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Abstract

In many biomedical applications, manual annotations of whole slide images take a tremendous
amount of time. In the computer vision literature, semi-automatic tools using deep learning,
known as deep interactive learning, have emerged to speed up the annotation process. These
semi-automatic tools exploit the interactions of the annotators in various forms to produce the
annotations more rapidly. In recent years, deep interactive learning seems to gain more attention
for its performance. However, do the additional information provided by the annotators help to
improve the results of automatic tools? An exploration in the literature was made, resulting in the
finding of a promising architecture, named NuClick, which uses the scribbles of the annotators in
combination with the images to produce decent annotations more quickly. In this thesis, results
of the conducted experiments on various datasets show that the additional information provided
by the scribbles improve drastically the performance of the segmentation for tissues, such as
bronchi, glands, or infiltrations. However, this interactive approach fails to produce accurate
segmentation for more complex tissues, such as tumours or inflammations. Also, results indicate
that the quality of the scribbles highly influences the produced segmentation. Therefore, care
should be taken when the annotators scribble the objects of interest. These results tend to
support the benefit that can be gain from the interactions of the annotators, although this thesis
shows that there is room for improvements with these semi-automatic tools.



Acknowledgements

First and foremost, I would like to sincerely thank my academic supervisor Raphaël Marée
for his guidance, advice, proofreading, and helpful feedback throughout the realisation of
this thesis.

Then, I would like to express my gratitude to Romain Mormont for his small feedback
and suggestions at the early stage of the thesis.

I am grateful for the interesting discussions with Pierre Geurts and also for the pre-
cious advice about some implementation details, which allow a huge time gain during the
realisation of the experiments.

Next, I would also like to thank Ruben Ulysse for his suggestions and valuable com-
ments about the writing of this thesis.

A special thanks to the Alan Cluster team for giving me access to their GPUs. Without
them, the numerous conducted experiments would have not been possible.

Finally, I would like to thank my friends and family for their support, especially my
twin brother.

i



Contents

1 Introduction 1

2 Deep learning and state of the art 5
2.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Training a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Convolutional neural network . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.5 Residual block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.6 U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Feedback-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Click-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Bounding box-based methods . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Contours-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Results of the approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Architecture choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methodology 22
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Dataset structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Data splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Segmentation model: NuClick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Inclusion and exclusion map . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Intersection over the union . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Dice coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Hausdorff distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Experiments and results 35
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 CHALLENGE-CAMELYON16-TRAIN . . . . . . . . . . . . . . . . . . . 36
4.1.2 CHALLENGE-GLAS-2015 . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.3 CHU-ANAPATH-NST-DL . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ii



4.1.4 ULG-LBTD-NEO04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.5 ULG-LBTD-NEO13 (3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Replication of the original study . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Experiments protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.4 Assessment standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Annotations analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Quantity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Quality analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.1 Bronchus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.2 Gland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.3 Inflammation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.1 U-Net comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.2 Absence of signal maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.3 Automatic NuClick architecture . . . . . . . . . . . . . . . . . . . . . . . . 68
4.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusion and perspectives 73
5.1 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.2 Integration to Cytomine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

List of Figures 75

List of Tables 78

Bibliography 79

A Neural network architecture 81
A.1 NuClick architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.2 U-Net architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Quantity analysis 82
B.1 Bronchus experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.2 Gland experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
B.3 Inflammation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.4 Infiltration experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
B.5 Tumour experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

C Quality analysis 90
C.1 Illustrations of the scribbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
C.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

iii



Chapter 1

Introduction

Pathology is the science that studies the causes and effects of diseases or illnesses through the
investigation of tissues, bodily fluids, organs, or in autopsy. In the medical sector, pathologists
play a vital role in diagnosing human diseases and finding a treatment accordingly. The process
of diagnosis is done through the examination of microscope slides. However, numerous drawbacks
come with this process, such as the need for a microscope, at most one slide can be examined at
a time, only limited analyses can be performed, storing the slides is a laborious task, and many
more. A subfield, named digital pathology, has emerged to alleviate most of the aforementioned
issues. More precisely, digital pathology refers to the process of digitising the microscope slides.
With these digitised slides, called whole slide images, there is no need for a microscope anymore,
an access to a computer is sufficient enough to view the slides at any time more easily. Several
slides can be analysed and viewed at the same time and various analyses can be performed
simultaneously. These advantages speed up the process of examinations and diagnoses done by
pathologists. An example of whole slide image is shown in Figure 1.1.

Figure 1.1: Illustration of a whole slide image of a sentinel lymph node shown in the Cytomine
web interface.

After the examination of whole slide images, regions of interest have to be annotated so
that further analysis can be performed later. The task of annotating regions of interest is a
tremendous, time-consuming, and error-prone process for human annotators. It usually requires
experts to annotate medical images which can result in expensive costs. To reduce the effort
of the annotators, automatic annotation tools and algorithms using deep learning have emerged
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to speed up this process. However, these automatic tools do not yet produce very accurate
annotations that fully satisfy the experts. To this end, semi-automatic annotations can be
designed, where the interactions of the human annotators are exploited to provide more accurate
annotations. Typically, an algorithm or a tool produces an initial annotation of the object of
interest. This initial annotation is then reviewed by an expert to correct the mistakes and to
produce the final annotation [Marée et al., 2014].

One type of annotations that is widely used on whole slide images is the semantic segmen-
tation. In short, it is the task of partitioning a given image into different regions. Each of these
regions is then given a semantic category. In this thesis, there are only two categories, also
known as binary semantic segmentation, namely the foreground or object of interest, and the
background representing all the other pixels in the image. This principle is going to be applied
to multiple images and object types, as illustrated in Figure 1.2 and Figure 1.3.

When an annotator has a limited number of annotations and wants to have more annotations
without spending excessive time on the annotation process, this thesis aims at reducing the
workload of the annotator by speeding up the process using a semi-automatic annotation tool. It
also aims at determining whether the interactions of the annotators provide effective information
or not. Illustrations of the different tissues used in this thesis are shown in Figure 1.3

(a) The image to segment (b) The segmentation (mask)

Figure 1.2: Example of the segmentation of a bronchus, where the foreground corresponds to the
bronchus and the background to all the other pixels in the image.

To store and access these whole slide images easily, various web-based platforms have emerged
to cope with the needs of fast and intuitive access. One of these platforms is Cytomine. Basically,
it is a web-based application that allows collaborative analysis of multi-gigapixel images [Marée
et al., 2016]. It is open-source and is composed of three main entities:

1. Open Source Repository: “Open-source rich internet application for collaborative anal-
ysis of multi-gigapixel images using machine learning" [Cytomine Corporation SA, 2021].
This entity is the main open source software, i.e., Cytomine with its documentation avail-
able at their website.

2. Open Company: the company Cytomine that contributes to the open-source project, is
in charge of promoting it, coordinating the open-source community, and providing products
and services related to the open-source software.

3. Open Research: a research and development department in machine learning, image
bioinformatics, and big data, Cytomine ULiège R&D [Marée et al., 2016]. The department
contributes to the open-source project. It is located at the Montefiore Institute (University
of Liège), Belgium. This thesis was conducted within this department, with the R&D team.
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The Cytomine web user interface, shown in Figure 1.1, provides features that allow users to
visualise the whole slide images and the annotations of these images, to select the annotations
of a particular user, and many more. After the selection of the desired annotations, users can
download a CSV, pdf, or an Excel file containing the complete information about the annotations,
such as the project id, the id of the annotation, the filename of the whole slide image, the term
of the annotation, its coordinates, etc. Cytomine also offers an API and Python and Java clients
to import/export data.

This Master Thesis report is organised as follows. First, chapter 2 presents some concepts
related to deep learning and a review of the literature is made about semi-automatic learning.
Then, chapter 3 describes the methodology developed. More precisely, the different steps of
the methodology are explained: the acquisition of the datasets, the neural network used along
with its specificities, the description of the metrics used for the performance assessment, and the
implementation details. After that, chapter 4 details the various conducted experiments with the
developed methodology and their results are discussed. Finally, chapter 5 concludes this thesis
and presents future perspectives.

(a) Bronchus

(b) Gland
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(c) Infiltration

(d) Inflammation

(e) Tumour

Figure 1.3: The type of tissues used in this thesis with their corresponding segmentation mask.
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Chapter 2

Deep learning and state of the art

In this chapter, section 2.1 reviews the necessary theoretical background in order to understand
the thesis in general. Then, section 2.2 presents state-of-the-art approaches that are centred
around the semi-automatic segmentation approach. Finally, section 2.3 concludes this chapter
by motivating the selection of one specific approach.

2.1 Deep learning

In this section, some theoretical background is given to better understand all the subsequent
chapters.

2.1.1 Supervised learning

The task of supervised learning is to predict targets, also called labels, given some inputs. The
inputs are typically denoted as x and the targets as y. A collection of these input and target
pairs is called a dataset, {(xi, yi)}n−1i=0 , where n represented the number of pairs. To be more
precise, supervised learning aims to produce a model that approximates at best the targets given
some inputs. In the context of binary semantic segmentation, the inputs x are generally images
represented by a matrix of shape H ×W × C, where H and W denote, respectively, the height
and the width of the images, and C denotes the channels of the image. Usually, the number of
channels are 3 representing the encoding of an image in the RGB colour space. Regarding the
targets y, they are binary images, also called masks or segmentations, represented by a matrix
of shape H ×W , where H and W denote, respectively, the height and the width of the mask.
The targets are also called ground truth masks in this context.

2.1.2 Neural network

The simplest neural network in deep learning is called a multilayer perceptron (MLP). It consists
of several layers of neurons, also known as perceptrons. Each layer is connected to the previous
and the next layer. For the first layer, it receives the input x and the last layer produces the
desired output y. The layers between the input and output layer are more commonly addressed
as hidden layers. Graphically, the neural network is usually represented as a graph where the
nodes are the neurons and the edges are the connections between these nodes. Each of these
edges holds what is called a weight that is tuned for the network to produce the desired output.
A simple multilayer perceptron is illustrated in Figure 2.1.

2.1.3 Training a neural network

To train a neural network for producing the desired output, the weights of the neural network
are tuned until the desired output is achieved given an input. For instance, the input is an image
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Figure 2.1: A multilayer perceptron with 3 layers of neurons.

containing a gland and the desired output is the segmentation mask of the gland. First, the
loss function is introduced, which is needed for the training. Then, the training procedure is
explained in details.

Loss function

The loss function evaluates how well a model performs on a dataset for a given task during the
training phase. It measures the distance between the real and predicted value of a target. The
objective is to minimise this loss function by training the model on the dataset for an arbitrary
number of epochs. The loss is generally a non-negative number that represents the distance. The
lower this number is, the better the predicted values are, where a loss of 0 represents a perfect
prediction of the target.

Training

A classical training procedure is presented in Algorithm 1. The first step is to determine the
number of epochs to use. Basically, an epoch is when the entire dataset is passed forward and
backwards through the neural network once. Passing the entire dataset at once is not possible
due to memory issues. Therefore, small groups of the dataset, more commonly called a batch,
is passed until the entire dataset is passed. Most of the time, one epoch is not enough to update
the weights because the neural network architectures are more complex than a simple multilayer
perceptron. For each epoch, batches of input and target pairs are taken from the dataset.
Then, the neural network predicts the presumable target, called predictions or outputs. The loss
function is used to evaluate the quality of the predictions with respect to the targets. Then, the
weights of the neural network are tuned with the help of a method called an optimiser, which
tries to minimise the loss. An example of optimisers is the stochastic gradient descent. This
process is repeated for each epoch until the specified number of epochs is reached.

2.1.4 Convolutional neural network

In semantic segmentation, a simple multilayer perceptron is unable to produce decent segmenta-
tion masks. A better and more complex architecture for dealing with images is the convolutional
neural network (CNN). More precisely, a convolutional neural network consists of several con-
volutional blocks. One of these blocks is consists of a convolutional layer in place of the simple
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Algorithm 1 Training procedure
Input: dataset, epochs
1: model ← NeuralNetwork()
2: optimiser ← Optimiser()
3: criterion ← LossFunction()
4: for epoch in epochs do
5: for inputs, targets in dataset do
6: predictions ← model(inputs)
7: loss ← criterion(predictions, targets)
8: loss.backward()
9: optimiser.step()

10: end for
11: end for
12: return model

neuron layer, followed by a batch normalisation, and ends with an activation function. These
three notions are going to be explained in the subsequent sections.

Convolutional layer

The fundamental operation that a convolutional layer uses is called a convolution1. For a 3D
tensor, e.g., a coloured image, x ∈ RC×H×W and a convolutional kernel k ∈ RC×h×w, the discrete
convolution x~ k produces a 2D tensor of size (H − h+ 1)× (W − w + 1) such that

C−1∑
c=0

(xc ~ uc)[i, j] =

C−1∑
c=0

h−1∑
m=0

w−1∑
n=0

xc,m+i,n+juc,m,n (2.1)

The final output tensor o ∈ R(H−h+1)×(W−w+1), called output feature map, is computed by
introducing a bias term b ∈ R(H−h+1)×(W−w+1) such that

o = b+ x~ k (2.2)

where the bias term b and the convolutional kernel k are shared parameters to learn.

Batch normalisation

During the training phase, the input distribution is subject to change due to the change in the
network parameters. In this case, the hidden layers try to adapt to the new distribution. The
consequence of this phenomenon causes a slow down in the learning process, i.e., it will take
longer to converge to a global minimum. This phenomenon is called an internal covariate shift.
To cope with this issue, the batch normalisation [Ioffe and Szegedy, 2015] was introduced. Batch
normalisation consists in computing the mean and variance for each batch, which is used for
normalising the features by shifting and scaling them.

Activation function

The motivation of an activation function is to introduce non-linearity into the output of the
neuron. In the convolutional block, the rectified linear unit, better known as ReLU, activation
function is usually used:

ReLU(x) = max(0, x) (2.3)
1It is more commonly known as the cross-correlation operator.
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2.1.5 Residual block

More complex blocks can be designed to solve various issues. One of them is called a residual
block. The residual blocks were first introduced in the ResNet architecture [He et al., 2015]
to solve the issue known as the degradation problem. Basically, stacking identity layers, i.e., a
layer that simply maps inputs to outputs, to the network causes a degradation in performance.
Figure 2.2 illustrates the concept of a residual block. The motivation to add this residual block
is that it allows the design of deeper networks without the risk of having the vanishing gradient
effect.

Figure 2.2: Residual block (Source: [He et al., 2015]).

2.1.6 U-Net architecture

A well known convolutional neural network architecture is U-Net [Ronneberger et al., 2015],
which has proven to be very efficient for various medical segmentation tasks. Its neural network
architecture is shown in Figure 2.3. It consists of two phases, named the contraction and the
expansion phases. As can be seen in Figure 2.3, on the left part, it consists of the contraction
phase. First, the input image is fed into the network. By going all the way down through the
layer, the input image’s height and width are reduced gradually and the feature map’s size grows
gradually. On the right part of the architecture, it consists of the expansion phase, where the
input image’s height and width are growing gradually until they reach the specified sizes and the
feature map decreases in size progressively until it also reaches the specified size.

Figure 2.3: U-Net neural network architecture (Source: [Ronneberger et al., 2015]).
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2.2 State of the art

In this section, various state-of-the-art approaches regarding semi-automatic and interactive
learning are reviewed. Although this thesis focuses on biomedical images, papers outside this
domain are also reviewed to identify ideas that could be applied to this field. Different methods
are exploited to add the interactions of the annotator in their approach. In subsection 2.2.1,
feedbacks from the annotator are used on the initial segmentation to improve the quality of
the network for future segmentation. In subsection 2.2.2, some methods incorporate directly
the interactions of annotators, called guiding signals, which are basically clicks provided by the
annotators. Next, subsection 2.2.3 presents methods where the annotator provides a bounding
box around the object of interest on the image, which is used to segment the object. Lastly,
methods that focus more on the contour of the objects are presented in subsection 2.2.4.

2.2.1 Feedback-based methods

HistomicsML2

The paper HistomicsML2: Interactive classification of whole-slide imaging data for cancer re-
searchers [Lee et al., 2021] presents a complete approach of the segmentation task as shown in
Figure 2.4. The first step of the approach is to perform a superpixel segmentation on the whole
slide image, which is then used to extract patches of tissue regions as illustrated by (A) in the
overview. These extracted patches are fed to the first network to produce feature maps. The
second step consists in producing a segmentation by a second network that uses these feature
maps. In the second step, the annotator gives feedbacks about the produced segmentation to
the network to improve the predictions, iteratively. These feedbacks are the annotations of the
regions that are not well segmented.

The architecture of HistomicsML2 is composed of two parts. The first one is a pretrained
VGG16 [Simonyan and Zisserman, 2014], which consists of 13 convolutional layers, 5 max-pooling
layers, and 3 fully connected layers. The authors truncated this network to extract feature maps
of size 4096 after the first fully connected layer. The second part uses a multilayer network for
superpixel classification, i.e., a neural network with three layers using ReLU activation function,
dropout of 30 %, and the output layer uses the sigmoid activation function for class prediction.

Two datasets were used in their validation study, containing lymphocyte infiltration, namely
triple-negative breast carcinomas (BRCA) and primary cutaneous melanoma (SKCM). In short,
BRCA is a kind of breast cancer and SKCM is a kind of skin cancer.

To evaluate their methods, the accuracy and the area under the curve (AUC) were used,
which are defined as

Accuracy =
TP + TN

P +N
(2.4)

where TP and TN denotes, respectively, the number of true positive and true negative pixels
predicted, P the number of predicted positive pixels, and N the number of predicted negative
pixels and the AUC was calculated using the receiver operating characteristic (ROC) curve:

TPR =
TP

P
, FPR =

FP

N
(2.5)

where TPR, FPR, and FP denote, respectively, the true positive rate, the false positive rate, and
the false positive predicted pixels.
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Figure 2.4: Complete pipeline of their software (Source: [Lee et al., 2021]).

DIaL

In the paper Deep Interactive Learning: An Efficient Labelling Approach for Deep Learning-
Based Osteosarcoma Treatment Response Assessment [Ho et al., 2020], an initial segmentation
is produced by the network. The annotator reviews and corrects regions that are not well
segmented, which is used to improve the network at the next iteration of the training procedure.
This process is repeated until a satisfactory segmentation is achieved. The entire process is
illustrated in Figure 2.5.

The neural network architecture employed in this approach is a deep multi-magnification
network (DMMN) [Ho et al., 2021] and is depicted in Figure 2.6. In short, the network is a
concatenation of several U-Net architectures [Ronneberger et al., 2015]. More precisely, it is com-
posed of three U-Nets, i.e., U-Net-20×, U-Net-10×, and U-Net-5×. Their corresponding input
takes whole slide images with a 20×, 10×, and 5× magnifications, respectively. A conv_block
is composed of two sequences of a convolutional layer followed by a ReLU activation function,
a conv_tr is similar to conv_block but contains transposed convolutional layer instead of
a convolutional layer. And conv_final contains a convolutional layer that outputs the num-
ber of classes needed, in the case of a binary segmentation, there is only 2 classes, namely the
background pixels and the foreground pixels representing the segmented object.

To assess the performance of their model, they have used the error rate as the evaluation
metric.
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Figure 2.5: Complete pipeline of the framework (Source: [Ho et al., 2020]).

DeepIGeos

The approach proposed in the paper DeepIGeoS: A Deep Interactive Geodesic Framework for
Medical Image Segmentation [Wang et al., 2019] is in the same spirit as the two other previous
approaches, which is that an initial segmentation is produced by a neural network, on which
the annotator corrects bad segmented regions. However, these corrections along the initial seg-
mentation are fed into a second neural network to produce the final segmentation, whereas the
previous approaches only use the corrections and not the initial segmentation.

The first neural network used for the initial segmentation is called P-Net and is depicted
in Figure 2.7 and the second neural network is called R-Net. These two neural networks share
the same network architecture except for the difference in input dimensions. More precisely,
P-Net and R-Net are inspired from VGG16 [Simonyan and Zisserman, 2014], i.e., the first 13
convolutional layers are grouped into 5 blocks with the first two blocks composed of 2 layers only
and the rest of 3 layers.

The authors worked with two types of datasets, namely placenta segmentation from fetal
magnetic resonance imaging (MRI) and brain tumour segmentation from fluid-attenuated in-
version recovery (FLAIR). Regarding the first dataset, they have collected clinical T2-weighted
MRI of 25 pregnant women in the second trimester. As for the second dataset, they have used
the brain tumour image segmentation challenge of 2015 (BRATS).

To evaluate the performance of their two-stages model, the Dice coefficient and the average
symmetric surface distance (ASSD) were used. The second metric is defined as follows

ASSD =
1

|Sa|+ |Sb|

∑
i∈Sa

d(i,Sb) +
∑
i∈Sb

d(i,Sa)

 (2.6)

where |·| denotes the number of elements, Sa and Sb denotes, respectively, the set of surface points
of the predicted segmentation and its ground truth, and d(i,Sb) denotes the shortest Euclidean
distance between i and Sb. Basically, the lower the ASSD value the better the performance of
the model. The Dice coefficient is going to be explained in details in subsection 3.4.2, page 32.
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Figure 2.6: Deep Multi-Magnification Network architecture (Source: [Ho et al., 2021]).

Figure 2.7: P-Net neural network architecture (Source: [Wang et al., 2019]).
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2.2.2 Click-based methods

NuClick

The approach proposed in NuClick: a deep learning framework for interactive segmentation of
microscopy images [Jahanifar et al., 2019; Alemi Koohbanani et al., 2020] is to scribble objects of
interest. These scribbles serve as additional signals and are concatenated to the image, which is
then fed to the network to produce the segmentation of the scribbled objects of interest. They are
divided into two categories, namely inclusion and exclusion maps. In short, when an annotator
scribbles the object of interest, an inclusion map is created, which stores the scribble in white
pixels in a binary map. Frequently, on a whole slide image, numerous objects of interest close
nearby are scribbled by the annotator, another map is also created to store all these scribbles
except the scribble present in the inclusion map. Therefore, for each scribble, there is an inclusion
map that includes the scribble and an exclusion map that comprises the other scribbles. The
purpose of these maps is to avoid closely scribbled objects being segmented by the network as a
unique object.

The authors propose a convolutional neural network model, named NuClick, based on the
U-Net architecture [Ronneberger et al., 2015]. As illustrated in Figure 2.8, NuClick is composed
of several convolutional blocks, residual blocks, and multi-scale convolutional blocks. First, using
residual block allows building deeper and more complex network without the risk of vanishing
gradient. Then, the motivation to use multi-scale convolutional blocks is to allow the network
to segment both large and small objects.

Figure 2.8: NuClick neural network architecture (Source: [Alemi Koohbanani et al., 2020]).

In this work, the authors focus on three fundamental objects in pathology, i.e., nuclei, cells,
and glands. On the one hand, for nuclei and cells, one click inside each object is sufficient for
NuClick to produce a precise segmentation. On the other hand, since glands are more complex
objects, one click inside the object is not enough for the model to yield an accurate segmentation.
Therefore, instead of a single click, a scribble is given as a guiding signal for the model to produce
an accurate segmentation of the gland.

To put in practice their approach, for the nuclei, they have used the MonuSeg and CPM
datasets which contain, respectively, 30 and 32 H&E images. Then, concerning the cells, they
have synthesised a dataset of 2,689 images consisting of touching white blood cells (WBCs).
Finally, concerning the glands, the GlaS2015 and the CRAG datasets were used. The former
dataset, namely the gland segmentation in colon history images (GlaS) dataset, consists of 165
images of stages T3 or T4 colorectal adenocarcinoma images. The latter dataset, CRAG, consists
of 213 colorectal adenocarcinoma images. Colorectal adenocarcinoma is a kind of colon cancer.

Lastly, to validate their approach, various metrics reported in the literature have been used.
For nuclei and cells, the Aggregated Jaccard Index (AJI), the Dice coefficient, the Hausdorff dis-
tance, the Detection Quality (DQ), the SQ, and the Panoptic Quality (PQ) have been employed.
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For gland segmentation, the F1-score, the Diceobj coefficient, and the Hausdorff distance were
used.

FCNN

In the paper Interactive segmentation of medical images through fully convolutional neural net-
works [Sakinis et al., 2019], the annotator is asked to click within the objects of interest, the
so-called foreground clicks, and to click wherever the annotator feels that the network is going to
be segmenting falsely a region that does not contain the object of interest, called the background
clicks. In short, the foreground clicks guide the network to focus the segmentation towards these
clicks while avoiding area containing background clicks. These guidance signals are used with
the images to train the neural network.

The neural network architecture, proposed in this paper, is also inspired by the U-Net archi-
tecture [Ronneberger et al., 2015] with several modifications and is depicted in Figure 2.9. The
contraction and expansion parts are composed of four convolutional blocks instead of three. Each
block is composed of twice the sequence of a convolution, followed by a batch normalisation, and
ends with a ReLU activation function.

Figure 2.9: The FCNN architecture (Source: [Sakinis et al., 2019]).

The authors of this work focus on computed tomography (CT) images of the abdomen. Two
datasets were used, namely the BCV dataset released during the multi-atlas labelling beyond the
cranial vault challenge organised by the MICCAI society in 2015 and the MSD dataset released
during the medical segmentation decathlon challenge also held by the MICCAI society in 2018.
The former dataset consists of 30 CT volumes with the corresponding ground truth segmentations
and 20 test cases, whereas the latter consists of MRI and CT volumes that are relevant to 10
different segmentation tasks, where only two tasks related to the abdomen were selected.

To assess the performance of their approach, the authors have used the Dice coefficient, the
Hausdorff distance, and the mean absolute distance (MAD) metrics.
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RefineNet

The paper Interactive deep refinement network for medical image segmentation [Kitrungrotsakul
et al., 2020] presents an approach composed of two stages. In the first stage, an initial segmenta-
tion of the object of interest is produced by a backbone network. With this initial segmentation,
the annotator is asked to provide foreground and background clicks within the objects of interest
and regions that do not correspond to the objects, in the same spirit as presented in FCNN
[Sakinis et al., 2019]. In the second stage, these guidance signals, also known as seed points,
are used with the initial segmentation to compose the input of a second network, the so-called
refinement network. This network takes into account the signals provided by the annotators to
correct and refine the initial segmentation to produce the final segmentation. The two networks
are combined to form the complete architecture called RefineNet as illustrated in Figure 2.10.

Figure 2.10: The architecture of the network (Source: [Kitrungrotsakul et al., 2020]).

As previously mentioned, their architecture consists of two parts. The first one consists of
the backbone network that produces an initial segmentation. Basically, a backbone network
extracts features from an input image. The U-Net architecture [Ronneberger et al., 2015] is
again used as their backbone network. Concerning the second network, they used the concept of
a pyramidal network to refine the initial segmentation.

To validate their approach, the Dice coefficient, the sensitivity, and the positive predicted
value (PPV) were used as metric evaluations. Regarding the dataset used, only the 3D Image
Reconstruction for Comparison of Algorithm Database (IRCAD) dataset was employed, which
consists of liver segmentations.
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2.2.3 Bounding box-based methods

BIFSeg

In this paper Interactive medical image segmentation using deep learning with image-specific fine
tuning [Wang et al., 2017], the annotator is asked to provide a bounding box around the object
of interest. This bounding box is extracted from the image and is fed to the network to produce
the segmentation. Then, the annotator reviews this segmentation and provides its correction
to the segmentation via scribbles, which is used to update the weight of the neural network to
take into account the provided feedbacks. The proposed approach, named BIFSeg, is depicted
in Figure 2.11. It is worth mentioning that this approach could indeed also be categorised as a
click-based method since it also involves clicks in form of scribbles from the annotator.

Figure 2.11: Complete pipeline of the framework (Source: [Wang et al., 2017]).

The neural network used in this approach is the P-Net architecture [Wang et al., 2019]
presented in section 2.2.1, page 11, and illustrated in Figure 2.7, page 12.

In this paper, the authors focus on two applications, namely 2D segmentation of multiple
organs from fetal magnetic resonance slices and 3D segmentation of brain tumour. The dataset,
containing multiple organs from fetal MRI, is a private dataset that they have acquired themselves
using a Single-shot Fast Spin Echo (SSFSE) method. Stacks of T2-weighted MR images were
taken from 18 patients. This dataset was split at the patient level, i.e., the image of 10, 2,
and 6 patients were used for the training, validation, and testing sets, respectively. Regarding
the second dataset, which is about 3D segmentation of brain tumour, they have used the brain
tumour image segmentation challenge of 2015 (BRATS) for their evaluation.

Finally, to validate their approach, only the Dice coefficient was used as the evaluation metric.
They have also compared their method against other existing approaches, namely FCN, U-Net
[Ronneberger et al., 2015], and HighRes3DNet for 3D segmentation.
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2.2.4 Contours-based methods

Click carving

Traditionally, the interactive segmentation takes the inputs of the users as a starting point for
the model to segment the region of interests. In this paper Click Carving: interactive object seg-
mentation in images and videos with point clicks [Jain and Grauman, 2019], the authors present
a novel approach in the interactive segmentation task. Instead of waiting for the users’ inputs, a
network first generates thousand of segmentation for a given image. Then, the annotator chooses
the most accurate segmentation so that the network focuses on these specific segmentations. This
process is repeated until the user is satisfied with the segmentation. The three main steps of this
approach are described:

1. The first step consists in generating foreground proposals for a given image. The authors
use state-of-the-art region proposal generation algorithms to generate 1,000 possible seg-
mentations of the objects of interest, called the foreground regions. The authors have tried
several region proposal algorithms. One that generates accurate region proposal that they
have used is the multi-scale combinatorial grouping (MCG) algorithm.

2. The second step involves the user feedbacks, in the form of clicks, to rank the different
region proposals generated by the MCG algorithm. To avoid the user of scanning through
all the 1,000 region proposals, the clicks are used as criteria to rank the regions. More
precisely, the user clicks on the contour of the object of interest and the algorithm first
finds all the region proposals that intersect with the clicked points and ranked them higher.
This process is repeated to have a final ranking and the user is presented the top k proposals
having the most points.

3. The third step is an extension of their work where they incorporate negative feedbacks of
the user. This step is similar to the previous one. This time, the user is asked to provide
negative points, i.e., clicks on background regions. These regions refer to parts of the image
that does not contain the objects of interest. The clicked points are then used to re-ranked
the region proposals.

Figure 2.12: Examples using the Click Carving approach (Source: [Jain and Grauman, 2019]).

To evaluate their approach, the authors have used the Intersection over the Union metric. A
total of 6 datasets were used, namely SegTrack v2, VSB100, iVideoSeg, MSRC, CMU-Cornell
iCoseg, and Interactive Image Segmentation (IIS). These datasets contain numerous types of
objects, such as vehicles, people, plants, animals, and many more.
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Curve GCN

In this approach, named Curve-GCN, proposed in the paper Fast interactive object annotation
with Curve-GCN [Ling et al., 2019], the annotator first provides a bounding around the object
of interest. Then, a crop based on this bounding box is extracted from the image and an initial
segmentation of the object is produced. Habitually, the produced segmentation from the network
is given in the form of a binary image, where the foreground, i.e., white pixels represents the object
of interest, and the background, i.e., all the other pixels are in black. However, the network in
this approach returns a polygon delineating the object of interest. Then, the annotator can move
vertices of the polygon to correct the initial segmentation. This approach can also be categorised
as a bounding box-based method, however the focus is more placed on the interaction with the
vertices of the polygon.

Figure 2.13: Illustration of the initial segmentation produced by Curve-GCN (Source: [Ling
et al., 2019]).

The architecture of the neural network is composed of two parts as can be seen in Figure 2.13.
The first part is a convolutional neural network, which produces a feature map to create a
simple elliptical shape around the object of interest. The second part uses a multi-layer Graph
Convolutional Network (GCN), which refines the initial elliptical shape to a more precise polygon
delineating the object of interest. The produced polygon segmentation can then be corrected by
the user.

To evaluate their approach, the authors have used several datasets, i.e., the Cityscapes dataset
as the main benchmark to train and test their model, the KITTI dataset, ADE20K, Aerial
Rooftop, Cardiac MR, and ssTEM. These datasets contain various types of objects, such as
vehicles, traffic signs, and many more. The Intersection over the Union was used as the metric
evaluation to assess the performance of their approach.

Deep snake

The paper Deep snake for real-time instance segmentation [Peng et al., 2020] presents a novel
approach based on snake algorithms. In short, snake algorithms try to find the contour of an
object of interest with the help of additional information, such as the interactions of the user.
Their method is divided into two parts. The first one focuses on predicting bounding boxes given
an input image. The latter part first creates a diamond contour and tries to deform it into the
boundary of the object of interest. An overview of the pipeline is presented in Figure 2.14. The
steps of the method are described:

1. A object detector, i.e., a neural network, first produces a bounding box around the object
of interest. This bounding box is used to produce a diamond contour around the object.
This diamond contour is then fed as input to the deep snake model and it outputs four
offsets representing extreme points of the object.

2. The model then takes the diamond contour and the four extreme points and tries to deform
the contour until it covers the object of interest. By deforming the diamond contour, a
polygon shape is created. This step is repeated until the polygon represents the contour of
the object of interest.
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Figure 2.14: Illustration of an segmentation produced by the Deep Snake approach (Source [Peng
et al., 2020]).

2.3 Discussion

In this section, a small discussion about the different state-of-the-art methods is done. First,
the results stated by the different papers are going to be reviewed and compared against each
other. Then, from the comparison, one of the methods is going to be used for conducting several
experiments presented in chapter 4.

2.3.1 Results of the approaches

Table 2.1 reports the performance achieved by the different state-of-the-art approaches. Compa-
rable results, such as Click Carving and Curve-GCN, have more or less the same performance.
The same observation can be made about DeepIGeos, NuClick, FCNN, RefineNet, and BIFSeg
for the performance expressed with the Dice coefficient. Most methods using datasets related
to the biomedical sector seem to achieve better performance than methods using other type of
datasets, such as a dataset containing vehicles.

19



Method Dataset Type Metric Value

HistomicsML BRCA BRCA Accuracy (%) 89.9
Digital Slide Archive SKCM 92.4

DIaL Private dataset Osteosarcoma Error rate (%) 20.0

DeepIGeos Private dataset 2D Placenta Dice (%) 89.31 ± 5.33
ASSD (pixels) 1.22 ± 0.55

NuClick

MonuSeg Nucleus

AJI 0.834
Dice 0.912
SQ 0.839
PQ 0.838

Hausdorff 4.05

WBC Cell

AJI 0.954
Dice 0.983
SQ 0.958
PQ 0.958

Hausdorff 7.45

GlaS2015 TestA

Gland

F1 1.000
Diceobj 0.956

Hausdorff 15

GlaS2015 TestB
F1 1.000

Diceobj 0.951
Hausdorff 21

FCNN BCV Abdomen
Dice 0.940

Hausdorff 7.369
MAD 0.253

RefineNet Slice Liver Liver
Dice 0.937

Sensitivity 0.941
PPV 0.918

BIFSeg Private dataset

Placenta

Dice (%)

91.93 ± 2.79
Fetal brain 95.58 ± 1.94
Fetal lungs 91.71 ± 3.18

Maternal kidneys 89.37 ± 2.31

Click Carving

Segtrack-v2

Person, vehicles,
animals, scenery,
and many more

IoU

78.77
VSB100 69.63
iVideoSeg 79.53

MSRC Dataset 82.44
iCoseg dataset 82.13
IIS dataset 76.47

Curve GCN Cityscapes Vehicles IoU 80.19

Table 2.1: The performance stated by each of the reviewed approaches.
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2.3.2 Architecture choice

Regarding the choice made for the architecture used in this thesis, three related criteria and an
additional criterion are designed to choose the architecture:

1. Are the datasets used in the paper public?

2. Are the datasets related to the biomedical sector?

3. Can the results be reproduced?

(Bonus) Is the code source available?

The first criterion is to see whether the datasets can be used for replicating the experiments
performed in the paper. Then, the second criterion is to select the datasets in the biomedical
sector because it shares more similarity with the datasets used in this thesis. Finally, the third
criterion is to see whether the implementation of the selected approaches is possible. It is mainly
because some approaches use substantial resources that a master student does not necessarily
have at hand. In the case where several approaches meet the requirements, one additional
constraint is added, i.e., the availability of the source code.

Table 2.2 reports visually whether the requirements are meet or not. Two of the approaches
meet the requirements, i.e., HistomicsML2 and NuClick. Therefore, an investigation of the two
methods was made. The final selection is NuClick, because of several reasons. First, during
the investigation, it was easier to understand and to test their code, whereas HistomicsML2 had
numerous issues in the testing of the available code. In short, the issues encountered by the
testing concerned the input images and the resources. First, only images of SVS format, which
is used by medical scanners, are accepted. These images are then converted to a pyramidal
structure of TIFF format. In our case, the images were already in TIFF format without the
pyramidal structure, so the first issue is encountered here. Luckily, a test image was already
provided by HistomicsML2, so the first issue was more or less solved for the testing purpose.
Then, the next step of the approach was to perform a superpixel segmentation of the TIFF
image. The authors stated about 40 minutes for the superpixel segmentation, whereas our time
was about 4 hours for this step. Finally, the next step, features extraction, was not feasible
because the program exited with the Out of Memory Exception. The conclusion is that this
approach is too resources hungry and too long for a real-time use case.

Then, comparing approximately the performance of both methods, NuClick seems to achieve
an F1 score of 1.000 with the glands meaning that it has managed to produce a very accurate
segmentation, whereas HistomicsML2 only achieves 92.4 of accuracy. The results of NuClick are
going to be further discussed when replicating their work in section 4.2, page 42.

Method Criterion 1 Criterion 2 Criterion 3 Bonus
HistomicsML2 3 3 3 3

DIal 7 3 7 7

DeepIGeos 7 3 7 7

NuClick 3 3 3 3

FCNN 3 3 3 7

RefineNet 3 3 3 7

BIFSeg 7 3 7 7

Click Carving 3 7 3 7

Curve-GCN 3 7 3 7

Table 2.2: Selection of the architecture based on the criteria.
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Chapter 3

Methodology

This chapter presents the methodology developed to conduct the experiments. It draws heavily
on the methodology presented with the NuClick architecture [Alemi Koohbanani et al., 2020].
First, section 3.1 shows an overview to get a general idea of the complete annotation process.
Then, section 3.2 explains the acquisition of the dataset from the Cytomine web user interface.
In section 3.3, the neural network, used in this thesis, is going to be explained along with its
specificities. After that, section 3.4 presents the various metrics used in the assessment of the
performance. This chapter ends with section 3.5, where the implementation details are described.

3.1 Overview

A simplified overview of the methodology is presented in Figure 3.1. Illustrations of the dataset
generation, the training procedure, and testing procedure are depicted in Figure 3.2, Figure 3.3,
and Figure 3.4, respectively.

Cytomine web
interface

Download the images
and annotations

Data acquisition

Create the dataset

Dataset structures:

Images
Masks
Inclusions
Exclusions

API Client 
Written in Python

Train a model Test the model

Segmentation
model: NuClick

Experiments
and results

Model to segment: 

Bronchus
Gland
Infiltration
Inflammation
Tumour

Model assessment 
Evaluate with metrics 
Perform experiments

Figure 3.1: Simplified overview of the methodology.

3.2 Data acquisition

This section aims at describing the process of the data acquisition. There are three main phases in
the data acquisition, namely the acquisition, the processing, and the splitting phase, as illustrated
in Figure 3.1. First, the dataset structure is explained followed by the three aforementioned
phases.
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Whole Slide Image

Figure 3.2: Illustration of the creation of the dataset from the raw downloaded Cytomine data.
This process is done for each whole slide image in the dataset.

3.2.1 Dataset structure

A traditional segmentation dataset is composed of the images and the binary mask of objects
present in these images. However, in this thesis, a dataset is composed of the aforementioned
images and masks with two additional components called inclusion and exclusion masks. In
short, the inclusion is the binary mask of only one object in the images. In the case where there
is more than one binary mask in the image, the exclusion is all the other binary masks except
the one in the inclusion. In Figure 3.2, the two images on the right represent, on the upper part
the inclusion mask and on the lower part the exclusion mask, respectively. The purpose of these
two supplementary components is going to be explained in subsection 3.3.1.

3.2.2 Acquisition

The datasets are acquired from Cytomine [Marée et al., 2016] using its Python client, which is
available on GitHub. The generation of the dataset involves the following steps:

1. Annotation term selection: generally, a whole slide image contains annotations of sev-
eral different terms, e.g., bronchus, tumour, etc. The first step of the acquisition is to select
a specific term.

2. Users selection: after the term selection, the annotations from specific users are selected.
The main motivation is because some users have tried out a Cytomine feature that allows
the user to annotate the image. This results in a false annotation that might be downloaded
in the dataset.

3. Dataset download: following the previous steps, for each annotation, a crop centred
on the annotation in the whole slide image is extracted using its coordinates. Likewise,
the corresponding binary mask is extracted as well. After the extraction, the inclusion
and exclusion binary masks are created based on the binary mask crop. If there is only
the mask of the desired annotation, the exclusion mask is black. The size of the crop is
512 × 512 if the binary mask is smaller. Otherwise, the dimensions are of the size of the
binary mask.
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Creation of signal map

Update the weights of the network Target segmentation

Figure 3.3: Illustration of the training procedure.

Scribble the objects of interest

Creation of signal map

Feed the inputs to the network

Crop centered on
scribble

Raw predictionsPost processing

Final segmentationResult visualisation

Figure 3.4: Illustration of the testing procedure.
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3.2.3 Data processing

After the acquisition phase, some irregular annotations can occur in the downloaded dataset. An
example of irregular annotation is the annotation of only one pixel. Three steps of examination
are done to remove these undesirable annotations:

1. Empty annotation: occasionally, an annotation that has no binary mask, i.e., the crop
containing binary mask is completely black, can occur. This first step aims at detecting
this kind of annotations and removing them.

2. White annotation: opposite to the first step, a crop centred on the binary mask can
be composed of only white pixels, i.e., the whole image is a binary mask. This type of
annotation can occur in the case where another bigger binary mask is superimposed. The
second step focuses on removing them.

3. Empty inclusion mask: similar to the first step, the desired annotation is present on the
binary mask but not in the inclusion mask. This step replaces the empty inclusion mask
with the binary mask.

An optional step that can be performed is the manual removal of images done by the users.

3.2.4 Data splitting

Since the dataset is composed of crops centred on the annotations and not the whole slide images
themselves, splitting the dataset is done with the attention that crops from the same whole slide
image are split together. The main motivation behind this strict constraint is to avoid bias when
evaluating the model on the testing set since the model could incorporate relevant information
from the whole slide images used during the training. Two kind of splits are done, namely the
so-called three-way data splits and the k-fold cross-validation. After the split is done, a CSV file
is created containing information of the split similar to the CSV file generated by Cytomine.
More specifically, it contains the ID of the annotation, the ID and the file name of the whole
slide image, the term of the annotation, the user that created this annotation, and in which split
the annotation is located.

Three-way data splits

The three-way data splits is more commonly known as the training, validation, and test sets:

1. Training set: this set is used for the learning phase, i.e., to adapt the parameters of the
model for a given task. In this case, it is to segment a specific object.

2. Validation set: this set is used to fine-tune the parameters of the model. This set also
prevents underfitting and overfitting.

3. Testing sets: this set is used for the performance assessment of the final model.

Taking into account the previously described constraint, about 80% is used for the training set
and 20% for the testing set. From these 80% of the training set, about 20% is used for the
validation set. For the conducted experiments, more precise values are going to be stated.

k-fold cross-validation

This split is conventionally used for the fine-tuning of the model’s hyperparameters. About 80%
is used for the training set and the remaining 20% for the test set. The training set is then
divided evenly into k folds.
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3.3 Segmentation model: NuClick

In this thesis, the model that is going to be used is called NuClick [Alemi Koohbanani et al.,
2020], presented in section 2.2.2, page 13. The motivation behind the use of this architecture
is because of the minimal interactions needed from the user for annotating the desired object.
Previously stated, NuClick is based on a well-known architecture, which is U-Net [Ronneberger
et al., 2015]. In short for NuClick, the user provides simple line strokes on the object of interest.
These line strokes are used as supervisory signals along the image to guide the network towards
segmenting the object of interest as illustrated in Figure 3.4.

The complete architecture of the neural network is presented in Figure 3.5. It is composed
of three building blocks, namely convolutional block, residual block, and multi-scale convolutional
block. The main building block of this architecture is the convolutional block. As shown in
the legend of Figure 3.5, this block is composed of a convolutional layer followed by a batch
normalisation layer and ends with a ReLU activation function. Then, a residual block is composed
of two convolutional blocks. Finally, a multi-scale convolutional block allows to segment various
objects, smalls or larges, that vary in scales [Alemi Koohbanani et al., 2020]. This block is
composed of four convolutional blocks, where each of the blocks has different parameters for the
kernel size and the dilation rate as shown in Figure 3.5. Let F be the size of the input feature
map of this block, the input size of the four convolutional blocks are F/4, which produces four
feature maps that are concatenated back together to constitute the output feature map of size
F . The number of parameters of the model is given in Appendix A, page 81.
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Figure 3.5: NuClick neural network architecture.

Since complex objects, such as bronchi, glands, etc, are usually large, the input shape of the
network is 512× 512× 5. The first two dimensions are, respectively, the height and the width of
the input image and the last dimension is the number of channels. The channels are composed
of the concatenation of the RGB channels with the so-called inclusion and exclusion mask that
is going to be described in the subsequent section. The output shape of the network is 512× 512
where the two dimensions represent the height and the width of the binary segmentation mask,
respectively. The final layer uses a sigmoid activation function, which makes the values of the
predicted mask range from 0 to 1.

3.3.1 Inclusion and exclusion map

As briefly explained previously, the number of input channels for NuClick is five, i.e., the con-
catenation of the RGB image with two additional channels called inclusion and exclusion map.
These two maps incorporate the line strokes done by users to guide the network towards seg-
menting these regions of interest. The inclusion map contains one specific line stroke. In the case
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the annotator scribbles several line strokes, the exclusion map contains all the other line strokes
except the one that is present in the inclusion map. The purpose of having these two maps is to
inform the network that other close objects are present and that the network should not segment
nearby objects as a single mask. These maps are more generally called as signal map.

(a) Image (b) Ground truth mask (c) EDT (d) Signal

Figure 3.6: Creation process of the signal map.

Training phase

To train such networks, having to manually scribble line strokes on objects of interest for each
image at each epoch is infeasible. An algorithm from the original paper based on the ground
truth binary mask is used to mimic the line strokes done by the annotators. The process of
creating these line strokes automatically, also called signals, is shown in Figure 3.6. This process
is done in three steps:

1. The first step starts with the ground truth binary maskM. An Euclidean distance trans-
form (EDT) D(x) is applied on the mask as shown in Figure 3.6c. It produces a distance
map where each pixel is represented by the distance of this pixel with the closest pixel of
the object boundaries.

Di,j(M) = {
√

(i− ib)2 + (j − jb)2 | (i, j) ∈M} (3.1)

where (ib, jb) represents the coordinate of the closest pixel to the boundaries with the pixel
at position (i, j).

2. The second step is to apply a threshold on the produced distance map D. To compute the
threshold τ , the mean µ and the standard deviation σ of the distance map is calculated.
The threshold is then sampled uniformly at random in the interval [0, µ+ σ]:

Di,j =

{
1 if Di,j(M) > τ

0 otherwise.
(3.2)

The purpose of the random threshold and not a fixed one is to allow the network to learn
various input signals with the same annotation for robustness since it is intended to mimic
the user’s annotations. Signals with different values of τ are depicted in Figure 3.7.

3. The last step is to produce the inclusion map by computing the morphological skeleton of
the distance map D as illustrated in Figure 3.6d.

Regarding the creation of the inclusion and exclusion maps, the first step is to generate the
signal from the ground truth mask as explained previously as shown in Figure 3.8b. For the
example presented in Figure 3.8, there is a total of 3 inclusion and exclusion maps. The second
step is to split the desired signal to the inclusion map (Figure 3.8c) and subtract this signal from
the signal map to obtain the exclusion map (Figure 3.8d). This process is done for each of the
signal present in the signal map. In the case where there is only one complex object such as in
Figure 3.6a, the exclusion map is completely black.
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(a) EDT (b) τ > 10 (c) τ > 30 (d) τ > 50

Figure 3.7: Signal map with different threshold value τ .

(a) Image (b) Signal (c) Inclusion map (d) Exclusion map

Figure 3.8: Inclusion and exclusion map.

Testing phase

In the testing phase, the scribbles of the user are stored. These scribbles are later used to build
the inclusion and exclusions maps. The first step is to scribble a line stroke on the objects of
interest. An example of scribbles on these objects done by the user is shown in green in Figure 3.9.
From these scribbles, crops of size 512× 512× 3 are extracted from the image, each of the crops
is centred on one of the scribbles. In the example, there is a total of 5 crops. The inclusion map
is created, which is the centred scribble. Similarly, the exclusion map is constructed from the
other scribbles if they appear in the crop. After the creation of the maps, the concatenation of
the crop with the inclusion and exclusion map produces the input of the network. Lastly, it is
fed to the network to produce the segmentation of the scribbled objects.

Figure 3.9: Scribble on the objects of interest, i.e., glands, done by a user.
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3.3.2 Loss function

In this thesis, the loss function used to train the neural network is a combination of the soft dice
loss and a weighted cross-entropy loss [Alemi Koohbanani et al., 2020]:

L = 1−

(
2

n∑
i=1

pigi + ε

)
/

(
n∑

i=1

pi +
n∑

i=1

gi + ε

)
︸ ︷︷ ︸

Soft dice loss

− 1

n

n∑
i=1

wi(gilog pi + (1− gi)log(1− pi))︸ ︷︷ ︸
Weighted cross entropy

(3.3)

where n is the total number of pixels in the image, pi and gi are, respectively, the value of the
prediction and the ground truth for the ith pixel in the image, wi is the weight associated to
pixel i, and ε is a small number to avoid numerical instabilities.

Soft dice loss

The dice loss has shown to control the class imbalance. Let P be the predicted mask and G the
ground truth mask, the soft dice loss is computed as follows

Ldice(P,G) = 1−Dice(P,G) (3.4)

where Dice(P, G) is the Sørensen-Dice coefficient of P and G. This coefficient can be expressed
as

Dice(P,G) =
2|P ∩G|
|P |+ |G|

(3.5)

where |P | and |G| are the number of elements in P and G, respectively, and P ∩ G is the
intersection of the elements in P and G. In the context of segmentation, |P | represents the sum
of the non zero value in P and P ∩G is the element-wise product of P and G. Equation 3.4 can
therefore be reformulated as

Ldice(P,G) = 1−

(
2

n∑
i=1

pigi + ε

)
/

(
n∑

i=1

pi +
n∑

i=1

gi + ε

)
(3.6)

where n is the total number of pixels in the image, pi is the predicted value for pixel i, gi is the
ground truth value for pixel i and ε is a term to avoid numerical instability of the division by
zero, i.e., P and G are empty. By default, the value of ε is 1.

Weighted cross entropy

The weighted cross entropy is computed as follows

L(p, g) = −w(g log(p) + (1− g) log(1− p)) (3.7)

where p and g are respectively the predicted value and the ground truth value for a pixel and w
the weight associated to this pixel. Similar to the soft dice loss, the generalisation to all pixels
is defined as follows

Lwce(P,G) = −
1

n

n∑
i=1

wi(gi log(pi) + (1− gi) log(1− pi)) (3.8)

where n is the total number of pixels in the image, pi and gi are respectively the value of the
prediction and ground truth for the ith pixel in the image, wi is the weight associated to pixel
i. The weight W is an adaptive weight map taken from [Alemi Koohbanani et al., 2020]. It
means that for each pair of inputs P and G, the weight is based on the ground truth mask and
is computed as follows

W = α2G+ αG̃+ 1 (3.9)
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where α is an adaptive factor, G is the ground truth mask, and G̃ is its complement. The factor
α is based on the ground truth mask and its complement and is computed as follows

α = max
{∑

G̃/
∑

G, 1
}

(3.10)

3.3.3 Post-processing

The predicted mask of the neural network may include noises. The purpose of the post-processing
is to further refine the initial predicted segmentation mask by removing as much noises as possible.
The following steps are made for the post processing:

1. Threshold the predicted values: since the network predicts a mask where the values
range from 0 to 1, a threshold is put to remove the false predicted pixels.

Pi,j =

{
1 if Pi,j > ξ

0 otherwise.
(3.11)

where Pi,j is the value of the predicted pixel at position (i, j) in the image and ξ the
threshold, which is set at 0.5.

2. Small objects removal: as mentioned previously, some noises can be predicted by error
as illustrated by the green circles in Figure 3.10a. A minimal size in pixels is set so that
masks that are below this specified size are removed. The result is shown in Figure 3.10b,
it can be seen that the noises is removed. The threshold was applied beforehand, which has
polished the contour of the masks and that can be clearly seen on the bottom left mask.
The minimal size in this thesis is set at 100 pixels. Thus, masks under this threshold are
removed.

3. Holes filling: another issue that can occur is the fact that the network predictions leave
small holes as depicted in the rounded green rectangle in Figure 3.10c. A threshold is put
on the area of the hole to be filled. It is important because some shapes of objects can
incorporate holes in their binary mask. The resulting process can be seen in Figure 3.10d.
The area of the hole in this thesis is set at 300.

The values for the threshold, the minimum size, and the area of the holes are going to be
discussed in section 4.7, page 71. The aforementioned steps are performed for each predicted
mask produced by the network. The final step is to merge all these cropped masks by overlapping
them to form the final segmentation mask as shown in Figure 3.4, page 24.

(a) Predicted noises (b) Noise cleaned (c) Holes not predicted (d) Hole filled

Figure 3.10: Example of the post-processing for an noisy prediction and a prediction with a hole.
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3.4 Evaluation metrics

In this section, various metrics are going to be explained and used for the subsequent experiments
for the performance assessment. The intersection over the union, the dice coefficient, and the
Hausdorff distance are commonly used for segmentation task assessments.

3.4.1 Intersection over the union

The intersection over the union (IoU), also known as the Jaccard index, measures the similarity
between two sets, as illustrated in Figure 3.11. It is defined as the intersection divided by the
union of the two sets:

IoU(P,G) =
|P ∩G|
|P ∪G|

=
|P ∩G|

|P |+ |G| − |P ∩G|
(3.12)

In the context of the segmentation, let P be the predicted segmentation mask and G the ground
truth mask, it can be computed as follows

IoU(P,G) =
|P ∩G|+ ε

|P |+ |G| − |P ∩G|+ ε
(3.13)

where | · | denotes the sum of the elements, ∩ denotes the Hadamard product (element-wise
product), and ε is equal to 1 to avoid division by zero. Therefore, it can be expressed as

IoU(P,G) =

(
n∑

i=1

pigi + ε

)
/

(
n∑

i=1

pi +

n∑
i=1

gi −
n∑

i=1

pigi + ε

)
(3.14)

where pi and gi are, respectively, the value of the predicted pixel and the ground truth pixel at
the ith pixel.

IoU = =
Intersection

Union

Figure 3.11: The intersection over the union (IoU).

The values of this metrics range from 0 to 1, where 0 means that there is no overlap between
the predicted segmentation and its ground truth, and 1 means a perfect prediction of the ground
truth mask. Thus, the higher this value, the better the segmentation is. The range of values for
the Dice coefficient is exactly the same.

31



3.4.2 Dice coefficient

The Sørensen-Dice coefficient, also known as Dice coefficient or F1 score, measures the similarity
between two sets, as shown in Figure 3.12. It is pretty similar to the intersection over the union.
Let P be the predicted segmentation mask and G the ground truth mask,

Dice(P,G) =
2|P ∩G|
|P |+ |G|

(3.15)

Again, in the context of segmentation,

Dice(P,G) =
2|P ∩G|+ ε

|P |+ |G|+ ε
(3.16)

where | · | denotes the sum of the elements, ∩ denotes the Hadamard product, and ε is a small
number to avoid division by zero. It can be re-expressed as

Dice(P,G) =

(
2

n∑
i=1

pigi + ε

)
/

(
n∑

i=1

pi +
n∑

i=1

gi + ε

)
(3.17)

Dice = =

+

Figure 3.12: Dice coefficient.

IoU and Dice relationship

A relationship exists between the intersection over the union and the Dice coefficient. Let
|P ∩G| = a and |P |+ |G| = b, the Dice coefficient and the IoU can be expressed as

Dice = 2
a

b
, IoU =

a

b− a
(3.18)

The relationship can be derived as follows

Dice = 2
a

b
=

2
a

b− a
b

b− a

(3.19)

=
2IoU

b+ a− a
b− a

=
2IoU

a

b− a
+
b− a
b− a

(3.20)

Dice(P,G) =
2 IoU(P,G)

IoU(P,G) + 1
(3.21)

Therefore, only one of the two metrics is going to be used for the subsequent experiments, which
is the intersection over the union, since the Dice coefficient is just a similar representation of the
intersection over the union in the numerical sense.
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3.4.3 Hausdorff distance

The Hausdorff distance [Karimi and Salcudean, 2019] measures how far two sets are from each
other based on their boundary, as depicted in Figure 3.13. This metric measures the boundary-
based accuracy between the segmented object and the ground truth mask object. Intuitively, the
Hausdorff distance measures the longest distance between the segmented object and its ground
truth at their boundaries. Thus, the smaller the gap, the higher the similarity between the two
boundaries. To measure the longest distance from a segmented object X with its ground truth
Y , the one-sided distance is computed as follows

hd(X,Y ) = max
x∈X

min
y∈Y
||x− y||2 (3.22)

and with the opposite side,
hd(Y,X) = max

y∈Y
min
x∈X
||x− y||2 (3.23)

The Hausdorff distance is defined as the maximum of the bidirectional distance:

HD(X,Y ) = max(hd(X,Y ), hd(Y,X)) (3.24)

This metric is expressed in term of pixels, where 0 means that the segmented object X perfectly
matches the boundaries of the ground truth Y and higher values represent the longest distance.
Thus, the lower the value, the better the segmentation is.

Figure 3.13: Hausdorff distance, where the dashed line is the predicted mask and the full line is
the ground truth mask (Source: [Karimi and Salcudean, 2019]).

3.5 Implementation details

The code is available on Github at https://github.com/bathienle/master-thesis-code.git.
It is inspired by the original implementation of NuClick. However, no code is reused from their
implementation. The code developed in this thesis is done in the Python language. It heavily
relies on the PyTorch framework and the NumPy library. For the data acquisition described
in section 3.2, the Shapely, PIL, and Cytomine libraries are used. The documentation of the
Cytomine python client is available on their website Cytomine ULiège R&D Documentation.
Regarding the generation of the inclusion and exclusion map explained in subsection 3.3.1, to
compute the Euclidean distance transform, the SciPy library is used. For the post-processing,
the scikit-image is used for the morphological skeleton, the holes filling, and the removal of small
objects. For some of the subsequent experiments, the OpenCV library is used. About 2,000 lines
of codes were needed for this thesis. This number does not take into account the comment nor
the blank lines.
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Table 3.2 resumes the value used for the parameters in this thesis. The training of the models
was done exclusively on the GPUs provided by the Alan GPU cluster at the University of Liège.
The list of GPUs used during the thesis is shown in Table 3.1.

GPU GTX 1080 Ti RTX 2080 Ti Quadro RTX 6000 Tesla V100

Table 3.1: The list of GPUs from the Alan cluster used during the thesis.

Parameter Value
Epochs 300

Batch size 16
Optimiser Adam

Learning rate 3× 10−3

Weight decay 5× 10−5

Table 3.2: Summary of hyperparameters and other parameters used in this thesis.

A very small cross-validation search was done to find the optimiser and the values for the
learning rate and the weight decay. The setup was to train a model to segment bronchus from
the ULG-LBTD-NEO04 dataset1. The tested optimiser and parameters are shown in Table 3.3.
Each of the models was trained on 50 epochs and evaluated with the intersection over the union
on a small test set. The best parameters for this small search was the Adam optimiser with a
learning rate of 1×10−3 and a weight decay of 1×10−5. From this small cross-validation search,
the aforementioned parameters were used to train a model on the same dataset but with various
epochs size, i.e, 100, 200, and 300 epochs. The results show that 300 epochs give slightly better
performance than the 100 and 200 epochs. The same setting was used for determining the batch
size, resulting in a batch size of 16.

Optimiser Adam SGD 7 7

Learning rate 1× 10−2 1× 10−3 1× 10−4 1× 10−5

Weight decay 1× 10−2 1× 10−3 1× 10−4 1× 10−5

Table 3.3: Hyperparameters tested in a cross-validation search.

A complete cross-validation search would take a tremendous amount of time. Therefore, for
all the subsequent experiments, Table 3.2 was used for the training of the models. However due
to a lack of time, this is the principal reason why specific fine-tuning for all the type objects used
in this thesis is not done.

1The dataset is going to be presented in the next chapter in more details.
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Chapter 4

Experiments and results

In this chapter, various experiments are conducted and their results discussed. First, section 4.1
presents the different datasets used for the experiments. Then, section 4.2 tries to replicate the
performance obtained in the original paper of NuClick. After that, section 4.3 presents the proto-
col used for all the experiments. Next, section 4.4 introduces the two major experiments that are
related to the annotations. After that, a small robustness experiment is performed in section 4.5.
Afterwards, experiments related to the model architecture in section 4.6 are performed. Lastly,
this chapter ends with a discussion over the conducted experiments in section 4.7.

4.1 Datasets

In this section, the different datasets used for the subsequent experiments are described. First,
a summary of the datasets and the type of objects used is shown in Table 4.1. The complex
objects that the model has to segment are bronchi, inflammations, glands, infiltrations, and
tumours. An overview of the size of the whole slide images in each of these datasets is reported
in Table 4.2, which presents the size of the smallest to the biggest whole slide image and the
level of magnification for these images.

Dataset Bronchus Inflammation Gland Infiltration Tumour
CHALLENGE-CAMELYON16 7 7 7 7 2,545
CHALLENGE-GLAS-2015 7 7 1,538 7 7

CHU-ANAPATH-NST-DL 7 354 6,268 2,833 7

ULG-LBTD-NEO04 379 148 7 7 492
ULG-LBTD-NEO13 (3) 409 7 7 7 175

Table 4.1: Summary table for the types and datasets used. It shows the number of annotations
for each type of object.

Dataset Smallest Largest Magnification
CHALLENGE-CAMELYON16 35, 840× 45, 056 111, 104× 217, 088 1×
CHALLENGE-GLAS-2015 430× 567 522× 775 20×
CHU-ANAPATH-NST-DL 18, 416× 18, 336 104, 848× 52, 848 20×

ULG-LBTD-NEO04 14, 848× 17, 920 75, 776× 37, 888 10×
ULG-LBTD-NEO13 (3) 19, 456× 11, 776 87, 552× 38, 400 10×

Table 4.2: The smallest to the largest dimension of the whole slide images in each dataset.
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4.1.1 CHALLENGE-CAMELYON16-TRAIN

The CHALLENGE-CAMELYON16-TRAIN dataset comes from the Cancer Metastases in Lymph
Nodes Challenge 2016 (CAMELYON16) [Ehteshami Bejnordi et al., 2017]. It is composed of
whole slide images containing metastases of lymph nodes of women with breast cancer. As the
name suggests, this dataset is only composed of the training set of the challenge. It contains a to-
tal of 270 whole slide images of sentinel lymph node collected in the Radboud University Medical
Centre and the University Medical Centre Utrecht, both centres are located in the Netherlands.
The training dataset is composed of 160 normal slides and 110 slides containing metastases.
From these whole slide images, there are about 2,600 annotations labelled as a tumour. Some
whole slide images with tumour annotations are shown in Figure 4.1, page 37.

4.1.2 CHALLENGE-GLAS-2015

This dataset comes from the challenge Gland Segmentation Challenge Contest (GlaS) [Sirinukun-
wattana et al., 2015, 2016] organised by the University of Warwick in conjunction with the
MICCAI Society and held in Munich, Germany. The data were acquired by pathologists at the
University Hospitals Coventry and Warwickshire, the United Kingdom. The dataset consists of
165 whole slide images derived from 16 Hematoxylin and Eosin (H&E) stained images of stage
T3 or T4 colorectal adenocarcinoma. In the 165 images, 85 of them were used as the training
set and the remaining 80 for the testing set in the challenge setup. The test images were split
into TestA and TestB, respectively. From these images, there are about 1,600 gland annotations.
Examples of such images are illustrated in Figure 4.2, page 38.

4.1.3 CHU-ANAPATH-NST-DL

This dataset comes from the University Hospital Centre CHU of Liège, Belgium, more precisely
from the Unit of Prof. Philippe Delvenne. It consists of 268 whole slide images with various
complex objects, such as glands, infiltrations, inflammations, etc. There are 6,348 annotations
of glands, 2,842 annotations of infiltrations, and 354 annotations of inflammations. One expert
in the field of pathology, Michel Reginster, has annotated the whole slide images. One image of
the dataset with different level of focus is shown in Figure 4.3, page 39.

4.1.4 ULG-LBTD-NEO04

This dataset comes from the Laboratory of tumour and development biology (LBTD), more
specifically from the Unit of Prof. Didier Cataldo, which is part of the GIGA research Institute
within the GIGA-Cancer, located at the CHU Sart-Tilman in Liège, Belgium. It is mainly
composed of annotations of bronchus and different types of tumours, such as adenocarcinoma,
focal nodular hyperplasia, etc. More precisely, it consists of 126 whole slide images, with 384
annotations of bronchus and 492 tumour annotations. There are other annotations but are not
listed because of their irrelevance in this context. Several expert pathologists, Didier Cataldo,
Natacha Rocks, and Christine Fink, have annotated the whole slide images present in this dataset.
An example whole slide image that comes from this is depicted in Figure 4.4, page 40.

4.1.5 ULG-LBTD-NEO13 (3)

The provenance of the ULG-LBTD-NEO13 (3) dataset is the same as the ULG-LBTD-NEO04
and was annotated by the same experts. However, a slightly different preparation protocol was
used, i.e., staining variations. This dataset is very similar to the ULG-LBTD-NEO04 dataset,
it also contains the same type of annotations. More precisely, it consists of 414 annotations of
bronchus, 175 tumour annotations and others non-relevant annotations. An illustration with
different level of focus from this dataset is depicted in Figure 4.5, page 41.
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(a) Normal_009.tif (Magnification: 3.11 mm). (b) Normal_032.tif (Magnification: 3.11 mm).

(c) Tumor_110.tif (Magnification: 2.90 mm). (d) Annotations of tumour regions.

(e) Tumor_111.tif (Magnification: 778 µm). (f) Crop centred on an annotation of tumour.

Figure 4.1: Example of whole slide images in the Camelyon16 dataset. The tumour regions can
be seen in red.
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(a) testA_1.bmp (b) Annotations of glands.

(c) testA_10.bmp (d) Annotations of glands.

(e) testA_13.bmp (f) Annotations of glands.

(g) testA_21.bmp (h) Annotations of glands.

Figure 4.2: Example of images in the GlaS2015 dataset.

38



(a) Magnification 0.31× (b) The annotations

(c) Magnification 0.63× (d) The annotations

(e) Magnification 2.5× (f) The annotations

Figure 4.3: Example of a whole slide image at different magnifications in the CHU-ANAPATH-
NST-DL dataset (Source: NEW_201708241740.tif). Infiltration can be seen in light green, In
situ in dark green, and artefact in blue.
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(a) Magnification 0.31× (b) The annotations

(c) Magnification 1.25× (d) The annotations

(e) Magnification 5× (f) The annotations

Figure 4.4: Example of a whole slide image at different magnifications in the ULG-LBTD-
NEO04 dataset (Source: NEO4_CURCU_INH_8.20_01.tif). Bronchus annotations can be
seen in purple, inflammation in yellow, and tumour in burgundy.
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(a) Magnification 0.31× (b) The annotations

(c) Magnification 1.25× (d) The annotations

(e) Magnification 2.5× (f) The annotations

Figure 4.5: Example of a whole slide image at different magnifications in the ULG-LBTD-NEO13
(3) dataset (Source: NEO13_CNS_1.30_5_3_01.tif). In burgundy is shown tumour regions,
bronchus in purple, and inflammation in yellow.
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4.2 Replication of the original study

Before conducting any experiments, the first step is to try to replicate the performance achieved
by NuClick in the original paper. For the replication, Table 4.3 reports the parameters used by
the original implementation and Table 4.4 shows the dataset used. Only the experiments on the
glands are performed.

Parameter Value
Epochs 200

Batch size 16
Optimiser Adam

Learning rate 3× 10−3

Weight decay 5× 10−5

Table 4.3: Parameters used by the original NuClick.

Dataset Type Train set Val set TestA TestB
CHALLENGE-GLAS-2015 Gland 613 154 664 119

Table 4.4: The split used by the original NuClick.

Table 4.5 reports the performance of the original results achieved by NuClick and the per-
formance obtained with the reimplemented version. As can be seen from the table, the reimple-
mented version of NuClick could not achieve the perfect score with the Dice coefficient. However,
the reimplementation achieves a better Hausdorff distance in the two test sets. It is really sur-
prising to see that the original performance achieves such a score with the Dice coefficient.

TestA TestB
Model Dice/F1 Score Haus. Dice/F1 Score Haus.

Original NuClick 1.000 15 1.000 21
Replicated NuClick 0.9323 8 0.9329 13

Table 4.5: Performance comparison between the stated result from the NuClick paper and the
reimplemented version.
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4.3 Experiments protocol

In this section, the various settings used for all the subsequent experiments are defined.

4.3.1 Datasets

Since the experiments aims at reflecting as close as possible a real use case, not all the available
data, shown in Table 4.1, page 35, are going to be used. Table 4.6 reports the number of
annotations for each of the type that is going to be used for the experiments. To reflect at
best a situation where an annotator possesses very little annotations, a maximum of about 500
annotations is put for the training set and 250 annotations for the validation set. However, no
limit is applied on the test set to have a proper performance assessment.

Dataset Type Train set Val set Test set
ULG-LBTD-NEO04 Bronchus 242 65 72
ULG-LBTD-NEO13 Bronchus 262 73 74

CHALLENGE-GLAS-2015 Gland 517 250 304
CHU-ANAPATH-NST-DL Gland 508 250 1,239

ULG-LBTD-NEO04 Inflammation 94 24 30
CHU-ANAPATH-NST-DL Inflammation 226 59 69
CHU-ANAPATH-NST-DL Infiltration 518 250 549

CHALLENGE-CAMELYON16 Tumour 494 250 498

Table 4.6: The split of annotations for each type of object in the various datasets.

4.3.2 Model training

Regarding the training of the models, Table 3.2, page 34, reports the hyperparameters that are
going to be used for all the experiments. The training is performed with the help of the training
and validation sets. The models are trained on GPUs as explained in section 3.5, page 33. The
scribbles (inclusion and exclusion maps) are automatically generated during the training using
the method described in section 3.3.1, page 27.

4.3.3 Model evaluation

The evaluation of a model segmenting a type of object is done on the corresponding test set,
e.g., a model trained on ULG-LBTD-NEO04 to segment bronchus is tested on the ULG-LBTD-
NEO04 bronchus test set. An exception is made for the robustness analysis in section 4.5,
page 66, where the datasets used are going to be clearly stated. To evaluate a model, the metrics
presented in section 3.4, page 31, are going to be used, namely the intersection over the union
and the Hausdorff distance.

4.3.4 Assessment standard

In this thesis, the assessment standard to be considered as good performance are an intersection
over the union greater or equal to a value of 0.7 and a Hausdorff distance lower or equal than
a value of 20. The values are chosen to try to be the most balanced as possible. A too low
value for the IoU would let some results considered as good although it is not. In contrast, a too
high value will only let a small part of the results be considered as good. As for the Hausdorff
distance, the smaller the value, the better the segmentation.
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4.4 Annotations analysis

This section is dedicated to the analysis of the annotations in term of quality and quantity. The
quantity analysis aims at determining the minimum number of annotations needed to train a
model achieving satisfactory performances. On the other hand, the quality analysis assesses the
quality of the annotations made by potential users on the objects of interest.

4.4.1 Quantity analysis

In this experiment, a model is going to be trained on a growing number of annotations starting
from one annotation up to a certain number of annotations that is going to be precised for each
type of object. Training a model by incrementing the number of annotations by one is infeasible
because it requires an excessive amount of time. Therefore, the number of annotations grows by
an arbitrarily step. The models are then evaluated on the test set with the metrics presented in
section 3.4, page 31, namely the intersection over the union and the Hausdorff distance.

Regarding the step size used for the experiments, a reasonable size is computed to approxi-
mate a real feasible size of annotations. After numerous trials, a step size of approximately 24
annotations is chosen for the subsequent experiments. An exception is made for the inflamma-
tions, for which there are very few available annotations. Depending on the available number
of annotations, the step size might slightly change to have more or less an evenly spaced num-
ber of annotations and about 20 models per type of object to segment. The exact number of
annotations and models are going to be shown in the tables for each of the following experiment.

Bronchus

Figure 4.6 reports the IoU and the Hausdorff distance obtained for the two datasets contain-
ing annotations of bronchus, namely the ULG-LBTD-NEO04 and the ULG-LBTD-NEO13 (3)
datasets. As a general observation for the figure regarding the IoU, the more annotations are
added for the training, the better the performance, which is the expected behaviour. Notice
that some sudden decrease in performance can be recognised, e.g., at about 75 annotations for
the blue curve, or about 120 annotations for the orange curve. After the investigation of the
dataset, the explanation of the decrease in performance is because the newly added images have
more than one mask of bronchus. Usually, annotations of bronchus are only composed of one
mask as shown in Figure 4.7a and Figure 4.7b. Therefore, the network tries to incorporate this
information that several masks can appear, which explains the decrease.

Aiming at 0.7 IoU, the required number of annotations seems to be located approximately
around 70 and 120 annotations with the consideration of the sudden decrease at 70 annotations.
Needless to say, to achieve a higher IoU, more than 100 annotations are required as the mini-
mum number of annotations. On the other hand, from the performance given by the Hausdorff
distance, it can be noticed that the models trained on the ULG-LBTD-NEO04 dataset seem to
have a larger Hausdorff distance than the other dataset. This is an unexpected result as both
datasets share high similarity in images. After the investigation of the predicted segmentation in
both datasets for the test set, poor predictions, illustrated in Figure 4.8, are sometimes encoun-
tered in the ULG-LBTD-NEO04 dataset, thus leading to a higher Hausdorff distance. Lastly, an
illustration of a good prediction is shown in Figure 4.7.

Regarding the computation time, Table 4.7 presents the time taken to train the models with
varying size of annotations. To achieve a good performance, it requires between 5 to 8 hours,
which is already enormous in term of time.
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Figure 4.6: Performance for the bronchus. On the left is the performance using the intersection
over the union metric and on the right is the Hausdorff distance.

(a) The image (b) The ground truth mask

(c) 1 (d) 49 (e) 121 (f) 193 (g) 241

Figure 4.7: Example of a good segmentation of bronchus. The number from the subfigure (c) to
(g) shows the number of annotations used for the training.
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Number of
annotations

Average time
for one epoch Total time

1 27s 2h15m24s
25 39s 3h16m42s
49 52s 4h20m28s
73 1m06s 5h28m36s
97 1m20s 6h40m34s
121 1m34s 7h49m35s
145 1m46s 8h50m54s
169 1m59s 9h54m47s
193 2m18s 11h31m12s
217 2m27s 12h13m43s
241 2m42s 13h20m58s

(a) ULG-LBTD-NEO04

Number of
annotations

Average time
for one epoch Total time

1 33s 2h44m19s
25 47s 3h52m34s
49 55s 4h34m49s
73 1m12s 6h2m20s
97 1m20s 6h40m7s
121 1m33s 7h44m18s
145 1m53s 9h25m17s
169 1m58s 9h49m54s
193 2m11s 10h53m0s
217 2m33s 12h47m14s
241 2m34s 12h50m15s

(b) ULG-LBTD-NEO13 (3)

Table 4.7: Computation time regarding the trainings of the bronchus segmentation task.

(a) The image (b) Predicted segmentation (c) Ground truth segmentation

Figure 4.8: Poor bronchus segmentation generating a high Hausdorff distance value, i.e., 150.

Gland

Originally, this thesis bases itself on the original paper of NuClick [Alemi Koohbanani et al., 2020].
A replication study was done in section 4.2, page 42, to try to achieve the stated performance.
In this experiment, the number of annotations used differs from the original dataset of the
CHALLENGE-GLAS-2015 dataset. For instance, as described in subsection 4.1.2, page 36, the
dataset is composed of a training set, and two test sets. Here, the annotations are shuffled so
that some of the original testing images can be seen in the training set. Figure 4.9 reports
the performance of the evaluation on the two datasets containing annotations of glands, namely
the CHALLENGE-GLAS-2015 and the CHU-ANAPATH-NST-DL datasets. As can be seen
from this table, the performance of the CHU-ANAPATH-NST-DL seems to achieve a higher
performance in both metrics than the CHALLENGE-GLAS-2015.

Comparing the computation time reported in Table 4.8 with the one of the bronchus, a huge
difference can be observed, for instance, training the model on one annotation takes about 2
hours for the bronchus, whereas it takes about 8 to 9 hours. This difference of time can be
explained by the fact that the validation phase of the gland takes more times as the number of
validation annotations are three times more than the one of the bronchus, as can be seen from
Table 4.6, page 43. Lastly, an example of a good and a poor result are shown in Figure 4.10 and
Figure 4.11, respectively.
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Figure 4.9: Performance for the gland. On the left is the performance using the intersection over
the union metric and on the right is the Hausdorff distance.

Number of
annotations

Average time
for one epoch Total time

1 1m46s 8h12m49s
25 2m05s 10h29m54s
49 2m10s 10h49m03s
73 2m36s 12h58m18s
97 2m44s 13h38m08s
121 2m55s 14h33m33s
145 2m56s 14h39m49s
170 3m27s 17h13m51s
194 3m47s 18h53m50s
218 3m48s 18h59m25s
242 3m31s 17h36m26s

Number of
annotations

Average time
for one epoch Total time

266 4m13s 21h03m26s
290 4m01s 20h04m41s
315 4m08s 20h40m48s
339 4m35s 22h52m38s
363 5m10s 1d01h47m51s
387 4m54s 1d00h30m56s
411 4m49s 1d00h05m59s
435 5m27s 1d03h14m43s
459 5m53s 1d04h25m16s
484 5m50s 1d04h07m42s
508 5m16s 1d02h19m57s

(a) CHU-ANAPATH-NST-DL
Number of
annotations

Average time
for one epoch Total Time

1 1m53s 9h24m43s
25 2m7s 10h34m17s
50 2m17s 11h27m20s
74 2m30s 12h28m47s
99 2m47s 13h54m7s
123 2m41s 13h25m28s
148 2m59s 14h53m40s
173 3m8s 15h40m42s
197 3m19s 16h33m46s
222 3m28s 17h21m58s
246 3m39s 18h15m0s

Number of
annotations

Average time
for one epoch Total time

271 3m49s 19h5m36s
320 3m48s 19h1m56s
295 4m12s 20h57m59s
369 4m23s 21h55m10s
345 4m32s 22h41m28s
394 4m31s 22h34m51s
418 4m56s 1d00h38m8s
443 5m10s 1d01h51m39s
467 5m20s 1d02h40m30s
492 5m33s 1d03h45m46s
517 5m36s 1d03h57m34s

(b) CHALLENGE-GLAS-2015

Table 4.8: Computation time regarding the trainings of the gland segmentation task.
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(a) The image (b) The ground truth mask

(c) 1 (d) 123 (e) 246 (f) 369 (g) 517

Figure 4.10: Example of a good segmentation of gland. The number from the subfigure (c) to
(g) shows the number of annotations used for the training.

(a) The image (b) Predicted segmentation (c) Ground truth mask

Figure 4.11: Poor gland segmentation from the CHU-ANAPATH-NST-DL dataset.
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Inflammation

As previously mentioned in section 4.3, page 43, there is little available number of annotations for
the inflammation. Therefore, the step size is adapted, regarding the CHU-ANAPATH-NST-DL
dataset, the step size is about 20 annotations and for the ULG-LBTD-NEO04 dataset, the step
size is 8 annotations, since the training set is only composed of 94 annotations.

Figure 4.12 presents the performance measured by the IoU and the Hausdorff distance. It can
be observed for the ULG-LBTD-NEO04 dataset that the performance are very poor. Compared
to the previous results about bronchus and gland, the models segmenting inflammation from
the ULG-LBTD-NEO04 dataset achieve an IoU of at best 0.6. After the investigation of the
images from the dataset, the presumable cause is the class imbalance. Since the network takes
inputs of dimensions 512 × 512 × 5, crops of 512 × 512 of height and width, respectively, are
extracted from the whole slide images. However, the mask associated with the inflammatory
regions are frequently very small resulting in a substantial class imbalance, i.e., the background
covers most of the ground truth image as depicted in Figure 4.13. Nonetheless, the models seem
to achieve higher IoUs on the CHU-ANAPATH-NST-DL dataset. It is mainly due to the fact
that inflammatory regions are more consequent in the ground truth masks reducing slightly the
class imbalance as shown in Figure 4.14. However, the ground truth masks present a tremendous
amount of small regions labelled as inflammation, for which the NuClick architecture has some
issues managing these small regions. Nevertheless, some illustrations of mediocre and poor
segmentation are shown in Figure 4.15.
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Figure 4.12: Performance for the inflammation. On the left is the performance using the inter-
section over the union metric and on the right is the Hausdorff distance.

Regarding the performance of the Hausdorff distance for both datasets from Figure 4.12,
the Hausdorff distance for the CHU-ANAPATH-NST-DL is approximately double the distance
of the ULG-LBTD-NEO04 one. After the comparison of annotated images in both datasets,
the cause is related to the diversity of inflammatory regions in the CHU-ANAPATH-NST-DL
dataset as shown in Figure 4.14. Thus, the network has more difficulties producing accurate
segmentation at the boundaries primarily. The small conclusion that can be drawn from this
specific experiment is that the NuClick architecture is not designed for this kind of annotations,
i.e., numerous very small regions.

Lastly, with respect to the computation time reported in Table 4.9, the time taken to train
the models on the inflammation is comparable to the time for the bronchus datasets.
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Figure 4.13: Images with their corresponding ground truth mask of inflammatory regions in the
ULG-LBTD-NEO04 dataset.

Figure 4.14: Images with their corresponding ground truth mask of inflammatory regions in the
CHU-ANAPATH-NST-DL dataset.
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Number of
annotations

Average time
for one epoch Total time

1 0m30s 2h32m21s
21 0m38s 3h11m31s
41 0m46s 3h50m30s
62 0m58s 4h49m56s
82 1m12s 5h57m31s
103 1m18s 6h32m25s
123 1m26s 7h10m26s
144 1m38s 8h11m45s
164 1m54s 9h30m55s
185 1m59s 9h53m26s
205 2m13s 11h06m08s
226 2m24s 12h02m24s

(a) CHU-ANAPATH-NST-DL

Number of
annotations

Average time
for one epoch Total time

1 0m8s 41m50s
8 0m12s 58m05s
16 0m14s 1h11m24s
24 0m20s 1h37m39s
32 0m21s 1h46m40s
39 0m26s 2h12m24s
47 0m30s 2h30m04s
55 0m31s 2h37m27s
63 0m35s 2h55m56s
70 0m41s 3h22m39s
78 0m43s 3h36m19s
86 0m45s 3h44m22s
94 0m50s 4h10m27s

(b) ULG-LBTD-NEO04

Table 4.9: Computation time regarding the trainings of the inflammation segmentation task.

(a) The image (b) Predicted segmentation (c) Ground truth segmentation

(d) The image (e) Predicted segmentation (f) Ground truth segmentation

Figure 4.15: Illustration of a mediocre segmentation (upper) from the CHU-ANAPATH-NST-DL
dataset and a poor segmentation (lower) of inflammation from the ULG-LBTD-NEO04.
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Infiltration

Figure 4.16 shows the performance of the models on the infiltration test set. Ignoring the decrease
at about 150 annotations in the IoU, the performance on the infiltration seems to be steady with
an increasing number of annotations. Similar to the bronchus analysis, about 100 annotations
are needed to achieve satisfactory results, i.e., an IoU of 0.7. After the examination of the 24
added ground truth masks to the training set for the decrease at about 150 annotations, the
cause comes from the fact that these images are partially annotated and contains numerous
small regions as shown in Figure 4.17. Regarding the performance of the Hausdorff distance, it
is very low, indicating that the segmentation around the boundaries is close to the ground truth
boundaries, which is very good. In this specific case, a relationship can be observed between the
IoU and the Hausdorff distance, i.e., whenever there is a decrease in the IoU, there is an increase
in the Hausdorff distance. It means that the neural network has more difficulties producing very
accurate segmentation at the boundaries. Thus, leading to a small increase in the Hausdorff
distance.
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Figure 4.16: Performance for the infiltration.

Regarding the steadiness of the performance, a solution that could improve the performance is
to perform specific fine-tuning in the hyperparameters. As formerly stated, the hyperparameters
used for conducting this experiment is the same for all the other experiments and are shown in
Table 3.2, page 34. First, performing a cross-validation search to determine the best optimiser,
learning rate, and weight decay is to be made. Then, the number of epochs is also to be calculated
to produce the best performance. These specific fine-tuning for the infiltration should hopefully
lead to an increase in performance.

Figure 4.17: Illustrations of problematic images of infiltration from the CHU-ANAPATH-NST-
DL dataset. An partially annotated image is shown on the left and several small regions of mask
is shown on the right
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For the computation time, Table 4.10 reports the time taken to for all the training in the
experiment. Compared to the time for the bronchus in Table 4.7, page 46, it takes about four
times more for training the model on one epoch. It is mainly due to the size of the validation
set, similarly explained for the glands. To reach a performance achieving 0.7 IoU, about 100
annotations are needed as previously stated. Looking at the table, it requires about 13 hours to
train the network to achieve the expected performance, which is objectively speaking very long
compared to other models. Lastly, a good segmentation of infiltration is shown in Figure 4.18.

Number of
annotations

Average time
for one epoch Total time

1 1m51s 9h13m10s
24 1m54s 9h28m25s
48 2m8s 10h37m41s
71 2m14s 11h09m56s
95 2m35s 12h56m07s
118 2m41s 13h24m29s
142 2m56s 14h40m24s
165 3m19s 16h34m29s
189 3m26s 17h11m56s
212 3m50s 19h10m10s
236 3m49s 19h03m25s
259 4m20s 21h37m46s

Number of
annotations

Average time
for one epoch Total time

283 4m17s 21h27m08s
306 4m41s 23h26m08s
330 4m35s 22h56m33s
353 4m60s 1d00h57m44s
377 5m26s 1d03h07m55s
401 5m33s 1d03h46m26s
424 5m38s 1d04h10m55s
448 5m50s 1d05h08m57s
471 6m1s 1d06h03m49s
495 6m19s 1d07h37m24s
518 6m15s 1d07h17m14s
7 7 7

Table 4.10: Computation time regarding the trainings of the infiltration segmentation task.

(a) The image (b) The ground truth mask

(c) 1 (d) 142 (e) 259 (f) 377 (g) 495

Figure 4.18: A good example of an infiltration segmentation from the CHU-ANAPATH-NST-DL
dataset. The number from the (c) to (g) shows the number of annotations used for the training.
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Tumour

As can be seen in Figure 4.19, the performance with the IoU metric is really bad. Similar
results were observed for the inflammation, for which the cause was class imbalance. However,
for the tumours, the cause is completely different. First, notice that the tumour dataset, i.e.,
CHALLENGE-CAMELYON16, is very different from all the other datasets in the scale of the
annotations. The average size of the annotations for the other dataset is around 512 × 512 in
height and width, respectively. Therefore, crops of this size can be extracted from the whole
slide images. In contrast to the Camelyon16 dataset, the size of the annotations varies greatly,
the annotations can be very small (smaller than 512× 512), or very immense. Some examples of
size are shown in Figure 4.20. As a consequence of the evaluation phase, all the annotations are
resized to 512 × 512, in which very large annotations can potentially lose information. About
the Hausdorff distance, it seems to be steady as the number of annotations grows, meaning that
the number of annotations does not influence the segmentation around the boundaries.
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Figure 4.19: Performance for the tumour.

Number of
annotations

Average time
for one epoch Total time

1 4m00s 20h01m50s
25 4m16s 21h21m50s
50 4m30s 22h31m45s
75 4m30s 22h28m50s
99 4m53s 1d0h25m16s
124 5m2s 1d01h7m57s
149 5m26s 1d03h10m36s
173 5m27s 1d03h14m43s
198 5m41s 1d04h27m13s
223 6m5s 1d06h24m20s
247 5m59s 1d05h53m28s

Number of
annotations

Average time
for one epoch Total time

272 6m21s 1d07h42m40s
297 6m49s 1d10h5m5s
321 6m56s 1d10h42m6s
346 6m50s 1d10h9m24s
371 7m18s 1d12h31m30s
395 7m44s 1d14h42m22s
420 7m53s 1d15h25m12s
445 7m54s 1d15h28m20s
469 7m28s 1d13h20m49
494 8m36s 1d18h59m27s
7 7 7

Table 4.11: Computation time regarding the trainings of the tumour segmentation task.

Looking at the computation time shown in Table 4.11, it is the training that took the longest
time even though the number of annotations in the training and validation sets was very similar
to the gland and infiltration experiments as seen in Table 4.6, page 43. It is explained by the
fact that this dataset is very different from the rest of the datasets used in this thesis. During
the training procedure, the target annotations must first be resized to a dimension of 512× 512
which takes the major part of the epoch.
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(a) 512× 512 (b) 1319× 1090 (c) 4453× 5033 (d) 10, 000× 8, 505

Figure 4.20: Various size of annotations present in the CHALLENGE-CAMELYON16 dataset.

(a) The image (b) Predicted mask (c) Ground truth mask

(d) The image (e) Predicted mask (f) Ground truth mask

Figure 4.21: Illustration of a good (upper) and a poor (lower) segmentation of tumours from the
CHALLENGE-CAMELYON16 dataset.

55



4.4.2 Quality analysis

This experiment studies the impact of the shape of the scribbles on the segmentation. The aim is
to find which type of shapes produces the most accurate segmentation. As stated in section 3.3.1,
page 27, performing a large scale experiment with real annotations by a user is unfeasible, mainly
due to the time-consuming process of annotating the objects of interest by hand. Reusing the
technique explained in section 3.3.1, page 27, for creating the line strokes is not worthwhile, since
it will result in biased results, i.e., very high performance. Since the goal of this experiment is to
analyse the scribbles, another technique for creating the scribbles is sought with the constraint
of having more unexpected scribbles. The algorithm generating the scribble is first going to be
described followed by the experiment results analyses. Lastly, simple geometric shapes, namely
the circle and the square, are going to be used as scribbles to see the performance that can be
obtained.

The developed algorithm to simulate scribbles is based on the algorithm presented in the pa-
per From A to B, randomly: a point-to-point random trajectory generator for animal movement
[Technitis et al., 2015]. Basically, given a source point and a destination point, the algorithm con-
sists in generating several intermediate points at an equal distance that establishes the trajectory.
Some trajectory examples of this algorithm are depicted in Figure 4.22.

Figure 4.22: Various examples of random trajectory for the same source and destination points.

Starting from this algorithm, a supplementary constraint is put, which is that the random
trajectory must lie inside the ground truth mask of the object. Otherwise, the network will
predict inaccurate segmentations. The generation of random scribbles algorithm consists of two
parts:

A) Generating the source and destination points at random.

B) Generating randomly the intermediate points connecting the source to the destination.

An example of scribbles with different numbers of intermediate points generated by the algorithm
is shown in Figure 4.23.

(a) 5 steps (b) 10 steps (c) 15 steps (d) 20 steps

Figure 4.23: Random scribbles with different number of steps on bronchi.

56



Regarding the first part of the algorithm, the different steps are described with an example:

1. First, the input of the algorithm is the ground truth mask of the objects of interest.
Figure 4.24a presents an example of input masks.

2. The contour coordinates of the masks are extracted. This step gives the number of objects
present in the ground truth mask image as illustrated in Figure 4.24b. In the example at
hand, there are two masks implying that there are two objects to segment.

3. To avoid having the source point close to the destination point, a minimum distance be-
tween the two points is calculated. First, the four extreme points from the extracted
contour are calculated. The distance from one extreme point to another one is computed
using the Euclidean distance for each combination of two points without repetition, i.e, 6
distances in total. The distances are represented by the green lines and the extreme points
by the red dots in Figure 4.24c. The minimum distance is the average distance over the 6
computed distances. Using extreme points to compute the distance allows very far source
and destination points.

4. Two random points are sampled inside the contour until the following constraints are met:

• The Euclidean distance between the two points is greater than the minimum distance
computed in the previous step.

• Each of the two points should lie inside the contour of the mask. It is because the
x-axis and the y-axis are sampled separately in the implementation of the algorithm.
Thus, leading to points that are considered valid on both axes individually but invalid
together.

Figure 4.24d depicts the sampled points after satisfying the aforementioned constraints.

(a) Ground truth mask (b) Contour of objects (c) Extreme points (d) Sampled points

Figure 4.24: Illustration of the random generation of the source and destination points.
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Concerning the second part of the algorithm, the different steps are going to be described
continuing the example of the first part:

1. The required inputs are the mask of one object, the sampled points of the first part rep-
resenting the source and destination points, respectively, the length of a line segment, and
the number of intermediate points to generate. The length of a line segment m is computed
with dd/se+1 where d is the Euclidean distance between the source and destination points
and s the number of intermediate points.

2. For each intermediate point (step),

(a) Let the current point be the point of the last intermediate point. With the special
case for the first point, where the current point is the source point.

(b) The radius is computed for the current point and the destination point by

radiusA = step ∗m, radiusB = (s− step) ∗m (4.1)

where step is the current step, m is the length of the line segment computed in the
previous step, and s is the number of intermediate points. Using the radii, circles
are created centred on the current point and the destination point as illustrated in
Figure 4.25a.

(c) The intersection of the two circles and the mask is computed. It is illustrated by the
red zone in Figure 4.25b. The next intermediate point is sampled from this region
uniformly at random.

Figure 4.25c depicted the repetition of step 2 for two consecutive steps.

3. The last step is to connect the source and destination points by linking the intermediate
points as shown in Figure 4.25d. The generated trajectory forms the scribble that is going
to be used for inclusion and exclusion maps.

(a) Circle creation (b) Valid sample area (c) Repetition (d) Final trajectory

Figure 4.25: Random generation of the trajectory from the source point to the destination point.
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Performing the generation of the intermediate points in the order produces a phenomenon
named heavily drifted walk [Technitis et al., 2015]. Basically, for the first few intermediate points,
the algorithm samples points at random in any possible direction. However, for the remaining
ones, the algorithm begins to hurry towards the destination points because it has generated
points far from the destination point. To respect the constraints, the algorithm thus generates
nearly straight lines toward the destination. This phenomenon can be seen in Figure 4.22. To
cope with this issue, the solution is to generate the intermediate points at random. The only
modification to the algorithm is the step 2. (a). As the previous generated intermediate point
might not exist, the current point is simply the source point. Otherwise, it is the previously
generated intermediate point. Illustrations with an increasing number of intermediate points are
depicted in Figure 4.23. Supplementary illustrations for each type of object are shown in the
appendix section C.1, page 90.

For the following experiments, the number of intermediate points (steps) tested is 5, 10, 15,
and 20. More steps sizes do not illustrate a random scribble that is realistic anymore. For each
step, three different variations of the random squiggle are used. The average performance of the
three is then taken.

Bronchus

As can be seen in Figure 4.26, more complex scribbles on bronchi do not improve significantly,
but slightly the quality of the segmentation, i.e., the performance in term of IoU. The Hausdorff
distance is very huge in comparison with Figure 4.6, page 45, of the quantity experiment. After
the examination of the predicted segmentations, a few of them present an open hole more or less
located at the centre as illustrated in Figure 4.27b, which generate a high Hausdorff distance
value. Regarding good segmentation of bronchi, an illustration is shown in Figure 4.28.
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Figure 4.26: Performance of the model on bronchi. On the left, the performance is expressed
with IoU and on the right with the Hausdorff distance.

Gland

Comparing the IoU of Figure 4.9, page 47, at about 510 annotations with the one of Figure 4.29, a
surprising increase of performance happen for images in the CHALLENGE-GLAS-2015 peeking
their IoU at 0.8, which is very good. Regarding the Hausdorff distance, it is very high for
the CHALLENGE-GLAS-2015 for the same reason as the bronchus. Nothing special about the
performance on the CHU-ANAPATH-NST-DL, for which the performance is comparable to the
one in the quantity analysis. An illustration of a good segmentation from the CHALLENGE-
GLAS-2015 dataset is shown in Figure 4.30.
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(a) Scribble with 5 steps (b) Predicted segmentation (c) Ground truth segmentation

Figure 4.27: Example of a bronchus segmentation generating a high Hausdorff distance value,
i.e., 169. The image comes from the ULG-LBTD-NEO04 dataset.

(a) Scribble with 5 steps (b) Predicted segmentation (c) Ground truth segmentation

Figure 4.28: Example of a good bronchus segmentation from the ULG-LBTD-NEO04 dataset.
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Figure 4.29: Performance of the model on glands. On the left, the performance is expressed with
IoU and on the right with the Hausdorff distance.
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(a) 10 steps scribbles (b) Predictions (c) Ground truth mask

Figure 4.30: Example of a good gland segmentation from the CHALLENGE-GLAS-2015 dataset.

Inflammation

Since the performance on inflammation is bad as shown in the quantity analysis, scribbles cov-
ering more ground of the inflammation improve very slightly the performances as shown in
Figure 4.31. A seldom good segmentation of inflammation is shown in Figure 4.32 and the
frequently encountered poor segmentation is shown in Figure 4.33.
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Figure 4.31: Performance of the model on inflammations. On the left, the performance is
expressed with IoU and on the right with the Hausdorff distance.

Infiltration and tumour

The same conclusion as inflammation can be made for the tumour experiment, where the per-
formance is shown in Figure 4.34 in the orange bar. More precisely, scribbles that cover more
ground of the tumour improve slightly the segmentation. An interesting observation can be made
for the infiltration. Comparing the IoU of Figure 4.34, i.e., the blue bar plot, with the one of
Figure 4.16, page 52, a substantial decrease of about 0.2 IoU can be seen. After the inspection of
the predicted segmentations, shown in Figure 4.35, some area of the infiltration is not predicted
as expected leaving a medium gap in the segmentation. It happens for a considerable number
of images containing infiltration, thus leading to the decrease of performance. As a consequence
of the gap from the segmentation, the Hausdorff distance is naturally larger. A simple solution
to improve the segmentation is to scribble more sensible regions, i.e., regions which were not
predicted as part of the segmentation on the first try. Naturally, this solution would waste some
time because of the redundancy annotation.
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(a) 20 steps scribbles (b) Predictions (c) Ground truth mask

Figure 4.32: Example of a good inflammation segmentation from the ULG-LBTD-NEO04
dataset.

(a) 20 steps scribbles (b) Predictions (c) Ground truth mask

Figure 4.33: Example of a poor inflammation segmentation from the CHU-ANAPATH-NST-DL
dataset.
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Figure 4.34: Performance of the model on infiltrations (left) and tumours (right). On the left,
the performance is expressed with IoU and on the right with the Hausdorff distance.
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(a) 5 steps scribbles (b) Predictions (c) Ground truths

Figure 4.35: Example of mediocre segmentations of infiltration from the CHU-ANAPATH-NST-
DL dataset.

(a) 20 steps scribbles (b) Predictions (c) Ground truth mask

Figure 4.36: Example of a poor tumour segmentation from the CHALLENGE-CAMELYON16
dataset.
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Simple geometric shape as scribble

In this small experiment, circles and squares are used as scribbles to see what performance
can be achieved with these geometric shapes instead of simple line strokes. More precisely, the
experiment consists in generating a circle (resp. square) inside the ground truth mask that
is going to be used to build the inclusion and exclusion maps. The experiment is first done
by generating circles and then by generating squares. The evaluation is done for both shapes
together resulting in only one plot (Figure 4.38). Illustrations of generated circles and squares
are shown in Figure 4.37.

(a) Bronchus (b) Gland (c) Inflammation (d) Infiltration (e) Tumour

Figure 4.37: Illustrations of circles and squares inside the objects of interest.

Figure 4.38 reports the performance achieved by the models using geometric shapes are
scribbles. As a general observation, the performance of the various models seems to achieve
at most an IoU of 0.6, which are lower than the values observed with the random scribbles
experiment. More precisely, using shapes as scribbles drastically decreases the performance
on the bronchus of the dataset ULG-LBTD-NEO13. Regarding the Hausdorff distance, the
highest values are achieved by the bronchus from the ULG-LBTD-NEO04 dataset, gland from
the CHALLENGE-GLAS-2015 dataset, and tumour from the CHALLENGE-CAMELYON16
dataset, despite the fact that the IoU of these models varies greatly. The predicted segmentations
of the illustrations in Figure 4.37 are shown in Figure 4.39.
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Figure 4.38: Performance of the model on the different tissues. The legend shows the dataset
used for the training and evaluation of the model. The dataset used for infiltration and tumour
is CHU-ANAPATH-NST-DL and CHALLENGE-CAMELYON16, respectively.
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From the predicted segmentations, it can be observed that the models segmenting bronchus,
inflammation, and tumour try to predict the shape of the scribbles instead of the object of
interest. However, for gland and infiltration, the models seem to achieve mediocre segmentations,
which confirms the performance displayed in Figure 4.38.

(a) Bronchus (b) Gland (c) Inflammation (d) Infiltration (e) Tumour

Figure 4.39: Illustrations of the segmentation from the images presented in Figure 4.37.
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4.5 Robustness analysis

This section aims at determining the robustness of the NuClick model. In short, the experiment
consists in training the model on one of the datasets presented in section 4.1, page 35, and
evaluating the trained the model on another dataset. From Table 4.1, page 35, the experiment
can be done for bronchi, inflammations, and glands only, since there are two different datasets
for each of the mentioned tissues. The legend presented in the subsequent figures shows the
name of the dataset used for training the model. The abscissa shows the name of the testing set
of the dataset.

4.5.1 Bronchus

As can be seen in Figure 4.40, the performance are more or less the same when testing the
models on the datasets. It was the expected results since the two datasets were very similar.
The only noticeable difference is that the model trained on the ULG-LBTD-NEO04 training set
and evaluated on the ULG-LBTD-NEO04 testing set, produces a larger Hausdorff distance, as
was the case for all the previous experiments on this dataset as well.
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Figure 4.40: Performance of the models on bronchi. On the left is shown the performance of the
IoU and on the right of Hausdorff distance.

4.5.2 Gland

Notice the poor performance from the evaluation of the model trained on CHALLENGE-GLAS-
2015 training set on the CHU-ANAPATH-NST-DL testing set, shown in Figure 4.41. On the
opposite, the model trained on the CHU-ANAPATH-NST-DL dataset seems to be more robust.
After the investigation of both datasets, the images containing gland are very dissimilar as
depicted in Figure 4.42. It explains why the model trained on CHALLENGE-GLAS-2015 has
more difficulties segmenting the images from the CHU-ANAPATH-NST-DL dataset.

4.5.3 Inflammation

Regarding the inflammation, the models achieve about equal performance for both datasets as
illustrated by Figure 4.43. Although the two datasets come from different laboratory and the
provenance of the slides come from different tissues, i.e., lung tissues for the ULG-LBTD-NEO04
and breast tissues for CHU-ANAPATH-NST-DL, the models are quite robust in the variation of
the images.
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Figure 4.41: Performance of the models on glands.

(a) CHU-ANAPATH-NST-DL

(b) CHALLENGE-GLAS-2015

Figure 4.42: Illustrations of glands with their ground truth mask from the CHU-ANAPATH-
NST-DL and CHALLENGE-GLAS-2015 datasets.
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Figure 4.43: Performance of the models on inflammations.
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4.6 Model analysis

This section focuses on various aspects of the neural network, NuClick. The first experiment
aims at comparing the performance of the NuClick architecture with the well known U-Net
architecture presented in subsection 2.1.6, page 8. The second and third experiments try to
determine the implication of the inclusion and exclusion map. The results of these experiments
are going to be analysed jointly.

4.6.1 U-Net comparison

This experiment aims at comparing the U-Net architecture with the NuClick architecture. To
train U-Net, the classical approach of training a deep learning model is used, which is presented in
subsection 2.1.3, page 5. For a comparison focused on the model architecture only, the parameters
used are the one stated in section 4.3, page 43.

4.6.2 Absence of signal maps

This second experiment seeks at determining the implication of the signal provided in the in-
clusion and exclusion maps. The goal is to compare the NuClick model with and without these
supplementary signal. The experiment consists in training the NuClick architecture with empty
inclusion and exclusion maps, i.e., the fourth and fifth channels are always black. In the figures
presented in the result section, this model is referred to as Black NuClick.

4.6.3 Automatic NuClick architecture

NuClick was introduced with the notion of inclusion and exclusion map explained in subsec-
tion 3.3.1. This experiment tries to answer the question of whether these signal maps are indeed
useful for the segmentation or not. To train this architecture, it uses the classical approach as
explained earlier for U-Net, which is presented in subsection 2.1.3, page 5. This architecture
do not take the inclusion and exclusion maps as supplementary channels, thus the input to this
network is only 512×512×3. This model is referred to as Simple NuClick in the results section.

4.6.4 Results

For the following figures, the four architectures are presented with their performance on the test
sets. The first one is the NuClick presented section 3.3, page 26, followed by the simple NuClick,
black NuClick, and U-Net. The legend of the figures reports the dataset used for the testing set.

Bronchus

As can be seen in Figure 4.44, the different models achieve very similar performance in IoU on
the ULG-LBTD-NEO04 dataset. However, on the ULG-LBTD-NEO13, the performance seems
to decrease as the complexity of the model decreases. Furthermore, as the IoU decreases, the
Hausdorff distance increases, meaning that the predicted segmentations are similar to Figure 4.35,
page 63.

Gland

Regarding the gland, Figure 4.45 reports the performance of the two datasets containing glands.
It can be seen from this figure that the performance of the various models is quite similar. The
NuClick seems to perform the best followed by the model in the order ending with U-Net having
the smallest performance. Notice that the Hausdorff distance is high for all the models except
for NuClick, which shows the importance of the inclusion and exclusion maps.
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Figure 4.44: Performance for the bronchus. On the left, can be seen the performance measured
in IoU and on the right in Hausdorff distance.
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Figure 4.45: Performance for the gland. On the left, can be seen the performance measured in
IoU and on the right in Hausdorff distance.

Infiltration

For bronchus and gland, the IoU decreases in the order of the model. However, for infiltration,
the Simple Nuclick model seems to achieve a better performance than Black Nuclick and U-Net.
Again, U-Net seems to achieve the worst performance among the four models.

Inflammation

A first observation that can be drawn from Figure 4.47 jointly with Figure 4.44, is that the
ULG-LBTD-NEO04 dataset seems to contain very robust annotations so that the performances
obtained are comparable for similar neural network architecture. In contrast to the infiltration,
the Simple NuClick achieves the worse performance on the CHU-ANAPATH-NST-DL dataset.

Tumour

Analogous to the inflammation, Simple NuClick seems to perform the worse among the four
architectures as shown by the performance with the IoU in Figure 4.48. However, it can be
noticed that the U-Net architecture manages to perform better than Black NuClick and Simple
NuClick. Regarding the Hausdorff distance, the values are close to each other even though the
performance with the IoU varies considerably.
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Figure 4.46: Performance for the infiltration. On the left, can be seen the performance measured
in IoU and on the right in Hausdorff distance.
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Figure 4.47: Performance for the inflammation. On the left, can be seen the performance mea-
sured in IoU and on the right in Hausdorff distance.
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Figure 4.48: Performance for the tumour. On the left, can be seen the performance measured in
IoU and on the right in Hausdorff distance.
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4.7 Discussion

Before discussing the results of the experiments, a small discussion about the impact of the
values set in the post-processing presented in subsection 3.3.3, page 30, is done. First, for the
object removal, specifying a too large threshold could lead to the removal of small mask objects
as shown in Figure 4.14, page 50. Therefore, with the considerations of these small masks, the
final threshold was set at 100 pixels. Intuitively, for the holes filling, one might set the area
threshold to be filled at the highest possible value to fill holes. An example of a hole that could
have been filled with a higher area threshold is shown in Figure 4.39a, page 65. Unfortunately,
some ground truth masks contain holes as shown in Figure 4.49. Therefore, the final value was
set to 300 to avoid filling correct the holes.

(a) Gland (b) Infiltration

Figure 4.49: Holes in ground truth masks of a gland and an infiltration, respectively.

The very first experiment was the replication of the original experiment on glands by NuClick
[Alemi Koohbanani et al., 2020]. Our reimplementation of the NuClick model was trained on
the training set of the GlaS challenge 2015 [Sirinukunwattana et al., 2015, 2016] using the same
hyperparameters as the original paper. Comparing our results with the original results, they seem
to be lower than the original performance in term of the Dice similarity coefficient. However,
our version of NuClick achieves better performance in Hausdorff distance in both testing sets
of GlaS. Naturally, the next step was to use their implementation to replicate their experiment
with their own code. However, the creation of the dataset in their implementation uses a specific
protocol that is not explained in their paper nor in the code. A minor issue was that their code
uses MATLAB, for which a license is needed. Therefore, it was impossible to use their code for
training the model.

Then, the second experiment was about the determination of the minimum number of an-
notations needed to have satisfactory results. For bronchi, glands, and infiltrations, about 120
annotations were needed to produce an intersection over the union between 0.7 and 0.8, which is
considered to be good performance. However, regardless of the number of annotations, the model
seems to struggle to segment inflammation and tumour annotations. Regarding the inflamma-
tions, it is mainly because of class imbalance, i.e., the annotations cover less than a quarter
of the ground truth mask image. A proposed solution is to train the network taking a much
smaller input size, i.e., 128 × 128 × 5. With images of a height and width of 128 × 128, the
class imbalance is greatly reduced. As for the tumours, the problem seems to come from the fact
that the annotations are too diversified in shape and size, e.g., some annotations could have a
dimension of 10, 000 × 8, 505. This result suggests that the approach proposed in this thesis is
not suitable for this kind of annotations and that other approaches or techniques that can deal
with very large annotations might be a better solution.

After the quantity analysis, a quality analysis was performed on the quality of the scribbles
done by annotators. Employing real annotators to scribble each object of interest in the test set
is not feasible. Therefore, an algorithm generating random scribbles was designed to cope with
this issue. This study demonstrates that indeed the shape of the scribbles impacts the predicted
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segmentation. Scribbles that cover more ground of the object of interest tend to produce more
accurate segmentation. However, scribbles that look like geometric shapes, in particular a circle
or a square, are not recommended. This analysis supports the fact that the models tend to
produce segmentation that look like the geometric shapes. The general guidelines for a scribble
are that it should cover more ground of the object of interest with simple line strokes.

The last experiment aims at determining the impact of the additional information given by
the interactions of the annotators in form of scribbles. The results indicate that these interactions
indeed bring an added value to the network, producing better and more accurate segmentation
than without these interactions.
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Chapter 5

Conclusion and perspectives

This thesis explores various semi-automatic approaches to speed up the annotation process in
biomedical tissue images, which is known to be time-consuming.

First, a review of the literature was made, which was focused on semi-automatic or interactive
approaches about segmentation tasks. These approaches use the interactions of the annotators in
various forms, giving rise to methods such as click-based methods, where clicks are incorporated
as supplementary signals in the input of the models, etc.

One promising architecture, named NuClick, was chosen from this review, because of its high
performance, mainly. A reimplementation was made and evaluated on several datasets. These
datasets were acquired from Cytomine and contained various type of tissues. In particular,
bronchi, glands, inflammations, infiltrations, and tumours were used in the evaluation from the
various datasets.

Based on the quantitative analysis, it has been shown that about 100 of complete annotations
are needed for training a model that can achieve satisfactory segmentation, more precisely for
bronchi, glands, and infiltrations. However, this analysis also showed that not all type of tissues
trained on the aforementioned quantity naturally produce decent segmentation. Indeed, more
complex tissues, such as inflammations or tumours, failed to achieve tolerable segmentation.

To analyse the impact of the shape of scribbles, an algorithm was designed to mimic the
scribbles of a human annotator. By analysing results based on this algorithm, this thesis has
shown that indeed the shape of the scribbles has a substantial impact on the predicted segmen-
tation. Based on this conclusion, annotators should consider scribbles that cover more ground
of the object of interest rather than a simple line stroke.

Lastly, this thesis has shown that using the interactions of the annotator as supplementary
information for the models tend to outperform automatic models in the task of segmentation of
biomedical images.

5.1 Perspectives

Further investigations in the literature could have been done to find other methods that could
potentially achieve better performance globally than the NuClick architecture.

5.1.1 Improvements

Various improvements can be done in this thesis. The first and most important one is the specific
fine-tuning to each of the explored type of tissues. More specifically, to perform a complete
cross-validation search of the hyperparameters to achieve the best performance and a specific
fine-tuning of the value chosen for the post-processing.

Another improvement is to further investigate the cause for the performance issues caused
by the inflammations and tumours in the quantity and quality analysis and also to implement
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the solution to these issues.
Next, other approaches could have been explored in this thesis rather than using only one to

conduct the experiments. It can be useful, in the case that other approaches can, for instance,
produce better performance on the inflammation and tumour.

5.1.2 Integration to Cytomine

A future work concerns the Cytomine web interface. Currently, a user can initiate algorithms to
perform segmentation over the desired object. However, this process is very static, in the sense
that once the user launches the experiment, no further interaction can be done. Thus, repeating
the process each time a parameter has changed is not ideal. To this end, integrating an algorithm
with the interactions of the user could be done in Cytomine. The inference time was measured
to see if this work can be used for a real-time use case. It takes about 1-2 minutes to have the
network segment one gland image of the GlaS 2015 dataset on CPU and about 1 second on a
GPU (tested on a personal computer with a GeForce MX150 GPU).

To integrate the approach developed in this thesis, Cytomine provides a protocol that uses
various kinds of technologies, such as JavaScript, Docker container, and many more. The protocol
to integrate an application to Cytomine is available at Cytomine apps documentation.
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Appendix A

Neural network architecture

This appendix presents the number of parameters for the NuClick architecture and the U-Net
architecture using the torchsummary package. The complete architecture of the two networks can
be seen in the Jupyter Notebook at https://github.com/bathienle/master-thesis-code/
blob/master/summary.ipynb.

A.1 NuClick architecture

----------------------------------------------------------------
Total params: 68,342,785
Trainable params: 68,342,785
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 5.00
Forward/backward pass size (MB): 3821.00
Params size (MB): 260.71
Estimated Total Size (MB): 4086.71
----------------------------------------------------------------

A.2 U-Net architecture

----------------------------------------------------------------
Total params: 21,603,265
Trainable params: 21,603,265
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 3.00
Forward/backward pass size (MB): 3208.00
Params size (MB): 82.41
Estimated Total Size (MB): 3293.41
----------------------------------------------------------------
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Appendix B

Quantity analysis

Table B.1 reports the full split of the various dataset according to subsection 3.2.4 page 25 using
the three-way data splits.

Dataset Type Train set Val set Test set
ULG-LBTD-NEO04 Bronchus 242 65 72
ULG-LBTD-NEO13 Bronchus 262 73 74

CHALLENGE-GLAS-2015 Gland 984 250 304
CHU-ANAPATH-NST-DL Gland 4,011 1,018 1,239

ULG-LBTD-NEO04 Inflammation 94 24 30
CHU-ANAPATH-NST-DL Inflammation 226 59 69
CHU-ANAPATH-NST-DL Infiltration 1,813 471 549

CHALLENGE-CAMELYON16 Tumour 1,629 418 498

Table B.1: The split of annotations for each type of object in the various datasets.
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B.1 Bronchus experiments

Number of
annotations IoU Dice Hausdorff

1 0.450195419788361 0.620631468296051 40.4021713256836
25 0.783478963375092 0.880696892738342 40.1981197357178
49 0.684497678279877 0.807057416439056 42.4123653411865
73 0.611747014522553 0.761756527423859 42.6862163543701
97 0.830332601070404 0.913344609737396 24.0297668457031
121 0.813278567790985 0.901434767246246 35.4426918029785
145 0.863190460205078 0.9245640873909 27.9164554595947
169 0.869396018981933 0.932712769508362 23.6371686935425
193 0.847817671298981 0.925952005386353 24.1715850830078
217 0.767217004299164 0.872367668151856 37.2206298828125
241 0.827474808692932 0.915436720848084 39.6291393280029

Table B.2: Complete results of the experiment for the bronchus of the ULG-LBTD-NEO04
dataset.

Number of
annotations IoU Dice Hausdorff

1 0.365927964448929 0.548777383565903 15.7947153091431
27 0.706108379364014 0.819836068153381 18.9540369033813
53 0.732633340358734 0.836392688751221 14.6795478820801
79 0.777828633785248 0.873605859279632 14.274057674408
105 0.742463326454163 0.85052455663681 13.9565808296204
131 0.703098905086517 0.821806871891022 14.6795478820801
157 0.812654042243957 0.897537195682526 12.78844871521
183 0.763413882255554 0.864408791065216 14.8795478820801
209 0.791922736167908 0.879161930084229 14.4983114242554
235 0.793628573417664 0.885142374038696 13.5280077934265
261 0.837925553321838 0.913293182849884 11.8304124832153

Table B.3: Complete results of the experiment for the bronchus of the ULG-LBTD-NEO13 (3)
dataset.
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B.2 Gland experiments

Number of
annotations

Average time
for one epoch Total time

1 1m53s 9h24m43s
25 2m7s 10h34m17s
50 2m17s 11h27m20s
74 2m30s 12h28m47s
99 2m47s 13h54m07s
123 2m41s 13h25m28s
148 2m59s 14h53m40s
173 3m8s 15h40m42s
197 3m19s 16h33m46s
222 3m28s 17h21m58s
246 3m39s 18h15m00s
271 3m49s 19h5m36s
295 3m48s 19h1m56s
320 4m12s 20h57m59s
345 4m23s 21h55m10s
369 4m32s 22h41m28s
394 4m31s 22h34m51s
418 4m56s 1d00h38m08s
443 5m10s 1d01h51m39s
467 5m20s 1d02h40m30s
492 5m33s 1d03h45m46s

Number of
annotations

Average time
for one epoch Total time

517 5m36s 1d03h57m34s
541 5m59s 1d05h55m41s
566 6m10s 1d06h49m28s
590 6m23s 1d07h52m40s
615 6m22s 1d07h47m48s
639 6m44s 1d09h41m57s
664 6m54s 1d10h28m56s
689 7m6s 1d11h29m28s
713 7m3s 1d11h16m10s
738 7m33s 1d13h44m21s
762 7m43s 1d14h34m28s
787 7m57s 1d15h43m01s
811 8m14s 1d17h8m11s
836 8m22s 1d17h48m32s
861 8m32s 1d18h39m20s
885 8m50s 1d20h11m56s
910 9m50s 2d01h11m34s
934 9m18s 1d22h29m42s
959 9m33s 1d23h44m29s
984 9m53s 2d01h24m59s
7 7 7

Table B.4: Time taken for the training using the CHALLENGE-GLAS-2015 dataset.
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Number of
annotations IoU Dice Hausdorff

1 0.134963451639602 0.233061553616273 19.6667278691342
25 0.406097694447166 0.573415564863305 16.6370426479139
50 0.370065143233851 0.538010918780377 17.014522652877
74 0.565027440849103 0.717834971453014 16.8666074652421
99 0.554853953813252 0.710372786772879 16.6899562132986
123 0.488039319452486 0.652133919690785 17.1214390804893
148 0.586054778412769 0.732101007511741 20.1228167885228
173 0.558100692535702 0.710337924329858 18.6521890037938
197 0.58984060193363 0.736622383719996 17.910711790386
222 0.590322390982979 0.736908784038142 17.2870426177979
246 0.654088790479459 0.785220927313755 16.8128088398984
271 0.547820229279368 0.700693786144257 17.0467812387567
295 0.64595259961329 0.779058544259322 17.2716783724333
320 0.631325339016161 0.767760345810338 17.038527689482
345 0.667492105772621 0.795507735327671 16.1330974478471
369 0.641284362265938 0.77762842805762 16.714274908367
394 0.640963714373739 0.775890802082263 16.5789187581916
418 0.554752158491235 0.706994568046771 16.6800789080168
443 0.683422160776038 0.807007617072055 15.9847479368511
467 0.704057023713463 0.821703879456771 16.8653569472464
492 0.672421820853886 0.799557908585197 16.32184199283
517 0.679585403517673 0.803458922787717 18.1761774765818
541 0.691584474162052 0.814091340491646 16.2369672373722
566 0.712329403350228 0.827562200395684 17.0866102921335
590 0.722233916583814 0.835673272609711 16.0646611263877
615 0.723334958678798 0.836590738672959 16.0919168371903
639 0.720322359549372 0.83279150724411 16.7286749388042
664 0.698294758796692 0.820119766812575 16.3499927771719
689 0.772873225964998 0.87121414824536 15.3045013829281
713 0.726248349014081 0.83964613236879 15.2640788429662
738 0.76788518303319 0.869275378553491 15.3494365089818
762 0.780982111629687 0.875190869758004 15.914461562508
787 0.793277128746635 0.8850881174991 14.9911182805112
811 0.795336914689917 0.885686952816812 14.5177038594296
836 0.833561087909498 0.908752353567826 13.727401281658
861 0.808896045935781 0.893568224028537 15.3461092145819
885 0.829450817484605 0.906479939034111 14.3594557109632
910 0.817796340114192 0.899386766709779 14.7458968162537
934 0.7548671741234628 0.8571663185169822 16.07640437075966
959 0.8599421350579513 0.9248113443976954 13.91171932220459

Table B.5: Table containing the full results of the experiment for the gland in the CHALLENGE-
GLAS-2015 dataset.
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Number of
annotations IoU Dice Hausdorff

1 0.440822282280677 0.612641685666182 8.13557607088334
25 0.374878545029041 0.546147212768212 7.67179421889476
49 0.350311283308726 0.519696556986907 7.6366591942616
73 0.629942946709119 0.77041711180638 10.4907422249134
97 0.554593648665991 0.709998256885088 12.980841703904
121 0.663443371271476 0.792890244569534 8.97251705022959
145 0.676344820704216 0.804475092735046 9.69570806087592
170 0.67923902395444 0.80346140723962 9.43254778935359
194 0.685655509432157 0.806892549380278 9.41375037340018
218 0.687880571071918 0.81131196480531 9.24235386726184
242 0.643694247954931 0.777159046668273 11.6693780789009
266 0.728477478791506 0.83776872127484 8.4410623159164
290 0.600390459100405 0.743488134099887 11.4351963813488
315 0.661804567926969 0.792421012352675 10.4845440723957
339 0.684452715592507 0.807273336710074 8.53163249676044
363 0.737225973453277 0.843991226874865 7.97313126845238
387 0.718349345219441 0.830262609017201 9.92606143156687
411 0.737453180627945 0.84052644096888 8.94300832809546
435 0.712816102000383 0.822591763658401 8.29882540763953
459 0.760604207332318 0.858449993225244 8.04218769073486
484 0.739174623137865 0.842088230909445 8.47891779434987
508 0.755243786634543 0.851233331820904 7.86951974110726

Table B.6: Table containing the full results of the experiment for the gland in the CHU dataset.
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B.3 Inflammation experiments

Number of
annotations IoU Dice Hausdorff

1 0.406481656432152 0.581738195816676 45.17033598423
8 0.359065507849057 0.538078526655833 36.0087419748306
16 0.342213466763496 0.518751005331675 32.6253609339396
24 0.345124622186025 0.523719137907028 32.4382936477661
32 0.354984952012698 0.534026807546616 32.682200050354
39 0.329852708180745 0.504154853026072 32.3957365274429
47 0.331807555754979 0.507238660256068 32.6273934284846
55 0.350121786197027 0.528172461191813 31.4913201014201
63 0.569519169131915 0.729021904865901 23.6433340708415
70 0.57212119003137 0.731265749533971 25.4491042455037
78 0.556380029519399 0.72206524014473 24.8933689753215
86 0.541706463694572 0.69729749361674 25.2855469385783
94 0.554597232739131 0.703943834702174 24.9839519500732

Table B.7: Table containing the full results of the experiment for the inflammation in the NEO04
dataset.

Number of
annotations IoU Dice Hausdorff

1 0.159739800526396 0.275838824177998 81.2161566969277
21 0.324579921348587 0.476007913333782 80.1031936700793
41 0.314432064395236 0.46535787925772 80.057087884433
62 0.564761470949304 0.694634568108165 84.5184162526891
82 0.651104487910651 0.789183939064758 72.5076418061187
103 0.650830406209697 0.792921129776084 64.2910900392394
123 0.634355722778085 0.770441805754883 62.5941625401594
144 0.625734321449114 0.764316058677176 67.5329426198766
164 0.642891797466554 0.776350764476735 59.7526270410289
185 0.674104315431222 0.803024431933527 60.8727937228438
205 0.666050258753956 0.798581275171128 56.6290492182193
226 0.642875248539275 0.792744343263515 58.6542471249898

Table B.8: Table containing the full results of the experiment for the inflammation in the CHU
dataset.
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B.4 Infiltration experiments

Number of
annotations IoU Dice Hausdorff

1 0.362322944402695 0.526112189463207 7.05807527814593
24 0.30905404984951 0.46689201933997 7.16667282921927
48 0.302257842251233 0.45880777665547 7.11129572732108
71 0.776145819255284 0.872241253512246 5.78780201503209
95 0.752011362143925 0.85703661101205 6.30412729808262
118 0.768954638072423 0.866910658563886 5.85971341133118
142 0.524071366872106 0.678203595536096 9.36685434068952
165 0.780642770017896 0.874610338892255 5.8113518851144
189 0.776497612680708 0.872109622614724 5.7675998210907
212 0.776357611588069 0.871057690892901 5.84856879370553
236 0.780796182155609 0.87378260578428 5.6082049369812
259 0.756516907044819 0.856987416744232 5.8671888760158
283 0.7443261572292873 0.8518579483032227 6.839428983415876
306 0.778990832396916 0.8722250495638166 5.868098395211356
330 0.7554889406476702 0.8581765311104911 6.3658715384347095
353 0.770774291242872 0.866341279234205 5.846986906869071
377 0.7898010117667061 0.8810719421931675 5.833331680297851
401 0.7582096525600979 0.8607830813952855 6.089215346745083
424 0.798336689812796 0.886754519598825 5.98935544150216
448 0.795871753352029 0.884401263509478 5.63733976909093
471 0.700509382145745 0.820951776845114 7.38862213407244
495 0.712574339764459 0.828495693206787 7.20661446707589
518 0.79376368692943 0.884222342286791 6.13005519594465

Table B.9: Table containing the full results of the experiment for the infiltration in the CHU
dataset.
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B.5 Tumour experiments

Number of
annotations IoU Dice Hausdorff

1 0.227500966900299 0.365966380123169 46.3029984774128
25 0.238460536144914 0.378472058042403 46.2689224135491
50 0.247675652585683 0.389997242198836 46.2906359088036
75 0.405951484677292 0.552531872425349 45.6663653004554
99 0.534479062643743 0.682189364587107 45.7554179314644
124 0.348777617147613 0.465069098277919 44.8635968046804
149 0.410638933340388 0.546202463248084 45.2516380683068
173 0.475391396111058 0.616505647979436 44.6728329793099
198 0.293784201866196 0.393837534912652 45.4294792202211
223 0.3659738764287 0.47527743894006 44.8131164139317
247 0.388221800687813 0.518014233078687 44.4626470669623
272 0.469075928171796 0.609325970372846 43.6415013151784
297 0.463154654469221 0.606585264926957 44.1091715885747
321 0.539990028666873 0.680131687752662 43.293980796491
346 0.4926329244288706 0.6363293456454431 44.86554942207952
371 0.4535755629260694 0.5931625584921529 44.25749895072752
395 0.5651130121081106 0.7052940050921133 42.82950025220071
420 0.6187174632664649 0.7568738626376275 43.02151649036715
445 0.670323216626721 0.796966002352776 47.491218993740695
469 0.6370217523747875 0.7679017753370346 50.28076563919744
494 0.62679844950476 0.7646672574262465 42.6734324328361

Table B.10: Table containing the full results of the experiment for the infiltration in the
CHALLENGE-CAMELYON16 dataset.
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Appendix C

Quality analysis

C.1 Illustrations of the scribbles

(a) Random scribbles

(b) Predicted mask

(c) Ground truth mask

Figure C.1: Scribbles with 5 intermediate steps on bronchi from the ULG-LBTD-NEO04 dataset.
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(a) Random scribbles

(b) Predicted mask

(c) Ground truth mask

Figure C.2: Scribbles with 10 intermediate steps on glands from the CHALLENGE-GLAS2015
dataset.
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(a) Random scribbles

(b) Predicted mask

Figure C.3: Scribbles with 5 intermediate steps on infiltrations from the CHU-ANAPATH-NST-
DL dataset.

(a) Random scribbles

(b) Predicted mask

Figure C.4: Scribbles with 15 intermediate steps on tumours from the CHALLENGE-
CAMELYON16 dataset.
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(a) Random scribbles

(b) Predicted mask

(c) Ground truth mask

Figure C.5: Scribbles with 20 intermediate steps on tumours from the CHALLENGE-
CAMELYON16 dataset.
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C.2 Performance

Dataset Type Step IoU Hausdorff
ULG-LBTD-NEO04 Bronchus 5 0.7924444227011551 88.79120825377989
ULG-LBTD-NEO04 Bronchus 10 0.7997899039390501 93.68647591496857
ULG-LBTD-NEO04 Bronchus 15 0.8258550722554256 89.00003325323544
ULG-LBTD-NEO04 Bronchus 20 0.8229476512877594 91.39493540195232
ULG-LBTD-NEO13 Bronchus 5 0.7343734914923573 57.80455151549331
ULG-LBTD-NEO13 Bronchus 10 0.7411434906157287 56.41544609241657
ULG-LBTD-NEO13 Bronchus 15 0.7429414529789675 55.86773766698064
ULG-LBTD-NEO13 Bronchus 20 0.7250272998133221 58.96873589249345

CHALLENGE-GLAS-2015 Gland 5 0.7773686563432739 115.93626215165122
CHALLENGE-GLAS-2015 Gland 10 0.790741185935443 116.93976867721791
CHALLENGE-GLAS-2015 Gland 15 0.793711974236526 115.94567150818675
CHALLENGE-GLAS-2015 Gland 20 0.7977959711043561 117.20166609196063
CHU-ANAPATH-NST-DL Gland 5 0.6537191954416534 62.32481808948517
CHU-ANAPATH-NST-DL Gland 10 0.67480719775334 59.66361352570851
CHU-ANAPATH-NST-DL Gland 15 0.6830274444321791 58.06248302300771
CHU-ANAPATH-NST-DL Gland 20 0.6906074182093144 57.30859044265747
CHU-ANAPATH-NST-DL Infiltration 5 0.632712764793747 62.36056819069611
CHU-ANAPATH-NST-DL Infiltration 10 0.6594355287387403 62.07432293862796
CHU-ANAPATH-NST-DL Infiltration 15 0.6733321669774178 60.85761963491475
CHU-ANAPATH-NST-DL Infiltration 20 0.682606091903984 60.50106979918407
CHU-ANAPATH-NST-DL Inflammation 5 0.5118517303380413 72.53272956811287
CHU-ANAPATH-NST-DL Inflammation 10 0.5384854531086586 70.90056349805012
CHU-ANAPATH-NST-DL Inflammation 15 0.560386522092681 70.77812474937255
CHU-ANAPATH-NST-DL Inflammation 20 0.5679312490178767 69.76636138860731

ULG-LBTD-NEO04 Inflammation 5 0.5453791595224676 66.45165642924692
ULG-LBTD-NEO04 Inflammation 10 0.5599174225467375 66.36781884335923
ULG-LBTD-NEO04 Inflammation 15 0.6000265573290573 62.80394690064178
ULG-LBTD-NEO04 Inflammation 20 0.6258719739900238 61.45073866570133

CHALLENGE-CAMELYON16 Tumour 5 0.42993677595404856 123.77677389122974
CHALLENGE-CAMELYON16 Tumour 10 0.467661785863666 123.1132267075355
CHALLENGE-CAMELYON16 Tumour 15 0.48188927785277447 121.48883154393855
CHALLENGE-CAMELYON16 Tumour 20 0.47644606034666237 121.00725452185806

Table C.1: Complete results of the quality analysis with the random scribble generation algo-
rithm.
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