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Abstract

As you start reading these lines, you may have already taken a shower, drank tap water,
started a washing machine, or any of these small daily miracles that a water distribution
system offers us. The omnipresence of water distribution networks (WDNs) in our daily life
may lead us to reduce WDNs to simple and well-understood systems, which they are not.
Among many concerns for WDNs, a major and essential one is to ensure to every customer
good water quality. A well-known technique to easily assess water quality is to evaluate the
water age ([9], [16], [22]).

In this work, two existing methods to evaluate the water age in WDNs have been reviewed
and implemented: the flow weighted method from the software Epanet [27], and the bins
method introduced by Machel et al. [20]. First, assuming steady-state, a method with a
new representation of the age distribution has been implemented. This last method is shown
to be more accurate and more computationally efficient. It has been successfully applied
on a full-scale network. Some models to extends this new method to unsteady-state have
been reviewed and implemented. The new method is shown to not include any further
complication compared to the already existing methods.

All the previously cited methods make two common assumptions: the complete mixing
at the junctions and the plug flow assumption. These two hypotheses have been shown to
be inaccurate by several authors ([24], [29], [10]). In the second part of this work, numerical
techniques are developed to model more complex phenomena on academic networks. Some
non-homogeneous mixing models are reviewed and implemented with the newly developed
method. Dispersion effects are modelled thanks to an approximate analytical solution and a
finite volume scheme to go beyond the plug flow assumption. The optimal model to consider
the dispersion effects is shown to depend on the Peclet number in each pipe of the network.
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Introduction

Motivations

As you start reading these lines, you may have already taken a shower, drank tap water,
started a washing machine, or any of these small daily miracles that a water distribution sys-
tem offers us. The omnipresence of water distribution networks (which will be abbreviated as
WDNs for the rest of this thesis) in our daily life may lead us to reduce WDNs to simple and
well-understood systems, which they are not. Among many concerns for WDNs (energy effi-
ciency, leaks, hydraulic integrity,. . . ), a major and essential one is to ensure to every customer
good water quality.

However, water quality management is challenging due to the ubiquitous and complex
physical, chemical, and biological interactions occurring inside WDNs [4]. Water quality can
be managed by sample analyses. Unfortunately, this technique is inefficient, costly, and does
not allow to systematically detect quality issues everywhere and at any time in the network.

Another technique to evaluate water quality is to compute the water ag, such as in Gray-
man et al. [9], Kourbasis et al. [16]), or Rhoads et al. [22] where the water age is taken
as an indicator to evaluate water quality inside WDNs. As shown by the American Water
Works Association [2], water age is a major factor in water quality deterioration within the
distribution system. Several studies have linked the water age and water quality. Blokker
et al. [4] have correlated water age and various microbial parameters. Master et al. [21]
relate higher water age in WDNs to change in chemical and biological properties that impact
corrosivity and regulatory compliance with lead and copper action levels. Imran et al. [12]
emphasise the importance of water age and temperature for the development of indicators
of corrosion-related problems, like red water release. Water quality is also linked to nitrifi-
cation, which is a biochemical reaction that causes a decrease in chloramine residual, a large
increase in heterotrophic bacteria population, a change in PH, and other adverse effects [15].
Ensuring minimal residence time of water inside WDNs may be the ‘key operational tool’ to
prevent nitrification [15]. Other water quality problems associated with an increase in water
age include disinfectant decay, disinfectant by-product formation, taste, and odour,. . . [2].
A summary of water quality problems associated with age, adapted from [2], is shown in
Table 1.1.

Current practices are often based on flow weighted mean age at the junctions. Indeed,
this value can be easily accessed thanks to the widespread public domain software Epanet,

https://www.awwa.org/
https://www.awwa.org/
https://www.epa.gov/water-research/epanet
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Chemical issues Biological issues Physical issues

Disinfectant decay *Nitrification Sediment deposition

*Desinfectant by-product formation *Desinfectant by-product biodegradation Temperature increases

Corrosion *Microbial Colour

Taste and odour Taste and odour

Table 1.1: Summary of water quality problems associated with water age. * Emphasises
potential health impact. Adapted from [2].
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Figure 1.1: Go-
ing beyond mean
age computa-
tion. Adapted
from [20].

developed by the United States Environmental Protection Agency [27]. The flow weighted
mean age technique is briefly explained in Fig. 1.1a. In this simple example, two nodes
supply a third node that in turn supply a fourth node with the help of a last fifth node.
At each junction, water age is computed by averaging incoming water age, weighted with
their respective incoming flows. However, mean age computation has serious limitations
[20]. To illustrate these limitations, let consider the same network without averaging water.
This situation is shown in Fig. 1.1b. The key information here is not that the mean age of the
water is 4 hours at the last node, but that a third of the water has an age equal to 7 hours
[20]. These two pieces of information, correct but different, will lead to different water quality
evaluations and eventually wrong decisions for water quality management.

Previous works from Delhez et al. [7] show the water age to be more complex than a single
mean value: the water age should actually be described by a water age distribution. Without
mentioning it, Machell et al. have shown that the key information is not the water mean
age, but the water age distribution. This is what motivated this master thesis, which aims at
improving water age representation in WDNs by computing water age distributions.
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Study Framework

The purpose of this master thesis is not the hydraulic computation but the water age com-
putation thanks to hydraulic data. The hydraulic computations have been done thanks to the
software Epanet. The results of the hydraulic simulations are taken as input for the present
work.

Four WDNs have been investigated in this master thesis. They are of different levels of
complexity. The simplest one, which is named ‘Net1’ for the rest of this work, originates from
examples delivered with the software Epanet. It has been slightly modified compared to the
original one for the need of this work. It is composed of 8 junctions, 1 reservoir, and 11 pipes.
More details are available in Fig. 1.2a. The second network is an experimental one developed
by a Brasilian team. It is referred as ‘Test rig’ in the next (Fig. 1.2b). The last ‘academic’
network that has been considered is the one described in Jowitt et al. [14]. It has 3 reservoirs,
23 junctions, and 36 pipes. Eventually, a real network was available for this master thesis. It
is a network from the municipality of Jockgrim in Germany composed of 4551 junctions, 5114
pipes, and 6 reservoirs. These four networks may have been slightly modified for the need of
the master thesis. More details are available in appendix A.

The present work is divided into two parts. The first part tries to improve the water age
representation using common modelling assumptions. The developed methods are tested on
all networks, up to the full-scale Jockgrim network. The second part of this master thesis
investigates underlying assumptions in current practices of modelling water age in WDNs.
Current practices neglect dispersion effects and assume perfect mixing at junctions. These
two assumptions have been shown to be inaccurate by several authors ([29], [24], [10]). The
complete mixing assumption will be mainly studied on network ‘Test rig’, whereas dispersion
effects will be studied on the simplest network ‘Net1’. The philosophy of this work has been
to developed a simple model applicable to a full-scale network, and to study more complex
phenomena on simpler networks, as shown in Table 1.2. A last third chapter briefly explained
how the different numerical methods have been implemented.

Modelling water age with Relaxing assumptions
state-of-the-art assumptions

Chapter 2 Chapter 3

Steady-state Unsteady-state Dispersion Non-homogeneous mixing

Net1 X X X
Test rig X
Jowitt et al. X X
Jockgrim X X

Table 1.2: Tabular plan.
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appendix A.



2

Modelling water age with state-of-the-art assumptions

2.1 Introduction

This section investigates water age computation with common assumptions in the field, the
main one being the plug-flow assumption that neglects any dispersion effects. These assump-
tions and the mathematical framework in which the numerical methods will be described are
first introduced. This mathematical framework will be used to describe two existing methods:
the one from the software Epanet and the one developed by Machel et al. [20], called the bins
method. These two methods have been reviewed and reimplemented.

Then, a new method that has been implemented will be introduced with the aim of im-
proving water age representation in WDNs. This method will be introduced for steady-state
first. The results obtained with this method will be compared to results that can be obtained
with the already existing methods. The goal of all the techniques described in this chapter is
to be used on real full-scale networks. The extension for such networks is thus discussed.

In the optic to extend the developed methods for unsteady-state, how to model such states
is described afterwards. The different methods for unsteady-state have been implemented
and discussed.
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2.2 Mathematical Framework

This section introduces the general mathematical framework that is used for the rest of this
thesis. According to Delhez et al. [7], the age distribution function, c(t, x, τ), can be defined
as follows: ‘at time t, the mass of water contained in the volume

δΩ = {(x, y, z)|x(x, y, z) ∈ R3,
and (x− ∆x/2, y− ∆y/2, z− ∆z/2) 6 (x, y, z) 6 (x + ∆x/2, y + ∆y/2, z + ∆z/2)} ,

with an age lying in the interval

δτ =
{

τ|τ ∈ R+, and τ − ∆τ/2 6 τ 6 τ + ∆τ/2
}

,

tends to ρc(t, x, τ)δΩδτ where ρ is the water densisty’. A mass conservation budget allows
Delhez et al. to derive the governing equation for water age at a time t and a location x

∂c
∂t

+
∂c
∂τ

= −∇ · (cu− k · ∇c) , (2.1)

where τ is the water age, and c(t, x, τ), u(t, x), k(t, x) denote the the water age distribution,
the fluid velocity field, and the diffusivity tensor, respectively.

The governing equation will now be specified for confined flow inside pipes of WDNs. To
help the reading, Fig. 2.1 illustrates the mathematical notations.

n

n

nSu

ex

Figure 2.1: Graphical rep-
resentation of a single
pipe.

Integrating Eq. 2.1 over the cross-section of a given pipe gives
∫

S

∂c
∂t

dS +
∫

S

∂c
∂τ

dS = −
∫

S
∇ · (uc− k · ∇c)dS. (2.2)

The cross-section does not depend on the time and the water age. Furthermore, the cross-
section is assumed constant in the streamwise direction, x. Eq. 2.2 can thus be rewritten
as

∂

∂t

∫

S
cdS +

∂

∂τ

∫

S
cdS = − ∂

∂x

∫

S

(
uc− k

∂c
∂x

)
dS−

∫

S
∇2D · (u2Dc− k2D · ∇2Dc)dS,

where the streamwise component and the cross-sectional components (indicate with the 2D
indices) of the last term have been separated. The diffusion tensor has been assumed isotropic
kI = k, and u = u · ex. Applying 2D Gauss theorem for the last term leads to

∂

∂t

∫

S
cdS +

∂

∂τ

∫

S
cdS = − ∂

∂x

∫

S

(
uc− k

∂c
∂x

)
dS−

∮

∂S
(uc− k · ∇c) · ndS, (2.3)
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where ∂S and n are the boundary and the normal to the cross-section S of the pipe. This term
is equal to zero because of the impermeability condition for pipes. Let introduce the mean
value over the cross-section for some quantities

C =
1
S

∫

S
cdS, uc =

1
S

∫

S
ucdS, and k

∂c
∂x

=
1
S

∫

S
k

∂c
∂x

dS. (2.4)

With these notations, Eq. 2.3 becomes

S
∂C
∂t

+ S
∂C
∂τ

+ S
∂uc
∂x

= S
∂

∂x

(
k

∂c
∂x

)
. (2.5)

Let rewrite the term uc

uc =
1
S

∫

S
[U + (u−U)][C + (c− C)]dS, (2.6)

if U is chosen to be the mean value of u over the cross-section, U = 1
S

∫
S udS, then

uc = UC +
1
S

∫

S
(u−U)(c− C)dS,

since

1
S

∫

S
U(c− C)dS =

U
S

∫

S
(c− C)dS = 0, and

1
S

∫

S
C(u−U)dS =

C
S

∫

S
(u−U)dS = 0,

by definition of the mean. With these results, Eq. 2.5 becomes

∂C
∂t

+
∂C
∂τ

+
∂

∂x
(UC) = − 1

S

∫

S
(u−U)(c− C)dS

︸ ︷︷ ︸
?

+
∂

∂x

(
k

∂c
∂x

)

︸ ︷︷ ︸
†

.

The term † represents the effect of diffusion in the streamwise direction, whereas the term ?
is due to the dispersion effects. In the following, these two effects will be modelled with a
single diffusion term

− 1
S

∫

S
(u−U)(c− C)dS +

∂

∂x

(
k

∂c
∂x

)
≈ ∂

∂x

(
K

∂C
∂x

)
,

where K is a new parameter, with the unit of a diffusion coefficient. It may also be used to
model the influence of turbulence. Assuming that the discharge is uniform throughout the
pipe, our modelling equation eventually writes

∂C
∂t

+
∂C
∂τ

= −U
∂C
∂x

+
∂

∂x

(
K

∂C
∂x

)
. (2.7)

The dispersion effects will be investigated in chapter 3. For now, they are neglected, and the
governing equation for this chapter is

∂C
∂t

+
∂C
∂τ

= −U
∂C
∂x

. (2.8)
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2.3 Two already available methods

2.3.1 Epanet [27]

Nowadays, if an end-user wants to compute the water age in a network, it will probably
use the software Epanet [27]. Epanet assumes perfect mixing and no dispersion. It is able
to compute water age for a time-dependent simulation. Its major drawback is that it does
not compute the water age distribution but only mean ages. The spatial discretisation in the
Epanet software is based on a Lagrangian method as illustrated in Fig. 2.2a. It relies on a
sequence of water particles that represent water parcels inside the WDN. At each time step,
the location of the parcel is shifted by the distance traveled during this given time step, and the
mean age inside the water segment is incremented by ∆t. This is the intuitive explanation that
can be deduced from the Epanet docmentation. Hereafter is described a formal description
of how a mean age computation method, similar to the one of Epanet, can be implemented.

1 2 3 4 51 2

1

2

3

Time = t

0 1 2 3 40 1

0

1

2

Time = t + ∆t

(a) Lagrangian scheme of Epanet software illustrated on a
simple network. Illustration adapted from Epanet documen-
tation [27]. (Here the water particles are represented equidis-
tant for simplicity.)

a(x)

x

1 2 3 4

(b) Piecewise constant reconstruc-
tion of the mean age profile through
a fictitious pipe.

Figure 2.2: Illustration of the numerical scheme of Epanet.

Starting from Eq. 2.8
∂C
∂t

+
∂C
∂τ

= −U
∂C
∂x

,

a formal mathematical framework can be established for the age computation performed by
Epanet. Since C is the water age distribution across the cross-section of the pipe, the mean
water age for the cross-section can be found thanks to its first moment

a(x, t) =
∫ +∞

0
τC(x, t, τ)dτ, (2.9)

https://epanet22.readthedocs.io/en/latest/12_analysis_algorithms.html#water-quality
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as it was first established by Delhez et al. [7]. The governing equation for mean age can be
determined by multiplying Eq. 2.8 with the age τ and then integrating over the age (see [7]
or [6]) ∫ ∞

0
τ

∂C
∂t

dτ +
∫ ∞

0
τ

∂C
∂τ

dτ = −
∫ ∞

0
τU

∂C
∂x

dτ. (2.10)

Injecting Eq. 2.9, and considering

∂ (τC)
∂τ

− C = τ
∂C
∂τ

,

Eq. 2.10 can be rewritten as
∂a
∂t

+ [τC]∞0 = 1−U
∂a
∂x

,

where the normalisation of the age distribution property has been used
∫ ∞

0 Cdτ = 1. Follow-
ing common assumptions ([7])

lim
τ→0

τC = 0 = lim
τ→∞

τC, (2.11)

one has
∂a
∂t

= 1−U
∂a
∂x

. (2.12)

From the right-hand side of this last equation, it is clear that the first term is responsible
for aging and the second one for the advection. Let us introduce a temporal discretisation
a(x, n∆t) = a(n)(x) with a time-stepping ∆t and an Euler explicit scheme

a(n) ≈ a(n−1) + ∆t− ∆tU
∂a(n−1)

∂x
. (2.13)

The spatial derivative in Eq. 2.13 is approximated with an upwind finite difference on an
adaptive mesh of length ∆x(n), where ∆x(n) is the traveled distance at time step n. Assuming
the mean age at time step n− 1 is known at location x, the mean age at the next time step
and at location x + ∆x(n) can be found




∆x(n) ≡ U(n∆t)∆t,

a(n)(x + ∆x(n)) ≈ a(n−1)(x + ∆x(n)) + ∆t− ∆tU
a(n−1)(x + ∆x(n))− a(n−1)(x)

∆x(n)
= a(n−1)(x) + ∆t.

Since Epanet numerical scheme is based on segments, the age between computational nodes
is retrieved by constant upwind reconstruction as depicted in Fig. 2.2b.

When several water ‘segments’ merge at the junction j, complete mixing is assumed to
compute the age at the junction

A(n)
j =

∑i∈P+

∣∣∣Q(n)
i

∣∣∣ a(n)i

∑i∈P+

∣∣∣Q(n)
i

∣∣∣
, (2.14)

where a(n)i is the mean water age entering the junction with a discharge Qi from pipe i at time
step n, and P+ is the set of pipes with a flow entering the junction. This method has been
implemented and compared to other methods.
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2.3.2 Machell et al. 2009 [20]

A second method has been described by Machell et al. (2009) [20]. The presentation of the
method has been modified compared to the original paper to make the reading easier and
consistent with the rest of this thesis. Although the presentation is different, the resulting
method is identical in practice.

As stated in the introduction, mean age computation may be unsatisfactory for water qual-
ity monitoring. The mean age computation result may not reflect the actual complexity of
the age distribution. To illustrate this point, the cumulative distribution function (CDF) of a
fictitious age distribution is depicted in Fig. 2.3a. The CDF that would be obtained with mean
age computation, thanks to the software Epanet, is a Heaviside function centred at the mean
age, as shown in Fig. 2.3b. Machell et al. thus proposed a method to access more information
on the age distribution at the junctions than simply its mean value. For this purpose, they
introduced so-called ‘age bins’ in the model, and they tracked the fractions of water within
each bin. A bin is characterised thanks to a lower and an upper age limit. Components of
the age distribution that lie in the same bin at a given node at any time steps are grouped to
form a single value. An example of results that could be obtained with this method is shown
in Fig. 2.3c.

CDF

τ

1

(a) Fictitious CDF.

a

1

CDF

τ

(b) CDF from mean age com-
putation (Section 2.3.1).

b1 b2 β3

f3

1

CDF

τ

(c) Potential CDF from the bins
method with three bins.

Figure 2.3: CDFs that can be computed thanks to already available methods.

First, it introduces Nb age bins, noted Bi,

B1 = [0, b1[ , B2 = [b1, b2[ , . . . , BNb = [bNb−1, +∞[ .

Formally, the method is equivalent to approximate the age distribution as a sum over the Nb
bins, where each term is the product of a Dirac impulse located somewhere in the bin (noted
βb(x, t)) and the fraction ( fb(x, t)) of the water in a given bin Bb

C(x, n∆t, τ) ≈
Nb

∑
b=1

f (n)b (x)δ
(

τ − β
(n)
b (x)

)
, where β

(n)
b ∈ B(n)

b ∀b, and
Nb

∑
b=1

f (n)b (x) = 1.

(2.15)
The unknowns in this method are the fractions, fb, and the location of the Dirac impulse,
βb, for each bin Bb at all computation nodes, and at all time steps. In the original paper,
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the numerical method is developed on a fix-grid. For the sake of simplicity, the numerical
method is here described on an adaptive-grid such as described in the previous Section for
the software Epanet. The effects of a fix-grid scheme will be discussed later on. The ‘bins
method’ is described step-by-step hereafter.

1. First, the fractions and the ages are initialized such that all water has an age zero for all
junctions of the network, i.e Cj(t = 0, τ) = δ(τ = 0) for all junctions j. The f and β’s
should then be initialized as

[
f 0
1 = 1, f 0

b = 0 ∀b 6= 1, and β0
b = 0 ∀b

]
∀ junctions.

2. Then, each age component, βb, is updated for the next time step similarly as the imple-
mentation described for the software Epanet.

β
(n)
b (x + ∆x(n)) = β

(n−1)
b (x) + ∆t if f (n−1)

b > 0.

3. If, because of the previous step, one has an age component out of its bin (i.e βb /∈ Bb),
water that was in this bin is transferred in the relevant bin.

If β
(n)
b ∈ Bc with b 6= c, ⇒ f (n)b β

(n)
b + f (n)c β

(n)
c

fb + fc
→ β

(n)
c , fb + fc → fc,

and the βb and fb are then reset to zero.

4. Eventually, the age at each junction j is updated according to complete mixing

Cj(n∆t, τ) ≈
Nb

∑
b=1

f (n)b δ
(

τ − β
(n)
b

)
, with β

(n)
b =

∑i∈P+

∣∣∣Q(n)
i

∣∣∣ f (n)i,b β
(n)
i,b

∑i∈P+

∣∣∣Q(n)
i

∣∣∣ f (n)i,b

,

and f (n)b =
∑i∈P+

∣∣∣Q(n)
i

∣∣∣ f (n)i,b

∑i∈P+

∣∣∣Q(n)
i

∣∣∣
.

5. The steps 2, 3, and 4 are iterated for all time steps.

Note that, in the original paper, up to nine bins were investigated, Nb = 9. The limitation on
the bins number arises from the computational power limit. This method has been reimple-
mented for comparison with the new approach described in the following. A simple example
of computations for a five junctions network is shown in Fig. 2.4 to illustrate this Section. In
these simple examples, the computation has been done for steady-state and two different sets
of bins.
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New water

New water

New water

1h

2h

during 2h
1 volume

during 1h
1 volume

1h

2h

2h
3h

7hduring 7h
1 volume

during
1h

2
volum

e
(a) Age bins are: B1 = [0, 1.5[, B2 = [1.5, 2.5[,
B3 = [2.5, 3.5[, and B4 = [3.5, +∞[.

New water

New water

New water

1h

2h

during 2h
1 volume

during 1h
1 volume

1.5h

2.5h

7hduring 7h
1 volume

during
1h

2
volum

e

(b) Age bins are: B1 = [0, 0.5[, B2 = [0.5, 2.5[,
B3 = [2.5, 3.5[, and B4 = [3.5, +∞[.

Figure 2.4: Illustrations of the bins method on a simple case. Adapted from Machel et al. [20].
Note that other choices of age bins are possible to obtain the same results.

2.4 Steady-state

2.4.1 Iterative method

The model developed by Machel et al. (2009) introduces an age discretisation to offer a bet-
ter understanding of the age distribution in a WDN. As for all methods, there are drawbacks
to the bins methods. Some of them are listed below.

• The age bins are fixed prior to the computation when the optimal configuration is un-
known.

• Information is lost, not only if several components of the age distribution lie in the same
bin, but also if there is a loss in information in any upstream nodes. Indeed, the age
bins chosen in Fig. 2.4b should allow representing the age distribution at the last node
correctly. It is not the case because there is an error introduced at the upstream node.

• The number of bins is the same for every computational point. This causes over-
refinement for some nodes, whereas some are under-refined.

The method presented here tries to address some of these drawbacks. For clarity, this method
deals with steady-state first. How to extend this method to unsteady-state will be addressed
in the next Section. The main idea of this method is to not introduce any prefered discretisa-
tion for the age distribution before the computation.
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Again, this section starts from Eq. 2.8 but assumes steady-state, ∂·
∂t = 0, (i.e both the flow is

steady and the distributions of water age do not evolve with time)1

∂C
∂τ

= −U
∂C
∂x

,

which is a transport equation through the spatial and the age space. To get a well-posed
problem, one should specify the domain of the variables and the boundary conditions. Let us
first consider a semi-infinite pipe connected to a zero-age inlet C(τ) = δ(τ). The extension to
a WDN will be done later. Mathematically, it gives





∂C
∂τ

+ U
∂C
∂x

= 0 in ]0,+∞[,

C(0, τ) = δ(τ) at x = 0.

(2.16a)

(2.16b)

This problem can be solved thanks to the method of the characteristics. Changing variables
with

η = x + Uτ ξ = x−Uτ,

gives, for Eq. 2.16a,
∂

∂η
(C(η, ξ)) = 0.

Which means that any distribution of the form C (x−Uτ) satisfying Eq. 2.16b is a solution.
Using Eq. 2.16b, one has

C? (−Uτ) = δ (τ)⇒ C? (x−Uτ) = δ
(
− x

U
+ τ

)
⇒ C(x, τ) = δ

(
τ − x

U

)
.

At the outlet of a pipe of finite length L, the water age distribution is approximated with the
water age distribution computed for a semi-infinite pipe in x = L, which is

C(L, τ) = δ

(
τ − L

U

)
.

Because of the boundary condition 2.16b, this solution will be referred to ‘the impulse re-
sponse’.

This result will now be generalised to a WDN. First, the pipe is connected to an upstream
junction with an arbitrary age Cup(τ). In that case, the problem writes





∂C
∂τ

+ U
∂C
∂x

= 0 in ]0,+∞[,

C(0, τ) = Cup(τ) at x = 0.

(2.17a)

(2.17b)

From the linear system theory, one can generalise the result obtained previously for the im-
pulse response thanks to a convolution product

C(L, τ) =
∫ τ

0
Cup

(
τ − τ′

)
δ

(
τ′ − L

U

)
dτ′ = Cup

(
τ − L

U

)
.

1Note that a different situation may occur if the flow is assumed steady (∂tU = 0) but the transient evolu-
tion of C is considered. In other words, assuming steady-flow is not a sufficient condition to ensure that age
distributions are also steady.
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From this result, the water age distribution at any nodes can be computed iteratively. For a
junction j, assuming perfect mixing again, the water age distribution is

Cj =
∑i∈P+ |Qi|Ci

(
τ − L

U

)

∑i∈P+ |Qi|
. (2.18)

Intuitively, this equation means that the water age distribution at a junction j, is equal to the
perfect mixing of the age distributions of the upstream junctions but aged by the travel time
needed for the water to go from the upstream junctions to the considered junction. Eq. 2.18
can then be repeated iteratively to determine the water age distribution at all junctions.

Numericaly, the age at the junction j is represented by two vectors: the age components
Aj = [α1, α2, . . . , αN ] and the fraction of water corresponding to each age component Fj =
[ f1, f2, . . . , fN ]. The age distribution is thus written as

Cj(τ) =
N

∑
k=1

fkδ(τ − αk), where
N

∑
k=1

fk = 1. (2.19)

Conversely to the bins method, no prefered discretisation is introduced before the computa-
tion.

The numerical algorithm that has been implemented, based on Eq. 2.18 and the discretisa-
tion of Eq. 2.19, is described hereafter.

1. Initialised all junctions to have a zero age: Aj = [0], and Fj = [1], for all junctions j.

2. Similarly to Eq. 2.18, apply complete mixing to update the age at the junctions based on
its neighbour nodes.

Aj =
[
Ap + Tp, Aq + Tq, . . . , Ar + Tr

]
, where Tx =

Lx

Ux
,

Fj =
1

QT

[∣∣Qp
∣∣ Fp,

∣∣Qq
∣∣ Fq, . . . , |Qr| Fr

]
, where QT =

∣∣Qp
∣∣+
∣∣Qq
∣∣+ · · ·+ |Qr| ,

where {p, q, . . . , r} ≡ P+ is the set of junction with a flow entering the junction j.

3. Stage 2 has to be iterated until convergence.

These new methods have been implemented and will be compared to the one described
previously in the next Section.

2.4.2 Illustrations and convergence

Two networks have been used to validate the written code: the network ‘Net1’ described in
Fig. 1.2a, and the network from Jowitt et al. in Fig. 1.2c. A constant demand is applied at each
junction, and the discharges are computed thanks to the software Epanet (more details on
the simulation parameters are available in Appendix A). Since the demands are constant, the
solutions found have constant discharges in each pipe. These discharges are taken as input
for our simulations that neglected the transient part of C.
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Once the discharges are known, the water age distributions are computed numerically and
analytically. The analytical results for network Net1 are shown in Table 2.1 and numerical
results obtained with the new implemented method are shown in Fig. 2.5. The same work
has been done with the network from Jowitt et al., but the complete results are not shown
here as it would be unusefully long. The detailed ‘pen-and-paper’ solution for the Jowit et al.
network is shown in Appendix B. Two cumulative distribution functions are shown in Fig. 2.6
as examples for this network. Numerical and analytical results remarkably agree.

Pipe U [km/h] L [km] D [cm] T [h]
10 3.69 3.21 46 8.69× 10−1

11 4.24 1.61 35 3.79× 10−1

12 4.39× 10−1 1.61 25 3.65
21 1.57 1.61 25 1.02
22 4.73× 10−1 1.61 30 3.40
31 7.73× 10−1 1.61 15 2.08
111 2.97 1.61 25 5.41× 10−1

112 1.21× 10−1 1.61 30 1.33× 101

113 −1.31× 10−2 1.61 20 −1.22× 102

121 1.13 1.61 20 1.41
122 4.71× 10−1 1.61 15 3.40

Node C [h−1]
10 δ0

11 δ0.87

12 δ1.25
21 δ1.41
31 δ2.83

22 0.9δ2.43 + 0.1δ14.56
23 0.9δ5.84 + 0.1δ17.97
13 0.98δ4.9 + 0.0169δ128.1

+0.0018δ140.2
32 0.62δ4.9 + 0.342δ5.84

+0.038δ18.0

Table 2.1: Analytical results for network Net1. See Fig. 1.2a for Pipe ID and Node ID. U is the
velocity in the pipe, L its length, and D its diameter. The water age distribution, C, is shown
in the last column for each node.
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Figure 2.5: Water
age distribution
at each node of
network Net1 com-
puted thanks to
the implemented
code. Colours
indicate different
Dirac impulses in
the distribution.
The ages (in hours)
are written inside
each contribution
(for visibility, some
writings have been
shifted to the left).
To be compared
with Table 2.1.
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Figure 2.6: CDF of nodes
10 and 18 of the Jowitt
et al. network. The
solid blue line is com-
puted with the numerical
implementation, and the
black dashed line is the
analytical solution.

The agreement between numerical and analytical results is quantified with a difference
function. The difference function, diff(C1, C2), between two distributions, C1 and C2, is de-
fined as the area that separates the two cumulative water age distributions

diff(C1, C2) =
∫ ∞

0
|C1(τ)− C2(τ)| dτ. (2.20)

The total difference function is defined as the sum of difference functions over all nodes of
the network, Diff(C1, C2) = ∑all junctions j diffj(C1, C2). For the sake of simplicity, a normalized
difference function is introduced diffn(C1, C2) = Diff(C1, C2)/ maxall iterations (Diff(C1, C2)). It
allows to compare convergence of the different methods on a single graph easily.

The difference functions, obtained with the implemented code and the reimplementation
of the bins method, are compared in Fig. 2.7. For both networks, the implemented methods
converge quickly towards the analytical solution. As predicted in the previous Section, con-
vergence for the bins method is not guaranteed. Thanks to a wise choice of bins, convergence
can be reached for the smaller network Net1. However, the existence of a particular choice
of bins to ensure convergence is not guaranteed in any case. None of the chosen bins allows
reaching the analytical solution on the larger network from Jowitt et al. It would required to
choose at least 211 bins since it is the number of components in the age distribution at node
18. On should also be sure to not loose any information in any upstream nodes, which would
required even more bins.
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Figure 2.7: Normalised difference functions for the bins method and the implemented it-
erative method. ‘Bins A’ lines use three bins: {[0, 15[ , [15, 20[ , [20, ∞[} and ‘Bins B’ five:
{[0, 5[ , [5, 10[ , [10, 15[ , [15, 20[ , [20, 130[ , [130, ∞[} [h].

2.4.3 Application to the full-scale Jockgrim network

In the previous Section, the iterative method has been shown to be more accurate than the
two already existing methods. These last two methods tolerate inaccuracy in order to remain
computationally efficient. Being efficient is indeed a prior requirement to be applicable on
full-scale networks, or in other words: to be useful for water quality monitoring in ‘real-life’
networks. This Section thus investigates the applicability of the developed method on the
full-scale Jockgrim network.

A full-scale network is mainly characterised by a high number of junctions. The conse-
quences are twofold:

• the number of paths for going from one reservoir to any junctions tends to increase,
which increases the number of components in the age distribution at the junctions;

• The average distance between a reservoir and a junction increases, which increases the
number of required iterations to converge. It is equivalent to say that the range of
influence of all reservoirs increases.

The increase in the number of components causes each iteration to be more computationally
expensive, while the number of required iterations also increases with the size of the network.
This double negative effect renders convergence impossible for the junctions that are the
farthest of the network.

A small modification in the previously described iterative method has been introduced to
make convergence possible for all junctions of a full-scale network. It speeds up the compu-
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tation at the cost of a loss of precision. The idea is to limit the maximum number of com-
ponents in the age distributions to avoid the ‘double punishment’ of the increase in network
size. When this maximum number is reached, the neighbours with the lowest contribution to
the age distribution are grouped together to form a single value. To make it clear, let us write
it explicitly for a junction j with Nmax the maximum allowed number of components. If the
update step of the iterative method leads to an illegal number of components

Aj = [α1, α2, . . . , αN ] , where N = Nmax + 1,

Fj = [ f1, f2, . . . , fN ] ,

then the age and fraction vectors are modified as follows:

1. First, the sum of adjacent fractions, s·, is computed

Fj =




s2= f2+ f3 sN−1︷ ︸︸ ︷ ︷ ︸︸ ︷
f1, f2, f3, . . . , fx, fy, . . . , fN−1, fN︸ ︷︷ ︸ ︸ ︷︷ ︸

s1 sx


 .

2. Then the fractions and the age with the smallest sum are grouped. For illustration,
assume sx < si ∀i ∈ {[0, x− 1] ∪ [x + 1, N − 1]}.

Fj =


 f1, f2, f3, . . . , fz︸︷︷︸

fz= fx+ fy

, . . . , fN−1, fN


 ,

Aj =


 α1, α2, α3, . . . , αz︸︷︷︸

?

, . . . , αN−1, aN


 where ? =

fxαx + fyαy

fx + fy
.

With this modification, it is possible to obtain convergence for all nodes of the network.
An example on the node KUNE0005 of the Jockgrim network is shown in Fig. 2.8. Note
the agreement between the mean age computed thanks to software Epanet and the mean
age computed from the age distribution resulting from the developed method. This result is
expected and can be used to check the convergence of the iterative method.

It is interesting to use the new iterative method and the software Epanet simultaneously.
Indeed, while the second method gives a rapid value for the mean age, the first one can give
more accurate results. If one wants to determine the age at a given junction, it can easily check
convergence by comparing mean age results and adapt the refinement of the iterative scheme
to get the more accurate results possible, while ensuring convergence. The iterative method
also offers advantages over the bins method in the sense that it does not require fixing an age
discretisation prior to the computation, which would induce over/under-refinement at some
nodes. This causes wasted computational power in empty bins that can not be used at other
junctions where it may be necessary. With the iterative method, all the computational power,
and only the needed computational power, will be used.
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(a) Number of iteration: 30, Nmax = +∞.
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(b) Number of iteration: 200, Nmax = 50.

Figure 2.8: Convergence of the iterative method for the node KUNE0005 of the Jockgrim
network. The limitation of the number of age components allows to increase the number of
iteration and reach convergence. (The mean computed with the iterative method has been
represented with a dot and not a Heaviside function for visibility.)

Results that can be obtained are shown in Fig. 2.9 for two junctions: HA044 in the munici-
pality of Hatzenbühl, and WÖ044 in the municipality of Wörth am Rhein. Fig. 2.9 compares
results obtained with mean age computation and the implemented iterative method. These
two nodes have been selected as they are nice illustrations of the motivation of this master
thesis. The mean value at node HA004 (Fig. 2.9b) is about 22 hours, but it hides the key
information on the age distribution: 60% of the water is older than 30 hours. In a very fig-
urative way, mixing ‘green young’ with ‘red old’ water gives a more complicated result than
the ‘yellow mid age’ water obtained with Epanet. Going beyond mean age computation may
also relocate the focus of attention. Whereas node WÖ044 was classified as safe ‘green young
junction’, it is actually composed of more than 10% of water older than 30 hours.

2.4.4 Conclusion

From these results, one can be convinced that more accurate results can be obtained thanks
to the new method. The major distinction between this method and the bins method is the
discretisation of the age distribution function. Whereas the bins method used a fixed number
of bins and a fixed bins discretisation for all nodes, the implemented code uses two vectors
which store only the necessary information: [α1, α2, . . . , αN ] and Fj = [ f1, f2, . . . , fN ]

Cj(τ) ≈
Nb

∑
b=1

fbδ (τ − βb) , where βb ∈ Bb ∀b −→ Cj(τ) ≈
Nmax

∑
k=1

fkδ(τ − αk). (2.21)

A limitation in length has been introduced to ensure convergence for all nodes. Note that for
a maximum length equals to the number of bins, Nb = Nmax, the developed method always
gives identical or better results since it does not fix the discretisation of the age distributions
prior to the computation.
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(a) Localisation of nodes
HA044 and WÖ044 in the
Jockgrim network.
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(b) Result from Epanet

(left and dashed line),
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method (blue line and
dot) at node HA044.
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(c) Result from Epanet

(left and dashed line),
and from the iterative
method (blue line and
dot) at node WÖ044.

Figure 2.9: Illustrations of results that can be obtained with the iterative method. Numerical
parameters: Nmax = +∞, and the number of iterations is 30.
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2.5 Unsteady-state

The previous Section introduces a new method for water age computation in steady-state.
However, for real configurations, the discharges in the pipes of WDNs are not constant, which
means that the steady-state assumption is not valid. The goal of this Section is to investigate
how unsteady-state can be simulated. A time-dependent scheme similar to the one used
by Epanet and another one using a fix-grid has been implemented and compared. These
methods are described in the next and the Section ends with some test cases.

For a time-dependent state, a temporal and spatial discretisation of the network will be
necessary. In practice, the discharges are computed thanks to the software Epanet with a
time-stepping ∆t for Nt time steps. The velocity, Un, in each pipe is known at each time-step,
n, and is assumed to be constant during a time equals to ∆t. If Un is held constant during the
time step ∆t, the method of the characteristic can be applied. Restarting from Eq. 2.8

∂C
∂t

+
∂C
∂τ

= −Un
∂C
∂x

, for (n− 1)∆t < t < n∆t.

Let us introduce the following change of variables

η = x + Unt, ξ = x−Unt, and λ = t− τ.

The governing equation becomes,

∂λC + Un∂ηC−Un∂ξC− ∂λC = −Un∂ηC +−Un∂ξC,
⇒ ∂ηC = 0.

which means that the solution has the form C(ξ, η). In other words, for any fixed value of
the set (ξ, λ), the solution is constant during the time step. The characteristic lines are thus
defined by the set of lines

d ≡
{

ξ = x−Unt
λ = t− τ

∀(ξ, λ) ∈ R2.

Therefore, the following equality holds

C(t, x, τ) = C(t− ∆t, x−Un∆t, τ − ∆t). (2.22)

Shorter notations are introduced to facilitate the future developments

Cn
i (τ) = C(n∆t, i∆x, τ).

The age discretisation for the age distribution is done exactly in the same way as it has
been done for the steady-state case, thanks to the two vectors Aj = [α1, α2, . . . , αN ], and
Fj = [ f1, f2, . . . , fN ] (see Eq. 2.19). These two vectors depend on space and time

Cn
i (τ) ≈

N

∑
k=1

fk(i∆x, n∆t)δ (τ − αk(i∆x, n∆t)) . (2.23)
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2.5.1 Fix-grid scheme

This first method introduces a fix spatial discretisation in each pipe, ∆x, that may be differ-
ent from one pipe to another. From a practical standpoint, Eq. 2.22 means that the value of
the age distribution in (t, x) should be updated thanks to the age distribution at the previous
time step, t − ∆t, at the localisation x −Un∆t, but aged by ∆t. Since it is unlikely that the
point x − Un∆t falls right on a computation point, two approximations are possible to re-
cover the value of the distribution in x−Un∆t: a downstream approximation or an upstream
approximation. An interpolated scheme is also possible and is discussed later.

Cn
i =





Cn−1
i−l

(
τ − ∆t + χ

∆x
Un

)
(downstream),

Cn−1
i−l−1

(
τ − ∆t− (1− χ)

∆x
Un

)
(upstream),

where
l = bUn∆t/∆xc and, χ =

Un∆t
∆x
− l, (2.24)

with b·c the floor funtion. These approximations are illustrated in Fig 2.10.

u

x

. . . . . .

l∆xχ∆x

Un∆t

(i)∆x(i− l)∆x(i− l − 1)∆x

Figure 2.10: Sketch of the fix-grid numerical scheme. Blue arrows indicate the flow direction,
grey arrows illustrate the text notations, red/teal-blue arrow shows the upstream/down-
stream approximation, and rectangles are computation nodes.

Exploiting the expressions of χ allows rewriting these update equations in a simpler form

Cn
i =





Cn−1
i−l

(
τ − l

∆x
Un

)
(downstream),

Cn−1
i−l−1

(
τ − (l + 1)

∆x
Un

)
(upstream).

The two vectors representing the age distribution are thus updated as follows

An
i =





An−1
i−l + l

∆x
Un

(downstream)

An−1
i−l−1 + (l + 1)

∆x
Un

(upstream)
and Fn

i =

{
Fn−1

i−l (downstream)

Fn−1
i−l−1 (upstream)
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If a downstream approximation is used, the system will tend to react too slowly. This
effect is visible in Fig. 2.11a. The reverse is true for the upstream approximation, as shown
in Fig. 2.11a. At each time step, the error on the propagation speed is (at most) ∆x/∆t.
As a consequence, the spatial discretisation should be small enough to model correctly all
hydraulic data and to prevent significant errors in the dynamical behaviour of the system.
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Figure 2.11: Illustration of the upstream/downstream approximation on the fix-grid scheme
for network Net1. The solid blue lines are mean ages at all nodes computed with the fix-grid
method. Dashed black lines serve as references and are computed with the software Epanet.

2.5.2 Adaptive-grid scheme

A second numerical method has been implemented. Similar to the previous one, it relies on
the method of the characteristics but does not use a fixed spatial grid. This method has been
introduced to mimic the implementation of the software Epanet (see Section 2.3.1). It is based
on lagrangian volumes of water created at the upstream node at each time step with a length
Un∆t in which water age is equal to the upstream node age. All the already existing volumes
inside the pipe are shifted towards the downstream nodes by Un∆t. Water in these volumes is
then aged by ∆t. With this algorithm, the water age inside each segment represents the water
age at the upstream part of the segment. The age distribution of the water at the downstream
node is computed thanks to the last segment partially inside the pipe. It is thus an upstream
approximation. This method is illustrated in Fig.2.12.

u

x

. . .

L

C1 C2 C3

Figure 2.12: Sketch of the adaptive-grid numerical scheme. Blue rectangles are volumes of
water, and the red rectangle shows the volumes used to compute the water age at the outlet.
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This adaptive spatial discretisation offers a better representation of the dynamical be-
haviour than the fix-grid scheme since the downstream/upstream approximation of the fix-
grid scheme causes the system to react too quickly/slowly. However, the adaptive-grid
scheme introduces an error in the water age. To easily illustrate this point, let us consider a
single pipe in a steady-state. Since the water is aged by ∆t at each time step, the travel time
will be approximate by

∆tbL/(U∆t)c
instead of L/U, because the only representable ages are the multiples of ∆t. To ensure conver-
gence, one should therefore ensure the time discretisation to be sufficiently small to represent
the water age correctly.

2.5.3 Comparaison

At this point, it is interesting to compare both schemes. The fix-grid scheme accurately
represents the travel time through pipes, whatever the time discretisation, provided that one
node is at the beginning and another one at the end of the pipe. In contrast, the travel time
is correctly represented in the adaptive scheme only if the time stepping is small enough. On
the other hand, the dynamic of the network is correctly represented in the adaptive scheme,
whereas the upstream/downstream approximation introduces non-causal/delay errors. This
antagonist behavior has been summarized in Table 2.2.

Fix-grid Adaptive-grid

Accurate dynamic modelling If ∆x → 0. Yes.
Accurate travel-time representation Yes. If ∆t→ 0.

Table 2.2: Comparaison of the fix-grid and adaptive-grid scheme to model unsteady-state.

2.5.4 Modified approximations

In this Section, some modifications are introduced to the previous schemes. The motivation
behind this is to get better results for low-cost simulations. Indeed, water quality management
may require performing several simulations on full-scale networks. It may thus be necessary
to be able to obtain sufficiently accurate results at a minimal cost. Note that, for robust and
accurate computation, one of the previous schemes should always be prefered.

Random fix-grid scheme The fix-grid scheme suffers from its downstream/upstream ap-
proximations when the spatial discretisation is not sufficiently refined. These approximations
induce errors in the propagation speed. One way to mitigate this effect is to randomly choose
between the upstream or the downstream approaches at each time step. To conserve the
propagation speed, the random choice should be weighted according to the distance between
the upstream and downstream node. In practice, the choice between the approximation fol-
lows a Bernouilli distribution. Noting the random variable Y ∈ {upstream, downstream}, the
probability mass function defining the choice is

f (Y) =
{

χ if Y = downstream,
1− χ if Y = upstream,
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where χ was defined in Eq. 2.24 and in Fig. 2.10.

Interpolated fix-grid scheme To get even better results, one could imagine a linear recon-
truction to retrieved the age exactly in i∆x −Un (see Fig. 2.10). Such interpolation has the
form

An
i =

(
χAn−1

i−l + (1− χ)An−1
i−l−1

)
+ ∆t,

Fn
i = χFn−1

i−l + (1− χ)Fn−1
i−l−1.

which perfectly works when the two distributions have the same shape. There is, however, no
suitable interpolation method when the distributions do not have the same shape, i.e when
two neighbours computation nodes are characterised by distributions with a different number
of components. In other words, neighbouring A and F vectors (see Eq. 2.23) should have the
same length to perform the interpolation. In the implemented code, interpolation is done if
the neighbour’s distributions have the same shape. Otherwise, the random fix-grid scheme is
used.

Interpolated adaptive-grid scheme The adaptive-grid scheme suffers from its inability to
model the travel time through pipes accurately. For steady-states, this problem can be over-
come by interpolating all the water outside the pipes instead of using an upstream approx-
imation. The difference between the upstream approximation and the interpolated scheme
is emphasised in Fig. 2.13. Again, the same problem as for the interpolated fix-grid scheme
arises for the unsteady state. The problem is overcome in the same way: interpolation is done
for distributions with the same shape, and an upstream approximation is used otherwise.

u

x

. . .

L

C1 C2 C3 C4

Figure 2.13: Modified lagrangian scheme. The blue box emphasises the volumes used for the
interpolation.

2.5.5 Test cases and convergence

Tests are performed on the network from Jowitt et al. with a demand pattern shown in
Appendix A applied to all nodes. First, the convergence of all numerical schemes is checked.
Looking at Table 2.2, the fix-grid schemes should converge towards the exact solution when
the spatial discretisation is refined. The number of discretisation points, Np, in pipe p is

Np = m
L

minn∈[1,Nt](Un)∆t
,

where m ∈ R+
0 is called the multiplier. A reference solution is computed for a simulation time

T = 144h, a time step ∆t = 1h and m = 160 with the upstream scheme. The total difference
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Figure 2.14: Convergence analysis for fix-grid scheme (a) and adaptive-grid scheme (b).

function (Eq. 2.20) is computed for different multipliers on the last time step. Results are
shown in Fig. 2.14a. One can see that all methods converge towards the same results and
that the modified schemes (random and interpolated schemes) give better results for coarse
discretisations.

The convergence for the adaptive scheme is reached when the time stepping is sufficiently
small. A reference solution is computed with ∆t = 1min with the upstream approximation.
Difference values are shown for various time steps in Fig. 2.14b. Once again, both methods
give the same results for a refined time step, and the modified scheme (interpolated scheme)
leads to improvement on rough time discretisation.

For illustration, let us first consider a quasi-static case on the same network. The discharges
are constant but a time step ∆t is introduced. At the time t = 0, the age distribution is
δ(τ = 0) everywhere in the network. The age distributions are aged at each time step and
evolve according to the flows. Fig. 2.15a shows the evolution of the mean age at each node,
computed with Epanet and the implemented code. Fig. 2.15c shows the evolution of the age
distribution at node 10. The age distribution converges towards the static result of Fig. 2.6.

Figs. 2.15b and 2.15d show the results when using a variable demand (see Appendix A).
Mean ages (Fig. 2.15b) and the age distribution at node 10 (Fig. 2.15d) do not reach a steady-
state. However, a repetitve pattern is observed for t & 75 hours which indicates convergence.

2.5.6 Conclusion

This Section has reimplemented and developed different numerical schemes to simulate
time-dependent demands and thus time-dependent discharges. The different techniques have
been shown to converge and to all give satisfactory results. Simple and robust scheme have
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been first described and their key difference summarised in Table 2.2. Some modified scheme
have been introduced to get slightly better results on rough discretisation.

These time-dependent schemes do not directly depend and how the age distribution is
discretised. It has been coupled with the new method described in the previous Section,
and this new method does not include any additional complication compare to other age
distribution discretisation techniques.
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(c) To be compared with Fig. 2.6.
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Figure 2.15: Figs. a and b show the mean age computed with the fix-grid interpolated method
(solid blue lines) and returned by Epanet (dashed black lines) for the quasi-static case (a) and
variable demand case (b) at each node of the network from Jowitt et al. Figs. c and d highlight
the time dependence of age distribution at node 10 for both cases. The colours indicate the
fraction of water in each branch.
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Relaxing Assumptions

The previous chapter focuses on improving water age representation with common mod-
elling assumptions. The goal of the following chapter is to investigate two underlying as-
sumptions that are the plug flow assumption and the homogenous mixing. First, new models
that do not make these assumptions are introduced. These models are then tested on some
of the studied networks.

3.1 Dispersion

3.1.1 Introduction

Water quality monitoring in WDNs commonly uses the plug flow assumption ([24]). This
means that dispersion effects are neglected. One can, however, be easily convinced that,
because of the velocity profile and turbulent mixing, this assumption is not true and is only
used because of its convenience for computation. Despite the impact that this hypothesis may
have, only two studies on the subject have been found, both from Remero-Gomez et al.: [24],
and [25]. These papers compared analytical, numerical, and experimental results for axial
dispersion in a single pipe.

This Section aims at understanding the effects of dispersion in water quality computing.
More precisely, this Section describes two techniques that have been implemented to model
axial dispersion. The first one is based on an analytical result, whereas the second technique
is based on the finite volume method. These methods will be explained first and then will be
applied on a single pipe configuration and on the network ‘Net1’ (Fig. 1.2a) for illustrations.

The mathematical model of this Section restarts from Eq. 2.7, which is

∂C
∂t

+
∂C
∂τ

= −U
∂C
∂x

+
∂

∂x

(
K

∂C
∂x

)
,

and assumes steady-state and the dispersion parameter K to be constant through the spatial
dimension of the pipes. The governing equation thus takes the form of an advection-diffusion
equation

∂C
∂τ

= −U
∂C
∂x

+ K
∂2C
∂x2 . (3.1)

At the interior of the domain, no water has an age equal to zero since the age is defined as
the time elapsed since the water particle has entered the domain ([8]), which gives the ‘initial’
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condition
C(x, τ = 0) = 0. (3.2)

The age at the upstream junction, C0, is again computed thanks to perfect mixing from the
upstream pipes. As it has been shown in Deleersnijder et al. ([6]), boundary conditions
play a crucial role in water age computation. Here, the boundary conditions are chosen in
accordance with Dewals et al. ([8]) and are illustrated in Fig. 3.1.

x
0 (Γin) L (Γout)

U K

UC0 Advective

Figure 3.1: Schematic of the computational domain for a single-pipe and its boundary condi-
tions. Figure adapted from [6].

The age of water particle entering the pipe through the departure boundary, Γin, is set to
C0. It results in a Robin boundary condition to set the incoming flux

[
UC− K

∂C
∂x

]

x∈Γin
= UC0, (3.3)

where the incoming flux is assumed purely advective. Note that not all water particles have
an age equal to C0 at the inlet because of the diffusion [6]. At the arrival boundary, Γout, flux
is assumed to be purely advective

[
K

∂C
∂x

]

x∈Γout
= 0. (3.4)
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3.1.2 Modified Iterative Method

Hereafter is proposed a modified iterative method for dispersion (MIMD) (see the original
method in Section 2.4). This method includes the effects of dispersion without introducing
a spatial discretisation of the WDN. It is achieved by looking at the analytical solution for a
semi-infinite pipe. First, the water entering the pipe is assumed to have a zero-age, which
sets the inlet boundary condition. Such problem writes





∂C
∂τ

= −U
∂C
∂x

+ K
∂2C
∂x2 ,

C(x, 0) = 0,

UC− K
∂C
∂x

= Uδ(τ) at x = 0,

(3.5)

which solution is (see [6])

C(x, τ) =
U√
πKτ

exp
[
− (x−Uτ)2

4Kτ

]
− U2eUx/K

2K
erfc

[√
U2τ

4K
+

√
x2

4Kτ

]
, (3.6)

where erfc(z) is the complementary error function

erfc(z) = 1− erf(z), and erf z =
2√
π

∫ z

0
e−y2

dy.

If the considered pipe is connected to a junction, with an age distribution C0 rather than with
zero-age water, the problem writes





∂C
∂τ

= −U
∂C
∂x

+ K
∂2C
∂x2 ,

C(x, 0) = 0,

UC− K
∂C
∂x

= UC0 at x = 0.

(3.7)

The partial differential equation problems described in Eq. 3.5, and in Eq. 3.7 differ by their
inlet boundary conditions. In the first case, the inlet boundary condition is described with a
Dirac impulse, whereas it is defined with an arbitrary function C0 in the second case. It is
known, from the linear system theory, that the solution to the problem 3.7 can be rewritten
thanks to the convolution product of the solution to problem 3.5 and the boundary condition
C0. Solution to problem 3.7 thus writes (see also [31])

C(x, τ) =
∫ τ

0
C0(τ− τ′)

{
U√

πKτ′
exp

[
− (x−Uτ′)2

4Kτ′

]
− U2eUx/K

2K
erfc

[√
U2τ′

4K
+

√
x2

4Kτ′

]}
dτ′.

(3.8)
Strictly speaking, this solution is only valid for semi-infinite pipes. Though, it reveals to be a
good approximation for flows of high Peclet numbers, as it will be shown in Section 3.1.4. An
intuitive explanation can be found considering the arrival boundary condition described by
Eq. 3.4. This boundary condition imposes the flux to be purely advective at the outlet. At high
Peclet numbers, advection dominates, and the semi-infinite solution is a good approximation.
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Figure 3.2: Schematic of a simple
network to illustrate text nota-
tions. Squares indicate junctions,
and arrows show flow directions.

In the following, the implemented algorithm to compute the age at the junctions in a WDN
is described step-by-step. Numerically, the water age distribution is discretised in the age
space with an age time step ∆τ

Cn(x) = C(x, n∆τ), for n = 1, . . . , Nτ.

Four steps described in the next are followed.

1. The age for the most downstream point of each pipe, i.e at x = Li, is initialized thanks
to Eq. 3.6

Cn
i = C(x = Li, τ = n∆τ) =

U√
πKn∆τ

exp
[
− (Li −Un∆τ)2

4Kn∆τ

]

− U2eULi/K

2K
erfc



√

U2n∆τ

4K
+

√
L2

i
4Kn∆τ


 ,

(3.9)

where, for each pipe, the x-coordinate is the coordinate along the pipe in the streamwise
direction. The x-coordinate is set to zero at the inlet of each pipe (see Fig. 3.2).

2. The age at each junction I, JI(τ), is computed assuming perfect mixing (see Eq. 2.18).

JI(n∆τ) ≈ Jn
I =

1
∑i∈P+ |Qi| ∑

i∈P+

|Qi|Cn
i (3.10)

3. At this stage, the age at the most downstream point of each pipe (Cn
i ) will be updated.

If the upstream junction of the pipe i is connected to a zero-age junction, Eq 3.9 from
stage 1 is again used. Otherwise, the convolution product is computed in accordance
with Eq. 3.8 thanks to the age at the upstream junction, Jup (Eq. 3.10).

For low Peclet values, the convolution product is directly computed. This can be done by
trapezoidal integration

Cn
i =

l=n−1

∑
l=0

∆τ

2

[
Jn−(l+1)
up Fi((l + 1)∆τ) + Jn−l

up Fi(l∆τ)
]

where Fi(z) =
U√
πKz

exp
[
− (Li −Uz)2

4Kz

]
− U2eULi/K

2K
erfc

[√
U2z
4K

+

√
x2

4Kz

]
.
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The computation cost of this convolution is O(N2
τ) for each pipe. To speed up computation

time, the code perfoms this computation using the fast Fourier transform method available in
the package SciPy [13], which computational cost is O (Nτ log(Nτ)).

For high Peclet values, an approximation is used. This is because the second exponential in
Eq. 3.6 (i.e ePe) can be a higher number than the maximum representable float. This maximum
will depend on the computer, the language used, and the details of the implementation. For
this master thesis, this maximum was 1.79·10308, which means that the maximum allowed
Peclet is about 709. To go beyond this limit and be able to model very advective flow, an
approximation of the second term of Eq 3.6 is used. The starting point is the approximation of
the erfc(·) function. This approximation originates from [1]. A more accurate approximation
described in [19] has been selected for this master thesis, which is

erfc x ≈
(

a1s + a2s2 + a3s3 + a4s4 + a5s5
)

e−x2
, s =

1
1 + px

,

with a1 = 0.254829592, a2 = −0.284496736, a3 = 1.42141741,
a4 = −1.453152027, a5 = 1.061405429, and p = 0.3275911.

The second term of Eq. 3.8 can thus be approximated as

U2eULi/K

2K
erfc



√

U2t
4K

+

√
L2

i
4Kt


 ≈ U2

2K

(
a1s + a2s2 + a3s3 + a4s4 + a5s5

)
e

ULi
K −

[√
U2t
4K +

√
L2

i
4Kt

]2

with s =
1

1 + p
[√

U2t
4K +

√
L2

i
4Kt

] ,

(3.11)
where the argument of the exponential has been reduced. This approximation may cause
the age distribution not to be normalised as shown in Fig. 3.3. This would violate mass
conservation, and thus the water age distribution is normalised to avoid this problem. This
will introduce significant errors if the temporal domain of computation is too small compared
to the real temporal domain of the age distribution. In other words, the fraction of water with
age higher than the maximum representable age numerically (which is Nτ∆τ), should be as
small as possible and convergence has to be checked.

4. Once the age at the most downstream point of each pipe has been updated, age at the
junction can be recomputed according to step 2. Steps 2 and 3 must be iterated until
convergence.

This numerical method based on an approximate analytical solution but with no spatial
discretisation has been implemented and will be compared to others method in the last part
of this Chapter.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.fftconvolve.html
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Figure 3.3: Numerical integral of
Eq. 3.6. Unity is not reach for Pe>709,
when approximation described in
Eq. 3.11 is used. Here, the numerical
parameters are: L = 100m, U = 1m/s,
Nτ = 105, T = 104s, K = UL/Pe.
Numerical integration is done with the
trapezoidal rule.

3.1.3 Finite Volume

As explained in the previous Section, the implemented method does not model correctly
the output boundary condition. For the outlet boundary condition to be correctly represented,
a finite volume scheme is described in this Section.

Constant Reconstruction

From Eq. 3.3, one has a Dirac impulse in the boundary condition if the age of water is
assumed equal to zero at the pipe inlet. The Dirac impulse in the boundary condition may
cause instabilities in the numerical simulation. To overcome this issue, Dewals et al. ([8])
propose to first compute the step response b, which means that the boundary condition for
pipes connected to zero-age water are defined with the Heaviside function, B0 = H(τ), and
not a dirac impulse, C0 = δ(τ). If the pipe is not connected to an inlet of the network, the
inlet boundary condition B0 is computed thanks to the complete mixing assumption. For a
given pipe of the network, the boundary condition is thus

B0 =





H(τ) if the upstream junction of the pipe is an entrance of the network,
1

∑i∈P+ |Qi| ∑
i∈P+

|Qi| bi(x = Li, τ) otherwise;

where bi(x = L, τ) is the step response at the downstream location of pipe i entering the
studied pipe.
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The impulse response can then be recovered from the step response derivative. Thus an
equivalent formulation to Eqs. 3.1, 3.2, 3.4, and 3.3, but easier to solve numerically is





∂b
∂τ

= −U
∂b
∂x

+ K
∂2b
∂x2 ,

b(x, 0) = 0,

Ub− K
∂b
∂x

= UB0 at x = 0,

Ub− K
∂b
∂x

= Ub at x = L,

C =
∂b
∂τ

.

Here is introduced a numerical scheme based on the finite volume method (FVM) with
a spatial discretisation of the network. A cell-centred scheme is used. The mesh is taken
uniform in space, as sketched in Fig. 3.4 for one pipe.

j+1j−1 j+2j−21 Nxj

j− 1
2 j + 1

2

. . . . . .
x

0 L

Figure 3.4: 1D cell-centred finite volume mesh with Nx uniform cells. Illustration of text
notations.

The principle of a finite volume discretisation is first to integrate the partial differential
equation over one cell

∫ x
j+ 1

2

x
j− 1

2

∂b
∂τ

dx +
∫ x

j+ 1
2

x
j− 1

2

∂

∂x

(
Ub− K

∂b
∂x

)
dx = 0.

The first term, including the time derivative, is transformed based on the mean value theorem,
while the next terms are straightforward to integrate

db̄j

dτ
∆x +

[
Ub− K

∂b
∂x

]j+ 1
2

j− 1
2

= 0,

where b̄j refers to the average of b over the cell j and ∆x = xj+ 1
2
− xj− 1

2
. Hence, considering

that so far U and K are assumed constant and uniform,

db̄j

dτ
= −U

[b]j+ 1
2
− [b]j− 1

2

∆x
+ K

[
∂b
∂x

]
j+ 1

2

−
[

∂b
∂x

]
j− 1

2

∆x
. (3.12)
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The only remaining step to come up with a finite volume discretisation is to specify how the
fluxes are evaluated at the cell edges j− 1

2 and j + 1
2 . For the gradient of b in the diffusive

flux, a centred finite difference is used
[

∂b
∂x

]

j− 1
2

≈ b̄j − b̄j−1

∆x
, and

[
∂b
∂x

]

j+ 1
2

≈ b̄j+1 − b̄j

∆x
.

For the variable b in the advective flux, an upwind approximation is used (constant recon-
struction, assuming U ≥ 0)

[b]j− 1
2
≈ b̄j−1, and [b]j+ 1

2
≈ b̄j. (3.13)

By applying the specified boundary conditions at the inlet and outlet, the scheme writes as
follows for the first and last cells

• for j = 1:

db̄1

dτ
= −Ub̄1 −UB0

∆x
+ K

[
∂b
∂x

]
3
2

∆x
≈ −Ub̄1 −UB0

∆x
+ K

b̄2 − b̄1

∆x2 ,

• for j = Nx:

db̄Nx

dτ
= −Ub̄Nx −Ub̄Nx−1

∆x
+ K
−
[

∂b
∂x

]
Nx− 1

2

∆x
≈ −Ub̄N −Ub̄Nx−1

∆x
+ K

b̄Nx−1 − b̄Nx

∆x2 .

The time-stepping has been done thanks to an explicit Euler method. The water age is dis-
cretised with a time step ∆τ. Let us rewrite Eq. 3.12 at time n∆τ

db̄n
j

dτ
= −U

[b]nj+ 1
2
− [b]nj− 1

2

∆x
+ K

[
∂b
∂x

]n

j+ 1
2

−
[

∂b
∂x

]n

j− 1
2

∆x
,

where the upper indices indicate the time step. The step response has thus to be updated
according to

b̄n+1
j = b̄n

j + ∆τ




−U

[b]nj+ 1
2
− [b]nj− 1

2

∆x
+ K

[
∂b
∂x

]n

j+ 1
2

−
[

∂b
∂x

]n

j− 1
2

∆x





.
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Grouping all terms, the constant reconstruction finite volume scheme writes (assuming U ≥ 0)

For 1 < j < Nx : b̄n+1
j = b̄n

j + ∆τ


−U

[b]nj+ 1
2
− [b]nj− 1

2

∆x
+ K

[
∂b
∂x

]n

j+ 1
2

−
[

∂b
∂x

]n

j− 1
2

∆x




with [b]nj− 1
2
= b̄n

j−1, and [b]nj+ 1
2
= b̄n

j
[

∂b
∂x

]n

j− 1
2

=
b̄n

j − b̄n
j−1

∆x
, and

[
∂b
∂x

]n

j+ 1
2

=
b̄n

j+1 − b̄n
j

∆x

For j = 1 : b̄n+1
1 = b̄n

1 + ∆τ

[
−Ub̄n

1 −UBn
0

∆x
+ K

b̄n
2 − b̄n

1
∆x2

]

For j = Nx : b̄n+1
Nx

= b̄n
Nx

+ ∆τ

[
−

Ub̄n
Nx
−Ub̄n

Nx−1

∆x
+ K

b̄n
Nx−1 − b̄n

Nx

∆x2

]
.

(3.14)

Linear reconstruction

The previous numerical scheme, based on constant reconstruction (see Eq. 3.13), is simple
and robust. However, it suffers from a major drawback that is numerical diffusion. It means
that the solution tends to smear out because of the numerical scheme. The consequence is
that dispersion can be seen in the solution even if K → 0, as illustrated in Fig. 3.5a.
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(a) Constant reconstruction.
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(b) Linear reconstruction.

Figure 3.5: Comparaison of the constant (a) and linear (b) reconstruction scheme for high
Peclet numbers on a single pipe. Numerical parameters are K = 0.1m2/s, L = 100m, U=1m/s
(Pe=103), α = 0.01 (CFL condition, see later Eq. 3.18).
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This numerical diffusion can be shown rigorously for the constant reconstruction scheme.
Taking the constant reconstruction numerical scheme with K = 0, and for 1 < j < Nx

b̄n+1
j = b̄n

j + ∆τ

{
−U

b̄n
j − b̄n

j−1

∆x

}
,

and the Taylor expansions

b̄n+1
j = b̄n

j + ∆t
(

∂b̄
∂t

)n

j
+

(∆t)2

2

(
∂2b̄
∂t2

)n

j
+

(∆t)3

6

(
∂3b̄
∂t3

)n

j
+ . . . ,

b̄n
j−1 = b̄n

j − ∆x
(

∂b̄
∂x

)n

j
+

(∆x)2

2

(
∂2b̄
∂x2

)n

j
− (∆x)3

6

(
∂3b̄
∂x3

)n

j
+ . . . ,

one can show (see for example [17])

∂b̄
∂t

+ U
∂b̄
∂x

=
U∆x

2
(1− φ)

∂2b̄
∂x2︸ ︷︷ ︸

numerical diffusion

+ . . . ,

where φ = U ∆τ
∆x is the Courant–Friedrichs–Lewy (CFL) number for advection. This numerical

diffusion term is not physical and renders the analysis of dispersion effects meaningless
for a small value of the diffusion parameter K. Therefore, a higher-order reconstruction
method is introduced to replace the constant reconstruction approximation (Eq. 3.13). A
linear reconstruction can be written as

[b]j+ 1
2
≈ b̄j +

∆x
2

σj, and [b]j− 1
2
≈ b̄j −

∆x
2

σj,

where the slope σj could be naively computed as

σj =
b̄j+1 − b̄j−1

2∆x
. (3.15)

However, when using a linear reconstruction method, one has to introduce a slope-limiter
to avoid numerical dispersions, i.e oscillations in the solution originating from the numerical
scheme. The origin of the oscillations is shown in Fig.3.6. By limiting the slope, the slope-
limiter ensures to avoid overshoot. Several slopes limiters exist, see for example [18]. Here a
monotoned central-difference limiter (MC limiter) is used. The slope from Eq. 3.15 has to be
replaced by

σn
j = minmod

((
b̄n

j+1 − b̄n
j−1

2∆x

)
, 2

(
b̄n

j − b̄n
j−1

∆x

)
, 2

(
b̄n

j+1 − b̄n
j

∆x

))
, (3.16)

where the minmod function is

minmod(a, b, c) =





a if |a| < |b| and |a| < |c|,
b if |b| < |a| and |b| < |c|, and
c if |c| < |a| and |c| < |b|.

The limited slope is depicted in Fig. 3.7. Thanks to this linear reconstruction, one can mitigate
the numerical diffusion that may make any quality analysis wrong for low dispersion factor
K, as illustrated in Fig. 3.5b.



3. Relaxing Assumptions 38
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(a) Illustration of the origin of the oscillations.
If the slope estimation (Eq. 3.15) is not lim-
ited at each time step, overshoot may arise.
Overshoot will be responsible for oscillations.
Blue lines show the slope estimations, and the
black dots are nodal values. Two successive
time steps are shown here. Inspired from [28].
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(b) Oscilations in the solution because of the
absence of slope-limiter. Numerical parame-
ters are the same as in Fig. 3.5.

Figure 3.6: Numerical oscillations in linear reconstruction finite volume scheme.

Limited slope
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Figure 3.7: Example of limited
slope computed with Eq. 3.16 to
avoid oscillations.

Grouping all the terms together give for the finite volume scheme with linear reconstruction

For 1 < j < Nx :

b̄n+1
j = b̄n

j + ∆τ


−U

[b]nj+ 1
2
− [b]nj− 1

2

∆x
+ K

[
∂b
∂x

]n

j+ 1
2

−
[

∂b
∂x

]n

j− 1
2

∆x




with [b]nj+ 1
2
= b̄n

j +
∆x
2

σn
j , and [b]nj− 1

2
= b̄n

j −
∆x
2

σn
j

σn
j = minmod

((
b̄n

j+1 − b̄n
j−1

2∆x

)
, 2

(
b̄n

j − b̄n
j−1

∆x

)
, 2

(
b̄n

j+1 − b̄n
j

∆x

))

[
∂b
∂x

]n

j− 1
2

=
b̄n

j − b̄n
j−1

∆x
, and

[
∂b
∂x

]n

j+ 1
2

=
b̄n

j+1 − b̄n
j

∆x

For j = 1 : b̄n+1
1 = b̄n

1 + ∆τ

[
−Ub̄n

1 −UBn
0

∆x
+ K

b̄n
2 − b̄n

1
∆x2

]

For j = Nx : b̄n+1
Nx

= b̄n
Nx

+ ∆τ

[
−

Ub̄n
Nx
−Ub̄n

Nx−1

∆x
+ K

b̄n
Nx−1 − b̄n

Nx

∆x2

]
.

(3.17)
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CFL condition

A necessary condition to be stable for the two finite volume schemes is the so-called
Courant-Friedrichs-Lewy (CFL) condition. The CFL condition states that the numerical speed
should always be higher than the physical speed. In other words, at each age time step ∆τ,
the travel distance (through advection or diffusion) should be smaller than the space grid (the
range of influence of the scheme at the boundary is only one ∆x)

∆x > U∆τ , and ∆x >
√

2K∆τ,

which can be rewritten as

∆τ < min
(

∆x
U

,
∆x2

2K

)
.

In this master thesis, the number of computational nodes Nx is taken constant in each pipe
of the WDN. This choice has been made to ensure that all pipes are discretised with at least
one node and to avoid unnecessary refined discretisation in long pipes since the pipe length
can be very different from one pipe to another inside the same WDN. Once the number
of computational points is fixed, and thus the spatial step in each pipe, the age temporal
discretisation is taken to satisfy the CFL condition

∆τ = α min
all pipes

(
min

(
∆x
U

,
∆x2

2K

))
, (3.18)

where 0 < α < 1.
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3.1.4 Single Pipe

In this Section, the numerical methods are illustrated on a simple single-pipe configuration.
The pipe has a length L = 100m, and the water flows at 1m/s. From the computed water age
distribution, the mean age can be computed by integration

a(x) =
∫ +∞

0
τC(τ, x)dτ.

Trapezoidal integration is used to numerically determined this integral. This numerical solu-
tion will be compared to results obtained by Dewals et al. For the very same problem (Eqs. 3.1,
3.2, 3.4, and 3.3), they established the water mean age profile through the pipe analyticaly

a(x) =
L
U

(
x
L
+

1− e−Pe(1−x/L)

Pe

)
. (3.19)

This analytical result is compared to the numerical results from the finite volume method
in the left column of Fig. 3.8 for various Peclet numbers. One can see the numerical results
tend toward the analytical expression as the spatial grid is refined. The right column of
Fig. 3.8 shows the CDFs at the outlet of the pipe. The numerical results obtained with the
FVM are compared to the one obtained with the modified iterative scheme for dispersion
(MIMD). For a single-pipe configuration with zero-age prescribed at the inlet, the MIMD
reduces to Eq. 3.9. At high Peclet numbers (Pe & 10), both methods agree, as predicted
in the previous sections. The impact of the boundary condition is visible at lower Peclet
values (Pe . 10) where assuming a semi-infinite pipe at the outlet is very different from our
modelling assumption with a purely advective flow at the outlet (Eq. 3.4).

A simple experiment is possible to show that the mismatch between the two methods at
low Peclet is due to the boundary condition. First, the FVM is applied on a longer pipe of
length sL with s > 1, which allows reducing the effect of the boundary condition at the outlet.
Then the result of the FVM in x = L is compared to the one of the MIMD. This is shown in
Fig. 3.9 and remarkable agreement can be seen between the two methods for s & 2.
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Figure 3.8: Left: mean age profile computed analyticaly (Eq. 3.19) and numerically. Right:
CDFs from Eq. 3.9 (MIMD), and the FVM. Nτ sets to satisfy the CFL condition with α = 0.05
(Eq. 3.18).
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ary condition is applied. The blue cross-section shows
where the FVM solution is retrieved. The FVM computa-
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Figure 3.9: FVM and MIMD at Pe = 1 for different extension of the FV computational domain.

3.1.5 Net1

The developed numerical methods have been tested on the network Net1 for various dis-
persion coefficients. Results are shown in Fig. 3.10 for node 23, for different mean Peclect
value, Pe, where the mean is taken over all pipes. For the highest Peclet value (≈ 15), the
MIMD has been used, which does not require a spatial discretisation of the pipes. The re-
sult is similar to the one obtained when the dispersion was neglected (see Section 2.4). The
finite volume scheme with linear reconstruction has been used for lower Pecelet values to
ensure to satisfy the outlet boundary condition. The solutions behave as expected, with the
distributions tending to smear out when the Peclet number decreases.
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Figure 3.10: Dis-
persive effects at
node 23 of network
Net1. See text
for the numerical
methods used. Nu-
merical parameters:
Nτ,MIMD = 103,
Nx,FVM = 20,
α = 0.01,
T = Nτ∆τ = 50h.
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3.1.6 Conclusion and outlook

Computation of dispersion effects has been achieved on a single-pipe configuration and a
small WDN thanks to two different techniques. The first one is based on an approximate
analytical solution valid at high Peclet numbers. The underlying numerical method is a
numerical integration of a convolution product. The great advantage of this method is that
it does not require a spatial discretisation of the WDN. A finite volume scheme has been
introduced to correctly represent the outlet boundary condition, taking care of distinguishing
numerical diffusion and physical dispersion thanks to a linear reconstruction method. A
finite volume method requires a complete discretisation of the WDN, which has been done.

For computational efficiency, it has been chosen to take the number of computational nodes
constant in each pipe. This choice may not be optimal. It suffers from a major drawback that
is: if one considers two identical flows (same velocity U, and diffusion parameter K) through
two pipes having the same diameter but a different length, the two pipes will have a different
space-grid whereas they model the exact same physic. Other approaches are possible and
could be investigated in future work. Some possibilities are a spatial grid proportional to the
pipe diameter or to first fix the age time step ∆τ and then to take the spatial discretisation to

be ∆x =
1
α

max(U∆τ,
√

2K∆τ).

Unfortunately, the computational cost of these two methods makes, for now, computation
of dispersion effects impossible for larger networks with a ‘simple’ laptop. At high Peclet
numbers, convergence is unlikely to be reached on a traditional laptop with the FVM because
of the CFL condition (Eq. 3.18) that requires the time step to scale as the square of the grid
spacing. Relevant results may be found with the MIMD for this case. Conversely, for low
Peclet numbers, the solution from the MIMD is invalid because it violates the outlet boundary
condition. The optimal choice to get the most accurate possible solution will thus depend on
the Peclet number of each pipe of the WDN. One solution to overcome this problem could be
to combine different schemes. One could imagine each pipe of the network as a ‘black box’.
This black box would have one input that is the age at the upstream junction. This black box
would then output the age at the outlet of the pipe, selecting the numerical scheme depending
on the Peclet number. This may be a solution to achieve the computation of dispersion effects
on traditional computers for larger networks.
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3.2 Non-homogeneous Mixing

3.2.1 Introduction

Up to now, all models assume perfect mixing. Water entering the junctions is instanta-
neously mixed, and the water age is the same in any downstream pipes of the junction. It is,
however, not true as it has been shown by several authors, and the results may be very differ-
ent when non-homogeneous mixing is considered. The short residence time inside junctions,
and the limited contact between incoming flows that it induces, renders complete mixing
unrealistic, as demonstrated in the work of Austin et al. ([3]). In fact, if one considers cross
junctions such as in Fig. 3.11 b, ‘non-homogeneous mixing results from bifurcating inlet flows
that reflect off of one another with minimal contact time’, as it can be seen from the CFD sim-
ulations and experimental works of Romero et al. 2008 ([23]). The mixing assumption at
the junctions has been shown to play a significant role in water quality monitoring. As an
example, Romero et al. 2011 ([26]) show the impact of non-homogeneous mixing on sensor
network design. The study shows different optimal sensor locations in the network depend-
ing on the mixing assumption for a network similar the network ‘Net1’ considered in this
master thesis. Song et al. ([30]) reduces the solute concentration average prediction error
by nearly 50% while going from complete mixing modelling towards more realistic mixing
models. The studied networks were composed of only nine cross junctions.

Mixing at the junction is not trivial and depends, at least, on the type of junction, the
junction geometry, the flows configuration, and the hydraulic variables. The complications
arise from secondary currents, flow instabilities at the interface [29], and the great diversity
of existing junction types and flow configurations. Fig. 3.11 shows some of the mixing config-
urations studied in literature. Unfortunately, these studied configurations do not necessarily
represent all existing junctions (consider, for example, nodes 5, 6, 8, 12, 15, and 22 of the
network of Jowitt et al. (Fig. 1.2c)).

This Section aims at understanding the impact of the mixing assumption for water wage
computations. The focus is set on cross junctions as it is the most studied junction type in
literature. First, three mixing models for single cross junctions are reviewed. Then, some of
the mixing models are implemented to analyse the influence of the mixing assumption for the
network Test rig. Eventually, application to a full-scale network is discussed with the network
from Jockgrim.

(a) (b) (c) (d) (e) (f) (g)

Figure 3.11: Different junction types and flow configurations. (a) and (b) are cross junctions,
(c) to (e) are double-T junctions, and (f) and (g) are U junctions. Arrows indicate flow direc-
tion.
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3.2.2 Mixing models

When the flow entering the junction comes from a unique pipe (Fig. 3.12a), mixing does
not play a role. When the outcoming flow leaves a junction by a single pipe (Fig. 3.12b),
mixing at the cross junction may be assumed perfect [29]. Complete mixing is also a good
approximation for junctions where the incoming flows are facing each other (Fig. 3.12c)[29].
The relevant configuration to study is thus the case where two incoming flows enter the junc-
tion from adjacent legs (Fig. 3.12d). Pipe numbering is introduced here to remain consistent
throughout the entire chapter. The incoming pipes are numbered 1 and 2. The opposite of
pipe 1 (resp. 2) is labelled 3 (resp. 4).
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Figure 3.12: Possible flow configurations in a cross junction.

Azred

A plugin to Epanet, called Azred and developed at the University of Wisconsin-Madison
by Choi et al. ([5]), can model incomplete-mixing for large scale WDNs. It is thus possible to
compute the mean age at the junctions considering non-homogeneous mixing. The authors
have studies cross, double-T (Figs. 3.11 c, d, e), U (Figs. 3.11 f, g), and Y (double-T with an
angle different from 90°) junctions. According to the authors, the main parameters influencing
the level of mixing in the junctions are the type of junction and the Reynolds number in each
leg of the junction: Rei = UiLi/ν. Mixing at the junctions is then represented in terms of the
dimensionless concentration at one of the outlet, say outlet 3,

C?
3 =

C3 − C1

C1 − C2
. (3.20)

In practice, the software first scans the network to detect the occurrence of one of the studied
junctions to apply non-homogeneous mixing. The cross junctions are easy to detect, double-
T junctions are defined as two T-junctions separated by a pipe i with a maximum length
Li < 10Di, where Di is the diameter of the pipe. The non-homogeneous mixing is then
applied. The code computes the incoming and outgoing Reynolds ratios. Then, thanks to an
experimental database, the code links these ratios to dimensionless concentration (Eq. 3.20).
Once the dimensionless concentration and the input concentrations are known, the output
concentrations can be retrieved. Unfortunately, the authors did not publish the detailed code
or the database. It is thus not possible to couple Azred with our code implementation to
model non-homogeneous mixing.

https://azred.bse.wisc.edu/
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Bulk-mixing model

This model has been developed by Ho et al. [10]. First, only cross junctions with pipes
having all identical diameters are considered. The bulk-mixing model is a lower bound for
the mixing. The hypothetical lowest achievable level of mixing would be a junction where
incoming flows do not interact with each other. The momentum of the flows would then
define the level of mixing. This lower bound for mixing is called bulk-mixing and is illustrated
in Fig. 3.13 for a cross junction. Let derive the bulk-mixing model formally.

Q
1

Q2

Q
3

Q4

(a) Higher momentum in ver-
tical branches.

Q
1

Q2

Q
3

Q4

(b) Higher momentum in hor-
izontal branches.

Figure 3.13: Schematic representa-
tion of the bulk-mixing model.

If the momentum is higher in the vertical pipes (Fig. 3.13a), i.e. if

K1 + K3 > K2 + K4, where Ki = Q2
i /Ai.

Bulk-mixing assumes that no water can flow from pipe 2 to pipe 4. The water age considering
bulk-mixing for the downstream pipes would then be

Cbulk,3 =
Q2C2 + (Q1 −Q4)C1

Q3
, and Cbulk, 4 = C1 ,

because of mass conservation. Conversely, if K1 + K3 < K2 + K4 (Fig. 3.13b), no water can
flow from pipe 1 to pipe 3 and the downstream water age are

Cbulk,3 = C2 , and Cbulk, 4 =
Q1C1 + (Q2 −Q3)C2

Q4
.

It has to be contrasted with the perfect mixing model, used up to now, which is an upper
bound for the mixing. Indeed, it is equivalent to the theoretical case where the incoming water
would remain an infinite amount of time in the junction (while not ageing), would perfectly
mix to eventually release the same water age distribution into all downstream pipes.

Thus, complete and bulk-mixing are respectively an upper and a lower bound for mixing
at junctions. Exact mixing lies in between and can therefore be written as

Cexact,i = Cbulk,i + s
(
Ccomplete,i − Cbulk,i

)
, with 0 ≤ s ≤ 1.
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In this bulk-mixing model, the complexity of the junctions is hidden in the dimensionless
parameter s. This parameter depends mainly on the junction geometry and the momentum
in the pipes connected to the junction. Ho et al. access its value through experimental data
for a set of inlet flow ratios considering a specific cross junction. Of course, experimental
characterisation of the dimensionless parameter s is not possible for all junctions on a full-
scale network, and this method is not directly usable in practice. Though, bulk-mixing is easy
to compute and can indicate the range of influence of the mixing assumption.

Further works have been done ([11]) to extend this model to cross junctions composed of
different pipe diameters. This work only extends to the case where D = D2 = D4, and
d = D1 = D3 as illustrated in Fig. 3.14. If the higher momentum is in the larger pipes,
previous equations still hold since no water can flow from pipe 1 to pipe 3. In the other case,
where the higher momentum is in the smaller pipes, Ho et al. have shown the wraparound
effect. It is thus necessary to derive a new model to take into account this effect. This model
is called the Bulk-Advective Mixing Wrap (BAM-WRAP) model. It assumes that a certain
amount of flow coming from the larger diameter but smaller momentum is able to cross the
higher momentum stream through the wraparound region (Aw), as shown in red in Fig 3.14.
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Figure 3.14: Schematic
of a cross junction with
pipes having different di-
ameters for the BAM-
WRAP model [11]. (a)
shows a view from the
top, whereas (b) is a
cross-sectional view. The
dash-dotted line in (a)
shows the cross-sectional
plane.

The authors assume this amount to be proportional to the wraparound region

Aw = (D/2)2 (θ − sin θ) , where θ = 2 cos−1(d/D).

The amount of flow going from pipe 2 to pipe 4 is thus

Qw =
Aw

πD2/4
Q2.
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From mass conservation, the BAM-WRAP model can then be recovered

C4 =
(Q4 −Qw)C1 + QwC2

Q4
,

C3 =
(Q3 −Q2 + Qw)C1 + (Q2 −Qw)C2

Q3
.

Flow distribution factors

The third method has been developed by Shao et al. [29]. The cross junction case is
described here, but they proposed alternative equations to model double-T junctions. The
main idea is to determine how the incoming flows distribute among the outcoming pipes.
The flow distribution can be fully characterised for a cross junction thanks to one of the two
parameters f1 or f2 




f1 =
Q14

Q1
,

f2 =
Q23

Q2
,

where Qij represents water going from pipe i into pipe j, as illustrated in Fig. 3.15.

Q1

Q2

Q14

Q24

Q13Q23

Figure 3.15: Schematic illustration of the
flow distribution factors developed in Shao
et al. ([29]).

From these parameters, the outcoming water age distribution can be deduced:





C3 =
Q1 (1− f1)C1 + [Q3 −Q1 (1− f1)]C2

Q3

C4 =
Q1 f1C1 + (Q4 −Q1 f1)C2

Q4

or





C3 =
(Q3 −Q2 f2)C1 + Q2 f2C2

Q3

C4 =
[Q4 −Q2 (1− f2)]C1 + Q2 (1− f2)C2

Q4

(3.21)



3. Relaxing Assumptions 49

Shao et al. determine f1 and f2 thanks to experimental data and CFD calculations. These
parameters only rely, for the cross junction case, on the flow momentum Ki in each pipe i:
Ki = Q2

i /Ai. Here, it is assumed that there is a higher flow momentum coming from inlet 1
than coming from inlet 2, i.e K1 ≥ K2. If it is not the case, pipes should be renamed to satisfy
this condition. Once the pipes are named correctly, there are two possible cases. One where
there is a higher output flow momentum in outlet 4 (K3 ≤ K4, called higher momentum in
the adjacent legs), and the other one where the higher momentum is in outlet 3 (K3 ≥ K4,
called higher momentum in the opposite legs). For the higher momentums in adjacent pipes,

f1 can be linked to the flow momentum ratio, η =
K1 + K3

K2 + K4
,

f1 =
1.0001

[
1 + exp

(
1.0097 + 11.8279× log10 η

)]0.0747 ,

whereas it is easier to link the flow momentum ratio to f2 when the higher momentums locate
in opposite pipes

f2 = 0.990
η0.898

0.103 + η0.898 .

Once one of the flow distribution factor, f1 or f2, is known; downstream CDF can be found
thanks to Eq. 3.21.

Although [29] derive general expressions for pipes of different diameters, care should be
taken while generalising since experimental verifications of the flow factors have only been
performed on pipes with the same diameter.

The BAM-WRAP and flow distribution factors methods have been implemented in the
iterative method developed in Section 2.4. They will be analysed and illustrated in the next
Section.
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3.2.3 Study cases

We now investigate the practical consequences of non-homogeneous mixing in our studied
networks. Steady-state and perfectly advective flows are assumed. The analysis will be based
on a modified Iterative Scheme for non-homogeneous mixing. The bulk-mixing, BAM-WRAP,
and flow factors methods have been implemented and will be tested. Unfortunately, it is not
possible to study the network Net1 since the only cross junction is composed of four pipes, all
having a different diameter. The network Test rig will be investigated, and non-homogeneous
mixing for a full-scale network will be discussed at the end on the Jockgrim network.

The demands at the nodes of the networks will be modified to set the demands to zero
where one wants to model non-homogeneous mixing. This is the approach currently adopted
in literature ([3], [30], [23]). It is a strong limitation for practical implementations. This
emphasises the need for precise network geometry knowledge and demand point localisation.
It may be necessary for future network descriptions to differentiate between simple junction
and junction where water is extracted for the consumer.

In practice, the iterative scheme has been modified to model non-homogeneous mixing.
The initial iterative scheme updates the value at each iteration thanks to the value of the
direct upstream junctions. This is not directly applicable for non-homogeneous mixing since
the age distribution leaving a junction is not the same for all downstream pipes. This situation
is sketched in Fig. 3.16. It introduces some subtilities in the numerical code that are detailed
in appendix C.

N

S

EW
JN→E

JW→E

JN→SJW→S

JN(τ)

JW(τ) JE(τ)

JS(τ)

J(τ)

Figure 3.16: Modified iterative
method for non-homogeneous
mixing. Conversely to the
complete mixing case, down-
stream junctions are not up-
dated thanks to age at the di-
rect upstream junction (J(τ))
but are different in each down-
stream direction. More de-
tailed in appendix C.

Test rig

Some results for the network Test rig are detailed in Fig. 3.17. Since all pipes have the same
diameter, the bulk-mixing model and the flow factor distributions method have been used.
The detailed results for cross junction 23 are shown in Fig. 3.17c. The CDFs from the upstream
junctions (node 22 and 19) are compared to the CDFs from the downstream junctions (node
27 and 24). In this particular case, the flow distribution factors method tends to agree with
the bulk-mixing model. As it has been predicted in the description of the mixing models, one
can see that the results obtained with the flow distribution factors are always bound by the
complete and bulk-mixing methods.
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Figure 3.17: Non-homogeneous mixing applied to network Test Rig (Fig. 1.2b). Each figure
shows results obtained with complete mixing, bulk-mixing, and flow distribution factors from
Shao et al.([29]). Symbols indicates mean ages (at an arbitrary y-coordinate). Figs. 3.17a and
3.17b show the cumulative distribution for junction 21 and 29 respectively. Fig. 3.17c shows a
detailed answer for junction 23 and its neighbours.
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For node 24, the mixing assumption causes the older component to disappear. This may
lead to different decisions in water quality management, which highlights the importance
of the mixing assumption on the water age. Furthermore, the mixing assumption will have
an impact on all its downstream nodes even if they are not directly connected to the cross
junction, such as at node 29 in Figs. 3.17b.

Jockgrim

The full-scale Jockgrim network is now considered. For a full-scale network, one should
determine an automatic detection of the junctions where non-homogeneous mixing has to
be applied. An automatic determination of the junction geometry is also necessary. The
method proposed here is based on the closest adjacent nodes. If a junction has exactly four
connecting nodes, it is investigated as a potential cross junction. The adjacent nodes are
brought back on a fictitious circle of unit radius, as shown in Table 3.1. The ‘north’ position is
then assigned to the node with the highest y-coordinate, the ‘west’ position to the node with
the lowest x-coordinate, and so on. . . Let us write it formally for the ‘north’ junction. Similar
reasoning applies to others positioning. Noting a given cross junction J0 with four neighbours
{J1, J2, J3, J4}, which coordinate are noted (xi, yi) the ‘north’ position will be assigned to the
junction i ∈ {1, 2, 3, 4} such that

yi − y0√
(xi − x0)

2 + (yi − y0)
2

is maxium. (3.22)

Correct Impossible Wrong
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Table 3.1: Automatic detection of the geometry at a cross junction. J0 is the studied junction,
JX are neighbour junctions, squares indicate the assignment (North, South, West, or East),
solid black lines are pipes, and the dashed grey circles are the fictitious unit radius circle use
for the automatic assignment.

For very deform configurations, see for example ‘Impossible assignment’ in Table 3.1 or
node 5 of Jowitt et al. network (Fig. 1.2c), this assignment may not be unique. In the latter
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case, complete mixing is assumed because no work has been found for such junctions. The
automatic assignment may also fail because of inaccurate junction descriptions (consider, for
example, the last column of Table 3.1). If only the position of the nodes are known, but not
the geometry of the pipes, a correct assignment is not guaranteed.

In the particular case of the Jockgrim network, only 64 junctions among the 4551 ones
are connected to exactly four pipes, and 11 are double-T junctions. The same definition as
in Romero et al. ([23]) has been taken for the definition of double-T junctions: two nodes
with exactly three connections separated by a distance smaller than ten pipe diameters. An
automatic assignment is not possible for 3 of the cross junctions (‘Impossible’ column of
Table 3.1). Among the 61 remaining junctions, 14 junctions are composed of pipes with
the same diameters, and 11 have only the opposite pipes with the same diameters. The 36
remaining junctions are composed of pipes with different diameters for which no study has
been realised. In other words, non-homogeneous mixing can be applied confidently to only
25 junctions of the networks. The impact of the mixing assumption, in this case, is thus
negligible. The vast majority of junctions is not influenced by the mixing assumption.

A detailed look at the cross junction MA072 in the municipality of Maximiliansau (south
of Jockgrim) is shown in Fig. 3.18. Results are expected and similar to the ones that have
been obtained on the network Test rig. The flow distribution factors method tends to agree
with the bulk-mixing model but remains bound by this latter model and the complete mixing
results.

To really study the impact of non-homogeneous mixing on a network that is not major-
ity composed of straight cross junctions, further studies are necessary to extend the non-
homogeneous mixing on junctions of very different shapes.
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Figure 3.18: Examples of results that can be obtained for non-homogeneous mixing on a
full-scale network.
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3.2.4 Conclusion and outlook

Three mixing models have been reviewed from detailed studies that mainly focuses on sin-
gle junctions. These models have been implemented with the model previously developed
in Section 2.4. The implementation leads to similar results to the one obtained in the pre-
vious studies for the network Test rig. These results emphasised the impact of the mixing
assumption on the water age. This Chapter then tries to extend these models for a full-scale
network. A full-scale network required to automatically detect the geometry of the junctions,
which has been done. The major obstacle to a usable implementation is the lack of models
for junctions different from a traditional cross junction.

To model incomplete-mixing, one should know the junction types and the network ge-
ometry. The network geometry is not necessarily available for all networks. Furthermore,
the junction type is sometimes simplified: double-T junctions are replaced with a unique
cross-junction ([29]). A network can also be skeletonised to simplify hydraulic computation.
These geometry simplifications are not significant for hydraulic modelling but are crucial for
water quality monitoring. It would be a great advantage to access more data and more accu-
rate junction descriptions to better model non-homogeneous mixing and improve water age
computation in distribution networks. Further studies are necessary to increase the scope of
junctions where non-homogeneous mixing can be applied. One way to improve water age
representation in WDNs would be the availability of more complete data for each junction
of the network. This would remove the need for automatic detection from adjacent junctions
that will always lack reliability.
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Software implementation

This chapter briefly explains the software architecture that has been used for the numeri-
cal implementations described in this master thesis. The numerical implementations have all
been developed from scratch. Even if the goal of this chapter is not to describe extensively
all numerical implementations, the developments are synthesised here to help potential fu-
ture works on a similar subject. All the codes have been written in Python 3.7.6. The
implemented code takes as input a connection matrix (used to describe the geometry of the
network) and the discharges in the pipes. It outputs the age distributions as shown in Fig. 4.1.
The only notable exception to this graph is for non-homogeneous mixing, for which the geo-
graphical coordinates of all junctions have to be input as well.

Qij = discharge at time i in pipe j.

Q =




Q11 Q21 . . . Q1Np

Q21
. . .

...
...

QNt1 . . . QNt Np




Mij = 1 if pipe j enters junction i, -1
if it leaves, 0 if it is not connected.

M =




M11 M21 . . . M1Np

M21
. . .

...
...

MNn1 . . . MNn Np




Software

Cij = set of two vectors, A and F,
that described the age distribution
for junctions j at time step i

C =




C11 C21 . . . C1Nn

C21
. . .

...
...

CNt1 . . . CNt Nn




Figure 4.1: Input/Output schematic of the software implementation. Nn, Np, and Nt are the
number of pipes, junctions, and time-steps respectively.

To some extent, object-oriented programming has been used. The motivation was to be able
to efficiently reused part of already implemented codes between the different Section of this
work. Indeed, even if the different implementation may have very different characteristics:
pipe spatially discretised or not, steady-state or not, sizes,. . . ; it often converges in one or
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several aspects: network topology described with connection matrix, often assumes complete
mixing (notable exception of Section 3.2), age computation retrieved at the junctions,. . .

The adopted architecture is briefly presented in Fig. 4.2. A class named Solver instantiates
one Pipe and one Junction for all pipes and junctions in the network. It takes care to cor-
rectly connected each Junction to all the relevant Pipe’s. The implementation of the classes
Junction and Pipe depends on the numerical method chosen. However, the philosophy is al-
ways the same: each junction remembers its age distribution and the connected pipes. Thanks
to the value of its upstream junction, each pipe is able to update the value at its downstream
node. This result is, in turn, use to update all junctions.

Junction

• Knows its connected Pipe’s.

• getage(): method to determine its
age based on its upstream Pipe’s. It
depends on the mixing assumption.

• update(): update the inlet boundary
condition for its downstream Pipe.

Pipe

• Knows the current discharge.

• Knows the boundary condition at the
inlet.

• update(): update the age
distribution. Highly dependent on the
method (FVM, bins,. . . ). If a spatial
discretisation of the pipe is necessary,
it is introduced here.

Solver

• solve(): is responsibled to manage
the Junction and Pipe class to output
the results.

• instantiate(): instantiate all Pipe
and Junction thanks to the
connection matrix.

Input: Q, and M .

Output: C.

Figure 4.2: Architecture of the software implementation.
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Conclusion and Further works

Based on the observation that computing water age distributions is of interest to assess
the water quality, this master thesis tries to humbly contribute to the improvement of age
computation in WDNs. The focus was set on two research directions, which correspond to
the two main chapters:

• Reviewing and improving current modelling techniques for direct applications on full-
scale network.

• Study how to include more complex phenomena, by relaxing assumptions on academic
networks.

These works have been concretised thanks to the implementation of numerical methods writ-
ten in Pyhton.

The first milestone was the reimplementation of existing methods, namely the one of
Epanet and the one of Machel et al. (2009) [20]. The reimplementation of these methods
leads to the development of a new method, first in stead-state, that was based on a modifica-
tion of the water age distribution representation. The ‘fix-bins’ method developed by Machel
et al. has been replaced with an ‘adaptive’ discretisation of the age distribution (see Eq. 2.21)

Cj(τ) ≈
Nb

∑
b=1

fbδ (τ − βb) , where βb ∈ Bb ∀b −→ Cj(τ) ≈
Nmax

∑
k=1

fkδ(τ − αk).

This allows significant improvements in accuracy and in computational efficiency. This gain in
accuracy was shown on academic networks for which an analytical solution can be retrieved.
This method was then applied on a full-scale network to prove the applicability of this new
method for actual configurations. Since modelling only steady-states is unsatisfactory for real
applications, some existing and new numerical methods were discussed in the next to model
unsteady-state. These methods were coupled to the new age distribution representation,
tested, and compared on academic networks.

Modelisation forces to make assumptions, the main ones being to neglect the dispersion
effects and to assume perfect mixing. The second part of the present work thus focused on
studying the impact of these two assumptions and how could these two effects be modelled
for steady-state. The dispersion was investigated thanks to two different modelling tech-
niques. First, an approximate analytical solution was used. This method did not require a
discretisation and was shown to be a good approximation for high Peclet values when the
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advective dominates the diffusive flux. Modelling dispersion was also achieved thanks to
a finite volume numerical scheme, which required a spatial discretisation of the WDNs. A
constant reconstruction scheme suffers from numerical dispersion and should only be used
for low Peclet number flows. A linear reconstruction was shown to give better results and is
useful when modelling highly advective flows but is more expensive from a computational
point of view. The dispersion effects were investigated on a single pipe configuration and a
simple academic network.

The second modelling assumption that has been questioned is homogeneous mixing. Sev-
eral authors have studied mixing in a single junction and shown significant deviation from
the perfect mixing assumption. They established non-homogeneous mixing models that have
been reviewed and implemented for a full-scale network for junctions where it was possible.

There are many roads for future works to continue improving water age computation in
WDNs. Some of them, inspired by this master thesis, are listed hereafter.

In this master thesis, the actual value of the diffusion parameter K was not addressed.
This value should be investigated to orient further works. Indeed, modelling dispersion is
computationally expensive, probably impossible nowadays on the traditional laptop for a
full-scale network. However, as it has been shown, cheaper models can be applied when the
properties of the flow are known. Investigating the value of K could thus be of great interest.
This can be done by analytical analysis, stochastic methods, and experimental works such as
in Romero et al. [25].

The implementation developed for non-homogeneous mixing was mainly limited because
of the range of junctions to which non-homogeneous mixing can be applied confidently. The
implementation of non-homogeneous mixing has been shown to be feasible on a full-scale
network. The major remaining challenge is to develop non-homogeneous mixing models for
a wider range of junctions. This can be done through experimental or computational fluid
dynamic investigations.

A different direction is to develop a numerical scheme that can be parallelised (on CPUs or
GPU). It may allow obtaining better results thanks to the increase in computational power.

Any of these works, or the ones that may have been forgotten, will be of great help to
improve water age computation in WDNs. There is probably room for any engineering field
that would like to contribute to the noble objective of ensuring good water quality to every
consumer.
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Detailed Water Distribution Networks

A.1 Net1

This network is one of the examples delivered with the software Epanet. It is shown in
Fig. A.1 with its demand pattern applied to all nodes. Some of its key parameters are detailed
in Table A.1. The exact Epanet input file used in this work is available here.

10 11 12 13

21 22 23

31 32

10 11 12

21 22

31

111 112 113

121 122

t [h]

Demand
Base Demand [-]

1

0 2 4 6 8 10 12 14 16 18 20 22 24

Steady-state

Figure A.1: Net1 network from Epanet [27] and its demand pattern. Arrows indicate con-
ventional directions

https://drive.google.com/file/d/18NeX-W9NlEmUqkyzAZsCYvmCt39FoSOw/view?usp=sharing
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Pipe ID Length [foot] Diameter [inch]
10 10 530 18
11 5280 14
12 5280 10
21 5280 10
22 5280 12
31 5280 6
110 200 18
111 5280 10
112 5280 12
113 5280 8
121 5280 8
122 5280 6

Node ID Elevation [foot] Demand [GPM]
10 710 0
11 710 150
12 700 150
13 695 100
21 700 150
22 695 200
23 690 150
31 700 100
32 710 100

Table A.1: Details of Net1 network.

A.2 Jowitt et al. 1990

This network comes from the paper of Jowitt et al. [14]. It is shown with its demand pattern
in Fig. B.1. Some of its key parameters are detailed in Table A.2. The exact input file is
available here.

A.3 Test Rig

Test rig network is shown in Fig. A.3. Some of its key parameters are detailed in Table A.3.
The exact input file is available here. Some modifications have been made and are visible in
the input file. The major one is the demands set to zero at cross junctions.

A.4 Jockgrim

This full-scale network has been kindly share by Mr. Ralf Friedmann and Markus Justen
from Zweckverband für Wasserversorgung Germersheimer Südgruppe. Some modifications
have been made to model steady-state: Node Hatz, Rulz, and Wör have been categorised as
‘Reservoir’s.

https://drive.google.com/file/d/10vUtpZQ4GVH7e9C-kcE-kN2N6CVAHxAQ/view?usp=sharing
https://drive.google.com/file/d/1t7F-EY1h1ZeugErkloTQd8LshrrhCA3x/view?usp=sharing
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Figure A.2: Jowitt et al. network [14] and its demand pattern.
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Figure A.3: Test rig network.
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Pipe ID Length [m] Diameter [mm]
1 606 457
2 454 457
3 2782 229
4 304 381
5 3382 305
6 1767 475
7 1014 381
8 1097 381
9 1930 457
10 5150 305
11 762 457
12 914 229
13 822 305
14 411 152
15 701 229
16 1072 229
17 864 152
18 711 152
19 832 152
20 2334 229
21 1996 229
22 777 229
23 542 229
24 1600 457
25 249 305
26 443 229
27 743 381
28 931 229
29 2689 152
30 326 152
31 844 229
32 1274 152
33 1115 229
34 615 381
35 1408 152
36 500 381
37 300 229

Node ID Elevation [m] Demand [LPM]
1 18 300
2 18 600
3 14 0
4 12 5
5 14 1800
6 15 600
7 14.5 0
8 14 1200
9 14 0
10 15 300
11 12 600
12 15 0
13 23 0
14 20 300
15 8 1200
16 10 0
17 7 0
18 8 300
19 10 300
20 7 0
21 10 0
22 15 1200

Table A.2: Details of Jowitt et al. network.
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Pipe ID Length [m] Diameter [mm]
13 10 115
16 30 115
19 1.5 50
20 1.5 50
21 1.5 50
22 1.5 50
23 1.5 50
24 1.5 50
25 1.5 50
26 1.5 50
27 1.5 50
28 1.5 50
29 1.5 50
30 1.5 50
31 1.5 50
32 1.5 50
33 1.5 50
34 1.5 50
35 1.5 50
36 1.5 50
37 1.5 50
38 1.5 50
39 1.5 50
40 1.5 50
41 1.5 50
42 1.5 50
43 1.5 50

Node ID Elevation [m] Demand [LPS]
12 0 0.00
13 0 0.00
14 0 0.50
15 0 0.50
16 0 0.50
17 0 0.50
18 0 0.50
19 0 0.00
20 0 0.00
21 0 0.50
22 0 0.50
23 0 0.00
24 0 0.00
25 0 0.50
26 0 0.50
27 0 0.50
28 0 0.50
29 0 0.50

Table A.3: Details of Test rig network.
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Solution for Jowitt et al. network: pen-and-paper method

For steady-state, perfect mixing and no dispersion effects; a pen-and-paper solution can be
found for the Jowitt et al. network. The Jowitt et al. network is represented in Fig. B.1 with
the arrow in the direction of the flow. The details of the simulation parameters are available
in appendix A and the velocity in each pipe of the network is shown in Table B.1.

Pipe ID U [m/s] Q [LPM] L [m]
1 0.10 1019.45 606
2 0.19 1886.00 454
3 0.09 214.80 2782
4 0.36 2441.70 304
5 0.31 1345.87 3382
6 0.31 3294.48 1767
7 0.34 2356.50 1014
8 0.06 388.70 1097
9 0.07 719.45 1930
10 0.03 119.45 5150
11 0.57 5650.98 762
12 0.04 94.56 914
13 0.11 483.26 822
14 0.15 158.78 411
15 0.06 141.22 701
16 0.13 324.48 1072
17 0.02 24.48 864
18 0.11 116.74 711
19 0.01 9.74 832
20 0.14 338.60 2334

Pipe ID U [m/s] Q [LPM] L [m]
21 0.39 965.69 1996
22 0.29 715.91 777
23 0.05 115.91 542
24 0.40 3969.38 1600
25 0.27 1161.78 249
26 0.18 447.00 443
27 0.30 2084.27 743
28 0.57 1399.89 931
29 0.10 107.00 2689
30 0.16 178.01 326
31 0.07 173.01 844
32 0.05 58.56 1274
33 0.13 330.71 1115
34 0.23 1542.00 615
35 0.23 245.72 1408
36 0.23 1542.00 500
37 0.18 447.00 300

Table B.1: Velocity in each pipe of Jowitt et al. network for steady-state.

For each pipe i, the travel time Ti can be easily computed: Ti = Li/Ui. Node 23, 24, and 25
are the entrance of the network where water has a zero-age

C23 = δ(τ), C24 = δ(τ), and C25 = δ(τ).
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Figure B.1: Jowitt et al. network. Steady-state with arrows in the direction of the flow.
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The age at junction 14 is

C14 = [Q3δ(τ − T3) + Q4δ(τ − T4)]
1

Q3 + Q4
.

Therefore the age at junction 13 is

C13 = [Q7C14(τ − T7) + Q6δ(τ − T6)]
1

Q6 + Q7
.

Continuing with a similar reasoning, the distribution at all nodes can be computed. The order
of computation matters, one should take care to always compute all upstream node before
computing any given node. Starting from node 13

C12 = C13(τ − T11),
C11 = C12(τ − T22),

C10 = [Q23C11(τ − T23) + Q5δ(τ − T5)]
1

Q23 + Q5
,

C8 = [Q25C10(τ − T25) + Q24C12(τ − T24)]
1

Q25 + Q24
,

C9 = C8(τ − T26),

C6 = [Q27C8(τ − T27) + Q37C9(τ − T37)]
1

Q27 + Q37
, and

C7 = C6(τ − T34).

Restarting from node 1, C1 = δ(τ − T1)

C2 = C1(τ − T9),

C3 = [Q10C2(τ − T10) + Q32C6(τ − T32)]
1

Q10 + Q32
,

C4 = C3(τ − T30),

C5 = [Q31C4(τ − T31) + Q33C6(τ − T33) + Q36C7(τ − T36)]
1

Q31 + Q33 + Q36
,

C22 = [Q28C8(τ − T28) + Q35C5(τ − T35)]
1

Q28 + Q35
,

C15 = [Q20C22(τ − T20) + Q21C12(τ − T21)]
1

Q20 + Q21
, and

C21 = [Q29C22(τ − T29) + Q19C15(τ − T19)]
1

Q29 + Q19
.

Eventually, restarting from node 25

C16 = [Q8δ(τ − T8) + Q12C15(τ − T12)]
1

Q8 + Q12
,

C17 = C16(τ − T13),
C19 = C17(τ − T16),

C20 = [Q17C19(τ − T17) + Q18C21(τ − T18)]
1

Q17 + Q18
, and

C18 = [Q14C17(τ − T14) + Q15C20(τ − T15)]
1

Q14 + Q15
.
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Modified iterative scheme for non-homogeneous mixing

For a better understanding of this appendix, it is recommended to first read the chapter
about the software implementation, Chapter 4. Let us first describe the implementation for
the iterative method assuming perfect mixing. Each pipe of the network is represented by an
instance of the class Pipe. The feature of interest for this Section of the Pipe class is its method
get_travel_time(). This method returns the time needed for the water to go through the
pipe. The second class of interest is the class Junction that is used to represent the nodes of
the WDNs. Each instantiation of the class Junction is characterised by:

• a vector of the connected pipes, and

• a method get_age(), used to retrieve the age at the junction. As explained in Section 2.4,
the age distribution is represented thanks to two vectors: the age components A, and
the fraction of water for each age component, F.

N

S

EW

PN(τ)

PW(τ)

PE(τ)

PS(τ)

JN(τ)

JW(τ) JE(τ)

JS(τ)

J(τ)

Figure C.1: Schematic of a
cross junction. Jx (resp. Px)
is the age distribution at the
node (resp. pipe) of the branch
x.

Considering the cross junction in Fig. C.1, the south age distribution will be updated as
follows:

• Retrieved the age distribution at the centred node thanks to the get_age() method:

[A, F] = J.get_age()

• Determined the travel time to cross pipe PS thanks to the method get_travel_time():

T = PS.get_travel_time().
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• Update the age distribution at the south junction

AS = A + T,
FS = F.

This algorithm can not be directly applied for non-homogeneous mixing since the age dis-
tribution in pipe PS is not the one returned by the method get_age() at the junction J. To over-
come this problem, a new method is implemented at each junction: get_age_outlet(outlet).
It returns the age distribution in ‘outlet’ pipe of the junction. The get_age_outlet(outlet)

method is a recursive method that determines the age distribution in the pipe ‘outlet’ (PS or
PE) given the age distribution in the upstream pipe of the junction (PN and PW). PN and PW
are detrmined by applying the same get_age_outlet(outlet) method at node JN and JW .

This recursive algorithm is easy to implement. Its drawback is that the recursive imple-
mentation may be computationally expensive on networks where many cross junctions are
connected. The easier way to avoid a recursive method would be to describe each junction
with Np distributions, where Np is the number of pipes connected to the junction. There is
one distribution for each pipe connected to the junction. There is never more than three cross
junctions in a row for the studied networks. Therefore, only the recursive method has been
implemented.
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