =
uL

ν
, (2.2.1)

where u is the characteristic velocity, L is the characteristic length and ν is the kinematic viscosity. The
second assumption is that the boundary layer thickness δ is small compared to the characteristic length L

10
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δ << L. (2.2.2)

Moreover, the boundary conditions at the surface are the following

y = 0 : u = 0; v = 0. (2.2.3)

Thus, by performing an order of magnitude analysis with y ∼ δ, x ∼ L and by applying these assump-
tions to the conservation laws, the steady two-dimensional compressible boundary layer equations can be
derived1

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (2.2.4a)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+

∂

∂y

(
µ
∂u

∂y

)
, (2.2.4b)

∂p

∂y
= 0 (2.2.4c)

ρu
∂h0

∂x
+ ρv

∂h0

∂y
= u

∂p

∂x
+ µ

(
∂u

∂y

)2

+
∂

∂y

(
µ

σ

∂h

∂y

)
. (2.2.4d)

At the edge of the boundary layer, the velocity matches the inviscid one

y = δ : u = ue; p = pe. (2.2.5)

From Eq. 2.2.4c, the pressure in normal direction is constant inside the boundary layer: p(x, y) = p(x).
The Euler equations hold at the edge of the boundary layer, where the viscosity has little effect. Thus,
the pressure term can be written

−∂p
∂x

= ρeue
∂ue
∂x

(2.2.6)

where ue is the ’driving’ velocity given by the outer inviscid flow. The main advantage of the boundary
layer model is the modification of the elliptic character of the Navier-Stokes equations to an easier han-
dled parabolic character. The stable direction of the boundary layer equations is prescribed by the sign of
u and the direction switches in reversed-flow regions. Therefore, various solutions to solve this problem
can be taken into account as seen in Chapter 3.

1The full derivation can be found in Sells [5].
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2.2.2 Integral boundary layer equations

The second major development of viscous-inviscid interaction appeared in 1921. Theodore von Kár-
mán realized that there is not always an interest in the details of the flow inside the boundary layer [6].
Hence, its idea was to integrate the boundary layer equations of 2.2.4 over the boundary layer thickness
δ. Therefore, the system of equations is reduced by one dimension but additional unknowns, the integral
thicknesses, are introduced.
These parameters represent the distance by which the external flow streamlines must be displaced by the
boundary layer to ensure a quantity similar to the one of the inviscid flow, as explained in Anderson [7].
For a compressible flow, the integral thicknesses are

• The displacement thickness for the mass flow: δ∗ =
∫ δ

0
(1− ρu

ρeue
)dη;

• The density thickness for the density: δ∗∗ =
∫ δ

0
(
u

ue
)[1− ρ

ρe
]dη;

• The momentum thickness for the momentum: θ =
∫ δ

0
(
ρu

ρeue
)[1− u

ue
]dη;

• The kinetic energy thickness for the kinetic energy: θ∗ =
∫ δ

0
(
ρu

ρeue
)[1− u2

u2
e

]dη;

Finally, a last type of parameters is defined for the integral boundary layer equations

• The shape parameter: H =
δ∗

θ
;

• The kinetic energy shape parameter: H∗ =
θ∗

θ
;

• The density shape parameter: H∗∗ =
δ∗∗

θ
;

• The kinematic shape parameter: Hk =
∫ δ

0
(1− u

ue
)dη/

∫ δ
0

(
u

ue
)[1− u

ue
]dη;
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Figure 2.2.1: Representation of the displacement thickness δ∗. On the left, the inviscid case; one the
right, the boundary layer case. Taken from Anderson [7].

The integral boundary layer equations are derived by integrating the momentum equation 2.2.4b over δ,
using the inviscid condition of the flow at the edge of the boundary layer and the continuity equation. It
gives the well-known von Kármán equation

dθ

dξ
+
(
2 +H −M2

e

) θ
ue

due
dξ

=
Cf
2
, (2.2.7)

where Me is the Mach number at the edge of the boundary layer and Cf is the dimensionless skin friction

Cf =
τw

1
2
ρu2

e

, (2.2.8)

where τw is the shear stress at the wall. Pohlhausen [8] solved Eq. 2.2.7 by assuming a 4th order poly-
nomials velocity profile with unknown coefficients and additional conditions on the profile. Although
it was the method of choice before the advent of computers, this resolution is limited to laminar and
attached flows. An easier method to compute laminar and attached flows was proposed by Thwaites [9].
The basic idea is to use empirical correlations to link Cf , θ and H instead of assuming a velocity profile.
In the same time, Green’s entrainment method, which is based on the entrained mass into the boundary
layer [10], was used to compute the turbulent boundary layer. Neither formulation were able to compute
separated flows since one equation methods univocally link the shape parameter to the local pressure
parameter. In separating flow, this is a nonunique relationship, as stated in Drela [11].
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Then, the need of a second equation arises to handle separation. Two solutions are considered in literature.
The first one is the kinetic energy shape parameter equation employed in the so-called dissipation integral
method [12]

θ
dH∗

dξ
+ [2H∗∗ +H∗(1−H)]

θ

ue

due
dξ

= 2CD −H∗
Cf
2
, (2.2.9)

where the dissipation coefficient is equal to

CD =
1

ρeu3
e

∫ δ

0

τ
∂u

∂η
dη. (2.2.10)

This equation is derived by combining the von Kármán equation with the kinetic energy thickness equa-
tion (2.2.11)

dθ∗

dξ
+

(
δ∗∗

θ∗
+ 3−M2

e

)
θ∗

ue

due
dξ

= 2CD. (2.2.11)

The two-equations dissipation integral method have been used by Drela [11], Nishida [13] Le Balleur
[14], Whitfield [15] and many others.

The second method is called the entrainment integral method [16], which is an extension of Green’s
formulation, and employs a second equation which is different in the laminar and turbulent cases.

For the laminar case, the second equation is the mechanical energy equation

∂ρeu
3
eθ
∗

∂ξ
= CDρeu

3
e, (2.2.12)

while for the turbulent case, the second equation is the Head’s entrainement equation [10] [17] (the
integrated form of the continuity equation)

1

ρeue

∂(ρeueθH1)

∂ξ
= CE, (2.2.13)

where the turbulent shape parameter and the entrainment coefficient are respectively

H1 =
δ − δ∗

θ
, (2.2.14)

CE =
1

ρeue

d

dξ

∫ s

0

ρudη. (2.2.15)

This method has been used by Bijleveld (Veldman’s student) [18], Ye [19], Le Balleur [20] and others.
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2.2.3 Boundary layer modeling

In the present work, the two-equation integral formulation based on dissipation integral method is chosen.
The main advantage of this method is the use of the same two equations for the laminar and turbulent
cases

dθ

dξ
+
(
2 +H −M2

e

) θ
ue

due
dξ

=
Cf
2
, (2.2.16a)

θ
dH∗

dξ
+ [2H∗∗ +H∗(1−H)]

θ

ue

due
dξ

= 2CD −H∗
Cf
2
. (2.2.16b)

These equations are dependent on three unknowns: θ, H and ue. The edge velocity ue can be either
prescribed by the inviscid solver for a direct coupling, computed by an algebraic equation added to the
previous system for a quasi-simultaneous coupling or be a total unknown for the other coupling methods
as seen in details in Chapter 3.

However, different closure terms are still needed for H∗, H∗∗, Cf and CD. These terms depend on
whether the flow is laminar or turbulent and the following functional dependencies are assumed,

Cf = F (Hk,Me, Reθ) , (2.2.17a)

CD = F (Hk,Me, Reθ) , (2.2.17b)

H∗ = F (Hk,Me, Reθ) , (2.2.17c)

H?∗ = F (Hk,Me) , (2.2.17d)

where Hk, the kinematic shape parameter has been derived by Whitfield [21] for adiabatic flows in air.
Since correlations (2.2.17) are only defined in terms of velocity profile and not of density profile, Hk is
defined by taking a constant density across the boundary layer

Hk =
H − 0.290M2

e

1 + 0.113M2
e

. (2.2.18)

The last term is the momentum thickness Reynolds number defined as

Reθ =
ρeueθ

µe
. (2.2.19)
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The following section exposes the various relations firstly developed by Drela [22] and then improved
by Nishida [13]. Since the purpose of this work is neither to derive, nor to validate closure terms, the
following equations will just be explained and accepted without any modification.

2.2.3.1 Laminar closure terms

The goal is to link particular unknowns to other variables that are known and validate the relationships
by experimental data or analytical solutions. The methodology employed to derive the laminar closure
terms is based on velocity profile fitting. In a steady incompressible flow, for a given shape parameter,
any laminar velocity profile is similar to the Falkner-Skan profile family. Therefore, the latter is chosen
to derive the laminar relationships.

Kinematic energy shape parameter:

H∗ =



1.528 + 0.0111
(Hk − 4.35)2

Hk + 1
− 0.0278

(Hk − 4.35)3

Hk + 1

−0.0002[(Hk − 4.35)Hk]
2, Hk < 4.35

1.528 + 0.015
(Hk − 4.35)2

Hk

, Hk ≥ 4.35

(2.2.20)

In this model, the flow separation occurs at Hk = 4.35. As mentioned above, the empirical relationships
are very accurate for the incompressible case. Hence, an additional compressibility correction obtained
from Whitfield [21] is applied to H∗,

H∗ =
H∗ + 0.025M2

e

1 + 0.014M2
e

. (2.2.21)

Density shape parameter:

H∗∗ =

(
0.064

Hk − 0.8
+ 0.251

)
M2

e . (2.2.22)
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Skin friction coefficient:

Cf =


1
2

[
−0.07 + 0.0727

(5.5−Hk)
3

Hk + 1

]
, Hk < 5.5

1
2

[
−0.07 + 0.015

(
1− 1

Hk − 4.5

)2
]
, Hk ≥ 5.5

(2.2.23)

where Cf = Cf
Reθ

2
.

Dissipation coefficient:

CD =

 0.207 + 0.00205(4−Hk)
5.5, Hk < 4

0.207− 0.0016
(Hk − 4)2

1 + 0.02(Hk − 4)2
, Hk ≥ 4

(2.2.24)

where CD = 2Reθ
CD
H∗

.

In the case of the skin friction and dissipation coefficients, the Whitfield’s compressibility correction
drops out. Thus, the only compressibility effect comes from Hk.

2.2.3.2 Laminar to turbulent transition

The purpose of this section is to derive a transition model accurate whether the flow is attached or sep-
arated. Different methods are well-known to predict the transition, as the simple Michel’s critera [23]

Reθ > 1.175

(
1 +

22400

Rex

)
Re0.46

x , (2.2.25)

or the semi-empirical eN method pioneered by Smith and Gamberoni [24] and van Ingen [25]

N(x) = ln
A

Acrit
, (2.2.26)

where N(x) is the amplification ratio whose value is mostly prescribed at transition according to experi-
ments. The most commonly used value isNcrit = 9. A is the amplitude envelope of Tollmien-Schlichting
waves. The model used in this work is based on the semi-empirical eN . The latter will be further inves-
tigated after a theorical reminder. Since no roughness or freestream turbulence are taking into account,
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2.2. VISCOUS FLOW MODEL

only the natural transition is investigated. Fig. 2.2.2 illustrates the process of natural transition.

Figure 2.2.2: Illustration of the natural transition process in a boundary layer from Schlichting [26].

When the flow reaches a critical Reynolds numberRecrit, unstable two-dimensional Tollmien-Schlichting
waves start to grow and superimpose onto the laminar boundary layer flow. Then, three-dimensional dis-
turbances appear due to secondary instabilities. The disturbances remain small and the linear stability

theory can be used to predict the amplification rate of these disturbances. This lead to vortex forma-
tion (Λ structure) which will start to break further downstream, as explained in Schlichting [26]. Then,
vortices are replaced by turbulent spots and the transition to fully turbulent boundary layer is initiated.
Finally, at Re = Retr, the transition is over and the flow is fully turbulent further downstream. For this
part composed of region 3 and 4, the disturbances are highly non-linear. Thus, semi-empirical method or
DNS are used to model it.

The idea behind the eN method is that transition occurs when the most unstable Tollmien-Schlichting
wave grows by a given amplification factor. In this case, the factor is e9 ∼ 8100. As explained previ-
ously, 9 is a chosen value. Other values could have been chosen, they depend mostly on the percentage
of freestream turbulence Tu. The following relation was developed by Mack [27] in order to link the
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maximum amplification ratio Ncrit to Tu

Ncrit = −8.43− 2.4 ln(Tu). (2.2.27)

A good historical review of the eN method and other relations for Ncrit are given in van Ingen [28].
Then, the last step is to rely the disturbance growth rates to the local boundary layer parameters. Gleyzes
[29] proposes a linear approximation of the envelopes of the spatial amplification curves of the Orr-
Sommerfeld solutions for the Falkner-Skan profile family. This approximation can be seen in Fig. 2.2.3
and is given by

N =
dN

dReθ
(Hk) [Reθ −Reθ0 (Hk)] . (2.2.28)

Figure 2.2.3: Linear approximation of the Orr-Sommerfeld solutions for different shape parameters, from
Drela[11].
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The critical Reynolds number Reθ0 represents the value at which the disturbance appears and starts to

grow. Below this value, there is no amplification. The slope
dN

dReθ
and Reθ0 are expressed by the

following empirical relations

dN

dReθ
= 0.028(Hk − 1)− 0.0345 exp

(
−
(

3.87

Hk − 1
− 2.52

))2

, (2.2.29)

log10Reθ0 = 2.492

(
1

Hk − 1

)0.43

+ 0.7

(
tanh

(
14

Hk − 1
− 9.24

)
+ 1

)
. (2.2.30)

Eq. 2.2.28 directly gives the amplitude ratio N as a function of the streamwise coordinate ξ for an
attached flow. This is due to the fact that Hk is a constant and Reθ depends almost uniquely on ξ for
that kind of flow. However, the model must enforce a prediction of the transition for a separated flow. An
equation relating the amplification ratio to the streamwise coordinate ξ and empirical relations have been
determined by Drela [11]

dN

dξ
(Hk, θ) =

(
dN

dReθ

dReθ
dξ

)
att

+ Asep, (2.2.31)

θ
dReθ

dξ
= −0.05 +

(
2.7

Hk − 1

)
−
(

5.5

Hk − 1

)2

+

(
3

Hk − 1

)3

+ 0.1 exp

(
−20

Hk − 1

)
, (2.2.32)

Asep =
1

θ

[
0.086 tanh [1.2 (log10−0.3 + 0.35 exp (−0.15(Hk − 5)))]−

(
0.25

Hk − 1

)1.5
]
,

(2.2.33)

whereAsep is the modified envelope amplification rate which must be added to the normal one in case of a
separated flow. Eq. 2.2.31 is solved simultaneously with the momentum and the kinetic energy thickness
integral equations for a laminar flow.

2.2.3.3 Turbulent closure

Finding empirical relationships for a turbulent case is far more complicated due to the presence of the
Reynolds stresses in Eq. 2.2.16b. The issue comes from the two-layer structure of the boundary layer
since the thickness of each layer varies differently depending on the local momentum thickness Reynolds
number Reθ. From this, it is not possible to find a one-parameter velocity profile family which fits all the
turbulent boundary layers.

The first step is to define an empirical relation for the skin friction coefficient. The latter is the major
scaling parameter for the wall layer. The following relation has been derived firstly by Swafford [30] and
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has been improved by Nishida and Drela [13]

FcCf =
0.3e−1.33Hk(

lnReθ
2.3026

)−1.74−0.31H
+ 0.00011

[
tanh

(
4− Hk

0.875

)
− 1

]
, (2.2.34)

where Fc =
√

1 + γ−1
2
M2

e and the heat capacity ratio γ = 1.4 for the air. The kinetic energy shape
parameter can be defined by

H∗ =



1.5 +
4

Reθ
+

(
0.5− 4

Reθ

)(
H0 −Hk)

H0 − 1

)2(
1.5

Hk + 0.5

)
, Hk < H0

1.5 +
4

Reθ
+ (Hk −H0)2

 0.007 lnReθ(
Hk −H0 +

4

lnReθ

) +
0.015

Hk

 , Hk ≥ H0

(2.2.35)

with

H0 =


3 +

400

Re0

H0 ≥ 400,

4, H0 < 400.

(2.2.36)

The density shape parameter is equal to

H∗∗ =

(
0.064

Hk − 0.8
+ 0.251

)
M2

e . (2.2.37)

Finally, a last closure relationship is needed for the dissipation coefficient. The difficulty to derive such
an expression is due to its dependence on the Reynolds stress distribution across the boundary layer [22].
The method developed by Thomas [12] and Le Balleur [14] consists in separating the contributions to
the dissipation coefficient in two: the wall layer and the wake layer. Each contribution is composed by a
velocity scale and a stress scale. The following equation illustrates the concept,

CD =
Cf
2
Us + Cτ (1− Us), (2.2.38)

where Us is an equivalent normalized wall slip velocity and Cτ is the shear stress coefficient. Fig. 2.2.4
shows the representation of a typical turbulent boundary layer profile. The latter is composed of a wall
layer where the total shear stress remains almost constant along η and the velocity increases as well as a
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wake layer where the opposite happens.

Figure 2.2.4: Typical velocity profile (on the left) and shear stress profile (on the right) inside a turbulent
boundary layer, from Drela [22]

The slip velocity Us is given by

Us =
H∗

2

(
1− 4

(
Hk − 1

3H

))
. (2.2.39)

The wall contribution of Fig. 2.2.38 containing the skin friction coefficient is consistent with the principle
of the universal wall layer since it is determined only by the local boundary layer variable Reθ and Hk.
However, the wake layer containing the Reynolds stresses cannot depends only on the local boundary
layer variable. As a matter of fact, the stresses are known to respond slowly to variations and to be
affected by the upstream history. Hence, an equation is needed to take into account these upstream
history effects

δ

Cτ

dCr
dξ

= 5.6
(
C1/2
τEQ
− C1/2

r

)
+ 2δ

{
4

3δ∗

[
Cf
2
−
(
Hk − 1

6.7Hk

)2
]
− 1

ue

due
dξ

}
. (2.2.40)

Eq. 2.2.40, the shear-lag equation, is a simplification of the stress-transport equation of Bradshaw and
Ferriss [31] and it was defined by Drela [32]. This equation models the deviations of the wake layer
dissipation coefficient CD from the local equilibrium value.

Finally, a closure term for the boundary layer thickness δ was obtained by Green [16]

δ = θ

(
3.15 +

1.72

Hk − 1

)
+ δ∗. (2.2.41)
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And the equilibrium shear stress coefficient is given by

CτEQ = 0.015H∗
(Hk − 1)3

(1− Us)H2
kH

. (2.2.42)

Finally, the flow in the external and the internal regions has been modeled. The external region is gov-
erned by the full potential equation while the internal region is governed by the integral boundary layer
equations with different closure terms whether the flow is laminar or turbulent.
An other way to resolve the boundary layer equations could have been to used the self-similarity of the
flow coupled with a mixing length turbulent closure. Even if this method gives the exact solution in
the case of laminar flows, it creates a lot of unknowns and is way more complex to implement than the
integral method. Further informations are given in Moran [33] and Cebeci [34].
The next step is to couple the two formulations and to enforce the continuity of the variables in the
interface between the two regions.
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Chapter 3

Interaction methods

The last part of the viscous-inviscid interaction consists in the coupling method to connect the inviscid
and the viscous regions. Since this separation does not exist physically, an interface must be established
to enforce the continuity between the two domains. There is two possibilities to take into account the
effect of the boundary layer on the flow. Either by modifying the geometry of the obstacle by the dis-
placement thickness δ∗ or by modifying the impermeability boundary condition in the inviscid solver by
the so-called blowing velocity. Even if the first method requires less steps to be implemented, the second
one is preferred because there is no need to change the mesh during the computation.

*

Figure 3.0.1: Representation of the blowing velocity as a boundary condition for the inviscid computa-
tion.

As seen in Fig. 3.0.1, the blowing velocity is the velocity component normal to the wall at a distance y
large compared to the boundary layer thickness but small compared to the characteristic length L. The
concept was defined by Lighthill [35] for incompresible flow. Then, the formulation is adapted for the
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compressible flow study in this work. By starting with the definition of the blowing velocity

ρv(x, y) =

∫ y

0

∂(ρv)

y′
(x, y′)dy′. (3.0.1)

Then, by using the continuity equation (2.2.4a)

ρv(x, y) = −
∫ y

0

∂ρu

∂x
(x, y′) dy′ = − ∂

∂x

∫ y

0

ρudy′, (3.0.2)

= − ∂

∂x

∫ y

0

ρ(ρeUe − (ρeUe − ρu))dy′, (3.0.3)

= −d(ρeUe)

dx
y +

∂

∂x

∫ y

0

ρeUe

(
1− ρu

ρeUe

)
dy. (3.0.4)

After that, using the definition of the displacement thickness,

δ∗ =

∫ δ

0

(1− ρu

ρeue
)dη, (3.0.5)

and evaluating the normal velocity at the wall1: y = 0,

Ve(x) =
1

ρe

d(ρeUeδ
∗)

dx
. (3.0.6)

Therefore, the body boundary Eq. 2.1.10b in the inviscid formulation is transformed into∫
Γb

ρ∇φ · nψdS =

∫
Γb

VenψdS. (3.0.7)

Finally, the viscous-inviscid interaction leads to the following coupled system of equation

P :

{
ue = E (δ∗) ,

ue = B (δ∗) ,
(3.0.8)

where E represents the set of equations of the inviscid flow and B the one of the boundary layer. For the
next section, the displacement thickness δ∗ is used as the output of the boundary layer equations since it
is easier to physically understand than the blowing velocity. Fig. 3.0.2 shows the relation between ue and
δ∗ for the inviscid flow (E) and the boundary layer flow (B).

1Since the blowing velocity is on the scale of the inviscid flow.
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B, boundary layer equations

E, inviscid equations

Figure 3.0.2: Illustration of the inviscid and boundary layer flow behaviour to the variation of the dis-
placement thickness δ∗. Adapted from Veldman [36].

The essential feature of this graph is to show that B possesses a minimum edge velocity which corre-
sponds at a flow separation. Below this value, there is no result for the boundary layer equations and
the solution totally breaks down. This issue was studied by Goldstein [37] and became the Goldstein-
singularity. It shows that if the driving factor of the boundary layer is the velocity prescribed by the
inviscid flow, no corresponding displacement thickness can be found at the separation. Therefore, two
types of interaction are deduced:

• The weak interactions that assume hierarchy between the flow solutions;

• The strong interactions that do not assume hierarchy between the flow solutions. All unknowns are
solved simultaneously in an iterative process.
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3.1. WEAK INTERACTION METHODS

3.1 Weak interaction methods

3.1.1 Direct method

The direct method is the most simple and intuitive coupling method. The inviscid solver prescribed
the edge velocity to the viscous solver, which computes the displacement thickness. Then, the inviscid
solver computes a new velocity with the displacement of the boundary layer. The process is repeated
until convergence. The direct method can be described by the following system,

Pdirect :

{
une = E(δ∗n−1),

δ∗n = B−1(une ),
(3.1.1)

where n is the coupling iteration number. Since the matrix B must be inverted, the determinant should
not be zero to avoid singularity. However, Goldstein and others faced such an issue at the point of flow
separation. A mathematical analysis of the system (2.2.16),

dθ

dξ
+
(
2 +H −M2

e

) θ
ue

due
dξ

=
Cf
2

(3.1.2)

θ
dH∗

dξ
+ [H∗∗ +H∗(1−H)]

θ

ue

due
dξ

= 2CD −H∗
Cf
2

(3.1.3)

can be performed by eformulating the system in the form A
dU

dξ
= R with U = {δ∗, H}T , it gives

A =


1

H
− δ∗

H2

0
δ∗

H

dH∗

dH

 ; R =


Cf

2
−
(

2

H
+ 1− Me2

H

)
δ∗

ue

due
dξ

2CD −H∗
Cf
2
−
(
H∗∗

H
+
H∗

H
(1−H)

)
δ∗

ue

due
dξ

 (3.1.4)

Hence, the system will break down if
δ∗

H2

dH∗

dH
= 0. Since δ∗ and H are never zero, the Goldstein-

singularity must appear when
dH∗

dH
= 0. Fig. 3.1.1 highlights by experiments the existence of a minimum

in the curve of H∗. All relations point the minimum near H ≈ 3 which represents the start of flow
separation.
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Figure 3.1.1: Experimental data illustrating the relation between the kinetic shape factor and the conven-
tional shape factor. Adapted from Veldman [36].

3.1.2 Inverse method

The first trial of an inverse interaction method was done by Catherall and Mangler [38] in 1966. Instead
of the edge velocity, the inviscid solver prescribed a displacement thickness to the boundary layer solver
which computes a new edge velocity as following:

Pinverse :

{
δ∗n = E−1(un−1

e ),

une = B(δ∗n).
(3.1.5)

This method helps them to avoid the Goldstein-singularity at the point of flow separation. However, the
solution breaks down inside the zone of flow separation. The reason is that, even if the computation sur-
vives to the singularity, it is still assuming a hierarchy between the flow solutions. Hence, the numerical
procedure is not valid anymore on larger scales of the flow as seen in Fig. 3.1.2.
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Figure 3.1.2: On the left: boundary layer attached to the airfoil; on the right: boundary layer separated
of the airfoil. Taken from Prandtl [39].

Moreover, the major drawback of this method is the need of underrelaxation and the slowness of its
convergence as proven by Lock & Williams [40].

Aftosmis et al. [41] show that the two previous methods can be used for more complex configurations
by combining a multilevel Cartesian-mesh Euler solver with a viscous solver. The laminar flow is re-
solved with a direct interaction while the turbulent flow is resolved with an inverse interaction. Their
investigations demonstrate the usability of these techniques on 2D supersonic airfoils and full-aircraft
configurations.

3.1.3 Semi-inverse method

In this method, the direct solution of the inviscid solver is matched with the inverse solution of the
boundary layer equations. The purpose is that two estimates of the edge velocity are given by both
solvers. Then, the difference between these velocities is used via a relaxation formula to obtain the new
displacement thickness, which is introduced in the two solvers again until convergence. The following
system illustrates the process

Psemi-inverse :


uneE = E

(
δ∗(n−1)

)
,

uneB = B
(
δ∗(n−1)

)
,

δ∗n = δ∗(n−1) + ω
(
uneB − u

n
eE

)
,

(3.1.6)

where ω is the relaxation factor. The previous system was developed by LeBalleur [20] and Carter [42]
for turbulent boundary layer computations. It shows great results for transonic and separated flows.
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3.2 Strong interaction methods

3.2.1 Simultaneous method

When Veldman [43] highlighted the strong simultaneous feature of the interaction between inviscid and
viscous flows near the separation point, the first proposed coupling technique was a fully-simultaneous
coupling. In this method, the inviscid and viscous flows are solved together in one iteration. The outputs
for the new step are the edge velocity and the displacement thickness as presented in the following system

Psimultaneous :

{
une − E (δ∗n) = 0,

une −B (δ∗n) = 0,
(3.2.1)

which is essentially a Newtonian structure. This coupling has very good convergence properties as anal-
ysed by Brune et al.[44]. A solution to the system exists as long as [E −B] is not singular that is, when
an intersection exists between the curves in Fig. 3.0.2.

The fully-simultaneous interaction is well suited for attached and separated flows since it assumes no
hierarchy between the edge velocity and displacement thickness. However, the limitation of the model
comes from the limitation of the boundary layer concept itself. Hence, it is not valid anymore in the case
of too large flow separations.

The major drawback of this method is the complexity in term of algorithm since both equations of the
system above (3.2.1) must be solved simultaneously in one big system of equations. Moreover, the sys-
tem allows almost no modularity in the solver. It is not possible to modify only the inviscid equations
without modifying the boundary layer equations.

The method was developed and applied to supersonic computations by Lees and Reeves [45]. Then, Drela
improved the global method by combining a Euler solver with the integral boundary layer equations in
Xfoil [32]. Finally, the method was extented for three-dimensional flows by Drela & Nishida [13].
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3.2.2 Quasi-simultaneous method

The last technique and the one used in this work is a combination between the direct and the fully-
simultaneous method. The quasi-simultaneous coupling has the ease of implementation of the direct
method due to the same process of resolution of the system of equations. The inviscid solver prescribes
the edge velocity to the boundary layer equations and the latter derives the new displacement thickness
for the inviscid calculation. However, the boundary layers equations are solved simultaneously with a
simple but good approximation of the inviscid equations. This simpler equation is called an interaction

law and must model the velocity as a function of the displacement thickness. Moreover, the interaction
law must decrease the complexity of the algorithm and describe the flow locally. The following system
represents such a method,

Pquasi−simultaneous :


uneB − I (δ∗) = un−1

eB
− I

(
δ∗n−1

)
,

uneB −B (δ∗n) = 0,

uneE − E (δ∗n) = 0,

(3.2.2)

where I , the interaction law, is used in defect formulation to not influence the final converged result.
Hence, it is only improving the rate of convergence. Moreover, it allows to treat the velocity as an
unknown in the viscous solver. Therefore, there is no hierarchy between the flow solutions and the
method can handle attached and separated flow in the same way as the fully-simultaneous method. This
idea of a quasi-simultaneous interaction was developed by Veldman [3] and has been used by Cebeci et
al. [46], Bijleveld [18] and others.
The main remaining objective is to find a suitable interaction law which is easy to implement but still
allows a robust coupling between the two solvers.

3.3 The interaction law

3.3.1 Behaviour of the interaction law

A solution to the quasi-simultaneous method exists if the curve of the boundary layer equations and
the one of the interaction law have an intersection, as seen in Fig. 3.3.1. Physically, the absence of
intersection means that the flow is highly separated and that the assumption of the boundary layer is not
valid anymore. However, as shown in Chapter 4, such a singularity can still hold numerically.
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𝑢𝑒

𝑢𝑒min

attached separated 𝛿∗

B, boundary layer equations

E, inviscid equations

I, robust interaction law

Figure 3.3.1: Illustration of the variation of the edge velocity ue according to the displacement thickness
δ∗ for the boundary layer equations, inviscid equations and the interaction law. Adapted
from Veldman [36].

Tthe interaction law must satisfy a few criteria. The relation must be linear and steep enough to meet the
boundary layer equations curve. Moreover, the steeper the curve, the faster the convergence, as stated by
Veldman [3]. Then, the interaction law must link the external flow velocity to the displacement thickness

I : ue = f (δ∗) . (3.3.1)

The triple-deck theory described below allows to connect the local influence of the inviscid flow to the
displacement thickness of the boundary layer.
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3.3.2 Triple-deck theory

Veldman based the derivation of the interaction law on the triple deck theory, developed independently
by Stewardson and Williams [47], Messiter [48] and Neiland [49]. This theory decomposes the boundary
layer in three distinct layers:

• A viscous sublayer (lower deck) of thickness O(Re−5/8) gouverned by the boundary layer equa-
tions;

• An inviscid middle layer (main deck) of thicknessO(Re−1/2) where a vertical shift of the oncoming
velocity profile happens due to the displacement effect of the viscous sublayer;

• A top layer (upper deck) of thickness O(Re−3/8) where the flow is assumed irrotational and
inviscid. Therefore, this layer can be described with a potential flow equation based on thin airfoil
theory.

The information is distributed from the lower to the upper deck. Velocity perturbations are transmitted
from the lower deck to the main deck. In this layer, the perturbations are seen as a displacement of the
streamlines which is transmitted to the upper deck. This displacement produces a disturbance of pressure
which is transmitted back to the lower deck powering the velocity disturbances. Hence, at the point of
flow separation, the boundary layer becomes as important as the inviscid flow. The latter is not driving
the boundary layer anymore. Fig. 3.3.2 illustrates the concept of the triple deck boundary layer.

Figure 3.3.2: Illustration of the triple deck theory from Lagrée [50]. The thickness of the lower, main and
upper deck are represented.
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The major outcome of the theory is the possibility to couple the velocity at the top of the main deck
(depending on the displacement thickness) and the one at the bottom of the upper deck (depending on the
inviscid velocity)

P (x) =
1

π

∫ ∞
−∞

G′(ξ)

x− ξ
dξ, (3.3.2)

where P (xα) is the pressure in the main deck, G′(ξ) is a function related to the displacement thickness,
ξ is the streamwise coordinate and x is the position of the singularity.

3.3.3 Derivation of the law

Since the purpose of this work is not to define a new interaction law, only the major steps are shown in
this section. The derivation of the interaction law was performed by Coenen [51] and Veldman [52] and
a good explanation can be found in [18]. They apply a panel method for the discretization of the external
flow in order to use thin airfoil theory.

From Eq. 3.3.2, Veldman [52] derives the first interaction law

I [δ∗] =
1

π

∫
Γ

dδ∗

dξ

dξ

x− ξ
. (3.3.3)

Coenen [51] transforms the previous relation by discretizing it withN number of panels in order to obtain
an expression for the velocity

uei =
N+1∑
k=1

Auikqekδ∗xk + u0ei
, (3.3.4)

where qe is the absolute value of the velocity. This formula takes into account the singularity at x = ξ.
Moreover, the matrix Auik contains the effect of the various panels on the point i where the velocity is
calculated. Coenen [51] shows that the matrix is positive definite and diagonally dominant.
From triple deck theory, only the local influence can be considered to derive the interaction law. There-
fore, the diagonal elements of Auii are sufficient [51]. The last requirement is a large slope of I . Coenen
shows that by using the minimum number of diagonals from matrix A to approximate the flow, the slope
of I will be larger than the slope of E.
The first equation of the quasi-interaction method (system 3.2.2 is

uneB − I (δ∗n) = un−1
eE
− I

(
δ∗n−1

)
. (3.3.5)
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3.3. THE INTERACTION LAW

When, by applying the interaction law of Eq. 3.3.4 at point i

uneB −A
u
iiq

n
ei
δ∗ni = un−1

eE
−Auiiqneiδ

∗(n−1)
xk

. (3.3.6)

Then, the element Auii is given by Veldman [52] as

Auii =
4

π∆x
, (3.3.7)

where ∆x is the mesh size. Finally, the absolute value of the velocity can replaced by the freestream
velocity since the interaction law has no influence on the converged result. The law is equal to the
following algebraic equation(

ue +
4u∞
π∆x

δ∗
)(new)

=

(
ue +

4u∞
π∆x

δ∗
)(old)

. (3.3.8)

3.3.4 Mathematical analysis

The same mathematical analysis as for the direct method is performed. However, the interaction law will
now be taken into account in the integral boundary layer equations (2.2.16). To do so, the interaction law
equation is substituted into the system by its derivative form

ue − cδ∗ = E; E = uext − α∗ext; c =
4u∞
π∆x

> 0; (3.3.9)

=>
due
dξ

= c
dδ∗

dξ
+

dE

dξ
, (3.3.10)

where the assumption of a constant c along the streamwise direction is assumed. Obviously, it is only true
for equidistant grids. However, the interaction law has no effect on the converged result hence, neither
does the assumption. Therefore, for the unknowns U = {δ∗, H}T , the integral boundary layer equations
can be rewritten as

1

H

dδ∗

dξ
− δ∗

H2

dH

dξ
+
(
2 +H −M2

e

) δ∗

Hue

(
c
dδ∗

dξ
+

dE

dξ

)
=
Cf
2

(3.3.11)

δ∗

H

dH∗

dH

dH

dξ
+ (2H∗∗ +H∗(1−H))

δ∗

Hue

(
c
dδ∗

dξ
+

dE

dξ

)
= 2CD −H∗

Cf
2

(3.3.12)
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3.3. THE INTERACTION LAW

Thus, in the matrix form A
dU

dξ
= R:

A =


1

H
+ c

(
2

H
+ 1− Me2

H

)
δ∗

ue
− δ∗

H2

c

(
2H∗∗

H
+
H∗

H
(1−H)

)
δ∗

ue

δ∗

H

dH∗

dH

 ; (3.3.13)

R =


Cf

2
−
(

2

H
+ 1− Me2

H

)
δ∗

ue

dE

dξ

2CD −H∗
Cf
2
−
(

2H∗∗

H
+
H∗

H
(1−H)

)
δ∗

ue

dE

dξ

 (3.3.14)

To avoid and prevent any singularity, the determinant of the matrix A must be greater than zero:

1

H

dH∗

dH
+
cδ∗

ue

[(
2

H
+ 1− Me2

H

)
dH∗

dH
+

(
2H∗∗

H
+
H∗

H
(1−H)

)]
> 0 (3.3.15)

And finally, a condition on c can be determined:

c >
− ue
δ∗H

dH∗

dH[(
2

H
+ 1− Me2

H

)
dH∗

dH
+

(
2H∗∗

H
+
H∗

H
(1−H)

)] (3.3.16)

Fig.3.1.1 shows that
dH∗

dH
< 0 for attached flows and > 0 for separated flows. Moreover, the second

term of the denominator is always negative since H is always higher than 1 and H∗ and H∗∗ are always
positive. Hence, a sign analysis illustrates than if c is positive, the condition is fulfilled automatically for
attached flows. However, the right-hand side of the condition can become positive for separated flows.
Thus, a large value of c is required and the simulation can breakdown for coarse grids. Therefore, the
mesh size is fixed by the condition of the flow. The main issue is that, for transonic application, the mesh
size is also determined by the size of the shock.

This chapter concludes the theoretical analysis of the viscous-inviscid interaction. The viscous solver
has been formulated and coupled with the inviscid solver by a quasi-simultaneous interaction. The next
chapter will explain the numerical implementation of the model into Flow.
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Chapter 4

Numerical Simulation

In this chapter, the theoretical formulation of the viscous-inviscid interaction scheme are implemented
in Flow. The procedure of discretization of the integral boundary layer equations by a finite-difference
method is introduced. The techniques employed to stabilise the numerical computation are explained and
issues with the initial conditions from the inviscid solver are shown. Finally, the convergence is defined.

4.1 Solution procedure

Fig. 4.1.1 illustrates the solution procedure of the viscous-inviscid interaction implemented in Flow. The
first step is the prescription of the input parameters by the user. Step 2 is the computation of the inviscid
equations hence, it will not be detailed here. More details can be found in Crovato [1].
Then, steps 3 & 4 & 5 are consecrated to the initialization of the simulation. This initialization consists
in the manipulation of the data from the inviscid solver, the processing of values that are used as initial
conditions and the determination of the boundary conditions for the airfoil and for the wake.
After that, the boundary layer equations are solved in step 6. To do so, they are discretized and then,
resolved with a Newton procedure. The simulation around the airfoil is performed in a first time. During
the simulation, the transition is checked at every station. When transition occurs, a special processing is
done at this location. Then, the simulation of the wake is performed. For the case studied in this project,
the wake is assumed to be always turbulent. A convergence analysis is done after the resolution of the
boundary layer equations and if the solution is converged, the simulation stops and the outputs of the
viscous-inviscid interaction are post-processed. If not, the new blowing velocites are given as boundary
conditions to the inviscid solver and a new coupling iteration is done until the convergence is reached.
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4.1. SOLUTION PROCEDURE

1. Input parameters

2. Inviscid solver

3. Data sorting
Sort the data from the inviscid solver
into three regions: the suction side,

the pressure side and the wake

4. Boundary layer coordinate
Transform the system of
coordinate (x,y) to (ξ,η)

5. Initial & Boundary conditions
Apply the filter on the invis-

cid velocity and impose the BC

6. Boundary layer solver
Solve the BL equations at each station
+ check the transition laminar-turbulent

Region = end of wake ? New region

Solution is converged? Give the new blowing ve-
locities to the inviscid solver

7. Post-processing
The outputs of the viscous-inviscid

interaction are post-processed

No

Yes

No

Yes

Figure 4.1.1: Solution procedure of the viscous-inviscid interaction.
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4.2. INITIALIZATION

4.2 Initialization

4.2.1 Input parameters

The computation needs a few input parameters given by the user to start. These input parameters are
listed in Tab. 4.2.1 and are given for each simulation in Chapter 5.

User
Reynolds number Re [-]

Freestream Mach number M∞ [-]
Angle of attack α [°]

Mesh size at the leading-edge [m]
Mesh size at the trailing-edge [m]

Mesh file

Table 4.2.1: Input parameters given by the user to the inviscid and viscous solvers.

4.2.2 Data sorting and coordinate transformation

When the simulation of the inviscid solver is over, its results need to be given to the viscous solver.
Tab. 4.2.2 lists the parameters exchanged between the inviscid solver and the viscous solver during the
interaction.

Inviscid -> Viscous
Position in x and y of the nodes for the airfoil and the wake

Value of u and v at the nodes for the airfoil and the wake
Value of Me and ρe at the nodes for the airfoil and the wake

Numerotation of the nodes
Numerotation of the elements

Table 4.2.2: Data recovered by the viscous solver from the inviscid solver

where u is the velocity in the x-direction, v is the velocity in the y-direction, Me is the Mach number at
the edge of the boundary layer and ρe is the density at the edge of the boundary layer.
First of all, the data must be sorted in a given order once they are obtained from the inviscid solver. As
a matter of fact, the latter works on unsorted data whilst the boundary layer computation needs to be
performed by marching downstream. Therefore, the data must be sorted for the two physical boundaries:
the airfoil and the wake, as illustrated in Fig. 4.2.1.
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4.2. INITIALIZATION

Figure 4.2.1: Sorting of the data for the viscous solver on the NACA 0012. The airfoil is sorted from
region 1 (stagnation point to trailing-edge) to region 2 (trailing edge to stagnation point).
The region 3 represents the wake.

After that, a transformation of coordinates is done such that only the streamwise coordinate ξ remains in
the computation. The velocity at the edge of the boundary layer ue is defined from u and v thanks to a
rotation matrix. The rotation angle is the angle formed by the element and the x-axis.

4.2.3 Initial conditions

Since the computation is iterative, initial conditions are required. In this case, the initial conditions are the
edge velocity ue, the edge density ρe and the edge Mach number Me distributions given by the inviscid
solver. However, these values comes from an unstructured finite-element computation. Therefore, it is
not defined at the nodes level but at the element level. To replace it at a node, an average of the values
of the connected elements to this node is done. But, due to the unstructured mesh, the variation of the
distributions along the streamwise coordinate present irregularities as seen in Fig. 4.2.2.
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4.2. INITIALIZATION

0.00 0.01 0.02 0.03 0.04 0.05 0.06
ξ [-]

1.75

1.80

1.85

1.90

1.95

2.00
u e

 [-
]

Velocity without filter
Velocity with filter

Figure 4.2.2: Illustration of the variation of the velocity along the chord on the suction side of the NACA
0012 airfoil from the inviscid solver at Re = 107, α = 5° and M∞ = 0.5 with and without
the application of a filter.

To avoid the irregularities, which can cause discontinuities and solution breakdown, an Savitzky-Golay
filter has been implemented. Theoretical details can be found in Savitzky and Golay [53]. The purpose
of the filter is to improve the smoothness of the data. In this approach, a polynomial of degree p fits each
successive subset of 2m+1 (m < p/2) points by the method of the least square. Then, an estimation of the
smoothed signal can be given at the central point of each sub-set by a single set of convolution coefficient.

Therefore, the smoothed signal depends on:

• The degree of the polynomial which is usually two or three. If p = 2 the curvature is taken into
account and if p = 3, the inflexion points are taken into account;

• The subset of point (the bandwidth) must be large enough to have an adequate smoothing but not
to large to avoid killing the pressure peak and needed oscillations caused by the boundary layer
equations in the case of this work.

41



4.2. INITIALIZATION

The issue with the filter is that the inviscid velocity is smoothed at each iteration step since this velocity is
averaged inside the inviscid solver. Hence, small ondulations induced by the boundary layer computation
are damped, e.g the variation of velocity after the transition from laminar to turbulent flow as shown in
Fig. 4.2.3. Finally, the solution crashes with this damping.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
ξ [-]

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

u e
 [-

]

Velocity without filter
Velocity with filter

Figure 4.2.3: Illustration of the damping of the small oscillations from the boundary layer computation
after the filtering of the velocity from the inviscid solver on the suction side of the NACA
0012 airfoil at Re = 107, α = 5° and M∞ = 0.5.

Therefore, even if the curve in Fig. 4.2.3, with p = 3 & m = 51, is smoother than the curve in Fig. 4.2.2,
with p = 2 & m = 7, the latter does not kill the small oscillations and the system converges to the good
solution. Hence, compromises must be done between good accuracy and survivability of the simulation.
Further investigations on different filtering parameters will be done in Chapter 5.
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4.2. INITIALIZATION

4.2.4 Boundary conditions

Finally, boundary conditions must be applied to the set of parabolic boundary layer equations. Hence,
Dirichlet boundary conditions are imposed at the stagnation point (ξ = 0) for the laminar unknowns, at
transition (ξ = ξtr) for the turbulent unknowns and the beginning of the wake. The conditions are derived
from the Falkner-Skan family for the shape parameterH and from Thwaites for the momentum thickness
θ, as proposed in Schlichting [26] and Moran [33]. At the transition, it is mandatory to impose a condition
on the amplification rate ratio N and on the shear stress coefficient C1/2

τ . The first one defined the point
of transition. The second one is needed to start the turbulent boundary layer computation. The boundary
condition imposed here was derived by Drela [11]. As no useful empirical relation is formulated, the
shear stress coefficient is assumed to be at 0.7 times its equilibrium value at transition. The boundary
conditions imposed at the wake are derived from Cook and McDonald [54] and Drela [55]. Tab. 4.2.3
lists the boundary conditions.

Variables Stagnation point Transition Wake

θ

√√√√0.075/

(
Redue

dξ

∣∣∣∣
ξ=0

)
/ θupper + θlower

H 2.23 /
(Hθ)upper + (Hθ)lower

θupper + θlower

ue 0 / ueinv

N 0 9 /

C
1/2
τ / 0.7C

1/2
τEQ

(Cτθ)upper + (Cτθ)lower

θupper + θlower

Table 4.2.3: List of the boundary conditions imposed at each new iteration.

Finally, the inflow at infinity is u∞ = 1.
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4.3. BOUNDARY LAYER SOLVER

4.3 Boundary layer solver

4.3.1 Discretization scheme

The equations used for the laminar and turbulent flows are the momentum integral equation (Eq. 2.2.7),
the kinetic shape parameter equation (Eq. 2.2.16) and the interaction law (Eq. 3.3.8). For the laminar part,
the amplification ratio rate (Eq. 2.2.31) is added to model the transition. For turbulent flow, the shear-lag
equation (Eq. 2.2.40) is added to take into account the Reynolds stresses. The four unknowns that are
solved are the momentum thickness θ, the shape parameter H , the velocity at the edge of the boundary
layer ue and the amplification rate N in the case of a laminar flow or the square root of the shear stress
coefficient C1/2

τ in the case of a turbulent flow.

Since only the first derivative along the streamwise direction comes into play, the set of equations of
the boundary layer is parabolic. Moreover, this set is characterized by first-order ordinary differential
equations which are greatly non-linear and coupled. Hence, a space marching through each station of
the boundary layer is performed. A finite-element method with an unstructured mesh is employed for
the computation of the inviscid flow as seen in Chapter 2 and a finite-difference method is applied to the
boundary layer equations. In the latter case, the mesh is not equally distributed and more points are added
near the leading-edge of the airfoil as illustrated in Fig. 4.3.1. The computation is done for the airfoil and
the wake.

Figure 4.3.1: Illustration of the mesh on a NACA0012 airfoil for the inviscid and viscous flow.
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4.3. BOUNDARY LAYER SOLVER

The equations are discretized with a second order trapezoidal scheme since it has the smallest truncation
error of the second-order A-stable scheme, as written in Hirsch [56]. However, upwinding has been
added to the set of equations in order to improve the stability of the computation. As a matter of fact,
the kinematic shape parameter equation (2.2.16) is relatively stiff at the transition. This is due to small

quantity θ in the term θ
dH∗

dξ
. Since there is a rapid analytic change inH∗ it leads to numerical difficulties

to resolved it with the available mesh size. Therefore, instead of a central difference, a backward Euler
scheme is applied. In practice, an upwind bias is added to the following variables,

θa = εθi + (1− ε) θi−1,

Ha = εHi + (1− ε)Hi−1,

uea = εuei + (1− ε)uei−1
,

Cτa = εCτi + (1− ε)Cτi−1
,

Mea = εMei + (1− ε)Mei−1
,

Reθa = εReθi + (1− ε) reθi−1
,

where ε = 0.5 for the trapezoidal scheme and ε = 1 for the backward Euler scheme. This bias is switched
to one at the boundary condition to ensure stability at these stations and just before the onset of transition
when the amplification rate ratio is greater than 8 to the end of the transition further downstream in the
turbulent flow. Finally, the set of equations becomes

f1 =
θi − θi−1

ξi − ξi−1

+
(
2 +Ha −Me2

a

) θa
uea

uei − uei−1

ξi − ξi−1

− Cfa
2
, (4.3.1a)

f2 = θa
H∗i −H∗i−1

ξi − ξi−1

+
(
2H∗∗a +H∗a(1−Ha)

) θa
uea

uei − uei−1

ξi − ξi−1

− 2CDa +H∗a
Cfa
2
, (4.3.1b)

f3 = uea −
4u∞δ

∗
a

π(ξi − ξi−1)
− (uea)old +

4u∞(δ∗a)old
π(ξi − ξi−1)old

, (4.3.1c)

f4lam =
Ni −Ni−1

ξi − ξi−1

− Aa, (4.3.1d)

f4turb = 2
δa

C
1/2
τa

C
1/2
τi − C

1/2
τi−1

ξi − ξi−1

− 5.6
(
C

1/2
τEQa

− C1/2
τa

)
(4.3.1e)

− 2δa

{
4

3δ∗a

[
Cfa
2
−
(

Hka

6.7Hka

)2
]
− 1

uea

uei − uei−1

ξi − ξi−1

}
,

where Aa is simply the right-hand side of Eq. 2.2.31 evaluated at the middle point of the element. The
closure terms like the skin friction coefficient are computed at the mid-point location for the trapezoidal
scheme and at the point i for the backward Euler scheme, i.e Cfa = F (Hka ,Mea , Reθa).
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4.3. BOUNDARY LAYER SOLVER

4.3.2 Newton procedure

Since the integral boundary layer system (4.3.1) is non-linear, it must be resolved iteratively. Hence, a
Taylor expansion around U gives

f(Un+1) = f(Un) +
∂f(Un)

∂Un
∆U +O

(
(∆U)2

)
, (4.3.2)

where n is the number of iteration and ∆U = Un+1−Un. The second order terms can be neglected and
since f(Un+1) = 0,

∂f(Un)

∂Un
∆U = −f(Un), (4.3.3)

where the right-hand side represents the residual vector which must be reduced as much as possible per
iteration. Finally, the Jacobian matrix1 is defined as

J(Un) =
∂f(Un)

∂Un
=



∂f1

∂Hi

∂f1

∂θi

∂f1

∂uei

∂f1

∂C
1/2
τi

∂f2

∂Hi

∂f2

∂θi

∂f2

∂uei

∂f2

∂C
1/2
τi

∂f3

∂Hi

∂f3

∂θi

∂f3

∂uei

∂f3

∂C
1/2
τi

∂f4

∂Hi

∂f4

∂θi

∂f4

∂uei

∂f4

∂C
1/2
τi


. (4.3.4)

This Jacobian is computed numerically thanks to a finite-difference method by introducing a small per-
turbation inside the system.
After the linearization, a linear solver can be applied to Eq. 4.3.3. In this work, the linear system is
resolved thanks to LU decomposition with partial pivoting and row interchanges, as explained in Strang
[57]. By written the system of equation in the form

Ax = b. (4.3.5)

The LU decomposition gives
PA = LU , (4.3.6)

1Here it is for the turbulent case
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where P is the permutation matrix, L is the lower triangle matrix and U is the upper triangle matrix.
Then, the solution is computed in two logical steps,

1) Ly = Pb, (4.3.7)

2) Ux = y. (4.3.8)

Since the matrix are triangular, they can be solved directly by forward and backward substitution.

To optimize the system, a line search algorithm has been combined to the Newton iteration. The purpose
of the line search is to increase the robustness of the computation and to increase its convergence. A
schematization of the line search is shown in Fig. 4.3.2.

Figure 4.3.2: On the left: a basic Newton method; on the right: a Newton method combined with a line
search. Taken from Crovato [4].

The line search used is a backtracking search line based on the Armijo–Goldstein condition, as written
in Armijo [58]. The idea is to decrease the objective function f(x) by shrinking the initial step size
along a given search direction until the Armijo-Goldstein condition is fulfilled. This condition tests if
the objective function at the new position has sufficiently decreased. The search direction p is assumed
to be a descent direction to ensure that the objective function will decrease. Hence, the local slope of
the function m is negative. The initial step size α0 is assumed higher than zero and relatively large. The
shrinking factor τ and a search control parameter c are defined between zero and one. Therefore, the
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4.3. BOUNDARY LAYER SOLVER

algorithm can be expressed as follows:

1) Start the iteration at j = 0;

2) Compute the objective function at the new position: f(x+ αjp);

3) Check the Armijo-Goldstein condition: f(x)− f(x+ αjp) ≤ αjcm;

4) If not fulfilled, increment j and set αj = ταj;

5) Repeat until condition is satisfied.

An usual value for c and τ is 0.5, as used by Armijo [58].

4.3.3 Transition

While each laminar station is computed with the laminar equations and each turbulent station is computed
with the turbulent equations, it does not work during the transition. During this phase, the transition
mostly occurs inside the element and not at a node. Hence, the flow in the element is both laminar and
turbulent. Considering that the transition occurs between the ith − 1 and the ith points, the procedure is
the following:

1) Laminar computation to point i;

2) Ni > Ncrit hence, transition occurs at ξtr =
(Ncrit −Ni−1) (ξi − ξi−1)

Ni −Ni−1

+ ξi−1;

3) Computation goes back to point i− 1;

4) Turbulent computation to point i;

5) Average the laminar and turbulent solutions for point i;

where Ncrit = 9 in the present project. The average is performed with the percentage of the type of flow
in the element,

wlam =
ξtr − ξi−1

ξi − ξi−1

; wturb =
ξi − ξtr
ξi − ξi−1

. (4.3.9)

And finally, the solutions at point i are

θi = wlam(θi)lam + wturb(θi)turb; Hi = wlam(Hi)lam + wturb(Hi)turb; (4.3.10)

uei = wlam(uei)lam + wturb(uei)turb; Cτi = wturb(Cτi)turb. (4.3.11)
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4.3.4 Wake

The wake is considered as one viscous layer. Then, the parameters computed at each wake station rep-
resent the total wake momentum and shape parameter. The flow in the wake is governed by the same
set of equations (4.3.1) as for the airfoil. However, few modifications need to be done for the closure
terms. Particularly for the equilibrium shear stress coefficient CτEQ which must be quadrupled from the
boundary layer closure relation (Eq. 2.2.42), as defined by Green [16] from the data of Narasimha and
Prabhu [59],

CτEQ = 4CτEQ (H∗, Hk, H, US) . (4.3.12)

Moreover, the skin friction coefficient is obviously set to zero in the wake. Thus, the inner layer con-
tribution to the dissipation coefficient CD (Eq. 2.2.38) vanishes while the outer layer term is doubled to
consider the half-wake outer layer profile of the wake, as explained in Drela [55],

Cf = 0, (4.3.13)

CD = 2Cτ (1− US) . (4.3.14)

4.3.5 Stabilisation of the procedure

The integral formulation is relatively sensitive to perturbations. During the simulation, absurd transient
values can occur and cause the computation to fail. In order to avoid this issue, some values have been
bounded. The bounds have been defined either by trial and error or by further investigations of the work
of Drela [32]. They are practical engineering solutions.
The first parameter to be bound is the momentum thickness Reynolds number Reθ. For laminar flows,
Reθ cannot go below zero since it would be physically incorrect. For turbulent flows, Reθ cannot be
lower than 200. This limit avoids having too low values after the transition. The second parameter to be
bound is the kinematic shape parameter Hk which is equal to the shape parameter H for incompressible
flows. Hk must always be greater than one. Otherwise, the flow could be considered as a jet, which is
not the case in the present work. Therefore, Hk > 1.02 for an airfoil and Hk > 1.00005 for the wake.
Then, the shear stress coefficient Cτ is also bounded at the transition. To avoid absurd transient values,
Cτ > 0.03 for the airfoil and Cτ > 0.05 for the wake since the production of shear stress is higher in the
latter. The last two bounded parameters are the thickness of the boundary layer δ which must be lower
or equal to 12θ to avoid too large boundary layer and the slip velocity US which must be lower than one
to avoid negative value inside Eq. 2.2.42. As a matter of fact, this is the square root of Eq. 2.2.42 that is
used in the simulation.
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4.4 Convergence

Fig. 4.1.1 summarizes the solution procedure for the viscous-inviscid interaction implemented in this
work. In this procedure, three loops appear. The first one is hidden in the boundary layer solver, it is the
loop over all the stations of one region. The second one is the loop over all the regions and the last one is
the loop until the convergence is reached. While the first two loops have a physical end, the last one does
not. Hence, a convergence criterion needs to be defined.
The convergence criterion for the boundary layer iteration is based on the drag coefficient cd. A global
parameter was chosen in order to overcome the fluctuations caused by the irregularities of the inviscid ini-
tial conditions. If a local parameter such as the skin friction coefficient was chosen to be the convergence
criterion, these irregularities would make the solution impossible to converge with a good accuracy.
The drag coefficient is computed by applying the expression derived by Squire and Young [60] at the last
point of the wake:

cd =

2θ

(
ue
u∞

)H + 5

2


end of wake

(4.4.1)

The previous formula extrapolates the momentum thickness to downstream infinity and therefore, an
asymptotic behaviour downstream of the point of application is assumed for the wake. This assumption
is reasonable for the simulation in this work since the last point of the wake is considered far away from
the trailing edge. Therefore, the convergence monitor is expressed as:

ε =

∣∣cnd − cn−1
d

∣∣
cnd

< εcrit (4.4.2)

where n is the iteration number and εcrit is the value of the tolerance. When the given tolerance is reached,
the computation ends and the final values of the boundary layer variables per station are written to files.
Finally, these files are used to visualize the results as shown in Chapter 5.
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Chapter 5

Application to 2D steady flow

In this chapter, the results of three test cases are presented. The first case is a simulation of an attached
flow around the well-studied NACA 0012 airfoil. The case is performed by considering both an incom-
pressible and a compressible flow. The second case is a simulation of a separated flow around the same
airfoil. In this case, the flow is considered incompressible to avoid the apparition of transonic features at
a high angle of attack. Finally, a simulation of a highly compressible flow around the RAE 2822 airfoil
is performed. In this case, the angle of attack is small to study only the compressibility effects.
In this chapter, the attached flow case is used to validate the model and its implementation. The two other
cases are used to understand the limits of the current implementation, to identify the possible issues and
to propose solutions for a future work. The validation of the results is done thanks to the software Xfoil

[61] based on the work of Drela [32]. An inviscid linear-vorticity panel method with a Karman-Tsien
compressiblity correction is fully coupled with the two-equations integral dissipation method for the vis-
cous solver.
However, for compressible cases, there are discrepancies in the pressure coefficients distribution along
the airfoil between the inviscid solver of Flow and the inviscid solver of Xfoil. Due to this difference,
the validation of the viscous solver could not be done entirely for the compressible regime. There will
always be a source of error.
In order to determine the origin of this source of error, the inviscid solver of Flow and of Xfoil will be
compared to a higher order simulation solving the Euler equations: SU2 [62] [63] [64]. The latter is
an open-source code for multiphysics simulations using a finite-volume method with an Euler implicit
scheme to discretize the equations. A time marching procedure is applied to reach steady state. The
comparison will show if the results of Flow are reliable or not. Moreover, for the last test case, SU2

will be used to perform a RANS simulation based on the Spalart-Allmaras [65] turbulence model and a
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5.1. MESH AND FILTER CONVERGENCE ANALYSES

Bas-Cakmakcioglu [66] algebraic transition model.
For all cases, the input parameters and a comparison of the initial velocity ue between the inviscid sim-
ulations of Xfoil and Flow are presented. The boundary layer parameters shown in the following section
are the shape parameter H , the skin friction Cf and the displacement thickness δ∗.

5.1 Mesh and filter convergence analyses

Before starting the simulations, convergence analyses are carried out to prove the relevance of the results
in the case studies. First, a convergence analysis is performed on the mesh by varying the mesh size at the
leading edge nLE and at the trailing edge nTE . Then, the impact of the filtering parameters are studied on
the chosen mesh. These parameters are the bandwidth m and the polynomial order p. The convergence
criteria are the lift coefficient cl and the drag coefficient cd. The mesh convergence analysis is performed
with the best filtering parameters.

5.1.1 Attached flow around a NACA 0012

For the attached flow case around the NACA 0012 at a Reynolds number Re = 107 and an angle of
attack α = 5°, two flows are considered: an incompressible one and a compressible one at a Mach
number M = 0.5. The mesh analysis is done with m = 0 and p = 0 for the incompressible case and
m = 7 and p = 2 for the compressible case. The filter analysis is done with nLE = 0.001 and nTE = 0.01

for both cases.
Tab. 5.1.1 & Tab. 5.1.2 list the solutions of respectively the mesh and the filter convergence analyses for
the attached incompressible flow case,

nLE × nTE cl cd
0.01× 0.01 0.5770 0.00588
0.001× 0.01 0.5819 0.00620
0.001× 0.005 0.5832 0.00627

Table 5.1.1: Mesh convergence of the incom-
pressible attached flow around the
NACA 0012

m× p cl cd
0× 0 0.5819 0.00621
7× 2 0.5819 0.00620
11× 2 0.5819 0.00606

Table 5.1.2: Filter convergence of the incom-
pressible attached flow around the
NACA 0012

Tab. 5.1.3 & Tab. 5.1.4 list the solutions of respectively the mesh and the filter convergence analyses for
the attached compressible flow case,
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5.1. MESH AND FILTER CONVERGENCE ANALYSES

nLE × nTE cl cd
0.005× 0.005 0.6882 0.00639
0.001× 0.01 0.6948 0.00678
0.001× 0.005 0.6954 0.00680

Table 5.1.3: Mesh convergence of the com-
pressible flow around the RAE
2822

m× p cl cd
5× 2 0.6945 0.00678
7× 2 0.6948 0.00671
11× 3 / /

Table 5.1.4: Filter convergence of the com-
pressible flow around the RAE
2822

The second mesh size provides a good convergence for both cases. The lift coefficient is converged below
two lift counts and the drag coefficient is converged below one drag count. The filter convergence analysis
of the incompressible flow shows a good convergence for the two first cases, the simulation starts to
diverge when the filtering parameters are increased. The filter convergence analysis of the compressible
case shows that only the two first sets of parameters give a solution to the simulation. Therefore, the
second mesh and the set of p = 2 and m = 7 filtering parameters are keeping for both flows for the rest
of the case study.

5.1.2 Incompressible separated flow around a NACA 0012

The second analyses are performed on a separated incompressible flow around the NACA 0012 at a
Reynolds number Re = 107 and an angle of attack α = 12°. The mesh analysis is done with m = 11 and
p = 2. The filter analysis is done with nLE = 0.00075 and nTE = 0.01. Tab. 5.1.5 & Tab. 5.1.6 list the
solutions of respectively the mesh and the filter convergence analyses,

nLE × nTE cl cd
0.005× 0.05 1.3844 0.00434
0.001× 0.01 1.3913 0.00952

0.00075× 0.01 1.3930 0.01072
0.0005× 0.01 1.3930 0.01110

Table 5.1.5: Mesh convergence of the incom-
pressible separated flow around
the NACA 0012

m× p cl[−] cd[−]
7× 2 1.3929 0.01045
11× 2 1.3930 0.01072
13× 2 1.3910 0.00971

Table 5.1.6: Filter convergence of the incom-
pressible separated flow around
the NACA 0012

In this case, the lift coefficient is well converged but the drag coefficient still varies. The variation in
the drag coefficient is mainly due to a presence of a singularity at the point of separation as shown in
Sec. 5.3. However, the difference between the third and fourth meshes is lower than four drag counts
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5.2. CASE 1: ATTACHED FLOW AROUND A NACA 0012 AIRFOIL

and it is acceptable. The lift and the drag coefficients start to diverge when the filtering parameters are
increased. Therefore, the third mesh size and the second set of filtering parameters are chosen for the
second case study.

5.1.3 Highly compressible flow around a RAE2822

The third analyses are performed on a compressible flow around the RAE 2822 at a Reynolds number
Re = 6.5 × 106 and an angle of attack α = 0.5°. The mesh analysis is done with m = 21 and p = 2.
The filter analysis is done with nLE = 0.001 and nTE = 0.005. Tab. 5.1.7 & Tab. 5.1.8 list the solutions
of respectively the mesh and the filter convergence analyses,

nLE × nTE cl cd
0.005× 0.01 0.4314 0.00387
0.001× 0.01 0.4467 0.00391
0.001× 0.005 0.4542 0.00392
0.001× 0.001 0.4551 0.00392

Table 5.1.7: Mesh convergence of the com-
pressible flow around the RAE
2822

m× p cl cd
11× 2 0.4551 0.00393
21× 2 0.4542 0.00392
31× 2 0.4530 0.00390

Table 5.1.8: Filter convergence of the com-
pressible attached flow around the
RAE 2822

The lift and the drag coefficients are converged respectively below one lift and one drag count. The
increase of the filtering parameters shows again a divergence in the results. Therefore, the third mesh
size and the second set of the filtering parameters are chosen for this test case.

5.2 Case 1: Attached flow around a NACA 0012 airfoil

To simulate an attached flow around the airfoil, an angle of attack α = 5°, a Mach number M∞ = 0

for the incompressible case and M∞ = 0.5 for the compressible case are chosen. The angle of attack
allows to compute quite high velocity gradients after the stagnation point without dealing with separated
flow. The Mach number allows to have interesting compressibility effects without going to the transonic
regime.
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5.2. CASE 1: ATTACHED FLOW AROUND A NACA 0012 AIRFOIL

5.2.1 Input parameters

Input parameter Values
Reynolds number 107

Mach number (only for compressible case) 0.5
Angle of attack 5°

Mesh size at the leading-edge 0.001 [m]
Mesh size at the trailing-edge 0.01 [m]

Polynomial order of the filter p 2
Bandwidth m 7

Table 5.2.1: Input parameters for the incompressible and compressible tests for the simulation of an at-
tached flow around the NACA 0012.

A ratio of 1/10 was chosen between the mesh size at the trailing edge and the mesh size at the leading
edge. It allows to catch the high velocity gradient right after the stagnation point. Fig. 5.2.1 illustrates
the mesh around the airfoil for the following simulation. The inviscid region is discretized by two-
dimensional triangles which become one-dimensional elements in the viscous region.

Figure 5.2.1: Representation of the geometry of the NACA 0012 and the mesh used for the first test case.

Fig. 5.2.2 shows the filtered initial velocity distributions for both the incompressible case (Fig. 5.2.2a)
and the compressible case (Fig. 5.2.2b). As observed, the velocity peaks of Flow never reach the velocity
peaks of Xfoil for the given configuration. A deeper investigation near the leading edge on the suction
side shows the apparition of irregularities for the compressible velocity distribution as seen in Fig. 5.2.2d.
It is not done on the pressure side since both velocity distributions are totally equivalent.
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Figure 5.2.2: Comparison between the inviscid velocity of Xfoil and Flow along the chord of the NACA
0012 at Re = 107 and α = 5°.

5.2.2 Results

The first boundary layer parameter presented is the shape parameter H . The latter is interesting due to its
stiffness during transition. It changes rapidly and the set of equations has to catch the variation without
a refined mesh at the transition. Fig. 5.2.3 & Fig. 5.2.4 illustrate the variation of the shape parameter for
both incompressible and compressible cases along the chord on the suction side and the pressure side.
Along all the airfoil, the shape parameter of Flow matches almost perfectly with the one of Xfoil for
both cases. The dramatic drop of the shape parameter at the transition is well caught by the numerical
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5.2. CASE 1: ATTACHED FLOW AROUND A NACA 0012 AIRFOIL

simulation.
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Figure 5.2.3: Variation of the shape parameter H on the suction side of the NACA 0012 at Re = 107,
α = 5°, M∞ = 0 (solid lines) and M∞ = 0.5 (dash-dot lines).
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Figure 5.2.4: Variation of the shape parameter H on the pressure side of the NACA 0012 at Re = 107,
α = 5°, M∞ = 0 (solid lines) and M∞ = 0.5 (dash-dot lines).
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5.2. CASE 1: ATTACHED FLOW AROUND A NACA 0012 AIRFOIL

The second boundary layer parameter presented is the skin friction coefficient Cf . This parameter is
interesting due to its highly sensitivity to the other variables. Moreover, the skin friction coefficient can
directly show the flow separation. Fig. 5.2.5 illustrates the variation of this parameter on the suction of
the airfoil for both incompressible and compressible cases.
Again, for the incompressible case, the skin friction coefficient computed by Flow matches almost per-
fectly the one computed by Xfoil. For the compressible case, a higher peak is predicted by Flow. This
difference continue further downstream. It can be explained by the presence of irregularities in the initial
velocity distribution as seen in Fig. 5.2.2d. As a matter of fact, these irregularities are also presented in
the initial Mach number distribution since the latter is a function of the velocity. As reminder, the skin
friction coefficient is directly a function of the edge Mach number (see Eq. 2.2.34). Hence, if there is
discrepancies between the initial conditions computed by the two inviscid solvers, there will be discrep-
ancies between the skin friction coefficients computed by the two viscous solvers.
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Figure 5.2.5: Variation of the skin friction coefficient Cf on the suction side of the NACA 0012 at Re =
107, α = 5°, M∞ = 0 (solid lines) and M∞ = 0.5 (dash-dot lines).

On the pressure side, the first peak of the skin friction coefficient is better caught than the second one for
both the incompressible and compressible cases as seen in Fig. 5.2.6. The issue represented here is the
smoothing of the velocity distribution by the application of the filter as illustrated in Fig.4.2.3. Since the
second peak occurs in a zone of lower velocity gradient and less dense grid points, the variation of the
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5.2. CASE 1: ATTACHED FLOW AROUND A NACA 0012 AIRFOIL

velocity induced by the laminar to turbulent transition is more impacted by the smoothing procedure.
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Figure 5.2.6: Variation of the skin friction coefficient Cf on the pressure side of the NACA 0012 at
Re = 107, α = 5°, M∞ = 0 (solid lines) and M∞ = 0.5 (dash-dot lines).

The third boundary layer parameter presented is the displacement thickness δ∗. It is a good summary of
the boundary layer behaviour. Contrary to the skin friction coefficient, this parameter is not too sensitive
to other variables. As a reminder, the displacement thickness is equal to the shape parameter H times
the momentum thickness θ. While the first term is sensitive to the initial values, the second one is not.
Moreover, the momentum thickness θ is a small quantity in front of the shape parameter H hence, it
absorbs most of the perturbations.

Fig. 5.2.7 shows the variation of the displacement thickness on the suction side of the airfoil. The dis-
placement thickness increases rapidly since the transition occurs almost at the leading-edge. The values
computed by Flow match almost perfectly the values computed by Xfoil for both the incompressible and
compressible cases except close to the trailing edge. Flow calculates a higher displacement thickness at
this location. This is due to a different implementation of the Kutta condition.
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Figure 5.2.7: Variation of the displacement thickness δ∗ on the suction side of the NACA 0012 at Re =
107, α = 5°, M∞ = 0 (solid lines) and M∞ = 0.5 (dash-dot lines).
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Figure 5.2.8: Variation of the displacement thickness δ∗ on the pressure side of the NACA 0012 at Re =
107, α = 5°, M∞ = 0 (solid lines) and M∞ = 0.5 (dash-dot lines).

60



5.2. CASE 1: ATTACHED FLOW AROUND A NACA 0012 AIRFOIL

On the pressure side, the increase of the displacement thickness δ∗ is not so high since most of the
flow is laminar along the airfoil as seen in Fig. 5.2.8. Hence, the drop of the displacement thickness
due to the drop of the shape parameter H at the transition is easier to visualize. After the drop, the
parameter increases rapidly due to the rapid increase of the momentum thickness θ in a turbulent flow.
The values computed by Flow match again the values computed by Xfoil at almost any location for both
the incompressible and compressible cases.

A comparison between the variation of the pressure coefficients along the airfoil from Flow and Xfoil is
done in Fig. 5.2.9 for the incompressible case and in Fig. 5.2.10 for the compressible case. The inviscid
pressure coefficients are added to the plots to show the impact of the boundary layer on the pressure
distribution.
There is not much difference between the two inviscid solvers for the incompressible case, Xfoil and
Flow predict almost the same suction peak, as seen in Fig. 5.2.9. Therefore, the comparison of the two
viscous solvers shows a good correspondence between the distribution of pressure coefficients along the
NACA 0012. Both predict quite the same reduction of the suction peak and a lower pressure coefficient
at the trailing edge due to the viscous effects. Moreover, the transition locations are illustrated by the
small variations of the pressure for the viscous solvers.

0 0.2 0.4 0.6 0.8 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Figure 5.2.9: Pressure coefficients Cp distributions along the NACA 0012 in the case of an incompress-
ible flow at Re = 107 and α = 5°.
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5.2. CASE 1: ATTACHED FLOW AROUND A NACA 0012 AIRFOIL

In Fig. 5.2.10, there is a large difference in the minimum pressure coefficient between Flow and Xfoil.
Then, the results are compared with the higher fidelity solver SU2 1. The latter shows that Flow predicts
the correct minimum pressure coefficient contrary to Xfoil which tends to overestimate this peak. Then,
the results of Flow are more reliable than Xfoil at that location. As previously, oscillations due to the
initial velocity and Mach number distributions appear on the suction side of the airfoil in the viscous
simulation of Flow.

Therefore, two sources of error can be defined in the simulation proposed by the two viscous solvers for
the attached compressible case. The first one comes from the overestimation of the minimum pressure
coefficient of Xfoil. The second one is due to the oscillations caused by the irregularities in the initial
conditions in Flow.
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Figure 5.2.10: Pressure coefficients Cp distribution along the NACA 0012 in the case of a compressible
flow at M∞ = 0.5, Re = 107 and α = 5°.

1The mesh convergence analysis is done in Appendix A.1.
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5.2.3 Discussion

Tab. 5.2.2 shows the minimum pressure Cpmin
, the lift cl and drag coefficients cd as well as the locations

of the transition as a percentage of the cord x/c on the NACA 0012 airfoil at Re = 107, α = 5°, M∞ = 0

for the incompressible flow and M∞ = 0.5 for the compressible flow.

Cpmin
cl cd xtop

tr xbot
tr

Incompressible case
Xfoil -1.953 0.56 0.0061 0.0531 0.7484
Flow -1.902 0.58 0.0062 0.0555 0.7397

Compressible case
Xfoil -2.595 0.68 0.0067 0.0374 0.7391
Flow -2.305 0.69 0.0067 0.0384 0.7364

Table 5.2.2: Comparison of the aerodynamic loads and the locations of the transition between Xfoil and
Flow for the NACA 0012 at Re = 107, α = 5°.

These results prove that the theoretical model defined in this project and its numerical implementation
work well for engineering applications such as the simulation of an attached flow around an airfoil. Each
transition location is determined within an error of less than 0.5% of the chord. Even if the lift coefficient
of Flow tends to be slightly higher than the one predicts by Xfoil, there is a good agreement between the
aerodynamic loads computed with Flow and Xfoil. The discrepancies between the minimum pressure
coefficient calculated by the two viscous solvers come from the difference in the inviscid solvers.

In summary, the viscous-inviscid interaction implemented in the present work is able to simulate with a
good accuracy an attached flow around an airfoil. The flow can be either incompressible or compressible.
For the latter case, sources of error from the inviscid solver must be taken into account such as the
irregularities in the initial velocity and Mach number distributions due to the transformation of a finite-
element simulation to a finite-difference simulation and the difference between the minimum pressure
coefficient predicted by the two inviscid solvers.

5.3 Case 2: Separated flow around a NACA 0012 airfoil

To study the behaviour of Flow in the case of a separated flow, an angle of attack α = 12° is chosen
and an incompressible flow is considered. As seen previously, more sources of error must be taken into
account in the case of a compressible flow. Moreover, there is a risk of a transonic flow regime with such
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5.3. CASE 2: SEPARATED FLOW AROUND A NACA 0012 AIRFOIL

a high angle of attack. This test case represents the NACA 0012 near stall condition (∼ α = 15°) hence,
a large portion of the flow along the airfoil is separated.

5.3.1 Input parameters

All the input parameters are listed in Tab. 5.3.1. A higher mesh size ratio than for the attached case is
used between the leading edge and the trailing edge. The aim is to catch the high pressure peak and the
high velocity gradients at the leading edge with accuracy. A higher bandwidth m = 11 is prescribed to
improve the smoothness of the initial conditions.

Input parameter Values
Reynolds number 107

Mach number 0
Angle of attack 12°

Mesh size at the leading-edge 0.00075 [m]
Mesh size at the trailing-edge 0.01 [m]

Mesh file NACA 0012
Polynomial order of the filter p 2

Bandwidth m 11

Table 5.3.1: Input parameters for the simulation of a separated flow around the NACA 0012.

Fig. 5.3.1 illustrates the geometry of the airfoil and the mesh used for this simulation.

Figure 5.3.1: Representation of the geometry of the NACA 0012 and the mesh used for the second test
case.
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5.3. CASE 2: SEPARATED FLOW AROUND A NACA 0012 AIRFOIL

Fig. 5.3.2 shows the comparison between the filtered initial inviscid velocity distribution of Flow and
the initial inviscid velocity distribution of Xfoil. There is almost a perfect match on the suction side
(Fig. 5.3.2a) and the lower side (Fig. 5.3.2b). Therefore, no source of error is caused by the inviscid
solver of Flow.
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Figure 5.3.2: Comparison between the inviscid velocity of Xfoil and Flow along the NACA 0012 atRe =
107 and α = 12°.

5.3.2 Results

Fig. 5.3.3 shows the variation of the shape parameter H on the suction side of the airfoil. The first
observation is the difference between the maximum shape parameter computed by Flow and Xfoil. The
first one is not shown in Fig. 5.3.3 since it goes to more than twenty and details on the plot would be
lost. The issue here is that the shape parameter acts as a singularity at the separation point. Even if Flow

can handle the separation and the value is "numerically" correct, it does not represent the physics of the
flow. The value computed by Xfoil is H ∼ 4. However, Xfoil encounters the same problem with its
simultaneous coupling which computed a high value of the shape parameter. Therefore, a kind of inverse

coupling method was implemented to overcome the singularity. At the location of the separation, Xfoil

prescribes the value of the shape parameter and it is not an unknown anymore.
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5.3. CASE 2: SEPARATED FLOW AROUND A NACA 0012 AIRFOIL

Further investigations in the literature shows that the singularity could be avoided, or at least reduced,
by implementing the unsteady integral boundary layer equations since unsteady effects become more
important near the stagnation point, as explained in Bijleveld [18] and Ozdemir et al. [67]. Moreover,
steady solutions may simply not exist for separated flows and the physics cannot be represented with
these steady equations without prescribing the shape parameter.
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Figure 5.3.3: Variation of the shape parameter H along the chord on the suction side of the NACA 0012
at Re = 107 and α = 12°.

The second observation is the apparition of oscillations before x/c = 0.2. Since the initial velocity is
relatively smooth at that location, as seen in Fig. 5.3.5, these oscillations do not come from the irregular-
ities of the initial conditions but come from the interaction between the inviscid and the viscous solvers.
Currently, the author cannot explain the presence of these oscillations.
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The same spurious features are observed on the pressure side of the airfoil, as seen in Fig. 5.3.4. There
is a high increase of the shape parameter H near the separation point at the trailing edge. However, this
separation point is predicted by Flow but not by Xfoil. Then, similar oscillations such as on the suction
side are observed at the location x/c = 0.75.
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Figure 5.3.4: Variation of the shape parameter H along the chord on the pressure side of the NACA 0012
at Re = 107 and α = 12°.

Fig. 5.3.5 shows the variation of the skin friction coefficient Cf on the suction side of the airfoil. Even
if the shape parameter H computed at the separation is too high, there is a good agreement between the
values predict by Flow and Xfoil. The separation is correctly predicted when the skin friction coefficient
is below zero. The main discrepancies between the two software is the presence of oscillations below
x/c = 0.2 in Flow.
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Figure 5.3.5: Variation of the skin friction coefficientCf along the chord on the suction side of the NACA
0012 at Re = 107 and α = 12°.
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Figure 5.3.6: Variation of the skin friction coefficient Cf along the chord on the pressure side of the
NACA 0012 at Re = 107 and α = 12°.
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On the pressure side, the peak is well caught by Flow as illustrated in Fig. 5.3.6. This is due to the good
agreement between the inviscid solvers as shown in Fig.5.3.2b. There is a unexpected behaviour of the
skin friction coefficient Cf at the location of the spurious oscillations such as on the suction side. At
the trailing edge, Flow computes a laminar separation where the skin friction is below zero which is not
predicted by Xfoil. Otherwise, there is a good correspondence between the values computed by the two
viscous solvers.

Fig. 5.3.7 shows the variation of the displacement thickness δ∗ on the suction side of the airfoil. It is a
good summary of the what is happening in the boundary layer computation. The first point is a relatively
higher displacement thickness prediction by Flow than Xfoil at the separation point due to the presence
of the singularity. The second point is the presence of oscillations below x/c = 0.2 in Flow. The last
point is an underestimation of the momentum thickness θ and the shape parameter H near the trailing
edge. Otherwise, Flow tends to a similar behaviour than Xfoil.
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Figure 5.3.7: Variation of the displacement thickness δ∗ along the chord on the suction side of the NACA
0012 at Re = 107 and α = 12°.
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Similarly, Fig. 5.3.8 shows the variation of the displacement thickness δ∗ on the pressure side. The same
comments are done. There are spurious oscillations at x/c = 0.75 and a relatively high increase of the
boundary layer displacement thickness near the trailing edge, at the point of the flow separation. Since the
flow remains laminar along the pressure side, the impact of the singularity on the displacement thickness
is more important as on the suction side. As a matter of fact, the turbulent momentum thickness θ on
the suction side is the driving parameter of the displacement thickness. On the pressure side, the driving
parameter is the laminar shape factor H .
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Figure 5.3.8: Variation of the displacement thickness δ∗ along the chord on the pressure side of the NACA
0012 at Re = 107 and α = 12°.

Finally, Fig. 5.3.9 illustrates the distributions of the pressure coefficients along the airfoil. Since the
discussion between the two inviscid solvers is the same as for Fig. 5.2.9, these curves are not represented
and only the curves from the viscous solvers are shown. The values computed by Flow match well the
values computed by Xfoil. The suction peak is well caught and the trailing edge pressure is equivalent.
The main issue from Flow is, again, the presence of oscillations below x/c = 0.2.
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Figure 5.3.9: Pressure coefficients Cp distributions along the NACA 0012 at Re = 107 and α = 12°.

5.3.3 Discussion

Tab. 5.3.2 lists the aerodynamic loads and the locations of the transition predict by both solvers for an
incompressible separated flow around a NACA 0012 airfoil.

Cpmin
cl cd xtop

tr xbot
tr

Xfoil -7.947 1.33 0.011 0.011 1
Flow -7.854 1.39 0.011 0.008 1

Table 5.3.2: Comparison of the aerodynamic loads and the locations of the transition between Xfoil and
Flow for the NACA 0012 at Re = 107 and α = 12°.

Even if in this case, the relative error on the top location of the transition is relatively high, it repre-
sents again an error lower than 0.5% of the percentage of the chord. Again, Flow overestimates the lift
coefficient compared to Xfoil. However, the computed drag coefficients are the same. There is a good
agreement between the values computed by Flow and Xfoil.
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The purpose of this test case was to analyse the behaviour of the numerical simulation for a separated
flow and to understand the limits of the viscous-inviscid interaction scheme implemented in this work.
Flow provides good results for the test case and can be used for engineering applications. However, few
problems appear; the first one is the shape factor singularity at the separation point and the second one
is the apparition of spurious oscillations. Flow can handle the singularity but it is not physically correct.
Further researches show that two solutions can be implemented to overcome the singularity: the devel-
opment of an inverse coupling method as in Xfoil and the implementation of the unsteady boundary layer
equations to better fit with reality near the separation point. On the other hand, there is currently no idea
of solution to avoid the spurious oscillations.

Finally, the two first test cases show that the theoretical model derived in Chapter 2 & Chapter 3 meet the
objectives of this work. Flow can deal with attached or separated, incompressible or compressible flows.
However, there are still numerical problems that must be resolved in a future work.

5.4 Case 3: Highly compressible flow around a RAE 2822 airfoil

For the last test case, the purpose is to show the applicability of the numerical simulation for a highly
compressible flow with a different airfoil than the NACA 0012. The RAE 2822 transonic airfoil was
chosen since the aim of Flow is to simulate transonic flow, as explained in Crovato [1]. However, going
to transonic flow capability is beyond the scope of this work. Therefore, the flow will be at the limit of the
high subsonic condition to remain in the limit of validity of the Karman-Tsien compressibility correction
used in Xfoil [32] and in the limit of validity of the model presented in this thesis. For that, an angle of
attack of 0.5° and a Mach number M∞ = 0.7 are chosen.

5.4.1 Input parameters

As explained in test case 1, the numerical simulation of compressible flows is more sensitive to irregu-
larities in the initial conditions due to the dependence on the edge velocity ue as well as the edge Mach
number Me. To overcome these irregularities, a stricter filter is applied. A bandwidth m of 21 points and
a polynomial order p of 3 are prescribed. A mesh ratio of 1/5 between the leading edge and the trailing
edge is used. The number of points near the trailing edge is increased since the various peaks of pressure
are not happening at the leading edge but further downstream for a supercritical airfoil.
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Input parameter Values
Reynolds number 6.5× 106

Mach number 0.7
Angle of attack 0.5°

Mesh size at the leading-edge 0.001 [m]
Mesh size at the trailing-edge 0.005 [m]

Polynomial order of the filter p 3
Bandwidth m 21

Table 5.4.1: Input parameters for the simulation of a highly compressible flow around the RAE 2822 at
Re = 6.5× 106, α = 0.5° and M∞ = 0.7.

Fig. 5.4.1 illustrates the geometry of the supercritical airfoil and the mesh used for the simulation.

Figure 5.4.1: Representation of the geometry of the RAE 2822 and the mesh used for the simulation.

As seen in Fig. 5.4.2a, the filtered initial inviscid velocities computed by Flow and the initial inviscid
velocities computed by Xfoil are different along the chord on the suction side. This difference will impact
the boundary layer simulation and the parameters will present different behaviours. Then the results are
compared to the higher fidelity simulation SU2. This comparison shows that the trend of Flow is similar
to the one of SU2 but the velocities are overestimated. On the other hand, the behaviour predicted by
Xfoil does not match the behaviour of SU2 at all. Therefore, the trend of the results of Flow will be more
reliable than Xfoil for the simulation along the suction side of the RAE 2822 for this test case.
The pressure side presents an identical behaviour for the different inviscid solvers as seen in Fig. 5.4.2b.
Each peak is well caught by Flow and there is no irregularities in the initial conditions.
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Figure 5.4.2: Comparison between the inviscid velocity of Xfoil and Flow along the RAE 2822 at Re =
6.5× 106, α = 0.5° and M∞ = 0.7.

5.4.2 Results

Fig. 5.4.3 shows the variation of the shape parameter H along the chord on the suction side of the RAE
2822 computed by Flow and Xfoil. As expected by the inviscid velocities, the results are not similar until
the velocities become almost identical at x/c ∼ 0.65. The shape parameter predicted by Flow is not
constant during the laminar flow contrarily to the one predicted by Xfoil since the velocity is not constant
on that portion of the suction side, as seen in Fig. 5.4.2a. Moreover, the transition location is determined
further downstream than the one determined by Xfoil.

On the pressure side, the shape parameter H computed by both viscous solvers is almost equivalent, as
seen in Fig. 5.4.4. This result was expected due to the good agreement between the inviscid velocities
computed by the two inviscid solvers and represented in Fig. 5.4.2b. The only exception is at the transition
where Flow computes a higher peak of shape parameter than Xfoil. This difference is mainly due to the
prediction of a small laminar separation just before the transition by Flow and not by Xfoil.
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Figure 5.4.3: Variation of the shape parameter H along the chord on the suction side of the RAE 2822 at
Re = 6.5× 106, α = 0.5° and M∞ = 0.7.
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Figure 5.4.4: Variation of the shape parameter H along the chord on the pressure side of the RAE 2822
at Re = 6.5× 106, α = 0.5° and M∞ = 0.7.
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The skin friction coefficient Cf along the chord on the suction side is represented in Fig. 5.4.5. Again,
the distributions are different from both viscous solvers due to the difference in the velocity distributions.
However, the skin friction coefficient predicted by Flow behaves logically. First, it increases due to the
velocity gradient at the leading edge. Then, it decreases up to the laminar to turbulent transition where
it increases dramatically. Finally, it decreases until the end. This behaviour is similar to the behaviour
predicted by Xfoil except that the transition is located further upstream for Xfoil.
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Figure 5.4.5: Variation of the skin friction coefficient Cf along the chord on the suction side of the RAE
2822 at Re = 6.5× 106, α = 0.5° and M∞ = 0.7.

On the pressure side, there is a good agreement between the skin friction coefficients Cf computed by
both viscous solvers, as seen in Fig. 5.4.6. The discrepancies between the two curves come from the small
differences between the inviscid velocities. However, Flow predicts a small separation (Cf ∼ −10−6)
before the transition while Xfoil does not.
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Figure 5.4.6: Variation of the skin friction Cf along the chord on the pressure side of the RAE 2822 at
Re = 6.5× 106, α = 0.5° and M∞ = 0.7.

As expected from the previous analysis, the displacement thickness δ∗ computed by Flow is simply shift
further downstream compared to the displacement thickness computed by Xfoil, as seen in Fig. 5.4.7.
The behaviour is the same for both viscous solvers.

Fig. 5.4.8 shows the variation of the displacement thickness δ∗ along the chord on the pressure side of
the airfoil. The behaviour of Flow is in line with the expectations of the previous results. The values in
the laminar and turbulent portions of the chord are equivalent between the two solvers. A higher peak of
displacement thickness is computed by Flow at the transition location due to the presence of the small
separation.
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Figure 5.4.7: Variation of the displacement thickness δ∗ along the chord on the suction side of the RAE
2822 at Re = 6.5× 106, α = 0.5° and M∞ = 0.7.
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Figure 5.4.8: Variation of the displacement thickness δ∗ along the chord on the pressure side of the RAE
2822 at Re = 6.5× 106, α = 0.5° and M∞ = 0.7.
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Fig. 5.4.9 illustrates the pressure coefficients distribution computed by Flow and Xfoil which solve the
viscous-inviscid interaction scheme and computed by SU2 which solves the RANS equations with a tran-
sition model2. The pressure coefficients distribution of Flow is relatively similar to the distribution of
SU2 and the transition locations are well predicted. The discrepancies between the two distribution come
from the discrepancies between the inviscid velocities computed by both software as seen in Fig. 5.4.2a.
On the suction, the prediction of Flow are better than Xfoil. On the pressure side, Flow tends to overesti-
mate the pressure coefficients distribution contrarily to Xfoil.
The interesting feature is that the computational time of Flow was of the order of the seconds while the
computational time of SU2 was of the order of hours.
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Figure 5.4.9: Pressure coefficients Cp distribution along the RAE 2822 at Re = 6.5× 106, α = 0.5° and
M∞ = 0.7.

2More details about the simulation in Appendix A.2.
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5.4.3 Discussion

Tab. 5.3.2 lists the aerodynamic loads and the locations of the transition predicted by both solvers for a
highly compressible flow around a RAE 2822.

Cpmin
cl cd xtop

tr xbot
tr

Xfoil -0.625 0.373 0.0044 0.525 0.499
Flow -0.714 0.454 0.0039 0.595 0.483
SU2 -0.659 0.359 0.0045 0.605 0.473

Table 5.4.2: Comparison of the aerodynamic loads and the locations of the transition between Xfoil, Flow
and SU2 for the RAE 2822 at Re = 6.5× 106, α = 0.5° and M∞ = 0.7.

While the transition locations are accurately predicted by Flow, it is not the case for the aerodynamic
loads. For the lift coefficient, the difference is mainly due to the difference between the initial inviscid
velocities. For the drag coefficient, the difference is due to the underestimation of the momentum thick-
ness θ by the viscous solver of Flow. Moreover, the strict filtering parameters can be a source of error
during the interactions between the viscous and the inviscid solvers.

In this test case, the viscous-inviscid interaction has been tested on a highly compressible flow around a
different airfoil than the NACA 0012 and compared to a RANS simulation. Even if Flow globally fits
with the behaviour of SU2, various sources of error occur. The main error comes from the velocity pre-
diction of the inviscid solver which overestimates the initial inviscid velocity. Then, the initial conditions
are too smoothed by the viscous solver to ensure the proper functioning of the simulation. This error is
repeated along all the interaction cycles. Further investigations should be carried out to make Flow fully
effective.
However, the boundary layer parameters are well predicted by the viscous solver. There is almost a per-
fect match when the inviscid velocities of Flow and Xfoil are identical. Moreover, the computational time
of Flow is of the order of the seconds which is interesting during preliminary design of an aircraft.
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

In this work, a viscous-inviscid interaction has been implemented in a finite element full potential solver.
The combination of the inviscid and the viscous solvers allows to study the effects of the boundary
layer in a flow around an airfoil with accuracy. These effects concern the global parameters such as the
displacement thickness, the shape parameter or the skin friction coefficient. This method reduces the
computational cost compared to a higher fidelity simulation such as DNS or RANS which is ideal during
the preliminary design of an aircraft. The procedure implemented allows to simulate attached and sepa-
rated flows and allows to take into account the compressiblity effects up to the high subsonic limit. The
case studies were performed on a NACA 0012 airfoil and on a RAE 2822 supercritical airfoil.

First, the theoretical model has been defined. The inviscid formulation consists in the full potential equa-
tion discretized by a finite element method. This solver is the base of Flow and is already implemented in
the beginning of the present thesis. Then, the viscous formulation is introduced by deriving the integral
boundary layer equations from the boundary layer concept. This formulation allows to reduce by one the
number of dimension and to take only the global parameters into account. The integral model used is
the two-equations dissipation integral method which consists in the von Kármán equation and the kinetic
energy shape parameter equation. For a laminar flow, an amplification ratio equation is added to the
system to compute the transition location. For a turbulent flow, a shear lag equation is added to take into
account the Reynolds shear stresses. Then, a set of closure terms is derived for both the laminar or the tur-
bulent case. The main advantage of this model is that it can handle separation and compressibility effects.
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After that, a coupling method has been investigated. This coupling is based on two parameters: the
blowing velocity which describes the impact of the boundary layer on the inviscid flow and the edge of
the boundary layer velocity which describes the impact of the external flow on the boundary layer. All
the different methods existing in the literature have been presented and their strengths and weaknesses
have been explained. From this analysis, two types of interaction are defined: the weak interaction
which creates a hierarchy between the two solvers solution and the strong interaction which assumes no
hierarchy between the solvers solution. The latter is preferable to handle separated flow. Hence, a quasi-
simultaneous coupling has been chosen since it allows an easy implementation on an existing solver. The
interaction law has been derived from the triple deck theory to be robust and simple.

The numerical procedure has been presented. The initialization of the computation is explained and the
boundary and initial conditions are defined. Since the initial conditions from the inviscid solver present
irregularities, a filter has been chosen. This filter allows to improve the smoothness of the initial con-
ditions but it can reduce the accuracy of the results by smoothing the variation of the velocity brought
by the viscous solver during the interaction procedure. Then, the boundary layer solver strictly speaking
has been introduced. The equations are discretized with a finite-difference method. The scheme applied
is the second order trapezoidal scheme except at the leading edge and the transition. To increase the
stability at that locations, upwinding has been added to the set of equations and a backward Euler scheme
is used instead of the trapezoidal scheme. The system of first order, non linear, coupled ordinary dif-
ferential equations is resolved by a Newton procedure. First, the system is linearized by the use of the
Jacobian matrix. Then, the linear system is resolved thanks to a LU decomposition. A backtracking line
search algorithm has been also implemented to optimize the procedure. Special treatments have been put
in place to take into account the transition and the wake and to improve the stability of the simulation.
Finally, the convergence criterion based on the drag coefficient has been introduced.

Different test cases were performed to compare the viscous-inviscid interaction with the software Xfoil.
The first investigated case was the simulation of an attached flow either incompressible or compress-
ible at a Reynolds number Re = 107, an angle of attack α = 5°, a Mach number M∞ = 0 for the
incompressible case and M∞ = 0.5 for the compressible case. This test case has shown an excellent
agreement between the values computed by Flow and Xfoil for both cases. For the compressible case,
few discrepancies between the two software appeared due to the presence of oscillations in the solution
computed by Flow. However, it has been proven that the differences originate from the inviscid solver of
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Flow which gave irregular initial conditions to the viscous solver. Hence, the oscillations were created by
these irregularities in this case. Apart from these differences, the viscous-inviscid interaction predicted
correct boundary layer parameters, aerodynamic loads and transition locations for an attached flow either
incompressible or compressible.

The second test case was carried out on the simulation of a separated incompressible flow at a Reynolds
number Re = 107 and an angle of attack α = 12°. Few discrepancies between the two software ap-
peared. There is the presence of a singularity in the shape parameter at the point of flow separation and
the presence of spurious oscillations on the suction and pressure sides which did not come from the in-
viscid solver. While possible solutions have been provided for the first one, the second one is still under
resolution. However, the test case has illustrated that the viscous-inviscid interaction shows good agree-
ments with Xfoil for the boundary layer parameters, the aerodynamic loads and the transition locations
even in the case of separated flow.

The third case was performed on a highly compressible flow around the RAE 2822 airfoil at a Reynolds
numberRe = 6.5×106, an angle of attack α = 0.5° and a Mach numberM∞ = 0.7. During this case, the
viscous-inviscid scheme has been compared to a higher fidelity simulation, the RANS equations. Even if
the viscous solver correctly computed the boundary layer parameters and the locations of the transition,
it had difficulty to predict the correct pressure coefficients distribution and hence, the aerodynamic loads.
The lift coefficient has been overestimated and the drag coefficient has been underestimated. However,
the global behaviour of results from Flow fits with the results from SU2 at a computational cost of the
order of seconds.

Finally, the viscous-inviscid interaction method developed in Flow offers interesting features for flow
simulations. The theoretical model is robust and the numerical implementation works well. However,
further investigations must be performed on the different sources of error to make it fully efficient.

6.2 Further works

In this section, some indications are given for future works. Currently, the viscous-inviscid interaction
scheme is limited to two-dimensional highly compressible but not transonic flows. However, the inviscid
solver of Flow has been developed with the main objective to compute three-dimensional transonic flows.
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6.2.1 Transonic capability

The first interesting future feature that could be added is the capability to compute viscous transonic
flows. In order to do this, some of the current implementation issues must be dealt with such as the sin-
gularity in the shape parameter at flow separation and the oscillations from the inviscid solver. Currently,
the latters tend to make the solution crash for transonic flows.

Therefore, to reach transonic capability, only a few modifications need to be done. The singularity can
be overcome by the application of an inverse procedure such as in Xfoil. A weak condition can be im-
posed on the shape parameter at the point of flow separation and the correct behaviour of the flow will be
recovered. The oscillations are disturbing in several respects, they cause perturbations at each coupling
iteration and they induce unexpected behaviour in the code. To stop using the filter used to reduce the
oscillations but which tends to dissipate the results, a new mesh procedure could be put in place when the
viscous solver is employed. The mesh of the inviscid region could remain the same but a new structured
mesh could be construct in the viscous region. Hence, smooth initial conditions could be retrieved from
the inviscid solver and there would no longer be a need to filter this data at each iteration. During tran-
sonic flows, the mesh size is based on the size of the shock. Since the boundary layer equations are highly
dependent on the mesh size, especially at the leading edge, it would be interesting to better control the
mesh for the transonic viscous-inviscid interaction. Another solution could be to keep the filter but make
it smarter. It could identify and separate the spurious oscillations from the needed oscillations determined
by the boundary layer equations. In this way, less data would be lost during the interaction procedure.

Based on the ability to compute flows in the transonic regime, shock-wave boundary layer interactions
could be investigated. Since this mechanism is highly unsteady, an adapation must be done for both
the inviscid and viscous solvers. The inviscid solver is currently under investigation in order to model
unsteady flows with the unsteady full potential equation. For the viscous solver, the unsteady integral
boundary layer equations could be used instead of the steady ones. A great interest with these equations
is that they decrease the sensitivity of the system to perturbations and hence, to the singularity and the
oscillations present in the simulation.

84



6.2. FURTHER WORKS

6.2.2 Three-dimensional flow

Since the inviscid solver of Flow is able to compute three-dimensional flows, it would be interesting to
extend the features of the viscous-inviscid interaction to handle this kind of flow. A traditional approach
is to couple a 2D integral boundary layer formulation to a general 3D inviscid formulation. In practice,
the 2D boundary layer equations are solved along strips which are stations defined in the streamwise
direction of the flow along the wing as seen in Fig. 6.2.1.

Figure 6.2.1: Strip distribution along the wing. Taken from Aftosmis et al. [41]

By extending the 2D integral formulation to include the effects of lateral divergence and sweep, the
method will be valid in quasi-2D flows and could handle high aspect ratio, swept and tapered wings as
well as fuselages. This method is implemented in the well known Tranair code, as explained in Bieter-
man et al. [68]. However, this method is limited in the case of real 3D flow features such as wing root
and tip regions, wing/fuselage and tail/fuselage intersections.

To take these features into account, a 3D integral boundary layer formulation could be applied. A review
of the various formulations can be found in van Garrel [69]. The simplest implementation is to formulate
the method in curvilinear coordinates which cover the body surface. However, the presence of slope
discontinuities causes difficulties with such coordinates since they appear as singularities in the surface
curvature as noted by Drela [70].
To overcome this issue, the method could be formulated in terms of cartesian coordinates. In the work
of Nishida [13], the integral boundary layer equations are defined by three equations. The first two equa-
tions represent streamwise profile modes and the last equation represents a crossflow mode. This method
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gave results which were not accurate due to the single equation for the crossflow mode. Finally, Drela
[70] improved the 3D formulation with cartesian coordinates by employing four equations to model the
streamwise and crossover profiles.

In Flow, it would be interesting to implement the quasi-2D method in a first time. This method would
work without modifying entirely the viscous solver such as the other methods. The only adaptations that
must be done are the introduction of the effects of lateral divergence and sweep and the implementation
of the strips along the wing.
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Appendix A

Numerical simulation

A.1 Convergence analysis of SU2

The convergence analysis of SU2 was based on the inviscid compressible attached flow around the NACA
0012 at an angle of attack α = 5° and a Mach number M∞ = 0.5. The convergence is done on the mesh
size n and the monitor criteria are the lift coefficient cl and the drag coefficient cd. Tab. A.1.1 lists the
solutions of the mesh analysis,

n cl cd
0.0100 0.6496 0.00929
0.0050 0.6989 0.00243
0.0025 0.7127 0.00139
0.0020 0.7065 0.00147

Table A.1.1: Mesh convergence of SU2.

The drag coefficient converges at less than one drag count between the third and the fourth mesh sizes but
the lift coefficient still varies. However, the difference in the pressure coefficient distribution is negligible
and the fourth mesh is used for the simulation of both the NACA 0012 compressible case and the RAE
2822 highly compressible case.
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A.2. RANS SIMULATION

A.2 RANS simulation

First of all, SU2 needs an inflow turbulence intensity Tu to start the simulation. Eq. 2.2.27 relying the
critical amplification ratio Ncrit to the freestream turbulence has been used. To remain coherent with the
viscous-inviscid interaction of Flow, the critical amplification ratio was set to 9. Then,

Tu = exp

(
−8.43−Ncrit

2.4

)
, (A.2.1)

= 0.07%, (A.2.2)

which is a correct value for external flows.

Then, a value of y+ ∼ 1 must be ensure on the grid cell such that the first grid point lies in the viscous
sublayer. By taking into account a Reynolds number Re = 6.5 × 106, the first grid spacing is equal to
∆y = 0.00414 [mm]. The post-processing analysis shows a y+ ∼ 0.9.

Similarly to the inviscid SU2, a convergence analysis of the mesh size at the leading edge nLE and at the
trailing edge nTE has been performed with the lift cl and the drag cd as convergence criteria. Tab. A.2.1
lists the solutions of the convergence analysis,

nLE × nTE cl cd
0.005× 0.01 0.365 0.0051
0.002× 0.005 0.359 0.0045

Table A.2.1: Mesh convergence of the RANS simulation.

In this work, the purpose of the RANS simulation is not to computed with extreme accuracy the flow
around the RAE2822 but to compare the global behaviour of the viscous-inviscid interaction with the
higher order simulation. Therefore, a variation of 6 lift and drag counts is small enough and the second
mesh is keep for the test case.
A triangular mesh was used for the external flow while a quadrangular mesh was used for the boundary
layer. Farfield conditions have been imposed on the inlet, outlet, top and bottom part of the domain while
no slip conditions has been imposed on the airfoil.
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