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Aı̈t Hocine Farouk

Abstract

This master thesis is dedicated to the design of single mode fibers (SMF) installed

in a spaced-based nulling interferometer working in the infrared region. The SMF is

used as a spatial filter in order to relax the requirements on the wavefront quality

that an adaptive system needs to achieve. For this purpose a mathematical model

of the coupling efficiency is developed and numerical simulations are performed. The

effect of static aberrations on the performance of the fiber is analysed as well as the

effect of non-common path aberrations. Finally, the effect of phase correction by a

deformable mirror is analysed.
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Chapter 1

Introduction

This master thesis is dedicated to the study of single mode fibers as spatial filter

in a space-based nulling interferometer. They are used to decrease the requirements

on the wavefront quality that an adaptive system needs to achieve.

First, the principles of nulling interferometry are described with an emphasis on

the utility of the use of single mode fibers and deformable mirrors in space.

Next, the fundamentals concepts about imaging optics needed to understand the

following work are presented. Concepts about propagation of light and the represen-

tations of aberrations will be widely used in this paper.

After that, the principles of single mode fiber are introduced. The condition to

have a single mode fiber is presented and the profile of the fundamental mode LP01

is discussed.

Then, the optical system is defined. The telescopes configuration and the waveband

of observation are discussed. Then a mathematical model of the coupling efficiency

is developed.

Afterwards, simulations of the coupling efficiency are performed with Matlab in

order to estimate the diffraction limited performances.

Finally, the system subjected to static aberrations is analysed and aberrations

encountered in space are simulated. The chapter ends by a discussion on the perfor-

mance of the system when a deformable mirror corrects some Zernike modes.



Chapter 2

Nulling interferometry: State of

the art

2.1 Detection of exoplanet

In 1995 Mayor and Queloz discovered the first exoplanet orbiting around a star

similar to the sun thanks to the 1.93 m telescope of the Haute Provence Observatory

[1]. Since then, detections techniques improved significantly leading to many new dis-

coveries each year. Today thousands exoplanets have been reported and humankind

has never been that close to understand the origin of life.

In Figure 2.1 the cumulative detections per year and the associated detection tech-

nique are displayed.

Nowadays, 75% of known exoplanets have been found thanks to the transits method.

This method takes advantage of the periodic decrease in luminosity of the parent star

when its exoplanets is passing between the observer and the star. This is one of the

indirect methods that leads to the detection without receiving direct photon from

the planet. Others important indirect methods are: radial velocity and microlensing.

Radial velocity is the method used by Mayor and Queloz to find 51 Pegasi b. This

technique measures the perturbation of the star motion induced by the exoplanet

graviting around. On the other hand microlensing technique is based on the general

relativity concept that a light undergoes a deviation when a heavy body is on its

path.
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Figure 2.1: Cumulative detections per year [2].

2.2 Infrared observation

The main goal of exoplanet detection is finding habitable planets where life could

exist. For this purpose astronomers look for gases like the one presents in our at-

mosphere by assuming that the condition of life would be the same anywhere in the

universe. With this idea some molecules have an important interest for scientist.

These molecules are: H2O, CO2 , O3 , CH4, and N2O. Adding that these molecules

have spectral emission in the mid-infrared region: 5-20 µm [3], it is admitted by all

scientists that the observation in the infrared region is fundamental.

A first example of instrument working in the infrared is the Gemini Planet Imager

(GPI). This is a high contrast imaging instrument installed on the 8.1-meter telescope

at the Gemini South Observatory in Chile in 2013. It is designed specifically to

detect young gas giants via their thermal emission in the near-infrared region [0.9-

2.4] µm. The system includes a high-order adaptive optics system to correct in real

time atmospheric turbulent effects, a coronagraph to suppress the light of the bright

star, a calibration interferometer, and an integral field spectrograph which separates

the light according to wavelength allowing the characterization of the atmosphere.

The instrument is expected to detect exoplanets separated to their host star by 0.2-1
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arcseconds [4].

In Figure 2.2 a picture of GPI mounted on the Gemini South Observatory.

Figure 2.2: Gemini Planet Imager at Gemini South Observatory in Cerro Pachon,
Chilie. Photo by J. Chilcote [5].

In August 2015 the young-jupiter planet 51 Eridani b is the first exoplanet dis-

covered by GPI. Many others has been discovered since then. A picture of 51 Eridani

b taken by GPI is shown in Figure 2.3.

Figure 2.3: Picture of 51 Eridani taken by Gemini Planet Imager [6].
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A second example of infrared telescope is the Spectro Polarimetric High contrast

Exoplanet REsearch (SPHERE). It is an extreme adaptive optics system coupled

with a coronagraph at the VLT. Its scientific goal is to image exoplanet systems

and characterize them at optical and near-infrared wavelengths. The polarimetric

differential imaging mode of SPHERE allows to isolate a dusty disc (or a planet)

from the star. It is based on the principle that the light of the star is unpolarized

while a reflected light on a obstacle, in that case, the disk, is polarized. This difference

in polarization allows SPHERE to isolate the starlight from the reflected light [7]. In

July 2017 SPHERE discovers its first exoplanet, HIP 65426 b.

Figure 2.4: SPHERE in the assembly laboratory at IPAG with all instruments inte-
grated [7].

Another argument in favor of observation in infrared region is the great advantage

in term of contrast (star/planet flux ratio). Indeed, one major difficulty in the obser-

vation of exoplanets is the huge luminosity of the star that outshines the exoplanet.

However, the contrast is wavelength dependant and one can take advantage of it to

relax mission requirements. Typical Earth-Sun system has contrast in the order of

1010 in the visible and 107 at 10 µm [8]. In Figure 2.5 a model that predicts planet/s-

tar flux ratios versus wavelength is displayed. It shows the wavelength dependency

of the flux ratio and the decrease of it for wavelength bigger than 3 µm. A detail

description of the graphs can be found in [9].
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Figure 2.5: Predicted planet/star flux ratios versus wavelength. The flux ratio is dom-
inated by reflection in the optical (Rayleigh scattering and clouds), and by emission
in the infrared. Complete description of these graphs is presented in [9].

2.3 Why observing in space ?

Observing in the infrared from the ground is challenging for multiple reasons. First,

the turbulence of the atmosphere blurs the image and limits the resolution. Indeed,

without a system that corrects the fluctuations of the wavefront, images produced

by any telescope is limited by the Fried parameter r0. This parameter measures the

quality of the optical transmission through the turbulent atmosphere. It is wavelength

dependant and in a Kolmogorov turbulent model of the atmosphere, it is given by

[10],[11]

r0 ∼ λ6/5 (2.1)

Typical value of r0 are 15 cm at good site in the visible and 1 m at 2 µm [9].

This parameter has the effect of decreasing the resolution of the telescope which

was give by

θ = 1.22λ/D (2.2)

for a cicular aperture of diameter D at the wavelength λ.

Indeed, when looking at a star, the fluctuations of the refractive index in the

atmosphere limit the resolution to a diameter D = r0

θ = 1.22λ/r0 (2.3)

Therefore, any telescope is not better than a one with a diameter of 20 cm. This is
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only understandable when atmospheric effects are taken account since the resolution

should increase with D according to Equation 2.2. The field of optic that studies the

impact of the atmosphere on the propagation of light is called adaptive optic.

In Figure 2.6 the effect of r0 on the image quality is represented. It shows that

increasing the diameter of the telescope decreases the resolution. Blurring effect

becomes important when D = r0 = 10 cm. This effect is generally named the seeing.

Figure 2.6: Effect of a turbulent atmosphere on the resolution when the diameter D
increases. r0 = 10 cm.

The second reason that limits observation from the ground is the opacity of the

atmosphere. Indeed the atmosphere does not transmit all the light coming from a

star. In fact, because of the molecular absorptions of H2O and CO2, the Earth’s

atmosphere can be considered opaque in the infrared. Therefore it is very difficult

from the ground to make observations in this region. To overcome these issues, access

to space seems mandatory [3].

Figure 2.7: Atmospheric opacity in function of the wavelength.
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2.4 Interferometers

Another difficulty when it comes to the detection of exoplanets is the star–planet

angular separation ∆θ. Indeed exoplanets are very close to their parent star. Typ-

ically, their angular separation is ∼ 0.1 arcsec. It corresponds to a distance of 1

AU between the planet and the star seen from a distant of 10 pc. Such an angular

separation would require an aperture of

D = 1.22λ/∆θ ∼ 25m (2.4)

at the observing wavelength λ = 10 µm.

At the current time no telescope of this size exists. The largest telescope is the

Large Binocular Telescope (LBT) with an effective aperture of 11.9 m. However some

telescopes with extremely large aperture are under development. The Extremely

Large Telescope (ELT), a telescope with a 39.3-m diameter, is expected for 2024.

A way to increase the spatial resolution, without increasing the diameter, is to

use the principle of interferometery. The concept is based on Fizeau principle that

says that two small apertures distant of B are equivalent to a single large aperture

of diameter B.

The angular resolution of such a configuration is given by

θ =
λ

2B
(2.5)

with B, the distance between the two telescopes, named the baseline. In Figure 2.8

the principle of interferometry is represented. The combination of the light recolted

at the two apertures gives the fringes of interference.

Figure 2.8: Principle of inteferometry: two telescopes separated by a baseline of
length B are equivalent to a telescope with a diameter B [12].
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One example of interferometer is the ESO Very Large Telescope Interferometer

(VLTI) at Cerro Paranal in Chile. It consists of four VLT Unit Telescopes of 8 m and

four moveable 1.8 m Auxiliary Telescopes. The VLTI provides milli-arcsec angular

resolution at near and mid-infrared wavelengths over a 200-m baseline. The light

recombination is performed by the PIONIER and GRAVITY instruments in the near

infrared and by MATISSE in the mid-infrared [13].

(a) The four Unit Telescopes. (b) The four Auxiliary Telescopes.

Figure 2.9: VLT array in Chile.

2.4.1 Nulling interferometers

In order to overcome the problem of the high contrast, a special interferometer,

called the nulling interferometer, has been proposed by Bracewell in 1978 [14].

In the simple case of two identical telescopes pointing toward a star, with an null

optical phase difference between the arms, the figure of interference is a succession of

bright and dark fringes with the first bright fringe at the center of the transmission

map (the detected intensity in function of the angular position [15]). Meanwhile, in

a nulling interferometer, thanks to a phase shift of π introduced in one arm, the null

occurs at the center of the transmission map. Then, if the length of the baseline

is such that the OPD, resulting from the angular separation between the star and

the exoplanet, equals λ/2, i.e a phase shift of π, the light of the planet recombines
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constructively. Thereby, the planet is located on the first bright fringe of the trans-

mission map. In this configuration, the starlight is extinguished destructively while

the light of the exoplanet is transmitted to the detector. Therefore, a nulling inter-

ferometer solves the problem of the high contrast between a star and its exoplanet.

In Figure 2.10 a schematic view of the Bracewell nulling interferometer is presented.

Figure 2.10: Schematic view of a Bracewell nulling interferometer [60]. The inter-
ferometer consists of two pupils collecting the light and a system that transport the
light in two different arms where a phase shift of π is introduced to get the desired
transmitted map.

The intensity response R(θ, α) that defines the transmission map has been devel-

oped by many authors. According to the notation of Figure 2.12, assuming the two

telescopes are of unitary size and each pupil collects the same amount of light, the

intensity response is given by [17]
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R(θ, α) = 2 sin2
(
π
bθ

λ
cosα

)
(2.6)

Figure 2.11: Gometrical configuration of the interferometer and the exoplanet system.
The position of the planet is given by the coordinates (θ, α)[17].

2.4.2 Interferometer rotation

However, although the nulling interferometer allows to decrease the contrast, it is

generally not possible to detect exoplanet in the infrared with a static array config-

uration. In fact, the signal of the planet is dominated by many other signals which

compromises the detection. Such source of noises can be generated by the telescope

itself (dark current, readout noise) or by the space environment. In the Solar system,

a local zodiacal emission is present between the orbit of Mercury and Jupiter. It is

generated by a dust at 300 K. For exoplanetary system, such a dust can also exists.

It is named exozodiacal disk and also contributes to the noises.

For this reason, the nulling interferometer proposed by Bracewell is designed to

rotate around its optical axis. Thanks to this rotation, the modulation of the signal

of the planet can be performed by alternatively crossing the white and dark fringes

in the transmission map while the stellar signal and the background emission re-

main constant. Thus, by synchronous demodulation, the signal of the planet can be

retrieved [3].
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Figure 2.12: Modulation of the planet signal thanks to the rotation of the nulling
interferometer [22]

2.4.3 Geometric stellar leakage

The performance of a nulling interferometer is described by its capability to sup-

press the light of the star at the center of the transmission map. Indeed, the expression

of the transmission map Equation 2.6 can be approximated by

R(θ, α) ≈ 2
(
π
bθ

λ
cosα

)2
(2.7)

for θ << λ/b.

Therefore the null occurs only on the optical axis where θ = 0. This has the

consequence that even if the star is perfectly on the optical axis, the final extent of

the stellar photosophere will result in a transmission of undesired light. This effect

is called geometric stellar leakage.

One common way to evaluate the efficiency of the nuller is by defining the nulling

ratio N defined as the ratio between the transmitted flux and the flux at the input

of the beam combiner. Since the transmitted flux is generally equal to the total flux

collected by the inteferometer, the definition is equivalent to the ratio between the

destructive and constructive output:
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N =
Imin
Imax

(2.8)

For the case of the observation of a stellar photosphere at the observing wavelength

λ with θ? its angular radius, the nulling ratio can be expressed as follows:

N =
π2

4

(bθ?
λ

)
(2.9)

The rejection ratio is defined ρ as the inverse of the nulling ratio

ρ =
1

N
=
Imax
Imin

(2.10)

2.4.4 Instrumental stellar leakage

However the geometrical leakage is not the only phenomenon which results in a

transmission of undesired stellar light. Another effect which is not depending on

photosphere diameter is what is called the instrumental leakage. This contribution

comes from the mismatch between the beam of light reaching the different pupils. The

source of this error can be the atmospheric turbulence for the case of an inteferometer

on the ground, or the imperfections in the optics for a space interferometer.

Theses deviations from the ideal scenario result in the modification of the expression

of the null ratio (or rejection ratio).

Autors had already investigated the effect of aberrations on the transmission map.

Three main types of instrumental leakage have been recognized: phase error, intensity

mismatch and polarization error [16].

Phase error

If a small phase error ∆Φ exists between the two beams, the fringes are shifted in

the transmission map resulting in a stellar leak at the center of the map, given by

[18]

R(0, 0) =
∆Φ2(λ)

4
(2.11)

If the wavefronts coming from the two pupils are aberrated with a phase variance

σ2

Φ1,2
(λ), the center of the intensity map is given by [19]

R(0, 0) =
1

4

(
σ2

Φ1
(λ) + σ2

Φ2
(λ)
)

(2.12)
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Phase defects include pointing errors (represented by tip/tilt Zernike mode), low

order optical aberrations like asphericity and higher spatial frequency defects like

polishing errors.

Intensity mismatch

A mismatch in intensity between the two interferometric arms also results in a leak.

If ∆I(λ) is the relative intensity between the two beams, the leak at the null is given

by [18]

R(0, 0) =
∆I2(λ)

16
(2.13)

The intensity mismatch can be due to inhomogeneous coatings or by the alteration

of the coating [19].

Polarization error

Finally a polarization error brings a stellar leakage according to [46]

R(0, 0) =
1

4

(
∆Φ2

s−p(λ) + α2
rot(λ)

)
(2.14)

where ∆Φs−p is the differential s-p phase delay and αrot the relative polarization

rotation angle between the two beams.

2.5 Modal filtering by a single mode fiber

Since aberrations in the wavefront lead to an increase of the intensity at the center

of the transmission map, the nulling ratio also varies.

If one telescope is considered free of aberration and the other with a small phase

variance a2i , the nulling ratio is given by [19]

N =
a2i
4

(2.15)

Therefore, if the goal of the interferometer is to reach a null ratio of 10−5, the

standard deviation ai (=RMS if the mean of the aberration equals 0) across the pupil

has to satisfy

ai < 6.3 10−3 radian (2.16)
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which corresponds to a λ/1000 wavefront quality.

In conclusion, to achieve a nulling ratio of 10−5, the interferometer needs to be

free of aberration greater than λ/1000.

2.5.1 Relaxation of the requirements

In order to relax the requirements on the wavefront quality, Mennesson et al.[19]

proposed to use single mode fibers (SMF) as spatial filter.

The principle of the use of a single mode fiber relies on the fact that, inside a single

mode fiber, the shape of the electric field is constant during the propagation regard-

less the electric profile of the light injected. This profile is called the fundamental

mode and has approximately the shape of a Gaussian. This mode is denoted LP01.

Therefore, any aberration at the input will be corrected at the output of the fiber in

order to adopt the shape of the fundamental mode. Then, by putting a SMF at the

focus of each telescope of the nulling interferomer, the lights will interfer coherently

at the recombination stage leading to a better nulling ratio.

According to [19], if one pupil of the two telescopes is perfect and the other one

has a small phase variance a2i , the nulling ratio is given by

N =
a4i
16

(2.17)

Therefore to reach a nulling ratio of 10−5, the standard deviation should satisfy

ai < 0.11 rad (2.18)

which corresponds to a λ/56 wavefront quality.

In conclusion, the presence of a single mode fiber at the focus of a telescope

decreases by twenty the requirements on the wavefront quality. The use of single

mode fibers in a nulling interferometer is therefore of great interest.

2.6 Coupling efficiency

Unfortunately, the injection in a SMF comes with a drawback: a loss of energy.

Indeed, when a light is injected in a single mode fiber, the energy at the input is

not equal to the energy at the output. Part of the energy is distributed into the
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fundamental mode while the other part is lost. In fact, no energy is lost in one

particular case: when the light injected has exactly the profile of the fundamental

mode.

This loss of energy, due to the mismatch between the electric field at the input

and the LP01 mode, has a fundamental role in the detection of exoplanets. Indeed,

one major limitation of a telescope is its capability to recolt enough photons of faint

objects in comparison to the noises. Then, in order to maximize the signal to noise

ratio SNR, the maximum of planet’s light needs to be transmitted to the detector.

The coupling efficiency characterize this loss and can be defined as the ratio of the

energy between output and input of the single mode fiber. An equivalent definition

in function of the electric fields is used here. The definition states that the coupling

efficiency ρ is the overlap integral between the electric field at the entrance of the

fiber and the mode LP01 of the SMF.

ρ =
|
∫ ∫

S
E∗B(x, y)FB(x, y)ds|2∫ ∫

S
|EB(x, y)|2ds

∫ ∫
S
|FB(x, y)|2ds

(2.19)

with EB the electric field of the incoming light in the focal plane on the fiber core,

E∗B the complex conjugate of EB and FB the electric field of the mode LP01 [31].

In fact, it has been demonstrated that the coupling efficiency is limited to 78% for

a plane wave focusing on the fiber core [45]. This value results from the fact that

the shape of the electric profile at the focus of a telescope, when looking at celestial

body, is a Bessel function. The mismatch with the Gaussian shape of the fundamental

mode of the fiber thus results in a loss of 22%. This value of the coupling efficiency is

achievable when the fiber and the telescope are properly designed. Indeed, the value

of the coupling efficiency depends on multiple parameters defining the single mode

fiber and the telescope. Therefore, the study of the coupling efficiency in function

of design parameters, that need to be defined, is of utmost importance in order to

optimize the performance of the injection.

2.7 Deformable mirror for space application

It was shown that the use of single mode fibers is very useful to relax the require-

ments on the wavefront quality. A maximum standard deviation across the pupil of

0.11 radian was needed to achieve a null ratio of 10−5. However such a quality is still
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challenging since it is close to the diffraction limited case. Indeed, according to the

Marechal approximation, the Strehl ratio is

S = exp (−σ2) = 0.99 (2.20)

Therefore, in space environement, where sources of aberrations are multiple, the

use of an adaptive system to correct the wavefront is mandatory.

2.7.1 Principles of adaptive/active optic

An adaptive or active optic system consists of three main components, a deformable

mirror to correct the optical disturbances by phase conjugation, a wavefront sensor to

detect these disturbances, and a control system to give the desirable shape of the DM

by interpreting the wavefront sensor informations [48]. In Figure 2.13 a schematic

view of a conventional adaptive system is represented.

Figure 2.13: Representation of an adaptive system. The light from the telescope
reachs a deformable mirror. Then, a part of the light is sent to the wavefront sen-
sor thanks to a beamsplitter. The wavefront sensor measures the aberration of the
wavefront and the control system deforms the mirror to compensate the aberration.
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2.7.2 MEMS DMs

Deformable mirrors (DM) have already been proved useful for ground based op-

erations. Frequently used DM are piezoelectric and lead-magnesium-niobate (PMN)

stacked array mirrors. It consists of stacks of individual plates made of PZT or PMN

that deform longitudinally, when a voltage is applied between the electrodes of the

actuator, and pushs the DM [27]. VLT and Gemini are two examples of ground based

telescope equipped with such a DM.

However, another class of DM seems to be more suitable for space applications: Mi-

croelectromechanical systems (MEMS) deformable mirrors. Indeed, MEMS mirrors

offer many advantages. They are cheaper and more compact allowing the reduction

of the size and the mass of the payload. Also, their low actuator mass makes them

resilient to launch-induced vibrations [21]. MEMS concepts relies on a reflecting sur-

face which is deformed by an electrostatic or a magnetic field. In Figure 2.16 one

example of the MEMS DM concept is represented.

Figure 2.14: MEMS DM concept. The intermediate diaphragm is locally deformed
by the action of the electric force generated by the electrode. Then the deformation
is transmitted to the membrane mirror by the attachment post [24].

At the current time, MEMS DM have flown in space. One example is the Planet

Imaging Concept Testbed Using a Rocket Experiment (PICTURE) mission. It is a

sounding rocket for high-contrast imaging with a visible nulling coronagraph from

Nasa. Its mission is to observe the warm dust disk inferred around Epsilon Eridani

[25]. Besides a nulling interferometer, PICTURE carries an ultralightweight 0.5 m di-

ameter primary mirror, a wavefront control system with a 32x32 element MEMS DM
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manufactured by Boston Micromachines Corporation and a milliarcsecond pointing

control system. In Figure 2.15 the optical layout of PICTURE is represented.

Figure 2.15: PICTURE optical layout [26].

A second example of MEMS DM in space is the satellite DeMi [21]. Deformable

Mirror Demonstration Mission (DeMi) is a 6U (30 cm x 20 cm x 10 cm) CubeSat

that was launched the 15 February 2020. It is a nanosatellite that will serve as an

on-orbit testbed for the MEMS deformable mirror technology. The DeMi is based

on the Blue Canyon Technologies XB6 platform. The bus includes the XACT ADCS

(Attitude Determination and Control System) which allows a pointing accuracy of

10 arcseconds in all directions. The DM on board is the Boston Micromachines Mini

DM with 140 actuators and 5 mm aperture. In Figure 2.16 a picture of this DM. In

Figure 2.19 the CubeSat seen from the International Space Station (ISS).

Figure 2.16: Boston Micromachines Mini DM with 140 actuators [24].

The mission should raise the technology readiness level (TRL) of MEMS DMs
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from 6 (qualification in a relevant environement) to at least 7 (qualification in a

operational environement).

Figure 2.17: DeMi CubeSat deployed from the International Space Station on 13 July
2020 (image credit: NASA)

2.7.3 Monomorphe deformable mirrors

Another type of deformable mirror that is promising for space applications is the

monomorphe DM. The mirror consists of a layer of one piezoelectric disk that can

deform thanks to the piezoelectric effect when the electrodes are activated. Then, the

optical plate is deformed thanks to the transverse deformation in the piezoelectric

disk.

Figure 2.18: Unimorph mirror concept. The disk of piezoelectric ceramics is deformed
when a voltage is applied to the electrodes. The optical plane is deformed due to
transverse piezoelectric effect of the piezoelectric disk [28].

The french company CILAS (Compagnie Industrielle des Lasers) is the pioneer

for this technology. They obtained a TRL 6 in 2017. Their mirror offers wavefront
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error ∼ 10 nm RMS after correction with a high efficiency (90% up to 7th order).

Figure 2.19: The CILAS 188 actuators bimorph mirror installed in the 8.2 m Subaru
telescope [28].

2.8 Thesis objectives

Since 2005 several space-based interferometry missions have been considered. How-

ever they were all canceled. Figure 2.20 presents the five main space interferometry

projects and their date of cancellation.

Figure 2.20: Timeline of the development of space-based interferometry missions [32].

Nevertheless, in 2018 a new project is considered: LIFE (Large Interferometer For

Exoplanets). The goal of this project is to launch a large space-based MIR nulling

interferometer in order to detect and characterize exoplanets.

In this context the University of Liège and the Centre Spatial de Liège (CSL) are

developing a space-based nulling interferometer on a CubeSat platform in order to

Master thesis 20 University of Liege



CHAPTER 2. NULLING INTERFEROMETRY: STATE OF THE ART

demonstrate the feasibility of the LIFE project [60].

This master thesis is a contribution to this small satellite project. Its purpose is

to analyse the coupling efficiency of a single mode fiber placed at the focus of one

of the two telescopes of a nulling interferometer. The coupling efficiency is analysed

in function of design parameters like the f-number (ratio of the focal length over the

pupil diameter), the central obstruction (if the telescope is Cassegrain, the secondary

mirror obstructs the primary mirror and the central obstruction is defined as the

ratio of the secondary mirror diameter over the primary mirror diameter). The fiber

will be optimized in order to maximize the coupling efficiency. A schematic view of

the system that will be analysed is presented in Figure 2.21.

The second purpose of the thesis is to study the coupling efficiency when static

aberrations degrade the system. It will allow us to determine which aberrations

have to most impact on the performance of the system. The coupling efficiency

is analysed when the system has aberrations typically encountered in space. They

represent slowly varying aberrations like misalignment of the optics, pointing and

polishing errors. They are defined as non-common path aberrations (NCPA) and

can be considered as static aberrations [52], [23]. The effect of the correction by a

deformable mirror is also analysed. The goal is to achieve RMS wavefront error below

∼ 0.1 rad since it is the requirement to get a null ratio of 10−5.

Figure 2.21: Representation of the single mode fiber at the focus of a telescope. D is
the aperture of the telescope. f the focal length. EB the electric field of the incoming
light and FB the electric field of the fundamental mode of the SMF.
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Chapter 3

Fundamental concepts about

imaging optics

As stated in the first chapter, the objective of this thesis is to study the coupling

efficiency of a single mode fiber placed at the focus of a telescope. Since the coupling

efficiency is defined as the overlap integral between the electric field at the input of

the fiber and the fundamental mode of the fiber, it is mandatory to know exactly the

electric field profile of the light injected. Therefore, this chapter aims to remind the

fundamental principles of optics needed to understand how to compute the electric

field. It is based on the Fourier optics theory developed by Goodman in his book

Introduction to Fourier Optics [50].

The discussion starts with a brief description of the Rayleigh-Sommerfeld scalar

diffraction theory. Then the definition of a diffraction limited system is presented

with an emphasis on the definition of the point spread function. Afterwards the

Rayleigh resolution criterion is presented. The third section aims to present the

aberration theory of light. This section will be useful later to estimate the loss of

coupling efficiency when the light is aberrated. It starts by defining the wavefront

aberration function thanks to the spherical reference surface. Follows the definition

of the generalized pupil function. Then the Strehl ratio is defined. Finally Zernike

circle polynomials are presented.
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CHAPTER 3. FUNDAMENTAL CONCEPTS ABOUT IMAGING OPTICS

3.1 Propagation of light

Since the work of Maxwell in 1860, it is accepted that light is an electromagnetic

wave which propagates according to four equations, called Maxwell’s equations. This

wave behaviour results in the diffraction phenomenon defined by Sommerfeld as ”any

deviation of light rays from rectilinear paths which cannot be interpreted as reflection

or refraction.”[20] Such effect can be observed when a wave interacts with an obstacle

that restrains its spatial extent, like for example an aperture. Diffraction phenomena

are more important when the obstacle is in the order of the wavelength of the light.

3.1.1 Scalar diffraction theory

Under some hypotheses the propagation of light can be described by the scalar

diffraction theory of Sommerfeld. These hypotheses state that the light is propa-

gating in a dielectric medium which is linear, homogeneous, isotropic, nondispersive

and nonmagnetic. According to these assumptions, the electric field (Ex, Ey, Ez) and

magnetic field (Hx, Hy, Hz) components are no longer coupled. Therefore each com-

ponent of the electric or magnetic fields can be expressed independently from the

other components. Each component is then solution of the scalar wave equation

∇2u(P, t) =
n2

c2
∂2u(P, t)

∂t2
(3.1)

where u(P, t) represents any of electric and magnetic field components at the position

P , c the speed of light in the vacuum and n the refractive index of the medium.

Scalar diffraction theory is well suited for describing transmission of light through

space or the atmosphere. It finds thus lot of applications in remote sensing or astro-

nomical observations.

3.1.2 Helmholtz equation

A monochromatic light propagating in an isotropic medium can be expressed by

u(P, t) = A(P ) cos(2πνt− Φ(P )) (3.2)

where A(P ) is the complex amplitude, Φ(P ) is the phase of the wave and ν is the

temporal frequency.

An equivalent formulation is
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u(P, t) = <{A(P ) exp
[
jΦ(P )

]
exp(−j2πνt)} (3.3)

where <{} represents the real part of the complex function.

In a linear medium the temporal frequency stay constant and it is thus convenient

to study only the spatial contribution of the field, often called the phasor,

U(P ) = A(P ) exp[jΦ(P )] (3.4)

Putting Eq.3.4 in Eq.3.1 it follows that U must satisfy the Helmholtz equation

(∇2 + k2)U = 0 (3.5)

with k = 2π
λ

the wave number.

3.1.3 Rayleigh-Sommerfeld solution

For the case of monochromatic wave coming from a 2D plane source to the 2D

observation plane, a solution to the Helmholtz equation is given by the first Rayleigh-

Sommerfeld diffraction solution

U2(x, y) =
A

jλ

∫ ∫
∑ exp(jkr12)

r12
cos(n, r12)dξdη (3.6)

with (ξ, η) the coordinates in the source plane, (x, y) the coordinates in the observa-

tion plane,
∑

the illuminated aperture, n the normal vector of the source plane at

(ξ, η), r12 =
√
z2 + (x− ξ)2 + (y − η)2 the distance between the point (x, y) and the

point (ξ, η), A the amplitude of the homogeneous electric field of the source plane.

This solution expresses the Huygens-Fresnel principle which stipulates that each

point of the aperture act like a a spherical wave source. Indeed the integral rep-

resents the observed field U2(x, y) as a superposition of diverging spherical waves

A exp(jkr12)/r originating from secondary sources located on each point within the

aperture.

For an arbitrary amplitude U1(ξ, η) and after developing the cosine function, the

Rayleigh-Sommerfeld solution can be expressed by

U2(x, y) =
z

jλ

∫ ∫
∑ U1(ξ, η)

exp(jkr12)

r212
dξdη (3.7)
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where z is the distance between the centers of the source and observation coordi-

nate systems.

In Figure 3.1 the propagation of the light coming from the source plane to the

observation plane is represented.

Figure 3.1: Propagation geometry [49].

In the definition of r12 the square root makes the computation of the Rayleigh-

Sommerfeld solution difficult to obtain. In order to simplify the problem two different

approximations on can be made.

3.1.4 Fresnel approximation

The Fresnel approximation (or near field) is based on the Taylor series expansion of

r12 =
√
z2 + (x− ξ)2 + (y − η)2 :

r12 ≈ z
[
1 +

1

2
(
x− ξ
z

)2 +
1

2
(
y − η
z

)2
]

(3.8)

This approximation is used in the argument of the exponential and describes the

point sources as parabolic radiation wave emitters. Moreover with the approximation

r12 = z in the denominator of Eq.3.7 the Fresnel diffraction expression is given after

factorization by

U2(x, y) =
exp(jkz)

jλz
exp

[
j
k

2z
(x2 + y2)

]
×
∫ ∫

U1(ξ, η) exp
[
j
k

2z
(ξ2 + η2)

]
exp

[
−j 2π

λz
(xξ + yη)

]
(3.9)

Then, aside from a multiplicative factor, the electric field at the observation plane

is the Fourier transform of the product of the field U1(ξ, η) by a quadratic phase
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exponential.

3.1.5 Fraunhofer diffraction

In addition to Fresnel approximation, the Fraunhofer approximation is

z �
(k(ξ2 + η2)

2

)
max

(3.10)

which leads to Fraunhofer diffraction expression:

U2(x, y) =
exp(jkz)

jλz
exp

[
j
k

2z
(x2 + y2)

]
×
∫ ∫

U1(ξ, η) exp
[
−j 2π

λz
(xξ + yη)

]
(3.11)

The approximation is known as the far field approximation since the condition on z

requires very long propagation distances. However Fraunhofer diffraction expression

can be used for much smaller distance.

A very important result is that at the focus of a telescope the diffraction pattern

is the Fraunhofer diffraction pattern of the pupil function [30].

This result will be used in the following work to describe the electric field at the

focus of a telescope. It will makes possible the numerical computation of the coupling

efficiency of a single mode fiber situated at the focus of the telescope.

3.2 Diffraction-limited optics

A fundamental concept in optic is the notion of diffraction-limited. By definition

an imaging system is said to be diffraction-limited if a diverging spherical wave,

emanating from a point-source object, is converted by the system into a new wave,

again perfectly spherical, that converges towards an ideal point in the image plane

given by geometrical optics [50]. A system respecting this condition is said to be

diffraction limited.

To understand the meaning of the term ”limited ” in this definition it is important

to introduce the relation between the object and its image in a imaging system.
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3.2.1 Imaging system

Since the work of Ernst Abbe in 1873 it is known that the diffraction effect of an

imaging system can be viewed as the result of the spatial limitation of the wavefront at

the entrance pupil. On the other side Lord Rayleigh in 1896 presented the equivalent

result that the diffraction effects is induced by the spatial limitation of the wavefront

at the exit pupil. These results are equivalent due to the fact that the entrance and

exit pupil are images of each other.

A consequence of this is that the propagation of light between the two planes can

be described by geometrical optics. Therefore an imaging system can be viewed as

a black box such that the significant properties of the system can be completely

described by specifying only the proprieties at the pupil planes. Figure 3.2 represents

the concept of the black box.

Figure 3.2: Basic model of an imaging system [51].

Two cases of illumination need to be discussed in order to define the fundamental

concept of the point spread function: coherent and incoherent illumination.

3.2.2 Concept of coherence and application in stellar inter-

ferometry

An illumination is said to be coherent if it exists a constant relative phase between

the wave trains emitted by the source. Coherent illumination is therefore obtained

whenever light appears to originate from a single point. Indeed, for the case of an

extended source, the different points on its surface randomly emit wave trains which

create uncorrelated phases between the trains. As a consequence, monochromatic
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light source are always coherent. However such a source does not exist. Even laser

emitting at a single wavelength possesses a bandwidth which creates incoherence.

Nevertheless, coherent illumination represents an interesting approximation that need

to be discussed.

In interferometry the concept of coherence is fundamental. It can be used for the

determination of the angular separation between two celestial bodies, the angular

diameter of the source or the nature of the source.

Figure 3.3: Principle of visibility. (defrere lecture)

Since interferences occur when the sources are coherent, two points are resolved

when the fringes of interference completely disappear. Moreover, it is proved that it

is the case when

α =
λ

2B
(3.12)

with B the length of the baseline. Then, to determine the angular separation, for

example between a star and a exoplanet, the length of the baseline is adjusted until

the fringes disappear. Putting this value of B in Equation 3.12 gives the angular

separation.

The information of the intensity of the fringes is given by the visibility (or contrast)

V =
Imax − Imin
Imax + Imin

(3.13)

A contrast of 1 occurs when Imax = 1 and Imin = 0 which is the case when the

light interfer perfectly destructively and and constructively. This is only the case for
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perfect coherent sources. In Figure 3.3 the visibility in function of the baseline length

is represented.

3.2.3 Coherent illumination

It can be shown that coherent light induces an imaging system to be linear in

amplitude.

By defining the reduced coordinates (ξ, η) in the object space

ξ = Mξ (3.14)

η = Mη (3.15)

with M the magnification, the image amplitude is given by the convolution product

Ui(u, v) =

∫ ∫
h(u− ξ, v − η)Ug(ξ, η)dξdη (3.16)

where

Ug(ξ, η) =
1

|M |
U0

( ξ
M
,
η

M

)
(3.17)

represents the ideal image predicted by the geometrical optic and h is the impulse

response (or amplitude spread function) defined by

h(u, v) =
A

jλzi

∫ ∫
P (x, y) exp

[
−j 2π

λzi
(ux+ vy)

]
dxdy (3.18)

where P is the pupil function equals to one inside the aperture and zero outside.

The impulse response is the response of the system to a point source. In astronomical

observation a star is viewed as the point object.

Thus the image can be evaluated by the convolution product of the impulse re-

sponse, which is given by the Fraunhofer diffraction pattern of the exit pupil, with

the image predicted by geometrical optics.

Therefore the role of the impulse response in Eq.3.16 is to spread Ug on the image

plane. This effect has the consequence to limit the resolution of the imaging system

since the image of a point source will not be a point image but a diffraction pattern

depending on the shape of the aperture. In other words diffraction impose a physical

limit for the resolution of an optical system.
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This limit is more detailed in the next section with the introduction of the point

spread function.

3.2.4 Incoherent illumination

For incoherent illumination no linear relation exists between the image amplitude

and the object amplitude. In fact an incoherent imaging system is linear in intensity

such that

Ii(u, v) = κ

∫ ∫ +∞

−∞
|h(u− ξ, v − η)|2Ig(ξ, η)dξdη (3.19)

with κ a real constant, Ig the ideal image intensity and |h|2 the point spread function

(PSF).

For a circular aperture of radius R, i.e P (x, y) = 1 for
√
x2 + y2 = r ≤ R,

PSF =
(R2

λz

)2[J1(2πξ)
ξ

]2
(3.20)

with ξ = rR
λz

and r the radial distance from the center in the observation plane.

This PSF is referring as the Airy pattern. It corresponds to a central bright spot

of radius 1.22λ/D, called the Airy disc. Within this disk 83.8% of the total power is

present while the remaining energy is spread into the diffraction rings [47].

3.2.5 Resolution criterion

Based on the Airy pattern of a circular aperture, a common way to describe the

resolution of an optical system is the Rayleigh criterion.

This criterion stipulates that two point sources can be resolved if the distance

between them is larger than the distance between the pick intensity of one and the

first minimum of the second. Therefore two points are resolved when their angular

separation ∆θ follows

∆θ ≥ 1.22λ/D (3.21)

The Rayleigh criterion is represented in Figure 3.5.
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Figure 3.4: Point spread function of a circular aperture. The figure is known as Airy
pattern.

Figure 3.5: Rayleigh criterion [55].

3.3 Aberration theory

If in the presence of a point-source object, like a star, the wavefront leaving the

exit pupil departs significantly from ideal spherical shape, then the imaging system

is said to have aberrations.

3.3.1 Sources of aberrations in space

Aberrations can occur for many reasons. It can be caused by defect in the optics

like irregularities created during the polishing. Also, aberrations can be inherent to

the shape of the optics. Spherical aberration is a good example since it is present in

common mirrors and lenses with spherical curvatures.

Aberrations can also appear because of external loads like heat.
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Indeed, a satellite experiences many heat loads during its journey. For a spacecraft

orbiting the Earth, the major contribution is the direct solar flux. For a plane facing

the sun at 1 UA, the solar flux is approximately 1367 W/m2 over a year. The

second heat source is the albedo flux. It is due to the reflection of the sunlight by

the Earth. The third environmental source is the Earth infrared radiation. This

radiation comes from the fact that the Earth can be approximated by a blackbody

at 255 K. Also, electronic components can generate heat by Joule effect. The main

heat fluxes are represented in Figure 3.6. These loads can have a tremendous impact

on the optical performance since heat could deform optical components. Therefore,

the thermal study of the spacecraft needs to be performed in order to make sure that

the telescope works as intended. A study of this nature is currently performed by

Arthur Scheffer [59].

Figure 3.6: Thermal loads on a spacecraft orbiting around the Earth.

Another concern about the detection of exoplanets is the pointing accuracy of the

spacecraft. Indeed, error in the pointing will result in a shift of the focal plane

resulting in a diminution of the coupling efficiency.

Unfortunately pointing accuracy of spacecraft is limited. It is even more true for

small spacecraft. In Figure 3.7 the state of the art of pointing accuracy is displayed. It

shows that for cubesat platform, Blue Canyon Technologies provides the best pointing

accuracy: 0.002◦.
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Figure 3.7: State of art of small pointing accuracy [32].

3.3.2 Generalized pupil function

When an imaging system is diffraction limited, the (amplitude) point-spread func-

tion has been seen to consist of the Fraunhofer diffraction pattern of the exit pupil,

centered on the ideal image point. In the case of aberrations this result is still valid

with the proper definition of the pupil function.

When an aberrated wavefront reaches the exit pupil the wavefront leaving the pupil

can be regarded as a aberration-free wavefront which passed through a phase-shifting

plate in the aperture.

If Φ represents the wavefront error as defined in Figure 3.8, the impulse response

is expressed by

h(u, v) =
A

jλzi

∫ ∫
P(x, y) exp

[
−j 2π

λzi
(ux+ vy)

]
dxdy (3.22)

with P the generalized pupil function:

P(x, y) = P (x, y) exp
[
jΦ(x, y))

]
(3.23)

where P (x, y) is the pupil function defined previously.
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Figure 3.8: Wavefront aberration function. The ideal wavefront defining a diffraction
limited system is the spherical reference surface. The wavefront aberration function
Φ at point is the difference between the aberrated wavefront and the surface.

3.3.3 Strehl ratio

Another performance parameter that need to be considered is the Strehl ratio (S).

It is defined as the ratio of central irradiance with and without aberration

S =
I(0)Φ
I(0)Φ(0)

=
∣∣∣〈 exp[i(Φ− 〈Φ〉)]

〉∣∣∣2 (3.24)

For small aberration the Strehl ratio can be expressed in term of the variance σ2

Φ
by the Marechal formula

S = (1− 1

2
σ2

Φ)2 (3.25)

with σ2

Φ = 〈Φ2〉 − 〈Φ〉2 and

〈Φn〉 =
1

π

∫ 1

0

∫ 2π

0

Φn(r, θ)rdrdθ (3.26)

Note that the root mean square RMS =
√
〈Φ2〉 equals the standard deviation σΦ

if the mean aberration is zero.
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3.3.4 Zernike circle polynomials

Usually the phase Φ(r, θ) is decomposed in the based of the Zernike circular poly-

nomials Zi [11]:

Φ(r, θ) =
∞∑
i=1

aiZi(r, θ) (3.27)

where ai are the Zernike expansion coefficients , representing the weight (or

strength) of Zi in the overall aberrated phase Φ.

These polynomials are defined on a unit circle and are well suited for the theory of

aberration since the low order Zernike polynomials has the same shape that common

aberrations.

It is convenient to use the polar coordinate to represent them since they can be

decomposed in a product of a radial function with an angular function. A common

way to order the polynomials is the Noll convention defined as follows [11]:

Zi(r, θ) =
√
n+ 1Rn

0 (r), if m = 0

Zi(r, θ) =
√
n+ 1Rm

n (r)
√

2 cos(m′θ), if m > 0, i even

Zi(r, θ) =
√
n+ 1Rm

n (r)
√

2 sin(m′θ), if m < 0, i odd
(3.28)

Rm
n (r) =

(n−m′)/2∑
l=0

(−1)l(n− l)!

l!
[
(n+m′)/2− l

]
!
[
(n−m′)/2− l

]
!
rn−2l (3.29)

where r is the radial coordinate ranging from 0 to 1, θ the azimutal coordinate

ranging from 0 to 2π, n is the radial order, m the azimutal order. The value of

n, m are integer respecting m ≤ n and n − m′ = even with m′ = |m|. Therefore

only polynomials with particular combination of (n,m) exist and form the so called

Zernike modes.

In Table.3.1 the first 21 polynomials are listed. In Figure 3.9 the Zernike polynomials

from i=2 to i=15 are represented in 2D.

One characteristic of these polynomials are their orthogonality property over a

circular pupil: ∫ 2π

0

∫ 1

0

Zi(r, θ)Zj(r, θ)rdrdθ = πδij (3.30)
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This property makes easy the computation of the RMS and phase variance. The

determination of the wavefront RMS is made by simply summing the squares of the

Zernike coefficients and taking the square root. Indeed the root mean square is

RMS ≡
√
〈Φ2〉 =

√
1

π

∫ 2π

0

∫ 1

0

Φ2(r, θ)rdrdθ

=

√√√√ 1

π

∞∑
i=1

∞∑
j=1

∫ 2π

0

∫ 1

0

aiZi(r, θ)ajZj(r, θ)rdrdθ

=

√√√√ ∞∑
i=1

a2i

(3.31)

Also,

〈Φ〉 =
1

π

∫ 1

0

∫ 2π

0

Φ(r, θ)drdθ = a1 (3.32)

It means that the mean value of the wavefront phase is the first coefficient of the

Zernike expansion. This terms is known as piston.

Therefore the phase variance is given by:

σ2 = 〈(Φ− 〈Φ〉)2〉

=
1

π

∫ 2π

0

∫ 1

0

[
Φ(r, θ)− 〈Φ(r, θ)〉

]2
rdrdθ

=
∞∑
i=2

ai

(3.33)
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i n m Zi(r, θ) Description

1 0 0 1 Piston

2 1 1 r cos θ Horizontal tilt

3 1 -1 r sin θ Vertical tilt

4 2 0 2r2 − 1 Defocus

5 2 -2 r2 sin 2θ Oblique astigmatism

6 2 2 r2 cos 2θ Horizontal astigmatism

7 3 -1 (3r3 − 2r) sin θ Vertical coma

8 3 1 (3r3 − 2r) cos θ Horizontal coma

9 3 -3 r3 sin 3θ Vertical trefoil

10 3 3 r3 cos 3θ Oblique trefoil

11 4 0 6r4 − 6r2 + 1 Primary spherical

12 4 2 (4r4 − 3r2) cos 2θ Vertical 2nd-order astigmatism

13 4 -2 (4r4 − 3r2) sin 2θ Oblique 2nd-order astigmatism

14 4 4 r4 cos 4θ Quadrafoil

15 4 -4 r4 sin 4θ Quadrafoil

16 5 1 (10r5 − 12r3 + 3r) cos θ 2nd-order coma

17 5 -1 (10r5 − 12r3 + 3r) sin θ 2nd-order coma

18 5 3 (5r5 − 4r3) cos 3θ

19 5 -3 (5r5 − 4r3) sin 3θ

20 5 5 r5 cos 5θ Pentafoil

21 5 -5 r5 sin 5θ Pentafoil

Table 3.1: Zernike circle polynomials. Noll ordering from radial mode 1 to 5.
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(a) Z2, n=1, m=1 (b) Z3, n=1, m=-1 (c) Z4, n=2, m=0

(d) Z5, n=2, m=-2 (e) Z6, n=2, m=2 (f) Z7, n=3, m=-1

(g) Z8, n=3, m=1 (h) Z9, n=3, m=-3 (i) Z10, n=3, m=3

(j) Z11, n=4, m=0 (k) Z12, n=4, m=2 (l) Z13, n=4, m=-2

(m) Z14, n=4, m=4 (n) Z15, n=4, m=-4

Figure 3.9
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Chapter 4

Single mode fiber

In the second chapter the theory needed to determine the electric field profile at

the input of the fiber was presented. Therefore, to determine the coupling efficiency,

the remaining electric profile to characterize is the one propagated in the SMF.

The goal of this chapter is to describe this profile. It will lead in the next chapter to

the description of the methodology adopted to compute the overlap integral.

4.1 Guiding light principle

Optical fibers are circular dielectric materials that can transport energy and infor-

mation by means of multiple internal reflections. They are constituted of two regions:

a central core with a refractive index ncore surrounded by a concentric cladding made

of a material with a smaller refractive index nclad [35]. Fibers with a homogeneous

cladding and core are called step-index and will be exclusively considered in this

work. A schematic view of the fiber is represented in Figure 4.1.

Two common parameters defining the step-index profile in the fiber are the index

difference ∆n and the relative index difference ∆ defined by

∆n = ncore − nclad (4.1)

and

∆ =
n2
core − n2

clad

2n2
core

(4.2)
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Figure 4.1: Incident light ray is first refracted in the core and then undergoes multiple
total internal reflections at the core–cladding interface. This occurs for θ < θmax
defining the acceptance cone [33]

.

Typical values of the relative index difference are ∆ ≈ 0.3 − 1%. Such small

values can be explained by the fact that refractive index are obtained by doping the

glass with oxide. This process limits the refractive index since the scattering losses

increases with the doping level. The second reason is that the cone of acceptance of

the fiber decreases when ∆ increases. This has the consequence to increase the splice

and connector (two methods for joining fibers) losses since it requires more precision

to align fibers with smaller field diameter [31].

In Figure 4.2 a schematic view of the fiber cross section is represented with the

refractive index profile.

Figure 4.2: Schematic view of a step-index fiber.
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4.2 Materials selection

The most used material for fibers optics is the silica (SiO2) in different forms

(e.g. germanosilicate or aluminosilicate glass). Theses glasses are widely used for

their low propagation losses and their high mechanical strength (a polymer coating

on thin silica enable bending without failure) [36]. Moreover other types of glasses

like fluoride glasses (fluoroaluminate or fluorozirconate glasses) exist. This glasses are

made of cation usually coming from heavy metals such as zirconium or lead, resulting

in lower phonons energies. One consequence is that fluoride fibers are highly optically

transparent at mid-infrared wavelengths compared to silica fibers which absorb light

beyond ≈ 2 µm [37]. This propriety makes the fluoride glass interesting for infrared

observation.

Single-mode fibers based on fluoride glasses have already been qualified on stellar

interferometers for wavelength up to 5 µm. For longer wavelengths, SMF based on

chalcogenide based (up to 12 µm) or halogenide based (up to 20 µm or more) are

considered [19], [3].

4.3 Applications

Optical fibers find an important numbers of applications. In optical fiber commu-

nications fluoride glasses are widely used. It allows the quick transport of data for

long distance in a safe way (the signal guided is protected from its surroundings for

a better electromagnetic compatibility).

Other examples among many are fiber lasers. Theses fibers find an interesting role

in medical applications e.g. in ophthalmology and dentistry.

4.4 LP modes

A general concept that need to be understood for optical fibers design is the concept

of modes. In the field of optical fibers, modes designate the transverse electric field

distributions which remain constant during propagation in the fiber.

In a right-handed coordinates system attached to the fiber center, if it assumed

that the electric field is polarized linearly in the x-direction and propagates in the

z-direction, the phasor Ex(r, φ, z) of the x-component of the electric field of the LPlm

mode is given by
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Ex(r, φ, z) = E(r) cos(lφ) exp(−jβz) (4.3)

where |E(r) cos(lφ)| represents the transverse amplitude distribution and E(r) is

solution of the scalar wave equation [38]

dE

dr2
+

1

r

dE

dr
+
(
n2(r)k2 − l2

r2
− β2

)
E(r) = 0 (4.4)

with n(r) the refractive index profile, k = 2π/λ the wave-number and β a phase

constant depending on n(r) and the operating wavelength λ [31].

l determines the number of full periods of the cosine function passed through

when φ increases by 2π while m gives the number of intensity maxima in the core

[31].

In Figure 4.3, electric field distribution for some modes at the exit of a step index

fiber are displayed.

Guided modes are mainly located in the fiber core although some energy can

propagate within the fiber cladding which is usually lost after some distance of prop-

agation. [36] [34] For this reason cladding modes are also designate as radiation

modes [35].

Optical fibers are generally classified in two categories, single-mode fibers (SMF)

and multimode fibers (MMF), depending on whether the fiber carries one mode or

more modes respectively.

On one hand single-mode fibers usually have a relatively small core (≈µm) and can

guide only the single spatial mode LP01 (one for each polarization direction) called

the fundamental mode. The particularity of SMF, as mentionned in the first chapter,

is that the electric field at the output of the fiber is independent on the electric profile

at the input. Indeed, the electric profile is constant through its propagation in the

fiber and the injection conditions only affects the power given to the guided mode

(evaluated by the coupling efficiency).

On the other hand multimode fibers have a larger core (≈50µm) and/or a larger

index difference between core and cladding. Contrary to SMF, the electric profile

of light exiting the fiber core depends on the injection conditions. Depending on

the shape of the incoming wavefront, some modes are exited and carry more or less

energy [36].
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Figure 4.3: Electric field amplitude profiles for all the guided modes of a step-index
fiber. The two colors indicate different signs of the electric field values [34].

4.5 Single mode fibers

Since the output of a single mode fiber is independent of the launching condi-

tions, injecting an aberrated beam of light in a SMF would result theoretically in the

correction of the light at the output of the fiber.

However this correction comes at the price of a reduction of the energy propagated
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through the fiber. In fact, only a beam of light with the exact electric field distribution

of the fundamental mode would result in a perfect transmission of the energy through

the fiber.

This filtering process is used as an important application in astronomical interfer-

ometer. This is one of the main components in the recombination of light.

The feasibility of the SMF use for in recombination of ligth in stellar interferometry

was demonstrated thanks to FLUOR (Fiber Linked Unit for Optical Recombination)

in the near infrared [43].

4.5.1 Numerical aperture

As said previously, depending on some parameters, a fiber can be monomode or

multimode. Therefore, some parameters need to be defined.

The numerical aperture NA is defined by

NA =
√
n2
core − n2

clad (4.5)

with ncore the index of refraction in the core and nclad the index of refraction in

the cladding region.

In the case of multimode fiber operation, the numerical aperture is linked to the

maximum angle θmax by which the light can be injected in the core of the fiber without

light leakage in the cladding by the following formula:

sin(θmax) = NA (4.6)

Typical values of numerical aperture for multimode fibers ranges from 0.20 to 0.29

[41]. In the other side, SMF has typical NA between 0.12 and 0.14 [42].

Examples of single mode fibers are listed in Table 4.1.

Manufacturer Fiber Type NA Wavelength

Fibercore SM300 0.12 - 0.14 375 nm

Nufern S630-HP 0.12 630 nm

Corning SMF-28 0.14 1550 nm

Table 4.1: Typical values of numerical aperture of single mode fiber.
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4.5.2 Normalized frequency

Another essentiel parameter to define the working condition of the SMF fiber is

the normalized frequency V .

V is defined by

V =
2πaNA

λ
(4.7)

with λ the wavelength of the injected light and a the fiber core radius.

The normalized frequency combines in a very useful manner the information about

three important experimental design variables: the core radius, the numerical aper-

ture, and the wavelength. It is called normalized frequency because it is inversely

proportional to λ and because it is adimentional. This parameter defines completely

the number of modes propagated by the fiber. If the fiber is used in condition such

that V ≤ 2.405, one mode is propagated, the fundamental one LP01 and the fiber is

said single mode. If V > 2.405, higher order modes are propagated and the fiber is

said multimode. The value of V = 2.405 is defined as the cutoff frequency Vc and

correspond to the smallest frequency that supports LP11 mode.

4.6 LP01 profile

Since SMF are studied in this thesis, it is capital to study the fundamental mode

LP01.

The mode is obtained by solving Equation 4.4 when l = 0 and m = 1

dE

dr2
+

1

r

dE

dr
+
(
n2(r)k2 − β2

)
E(r) = 0 (4.8)

This equation admits analytical solutions for special index profiles like the widely

used step-index profile. For non conventional n(r) direct numerical integration can

be useful.

4.6.1 General expression

The profile of the LP01 of a SMF with a step index profile is a Bessel function in the

core and a modifield Hankel function in the cladding [39],[40]:
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E(r) =

{
J0(

Ur
a

), if r ≤ a
J0(U)
K0(W )

K0(
Wr
a

), if r > a
(4.9)

with U and W two parameters satisfying the conditions

U
J1(U)

J0(U)
= W

K1(W )

K0((W )
(4.10)

U2 +W 2 = V 2 (4.11)

which describe the matching of the tangential components of the electric field and

of the magnetic field at the core-cladding interface [31].

Note that the system of equations 4.10, 4.11 admits a unique solution only for

V values smaller than 2.405. This value corresponds to the first zero of the Bessel

function J0(x). This explains the condition for single mode operation stated earlier.

4.6.2 Gaussian approximation

When operating near cutoff frequency, the profile can be well approximated by a

Gaussian with 1% error, [31],[29]

F01 ∼ exp[−
( r
ω0

)2
] (4.12)

with the only parameter ω0 which is the fundamental mode radius of the fiber

well approximated by the following relation [43]

w0 = a

(
0.65 +

1.619

V 3/2
+

2.879

V 6

)
(4.13)

This approximation has the advantage to use only one function to characterize

the electric field in the fiber instead of two. Indeed the profile is the same in the

cladding and the core with only one parameter to characterize it, the mode radius

ω0. Also this approximation is very useful since it allows an analytical expression for

the coupling efficiency of non aberrated beam of light [43]. In Figure 4.4 the true

electric field profile and the Gaussian approximation is displayed.
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Figure 4.4: Normalized electric field distribution for a step index fiber at the nor-
malized frequency V=2.2. The solid line is the exact electric field distribution. The
dashed line represents the Gaussian approximation with ωG/a = 1.162. ωG is the
mode radius and q is the radial coordinate [31].
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Optical system

In this chapter the optical system considered is presented. It starts with the as-

sumptions on the light and the choice of the waveband. Then a description of the

telescope design. Next, the overlap integral is analysed and an equivalent formulation

to the one presented in the first chapter is developed. This definition will be useful

to decrease the cost of the simulations.

5.1 Waveband

In the following chapters, the light will be considered monochromatic while the

medium linear, homogeneous, isotropic, nondispersive and nonmagnetic. Accord-

ing to these assumptions, the scalar diffraction theory of Sommerfeld can be applied

and the results of chapter two will be used. Moreover since the goal is to study

exoplanets in the infrared region, the waveband considered is [3− 7] µm.

The choice of this waveband is an inspiration from the Fourier-Kelvin Stellar

interferometer (FKSI) which was designed to study hot extrasolar giant planets at

[3− 8] µm [53].

5.2 Telescope configuration

The study of the coupling efficiency is performed for one of the two telescopes

present in the nulling interferometer. At this stage of the project the type of the tele-

scope is not decided. It could be on-axis telescope like a Ritchey-Chretien (improved

Cassegrain). It consists of two hyperboloid shaped mirrors. This configuration al-

lows the elimination of the spherical aberration and the coma that are present with
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Figure 5.1: Representation of FKSI. Two telescopes of diameter 0.5 m separated by
a distance of 12.5 m [53].

paraboiloid shaped mirrors. One example of this configuration is the Hubble Space

Telescope (HST) represented in Figure 5.2

Figure 5.2: Hubble Space Telescope (HST) [57]

Another configuration could be an off-axis design. Such a configuration was used

in the DeMi cubesat. It has the advantage to increase the throughput of the system

since there is no obstruction blocking the photons entering the aperture. Also it

avoids the diffraction effects produced by the interaction of the light with the back

of the secondary mirror. The configuration of the DeMi satellite is represented in

Figure 5.3.
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Figure 5.3: DeMi optical design with ray trace overlaid in red for the DeMi mission
(image credit: DeMi Team).

Whatever the true configuration of the telescope is, the system can be schematized

like a Cassegrain telescope. If the telescope is on-axis then the central obstruction

equals the ratio between the secondary and primary mirrors diameter. If the telescope

is off-axis then the obstruction equals zero.

5.3 Coupling efficiency

The coupling efficiency was defined in the first chapter as the overlap integral

between the incoming electric field and the electric field in the single mode fiber. The

coupling efficiency ρ is given by

ρ =
|
∫ ∫

S
E∗B(x, y)FB(x, y)ds|2∫ ∫

S
|EB(x, y)|2ds

∫ ∫
S
|FB(x, y)|2ds

(5.1)

with EB the electric field of the incoming light in the focal plane on the fiber core,

E∗B the complex conjugate of EB and FB the electric field of the mode LP01 [31].

This definition is equivalent in the aperture plane. Indeed, in the chapter two,

the electric field at the focus of a telescope was recognized as the Fourier transform

of the aperture function P = P (x, y) exp[jφ(x, y)]
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EB ∼ F{P} = F{P (x, y) exp[jφ(x, y)]} (5.2)

And since the Parseval-Plancherel theorem states the equivalence of the scalar

product computed in the space domain and the frequency domain∫ +∞

−∞
f(x)gdx =

∫ +∞

−∞
F{f(ξ)}F{g(ξ)}dξ (5.3)

the coupling efficiency can be computed in the aperture plane

ρ =
|
∫ ∫

S
E∗A(x, y)FA(x, y)ds|2∫ ∫

S
|EA(x, y)|2ds

∫ ∫
S
|FA(x, y)|2ds

(5.4)

with EA(x, y) the electric field of the incoming light in aperture plane

EA(x, y) = P (x, y) exp[jφ(x, y)] (5.5)

,

P (x, y) =

{
1, if αD1/2 ≤

√
x2 + y2 ≤ D1/2

0 otherwise
(5.6)

α = D2/D1 the central obstruction and FA the electric field of the mode LP01 back-

propagated to the aperture plane.

As stated in the third chapter, the electric field of the fundamental mode is ap-

proximated by a Gaussian. Since the Fourier transform of a Gaussian function is also

a Gaussian, the back-propagated electric field is given by [44]

FA ∼ exp[−
( r
ωa

)2
] (5.7)

with

ωa =
λf

πω0
(5.8)

with f the focal length and ω0 the mode radius defined by Equation 4.13.

In Figure 5.4, a schematic view of the single mode fiber at the focus of the telescope

is displayed.

To simulate the coupling efficiency when the system is aberrated the definition of

the overlap integral at the aperture plane is used. This definition has the advantage

to avoid the computation of the Fourier transform of Zernike functions and their
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Figure 5.4: Schematic view of a single mode fiber at the focus of a telescope. EA is the
incoming electric field at the aperture, FA the back-propagated fundamental mode of
the SMF, EB the electric field at the focus of the telescope, FB the electric field of
the fundamental mode of radius ω0. D1 represents the diameter of the aperture and
D2 the diameter of a central obstruction typical of a Cassegrain telescope.

numerical integrations projected on the fiber mode. Indeed, in chapter two, the

aberrated phase Φ was decomposed in the Zernike circular polynomials Zi(r, θ)

Φ(r, θ) =
∞∑
i=1

aiZi(r, θ) (5.9)

In order to simplify the expression of the coupling efficiency, the electric field

FA(x, y) can be normalized.

If

FA(x, y) =
2√
πω2

a

exp
[
− x2 + y2

ω2
a

]
(5.10)

then, the norm of FA is
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||FA|| =

√∫
∞
|FA|2dA

=
2√
πω2

a

√∫ 2π

0

∫ ∞
0

r exp(−2r2

ω2
a

)drdθ

=
2√
πω2

a

√
πω2

a

2

= 1

(5.11)

and Equation 5.4 can be written

ρ =
1

S

∣∣∣∣ ∫ ∫
S

P (x, y) exp[jφ(x, y)]

√
2

πω2
a

exp
[
− x2 + y2

ω2
a

]
ds

∣∣∣∣2 (5.12)

Therefore, for the pupil operation

ρ =
2

Sπω2
a

∣∣∣∣ ∫ 2π

0

∫ D1/2

αD1/2

r exp[jφ(r, θ)] exp
[
− r2

ω2
a

]
drdθ

∣∣∣∣2 (5.13)

with S = π(D1/2)2 − π(αD1/2)2

In the next chapter the system will be considered diffraction-limited. In such case

Φ = 0 and the coupling efficiency is giveny by

ρ =
2

Sπω2
a

∣∣∣∣ ∫ 2π

0

∫ D1/2

αD1/2

r exp
[
− r2

ω2
a

]
drdθ

∣∣∣∣2 (5.14)

This integral admits an analytical solution giveny by [43]

ρ(α, β) = 2

[
exp(−β2)− exp(−β2α2)

β(1− α2)1/2

]2
(5.15)

with

β =
π

2

D

λ

ω0

f
(5.16)

This solution will be used to optimize the coupling efficiency.
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In chapter six, the coupling efficiency is studied when the system is subjected

to static aberrations. The computation of the integral 5.13 will be performed with

Matlab. It will allows us to determine the coupling efficiency in function of the

standard deviation ai for any Zernike polynomials. Also, the point spread functions

will be computed thanks to the fast fourier transform (FFT) algorithm. Thanks to

this code the coupling efficiency for typical phase aberrations encountered in space

will be analysed. Finally, the coupling efficiency when a deformable mirror corrects

some Zernike modes will be discussed.
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Chapter 6

Diffraction limited design

This chapter aims to simulate the system free of aberrations.

The discussion begins with a study of the point spread function. To do so, the

analytical expression of the PSF for a circular aperture with a central obstruction is

used. Next, the electric field of the focused light and the LP01 mode are analysed

for a better intuitive understanding of the injection problem. Finally the coupling

efficiency is analysed.

6.1 General considerations

6.1.1 Point spread function

As mentioned previously the point spread function of an optical system is the

square modulus of the impulse response h. This function characterizes the ability of

the system to resolve a point like source and for this reason it is often used in optic

design.

The PSF of a pupil of diameter D with a central circular obstruction α, at the

distance z, for the observing wavelength λ is

PSF =
( D2

4λz

)2[J1(2πξ)
ξ

− α2J1(2παξ)

αξ

]2
(6.1)

with ξ = rD/(2λz) and r the radial distance from the center in the observation plane.

In Figure 6.1 the PSF of an unobstructed pupil (α = 0) of diameter D = 1 m is

represented in 3D and 2D. The image plane is at z = f = 3.83 m and the wavelength is
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λ = 5 µm. The PSF is normalized by its pick value situated at the center. The figures

shows the well known Airy pattern of concentric rings with a high concentration of

energy within the first ring.

(a) 3D representation of the normalized PSF. (b) 2D representation of the normalized PSF.

Figure 6.1: PSF representations at focal distance f = 3.83 m for a primary mirror
D = 1 m with no obstruction α = 0 at the observing wavelength λ = 5 µm.

In Figure 6.2 the PSF of a pupil of diameter D = 1 with a central obstruction α =

0.436 m is represented in 3D and 2D. This value of the central obstruction corresponds

to the one of the 3.6 m ESO telescope corrected with the ADONIS adaptive optics

system at La Silla observatory [54]. The image plane is at z = f = 4.48 m and the

wavelength is λ = 5 µm. The PSF is normalized by its pick intensity situated at the

center.

These figures show that the obstruction has the effect of reinforcing the side lobes of

the Airy pattern. Therefore less energy is present within the first ring.

Moreover the obstruction has the effect of decreasing the overall energy since the

obstruction blocks some photons. This effect can be seen in Figure 6.3 where the

PSF are represented and both normalized by the pick intensity of the Airy pattern

corresponding to α = 0.

6.1.2 Electric field

Since the coupling efficiency depends on the electric field profile of the incoming

light and the mode of the fiber LP01, it is necessary to analyse them.
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(a) 3D representation of the normalized PSF. (b) 2D representation of the normalized PSF.

Figure 6.2: PSF representations at focal distance f = 4.48 m for an aperture D = 1
m with a central obstruction α = 0.436 at the observing wavelength λ = 5 µm.

As said in the second chapter, the electric field at the focus of the telescope is given

by the Fraunhofer diffraction pattern of the aperture function. It gives [50]

EB(x, y) =
exp(jkz)

jλz
exp

[
j
k

2z
(x2 + y2)

]( D2

4λz

)[J1(2πξ)
ξ

− α2J1(2παξ)

αξ

]
(6.2)

On the other side, the electric field of the single mode fiber is given by the Gaussian

approximation

FB(x, y) =
2√
πω2

0

exp
[
− x2 + y2

ω2
0

]
(6.3)

In Figure 6.4 the normalized electric fields are represented. The dashed line in

blue represents the electric field at the focus of the telescope EB, where the fiber is

situated. The solid line in red represents the fundamental mode of the fiber LP01.

The working wavelength, the focal distance, the aperture are the same as before. The

obstruction α is 0 and the radius of LP01 is ω0 = 13.7 µm.

The mismatch between the two profiles is clearly visible. It results in a loss of the

coupling efficiency as explained previously. Moreover it can be seen that the mismatch

is stronger at the first lobe which indicates that the presence of an obstruction will

result in a loss of the coupling efficiency since the obstruction increase the size of the

lobe.
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Figure 6.3: PSF normalized by the pic value of the unobstructed PSF in function of
the radial distance. λ = 5 µm, D = 1 m. f = 3.83 m for α = 0 and f = 4.48 m for
α = 0.436.
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Figure 6.4: Comparison between the normalized electric field at the focus of the
telescope EB and the normalized mode of the fiber LP01 in function of the radial
distance. α = 0, f = 3.83 m, ω0 = 13.7 µm, λ = 5 µm, D = 1 m. The mismatch of
the two profiles explains the loss of energy at the output of the fiber.
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6.1.3 Coupling efficiency

If a perfect plane wave of wavelength λ reachs a pupil of diameter D with a cir-

cular central obstruction α, and focuses at the distance f on a single mode fiber,

an analytical expression of the coupling efficiency, for the Gaussian approximation

LP01 ∼ exp(−r
2

ω2
0

), exists and is given by [43]:

ρ(α, β) = 2

[
exp(−β2)− exp(−β2α2)

β(1− α2)1/2

]2
(6.4)

with

β =
π

2

D

λ

ω0

f
(6.5)

This formula stipulates that the coupling efficiency is function of five parameters:

α, D, λ, f , ω0. Four of them are sum up into one, β.

In Figure 6.5, ρ(α, β) is represented for different values of the central obstruction

α : α = 0, α = 0.25, α = 0.436, corresponding to DKIST telescope [56], HST [57]

and 3.6 ESO telescope respectively.
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Figure 6.5: Coupling efficiency in function of β for different value of the obstruction
α.
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The figure shows that for a fixed central obstruction the coupling efficiency has a

maximum value for one β. This value of β tends to decrease when α increases. Also,

when the central obstruction increases the maximum coupling efficiency decreases. It

confirms what was established earlier on the effect of α. The maximum achievable

coupling efficiency is when α = 0. Indeed for no central obstruction, the coupling

efficiency is 81.45% for β = 1.12. It means that, to get the maximum coupling

efficiency, α, D, λ, f and ω0 have to be designed such that

β =
π

2

D

λ

ω0

f
= 1.12 (6.6)
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Figure 6.6: Value of β that maximizes the coupling efficiency in function of the central
obstruction.

Therefore, β can be seen as the design parameter that needs to be optimized,

for a fixed central obstruction, in order to achieve the best injection into the single

mode fiber. On the other hand, the central obstruction is the parameter that sets

the physical limit of the achievable coupling efficiency. The optimized value of β in

function of the central obstruction is displayed in Figure 6.6.
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Figure 6.7: Optimum coupling efficiency in function of the central obstruction at
cutoff frequency

In Figure 6.7 is represented the optimum coupling efficiency in function of the cen-

tral obstruction. This value of ρ is obtained by taking the optimum design parameter

βopti for each α.

It shows that the coupling efficiency is maximum for α = 0 (i.e. when there is

no obstruction) and is null for α = 1 (i.e. when the diameter of the obstruction

equals the diameter of the primary mirror). The maximum is 81.45% as mentioned

previously. It shows that the decrease of ρ is small for α < 20% where at this stage

ρ has dropped of only 8%. Then the optimum ρ decreases linearly. For α = 40% the

optimum ρ has lost around 25%.

This value of 81.45 % differs from the theoretical value of 78 % that was stated in

the first chapter. This difference is due to the Gaussian approximation and the fact

that the Fresnel reflection on the head’s fiber was not considered in the model [43].

6.2 Design of the f-number

As stated in chapter three, the fiber is single mode only if the normalized frequency

V = 2πaNA
λ
≤ 2.405. Moreover, in the same chapter, it was said that the Gaussian

approximation of the mode LP01 is good only near cutoff frequency Vc = 2.405.

For these reasons it would be a good idea to fix the normalized frequency to 2.405.
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However V is function of the wavelength and as stated in chapter 4 it was decided

to work on the waveband [3 − 7] µm. Consequently, it is not possible to fix V =
2πaNA

λ
= 2.405 in the waveband unless aNA equals 2.405λ

2π
for every λ in the waveband.

Naturally the core radius and the numerical aperture can not be variable. They are

fixed during the design and do not change afterwards. However it was decided to study

two different cases. The first one, the numerical aperture is fixed to NA = 0.16 and

the core diameter a is variable. a is chosen such that V = 2.405 for all the wavelength

in the waveband. Therefore it is an ideal case. The second case represents a realistic

scenario where the core radius is fixed. Here again NA is fixed to 0.16.

6.2.1 Case 1: the core radius is variable

To fix the normalized frequency at 2.405 for all the wavelengths, the core radius is

artificially adapted according to

a =
2.405λ

2πNA
(6.7)

Figure 6.8 displays the core radius a in function of the wavelength for a numerical

aperture NA = 0.16. It shows the linear relation between the core radius and the

wavelength. The order of magnitude of a is the micron in the infrared region.
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Figure 6.8: Optimum core radius in function of wavelength
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An interesting consequence is that the coupling efficiency is independent of the

wavelength. As stated earlier, the coupling efficiency is function of α and β = π
2
D
λ
ω0

f

according to Equation 6.4. So one would expect a coupling efficiency varying with λ

since β is function of λ.

However, according to the definition of ω0

w0 = a

(
0.65 + 1.619

V 3/2 + 2.879
V 6

)

= 2.405λ
2πNA

(
0.65 + 1.619

V 3/2 + 2.879
V 6

) (6.8)

This results in

β = π
2
ω0D
λf

= πD
2λf

2.405λ
2πNA

(
0.65 + 1.619

V 3/2 + 2.879
V 6

)

= 2.405
4NA

D
f

(
0.65 + 1.619

V 3/2 + 2.879
V 6

) (6.9)

which is independent of the the wavelength since V = 2.405 and NA = 0.16.

Therefore, the coupling efficiency is only dependant of α and the f -number. The

central obstruction will fix the maximum coupling achievable and the performance of

the system will depend on the choice of f/D.

In Figure 6.9 the coupling efficiency in function of the f-number is represented

for different value of the central obstruction α. It shows that f/D increases when

the obstruction increases. It is coherent with the discussion on the Figure 6.5 since

f/D ∼ 1/β.

In Figure 6.10 the f -number in function of the central obstruction is displayed. This

optimum f -number corresponds to the value of f/D for which β maximize ρ(α, β)

when the core radius is adapted to work at the cutoff frequency. It can be seen that

for no central obstruction the optimum f -number equals 3.68 and increases with α.

Note that the optimum f -number is not defined for a central obstruction α = 1 since

no light reachs the fiber and therefore the coupling efficiency equals zero no matter

what the value of f/D is.
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Figure 6.9: Coupling efficiency in function of the f number for different value of the
obstruction α.
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Figure 6.10: Optimum f -number in function of the central obstruction.
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6.2.2 Case 2: the core radius is fixed

As discussed before, in a real system the core radius can not be adjusted to ev-

ery wavelengths of the waveband of observation. This means that the result of the

independence of coupling efficiency according to wavelength is no longer true. The

direct consequence of this is that the coupling efficiency can not be optimized for

every wavelength in [3-7] µm. It can be optimum only in a finite wavelength, which

need to be specified, by optimizing the focal length.

Therefore, when it comes to the design of a SMF at the focus of a telescope,

one must choose a wavelength and find the f -number which maximizes the coupling

efficiency at this wavelength. Generally, it is convenient to optimize the coupling

efficiency for the middle of the wavelength range [53]. For this study since it is

proposed the operating waveband [3-7] µm, the coupling efficiency is optimized at 5

µm.

Now, the core radius of the fiber must be designed. In this case the core radius is

chosen in order to work in the single mode regime for the all bandwidth of observation.

It means that, in order to propagate only the fundamental mode of the fiber, the

normalized frequency needs to be smaller than the cutoff one. It means that

λ > λc =
2πaNA

2.405
(6.10)

Then, by imposing λc = 3 µm, it allows to stay in single-mode condition in all

the waveband of observation [3− 7] µm. It means that the core radius is given by

a =
3 ∗ 2.405

2πNA
µm = 7.18µm (6.11)

Contrary to before, the normalized frequency V is not constant but takes value

between [1.03-2.405].

Now that the core radius is fixed, the coupling efficiency depends on the wave-

length and the optimal f -number too. The effect of the wavelength on the optimum

f -number can be seen in Figure 6.11.

The figure shows that the the optimum f -number increases when λ increases. Also

f/D increases when the obstruction ratio increases.
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Moreover, the figure highlights the fact that at λ = 5 µm the optimum f/D = 3.82

is larger than the f -number obtained previously for an adaptive core radius. Indeed,

when a was artificially adjusted such that V = 2.405 for all λ, the f -number was

f/D = 3.68.

This is coherent with the fact that the optimum coupling efficiency, for a some ob-

struction, occurs at one β = βopti. Since β = π
2
D
λ
ω0

f
∼ D

f
(0.65 + λ1/2 + λ5). That

means that for λ > λc = 3µm, f/D needs to increase to stay at this β.
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Figure 6.11: Optimum f -number in function of the wavelength λ for different value
of the obstruction α.

Table 6.1 summarizes the results of the optimum f/D that maximizes the coupling

efficiency.

λ = λc = 3µm λ = 5µm

α = 0 f/D = 3.68 f/D = 3.82

α = 0.25 f/D = 3.93 f/D = 4.08

α = 0.436 f/D = 4.31 f/D = 4.48

Table 6.1: Comparison of f -number

In Figure 6.12 the coupling efficiency in function of the wavelength is displayed

for different values of the obstruction when the f-number is optimized at λ = 5

µm. It shows that the maximum occurs effectively at λ = 5 µm as it was designed.

Moreover the optimum coupling efficiency seems to be constant over [λc 2λc] and

starts to decrease greatly.
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For α = 0 the maximum coupling efficiency drops from 81.45% at λ = 5 µm to 51%

at λ = 7 µm. For α = 0.25 it drops from 70% at 5µm to 39% at 7µm. Finally for

α = 0.436 it drops from 52% to 25.4%.

To end this study note that the coupling efficiency drops to zero for λ > 3λc for

central obstructions higher than 0.25.
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Figure 6.12: Coupling efficiency in function of wavelength for different values of the
obstruction α.
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6.3 Conclusion

In this chapter the coupling efficiency of a single mode fiber placed at the focus of a

telescope was studied. The effect of a central obstruction was analysed and revealed

to be the first limiting parameter of the performance. The simulations showed that

under the Gaussian approximation the maximum coupling efficiency achievable was

81.45% when there is no central obstruction.

The effect of the wavelength was also studied when the fiber is optimized at the

middle of the waveband : 5 µm. The simulations showed that a significant drop of

the coupling efficiency takes place when λ > 2λc. For example at the extremity of

the waveband, λ = 7 µm the coupling efficiency is 50% for a pupil with no central

obstruction.
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Chapter 7

Study of static aberrations

In this chapter the effect of static aberrations on the coupling efficiency is studied.

The aberrations considered here are the Zernike polynomials Zi(r, θ) as introduced in

chapter two. The strength of the aberration is represented by the Zernike expansion

coefficient ai and equals to the root mean square σrms if the aberration is the only

one affecting the wavefront.

Here the coupling efficiency are normalized by the optimized value obtained in the

diffraction limited case when α = 0 : 81.45 %.

Also, the normalized coupling efficiency are compared to an analytical approxima-

tion given by [43]. This approximation, valid for small aberrations, states that

ρ = ρ0 exp(−σ2
rms) (7.1)

with ρ0 the coupling efficiency when the system is not aberrated.

The chapter starts by a study of the effect of the RMS wavefront error (σrms) for

differents aberrations. Then the effect of the obstruction is analysed. Next the effect

of the wavelength. Finally the system is analysed when the wavefront has a phase

map typical of the one encountered in space. The effect of the correction of some

Zernike polynomials by a deformable mirror is also analysed.

7.1 Effect of the aberration’s strength

In this section the effect of σrms for several aberrations is analysed.
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The pupil is not obstructed (α = 0) and the SMF is optimized. The simulations

are done at the wavelength where the fiber is optimized: 5 µm.

7.1.1 Piston

The piston is the only aberration that is not corrected by the single mode fiber.

Indeed, the piston only introduces a phase delay to a wave plane. Therefore, the

electric field at the input of the fiber is injected in the same way than a wave plane

and the coupling efficiency equals to the one obtained in the diffraction limited case.

7.1.2 Tip/Tilt

Tip/tilt aberrations are the ones who shift the PSF in the two orthogonal direc-

tions on the focal plane. Therefore, they represent aberrations like misalignment or

pointing errors. In Figure 7.1 the point spread function of a unobstructed circular

pupil aberrated by a tilt is represented and compared to the diffraction limited PSF.

(a) Point spread function of an unobstructed
circular pupil when the system is not aber-
rated.

(b) Point spread function of an unobstructed
circular pupil when the system has a horizon-
tal tilt (tip).

Figure 7.1: Comparison of the PSF of unobstructed circular pupil when the system is
not aberrated and aberrated by a tilt. The only effect of the tilt is to shift the PSF.

This shift of the center of the PSF induces necessarly a loss of coupling efficiency.

The effect of horizontal tilt can be seen on Figure 7.2. It shows that the coupling effi-

ciency decreases slowly when σrms < 0.5 rad. Then the coupling efficiency decreases

linearly until σrms = 1.5 rad. After this RMS value, the coupling decreases slowly.

Note that the effect of horizontal and vertical tilt are the same on the coupling

efficiency. Indeed, in Figure 7.3 the two curves are superposed. This due to the
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Figure 7.2: Normalized coupling efficiency in function of the RMS wavefront error
for horizontal tilt.

symmetry of the Gaussian shape of the fundamental mode.
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Figure 7.3: Normalized coupling efficiency in function of the RMS wavefront error
for horizontal and vertical tilt.
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7.1.3 Defocus and spherical aberrations

Another types of aberrations considered are defocus Z0
2 and spherical aberrations

Z0
4 . Theses aberrations are independent of the angular coordinate θ. Indeed, they

are characterized by an azimutal order m = 0 which implies

Zi(r, θ) =
√
n+ 1Rn

0 (r) = Zi(r, θ) (7.2)

In Figure 7.4 the PSF of an unobstructed circular pupil when the system has

defocus and spherical aberration is displayed. It shows that the PSF are circularly

symmetric.

(a) Point spread function of an unobstructed
circular pupil when the system has defocus
aberration.

(b) Point spread function of an unobstructed
circular pupil when the system has spherical
aberration.

Figure 7.4: Comparison of the PSF of unobstructed circular pupil when the system
has a defocus and a spherical aberration. The two PSF preserve their symmetry.

The effect of defocus and spherical aberration on the normalized coupling effi-

ciency is displayed in Figure 7.5. It shows that for σrms ≤ 1.5 rad the two aberrations

have the same effect. Moreover they closely follow the Strehl approximation. Beyond

σrms = 1.5, the effect of the aberrations seems to differ. Indeed, the effect of the

defocus is stronger than the spherical aberration.
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Figure 7.5: Normalized coupling efficiency in function of the RMS wavefront error
for defocus and spheric aberration.
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7.1.4 Coma aberrations

Here the effect of coma is analysed. In Figure 7.6 the PSF of an unobstructed

circular pupil when the system has horizontal coma and 2nd-order coma is displayed.

It shows that the PSF are asymmetric. Their effect on the coupling efficiency is

displayed in Figure 7.7. The figure shows that these two aberrations have the same

effect on the coupling efficiency. Also they closely follow the Strehl approximation.

In Figure 7.8 the effect of the two 2nd-order coma is displayed. It shows that the two

aberrations have exactly the same effect since the curves are superposed. Therefore,

this behaviour is the same as for the tilt. In fact, the symmetry of the Gaussian shape

of the fundamental mode makes any Zernike polynomials, with same radial order and

opposite azimutal order, to have the same effect on the coupling efficiency. Indeed,

two Zernike polynomials Zm
n and Z−mn have the same radial function Rm

n

Rm
n (r) =

(n−m′)/2∑
l=0

(−1)l(n− l)!

l!
[
(n+m′)/2− l

]
!
[
(n−m′)/2− l

]
!
rn−2l (7.3)

with m′ = |m|. On the other hand, the angular function is

Zi(r, θ) =
√
n+ 1Rm

n (r)
√

2 cos(m′θ), if m > 0, i even

Zi(r, θ) =
√
n+ 1Rm

n (r)
√

2 sin(m′θ), if m < 0, i odd (7.4)

These two functions are the same but shifted by π/2. Therefore, when it comes to

the projection on the LP01 mode and the integration over [0− 2π] it gives the same

results.
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(a) Point spread function of an unobstructed
circular pupil when the system has horizontal
coma.

(b) Point spread function of an unobstructed
circular pupil when the system has 2nd-order
coma.

Figure 7.6: Comparison of the PSF of unobstructed circular pupil when the system
has a defocus and a spherical aberration. The two PSF preserve their symmetry.
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Figure 7.7: Normalized coupling efficiency in function of the RMS wavefront error
for horizontal coma and 2nd-order coma.
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Figure 7.8: Normalized coupling efficiency in function of the RMS wavefront error
for 2nd-order coma.
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7.1.5 Astigmatism aberrations

In Figure 7.9 the PSF of an unobstructed circular pupil when the system has

oblique astigmatism and vertical 2nd-order astigmatism is displayed. In Figure 7.10

the effect of oblique astigmatism and vertical 2nd-order astigmatism is displayed. It

shows that 2nd-order astigmatism closely follows the Strehl approximation. On the

other side the coupling efficiency is less affected by oblique astigmatism.

(a) Point spread function of an unobstructed
circular pupil when the system has oblique
astigmatism.

(b) Point spread function of an unobstructed
circular pupil when the system has vertical
2nd-order astigmatism.

Figure 7.9: Comparison of the PSF of unobstructed circular pupil when the system
has oblique astigmatism and vertical 2nd-order astigmatism.

7.1.6 Other types of aberrations

In Figure 7.11, is displayed the PSF of an unobstructed circular pupil when the

system is subjected to oblique trefoil, quadrafoil and pentafoil. The effect of these

aberrations on the coupling efficiency is visible in Figure 7.12. It shows that the

aberrations are significantly less impacting the coupling efficiency. For example for

σrms = 1.5 rad the coupling efficiency is 40% for a quadrafoil and 10% for the Strehl

approximation. Also, the effect of the aberration seems to be weaker when the order

j of the polynomial Zj increases.

7.1.7 Conclusion

In conclusion the coupling efficiency seems to be more affected by circular sym-

metric aberration like defocus and spherical aberration, tilt, coma and 2nd-order

astigmatism.

Master thesis 77 University of Liege



CHAPTER 7. STUDY OF STATIC ABERRATIONS

0 0.5 1 1.5 2 2.5 3

σ
rms

[rad]

0

20

40

60

80

100

N
o
rm

al
iz

ed
 c

o
u
p
li

n
g
 e

ff
ic

ie
n
cy

 [
%

]

strehl
oblique astigmatism (Z

5
)

vertical 2nd-order astigmatism (Z
12

)

Figure 7.10: Normalized coupling efficiency in function of the RMS for oblique astig-
matism and vertical 2nd-order astgmatism.

A summary of the effect of static aberrations on the coupling efficiency is visible

in Figure 7.13.
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(a) Point spread function of an unobstructed
circular pupil when the system has oblique
trefoil aberration.

(b) Point spread function of an unobstructed
circular pupil when the system has quadrafoil
aberration.

(c) Point spread function of an unobstructed
circular pupil when the system has pentafoil
aberration.

Figure 7.11: Comparison of the PSF of unobstructed circular pupil when the system
has a defocus and a spherical aberration. The two PSF preserve their symmetry.
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Figure 7.12: Normalized coupling efficiency in function of the wavefront RMS error
for oblique trefoil, quadrafoil and pentafoil.

0 0.5 1 1.5 2 2.5 3

σ
rms

[rad]

0

20

40

60

80

100

N
o
rm

al
iz

ed
 c

o
u
p

li
n

g
 e

ff
ic

ie
n

cy
 [

%
]

strehl

tip/tilt (Z
2
)

defocus (Z
4
)

astigmatism (Z
5
)

coma (Z
7
)

trefoil (Z
9
)

spheric (Z
11

)

Figure 7.13: Normalized coupling efficiency in function of the wavefront RMS error
for different types of aberrations.
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7.2 Effect of the obstruction

In Figure 7.14 the coupling efficiency in function of the RMS wavefront error, when

a central obstruction α is present, is analysed. It shows that the obstruction has the

effect of increasing the strength of some aberrations. Indeed, when α = 0 the trefoil

is the less affecting aberration. However, when α = 0.436 the less affecting aberration

seems to be the spherical aberration. The effect of the central obstruction for each

aberration is displayed in Figure 7.15. It shows that around α = 0.4 the spherical

aberration is less dominant than it was for no central obstruction.

In Figure 7.16 the convergence to the diffraction limited case is displayed. It shows

that for σrms ≤ 0.1 the curves are superposed with the ideal case. Therefore, in

terms of coupling efficiency the diffraction limited performance is obtained for RMS

wavefront error below 0.1 rad.
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(a) α = 0
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(b) α = 0.25
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(c) α = 0.436.

Figure 7.14: Normalized coupling efficiency in function of the wavefront RMS error
for different types of aberrations and different values of the obstruction.
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Figure 7.15: Normalized coupling efficiency in function of the central obstruction for
different types of aberrations. The strength of the aberration is fixed to 1 rad.
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(a) σrms = 0.5 (b) σrms = 0.3

(c) σrms = 0.1

Figure 7.16: Normalized coupling efficiency in function of the central obstruction for
different types of aberrations and different values of wavefront RMS error.
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7.3 Effect of the wavelength

Here the coupling efficiency in function of the wavelength is displayed. The Figure

7.17 shows that with the presence of an aberration the coupling efficiency is no longer

maximum at λ = 5 µm. Indeed, at α = 0 and for a trefoil, the coupling efficiency

is maximum at λ = 6 µm. In fact the wavelength where the coupling efficiency is

maximum is always bigger than λ = 5 µm. This effect is less true when σrms gets

smaller. In Figure 7.18 the RMS wavefront error is set to σrms = 0.5 rad. It shows

the converge towards the diffraction limited case. Also, it can be noticed that the

central obstruction flattens the curves.
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(b) α = 0.25
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(c) α = 0.436

Figure 7.17: Normalized coupling efficiency in function of the wavelength when
σrms = 1 rad for different values of the central obstruction.
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Figure 7.18: Normalized coupling efficiency in function of the wavelength when
σrms = 0.5 rad for different values of the central obstruction.
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7.4 Non-common path aberrations and their cor-

rection

Now that single aberrations have been studied the effect of multiple aberrations

are considered.

Indeed, any wavefront Φ can be decomposed in the basis of Zernike polynomials

Φ =
∞∑
i=1

aiZi(r, θ) (7.5)

To reproduce numerically typical aberrations encountered in space like misaligne-

ments, polishing errors or thermal distorsions, the first 120 Zernike polynomials are

used. Then their coefficients are randomly generated and divided by their radial

order. Such aberrations are known as non common path aberrations (NCPA). An

example of such Zernike coefficients distribution is given in Figure 7.19 and the phase

map associated is given in Figure 7.20.

0 20 40 60 80 100 120

Zernike coefficient i

-1

-0.5

0

0.5
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a
i [
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d
]

Figure 7.19: Example of randomly generated Zernike coefficients for non common
path aberrations.
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Figure 7.20: Example of phase map for aberrations encountered in space.

Remember that the root mean square for a single aberration is given by its Zernike

coefficient while for multiple aberrations it is given by

σrms =

√√√√ ∞∑
i=1

a2i (7.6)

For this phase map the root mean square is σrms = 1.31 rad and the coupling

efficiency is ρ = 30 %. It means that in space, without a system that corrects the

aberrations, the coupling efficiency is divided by three. Therefore, in order to have a

root mean square less that 0.1 rad, the use of a deformable mirror is mandatory.

The quality of a deformable mirror is measured by its faculty to reproduce Zernike

polynomials. Indeed a deformable mirror can reproduce only a finite number of

Zernike modes, such that there is always a residual aberration [51]. If the deformable

mirror can reproduce perfectly the first N Zernike polynomials, then the residual

phase Φ can be expressed by

Φ =
∞∑

i=N+1

aiZi(r, θ) (7.7)

In Figure 7.21 the phase maps obtained after corrections of some Zernike polyno-

mials are displayed. It shows that the system needs a deformable mirror capable of

reproducing the first 115 Zernike modes in order to get a RMS below 0.1 rad.
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(a) σrms = 1.31 rad (b) σrms = 0.8 rad

(c) σrms = 0.57 rad (d) σrms = 0.4 rad

(e) σrms = 0.27 rad (f) σrms = 0.086 rad

Figure 7.21: Residual phase map after correction by a deformable mirror. A RMS
wavefront error σrms < 0.1 rad is obtained when the first 115 Zernike polynomials
are corrected.
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Chapter 8

Conclusion

In conclusion, in this master thesis, a mathematical model of the coupling effi-

ciency of a single mode fiber placed at the focus of a telescope was developed. The

model is based on the Gaussian approximation of the fundamental mode LP01 that is

propagated in the single mode fiber. Since the coupling efficiency also depends on the

electric field at the input of the fiber, Zernike polynomials are used to describe the

aberrations of the incoming light. The study is performed in the waveband [3−7] µm

in order to develop a nulling interferometer for exoplanets detections. Guiding prin-

ciples for designing the telescope/SMF were discussed during the diffraction limited

study. Then, the study of static aberrations is performed and the performance of the

system for non-common path aberrations and their corrections by a deformable mir-

ror is introduced. The simulations demonstrate the necessity of using a deformable

mirror in a space-based nulling interferometer in order to achieve a sufficient wave-

front quality. Indeed, the simulations show that, in order to compensate NCPA (first

120 Zernike polynomials), a deformable mirror capable of reproducing the first 115

Zernike polynomials is needed.
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