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Abstract

Gravitational waves analysis relies on a simulator governed by the nonlinear field
equations of general relativity for binary systems. Such analysis is computationally very
expensive and necessitates a large-scale exploration of the likelihood surface over the full
parameter space. Neural networks have been gaining popularity as tools for gravitational
waves analysis for the last few years. They lead to fast gravitational wave detection
and parameter inference and hence complement classical slower techniques. This work
explores simulation-based inference which relies on likelihood-to-evidence ratio estimation
for the parameters of binary black holes mergers. We build a neural network modeling
this ratio and use it in place of the simulator allowing to perform parameter inference in
a few minutes. The performances are assessed on both gravitational waves generated by
the simulator and emitted by real black holes. A scientific paper summarizing the results
presented in this thesis is in preparation.
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Il Introduction

Gravitational waves detection has been made possible with the construction of the
LIGO detector. The first gravitational wave was detected in 2015. Currently, gravitational
wave emission from at least eleven binary black hole mergers and three neutron star
binary mergers have been measured. The improvements in sensitivity of the gravitational
waves detector network for the next observing run (O4), scheduled to start in late 2021,
will lead to unprecedentedly high detection rates of binary merger events of 1 per week
to 1 per day [B. P. Abbott et al., 2018]. There is thus an urgent need to develop fast
and efficient methods for parameter estimation.

Current analyses are based on sampling methods such as Markov chain Monte Carlo
(MCMC) and nested sampling. Those methods have the huge drawback of being slow to
run, requiring days to weeks to get satisfactory results. This prevents multi-messenger
astronomy which consists in considering multiple messenger signals [Shawhan et al.,
2019]. Examples of messenger signals are gravitational waves, gamma-ray bursts and
electromagnetic radiations. Information inferred from one messenger can help in the
detection of other messenger signals. Fast and accurate inference methods are thus
critical.

The research question addressed by this thesis is whether deep learning algorithms
can be used to speed up the inference of binary black holes mergers’ parameters based
on a gravitational wave. We investigate simulation-based likelihood-to-evidence ratio
estimation methods and explore different neural network architectures to perform this
task. Experiments show that this method seems to produce reliable results in a few
minutes instead of days. However, results indicate that MCMC better constraint the
parameters. Further analyses are needed to understand where those differences come
from.



] Gravitational wave physics

This chapter provides a brief overview of gravitational wave’s physics. A model for this
phenomenon is then presented.

Gravitational waves modify the gravitational forces applied to the bodies it passes
through. Those are represented by a signal indicating the evolution of those modifications
over time. Gravitational waves are explained by the theory of general relativity which
states that no information can travel faster than the speed of light. This includes
information about the positions of masses. When celestial bodies move, the gravitational
force they apply on other bodies changes. The modification of their gravitational field
travels at the speed of light and is called gravitational wave.

To characterize gravitational waves, a space-time model is used. Space-time is a
mathematical model combining the three dimensions of space with the fourth dimension
of time. A position in space-time, characterized by 4 coordinates, is called an event. A
gravitational wave modifies gravity and hence the forces applied on bodies. The forces
modifications lead to the modification of the trajectories of the different bodies and
consequently modify space-time. To characterize a gravitational wave, one considers two
reference space-time events and analyses the modifications on those events resulting from
the gravitational wave. The effect of gravitational waves at a given time is expressed by an
adimensional amplitude related to the change of proper distance in the space-time model
between the two space-time reference events under the effect of this gravitational wave
[“Gravitational waves”, 2020]. Formally, let us denote by h the adimensional amplitude
that characterizes the effect of a gravitational wave, by [ the distance between the two
reference space-time events without gravitational wave effect and by d/ the distance
modification implied by the gravitational wave. The amplitude is expressed:

_a

h
l

(2.1)
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Gravitational waves effect evolves over time as bodies keep moving. Consequently, those
are represented by a temporal signal indicating the evolution of the amplitude h over
time. Gravitational waves are produced by any mass displacement. Therefore, there is
a continuous flow of gravitational waves from diverse sources at any time in the space.
While most of these waves are unobservable because of their tiny amplitude, gravitational
waves produced by pair of massive objects orbiting to each other such as black-holes are
strong enough to be detected by dedicated measurement tools [“Introduction to LIGO
gravitational waves”, 2020].

Gravitational wave’s detection systems are based on interferometry. Interferometers
are composed of two perpendicular arms through which light travels, those are designed
such that no interference appears at the intersection when there are no gravitational
waves passing through. Gravitational waves modify the forces applied on those arms and
hence the travel time of the light in each arm. A travel time modification makes the
light beams to be out of phase at intersection showing interferences. The first detection
system to be built is LIGO which is composed of two detectors based at Hanford and
Livingston in the USA. Those are usually denoted H1 and L1. Later on, the VIRGO
detector based at Santo Stefano a Macerata in Italy and the KAGRA detector based
at Gifu Prefecture in Japan became available. Having multiple detectors at disposal
offers several advantages. First correlating multiple signals allows mitigating the effect
of noise. Second, by nature interferometers cannot be oriented offering no information
about the position of the gravitational event. Position can only be inferred by correlating
information from multiple detectors.

Gravitational waves are modeled by two components: a waveform model and a noise
model independent from each other. The resulting gravitational wave signal is the sum
of the output of each model.

We consider a deterministic waveform model. It models the gravitational wave such
as it would be perceived without any noise. A waveform model takes as input a set of
parameters characterizing the binary black-hole merger. There exist several waveform
models, taking different effects into account and some being faster to evaluate than others.
The waveform model simulates the gravitational wave emitted by the black holes. The
way this gravitational wave is perceived by the detector depends on the detector. This
gravitational wave is then projected on the detectors to model the way detectors would
perceive it. This projection has two effects. First, the amplitude of the signal is scaled
based on the antenna pattern of the detector. Second, the time at which the signal is
received is computed based on the position of the detector on Earth and the position of
the event. Note that, as Earth rotates, the position of the detectors depends on the time
at which the gravitational wave reaches the Earth.
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Figure 2.1 — An example of gravitational wave signal projected on the Hanford(H1) and
Livingston(L1) detectors.

An example of gravitational wave signal is shown in Figure 2.1. As time passes,
the black holes get closer and the signal amplitude increases until the peak. The
peak corresponds to the moment at which the black holes merge. After merging, the

gravitational amplitude quickly decreases.

The model parameters we consider are divided into 8 intrinsic parameters and 7
extrinsic parameters described in Table 2.1. For a better understanding, a graphical view
of those parameters is also provided in Figure 2.2. The sky position, polarization and
coalescence time parameters act on the projection of the gravitational wave onto the
detectors. The coalescence time determines the position of the detectors on earth. The
other parameters determine the gravitational wave emitted. We use the same conventions
as the PyCBC Python library. Two of those parameters are the detector frame masses of
the black holes. There exists a phenomenon similar to the Doppler effect that affects
gravitational waves called redshift. The redshift effect modifies the signal such that
a gravitational wave resulting from a binary black-hole merger with masses (mq, ms)
without redshift effect is indistinguishable from one resulting from a merger with masses
(115, 74%) at redshift 2 [Holz, 2020]. When characterizing a gravitational event, it is
common to consider detector frame masses instead of the true masses called source
masses. Denoting by m?? the detector frame mass and by m*"¢ the source mass, under

redshift z, those are linked by:

me = . (2.2)
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Figure 2.2 — Graphical view of waveform parameters

The noise model characterizes the noise due to the interferometer. Causes of noises
are mainly local vibration such as seismic activity or truck driving and related to
interferometer’s internal components [“LIGO’s Dual Detectors”, 2020]. Before giving
further information about the noise model, let us introduce the notion of power spectral
density (PSD). The power spectral density of a random signal describes its power in the
frequency domain. Let Z be a random signal expressed in the frequency domain and
denote by S its power spectral density, it can be expressed:

S(w) = E{j2(w)[*}- (2.3)

A common noise model is to consider Gaussian noise in the frequency domain. Gaussian
noise is a type of noise that admits a normal probability density function. The noise
model is conditioned on a given PSD, it has a zero mean and a variance equal to the PSD.
The PSD is usually approximated based on real noise events. The probability density
function p; of such a noise is then expressed:

1

w2
pi(w) = Wexp < 2S(w)> .

(2.4)

Figure 2.3 shows the same signal as Figure 2.1 with Gaussian noise added. The noise
amplitude is higher than the signal amplitude making the signal hard to distinguish.

The analysis of the signal detected by interferometry can be decomposed into two
tasks. Those are shown graphically in Figure 2.4. The first task consists in detecting the
parts of the signal that contain a gravitational wave generated by the merging of two
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Parameter ‘ Symbol ‘ Description

Intrinsic parameters

Masses mget, mget The detector frame masses of the two black-holes.
The spins of the two black-holes expressed in
Spins Slz(al,el,gf)l) . . . . .
pins Ss = (4, 05, 62) spherical coordinates. a; is the amplitude, 6; is
2 272 T2 the polar angle and ¢; is the azimuthal angle.
Extrinsic parameters
Luminosity d The distance between the blacks holes and the
. L
distance Earth.

S The inclination angle defined as the angle be-
Inclination .
anele 05N tween the total angular momentum of the binary

& black-hole merger and the line-of-sight.
o The polarization angle relates the frame in which
Polarization s
v the gravitational wave propagates and the refer-
angle
ence frame of the detector.
Coalescence o The orbital phase of the merger at reference
phase frequency.
Correspond to the direction of the event. Com-
Sky bined the with distance, the sky position fixes
position a, o the location of the event. The sky position is
expressed in terms of right ascension denoted by
« and declination 4.
Coalescence ¢ Time at which the black holes merge to become
time ¢ one.

Table 2.1 — Parameters of the waveform model

celestial bodies. This work focuses on the second task that is given a detected merger
signal, to perform inference on the parameters of the merger that generated the signal.
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Figure 2.3 — Figure 2.1 gravitational wave signal with Gaussian noise added
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Figure 2.4 — Gravitational wave analysis tasks




8] Deep learning

We introduce in this chapter neural networks in general, as well as some neural network
architectures and training techniques that will be used later in this work.

3.1 Neural networks

Neural networks are a type of parametric functions. The parameters of a neural network
are to be optimized to match an unknown function implicitly defined by a set of
input/output pairs. In this section, the structure of a neural network is presented along
with the optimization procedure.

Neurons The basic building block of a neural network is a neuron. A neuron is a para-
metric function taking as input a set of N values that we denote by h = (hg, h1,..,hAn—1)
and outputting a single value that we denote by h’. The parameters of the neuron are N
weights that we denote by w = (wp, w1, ..,wny_1) and a bias that we denote by b. The
output of the neuron is defined:

N-1
W=o(b+ ) hw), (3.1)
=0

where o is a non-linear function called an activation function. A graphical view of a
neuron is provided in Figure 3.1.

ho
h U(woho + wihy + woha + b)
ha

Figure 3.1 — Graphical view of a neuron with 3 inputs.
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Neural network A neural network is built by combining neurons. The simpler form
of neural networks is the multi-layer perceptron. In a multi-layer perceptron, neurons are
arranged in layers, each neuron of a layer takes as input the outputs of the neurons of
the previous layer. The first layer is composed of the inputs and the last layer’s neurons
are the outputs of the multi-layer perceptron. Internal layers are called hidden layers. A
graphical view of a multi-layer perceptron is provided in Figure 3.2.

— | —
Inputs Hidden layers Outputs

Figure 3.2 — Graphical view of a multi-layer perceptron modeling a function with 2 inputs
and 2 outputs and containing 2 hidden layers of 3 neurons each.

Optimization procedure Let us denote by f the neural network and by ¢ its param-
eters (biases and weights). We have at disposal a dataset composed of input/output pairs,
we denote by « the inputs and by y the outputs. The goal is to optimize the parameters
¢ such that, for new inputs, the neural network outputs the most probable associated
outputs. To this end, we define a loss function denoted by L taking as input an output
from the dataset and the corresponding prediction of the neural network and outputting
a real value. The loss function must be designed such that it is minimized when the two
inputs are equal, i.e. the neural network makes the correct prediction. Neural network’s
parameters are optimized through stochastic gradient descent to minimize the expected
value of the loss function. At each step, a batch of B samples is drawn from the dataset,
the inputs being denoted by xg,x1,..,£p—1 and the outputs by yg,y;,..,yg_1. Each
parameter of the neural network denoted by ¢; is updated using the following rule:

B-1 _
bi — di — Oél > dL(yj?J(b(:Cj’ ¢))7

= (3.2)

=0
where « is the learning rate.

The partial derivatives are computed using the backpropagation algorithm. This algorithm
is based on the chain rule. Denoting by (09, 01, ..,0p/—1) the M inputs of a neuron and
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by w its output, the chain rule is expressed as:

du M_lﬁ do;
dWi - 80]' dWZ"

(3.3)
j=0

The terms % depend only on the considered neuron. The structure of a neuron being
J

fixed, its derivative is hard-coded and hence known. The terms ;LV[Z_ are computed

recursively using the chain rule.

3.2 Convolutional neural network

A convolutional neural network is a neural network composed of convolutional layers.
Convolutional layers have been designed to give good performances with inputs that
admit a spatial representation. The most common example of such inputs is images.
Images are composed of pixels that admit a spatial representation. Each element of the
input can itself be composed of several features called channels. As an example, a pixel
of a colored image is composed of 3 channels being the values of the red, green and blue
components. Convolutions can also be used for temporal signals such as gravitational
waves. Convolutional layers may admit an arbitrary number of dimensions. In this work,
we will only consider one-dimensional convolutions as temporal signals have time as
single dimension.

B (] (TH o

Figure 3.3 — Convolutional layer

Figure 3.3 shows graphically the computation made by a convolutional layer. The input
consists of a set of consecutive elements across the considered dimension. We consider
an input of 5 elements in the picture. A kernel composed of learnable weights will be
applied to input elements to produce the output of the layer. The size of the kernel is
arbitrary and fixed when designing the architecture. In the picture, a kernel of size 3
is chosen. An output element is computed by applying the kernel to the corresponding
input element channels and the channels of the elements next to it. Each input element
is multiplied by its corresponding kernel element, the results are then summed. Let h be
the input of the convolution layer, h; ; being the 4t channel of its i*" element, by k the
kernel, k; ; being the 4t channel of its i element, by L the kernel size, by Cj, the input
channel size and by h’ the output, h} being its ith element. The convolution operator

10
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denoted by ® is expressed:

Cin—1L—-1
W =h®kschi= > > hick (3.4)
c=0 [=0

To improve convolutional neural networks’ capacity, one may equip hidden layers with
several channels. This allows the neural network to model more complex functions as
hidden layers can contain more information. We denote by Cy,; the number of output
channels. A layer outputting C,;: channels is equipped with C,,; kernels. Denoting by
h/; the it" channel of the output and by k; the i*" kernel, h’; is expressed:

Dilated convolutions Dilated convolutional layers are based on dilated convolutions
[Yu and Koltun, 2015]. Those are similar to convolutions with the exception that the
kernel is not applied on consecutive inputs elements. A dilated convolution of dilation d

applies the kernel on input elements equally spaced by a distance d.

T N Outpn
|:|:|:| Dj:‘ Kernel
T W] [T e

Dilation = 2 Dilation = 3

Figure 3.4 — Dilated convolutional layer

Figure 3.4 shows graphically the computation of a dilated convolution for dilations of
size 2 and 3. A dilated convolution of dilation 1 is similar to a classic convolution. Using
the same notations as for convolutions, a dilated convolution of dilation d is computed
the following way:

Cin—1L-1

h; = Z Zhi+dz,ckz,c- (3.6)

c=0 [=0

Residual neural network A residual network is a type of convolutional neural network
based on residual connections [He et al., 2016]. A residual connection is an identity
mapping of features at a given layer that are added deeper in the network. It has as
objective to allow easier training of the neural network with the assumption that the
difference between the input and the output is easier to learn than the output itself.

11
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O
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Residual

[Activation functionJ .
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D,

Figure 3.5 — Residual neural network block

Figure 3.5 shows a residual network block. The output is the result of the addition of
the original input and the output of two convolutional layers. A residual neural network
is composed of a series of such blocks.

3.3 Normalization

It is common in deep learning to normalize the data to improve training. Normalization
may take several forms. It may be applied to the training data but also to features inside
the neural network through normalization layers.

Data normalization Data normalization consists in shifting and scaling every feature
to be of comparable mean and variance. Let us denote by (x, y) the dataset, x are the
inputs and y the outputs. We consider the inputs  to be composed of N samples of M
features and denote by x; ; the j1 feature of the i*" sample. The first step consists in
computing the approximate mean fi; and variance 6]2- of each feature from the dataset:

1 1
ﬂj = N Z"Eivj’ (3'j = N Z(l‘@j — ﬂj)Q. (37)
i=1 i=1
The normalized element denoted by #; ; is then expressed as:
o le — ﬂ]
& = —. (3.8)

12
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Batch normalization A batch normalization layer normalizes the features inside the
neural network in a similar way to data normalization [loffe and Szegedy, 2015]. The
difference resides in the fact that since the entire dataset is not available during a training
step, mean and variance are then computed at each training step on batch samples. Let
us denote by h; ; the 4t feature of the i*” sample in the batch and by fi; and c;?j the
approximations of mean and variance of feature j computed on the current batch. Let B
be the batch size, the batch mean and variance are computed as:

1 B

N ) )
'uj = E Zhi’j’ O‘j = E Z(hivj — ,Uj)2. (39)
=1 =1

Batch normalization acts differently at training and testing phase. At training phase,
the normalized element, fL” is expressed as:

. hi i — fi;
hij = 107‘“ (3.10)
J

At testing phase, running means and variances are used to scale the features. Let y/ and
o' denote running mean and variance. At each training step, the running means and

variances are updated:

p () + (1 — ), o — ()0 + (1 — a)5?, (3.11)

« being the momentum. The normalized element is expressed:

/

> hij — 1

th] = / .
75

(3.12)

Optionally, in addition to normalization parameters, learnable per-channel scale and
bias are applied. Let C be the number of channels of the features to normalize, we denote
by B1,...c the biases and by 71, ¢ the scales. Let us denote by c(j) the channel to which
feature j belongs. When using those parameters, Equation 3.10 is modified as:

hij — i

hij =
gj

Ve(g) T Pe(s)- (3.13)

Equation 3.12 is updated similarly.

Layer normalization Layer normalization works similarly to batch normalization
with the difference that those compute normalization parameters across features instead
of batches. The same normalization parameters are shared for all features in a layer, and
different normalization parameters are computed for each sample. The normalization

13
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parameters of a sample ¢ with M features are expressed:

Mo M
i =Y —hij 5o =\ D 5 (hij — i) 14

In opposition to batch normalization, layer normalization acts similarly at training and
testing phase, the normalized element iAL” is expressed as:

N B — [
hij = Y A = 'ul.

(3.15)

0j

Layer normalization uses per feature scale and bias parameters v and 3, those are then
of size M. When using those parameters, equation 3.15 is modified:

5 hij — i
h@j = ’]T'M”)/j + ﬁj, (316)

2

3.4 Hyper networks

Hyper networks were developed by Ha et al., 2016. The idea is to make the weights of
the primary network generated by another network called a hyper network, the hyper
network being trained by gradient descent, end-to-end with the primary network.

Hyper
network

Hyper
network

Hyper
network

Conv 1

Conv 2

Conv N

6 ®O
VIR

Figure 3.6 — Hyper network

Figure 3.6 shows an architecture based on a hyper network. The convolutions have
no learnable internal parameters. Parameters are provided by a hyper network shared
between all layers. Each layer has a set of scalar characterizing the layer called embedding.
We denote the embedding of the i** layer by e;. This embedding is given as input to

14
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the hyper network to produce parameters for the convolutional layer. We denote the
parameters of the i'® convolutional layer by ¢;. The learnable parameters of such
an architecture are then the embeddings and the parameters of the hyper network.
Hyper networks were developed to reduce the number of parameters while keeping the
same convolutional structure as an architecture without hyper network. The hyper
network is usually small, and the embedding size can be set to an arbitrarily low number,
independently from the complexity of the primary network.

3.5 Conditionally parameterized convolutions

Conditionally parameterized convolutions (CondConv) mimic mixtures of experts while
being faster to evaluate [Yang et al., 2019]. Let us denote by h the input of the CondConv
layer, by h’ the output of the layer, by ¢, the parameters of the i" expert, and by «;
a weight associated to the i*" expert. The mixture of experts framework consists in
evaluating the convolution for each expert parameter and to combine their results. A
mixture of N experts has the following expression:

N

' => ai(¢p; ®h). (3.17)

i=1

CondConv combines the kernels before evaluating a single convolution. Modifying
the computation order this way is equivalent to mixtures of experts while being more
computationally efficient since convolutions have to be applied at many different positions
in the input while the experts are only combined once per input. A CondConv layer with
N experts has the following expression:

N
R = (> aig;) ®h. (3.18)
=1

The routing weights a; are computed based on the inputs through a routing function r:

al,..,N = T(h) (319)

The computational graph of an N experts CondConv is shown graphically in Figure 3.7.
It contains N internal learnable kernels that are combined to produce the final kernel of
a classical convolution.

15
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Figure 3.7 — Conditionally parametrized convolution
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In this section, we introduce the task of Bayesian inference with simulators. We review
common techniques, with a particular focus on the method used in this work.

4.1 Problem statement

Inference is the task of making a guess on something based on information at disposal.
Let « denote the observation and 1 the parameters to be inferred. Bayesian inference
consists in using the Bayes’ theorem to perform inference. Let p() be a prior distribution
over the parameters to be inferred, i.e. a prior knowledge without any information about
an observation. p(x|d) is the likelihood, which is the probability density function (pdf)
of the observations conditioned on the generating parameters. The evidence p(x) is the
pdf of the observation. The goal of Bayesian inference is to compute the posterior p(d|x),
which is the probability density function over the generating parameters conditioned on
an observation. This is done through the Bayes’ theorem:

_plx[9)p(9)  p(x[I9)p(I)
POl = =) T T a0 (@ ®)p(d)

(4.1)

where O is the set of possible generating parameters values 9.

Simulation based Bayesian inference also called likelihood-free inference (LFI) is a
particular instance of Bayesian inference in which the likelihood p(x|#) is intractable.
This likelihood is only implicitly defined by a simulator through which samples can be
drawn. In addition, the integral at the denominator of Equation 4.1 is also intractable.
This all makes Bayesian inference a complex task.

17
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4.2 Bayesian inference methods with tractable likelihood

We address in this section the task of performing Bayesian inference with a tractable
likelihood p(x|9¥) and an intractable evidence p(x). To this end Markov chain Monte-Carlo
methods are considered.

Markov chain Monte-Carlo (MCMC) methods are used to sample a random variable
with a pdf proportional to another known pdf up to a normalizing factor [Metropolis et al.,
1953]. For a given observation x, the posterior p(d¥|x) is proportional to p(x|d)p(9).
One can then use MCMC to sample from the posterior. A Markov chain is a sequence
of events such that probability of each event is only conditioned on the previous event.
We denote by 9; the t* element in the chain. A Markov chain Monte-Carlo algorithm
constructs a Markov chain such that the asymptotic distribution of its events follow the
target distribution. To this end such algorithms are equipped with a proposal transition
probability function ¢(Yprop|?¥:) from which it is easy to sample and an acceptance
probability a(x, ¥, Oprop). At each iteration, a proposal sample Yprop is generated
according to the distribution g(¥prop|Y:) and accepted with probability oz, V¢, Oprop)-
The pseudo-code of a MCMC algorithm is shown at Algorithm 1.

Algorithm 1 Markov chain Monte-Carlo

x < Conditioning observation
Yo — Yo ~ p(V)
t+ 0
while !StoppingCriterion do
Yprop < Dprop ~ ¢(Uprop| V1)
u 4 u ~ Uniform(0, 1)
if u < a(x, 9, 9prop) then
19t+1 — 19prop
else
D1 < Yy
end if
12: t+—t+1
13: end while
14: return Yo

—_ =
== O

There exist many Markov chain Monte-Carlo algorithms that mainly differ in the ac-
ceptance probability. As an example, we present the Metropolis-Hastings algorithm
[Hastings, 1970]. For a given proposal transition probability function g(¥prop|¥:), the
acceptance probability is expressed:

p(ﬂprop)p(m|'ﬂpr0p) Q('ﬂproph?t)
p(9¢)p(x|dy) q(ﬂtwpmp)) (4.2)

a(x, 9, Fprop) = min (1,
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4.3 Review of simulation-based Bayesian inference

In this section, we review methods for performing simulation-based Bayesian inference.
Those methods are divided into the approximate Bayesian computation (ABC) method
that is not based on surrogate model and methods that construct a surrogate model
[Cranmer et al., 2019]. Model-based methods can further be divided into methods that
learn a model for the likelihood, the posterior or the likelihood ratio.

Approximate Bayesian computation (ABC) This method inspired by rejection
sampling consists in sampling data from the joint probability density function and
rejecting values far from the observation [Beaumont et al., 2002]. The procedure is
summarized in Algorithm 2. Sampling from the joint density distribution is done by
sampling ¢ from the prior p(9¥) and then ' from the likelihood p(x’|¢) using the
simulator. The samples 9 that generated observations &’ close to the observation x are
then retained. To this end, one defines a distance function between two observations, if
this distance is lower than a fixed value €, ¥ is retained. It can be proven that with e — 0,
retained ¥ follow the posterior distribution p(9¥|x) conditioned on the observed value
of . The posterior distribution can then be approximated through density estimation
techniques.

Algorithm 2 Approximate Bayesian computation

1: while !StoppingCriterion do

2 Y <+ 9~ p(IP)

3 ' — ' ~p(a'|9)

4: if DISTANCE(xz, ') < € then
5 STORE(Y)

6 end if

7: end while

Modeling the likelihood A second approach consists in building a surrogate of the
likelihood p(x|¥) and using this model to perform inference. Diggle and Gratton, 1984
use kernel density estimation to construct the surrogate. Markov chain Monte Carlo
methods can then be used to sample from the posterior conditioned on an observation
using the likelihood model [Hastings, 1970; Metropolis et al., 1953].

Modeling the posterior distribution A model p(d|x) of the posterior can be directly
learned. A first approach to this problem would be to train a neural network that takes
as input the observation & and output parameters of a given probability density function
such as a Gaussian mixture. Such models may however be of limited capacity due to the
choice of probability density function. A way to increase the model capacity is to use
conditional variational auto-encoders [Kingma and Welling, 2013; Rezende et al., 2014;
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Sohn et al., 2015]. This framework introduces a set of latent variables z. The posterior
is then given by:

5012) = [ 1oy (2l2)rn 9]z @)z, (13)

where rg, is the encoder network and 74, is the decoder network. To train this network,
one need to introduce a third network gg,(z|z,¥). Those networks are trained to
maximize

*KL(Q¢3 (Z’:B, 19) ‘r¢1 (Z|CC)) + Eq¢3 (z\m,ﬁ){log Ty (19|Z7 iB)}

The KL symbol denotes the Kullback-Leibler divergence and is expressed as:

KL(q¢>3 (z|x, 19)’T¢1 (z|m)) = Eq¢3(z|w,l9) {log W} . (4.4)

The term —K L(qg, (2|, 9)|re, (2|x)) makes the distributions gg4,(z|x,¥) and ry, (z|x)
close in average. The term Eq¢3(z|m719){10g 74, (P2, )} encourages the network to predict
the correct parameters 9.

Normalizing flows can also be used [Kobyzev et al., 2020; Papamakarios et al., 2017;
Rezende and Mohamed, 2015]. A normalizing flow is a density estimator that leverages
the change of variable theorem by modeling the probability density as being an invertible
transformation of another tractable base probability density function. Let py be the
density to model and p; the base density, the normalizing flow models an invertible
transformation f such that h’ = f(h), using the change of variable theorem, the density
pp can then be expressed:

" _ IRy of!
pr () =pu(f1(R)) ’det ( O >| (4.5)

For Equation 4.5 to be tractable, the transformation f must be designed to have a tractable
Jacobian ‘det (%f—f:,l) ’ To obtain a high capacity model, several transformations are
applied end-to-end. A normalizing flow is optimized to maximize the log probability of the
training dataset. This framework can be extended to learn probabilities conditioned on

an observation by using a conditional base density or by conditioning the transformations.

Modeling the likelihood ratio Another type of method consists in learning a model
of the likelihood ratio. Let 19y be the null hypothesis and 1, the alternative hypothesis.
The likelihood ratio is expressed:

p(x[Yo)
p(x|dr)

A@;90,91) = (4.6)
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Cranmer et al., 2015 show how to learn this likelihood ratio using a classifier trained
to discriminate between the two hypotheses. Brehmer et al., 2018a; 2018b; Brehmer
et al., 2020; Brehmer et al., 2019; Stoye et al., 2018 extend this method to make use of
information about simulator’s latent variables, i.e. intermediary states of the simulation
process showing improvements in convergence speed and data efficiency.

Active learning To improve the sample efficiency of the methods, active learning
can be used. Those methods consist in using the information at disposal to sample
efficiently from the simulator reducing the number of samples to draw. Such techniques
consider posterior density estimation conditioned on a specific observation that we call
xg. The methods aim to build a model that is performing well on this observation,
to this end we sample parameters ¥ from a distribution p(9) different from the prior
p(¥). The distribution p(1) is chosen based on current knowledge to produce simulated
observations close to xg. The training procedure alternates between training a model
and drawing new observations from a prior computed based on the current model. The
main issue is that using p(1?) instead of the true prior biases the posterior probability
density. Papamakarios and Murray, 2016 address this problem by multiplying the learned
posterior by p(9¥)/p(9¥). Lueckmann et al., 2017 use a neural network model and weight
the loss assigned to each sample by p(d)/p(9¥) during training. Papamakarios et al.,
2018 build a model for the likelihood instead of the posterior density removing the prior
dependency.

Amortization A huge advantage of model-based techniques is the fact that the model
needs to be built only once even if we perform inference on several observations. The
computational cost of building the model is said to be amortized. In contrast, sampling
methods such as approximate Bayesian computation require the whole process to be
performed for each observation. This process may require heavy computations when
dealing with large scale problems, amortization is therefore of high interest.

4.4 Likelihood-to-evidence ratio based inference

In this section, we focus on the simulation-based likelihood to evidence ratio estimation
technique used in this work. This method developed by Hermans et al., 2019 consists
in creating a model for the likelihood-to-evidence ratio. Let r denote the likelihood-to-
evidence ratio, defined as:

_ p(z|9)

r(x,9) = @) (4.7)

A classifier is trained to discriminate between (x,9) ~ p(x,?) and (x,9) ~ p(x)p(F).
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In practice, first a training set is generated from the distribution ¥ ~ p(4),  ~ p(x|9).
At each training step, a batch of (x, 1) pairs is sampled from this dataset and are
labeled as 1. The ¥ samples from those pairs are then permuted such that each 19 ends
up in a different position than its initial one. Those new pairs are labeled as 0. The
classifier is then trained using the binary cross-entropy loss. Let us denote by sg(x, 1)
the classifier with parameters 6, by L the binary cross-entropy loss, by D a dataset of
pairs (z,9) ~ p(x,¥) and by M the batch size. The training algorithm is provided in
Algorithm 3.

Algorithm 3 Classifier training algorithm

while not converged do
(x,9) < M samples (x,9) ~ p(x,?)
9’ < M samples ¥ ~ p(¥')
loss < L(sg(x,9),1) + L(sg(x,9’),0)
0 < OPTIMIZE(H, Vgloss)

6: end while

7: return sy

Denoting by s(x, ) the learned classifier, the cross-entropy loss of such a classifier is
expressed:

2
F(s)

Lls] = /dt‘}/dw ;p(m,ﬁ)[— logs(w,ﬁ)} + 119(19)?(“3){—10%(1 —@ )] g

This loss function is minimized for a function s*(x,) such that

—5 (12|~ o | PO [ ]) (19)

As long as p(¥) > 0, this is equivalent to

_6F

0= %%

s*

1

1
9 = ) —. 4.10
Hence, the Bayesian optimal classifier can be expressed as:
)
s*(x,9) = 5 p(@,9) (4.11)

(z,9) + p(x)p(I9)

The likelihood-to-evidence ratio can then be expressed

@) p@d)  pe)
@) = @, 8) ~ @@~ pla) (4.12)
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Using the learned model s instead of the Bayesian optimal classifier, one obtains an
approximation 7 of the likelihood-to-evidence ratio:

s(x, )

=50 (4.13)

Pz, ) =

Equation 4.13 is not stable for low values of s(x,9). A workaround is to design the
classifier such that it ends with a sigmoid activation. Let us denote by d(x, ) the logit
which is the value extracted before the sigmoid activation:

1
S@.9) = e a0 (4.14)

The approximated likelihood-to-evidence ratio can be expressed in the more stable form:

1
o, 9) = &0 LropCde D)) oxp(d(w, 9)). (4.15)

L=s(x,9)  1- qomcamay

Finally, an approximation of the posterior density probability function p(x,d) can be
expressed using the learned likelihood to evidence ratio #(x,®) and the tractable prior
p(9) as:

p(Oz) = Pz, 9)p(¥). (4.16)
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5] Parameter estimation from gravi-
tational waves

In this work, we perform Bayesian inference in the context of gravitational waves analysis.
The objective is to determine the parameters of a binary black-hole merger given the
corresponding observed gravitational wave. We denote by x the gravitational wave and
by ¥qu the parameters of the binary black-hole system.

A particularity of gravitational wave simulation is that the waveform model is deter-
ministic. Using a Gaussian noise model then leads to a tractable likelihood p(x|9qy). To
evaluate the likelihood, one simulates the waveform with parameters 9¥4;. The difference
between @ and the simulated waveform corresponds to the noise. The probability density
of the noise can be computed since the pdf of a Gaussian distribution is tractable. How-
ever, in most analyses, one is interested in only a subset of parameters of interest that
we denote by 1;, we denote by 9; € ©; the other parameters. The likelihood considering
only the parameters of interest is expressed as:

p(z|¥;) = /@ p(x|0s,94)p(9;)dd;. (5.1)
Due to the complexity of the waveform model, the integral cannot be computed analyti-
cally making the likelihood intractable. For easier notations, we will further denote the
parameters of interest ¥; by 9.

The intractability of the likelihood makes us rely on simulation-based Bayesian inference
techniques. Due to the fast inference goal, amortization is particularly compelling. The
model is built at any time before receiving the gravitational wave. On gravitational
wave detection, the built model is used to perform fast inference. We use the method
presented in section 4.4.

In the rest of the section, we explain the different steps of the method. First we define the
prior p(9¥). Then, the training data generation pipeline is presented. Several architectures
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of the model are then explored. This section ends with the definition of quantities of
interest derived from the posterior model.

5.1 Prior

The first step consists in the design of a prior p(¢#). For comparison purposes, we use
the same priors as B. Abbott et al., 2019. Table 5.1 summarizes the priors used. The
used pdfs are defined in Table 5.2. Provided that the model needs to be trained before
receiving the signal on which to perform inference, a suitable prior for the coalescence
time is impossible to design. As a workaround, we fix this value to a fictive value. Since
we use a uniform prior over the sky position, the prior over the relative position of
the event to the detectors is uniform no matter the coalescence time prior. Therefore,
this does not affect the data generation procedure. At inference time, one has access
to the coalescence time. When inferring the sky position, we can, therefore, derive a
correction factor to apply to the inferred sky position taking into account the fictive
training coalescence time and true coalescence time.

Parameter ‘ Prior ‘ Units
mi.2 Uniform(10, 80) Mg
dr, UniformVolume(10, 1000) | Mpc
05N SinAngle(0, ) rad
v Uniform(0, 27) rad
@ Uniform(0, 27) rad
ai 2 Uniform(0, 0.99)

6 d
12 } UniformSolidAngle e
$1,2 rad
« ) rad

} UniformSky
0 rad

Table 5.1 — Prior distribution of gravitational wave simulation parameters
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Probability density function

J Description

Uniform(a, b)

B %a x € [a,b]
=

otherwise

Describes the probability density
function of a variable with uniform
probability over a given range

SinAngle(a, b)

sin(zx) sin(x)

= = e T € [a, b] Describes the probability density
flx) = Jo sin(y) dy function of an angle which proba-
0 otherwise | bility is proportional to its sinus
UniformVolume(a, b)
Describes the probability density
2 2 function of the distance from a cen-
2 3 e [a,b] A iy
flz) = fb y2dy  0P-a® ’ ter O of an object with a position
0 otherwise uniformly distributed over a sphere
centered in O, the distance being
bounded between a and b.
UniformSolidAngle

sin(0)

(o ¢>:{ "0 e fo,n],6 € [0,2m

0 otherwise

Describes the probability density
function of the spherical coordinates
angles of a point uniformly dis-
tributed on the surface of a sphere.
f is the polar angle and ¢ the az-
imuthal angle.

UniformSky

o€ [_%a g]’a € [05271-]

otherwise

cos(6)
f((a,0)) = { 04“

This distribution is similar to Uni-
formSolidAngle with slight modifica-
tions to respect sky location conven-
tions. The azimuthal angle is called
right-ascension («), the polar angle
is called declination (§) and vary in

the interval -7, 7]

Table 5.2 — Definition of useful probability density functions.
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5.2 Data generation process

In this section, we present the procedure to generate the training data. We want to
generate samples (x,9) ~ p(x|¥)p(¥). This data generation procedure presents several
challenges. First, it must be designed to fit as closely as possible to reality. Second,
the data must be provided in a form easy to learn by the model, this is done by
performing appropriate pre-processing steps. Finally, the data generation procedure must
be independent of the gravitational wave on which to perform inference. Indeed, We must
train the model before receiving the gravitational wave to amortize the training cost.
In a real application, we would, therefore, have no information about the gravitational
wave when training the model. Figure 5.1 provides a summary of the data generation
procedure. We base our pipeline on the code provided by T. Gebhard and Kilbertus,
2020.

( Sample parameters from )
the prior distribution

Simulate a wave-
form of 16 sec

N le 1 f noi
Project the waveform Sample 16 sec of noise

from real recordings of
| on the H1/L1 detectors J| both H1/L1 detectors

@

[ Whiten the signal using locally estimated PSD J

[ Apply high-pass filter on the signal ]

Crop the signal to 4 sec with the coalescence at
3.5 seconds time shifted by a random amount

Figure 5.1 — Summary of the synthetic training data generation process

The first step consists in sampling parameters from the prior and then to evaluate
the waveform model. For the sake of validation against classical methods, we work with
the IMRPhenomPv2 waveform model. Note that the speed of the methods used in this
work is independent of the waveform model’s complexity. The waveform model could be
replaced by any other model. We generate 32 seconds of signal. The generated waveform
is then projected on the Hanford and Livingston detectors from LIGO as explained in
Section 2.
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The next step consists in generating noise that will be added to the projected waveform.
As mentioned in Section 2, a common model is to consider Gaussian noise in the frequency
domain. This model is conditioned on the noise power spectral density (PSD). This PSD
changes over time and is usually approximated on noise recorded around the event. In
this application, since we train the neural network before receiving the gravitational
wave on which to perform inference, this PSD is not available. The alternative chosen to
remove the dependency on the PSD is to make abstraction of a noise model and sample
directly from real noise recordings. Using real noise samples also have the advantage to
better fit reality. However, doing so is equivalent to marginalizing over the PSDs since
we sample noise recordings ranging over a wide period and hence over a wide range of
PSDs. This leads to a loss of information compared to methods that do not perform
amortization and use the information of the PSD. This analysis focuses on data from
the O1 run, i.e. the first running session of the detectors. We sample noise recordings
from this run excluding the detected gravitational waves. Consequently, our model is
marginalized with respect to those samples and only works on events from this run.
However, the method could be extended to other runs by generating synthetic data and

training a model for each run.

Once the waveform and the noise have been generated and added, we perform pre-
processing steps in order to provide easy to learn data. The first pre-processing step
consists in whitening the signal. Whitening equalizes the spectrum of the signal. Let us
denote by X the signal in the frequency domain and by S the PSD estimated on the 32
seconds of the generated signal. The whitened signal X (w) at frequency w is expressed
as:

X(w) = X;Zﬁ).

(5.2)

Whitening eases the task of marginalizing over the PSDs since it removes most of the
dependence.

Noise is typically high at low frequency. Therefore, a second preprocessing step
consist in applying a high-pass filter to the signal. We filter out the frequencies under
20Hz. Figure 5.2 shows the effect of whitening and high-pass filtering on a noisy signal.
Amplitude of the different frequencies are more similar and the amplitude of frequencies
below 20 Hz is reduced.

Whitening corrupts the edges of the signal making those be of abnormally high
amplitude. The signal is therefore cropped to keep 4 seconds of it. This removes the
corrupted edges. The 4 seconds window is such that the coalescence time lies at 3.5
seconds to which a small random shift is applied. We sample this random shift uniformly

28



Parameter estimation from gravitational waves Chapter 5

le—19

— H1

GW amplitude
o
—=

0 200 400 600 800 1000
Frenquency (Hz)

(a) Before

151 —m

10

GW amplitude
=

_5 i
_10 i
_15 1 T T T T T T
0 200 400 600 800 1000
Frenguency (Hz)
(b) After

Figure 5.2 — Effect of whitening and highpass filtering

between -0.1 and 0.1 seconds. The objective followed by setting this random shift is
to prevent the network from overfitting on the position of the coalescence time in the
signal. Indeed, in opposition to simulated data that come with exact knowledge about
the coalescence time, real gravitational events’ coalescence times are estimated and hence
are not known with exact precision.

5.3 Neural networks

As described in Section 4.4, we will build in this section a classifier taking as input a
gravitational wave x and some parameters 1. This classifier will be trained to discriminate
between (x, 9¥) pairs generated following (x,9) ~ p(x|¥)p(?) and (x, 9¥) pairs generated
following (x, ) ~ p(x)p(I).

We feed to the network 4 seconds of gravitational wave signal sampled at 2048 Hz.
The signal is therefore composed of 8192 samples. Since they provided complementary
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information, we use both the Hanford and Livingston detectors. Using both detectors
allows mitigating the effect of noise since the noise perceived by those detectors is different.
It also allows performing inference on the parameters that act on the projection of the
waveform on the detectors. Those parameters are impossible to infer with only one
detector. The signals provided by the detectors are provided in two different channels to
the model. In the O1 run, only Hanford and Livingston were available. In more recent
runs, the Virgo and Kagra detectors are available. The architecture can be adapted by
adding more channels to the input. We aim to construct the posterior density of the 2
parameters of interest. The size of the parameters fed to the network is then 2.

5.3.1 Base architectures

We first consider two base architectures: one based on dilated convolutions and the other
on a residual neural network. Variants of those architectures are then explored.

Dilated convolutions The first architecture considered is inspired by the one used by
T. D. Gebhard et al., 2019 for gravitational wave detection. A sketch of this architecture
is shown in Figure 5.3. The network is composed of two parts. The first part uses
convolutional layers to compress the gravitational wave into features. The second
part is a multi-layer perceptron that takes as input those features concatenated to the
parameters and output a real number between 0 and 1. A value close to 1 indicates that
the gravitational wave is likely to have been generated by the parameters given as input.
In opposition, a value close to 0 indicates that the gravitational wave is likely to have
been generated by other parameters. The closer the value to the extremes, the higher
the probability of the claim.

Let us consider a M channels convolutional part of the neural network. It is first
composed of a convolutional layer with a kernel size of 1 mapping the 2 channels input to
a M channels signal. This signal is then fed to 13 dilated convolution layers with M input
and output channels each and a kernel size of 2. Starting from 0, the i*" convolution
layer has a dilation of 2. The size of the signal is therefore reduced by 2¢ at this layer.
We have got

12
> 2t =2 —1=28191.
1=0

At the end of the 13 dilated convolutional layers, the signal, therefore, reduces to a single
element with M channels. Note that even if the signal length reduces quickly due to
the dilated convolutions, this architecture makes the final element depend on all the
input signal points. This is illustrated in Figure 5.3. The black arrows represent the
dependencies. The highlighted neuron at the output of the third layer depends on 8 = 23
input values.
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The major advantage of this architecture is to be invariant to a shift of the signal
neglecting border effects. Convolutional layers apply the same kernel at each place in the
signal, those are therefore by nature invariant to shift. The convolutional part reduces
the signal to 1 sample, hence the multilayer perceptron has no information about the
initial positions in the signal. This property is of high interest in gravitational wave
parameter inference since this step follows a gravitational wave detection step which may
imperfectly estimate the coalescence time. Having an architecture resistant to shift allows
to be less sensitive to such errors. Note that border effects make this shift invariance
property not perfectly satisfied. In the rest of this work, we will denote this architecture
by dilated convolutions.

Residual neural network The second architecture considered is a residual neural
network [He et al., 2016]. The skeleton is the same as for dilated convolutions showed in
Figure 5.3. The signal is first passed to a convolutional network mapping it to features
that are then concatenated to the parameters and fed to a multilayer perceptron. The
difference resides in the nature of the convolutional network. We here replace the 13
dilated convolutions by 10 ResNet blocks. We will denote this architecture by resnet.

We reduce the dimension of the signal by 2 every 2 ResNet blocks. The final dimension
is, therefore, greater than 1 making this network not benefit from the shift invariance
property. However, the random shift applied to training data should make the learned
network still slightly resistant to shifts.

5.3.2 Conditional parameterization

In this section, we consider improvements of the two architectures described above. The
key idea is that it would be valuable to get information about the parameters ¥ in
the convolutional part of the network. Two improvements are considered, one using
HyperNetworks and one using conditionally parameterized convolutions. In total, six
architectures are then considered, the two base architectures and their two respective
variants each.

HyperNetwork The first improvement considered is the use of HyperNetworks [Ha et
al., 2016]. We make use of this architecture to integrate information about the parameters
9 by feeding 9 along with the embeddings to the hyper network. The parameters 19,
therefore, act on the convolutions, the modified architecture is shown in Figure 5.4.
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Sigmoid layer [ o(xz): R—0,1] ]

Multilayer perceptron OOOOOOOOOOOOOOOO

3 layers of 200 neurons
each but the last followed
by layer normalization
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Figure 5.3 — M channels dilated convolution neural network architecture. A first convo-
lutional layer extends the number of channels. Those features are then mapped to M
features through a convolutional neural network composed of 13 dilated convolutions.
The features are then passed along with parameters 9 in a 3 layer multilayer perceptron
to produce a value in the range [0, 1] indicating the probability of the signal to have
been generated by parameters 9.

Figure adapted from T. D. Gebhard et al., 2019.

Conditionally parameterized convolutions Following the same idea of feeding
information about the parameters 19 to the convolutional network as for HyperNetworks,
conditionally parameterized convolutions (CondConv) could be used [Yang et al., 2019].

We take advantage of this framework to feed information about the parameters ¥ in
the convolutional network by making the routing function a function of 9. The routing
function of an N experts CondConv layer is composed of a small multilayer perceptron
taking 9 as input and ending by a sigmoid activation which outputs N values between
0 and 1, each layer having its own routing function. The modified CondConv block is
showed in Figure 5.5. The final architecture is therefore similar to Figure 5.3 in which
the dilated convolutions or ResNet blocks are replaced by CondConvs taking both  and
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9 as input.

Feeding information about ¥ to the convolutional part is not the only benefit of
CondConvs. Indeed, the initial objective of CondConvs being to speed up mixtures
of experts is highly compelling for our application. It allows reducing the number of

channels and to rely on experts to keep a high capacity model and increase inference

speed.

[ o(z): R — [0,1] ]

00000000++00000000

0XONONONONONONORINONONOXONONOROXO
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0BO000++0000000
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SEOBOEODO 0000000000 oo
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Figure 5.4 — M channels dilated convolutions hyper network architecture. e; denotes the

embeddings.
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Figure 5.5 — Modified N experts CondConv block to include information about 9.

5.3.3 Shift invariance property under normalization

For the shift invariance property of the dilation convolutions based architecture to hold,
one needs to be careful with normalization. The normalization steps should also be
independent of the position of the points in the signal.

Let us first consider data normalization. To not break the shift invariance property,
all signal points should be scaled similarly. To this end, we compute mean and variance
considering all signals points as being the same feature. The data mean is shared between
all points and is the mean of all points in all samples, the same holds for the variance.
They are therefore scaled using the same parameters independently from their position
in the signal.

The second normalization step consists in normalizing the features inside the network.
Although batch normalization is a classical approach, we will prefer layer normalization
that computes shared mean and variance for all features. Classical normalization, however,
computes per feature scale () and bias (). In this work, we use shared scale and bias
parameters.

5.4 Inference

Once the classifier is trained, one can evaluate the approximate posterior probability den-
sity function p(d|x). However, point estimates of the posterior are not very informative.
In this section, we aim to derive informative quantities from the posterior probability
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density function. We consider two quantities: the maximum a posteriori estimator (MAP)
and credible intervals. All those quantities are defined considering the true posterior
p(¥|x). We approximate those using the learned posterior p(d|x).

Maximum a posteriori estimator Given an observation a, the maximum a posteriori
is the combination of parameters that maximize the posterior probability density function.
Denoting by © the set of possible parameters, the maximum a posteriori estimator 9 is

expressed:

9 = arg max p(9|x) ~ arg max p(9|x) = arg max #(I, x)p(9). (5.3)
vecO vecO C)

Credible-intervals A credible-interval of size T over the parameters that generated
an observation x is a set of parameters that we will denote by @ such that the unknown
generating parameters fall in this set with a probability T according to the posterior
density. Mathematically, O is a set of parameters such that:

T= p(¥|x)dd ~ p(¥|x)dd. (5.4)
IEO YEOT

There exist many intervals that satisfy this criterion. We will consider the smallest one,
i.e. the one that contains the parameters of highest probability density.

Quantites approximation Those quantities must be approximated by evaluating the
learned posterior p(¥|x). To this end, we evaluate it on an equally spaced parameter grid
over the prior p(9¥) support. The maximum a posteriori estimator is then approximated
as being the point of highest density. The integral required to compute the credible
interval is approximated considering each parameter point has the same density as its
closest evaluated point.

Although p(¥|x) should integrate to 1 if the model was perfectly modeling reality, it is
not the case due to imperfect modeling. To partially correct this imperfect modeling, we
normalize the outputs by multiplying the obtained densities by a constant chosen such
that p(¥|x) integrates to 1.
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Experiments

This chapter presents the results achieved by the method described in Section 4.4. The
first section introduces the experimental setup used to produce those results. The second
section evaluates the quality of the different neural network architectures proposed. In
the third section, we evaluate the method on data generated using the generation pipeline
described in Section 5.2. Finally, we evaluate the method on a real gravitational wave
and we compare the credible intervals produced with the one obtained by slower sampling
methods.

6.1 Experimental setup

We present here the setup used in the following experiments. We generate 10° training
samples, 2x 10° validation samples and 2 x 10° testing samples using the pipeline described
in Section 5.2. The network is then trained on 2 GPUs in parallel. To ease training,
we perform curriculum learning. We first train the neural network for 5 epochs on 10°
training samples generated with a UniformVolume(10, 100) luminosity distance prior.
This learned model is then used as a starting point for the training on the final dataset.
Credible intervals and the maximum a posteriori estimator are then approximated by
computing a 200 x 200 posterior points grid.

During the experiments, we perform inference on transformations of the base parameters
defined in Table 2.1. Those transformations are shown in Table 6.1. We work with 4
parameter pairs that are usually considered in standard gravitational wave analyses:

det det )

e Maximal and minimal mass (m$o,, mSS

e Luminosity distance and inclination angle (dr,, 65n)

e Effective spin and mass ratio (Xef, q)
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e Sky position expressed in right ascension and declination («, d)

Parameter Symbol | Formula

det det

i _ det det
Maximum mass | myg, | mSS, = max(m§e, mget)

Minimum mass mdet mrdn‘ﬁl = min(m‘liet, mget)
Effecti : _ ,,det 0 det 4
ective spin Xeff Xeff = My~ a101 + myagbs
det det
. max(m$e,m
mass ratio q — max(myZme”)

" min(m¢et,mget)

Table 6.1 — Parameters tranformations.

6.2 Comparison of neural network architectures

In this section, we compare the performance of the different neural network architectures
considered. In total 6 architectures are considered: the two base architectures presented
in Section 5.3.1 and their hyper network and conditionally parametrized convolutions
(CondConv) variants presented in Section 5.3.2. We use as hyper network a 2-layer
neural network such as suggested by Ha et al., 2016. Using an embedding size of 256
gave the best results. When considering the CondConv variant, we also use a 2-layer
multi-layer perceptron as routing function. We compare the different architectures on the
masses parameter pair and make the assumption that this comparison extends to other
parameters. A first comparison is presented in Table 6.2. We evaluate both the binary
cross-entropy and the prediction time per sample. The prediction time is measured
using an RTX 2080 Ti GPU. The dilated convolutions architecture seems to perform
better than the resnet one. In the remaining, we only consider the dilated convolutions

architecture.
Resnet Dilated Convolutions
BCE | Time (ms) | BCE | Time (ms)
Basic 128 channels 0.4733 1.14 0.4216 1.36
HyperNetwork 128 channels 0.4706 0.88 0.4302 1.18
CondConv 4 experts 32 channels | 0.4707 0.40 0.4383 0.35

Table 6.2 — Comparison between the resnet and dilated convolutions architectures. The
performance is expressed in terms of binary cross-entropy and prediction time per sample
and averaged over 2 x 10° testing samples.
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32 channels 128 channels
BCE | Time (ms) | BCE | Time (ms)
4 experts | 0.4383 0.35 0.4186 1.52
16 experts | 0.4309 0.35 0.4193 1.52
32 experts | 0.4294 0.35 0.4146 1.52
64 experts | 0.4313 0.36 0.4166 1.53

Table 6.3 — Comparison of the CondConv architecture performances with different
numbers of experts and channels. The performance is expressed in terms of binary
cross-entropy and prediction time per sample and averaged over 2 x 10° testing samples.

We then evaluate how the performance of the CondConv architecture evolves with
respect to the number of channels and experts used. Results are shown in Table 6.3. As
expected, increasing the number of experts does not increase the prediction time and
hence provides an interesting way to increase the model capacity. However, increasing
the number of experts does not increase significantly the performance. In our experiment,
the 32 experts architecture gave the lowest binary cross-entropy. We will then use 32
experts in the rest of the work.

A final comparison is made in Table 6.4. We first notice that the CondConv architecture
seems to perform better than the others while not showing significant improvements.
When comparing the performance obtained with different numbers of channels, we notice
that increasing the number of channels from 32 to 128 seems to lead to slightly better
performance while increasing the prediction time. Increasing the number of channels to
256 does not make the accuracy higher while increasing the prediction time. In conclusion,
we would recommend to either use 32 or 128 channels CondConv architectures depending
on the time constraints. In the rest of the analysis, we use the 128 channels one that
leads to the best accuracy. The prediction time of £1.52 ms allows computing a 200x200
posterior points grid in about 1 minute on a single GPU. In addition, it can easily be
accelerated using multiple GPU’s since this is an easily parallelizable operation. In
comparison, MCMC runs we made ran for around 1 week.
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Model

BCE

Accuracy

Time (ms)

Dilated convolutions
Basic
32 channels

0.4406

78.24%

0.27

Dilated convolutions
Basic
128 channels

0.4216

79.44%

1.36

Dilated convolutions
HyperNetwork
128 channels

0.4302

79.10%

1.18

Dilated convolutions
CondConv
32 experts, 32 channels

0.4294

78.93%

0.35

Dilated convolutions
CondConv
32 experts, 128 channels

0.4146

80.01%

1.52

Dilated convolutions
CondConv
32 experts, 256 channels

0.4188

79.67%

3.96

Table 6.4 — Comparison of the different neural network architectures. The performance is
expressed in terms of binary cross-entropy and prediction time per sample and averaged

over 2 x 10° testing samples.
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6.3 Evaluation on simulated data

In this section, the method is evaluated on simulated data. The CondConv variant of
the dilated convolutions architecture with 32 experts and 128 channels is used. To assess
the general performance of the method, we compute several statistics on 1000 simulated
samples. Graphical examples of inference made on a part of those simulations are also
shown in Figures 6.5, 6.6, 6.7 and 6.8. We compute and evaluate the 50% and 90 %
credible intervals as well as the maximum a posteriori estimator.

Credible interval area We compute the area of the contours to evaluate how con-
strained the parameters are. Figure 6.1 shows the 50% credible interval’s areas and
Figure 6.2 the 90% credible interval’s areas. The credible intervals derived over the
masses are of moderated area. However, for some signals, the network has no clue about
the parameters. This leads to wide credible intervals. This behavior is well illustrated in
Figure 6.5 showing examples of credible intervals over masses on simulated data. Most of
those credible intervals are well constrained to the exception of some very wide intervals.
Some 50% credible intervals show an area larger than 50% of the prior support, same for
the 90% credible intervals. Since we build the credible intervals such that they contain
the points of highest density, a X% credible interval cannot be larger than X% of the
prior support. Such area values are due to an imperfect area estimation procedure. Those
credible intervals can however be considered to be of large area. The sky position shows
a behavior similar to masses with in average smaller credible intervals, as illustrated in
Figure 6.8. The distance and inclination pair and the effective spin and mass ratio pair
show few wide credible intervals compared to the masses. This is mainly due to strong
priors. High distances are of higher prior than lower ones, the same way low mass ratios
are more probable than higher ones. The effective spin and mass ratio pair seems to
show two modes, one at low area and one at higher area. Those higher areas are however
lower than the ones of other parameter pairs’ credible intervals.

Note that high area credible intervals are not necessarily due to a failure of the method.
The Bayesian optimal model could also produce high area credible intervals in the
presence of a noisy signal. The area of the credible intervals evaluates the ability to
perform inference which is different from the quality of the model.

Distance between MAP and exact parameters We then evaluate the quality of
the approximated Maximum a posteriori estimator (MAP). We compute its distance
to the true parameters. The results are shown in Figure 6.3. In opposition to credible
interval areas, the distance between the MAP and exact parameter values does not show
a second mode at high distance. This shows that samples that lead to large credible
interval areas still get a MAP close to the true parameter values.
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mrdrféac’ mgrffn dr,0in Xeff, 4 04’5
50% credible interval hit rate 55.4% 49.4% | 55.3% | 60.8%
90% credible interval hit rate 90.7% 90.4% | 92.2% | 93.8%

Table 6.5 — Credible intervals hit rates.

Credible interval hit rate We define the hit rate of a model for a given credible
interval by the mean number of times the true parameter values fall inside the derived
credible interval. If the credible intervals are well derived, the true value should fall in
a X% credible interval X% of the time. The 50% and 90% credible intervals for each
considered variable pair hit rates are shown in Table 6.5. We observe that the hit rate is
usually slightly too high. This shows that the model is slightly under-confident in its
predictions and hence produces large credible intervals than it should. Note that this
under-confidence of the model is however moderated and hence shows the ability of the
model to produce reliable credible intervals.

Diagnosis of model calibration A calibrated model of the posterior density p(d|x)
integrates to 1 over the prior support. We check if the model produced is well calibrated
by computing the approximated integral of the posterior conditioned on simulated data.
Figure 6.4 shows the distribution of the integral of the inferred posterior over the prior
support. This histogram is based on 1000 simulated gravitational waves. The posterior
density integrates to a value close to 1 on average, hence no bias is observed. However,
it shows a high variance. This illustrates the need to scale the densities to make those
integrate to 1 when deriving credible intervals. The variance could potentially be reduced
by using ensembles of neural networks, however, this would increase the computational
time.
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Figure 6.1 — Distribution of the inferred 50% credible intervals’ area over 1000 samples.
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Figure 6.2 — Distribution of the inferred 90% credible intervals’ area over 1000 samples.
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Figure 6.3 — Distribution of distance between the inferred MAP and the exact parameters

over 1000 samples.
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Figure 6.4 — Distribution over 1000 simulated gravitational waves of the integral of the
posterior density model p(¥|x) over the prior support.
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Figure 6.5 — Examples of inference of the masses performed on simulated gravitational
waves. The 50% and 90% credible intervals are derived. The blue dot represents the
maximum a posteriori estimator and the orange star the true parameters.
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Figure 6.6 — Examples of inference of the distance and inclination performed on simulated
gravitational waves. The 50% and 90% credible intervals are derived. The blue dot
represents the maximum a posteriori estimator and the orange star the true parameters.
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Figure 6.7 — Examples of inference of the effective spin and mass ratio performed on
simulated gravitational waves. The 50% and 90% credible intervals are derived. The
blue dot represents the maximum a posteriori estimator and the orange star the true
parameters.
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Figure 6.8 — Examples of inference of the sky position performed on simulated gravitational
waves. The 50% and 90% credible intervals are derived. The blue dot represents the
maximum a posteriori estimator and the orange star the true parameters.
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6.4 Evaluation on real data

The method is also evaluated on a real gravitational wave. While testing on simulated
data provides a demonstration of the inference capacity. Testing on a real event allows
asserting the data generation pipeline fits reality. Since the neural network is trained
on noise samples from the O1 run, we evaluate it on the GW150914 gravitational wave
which comes from this run.

The true parameters are unknown when dealing with real events. However, since the
likelihood-free neural amortization method does not aim to produce better contours
than existing ones but to provide a faster way to compute those, comparison can still be
made with existing slow methods. We compare our method to results obtained using
Monte-Carlo-Markov-Chain (MCMC) sampling. Precisely, we compare to B. Abbott
et al., 2019. In their analysis, they model the noise as Gaussian noise in the frequency
domain following a given PSD. This model leads to a tractable likelihood when dealing
with the full parameters space and hence allows for MCMC methods to draw samples from
the posterior distribution. They release samples drawn from this posterior distribution
at https://dcc.ligo.org/LIGO-T1800235/public. Credible intervals and the maximum a
posteriori estimator are then derived in a similar way to the method we use. The neural
network is replaced by a Gaussian kernel density estimator trained on the parameters of
interest of the posterior samples produced by MCMC.

Masses Figure 6.9 shows a comparison of the results obtained when performing in-
ference on masses for the GW150914 signal using the MCMC method and the method
developed in this work. Both credible intervals are roughly centered at the same place
and both maximum a posteriori estimators are close to each other. Our credible intervals

are however wider.

Distance and inclination Figure 6.10 shows a comparison of the results obtained
when performing inference on the inclination angle and the distance between the merger
and earth. Distance credible intervals are very similar using both methods. However,
inclination credible intervals show two modes when using the likelihood-free inference
technique while only one mode is inferred with the MCMC method. Distinguishing
between 0 ;5 and m — 0 is usually hard since some analyses performed with MCMC
on other gravitational waves also show 2 modes [2019].

Effective spin and mass ratio Figure 6.11 shows a comparison of the results obtained
when performing inference on the effective spin and the mass ratio. Such as for masses,
Maximum a posteriori estimators are close but our method produces wider contour.
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Sky position Figure 6.11 shows a comparison of the results obtained when performing
inference on the sky position. Sky position is the most constrained parameter pair. The
90% credible intervals produced by our method and MCMC are very close but the 50%
credible intervals and MAP lie at different positions. Compared to the other parameters,
the size of the 50% credible intervals are however similar.
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Figure 6.9 — Inference on md¢  and md¢ for the GW150914 signal. MCMC stands for

min

Markov Chain Monte-Carlo and LFI for Likelihood-Free Inference.
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Figure 6.10 — Inference on dy, and 0;y5 for the GW150914 signal. MCMC stands for
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Figure 6.11 — Inference on xef and ¢ for the GW150914 signal. MCMC stands for Markov
Chain Monte-Carlo and LFT for Likelihood-Free Inference.
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Figure 6.12 — Inference on « and ¢§ for the GW150914 signal. MCMC stands for Markov
Chain Monte-Carlo and LFT for Likelihood-Free Inference.
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The differences between MCMC and our method’s results have multiple causes:

e We train on noise data sampled from the whole O1 run while MCMC is based on a
PSD estimated on noise close to the event. Training on the whole O1 run results in
a loss of information since we do not include information about the noise around
the event. Note that since we want to amortize the training cost and hence train
the network before the event happens, information about noise close to the event is
not available at training time.

e We use real noise while MCMC uses analytical noise. Therefore, we don’t assume
a noise model which makes our method able to produce more realistic results.

e The whitening procedure is different. MCMC whiten the gravitational wave using
a fixed PSD approximated around the event on which to perform inference. In
contrast, we whiten each training gravitational wave with a locally estimated PSD.
This could in particular explain the differences in the results obtained for the
inclination and the sky position. Information about those parameters lies in the
difference in amplitude and time shift between the Hanford and Livingston signals.
Whitening with a locally estimated PSD may attenuate the difference in amplitude.

e The methods are different and hence do not have the same accuracy.
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Recently, a lot of effort has been made to accelerate the analysis of gravitational waves
using machine learning. As shown in this work parameter inference can be highly
accelerated with machine learning compared to traditional methods. In parallel to
research on parameter inference, using machine learning to accelerate gravitational
wave detection which is the task of retrieving parts of the detector signal containing a
gravitational wave has also received much attention. We review in this section machine
learning methods for both fast gravitational wave detection and parameter inference.

7.1 Gravitational wave detection

Gravitational wave detection is traditionally performed using matched-filtering. It consists
in comparing the signal to a set of simulated waveforms. For each signal timestamp
and simulated waveform, it outputs the cross-correlation that is as high as the signal
is similar to the considered simulated waveform having this timestamp as coalescence
time. For this method to be accurate, a large number of simulated waveforms needs to
be considered leading to slow computations.

The computational cost can be amortized by using machine learning. George and Huerta,
2018 build a convolutional neural network classifier that is trained to differentiate between
signals containing a simulated gravitational wave from a binary black hole merger with
noise from signals composed of only noise. This classifier takes fixed length inputs and is
applied to the detector signal at several timestamps using a sliding window.

T. D. Gebhard et al., 2019 introduce a fully convolutional architecture allowing to be
applied to input data of any dimension. The network outputs a time series where each
value indicates if there is a gravitational event at this position. This architecture then
allows processing the whole signal once instead of evaluating the network at several
timestamps with a sliding window. They also point out the fact that the classifier
output should be interpreted carefully since the proportion of the signal containing a
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gravitational wave is not the same in training data and in a real detector signal.

Sadeh, 2020 use anomaly detection techniques. They train a recurrent neural network
auto-encoder. The encoder takes as input the background before a potential gravitational
event, the decoder then outputs the predicted noise following this background noise.
This prediction is then compared to the true signal, the more different those are, the
likelier there is a gravitational wave. They also use this architecture to directly perform
classification based on the decoder output.

Wang et al., 2020 introduce a new neural network architecture inspired by matched
filtering. The neural network is first composed of a layer performing match filtering using
a limited amount of simulated waveforms. For each timestamp, the maximal resulting
value over the considered simulated waveforms is kept. This layer outputs a vector whose
size is equal to the initial signal, this vector is then fed to a convolutional neural network.

Krastev, 2020 build a model that is trained to discriminate detectors signals between
3 classes: gravitational wave generated by a binary black hole merger, those generated
by a binary neutron star merger and signals without gravitational waves. Since binary
neutron stars are of lower mass than black holes, the resulting gravitational waves are
weaker and last longer, they then use a time window of 10 seconds. Lin et al., 2020 use a
wavelet packet transform which transforms a gravitational wave into a time/frequency
matrix to help dealing with binary neutron star mergers. This matrix is then fed to a
convolution neural network to perform detection.

Dreissigacker et al., 2019 use deep learning to detect continuous gravitational waves
from spinning neutron stars. Those gravitational waves are typically long in the time
domain (hours to days) and narrow in the frequency domain, they then take as input
the gravitational wave in the frequency domain. Dreissigacker and Prix, 2020 extend
this work using multiple detectors and a noise model that takes into account gaps in real
data due to detectors not being measuring at all time.

7.2 Parameter inference

Similar to our work, people have also developed machine learning models to accelerate
parameter inference. Chua et al., 2019 build a model for the likelihood. They make
use of reduced-order modeling which consists in representing a gravitational wave by a
small set of features. Under a Gaussian noise model, the likelihood can be expressed in
terms of this reduced-order representation. The problem, therefore, reduces to building
a model for the reduced representation given the generation parameters. To this end,
they train a neural network taking the generation parameters as input and outputting
the reduced-order representation. This new model offers several advantages. First, it is
faster to evaluate than traditional waveform models. Second, the neural network nature
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of the model allows the computation of the derivative of the likelihood allowing the use
of derivative-based MCMC methods.

Chatterjee et al., 2019 use deep learning techniques to localize in space a gravitational
event. They divide the sky into sectors and train a classifier taking as input a gravitational
wave and outputting the sky localization considering each sector as a class. George and
Huerta, 2018 perform inference on the parameters by training a model taking as input a
gravitational wave and outputting 2 values for the two masses.

A model that only outputs the parameter values minimizing the loss does not give the full
posterior distribution. Chua and Vallisneri, 2020 perform inference on the parameters by
training a model to output the parameters of a posterior distribution such as a Gaussian
mixture. The model takes a reduced-order representation of the gravitational wave as
input. They make use of their previous work on building a surrogate for the likelihood
[Chua et al., 2019] to efficiently generate training data. Gabbard et al., 2019 use a
conditional variational auto-encoder (CVAE) taking as input the gravitational wave to
estimate the posterior probability distribution. Those benefit from a higher capacity
but are slower to evaluate. Green et al., 2020 make use of autoregressive normalizing
flows as density estimator. They compare three types of neural networks. A CVAE, a
normalizing flow and the combination of the two. To combine the two, they model all the
components of the CVAE with normalizing flows. They show that this last architecture
leads to the best results. However, normalizing flows are faster to evaluate than the
combined model since they do not require to marginalize over a latent space.
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Conclusion

In this thesis, a deep learning approach for binary black holes merger parameter inference
from gravitational waves is explored. We show how such methods allow a fast analysis of
gravitational waves. We also explore several neural network architectures considering
both the accuracy and speed of the predictions.

Fast parameter inference We amortize the computational cost by building a sur-
rogate of the posterior using likelihood-to-evidence ratio estimation techniques. This
surrogate takes as input a gravitational wave and binary black holes merger parameters
and it outputs the posterior probability of the gravitational wave to have been generated
by the given parameters. It is then used to perform inference in the order of minutes
while classical MCMC techniques take from days to weeks to complete.

A challenge was the design of an appropriate data generation procedure. This procedure
had to be designed to provide the detector signals in a way such that valuable information
is easy to extract by the neural network. This is done through whitening and filtering.
The generation procedure must also be as close as possible to reality. We have chosen to
work with real noise samples instead of samples from a noise model. Another challenge
inherent to amortization is that the training procedure must be independent of the
gravitational wave on which inference will be made. Information about the noise around
the event and coalescence time is hence not available at training time. We address
this by training the model using noise from the whole O1 run and by whitening with a
locally estimated PSD. We also use a fixed fictive coalescence time to train the data and
post-process the results accordingly.

We evaluate the performance of our method on simulated gravitational waves and on
the GW150914 gravitational wave. Experiments on simulated data assess the ability
to perform reliable inference. The experiments performed on GW150914 show that the
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method works with real gravitational events. The credible intervals produced are however
wider than the one produced using MCMC algorithms. Our method is then a promising
complement to classical MCMC techniques. However, further investigation is needed to
understand the origins of the differences with MCMC before applying our method to
real and routine analysis.

Neural network architectures Another challenge was the design of an appropriate
neural network architecture. This architecture must be designed to introduce an inductive
bias suited for gravitational wave analysis. We compare two neural network architectures
and their HyperNetwork and conditionally parametrized convolutions variants. One
architecture is based on ResNet blocks and the other on dilated convolutions. The one
based on dilated convolutions shows better results and is designed to be more robust to
shifts of the gravitational wave signal. HyperNetwork and conditionally parametrized
convolutions provide a way to include information about the input black holes parameters
in the convolutional part of the network. For HyperNetworks, we feed the parameters
along with the embeddings to the HyperNetwork. When using conditionally parametrized
convolutions, we use the parameters as input of the routing function. Conditionally
parametrized convolutions show the best accuracy with only a negligible increase in
prediction time compared to the classical architecture.

Future work Our method could be improved on several aspects. First, we train the
neural network on noise sampled from the whole Ol run and hence do not include
information about the noise around the event. We cannot train the neural network on
analytical noise generated using a PSD estimated around the event since we want to
amortize the training cost and hence train the network before the event happens. A
workaround would be to include information about the PSD as an input of the neural
network. Introducing a suitable inductive bias for this PSD is, however, not a trivial
task.

A second improvement would be to explore better pre-processing steps and in particular
different whitening procedures. We whiten the gravitational waves using a locally
estimated PSD. This has the advantage to make the noise generated with different PSD
to be more similar. It could however also affect the gravitational wave and hence lead to
a loss of information about its amplitude. A workaround is to whiten with a fixed PSD.
This PSD can either be an analytical PSD or a PSD averaged over several noise samples.

Finally, we highlighted several causes of difference between MCMC and our method.
Those are the use of real noise sampled from the whole O1 run instead of Gaussian
noise issued from a fixed PSD, the different whitening procedure and the difference
of accuracy of the methods. Quantifying the effect of those differences would provide
valuable information for the design of further improvements and to assess the quality of
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the different methods.
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