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Abstract

Digitization has established itself as an essential process in our daily modern life, as more
and more business applications rely on this information processing tool in order to im-
prove their customers’ experience, for instance with online shopping. Aside of commercial
uses, digitization is also applied to the domain of cultural heritage, for example to provide
high-resolution representations of various kinds of artworks. In this thesis, we apply deep
learning techniques to the art world with the end goal of pushing forward the digitization
of artistic collections, by developing automatic techniques for their annotation process. In
particular, we assess the performance of standard classification architectures when coping
with a domain transfer from natural images to artworks. We then evaluate the impact
of different learning settings and provide insightful observations about model predictions.
Then, we move to the object detection problem, which represents the end task of this
work. We investigate state-of-the-art object detection models and try to enhance their
performance using several transfer learning strategies. Additionally, we present various er-
ror patterns encountered with the models and conclude with propositions of other learning
approaches and perspectives to further tackle and improve on this problem.
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Chapter 1

Introduction

Digitization, defined as

The process of changing data into a digital form that can be easily read and
processed by a computer [1]

has grown in coverage of our everyday applications since its origination in the 1950s [2].
The development of computers yielded a series of innovative technologies that characterize
the evolution of this new process. From the very first commercialized computer equipped
with magnetic disk storage, to the latest growth of online transactions (facilitated by
the introduction of the Internet), digitization paved its way to this day such that it now
appears inconceivable to even imagine a life without these technologies.

Naturally, digitization does not only impact the world of online transactions and online
interactions between companies and their customers. Digitization can also be extended
to culture and cultural heritage [3], where it allows the creation of a new life form for this
ancient but important field which provides an everlasting memory of our history. With the
advent of virtual museum tours, people now have the possibility to contemplate artworks
while staying home, a great opportunity in recent pandemic times which reshaped our
ways of living. For example, the European Union has created several funding instruments
that support the digitization and analysis of cultural heritage, under which Europeana.
Europeana [4] is an initiative of the European Union whose aim is to share cultural heritage
from thousands of European cultural entities through its digital transformation.

In an originally separated perspective, the domain of computer vision emerged [5] in the
1960s through research about visual perception, whose goal was to study how neurons re-
act in response to various visual stimuli. From this point, the hierarchical neural structure
behind computer vision was established, and researchers concentrated on reproducing hu-
man neurological structures, leading to the very first implementations of neural networks
[6], named perceptrons.

Despite the extreme optimism about the field of Artificial Intelligence (AI) (which led
to the AI winter starting in the 1970s'), it still managed to survive throughout time
with the implementation of convolutional networks [7]. In addition, the introduction of
the Internet made access to plenty of data much easier. Twenty years later followed the

TAT winter resulted from the large gap between the computing resources at the time and the com-
plexity of the expectations and promises coming from researchers.



advent of deep learning algorithms, among which deep convolutional neural networks,
which modified once and for all the landscape of computer vision.

To this day, even though a variety of methods exists (linear and non-linear filters, region
growing, etc.) for a variety of tasks (classification, detection, segmentation), computer
vision is prominently characterized by deep learning techniques [8] which take advantage
of today’s thirst for Big Data.

Although initially separately defined, computer vision can be readily applied to support
and improve current cultural heritage digitization techniques. This union of domains can
be associated to Digital Humanities [9], a field of research located at the intersection of
the humanities and digital (computing) tools.

The present work is part of the INSIGHT project [10]. INSIGHT is a research project
whose end goal is to make use of Al (specifically Natural Language Processing and Com-
puter Vision) to supplement cultural digitization with descriptive metadata, which will
allow the easy integration of enriched digitized collections into Europeana.

This work is anchored in the computer vision part of the project, whose goal is to apply
deep learning techniques in order to automatically annotate large collections of artworks.
For this intent, digital collections of the Royal Museums of Fine Arts of Belgium and
the Royal Museums of Art and History are made available. The essence of this work
is thus to study object detection techniques from machine learning (in particular, deep
learning) applied to the artistic domain and to try and compare the results obtained to
those established for natural images, as long as the comparison makes sense.

In this thesis, we investigate the application of standard deep learning architectures de-
signed for classification and object detection to the artistic domain. In particular, we will
focus on depictions of animals represented in various styles, as will be illustrated in Chap-
ter 3. More specifically, object detection will be studied in two subsequent stages: firstly,
classification of animal crops will be thoroughly analyzed before diving into the complete
object detection pipeline, considering full-size paintings and no longer crops.

In this work, the following research questions will be considered:

- How do state-of-the-art classification architectures perform when facing a domain
transfer from natural images to artworks?

- How, and to what extent, can we improve the classification performance of these
architectures to account for this domain shift?

- Can we gain any insights about the predictions produced by these classifiers, i.e.
can we characterize some important features considered by the models?

- How do standard object detection approaches compete while coping with this do-
main shift?

- How can we derive different training settings to deal with such domain transfer?

In order to address these research questions, we will begin both stages by a review of
the performance of state-of-the-art architectures, pre-trained on large datasets of photo-
realistic images, when being applied to crops or paintings respectively. The models that
will be considered are presented in Chapter 2. Then, different training settings will be
considered to determine how each relates to final performance. Details for these settings



are provided in Chapter 4 and 5 respectively and results for each architecture will be
compared to see whether some settings are more beneficial when applied to specific models.
In particular, a transfer learning setting will be compared with other approaches, along
with variations of usual transfer learning.

The structure of this report is as follows. Chapter 2 will review related research about
classification and object detection techniques in general and applied to artworks, and no-
tably the research conducted in [11] (as part of the INSIGHT project) that deals with
musical instruments detection in paintings. It will also provide a broad definition of trans-
fer learning and how it can be accomplished. Chapter 3 will define in further details the
scope of this thesis along with a description of the datasets used and the data retrieving
process, to finish with the division in subsequent tasks. Chapter 4 will cover the clas-
sification task together with the results obtained while Chapter 5 covers the detection
task.



Chapter 2

Background and related work

This chapter will review some theoretical background related to convolutional neural net-
works, which represent the state-of-the-art models for all machine learning tasks tackled
during this thesis. Subsequently, it will cover state-of-the-art architectures considered in
this thesis. Finally, it will present analogous research conducted in the field of digital
humanities.

It will be split into two main sections, following the line of work presented in Chapter 1.
Section 2.1 will review theoretical background and related work carried out in the scope of
classification and object detection tasks. It will also present the different state-of-the-art
classifiers and detectors that will be studied throughout these tasks, highlighting their
differences and respective improvements. Finally, a definition of deep transfer learning
will be provided as well as techniques showing how transfer learning can be applied.
Section 2.2 will cover related work conducted in the field of digital humanities, concerning
classification and detection tasks accomplished in the domain of artworks.

2.1 Deep learning for Computer Vision

2.1.1 Classification

In machine learning, and in particular in computer vision, a classification task is a task
whose aim consists in training a model in order to correctly associate input images to their
corresponding class, picked among a finite set of potential classes. An example batch of
animal samples and their corresponding class is displayed on Figure 2.1.

Related work

There are numerous image classification techniques: k-nearest neighbor classifiers, support
vector machines [12], etc. However deep convolutional neural networks (DCNN) have
become a reference for this task, as they enable learning increasingly complex features and
textures by processing the input image across their convolutional layers and by leveraging
local receptive fields [13] from previous layers. This allows to extract spatial information
more efficiently and accurately than what would be achieved if only fully-connected neural
networks were used. For readers unfamiliar with convolutional neural networks, definitions
of their main concepts are provided in Appendix A.
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Figure 2.1: Random batch of animal crops with their classes.
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Following this line of work, several architectures were elaborated, trained and tested
on the ImageNet dataset [14], which contains around one million photorealistic pictures
spread over a thousand classes and which represents the reference testbed for classification
systems. The very first DCNN taking advantage of high-performance computing resources
such as GPUs was AlexNet [15], which outperformed its previous state-of-the art by 10%
on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2012, thereby
paving the way of DCNNs into the image classification field. Other architectures relied on
similar principles but developed additional modifications to improve upon previous work:
for instance, VGG networks [16] studied the influence of the network’s depth, where adding
more and more convolutional layers helped to increase the downstream accuracy, whereas
Inception networks [17] are rather characterized by carefully crafted structures. Residual
networks (ResNets) [18] built upon deeper networks whilst adding residual connections
from layer inputs to layer outputs, and ResNeXt models [19] combine principles from both
ResNet and Inception network architectures.

In total, three classifiers will be studied throughout the classification task, to eventu-
ally appraise the impact of transfer learning and fine-tuning. These classifiers are the
following:

e ResNet-101
e ResNeXt-101 32 x 8d
e VGG-16

They were selected because, among all existing classifiers, they represent three particular
classes of architectures, as will be underlined in the following theoretical reviews, and
each class achieves state-of-the-art results on natural images. Pre-trained versions of
these three classifiers on ImageNet are also directly available in PyTorch, which will allow
us to explore transfer learning approaches. Note that more classifiers could of course be



added, but it would only increase the comparison load, while the main purpose is to study
potential gains from transfer learning with a domain shift.

Each of the three architectures will now be reviewed to highlight the main contributions
and differences that each of them brings.

VGG-16

VGG frameworks [16] build upon the initial architecture of AlexNet [15], with the main
purpose of improving accuracy. To that end, authors decided to study network depth as
a hyperparameter, fixing other parameters of the architecture. Only small convolutional
filters will be considered, i.e. (3 x 3) and (1 x 1) filters. This allows to increase network
depth safely without risking to end up with empty input tensors.

These frameworks are based on the following generic convolutional neural network con-
figuration: input images will be 224 x 224 RGB crops, which will be processed through
a stack of convolutional layers with small kernel sizes, as was stated in the above para-
graph, and a spatial padding is added to ensure that spatial resolution is maintained after
convolutions. Spatial downsampling will only be implemented by five max-pooling layers
with a 2 x 2 window and stride 2. Therefore, the output of these layers will be a tensor
of dimensions g X %

After this stack of convolutional layers come three fully-connected layers, the last one
having 1000 output neurons in the case of the ImageNet ILSVRC classification task.
Class probabilities are eventually computed using a final softmax layer. All layers rely on
the ReLU activation function.

convl

convs fe7  fe8

(O
14 % 14 % 512 1x1x4096 11 x 1000

28 x 28 x 512

56 x 56 x 256

T xTx512

@ convolution4+ReLU

max pooling

—[] fully connected+ReLU

224 % 224 x 64

Figure 2.2: Architecture of a VGG-16 classifier. (Source: [20])

Differences with previous configurations Contrary to previous classifier implemen-
tations like in [15] and [21] where larger convolutional filters (11 x 11 and 7 x 7) are used



in the first layers, VGG frameworks rely on 3 x 3 filters, which allow to increase the
effective receptive field. Indeed, a stack of three 3 x 3 convolutional layers has an effective
receptive field of dimensions 7 x 7 but with only 3 x 9 = 27 parameters (omitting bias
and assuming single-channel inputs and outputs) compared to 49 parameters that would
need to be optimized with a single 7 x 7 convolutional filter.

Another advantage of this approach is that it integrates more non-linear rectification
layers than previous approaches, which helps the decision surface region to be more dis-
criminative.

In [16], authors show that deeper CNNs eventually lead to lower classification error on the
ILSVRC dataset, whilst underlining that such models generalize well to other tasks and
datasets, where they are pre-trained on ILSVRC and fine-tuned on task-specific datasets
to avoid issues of overfitting. The architecture of VGG-16, used in this work, is displayed
in Figure 2.2.

ResNet-101

In [18], authors build upon deeper neural networks introduced by VGG frameworks. How-
ever, training deeper networks is harder because of two issues:

- Vanishing/Exploding gradients
- Network degradation

The first issue has been coped with thanks to normalized initialization of weights [22, 23]
along with the introduction of batch normalization [24].

L Sb-layer

20-layer

M
T 56-layer
Y

training error (%)
test error (%)

20-layer

L
[3

3 5 5 1 H E
iter. (led) iter. (le4)

Figure 2.3: An illustration of degradation. (Source: [18])

Degradation is defined as the counter-intuitive phenomenon where training and test errors
increase for deeper plain networks, while it could be expected that going deeper and deeper
would only enhance the learning capacity, thereby reducing those errors. An illustration
of degradation is shown in Figure 2.3.

Residual networks (ResNets) are thus defined to deal with this degradation issue, where
layers are reframed to learn residual functions with respect to layer inputs, hence a residual
mapping will be learnt by the network layers. The residual mapping to be learnt is

F(x)+x

as can be seen from Figure 2.4. This reformulation is simply obtained using shortcut
connections. The advantage of identity shortcut connections is that they do no add any
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Figure 2.4: The residual learning block used in ResNets. (Source: [18])

parameter nor computational complexity. Multiple convolutional layers can be repre-
sented through the function F(x). Thus, a plain CNN is turned into its residual coun-
terpart by simply introducing shortcut connections between certain module inputs and
outputs.

Authors show that relying on such residual learning blocks allows to increase depth whilst
alleviating the degradation issue, thanks to experiments conducted on ImageNet valida-
tion data where they compared values obtained for top-1 error with plain and residual net-
works. Therefore, deeper networks now perform better and converge faster. In addition,
such frameworks can be considerably deeper than previous VGG models but with a lower
complexity. ResNets also show fine generalization performance on tasks like object detec-
tion on PASCAL VOC or COCO benchmarks, reaching a 27.2% validation mAP @[.5,.95]
when used as backbone of a Faster R-CNN model (introduced in a later section) against
21.2% for the same detection model but relying on a VGG-16 backbone.
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Figure 2.5: Architectures for different ResNet models. Residual blocks are shown in
brackets. (Source: [18])

The specific architecture selected in this work is ResNet-101, which indicates that the
residual network has 101 convolutional layers, and is detailed in Figure 2.5. Building
blocks consist of three layers made of two 1 x 1 and a single 3 x 3 convolutions, where the
1 x 1 convolutions are responsible for reducing and restoring the input tensor dimensions.

10



Thus, the middle 3 x 3 convolutional layer is left with input and output tensors of smaller
dimensions, which names this building block a bottleneck residual block. Such a block
allows to reduce training time. Since the framework was trained on ILSVRC, the final
layers are a 1000-way linear layer followed by a softmax layer.

ResNeXt-101 32 x 8d

As their name indicates, ResNeXt models [19] are built on top of aforementioned ResNet
frameworks, since the straightforward rule of stacking blocks of the same shape allows
to reduce the choices of hyperparameters but also to decrease the chances of overfitting
to particular datasets. However, instead of simply stacking residual blocks composed of
three convolutional layers, as can be seen from Figure 2.5, ResNeXt architectures repeat
a residual block that aggregates a set of transformations. A comparison of both building
blocks is provided in Figure 2.6. Transformations in this new block share the same
topology, such that the cardinality, i.e. the size of the set of transformations, becomes a
hyperparameter to investigate.

} 256-d in 256-din
— *____-———---'./L‘—-————-_:_;—-—---x__

256, 1x1, 64 \\ 256, 1x1,4 256,1x1,4 |, 15, | 256,1x1,4 \
r'3 \ + + paths +* \
64, 3x3, 64 ‘ 4,3x3,4 4,3x3,4 | seer | 4,3x3,4 ‘
2 | + ¥ < |
| !
64, 1x1, 256 / 4,1x1, 256 4,1x1,256 4,1x1,256 /
¥+ 256-d out - "
(4 —"
' 256-d out

Figure 2.6: Comparison of building blocks used in ResNet (left) and in ResNeXt (right).
(Source: [19])

ResNeXt frameworks combine principles defined in ResNets with principles defined in
Inception [17] architectures. The latter rely on a “split-transform-merge” scheme where
the input is first split into smaller pieces, then transformed using convolutional filters and
eventually merged by concatenation. However, such a strategy requires customization for
each transformation and can be too difficult to adjust if a dataset or task shift is to be
considered.

For these reasons, ResNeXt frameworks consider transformations of the same topology
within a building block, that will be aggregated by summation. This allows for a design
that is general enough compared to Inception models, but it also leads to much simpler
designs. Authors also highlight that a simple neuron in a neural network already per-
forms a split-transform-merge operation, as the input vector is divided into individual
components which are then scaled by corresponding weights and eventually aggregated
by summation, which corresponds to a simple dot product operation.

There are two equivalent formulations to the building block defined on the right of Figure
2.6: these are displayed in Figure 2.7. Authors provide intuitive proofs of equivalence in
[19], thus those will not be covered here and left to the reader’s interest. Authors decide
to rely on the third formulation for easier implementation.
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Figure 2.7: Illustration of equivalent building blocks for ResNeXt architectures. (Source:
[19])

Aggregated transformations can be defined as

C
Fox) = 3 Ti(x)

with 7;(x) an arbitrary function, e.g. the neuron dot product defined above, and with C'
referring to the aforementioned cardinality. To respect the split-transform principle, 7;
should project the input into an embedding and transform the latter. Furthermore, as was
mentioned, all transformations share the same topology and correspond to the bottleneck
block defined in [18], where the first 1 x 1 convolutional layer will be responsible for the
split operation.

Since ResNeXt models learn residual mappings, the output of each module is defined
as

c
y =X+ Zﬁ(x)
i=1

ResNeXt-101 32 x 8d consists of the same architecture as ResNet-101, in terms of number
of blocks per stage, which can be observed in Figure 2.5, i.e. conv2 contains 3 blocks,
conv3 contains 4 blocks, etc., however, the structure of these blocks is different since each
outputs the aggregation of C' transformations, in this case 32 identical transformations
are performed. The width (number of input and output channels) of the bottleneck layer
is 8.

In order to derive a honest assessment of the influence of cardinality on downstream accu-
racy, a control of complexity needs to be performed to ensure that ResNeXt frameworks
have roughly the same amount of parameters (and FLOPs) as C' increases. From their
experiments, authors showed that increasing cardinality whilst decreasing width allowed
to reduce top-1 validation error obtained on the ILSVRC much more than when keeping
a fixed cardinality and increasing depth or width. Similarly to previous ResNet models,
ResNeXts generalize well on other tasks, such as object detection (using a Faster R-CNN
model) and perform even better than their ResNet counterparts. Thus, ResNeXt frame-
works could be expected to show better performance on paintings as some features are
shared between both domains, e.g. animal aspects, environments, etc.

Classification metrics

To assess the performance of a classifier, we usually compute its error (misclassification)
rate, or equivalently its top-1 accuracy. The latter can be computed by the ratio of correct

12



predictions over the total amount of predictions, i.e. the amount of input crops.

We can also compute precision and recall metrics to characterize the classifier even further.
As a reminder, precision and recall are defined as:

TP
Precision(c) =p(y =c| j=c) = TP EP
TP
R 11 = 0 = fry -
ccall(c) =p(g =cly=c) = 757

for a given class ¢, where y denotes the ground truth and ¢ the predicted class. In other
words, precision gives us a measure of how confident one can be about the predictions of
the model, while recall gives us a measure of the detection abilities of the model, for the
considered class.

There exists of course a trade-off between precision and recall. Indeed, to increase recall,
one could simply classify each input crop as a particular class, which would guarantee to
have no false negatives for this class. However, this would naturally increase the number
of false positives for that class, thereby reducing its precision.

In addition to precision and recall metrics, we can also compute the F-1 score. This score
is defined as:

P(c) - R(c)

P(c) + R(e)
and summarizes the trade-off between precision and recall. A score of 1 indicates that
the model has a perfect precision and recall for the considered class.

F-1(c) =

Grad-CAMs

Grad-CAMs [25] represent a visualization tool that helps to understand predictions made
by CNNs. In this approach, localization maps can be produced for a particular target
class ¢, which will highlight important regions for the model to predict that class.

For that purpose, Grad-CAM (which stands for Gradient-weighted Class Activation Map-
ping) leverages the gradient information of the target concept that flows into the last con-
volutional layer of the CNN. Indeed, deeper layers should embed deeper representations
while keeping spatial information, which allows to derive semantic maps for each output
class. After having backpropagated the gradients of the corresponding output score with
respect to the the feature map activations A*, it computes importance weights ag. for
each feature map k. Finally, a localization map of dimensions equal to those of the final
convolutional maps is produced as follows:

Lgrad-came = ReLU (Z aiA’“)
K

The ReLU activation is useful to capture only features that are relevant to the target
class c.

However, Grad-CAM cannot produce highly detailed gradient maps, as it produces coarse
class-discriminative heatmaps. For that purpose, authors combined Guided Backpropaga-
tion (which helps to visualize gradients at the pixel level) with Grad-CAM visualizations.
Indeed, guided backpropagation allows to represent (positive) gradient information at
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Figure 2.8: A sample of expected detection.

the pixel level, thus with respect to the input image, but it cannot discriminate classes.
Therefore, combining both approaches yields as final representation a class-discriminative
visualization, which is also of high-resolution.

2.1.2 Object detection

Object detection is usually defined as a combination of two different machine learning
tasks:

- Object localization
- Object classification

Object localization consists in drawing bounding boxes corresponding to certain objects
in an input image while object classification was defined above. Detection naturally
combines both tasks, as object detection algorithms will output bounding boxes along
with class labels and confidence scores for each class. An example of the output ideally
expected from a detector can be observed in Figure 2.8, which represents a drawing of
two sheep.

Related work

Similarly to what has been observed for the classification frameworks, detection algorithms
have moved towards an intensive use of convolutional neural networks as it allows for an
easy exploitation of spatially structured data.

While the ILSVRC also contains an object detection challenge, other detection evaluation
benchmarks exist, such as the PASCAL VOC challenge [26] or the MS COCO challenge
[27], both datasets containing respectively 20 and 80 classes of common objects annotated
with bounding boxes.

Several models were trained on these task-specific datasets but some of them also lever-
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aged other auxiliary datasets, like the ImageNet classification dataset [14]. For instance,
R-CNN networks [28] rely on region-based object detection, using selective search to
generate region proposals, and its CNN component is first pre-trained on the ImageNet
classification dataset and then fine-tuned for detection either on PASCAL VOC or the
detection dataset of ILSVRC. R-CNN received improvements which lead to Fast R-CNN
[29] and Faster R-CNN [30] to cope mainly with efficiency issues, the latter relying on a
separate region proposal network, allowing to reduce vastly the computation needed to
generate regions of interest.

Other architectures like YOLO [31] drop region proposal components to rely only on a
single network that will produce simultaneously bounding boxes and class probabilities
for these boxes. Contrary to region-based detection methods, YOLO has the advantage of
seeing the entire image, which allows the network to learn contextual information about
objects, thereby reducing the number of false positives.

A choice also had to be made concerning the detection frameworks to evaluate for this
task. Eventually, two object detectors will be covered throughout this task, and the
impact of transfer learning and fine-tuning will also be assessed as much as it is feasible.
These detection architectures are the following:

e Faster R-CNN
« YOLO

Similarly to the classification task, Faster R-CNN [30] and YOLO [31] were selected be-
cause they constitute state-of-the-art architectures to which new object detection models
are often compared. Faster R-CNN is directly available in a PyTorch environment' while
YOLO is not directly accessible from the same PyTorch environment but more details
about the version used in the present work will be provided in a later section. Both archi-
tectures are interesting to compare because they belong to a particular type of approach
for object detection.

As was done for the preceding classification task, a literature review for both models
will be carried out to point out their main conceptual differences but also to provide a
measure of their performance on the usual detection testbeds, i.e. benchmarks conducted
on PASCAL VOC or COCO. Since they also rely on CNNs to solve their task, all building
block definitions provided in Appendix A apply.

Faster R-CNN builds upon Fast R-CNN [29], which itself builds upon R-CNN [28]. It is
thus reasonable to introduce the main features of both preceding architectures.

R-CNN

R-CNN uses a region proposal approach to solve downstream detection tasks. It relies on
a selective search technique [32] that will output a set of 2000 region proposals out of the
original input image. This technique relies on an exhaustive search across the entire image
combined with segmentation and similarity measures in order to yield various regions of
different scales, in a bottom-up approach, i.e. from the pixel level to higher scales. Each
region proposed by this technique is then warped and resized to deal with the fixed-size
issue proper to CNNs combined with fully-connected layers.

Thttps://pytorch.org/vision/stable/models.html
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Figure 2.9: R-CNN architectural overview. (Source: [28])

Each resized region is fed to the CNN part of the system, which is responsible for extracting
the main features and for translating them into a 4 096-dimensional feature vector. This
final feature vector is eventually fed as input to class-specific SVM classifiers, which will
score each region as belonging to the class the SVM was designed for. A bounding
box regressor (specific to each class) is then applied after scoring in order to refine the
region proposals into better-fitting localization boxes. The system overview of R-CNN is
displayed in Figure 2.9.

The main issue of R-CNN is that it is computationally costly given that, for each proposal
region, there corresponds a forward pass in the CNN; there are thus 2000 forward passes
for each input image. Furthermore, selective search works as an independent model, hence
there is no learning potential to leverage in that component: if it produces bad initial
candidates, it is likely that R-CNN will output bad refined boxes too. Finally, the R-
CNN system flow is composed of three modules in total: the region proposal module,
implemented by selective search, the feature extractor, implemented by a CNN, and the
final classification /regression module. This combination of modules increases computation
times.

Fast R-CNN

To alleviate the issue of processing each proposal region into a feature extraction module,
Fast R-CNN extracts features for the whole input image once, using a CNN, and will rely
on these feature maps for further steps.

e bbox
softmax regressor

Rol FC FC
pooling

layer FCs

Rol feature
vector

For each Rol

Figure 2.10: Fast R-CNN architectural overview. (Source: [29])

Fast R-CNN still uses a selective search technique to produce region proposals for the
original input image. It will select the appropriate portion of the output feature map of
the CNN module that corresponds to the particular region proposal. This portion is called
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a region of interest (Rol). Note that, to obtain the Rol, region proposals naturally have
to be scaled down by a certain factor, which represents the total spatial downsampling
up to the present output feature map.

Since region proposals have different dimensions, Fast R-CNN cannot use fully-connected
layers as simply as in R-CNN due to the issue of input dimensions. Thus, it will rely on
a Rol pooling layer, which constitutes a particular case of an SPP block that uses only a
single layer for max-pooling, characterized by a certain number of bins. This Rol pooling
layer will produce fixed-size output vectors for each region, which will eventually be fed
to fully-connected layers for classification (using a softmax layer) and for bounding box
regression. The architecture of Fast R-CNN is illustrated in Figure 2.10.

Fast R-CNN allows to reduce computation times for both training and inference, since
only a single CNN forward pass is required for a given input image. Furthermore, it
improves accuracy as there is no loss of resolution since it can start from the original
image. Nevertheless, region proposals generated by selective search are still not trainable
and represent an efficiency bottleneck in the total computation as it takes around 2 seconds
to produce region proposals in a CPU implementation.

Faster R-CNN

Faster R-CNN introduces a region proposal network (RPN), that will replace the selective
search technique used in preceding models. This RPN consists of a fully convolutional
neural network that will simultaneously predict object boundaries (coordinates) and ob-
ject scores, at each position in the input feature map.

classifier

proposals / ' ;

Region Proposal Network g

feature maps

conv layers /
A

= AR ‘_./_Z___:_'_'P

Figure 2.11: Faster R-CNN architectural overview. (Source: [30])

The goal of the RPN is to output a set of rectangular region proposals, each of which
having a score of its probability of being an object against being part of the background.
To generate such proposals, a small network is slid over the last convolutional feature map
of the shared CNN. This small network has a sliding window of size n x n, which means
that it will take as input an n x n window from the output feature map. For each sliding
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location, the RPN predicts a maximum of k region proposals which will be compared
against k reference boxes, called anchors.

An anchor represents a box that is centered at the location of the sliding window and that
is characterized by a particular size and aspect ratio. An anchor can either be positive,
negative or insignificant for training. It will be considered as positive roughly if it has
an IoU greater than 0.7 with any existing ground truth box, and will in that case be
associated with that box. If its IoU with any ground truth box is lower than 0.3, then
the anchor is a negative anchor as it represents the background. Anchors with an IoU
that does not meet the above conditions will not influence training of the RPN. With
these anchors defined, the RPN is trained in order to provide accurate region proposals,
i.e. regions that encapsulate as precisely as possible ground truth objects while predicting
high object scores (close to 1) if an object is indeed included in the proposal box.

On top of this RPN, a usual Fast R-CNN detector can be used and the process is the
same as the one defined above. Thus, it will eventually output for each region proposal
class probabilities and refined bounding boxes. Both modules can be combined in a
unified network, as shown in Figure 2.11, and they can be trained jointly to optimize
both detection and region proposal performance. Faster R-CNN thus alleviates the non-
learnable issue that was inherent to the selective search technique and is able to produce
region proposals efficiently.

YOLO

Unlike Faster R-CNN, YOLO [31] represents another class of detection frameworks, in par-
ticular regression-based detection frameworks, whereas Faster R-CNN belongs to region-
proposal-based detection frameworks. This means that the general approach is completely
different, as YOLO tries to combine all detection steps in one, i.e. it will not generate
region proposals and then classify these regions but rather start from an input image and
directly produce bounding box coordinates and class probabilities.

Class probability map

Figure 2.12: YOLO system overview. (Source: [31])

YOLO divides the input image into an S x S grid, as can be observed from Figure 2.12,
where each grid cell is responsible for predicting the object whose center falls into it.
Each cell will predict B bounding boxes along with their confidence score (one per box).
A confidence score for a particular bounding box represents how confident the model is
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that this box indeed contains an object but it also represents the accuracy of the box. In
other words, confidence associated to a bounding box is defined as P(Object) * IoU;rr‘étdh;
thus confidence should be zero if no object lives in that cell and otherwise it should be
equal to the IoU between the predicted box and the ground truth box. Bounding box
predictions are composed of 5 elements: the box center coordinates along with its width
and height, plus a value representing the confidence associated with that box by the

considered cell.

Each grid cell also predicts C' conditional class probabilities, P(C; | Object), i.e. the
probability that the cell contains an object of class ¢ given that the cell contains an
object. At inference time, box confidence predictions are multiplied with conditional
class probabilities in order to produce class-specific scores for each box. Such a score
indicates the probability that the considered box contains the specific class along with
the quality of the box.

YOLO is composed of convolutional layers combined with fully-connected layers, with no
Rol pooling (since no region proposals are provided), hence a fixed-size image is required
as input. The final fully-connected layers will yield bounding box coordinates along with
class probabilities. YOLO has the advantage of reasoning globally about the input image
when it has to make predictions, which is a main difference with region-based approaches.
It is thus able to incorporate contextual information about the different classes during
training.

The architecture used in this work is YOLOv5 [33], which brings slight improvements
on YOLOv3 [34]. The latter namely adds merging of upsampled feature maps with fea-
ture maps obtained in previous layers in order to improve the quality of the resulting
feature maps, which will contain more meaningful semantic information combined with
finer-scale information. This merging process is used to predict bounding boxes at mul-
tiple scales. The overall idea of YOLO still remains the same, although each box will
predict the classes it may contain. It also adds a new kind of data augmentation that
should address the issue of detecting small objects by introducing mosaic augmentation,
an augmentation technique that combines four images into four tiles scaled with a ran-
dom ratio. In YOLOvV5, anchor boxes are learnt automatically based on the provided
training data, which is another difference with Faster R-CNN where anchor boxes have
predefined scales and aspect ratios. This mechanism should help if the dataset contains
objects with bounding boxes that are of very different aspects. Note that both Faster R-
CNN and YOLO architectures rely on the use of a backbone as feature extracting module.
Therefore, it will be possible to use previous classifiers as feature extractors.

Object detection metrics

An important quantity to evaluate object detection models is the Intersection over Union
(IoU) threshold, which measures the quality of a predicted bounding box against the
ground truth bounding box. In fact, it computes the ratio between the intersection of
both bounding boxes over their union, and it therefore ranges in [0,1]. An ideal object
detector should thus only predict bounding boxes such that they have an IoU equal to 1
with the corresponding ground truth.

This threshold is then used to determine whether a predicted bounding box relates to
any ground truth object in the input image. In general, a standard minimum value of
0.5 is considered to assign a bounding box to an object, but if the predicted box achieves
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a higher IoU with another ground truth box, then it will rather be associated with the
corresponding object.

For a given pair of ground truth and predicted bounding boxes, we can classify the
prediction as a true positive or false positive. If classes for both bounding boxes match,
then the prediction is considered as a true positive. Otherwise, it is considered as a false
positive. Note that we can also have false positives in the case where the model predicted
a bounding box but no ground truth box matched the prediction with an IoU higher than
the minimum threshold value. Finally, we can have false negatives when ground truth
objects have no associated predicted bounding box with a large enough IoU value.

We can thus compute usual precision and recall values and draw precision-recall curves
for each class and for a particular IoU threshold. As was already explained, precision
provides a measure of the confidence we can have in the model’s predictions whilst recall
characterizes the detection abilities of the model. With these metrics, we can compute
an average precision metric (AP) for each class, which thus relates to the same IoU
threshold as the one used to compute precision and recall curves. The average precision
simply computes the area under the precision-recall curve, thus it computes the average
precision value for recall values ranging in [0, 1]. Finally, we can compute a mean average
precision metric (mAP), which is also defined for a specific (range of) IoU threshold(s).
It consists of the mean of average precision scores across classes. Usual mAP metrics
are computed for an IoU threshold equal to 0.5, denoted as mAP @.5, or averaged over
several ToU thresholds, e.g. mAP @[.5,.95]. In the latter case, the mAP is computed
for thresholds equal to 0.5,0.55,...,0.95 and these metrics are then averaged to yield
mAP @[.5,.95].

2.1.3 Transfer learning

As was evoked in Chapter 1, a transfer learning approach will be considered for both tasks.
Transfer learning can be defined [35], in all generality, with the help of two important
notions: a domain D and a task 7. A domain D is defined through two characteristic
components: a feature space X’ along with a marginal probability distribution P(X) that
is defined on X'. On the other hand, a task 7 is composed of a label set and of a function
f(-) that predicts corresponding labels based on a given domain. This function f(-)
is learnt from the training set. Given source and target domain-task pairs, denoted by
(Ds, Ts) and (Dr, Tr) respectively, transfer learning is defined as a process that will boost
the learning of the modeling function fr(:) thanks to knowledge acquired in the source
setting, where Dg # Dr or Tg # Tr, i.e. the domains or the tasks are different.

In this work, the transfer learning process being used can be considered as an inductive
transfer learning setting, where tasks are different and domains can be similar or different,
and where labeled data is available for both the source and the target domains, although
the amount of accessible data for the target domain can be much smaller than that of the
source domain.

Applying transfer learning is desirable since usual machine learning methods make the
assumption [35] that training and test data share the same feature space and distribution,
which becomes untrue when facing such a task where there is a clear domain transfer, from
the photo-realistic domain to the artistic domain. This approach is particularly helpful as
it notably allows to train models on the target domain by reusing knowledge acquired in
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the (larger) source domain. This therefore reduces the expensiveness of training and avoids
training from scratch, for which it was demonstrated multiple times [36-38] that final
performance was eventually worse than for models trained using transfer learning.

There exist different approaches to perform transfer learning for image classification and
object detection using CNNs, among which fine-tuning, which has been applied in several
related works [36-39] that highlighted the resulting increase in performance. Fine-tuning
a CNN consists in reusing some part of the network, e.g. a block of convolutional layers
that serve as feature extracting module, pre-trained on a source task/domain, and to
continue training both the added blocks as well as this extracted module on a target
task/domain. This approach will thus also be considered in the present work but other
settings will also be studied for the detection task, such as freezing the reused component
to capture potential stabilization effects.

2.2 Deep learning in Digital Humanities

In this section, we will cover the related work accomplished in the field of Digital Hu-
manities. Firstly, we will review several classification tasks carried out in the art world.
Then, we will cover multiple projects that tackle object detection in artworks in different
angles.

2.2.1 Classification applied to artworks

In [40], the gap in domain shift between natural images and paintings is quantified by
comparing the performance of standard classifier architectures when they are trained on
either the first or the second type of pictures. Furthermore, they achieve higher classifi-
cation performance when applying region-based classification on top of a Faster R-CNN
detector (all trained on photo-realistic images) rather than simple image-level classifica-
tion, which they attribute to the large amount of small depictions that are prevalent in
paintings.

As concerns art style classification, authors in [41] investigated the use of standard classi-
fication architectures, such as ResNets, and showed that they also give good performance
on artistic depictions, underlining the fact that models trained on natural images can be
transferred between domains and still yield reasonable performance. However, they also
demonstrate that network re-training is needed to achieve the best performance on this
task, implying that features learnt from natural images are not optimal when it comes
to artworks, which could have been expected. To support these results, authors relied
on the Wikipaintings dataset [42], specifically designed for art style classification, which
consists of 85 thousand paintings spread across 25 genres. In [43], authors proposed the
augmentation of PASCAL VOC using style transfer as presented in [44] to improve clas-
sification performance on paintings, tackling the inherent lack of annotated artistic data.
In addition, they experimented a fusion of two CNNs, one trained for object recognition
on their augmented data and the other trained for style recognition, and achieved an im-
provement in mean average precision. Similar classification tasks were conducted in [306]
using standard architectures either pre-trained on natural images or on large available
paintings datasets.

Finally, in [11], a benchmark dataset called MINERVA is created for the detection of
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musical instruments in artworks. A thorough analysis of state-of-the-art classification
and detection models applied on this dataset is provided. More specifically, classifiers
are pre-trained on the Rijksmuseum dataset [45] and fully fine-tuned to achieve the best
downstream performance. It was shown [36] that starting from weights trained on this
dataset could outperform models pre-trained on ImageNet only.

2.2.2 Detection applied to artworks

In [46], the author tested a simplified YOLO architecture to detect people, on a set of
218 cubist paintings [47] depicting people. The network was pre-trained on ImageNet
and fine-tuned on PASCAL VOC. The author claims to achieve a 34% average precision
on this task while on the PASCAL VOC dataset, YOLO reaches an average precision of
63.5% for the person class. However one could question the robustness of the obtained
results since in [47] authors point out that the dataset is highly biased: indeed, paintings
represent persons in portrait angles where the torso occupies most of the depiction area.
Thus, precision rates will be positively biased because a random detection will more likely
be treated as a true positive. Furthermore, this approach only detects a single class, hence
it consists of a binary detection task. Still, this work underlines that reusing pre-trained
detection frameworks while shifting domains can produce baseline results to be improved
upon. Other works also tackle such a cross-depiction problem, as is conducted in [48]
where they achieved 58% average precision on 41 different styles representing persons, by
fine-tuning a Fast R-CNN architecture pre-trained on ImageNet. In addition, they show
the influence of customizing the Intersection-Over-Union (IoU) lower bound for negative
region proposals.

In [49], a weakly-supervised approach is proposed to tackle object detection in artworks.
Using a multiple-instance learning (MIL) technique, they combine region proposals from a
Faster R-CNN detector trained on natural images with a discrimination similar to what is
done with SVM in order to determine which regions correspond to which object category.
This allows the use of image-level annotations that are much more frequent than instance-
level annotations, at least for the artistic domain. Furthermore, they demonstrate the
applicability of their method to detect new classes, which are specific to artistic depictions
and that cannot be found in photographs. Such a weakly-supervised approach represents
an interesting path to follow for future work.

In [11], they demonstrate using their newly created MINERVA dataset the advantages
of transfer learning from photographs to fine-art paintings when it comes to object de-
tection, where several detection tasks of increasing complexity are carried out. They
underline the natural drop in performance that can be observed for such tasks in this
domain, due to the variety of depiction styles along with the inherent smaller amount of
available samples. Indeed, for the detection problem, it appears that instruments with
few depictions also achieve low average precision results. This piece of work will mainly
serve as comparison tool for this work to relate results obtained on similar tasks but for
different categories.
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Chapter 3

Datasets and scope of research

This chapter will define in more details the line of work followed and will review the
datasets that were initially considered. Each resulting task will be covered in subsequent
chapters.

3.1 Methodology

This work is part of the INSIGHT project!, whose end goal is to augment cultural heritage
collections with more (refined) descriptive metadata. In particular, the aim is to apply
transfer learning techniques to existing classification and detection architectures for fine-
art paintings and other artworks, in order to study the impact on performance compared
to what would be obtained with frameworks trained on photo-realistic images, and also
to compare to existing work of similar philosophy [11].

The object detection problem will be split into two consecutive tasks:
1. Object classification in artworks
2. Object detection in artworks

Thus, the first part of this thesis, related to the application of Al to the field of digital
humanities, will be devoted to classification, relying on standard DCNN architectures to
solve the problem. As mentioned, transfer learning will be conducted to account for the
domain shift. The second part will cover the full detection pipeline and will therefore also
study the reuse of well-known frameworks for natural images.

3.2 Datasets

Before solving any of both tasks, it is needed to gather relevant datasets, which are
provided through the INSIGHT project as an ensemble of digital assets coming from
two museum clusters in Brussels: the Royal Museums of Fine Arts of Belgium and the
Royal Museums of Art and History. Digitized artworks have been annotated within the
Cytomine? [50] software, as was done for the MINERVA dataset in [11].

Thttps://hosting.uantwerpen.be/insight/index.php/about/
’https://cytomine.be/
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3.2.1 Presentation of the datasets

Two different projects are created to deal with object detection: one dedicated to depic-
tions of fruits and the other dedicated to depictions of animals. For each project, objects
have been manually annotated with bounding boxes by volunteers and members of the
project. A summary of the content of both projects is provided in Table 3.1. Note that

Animals | Fruits

Number of paintings 8234 4685

Number of annotations | 11116 | 26736
Number of classes 25 32

Table 3.1: Content summary for both datasets.

annotations are not uniformly spread across paintings: therefore, there exist paintings
that have not been annotated.

Given that the annotations for the animals project were finished first, the focus was put
on this project. However, all following methods should also be applicable for the fruits
project.

3.2.2 Exploring the dataset

To highlight the discrepancy of artistic styles present in the dataset, a random subset of
artworks is displayed in Figure 3.1. From this figure, we can discern a painting of a horse,
but also a carving of a horse, drawings of other animals along with a coin depicting a
chicken, although chickens do not appear in the list of animals to detect. This corroborates
the previous remark stating that not all paintings were annotated: since they come from
a mix of clusters, it is natural that this mix was not hand-curated, hence it will contain
paintings that do not contain any animal or that contain non-related animals, and those
will thus not be used. For example, some paintings will contain depictions of chickens,
which do not belong to the 25 animal classes that should eventually be detected.

One can also draw a barplot representing frequencies of appearance for each animal class
to get a first insight about the distribution of animals across paintings. This can give us an
idea of which animals were regularly pictured and which others were rarely depicted. The
corresponding barplot is represented in Figure 3.2. As can be observed from the barplot,
there are three most occurring classes: domestic dogs, primates and horses. Other classes
are less portrayed, some of them even having less than 200 appearances; the minimum
being achieved by bats with a frequency of 146. The same behavior was observed in
[11] where the distribution of musical instruments showed a long tail of rarely depicted
objects, although the situation with animals is a little bit less severe.

As was underlined in Chapter 2, a major concern about artistic representations lies in the
size of pictured objects. Indeed, small objects (and in this case, small animals) can be
expected to be frequently sketched as part of the background, not necessarily intended
for later computer vision reuse. We can arbitrarily decide with a patch threshold area
whether an object is considered as small or not. Let us fix this threshold to 1024, i.e.

objects whose bounding box can be assimilated to a rectangle of dimensions 32 x 32 and
let us rename these particular bounding boxes as smallest bounding boxes. This choice
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Figure 3.1: Random batch of paintings.

of threshold was motivated by the definition of small objects provided in the COCO
evaluation guidelines®. For each animal, proportions (higher than 5%) of such small
patches are reported in Table 3.2, along with proportions for patches of area smaller
than 64 x 64. From this table, we can observe that some animals could be expected to
have larger proportions of smallest bounding boxes than others: for instance, rats and
mice are by definition small animals, hence it is natural to depict them in small and
realistic proportions. The same remark holds for bats. Sheep, cows and squirrels have
proportions around 20%, thus one can expect that every fifth occurrence of such animal
will be rather small. For squirrels, this is most likely due to their size, greater than rodents
but still smaller than most other animals. As concerns sheep and cows, this is probably
due to paintings where they are pictured in the background of vast landscapes. If we
now look at the proportions of boxes smaller than 64 x 64, it appears that animals with
larger proportions of smallest boxes also have larger proportions of boxes whose area is in
11024,4096]. Thus, we could intuitively expect the detection performance to be worse for
those animals than for those that are not even reported in the table, e.g. tigers, leopards,
lions, elephants, although this hypothesis should be checked when evaluating detection
models. Some paintings corresponding to the smallest bounding boxes are displayed in
Figure 3.3 and 3.4, for the six animals which have the highest proportions.

Paintings are downloaded in original dimensions. When retrieving paintings and annota-
tions from the Cytomine platform, a general annotations file is constructed, a sample of
which is shown in Table 3.3. Each row corresponds to a specific bounding box:

- ID represents the bounding box ID, provided by the platform, which also serves as
file name to save the crop corresponding to that box,

3https://cocodataset.org/#detection-eval
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Figure 3.2: Barplot of the frequencies of appearance for the animals project.

- Image corresponds to the relative file name of the considered painting,

- Project represents the project ID on the platform (in this case the project ID will
be identical for all boxes),

- Term is the animal label corresponding to the bounding box,
- Area and Perimeter correspond to the area and perimeter of the bounding box,

- (xleft, ybottom) and (xright, ytop) are the coordinates of the bottom-left and
upper-right corners of the bounding box, relatively to the image. The origin of
the coordinate system is defined as the bottom left corner of the image, however
coordinates conventions might have to be transformed for later reuse in detection
models.

For each subsequent task, this file will be post-processed to generate training, validation
and testing sets. For the classification problem, only ID and Term are needed, while for
the detection problem, Image, Term and all four coordinates are required.
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Area <1024 | Area <4096
Rat 30.71% 65.09%
Mouse 28.39% 55.48%
Bat 25.34% 45.89%
Sheep 23.48% 41.58%
Cow 16.72% 44.90%
Squirrel 16.24% 56.34%
Domestic dog 15.26% 36.14%
Horse 9.41% 23.33%
Deer 9.27% 22.49%
Wild boar 8.47% 27.68%
Goat 7.71% 22.31%
Primate 6.75% 35.17%
Camel 6.32% 29.04%
Pig 6.27% 33.10%
Ass 6.06% 16.29%
Rabbit 5.99% 26.97%

for each animal.

Table 3.2: Proportions of bounding boxes whose area is smaller than a certain threshold,
Only animals whose proportions of smallest boxes is above 5% are

1GBRY
=y BY

27

Figure 3.3: Paintings with the smallest bounding boxes, for rats, mice and bats.
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Figure 3.4: Paintings with the smallest bounding boxes, for sheep, cows and squirrels.

ID Image Project Term Area Perimeter xleft ybottom xright ytop
7842721 7135974.jpg 5927070  Horse 33288.0 742.0 327.5 30.5 479.5 249.5
7842703  7135974.jpg 5927070  Horse 64052.0 1014.0 143.5 9.5 382.5 277.5
7842684  7135980.jpg 5927070  Domestic cat  77348.0 1122.0 77.5 17.5 394.5 261.5
7842664  7135989.jpg 5927070 Sheep 2904.0 224.0 131.24  41.07 202.46 81.84
7842647  7135989.jpg 5927070  Domestic dog  2375.0 195.0 73.8 58.3 125.5 104.24
7842628  7135989.jpg 5927070  Cow 7752.0 360.0 220.26 57.15 328.24  128.94
7842612  7135989.jpg 5927070  Cow 17046.0 528.0 275.97  49.68 428.18  161.68
7842590  7136169.jpg 5927070  Sheep 15160.0 531.0 9.51 180.63 191.5 263.93
7842575  7136169.jpg 5927070  Goat 18428.0 550.0 76.51 189.69 236.77  304.68
7842560  7136169.jpg 5927070  Cow 20810.0 578.0 11.32 233.15 148.94  384.35
7842541  7136169.jpg 5927070  Domestic dog  12986.0 473.0 398.84 118.16 485.76  267.55
7842526  7136169.jpg 5927070  Sheep 11776.0 436.0 234.05  49.35 354.47  147.13
7842506  7136169.jpg 5927070 Bull 50878.0 911.0 43.91 32.14 302.86 228.62
7842478  7136280.jpg 5927070  Horse 19964.0 566.0 31.56 132.27 166.96  279.72
7842461  7136280.jpg 5927070  Rabbit 2567.0 203.0 222.38 12841 277.31  175.15
7842442  7136280.jpg 5927070 Lion 9433.0 390.0 341.39  140.94 448.36 229.12
7842424  7136280.jpg 5927070  Bull 16786.0 518.0 325.01  153.47 450.77  286.94
7842395  7136646.jpg 5927070  Goat 161320.0 1612.0 77.5 151.5 447.5 587.5
7842374  7136388.jpg 5927070 Domestic cat 116053.0  1388.0 72.5 11.5 485.5 292.5
7842351  7136220.jpg 5927070  Goat 6778.0 331.0 84.75 27.2 175.56  101.83

Table 3.3: A sample of annotations for the animals dataset.
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Chapter 4

Classification

This chapter will detail the different steps that were conducted to deal with the first part
of the work along with the results obtained for each of them. Section 4.1 details how
the datasets are pre-processed to deal with the classification task. Section 4.2 covers the
different steps carried out to test pre-trained architectures on painting crops as well as to
improve their performance. A comparison with the results of [11] will also be provided. In
Section 4.3, we will analyze and interpret the behavior of the classifier that achieved the
best results. Finally, Section 4.4 will summarize and conclude the different experiments
carried out to tackle the classification task.

4.1 Problem definition

As was defined in Chapter 2, the first task is the problem of classification, which in the
scope of this work, consists in training a model to correctly associate bounding box patches
with their appropriate animal. For that purpose, different standard classifier architectures
and different training settings will be compared.

For each training setting, crops will be split into training, validation and testing sets
according to the following proportions:

e Training set — 50%
« Validation set — 25%
o Testing set — 25%

Although it naturally decreases the amount of data on which the model can be trained,
thereby reducing the learning potential, this split choice allows for a honest model tun-
ing and a decent later performance assessment. Splits are performed using a stratified
approach, i.e. all splits will keep similar proportions of each animal compared to the pro-
portions in the whole dataset. In order to prevent information leakage from happening
across splits, whenever a crop is included in a split, all other crops from the same painting
will also be included in the same split. Thus, there might be small differences in the
proportions of each animal across splits, although it should remain moderate thanks to
the stratified approach. Note that this approach is inspired from [11], where an identical
splitting strategy was adopted.
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4.2 Applying pre-trained classifiers on paintings

In order to obtain an initial baseline, the classifiers defined above, pre-trained on Ima-
geNet, can be directly evaluated on the paintings testing set to see whether or not they
perform well with no further training. To some extent, it will give an idea of the gap
between the photo-realistic domain and the artistic domain. Please note that, in this
chapter, to simplify reading, crops extracted from paintings (and corresponding to spe-
cific animals) may be referred to as paintings, although they relate to sub-parts of the
corresponding paintings.

4.2.1 Intersecting ImageNet labels with paintings classes
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Figure 4.1: Barplot of the frequencies of appearance for the animals project, with relative
information of label intersection.

Classifiers are trained for the 1000-class ILSVRC classification sub-task, therefore the
intersection between ImageNet labels and paintings has to be manually checked. The list
of ImageNet labels can be easily found searching the web! and labels are checked one by
one to see whether they correspond to any animal known in the 25 animal classes of the
paintings. The resulting barplot is shown in Figure 4.1. As can be seen from the barplot,
9 animals have no intersecting pictures in the corresponding ImageNet dataset. Thus,
two alternatives can be considered:

o Evaluate classifiers only on the intersection

o Construct a new dataset of natural images to span all 25 classes in order to train a
new classification layer

While the first alternative is the simplest and most straightforward one, the second should
not appear as impossible. Indeed, during the upstream annotation process, animals that

Thttps://image-net.org/challenges/LSVRC/2017/browse-synsets.php
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Figure 4.2: Sample tree-map structure for the class “Domestic dog”. (Source: [51])

are eventually annotated were selected only if they had a direct correspondence with
some node in the ImageNet tree hierarchy [52]. This hierarchy is constructed based on
the WordNet structure [53], which is a massive English lexical database where words are
gathered into concepts called synsets. A synset is a set of cognitive synonyms, and synsets
are naturally organized in a hierarchical way based on their conceptual relationships
with each other. For instance, “domestic dog” is a child node of “domestic animal”,
as can be seen from Figure 4.2. Note that not all synsets defined in WordNet have a
correspondence with some ImageNet picture subset. Indeed, only nouns are currently
indexed by ImageNet.

4.2.2 Construction of a custom ImageNet dataset

Each synset is identified by a specific WordNet ID, thus each animal class present in
the paintings has a one-to-one mapping with such IDs. Therefore, it should be possible
to download natural images related to each class provided that an access to ImageNet
pictures is available. There exist Python softwares? that allow to download (a certain
amount of) photographs from ImageNet when provided with WordNet IDs corresponding
to the classes of interest. Correspondence between these IDs and plain English words is
also given.

After listing all interesting WordNet IDs, the software is launched to retrieve around 1 000
images for each animal class. Coupled with data augmentation techniques like mirrorring,
equalizing, brightness modification, etc., such an amount would give reasonable quanti-
ties of training images. Note that, for most synsets, less than 1000 pictures could be
eventually recovered. Therefore, those classes needed completion with child synsets. For
example, “wild boar”, identified by WordNet ID n02396427, was completed with “boar”
(n02396014) and “warthog” (n@2397096), although some noticeable visual differences ex-
ist between both species. Visual similarity between different species of a same animal was
tried to be kept as much as possible during this image retrieving process.

When a sufficient amount of pictures is gathered for every animal out of the 25 different

2https://github.com/mf1024/ImageNet-datasets-downloader
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Squirrel

Wild boar

Figure 4.3: Random batch of ImageNet animal pictures.

classes, a data cleaning step is essential as there is a non zero probability that some
hosted images no longer exist, thereby resulting in dead images, but not in dead URLs.
In addition, there are also images of unrelated animals that have slipped in some other
animal subsets that must be manually moved to the appropriate class or simply removed.
Finally, the last step is to equalize the number of images for each animal. A random batch
of examples is provided for visualization in Figure 4.3. As can be seen from this batch,
there will be occurrences of multiple animals appearing in the same picture, which is the
case for wolves but it will also be the case for other animals that live in a kind of pack,
e.g. cows, sheep, etc.

4.2.3 Fine-tuning classifiers on ImageNet

With the previously constructed ImageNet animals-only dataset, all three classifiers can
be trained to incorporate classes outside of the intersection. A similar dataset splitting
approach is considered, but proportions are slightly modified: the testing set still repre-
sents 25% of the dataset but the validation set is now smaller with a proportion of 15%
and the training set thus represents 65% of the data.

The final linear layer with 1000 output neurons is replaced by a linear layer with 25
output neurons and the whole architecture is fine-tuned on this custom dataset. As can be
observed from Figure 4.4, models easily converge on the training set and quickly saturate
on the validation set. The early stopping criterion is based on validation loss, computed
at each epoch, and training is halted whenever validation loss no longer improves after
10 consecutive epochs. The final (optimal) model is the one that achieves the lowest
validation loss.

From this figure, we can also observe that all three models need very few epochs to
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Figure 4.4: Training and validation losses for all three models, fine-tuned on ImageNet
animal pictures.

Top-1 accuracy (animals) | Top-1 accuracy (ImageNet)
VGG-16 81.95% 71.59%
ResNet-101 87.80% 77.37%
ResNeXt-101 32 x 8d 90.10% 79.31%

Table 4.1: Performance on the ImageNet animals-only test set and on the 1-K ImageNet
test set.

integrate new classes: both ResNe(X)t architectures only need two while VGG-16 needs
three epochs to reach its lowest validation loss.

Performance on the test set is reported in Table 4.1, along with results of each classifier
on the 1-K ImageNet test set®. Although both quantities are not directly comparable
since the second task is harder (25 classes against 1000 classes), it is worth noting that
fine-tuned classifiers do not perform worse on the simpler task. In addition, as could
be expected due to the temporal ordering of architectures development, the ResNeXt
framework achieves the highest accuracy with an improvement of 2.30%. Top-1 accuracy
per class is displayed in Figure 4.5. From this figure, we can observe that ResNeXt
achieves the highest performance for almost all classes. Bulls seem harder to classify
and it could have an impact on later detection performance. This might be due to the
resemblance between bulls and cows, the latter reaching an accuracy 20% higher than
the former. A similar scenario can be imagined between mice and rats, as far as VGG-16
is concerned. We can also notice that the three classes for which ResNe(X)ts achieve
highest performance are tigers, lions and leopards. This can be intuitively explained by
the specific visual features that these animals present: for instance, tigers and leopards
have very typical and recognizable coatings, while lions have a typical mane, also easily
distinguishable.

3https://pytorch.org/vision/stable/models.html
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Figure 4.5: Top-1 per class accuracy on the ImageNet animals-only test set.

4.2.4 Evaluation of pre-trained classifiers

With all these steps done, classifiers can now be evaluated on animal crops extracted from
the paintings, using the test set proportions defined in Section 4.1. Results for models
used as s, i.e. with no further training, are available in Table 4.2.

Top-1 accuracy
VGG-16 20.56%
ResNet-101 29.78%
ResNeXt-101 32 x 8d 37.24%

Table 4.2: Performance of classifiers pre-trained on ImageNet and fine-tuned on ImageNet
(animals-only), on the paintings test set.

Similarly to the previous situation, ResNeXt achieves the highest test accuracy, outper-
forming its ResNet counterpart by 7.46%. VGG-16 shows a significantly worse perfor-
mance with a little less than 17% accuracy difference. This gap of performance could be
expected from the results obtained in Table 4.1 where VGG-16 achieves a top-1 accuracy
gap of almost 9% with respect to ResNeXt. However, it should be noted that the gap has
increased with domain transfer.

Per class accuracy metrics can be visualized in Figure 4.6 and can be compared to Figure
4.5, i.e. those obtained on natural images. As a first observation, it appears clear that the
trend is completely reversed. Indeed, accuracies are now at the lower end rather than the
higher end, except for three classes: bats, leopards and tigers, as all can be classified with a
satisfying performance, whatever the domain. This could be expected given that leopards
and tigers have very distinguishable and recognizable coats. As concerns bats, since they
are the only flying animals in the dataset, it is possible that the model takes advantage
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Figure 4.6: Top-1 per class accuracy on the paintings test set, for classifiers pre-trained
on the 1-K ImageNet and ImageNet animals-only datasets.

from some background information related to the sky. In addition, bats generally have a
common posture at rest but also when they are pictured while flying.

4.2.5 Fine-tuning classifiers on paintings

With the results obtained using pre-trained classifiers without additional training, one can
only be disappointed but such a drop in performance could be expected due to the higher
diversity of styles and shades spread across paintings, which is not the case for natural
images. Therefore, all three models will be fully fine-tuned on paintings to account for
domain transfer.

On the other hand, several baselines will be derived from the same architectures in order
to compare this transfer learning technique with alternative standard techniques, such
as:

Re-training a new final classification layer, while keeping the rest of the pre-trained
network unchanged,

Training a classifier from scratch on paintings only,

Training a classifier from scratch on ImageNet animal pictures only?,

Training a classifier from scratch on a mix of ImageNet animal pictures and paint-
ings.

For all these scenarios, data augmentation will be considered in order to increase the
amount of diverse data fed to the model during training. Among others, an input im-

4This setting differs from classifiers evaluated previously since the latter are trained on the 1-K
ImageNet dataset and then fine-tuned on ImageNet animal pictures.
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age could be augmented through mirroring (horizontal flipping), equalization, bright-
ness increase/reduction, sharpness increase/reduction, etc. The input will be augmented
with a probability of 0.5. Paintings crops will be resized to a standard image classi-
fication input dimension, i.e. 224 x 224, and will be further normalized before being
processed into the convolutional neural networks, using mean and standard deviation
vectors obtained for the general 1-K ImageNet training set, i.e. p = [0.485,0.456, 0.406]
and o = [0.229,0.224,0.225]. All architectures will be trained using stochastic gradient
descent, with an initial learning rate 7 = 0.001 combined with a learning rate decay with
a factor equal to 0.1, every 7 epochs. Using a learning rate scheduler has shown [54]
improved optimization and generalization performance. A batch size of 32 crops will be
considered for both training and validation.

For the mix of natural images and paintings, a ratio of 50% of paintings will be considered.
Note that the two other from scratch baselines also represent a kind of mix, with ratios
of 100% and 0% respectively. If this approach yields interesting and encouraging results,
further exploration of the optimal mix might be considered. Re-training only the last
linear layer on paintings could be expected to produce worse results than fully fine-tuning
the networks but should at least produce improved results compared to classifiers pre-
trained on 1-K ImageNet only. Note that the mix of pictures and paintings only happens
for the training set. Indeed, all approaches share the same validation set, which contains
only paintings. A more standard approach would have been to construct specific validation
sets for each mix, i.e. a validation set with 50% of natural images and 50% of paintings
for the 50%-mix and a validation set containing only photo-realistic pictures of animals
for the mix based only on ImageNet. However, since the end goal is to generalize on
paintings strictly, a validation set purely composed of paintings is considered, as it will
allow to pick as final (optimal) model the model that performs best on paintings, and not
on natural images/a mix of paintings and natural images. The test set is naturally only
composed of paintings, as its goal is to assess the performance considering the artistic
domain only, and it is also shared across all settings.

Last layer re-training vs full fine-tuning

Training and validation losses are provided for both fully fine-tuned and last layer re-
training settings in Figure 4.7, and training loss along with top-1 validation accuracy are
displayed in Figure 4.8.

From these figures, it appears clear that fully fine-tuning the architectures allows to bring
training losses further down than what is achieved when re-training only the last layer
on paintings. The same can be noted for validation losses although the drop is much
more moderate but optimal fully fine-tuned architectures (i.e. architectures obtained at
the epoch corresponding to lowest validation loss) still reach lower values of validation loss
compared to their last layer setting counterpart. In addition, it is worth noting that both
VGG networks achieve higher losses, whatever the considered setting, and that ResNeXt
architectures achieve the lowest losses for both training situations.

As far as validation accuracy is concerned, similar observations hold. Indeed, VGG frame-
works achieve the lowest accuracies for each setting while ResNeXt models still outper-
form the others, although it seems more modest for the last layer re-training setting and
the gap between ResNets and ResNeXts is rather small. Furthermore, for the last layer
setting, all three architectures achieve rather identical validation accuracy even though
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Figure 4.7: Training and validation losses comparison for full fine-tuning and last layer
re-training.

Training loss Validation accuracy
25 —— ResNet_101_ft_paintings
' — ResNet_101 last_layer 0.65
—— ResNext_101_32x8d_ft_paintings
—— ResNext_101_32x8d last_layer
901 — VGG_16_ft_paintings 0.60
—— VGG_16last layer
2 0.55 1
3
= 1.5 1
z &
2 £
g £ 0.50
h <
8
S 1.0
0.45 1
0.5 1 0.40 1
0.35 1
0.0 4
0 5 10 15 20 25 0 5 10 15 20 25
Epochs Epochs

Figure 4.8: Training loss and validation accuracy comparison for full fine-tuning and last
layer re-training.
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ResNeXt outperforms both. It should be noted that the VGG model chosen as optimal
for the fine-tuning setting does not achieve the highest validation accuracy, as the latter
seems to keep increasing after the optimal epoch, even though an asymptotic behavior
already becomes visible around the 10th epoch. Minimizing validation loss, in this case
cross-entropy loss, does not imply the maximization of validation accuracy, even if both
are related. Indeed, in a scenario with imbalanced data, accuracy could be improved by
assigning the majority class to each input sample with the counter effect of worsening the
underlying probability distribution learnt by the model. For this reason, optimizing with
validation loss is preferred as the resulting model should be more robust.

These observations line up with previous results derived for each classifier. ResNeXt
achieves (slightly) better performance compared to its ResNet counterpart, while VGG is
lagging behind. However, these are results obtained on validation data. For honest and
thorough assessment, the test set will be considered.

Training classifiers from scratch

The same learning curves can be derived for models trained from scratch on the three
aforementioned mixes, i.e. only paintings (ratio of 1), only ImageNet animal pictures
(ratio of 0) and a perfect mix of both (ratio of 0.5). Curves are displayed in Figure 4.9
and 4.10 for a comparison of losses and loss-accuracy respectively.
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Figure 4.9: Training and validation losses comparison for three mixes.

With a first glance at these figures, it appears clear that training does not happen as
smoothly and as good as in previous settings. Indeed, from Figure 4.9, we can notice that
most training losses saturate above loss values of 2, while previous settings lead to losses
tending towards 0 (for the fine-tuning setting) or towards 1.5 for last layer re-training.
The same behavior can be observed for validation losses. In addition, when architectures
are trained from scratch on ImageNet animal pictures only, training is stopped much
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Figure 4.10: Training loss and validation accuracy comparison for three mixes.

earlier than for the two other mix scenarios because the corresponding validation losses
diverge after a few epochs. When trained on paintings only, training converges after
roughly 20 epochs (hence the best model is achieved around the 10th epoch) while the
50%-mix of natural images and paintings takes more epochs to converge as far as ResNet
is concerned.

The scenario is similar for validation accuracy. Indeed, models trained exclusively on
natural images of animals achieve a much smaller validation accuracy than when paintings
are included in the training set. However, using 50% of paintings or strictly using paintings
for training does not seem to have a visible impact on validation accuracy, as can be seen
from Figure 4.10 where all six models reach comparable levels of accuracy. Considering the
validation accuracy in Figure 4.8 and 4.10, it appears that training classifiers from scratch
eventually yields worse performance, whatever the mix. Indeed, pre-trained models (fine-
tuned or with their last layer re-trained) reach a validation accuracy above 50% while
models trained from scratch seem to saturate below 20%.

4.2.6 Assessing final performance

All training settings can now be compared using the test set in order to see whether
previous observations also apply in a more general sample. Results can be found in Table
4.3. For each scenario, finest results are highlighted in bold.

A first observation is that results obtained on the test set mostly align with those obtained
on the validation set, as far as model ordering is concerned. In fact, ResNeXt outperforms
other architectures for most settings, except when models are trained from scratch. It
should be noted that generalization is acceptable, although a performance drop is remark-
able for all settings. For instance, validation accuracy seemed to approach values near
70% for fully fine-tuned ResNe(X)ts, as can be observed from Figure 4.8, while test set
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ResNeXt-101 32 x 8d | ResNet-101 | VGG-16

ImageNet animals only 2.72% 2.07% 5.08%
50% mix 14.25% 20.38% 16.58%

Paintings only 19.67% 19.55% 19.96%
Pre-trained on 1-K ImageNet 37.24% 29.78% 20.56%
Last layer 45.94% 44.03% 38.89%
Fine-tuning 65.01% 56.74% 45.94%

Table 4.3: Performance on the paintings test set for different settings..

accuracy reaches values closer to 60%, even though ResNeXt reaches a peak at 65%.

As was expected from the learning curves, architectures trained from scratch perform way
worse than pre-trained architectures, fine-tuned or not. The best performance for such
models is achieved by ResNet-101 with a top-1 accuracy of 20.38% when being trained
on the 50% mix. Relying on paintings only yields models with similar performance,
however models trained from scratch on the ImageNet animals-only dataset show very
poor performance, with a top-1 accuracy sligthly above 5%, which is even lower than
the performance achieved by architectures pre-trained on the 1-K ImageNet dataset (and
fine-tuned on ImageNet animals). Still, models pre-trained on ImageNet perform better
than models trained strictly on ImageNet animal pictures for a reason: the latter are
trained on no more than 25000 photographs of animals while the former are pre-trained
on more than 1000000 natural images and then fine-tuned using the same animals-only
training set. It is thus natural that these models achieve higher accuracy.

Re-training only the last layer of classifiers already yields significant improvements com-
pared to results for standard pre-trained models, with increases ranging from 8% to 18%
for VGG-16. Furthermore, given the relatively small amount of data, training such set-
tings only takes a relatively small amount of time compared to trainings performed on
the 1-K ImageNet.

Finally, fine-tuning completely the classifier framework yields the highest accuracy, what-
ever the considered model. The number of epochs required to fine-tune the models up to
optimal performance is very small, which means that it only takes a small amount of time
to improve accuracy by roughly 20%. ResNeXt achieves, as expected, the finest accuracy,
with a value of 65% (corresponding to an improvement by 28% compared to its photo-
realistic-pre-trained counterpart) and ResNet follows with a top-1 accuracy of 56.74%,
which corresponds to an improvement of 27%°. VGG-16 eventually reaches an accuracy
of 45.94%, which represents an increase of roughly 25%. It is worth noting that the gain
in performance between the last-layer and fine-tuning settings is not as pronounced for
VGG-16 as it is for ResNe(X)t models, where both improve by another 20% and 12%
compared to 7% for VGG-16.

As a measure of comparison, in [11], classification accuracy for musical instruments ex-
tracted from paintings achieves a top-1 accuracy of 73.66% on the corresponding test set.
However, this result is obtained for a classification task covering only 5 instruments and

5Please note that improvements are quantified through absolute differences in accuracy and are thus
not expressed in terms of fractions of reference accuracy. For instance, ResNeXt improves its accuracy
with fine-tuning by an amount of 27.77%, which corresponds to a gain of 75%.
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is thereby easier than the current classification task which deals with 25 classes. Another
experiment was run considering the top-20 instruments, which is thus quite comparable
to the present task, although some of the considered instrument classes have frequencies
of appearance which are relatively small with around 200 occurrences. Still, performance
remains comparable. For this 20-instrument task, a top-1 accuracy of 36.51% is achieved
by the best model (an Inception-V3 architecture), which lies behind present results ob-
tained for animal classification using fully fine-tuned models. Note that, in their work,
authors started from architectures trained on the Rijksmuseum collection instead of on
the 1-K ImageNet dataset.
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Figure 4.11: Top-1 per class accuracy on the paintings test set, for the full fine-tuning
setting.

A general measure of per-class accuracy is provided in Figure 4.11. The performance gap
between each of the three models is clearly visible from this figure, for almost all animals.
This figure can be put in contrast with Figure 4.6 to visualize for which classes models
improved the most, but also to see for which classes models could not be refined. To ease
the comparison, a simple summary of the comparison between both figures is provided in
Table 4.4, where the mean improvement is measured across all three classifiers. Please note
that this represents a mean trend; it is therefore possible that a certain model improved
its performance on a class while the mean improvement (across all three models) for that
class is negative, or not as significantly represented. For instance, models improved their
performance for foxes on average by 21.30% whereas ResNeXt only shows an improvement
of 2.78% for that class. However, information from Table 4.4 should be combined with
information displayed in Figure 4.6: there, it appears clear that ResNeXt’s improvement
for foxes is indeed very small, but it also appears that this particular classifier already
performed much better with an accuracy around 40%, while the two others only reached
at most 20%. In general, models agree for classes which show the highest improvements,
such as primates, bears and squirrels. In addition, they also line up as far as performance
decrease is considered since all three decreased (or only very slightly increased) for animals
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ResNext-101 32 x 8d | ResNet-101 | VGG-16 | Mean
Primate 53.42 42.51 61.74 52.56
Bear 53.66 36.59 43.90 44.72
Squirrel 50.91 54.55 21.82 42.43
Domestic dog 22.59 39.16 49.10 36.95
Bull 59.66 31.09 17.65 36.13
Rat 24.21 35.79 32.63 30.88
Cow 29.14 29.14 21.19 26.49
Horse 15.04 39.85 20.68 25.19
Deer 13.10 29.17 26.19 22.82
Goat 13.33 36.67 14.44 21.48
Pig 38.46 24.04 1.92 21.47
Fox 2.78 22.22 38.89 21.30
Wolf 23.64 23.64 16.36 21.21
Elephant 29.85 22.39 8.96 20.40
Lion 37.84 22.52 —3.60 18.92
Rabbit 25.20 8.94 17.07 17.07
Sheep 7.29 9.90 32.81 16.67
Camel 28.70 12.17 —6.96 11.30
Ass 30.77 0.00 —5.13 8.55
Bat 9.09 21.21 —6.06 8.08
Wild boar 15.52 15.52 —12.07 6.32
Tiger 7.46 1.49 —2.99 1.99
Leopard 1.96 —19.61 1.96 —5.23
Domestic cat 0.00 —12.17 —9.57 —7.25
Mouse —5.56 —2.78 —36.11 | —14.82

Table 4.4: Individual and mean improvements in per-class accuracy between the full
fine-tuning setting and the standard pre-trained models. The mean is computed across
models.

like leopards, cats and mice, the latter showing the highest drop. A possible explanation
for these declines might be linked to potential confusions between animal classes. For
example, mice have the highest reductions of accuracy, but they could very likely be
confused with related animals such as rats which show an accuracy growth.

Some animals should intuitively be more easily classified than others, e.g. leopards and
tigers which have recognizable coats, either with black dots or black stripes. Nevertheless,
this hypothesis cannot be validated for leopards, as ResNet shows a drop of performance.
As far as tigers are concerned, moderate improvement is achieved by these two models,
but it is important to notice in Figure 4.6 that tigers (and leopards) achieved the highest
accuracy among all animals, therefore the improvement can only be moderate but it does
not explain ResNet’s drop for leopards. A reason for the performance drop of leopards
could be that styles differ across the training/validation and test sets, thereby underlying
the generalization problem of state-of-the-art classifiers. Leopard samples for both the

42



Figure 4.12: Training (first two rows) and test (last two rows) samples for leopards.

training and test splits are represented in Figure 4.12. From these samples, it seems that
test samples mostly contain leopard depictions carried out with a pencil, with rather black
and white shades, while training samples present a higher diversity of illustrations, among
which pencil drawings but also colorful paintings.

A comparison of the per class performance of ResNeXt for the different transfer learning
settings considered is depicted in Figure 4.13. From this figure, we can notice that the
fine-tuning setting outperforms the other approaches for all classes, except for two of them:
mice and rats. Mice could be expected since we highlighted its performance decrease in
Table 4.4, which compares performance for fine-tuned classifiers against their pre-trained
counterparts. As concerns rats, both last layer and fine-tuning settings outperform the
pre-trained version of ResNeXt, but the last layer re-training performs slightly better than
the fine-tuning one. If we now only compare the last layer setting with pre-trained classifier
performance, we can see that the former improves on the latter but this enhancement is
not uniform, as it performs worse than the latter for some animals. In any case, the
fine-tuning setting should be preferred as is illustrated in Figure 4.13, since it allows to
incorporate features specific to paintings into lower layers, which is not the case for the
last layer setting as those layers remain frozen.

As a final step, the fine-tuned ResNeXt classifier is tested back on the ImageNet animals-
only dataset to see how it compares to its pre-trained version. This comparison is rep-
resented in Figure 4.14. From this figure, we can observe that the pre-trained version
consistently outperforms its fine-tuned counterpart. This could be expected since the
former was only optimized with natural images, therefore it has only constructed feature
representations for natural images. On the contrary, the latter has modified its feature
representations to embed artistic features, which do not necessarily correspond to any
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Figure 4.13: Top-1 per class accuracy on the paintings test set, comparing transfer learning
applied to ResNeXt (pre-trained classifier, last layer re-training, fine-tuning).

features in the photo-realistic domain.

4.3 Analyzing the final classifier

4.3.1 Examining the confusion matrix

There are several possibilities to gain more insight about the behavior of classifiers when
presented with unseen crops, among which a review of the confusion matrix that will allow
to spot the model’s strengths but also its weak points. For example, one may wonder how
well the model performs for each class, but even more, how well it discriminates related
animal classes, e.g. how well does the model distinguish asses from horses? How well does
the model differentiate between rats and mice? Furthermore, (per-class) top-1 accuracy
metrics are a first step towards measuring model performance and interpretation, but
they have a tendency to smoothen results which prevents from conducting fine-grained
analyses. Indeed, accuracy metrics underline the performance of the framework but it is
impossible to determine where errors and confusions are mostly distributed.

All further analyses can be conducted for each classifier derived in the previous section,
i.e. for each training setting. However, due to the high amount of resulting models and
due to the (assumed-to-be) likely duplicate interpretations that would occur between all
models, a relatively thorough analysis will only be carried out for the classifier which
obtained the highest performance across all settings, i.e. the fully fine-tuned version of
ResNeXt, pre-trained beforehand on the 1-K ImageNet and the animals-only ImageNet
datasets.

The confusion matrix of this particular ResNeXt model is displayed in Figure 4.15, where
columns represent ground truths while rows represent model predictions. Deeper shades
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Figure 4.14: Top-1 per class accuracy on the ImageNet animals-only test set, for the
pre-trained and fine-tuned versions of ResNeXt.

indicate more frequent predictions, for each ground truth animal.

From this matrix, some intuitive confusion hypotheses evoked earlier can be confirmed
or contradicted. For instance, it was expected that rats and mice would very likely be
confused with each other, with no preliminary hypothesis on the direction of confusion.
It can be observed that mice are predominantly classified as rats rather than mice (12
predictions vs 8 only), while rats are mainly classified as rats even though the number of
corresponding mice predictions is not negligible, with 17 such misclassifications. Another
example of similar confusions includes cows and bulls, for which it can be noticed that the
model makes non-negligible mistakes too. In addition, it can be noticed that wolves are
confused with dogs and foxes, which can be easily understood as these animals share some
visual features. On top of that, wild boars seem often misclassified as pigs, another natural
confusion since both belong to the same family. Finally, the same confusing behavior can
be observed for asses and horses. However, it appears clear that the confusion is this
time only one-sided with mostly horses being confused with asses, and not the other way
around.

We can look more closely at rows in order to see whether the model could make biased
predictions towards certain animals at the expense of others. When presented with asses,
the model correctly classifies them as asses but it is also worth noting that several other
animals are confused with asses: horses, as underlined previously, but also some camels,
cows, bulls and goats. We can also notice that goats and sheep are interchangeably
confused. Thus, we could expect that the model leverages irrelevant features related to
the environment in which these animals are depicted, e.g. the classifier might be biased
towards goat (or sheep) predictions whenever a non-negligible amount of grass is visible
in the crop, and the same idea applies for asses. Furthermore, camels are sometimes
classified as horses and more surprisingly, dogs can also be confused with this animal or
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Figure 4.15: Confusion matrix for ResNeXt-101 32 x 8d fully fine-tuned on paintings.
Rows represent predictions while columns correspond to ground truths.

with primates.

4.3.2 Computing precision and recall

With the information presented in the confusion matrix, one could wonder about the
precision-recall trade-off achieved by the model, for each animal. It is worth noting that,
as more incorrect predictions are made for a given animal presented as input crop, then its
corresponding recall decreases but the precision of the animals with which it was confused
also decreases.

Intuitively, it is difficult to provide a general trend about precision and recall values for
each class since the behavior of the model varies depending on the considered class. Still,
one could expect that animals which are often predicted by the model, as is the case
for asses, will have a higher recall, while animals mostly confused with asses will have a
smaller recall due to this increase of false negatives.

Since rows of the confusion matrix correspond to model predictions and columns to ground
truths, precision for a given class is evaluated on each row whilst recall is evaluated on
each column. The corresponding precision and recall values are reported in Figure 4.16,
along with their F-1 score, for each class. We can observe that the model has roughly
equal mean precision and mean recall, indicating that, on average, we should be relatively
confident about the predictions made by the model, with a mean precision of 59.96%,
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Figure 4.16: Precision and recall values for each class, considering predictions carried out
by ResNeXt-101 32 x &d.

with satisfying detection capabilities, illustrated with a mean recall of 60.26%.

We can observe that the model has a very poor F-1 score for mice and wolves. For these
animals, the model is characterized by low precision and recall values.

As regards asses, for which it was hypothesized that recall would be higher than precision
(since many crops were classified as this animal), we can note that this assumption is
indeed verified and that horses, for instance, have a lower recall but higher precision.

Finally, tigers, leopards, primates and bats achieve the highest F-1 scores, which means
that most instances of each animal will be detected by the model but also correctly
classified, for the majority of the time. Thus, we can be quite confident about the model
predictions made for these classes, the highest precision being achieved for bats. Other
animals also achieve relatively high precision values, such as deers and lions, which can
be explained by the fact that they are animals easier to recognize. However, their recall
values are relatively smaller, which indicates that the model has difficulties to identify
such species.

4.3.3 Visualizing model predictions

In order to have a deeper insight about what could bring the classifier to such misclassi-
fications, e.g. why the classifier predicts some sheep as cows, a Grad-CAM technique will
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Figure 4.17: Dog samples being classified as primates (left) and that should be labeled as
primates (right).

be considered, as was presented in Chapter 2.

Several confusions will be investigated, namely:

Dogs confused with primates

Goats confused with asses

Goats confused with sheep

Cows confused with asses

Please note that not all confusions present the same pattern for a given class. For instance,
error interpretation performed for dogs confused with primates does not necessarily hold
across all such confusions; some of them do not highlight any specific pattern or do not
even seem to focus on the wrong parts of the input crop. It was also observed that, in
general, some crops were hard to distinguish even with a human eye.

Dogs confused with primates

A sample of dog crops misclassified as primates is displayed on Figure 4.17, where both
a Grad-CAM and a Guided Grad-CAM are represented. From these samples, it seems
that the model primarily focuses on the animal tail to guide its final prediction, leaving
a smaller importance to its posture, e.g. if it is lying down or walking. Furthermore, it
seems that the action of standing up on back legs makes the model more likely to predict
primates, for which it is a more natural attitude.

Nevertheless, it should be noted that some samples classified as primates indeed corre-
spond to primates, and that it rather consists of a small annotation mistake, as can be
observed on the right of the figure.

Goats confused with asses

Identically to the previous case, samples of goats misclassified as asses are illustrated on

Figure 4.18. There, it seems that the classifier focuses mostly on the head and the neck of
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Figure 4.18: Goat samples being classified as asses.

the animal but leaves very little importance to its hair. Still, the distinction between goats
and asses is not completely clear from these samples and such misclassifications could be
expected. Furthermore, these observations infirm the previous intuitive hypothesis that
the model confuses both species because of environmental factors such as grass or even a
barn-like environment.

Goats confused with sheep

Samples of goats misclassified as sheep are depicted on Figure 4.19. From there, nothing
can really be concluded about specific reasons as to why goats can be classified as sheep.
Indeed, from all samples, it appears that the model leverages informative features, such
as the goat’s horns or even its coat, which should look different from the coat (wool) of
a sheep. Nevertheless, it could be possible that some pictures depicting animals looking
similarly to the first or last rows of Figure 4.19 have been annotated as sheep in the
training set, therefore implying this confusion.

As was the case for primate samples labeled as dogs, there were also samples of sheep
annotated as cows, or for which the difference between both animals was very difficult
to establish, as can be visualized on Figure 4.20. From this figure, we can see that the
first and last samples have been labeled as goats, although the confusion with sheep is
reasonable. For the second sample, the model relied on features extracted from the dog
to the right, the goat to the middle, but also from the sheep in the top-left corner, which
could explain its prediction although the ideal case would have been a goat prediction as
it represents the main animal in the crop.

Cows confused with asses

Some samples out of the few samples of cows being misclassified as asses can be visualized
on Figure 4.21. It appears that the model extracts information mainly from the head of
the cow along with its legs, although it also appears clear that each sample represents
cows and not asses. For the first sample, it also extracts features from the person standing
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Figure 4.19: Goat samples being classified as sheep.

Figure 4.20: Goat ground truths that could be labeled as sheep or where confusion is
admissible.
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Figure 4.21: Wild boar samples being classified as cows.

next to the cows, so this might push the model towards predicting asses. For the two
other samples, we could conclude that this specific shape of head tends to be associated
to asses and also underline the fact that the model does not leverage any information
about the difference in marks in the cow’s fur, which is here brown and white but which
could also be black and white.

4.4 Conclusions

In this chapter, we have tackled the classification of animal crops extracted from artworks
of various styles using three classifier architectures of different kinds. In particular, we
have studied the performance of VGG-16, ResNet-101 and ResNeXt-101 32 x 8d.

To serve as an initial baseline, we decided to assess their performance when applied as
is on painted animal crops, all three of them being pre-trained on the 1-K ImageNet
dataset. In order to have a measure of accuracy for each animal, we have constructed
an animals-only version of ImageNet that contains roughly 1000 photo-realistic pictures
per class. Each classifier was thus fine-tuned completely on this new dataset, reaching
top-1 accuracies between 81% and 90% for natural images. When applied to paintings,
a performance drop could be observed, the highest accuracy dropping from 90.10% on
photo-realistic images to 37.24% on paintings. This performance drop is inherent to the
domain transfer being involved.

Afterwards, several approaches were explored to determine whether they could improve
upon these baseline results. Classifiers were re-trained from scratch on different training
sets: one containing only painting crops, one containing only the ImageNet animal pictures
from the dataset previously constructed, and one containing an equal mix of paintings and
natural images. In addition, we also investigated two specific transfer learning techniques.
The first one consists in using pre-trained classifiers off-the-shelf, which means that their
last linear layer is replaced by a new layer while previous layers remain frozen throughout
training. The other approach consists in fully fine-tuning the classifiers, except for their
final fully-connected layer which is replaced by a new one.
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As could be expected, models trained completely from scratch show a much worse final
top-1 accuracy. In fact, they even achieve results lower than when pre-trained classifiers
are used as is. Training from scratch on the animals-only dataset reaches a significantly
smaller accuracy than when paintings are included in the training set, which could also be
expected since no artistic features would be incorporated in the models. Models do not
seem to gain anything in downstream performance when a mix of paintings and photo-
realistic pictures is used rather than only paintings. The highest accuracy reached overall
in these settings is only equal to 20.38%, which illustrates the importance of starting from
pre-trained weights, especially for tasks where a limited amount of data is available.

For models starting from pre-trained weights, we could observe a consistent gain in the
off-the-shelf (last layer) setting as well as for the full fine-tuning approach. In addition,
there is a considerable gap in performance between off-the-shelf and fine-tuned networks,
particularly for ResNe(X)t models. The highest performance on the test set is achieved
by ResNeXt-101 32 x 8d with a top-1 accuracy of 65.01%. This model improved for each
class, except for mice, showing a negative transfer with a drop of 5.56% compared to its
pre-trained equivalent.

As a final step, we decided to examine more deeply the behavior of this fine-tuned archi-
tecture. For that purpose, we have derived its confusion matrix on the test set along with
precision-recall measures for each class. This allowed us to determine the animals that
the model easily detects but also those for which we can trust more easily the model’s
predictions. It was observed that the model achieved the best precision-recall trade-off
for bats, primates, leopards and tigers, meaning that we can be relatively confident when
the model predicts such animals. We have also provided various visual representations
that helped to understand how the model made mistakes for several misclassifications
highlighted by the confusion matrix, by putting in contrast regions of the input image to
which the model paid the most attention to make its final (erroneous) prediction.
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Chapter 5

Detection

This chapter will describe the different steps and approaches that were used to deal with
the second part of the work. Section 5.2.2 will define the dataset splitting strategy that
was adopted. Section 5.2 will cover in more details how pre-trained object detectors
were applied to paintings and determine whether standard transfer learning approaches
enhanced their performance. Section 5.3 will detail the different experiments that were
conducted on pre-trained object detectors to deal with different module freezing settings.
Section 5.4 will review the object detector selected as final model to visually analyze its
predictions. Finally, Section 5.5 will summarize and conclude the experiments carried out
on the object detection models.

5.1 Problem definition

As was defined in Section 2, the second part relates to the problem of object detection,
which in the scope of this work, consists in training an object detector to correctly locate
bounding boxes around animals and then to correctly classify these boxes with the ap-
propriate animal. To this end, a similar approach as for the problem of classification will
be considered. Indeed, different state-of-the-art architectures will be put in contrast, for
several training settings which will be detailed in the next section. Note that this task
now considers full-sized paintings and no longer crops extracted from paintings.

For each setting, paintings will be split into training, validation and testing sets according
to the following proportions:

o Training set — 50%
o Validation set — 25%
o Testing set — 25%

This split choice was carried out for the previous classification task and it is thus natural
to consider the same proportions. As a reminder, it allows for a honest model tuning
and an unbiased later performance assessment. Splits are once again performed using a
stratified approach, i.e. all splits will keep similar proportions of each animal compared
to the proportions present in the entire dataset and in fact they correspond to the same
splits that were derived for the classification task.
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5.2 Applying pre-trained object detectors on paint-
ings

This section will detail the different experiments and assessments conducted with pre-
trained object detectors applied for the detection of animals in paintings. This represents
the end task of the present work and will produce benchmark results for this new prob-
lem.

5.2.1 Evaluation of pre-trained object detectors

As was done for the classification task, pre-trained object detection architectures described
above can be tested directly on paintings to assess their performance with no fine-tuning
at all. However, as was the case for the classification task, the classes that detectors have
been trained on do not entirely match the classes found in the paintings dataset. Indeed,
both frameworks have been pre-trained on COCO, which is composed of 80 classes among
which only a restricted subset intersects with the animals depicted in the artworks. This
subset consists of bears, cats, cows, dogs, elephants, horses and sheep, i.e. only 7 classes
out of 80.

Contrary to the pre-processing steps carried out before evaluating the performance of pre-
trained classifiers, as detailed in Section 4.2.2, no custom ImageNet nor COCO datasets
will be constructed. This means that all following steps will build upon features learnt for
the 80 corresponding classes, even if no labeled instances of the remaining 18 animals have
been processed by these detectors. Note that this could also have been considered for the
classification task; however constructing a custom dataset for natural image classification
is less time-consuming than constructing a custom dataset for object detection in natu-
ral images, which would entail manually annotating thousands of images. In addition,
this allowed for a thorough preliminary evaluation while preliminary evaluation for the
detection task will only cover 7 classes.

In the scope of this work, given the novelty of the tackled problem as well as the non-
negligible presence of small objects (i.e. small animals), the main measure of comparison
considered for the evaluation of the different architectures will be the (mean) average
precision computed at an IoU threshold equal to 0.5, as is also used in [11]. This repre-
sents a decent compromise between feasibility and severity, as we could expect detection
performance to be on the lower end.

‘ Bear ‘ Domestic cat ‘ Cow ‘ Domestic dog ‘ Elephant ‘ Horse ‘ Sheep
Faster R-CNN | 6.71 11.07 27.60 13.88 20.48 | 23.85 | 25.28

YOLOv5 9.58 21.30 35.30 25.20 36.40 35.50 | 41.70

Table 5.1: Performance of object detectors pre-trained on COCO, on the paintings test
set.

These metrics have been computed for the intersecting classes and are available in Table
5.1. The pre-trained Faster R-CNN detector relies on a ResNet-50 backbone while YOLO
relies on a CSP-Bottleneck backbone.

From these results, it appears clear that YOLO outperforms Faster R-CNN for each of the
intersecting classes, thereby underlining the fact that the performance gap is smaller for
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this network when shifting from the photo-realistic to the artistic domain. Unfortunately,
average precision scores achieved by these detectors on natural images (COCO test-dev)
cannot be obtained for each separate class. Indeed, COCO testbeds considers’ only
the mean average precision metric (mAP), which they equivalently (and confusingly)
call average precision (AP). Thus, we will only be able to compare results derived on
paintings. As a measure of comparison, a similar YOLO implementation achieves? an
mAP @.5 equal to 73.40% on the COCO test set while Faster R-CNN (implemented with
Local Importance-based pooling) reaches a value of 65.70%.

5.2.2 Fine-tuning object detectors on paintings

To follow the same line of work as for the classification task, both architectures will be
fine-tuned on paintings using the training and validation sets defined in Section 5.1.

As was the case previously, data augmentation will be performed for both architectures,
with the slight variation that YOLOvV) integrates autonomously data augmentation tech-
niques, among which the aforedefined mosaic augmentation. Thus, augmentation tech-
niques will differ between both architectures. As concerns Faster R-CNN, usual data aug-
mentation techniques, such as those used in Chapter 4, are considered. In both networks,
input paintings will be resized to meet sizes of 640px for YOLO and in [800, 1333|px
for Faster R-CNN. Note that this was already the case for the evaluation of detectors
pre-trained on COCO reported in Section 5.2.1. Learning rate decay is considered for
both models along with a batch size of 1 and 2 paintings respectively, due to memory
constraints, and an SGD optimizer.

Contrary to the classification task, early stopping is no longer based on validation loss,
which for both networks consists of the combination of individual loss components charac-
terizing the classification performance, the objectness performance, etc. Instead, a fitness
measure involving mean average precision scores for different IoU settings is considered.
This fitness criterion can be defined as:

fitness = 0.1 x mAP @.5 4 0.9 x mAP @[.5, .95]

Considering such a fitness criterion instead of validation loss will help to continue training
if models continue learning, while losses could quickly saturate. Indeed, the end goal is
to maximize mean average precision, which makes this fitness criterion a rather logical
choice. Note that this criterion was originally defined in YOLOv5 and it seemed natural
to extend its use to Faster R-CNN for a fairer comparison. Training will be stopped
whenever the fitness measure no longer increases after 10 consecutive epochs.

Faster R-CNN: backbone influence

As was mentioned previously, Faster R-CNN is composed of a backbone module which
serves as feature extracting component. For the previous evaluation of detectors, a
ResNet-50 backbone pre-trained on COCO was used, but it is also possible to replace
this module by another convolutional neural network. A natural choice is the ResNeXt-
101 32 x 8d that was the best-performing fine-tuned classifier in the previous chapter. One
can simply drop the final linear layer to keep only convolutional and pooling layers. Note

Thttps://cocodataset.org/#detection-eval
2https://paperswithcode.com/sota/object-detection-on-coco
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that the idea is to compare the impact of backbones initialized with different settings,
i.e. one that is pre-trained on photo-realistic images while the other one is pre-trained
on natural images and fine-tuned on paintings. Hence, the architecture does not really
matter as it is not the central study point, and some bias might thus be embedded inside
the backbone architecture, as it is possible that one architecture fits better than the other
for the artistic domain.

It is also worth noting that, for the Faster R-CNN model relying on the COCO-pre-trained
backbone, the RPN is also initialized with COCO-pre-trained weights; only the pre-trained
head, which will perform bounding box regression and classification, is replaced by a new
Fast R-CNN predictor, designed for 25 output classes instead of 80. When the ResNeXt
backbone is used inside Faster R-CNN, both the RPN and the Fast R-CNN predictor will
be initialized with new weights.

Both settings will be fully fine-tuned on paintings and one could intuitively expect that
performance achieved by the object detector whose backbone is ResNeXt-101 32 x 8d
(or another CNN fine-tuned on paintings) will eventually be better than the performance
achieved with a backbone where no paintings-like features are initially present. In addi-
tion, backbones fine-tuned on paintings also incorporate features for all animals depicted
in various artistic styles and not only for animals of the COCO intersection depicted in a
photo-realistic manner.

Faster R-CNN'’s loss is composed of four elements:

- loss_box_reg, which yields a measure of the accuracy of the predicted output
bounding boxes

- loss_classifier, which yields a measure of the classification quality for the pre-
dicted output bounding boxes

- loss_objectness, which yields a measure of the quality of the confidence that the
RPN has about the presence of objects in the different generated regions

- loss_rpn_box_reg, which yields a measure of the accuracy of region proposal boxes
generated by the RPN

Results obtained on the training and validation sets can be visualized on Figure 5.1 and
5.2, which represent training losses and validation fitness respectively. From these figures,
it appears that both settings reach similar loss values with a similar number of training
epochs. However, the model with the ResNeXt backbone converges to a higher loss com-
pared to its COCO counterpart. Looking at the individual loss components, we can see
that this is not really due to the classification nor bounding box regression components in
the prediction head, as both approach close values in any setting. In addition, both loss
components start from lower values than those of their COCO equivalent, taking advan-
tage of the feature representation built inside the fine-tuned ResNeXt backbone. Thus,
the largest contribution to this loss increase is rather caused by the region proposal net-
work, which has higher initial losses and eventually converges to higher final values. The
impact of starting from pre-trained weights instead of new weights is clearly visible.

This higher total loss value also translates into the validation fitness measures, where it
appears clear that the Faster R-CNN detector using the ResNeXt backbone reaches a
substantially lower fitness score. In addition, it also starts from a lower fitness measure,
very close to zero. Since both detectors rely on a pre-trained backbone and on a new
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Figure 5.1: Training losses for the fine-tuning of Faster R-CNN, with a backbone pre-
trained on COCO (left) and with a backbone already fine-tuned on paintings (right).
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Figure 5.2: Validation fitness for the fine-tuning of Faster R-CNN, with a backbone pre-
trained on COCO (left) and with a backbone already fine-tuned on paintings (right).

o7



Fast R-CNN predictor head, we can argue that this difference in performance is mostly
attributable to the RPN, which produces poor region proposals in the first epochs for the
ResNeXt setting. Even though proposals improve, which can be deduced from the decrease
of the RPN loss components and from the validation fitness increase, the final performance
gap is still clearly visible. Nevertheless, final performance will be assessed with average
precision measures computed for an IoU threshold of 0.5, which only contributes by a
factor of 0.1 to the fitness score.

Both fine-tuned models can now be evaluated on the paintings test set, as defined in
Section 5.1. For each detector, average precision values are computed, for each animal,
such that a deeper understanding of the difficult classes can be gained. As a general
measure, the mean average precision will also be computed, denoted as mAP @.5. Results
are reported in Table 5.2.

mAP @.5 Ass Bat | Bear Bull Camel Cat Cow | Deer Dog Elephant | Fox | Goat
COCO-backbone 12.30 14.95 | 0.00 | 13.65 | 30.46 3.40 3.87 | 21.90 | 18.60 | 33.66 45.22 6.08 | 7.57
ResNeXt-backbone | 13.00 8.09 0.00 | 8.16 | 25.70 9.83 15.36 | 14.68 | 20.23 | 31.54 32.06 15.28 | 12.04

Horse Leopard | Lion | Mouse | Pig | Primate | Rabbit | Rat | Sheep | Squirrel Tiger Boar | Wolf
COCO-backbone 21.82 4.31 0.57 0.00 1.87 18.16 12.20 1.99 10.54 2.05 30.75 3.45 0.45
ResNeXt-backbone |  30.84 510 |5.78| 0.00 0.92 18.30 | 27.58 | 4.05 | 19.10 0.00 20.29 0.00 | 0.00

Table 5.2: Performance of a fine-tuned Faster R-CNN with two different backbones, on
the paintings test set.

From these results, it can be surprisingly observed that the model relying on the fine-
tuned ResNeXt backbone achieves a higher mAP @.5 than its COCO counterpart, with an
improvement of 0.70%. This observation corroborates the initial hypothesis stating that a
detector that includes a backbone already fine-tuned on paintings should achieve a higher
performance than one that includes a backbone pre-trained on natural images. Still, the
result is surprising since there was a visible performance gap between both models that
was clearly underlined in Figure 5.2. Thus, it could mean that the model relying on the
fine-tuned ResNeXt backbone outperforms its COCO equivalent for an IoU threshold of
0.5, but that its performance should get worse than that of the latter when the minimum
IoU increases. This can be checked by running both models on the validation set and
a comparison of validation-test results is provided in Table 5.3. Please note that these
results will very likely be positively biased for both backbones but the most interesting
part is the ordering of models rather than their validation performance. From validation
results, we can observe that the situation is the opposite and rather corresponds to that
observed in Figure 5.2, where the performance of the Faster R-CNN model fine-tuned
from a COCO pre-trained backbone and RPN is higher than that of the model fine-tuned
from a paintings fine-tuned backbone. Thus, it means that the ResNeXt-backbone Faster
R-CNN outperformed its COCO counterpart on the test set by chance, benefiting from
a more advantageous split. Still, it is worth noting that the difference between both
validation mAP @.5 scores is only of 2% while it can be observed from Figure 5.2 that the
difference between both fitness scores is roughly of 4%. Therefore, we can expect that,
given the definition of the fitness criterion, the performance of the Faster R-CNN model
with ResNeXt backbone will get even worse for higher IoU thresholds compared to that
of the COCO backbone model.

The ResNeXt-backbone model is not a clear winner across all animal classes. Indeed,
even if it performs better on average, there are several animals for which it shows more
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‘ Test set ‘ Validation set
12.30 18.45
13.00 16.5

COCO-backbone
ResNeXt-backbone

Table 5.3: Performance of Faster R-CNN on the paintings validation and test sets, for
both backbones.

difficulties than the COCO-backbone detector, e.g. for asses, elephants, cows, etc. There
are animals for which detection performance was expected to be decent, such as elephants
and tigers, which should be easier to recognize than other (smaller) animals like bats,
mice or rats. However, there are animals that should have been easy to localize and
classify but for which both models achieve very poor performance, e.g. leopards that have
a distinguishable coat but only have a 5.10% AP. Some animals even have 0.00% average
precision, such as bats, mice, squirrels, wild boars and wolves although classification
performance was decent for most of them.

One could wonder whether the bounding box size has a noticeable impact on the down-
stream performance on object detectors. For instance, do rats, mice, bats, sheep, cows
and squirrels necessarily perform worse since they have the highest proportions of small
bounding boxes across all animals, as was highlighted in Table 3.27 We could argue that
this is true for the first three animals and squirrels but that it does not really hold as re-
gards cows and sheep. In addition, there are some other animals that do not seem to have
large proportions of small bounding boxes, such as pigs and wolves, but for which AP per-
formance is worse than for small animals, say rats. To assess this potential influence more
rigorously, we can compute a correlation coefficient between the mean area of bounding
boxes for each animal and its corresponding AP score. In this case, a Spearman rank cor-
relation coefficient will be considered and the p-value associated with the null hypothesis
stating that the two series of values are uncorrelated will also be calculated.

Correlation coefficient | p-value
COCO-backbone 0.465 0.019
ResNeXt-backbone 0.472 0.017

Table 5.4: Spearman rank correlation results for the correlation between mean bounding
box area and AP, for both Faster-RCNN models.

From Table 5.4, we can observe that, whatever the backbone setting, there is a positive
correlation between mean bounding box area and its corresponding AP, meaning that ani-
mals with larger bounding boxes are more likely to be correctly detected than animals with
smaller bounding boxes. In both cases, this observation is supported by a p-value smaller
than the standard 0.05 significance threshold, meaning that the null hypothesis should be
rejected, i.e. bounding box area and average precision are not uncorrelated.

We can compare average precision scores obtained for the fine-tuned detector relying on
a COCO-pre-trained backbone with those of the Faster R-CNN model pre-trained only
on COCOQO, which are reported in Table 5.1, for animals belonging to the intersection
between COCO classes and the animal classes from the paintings. This comparison is
provided in Table 5.5. We can observe that fine-tuning yields strong improvements for
bears, dogs and elephants where the resulting AP is twice as big as the AP obtained using

29



‘ Bear ‘ Domestic cat ‘ Cow ‘ Domestic dog ‘ Elephant ‘ Horse ‘ Sheep

COCO only

Fine-tuned

6.71 11.07 27.60 13.88 20.48 23.85 | 25.28
13.65 3.87 21.90 33.66 45.22 21.82 | 10.54

Table 5.5: Performance (paintings test set) of Faster R-CNN with the same backbone,
pre-trained on COCO, without and with fine-tuning on paintings.

the detector as is. However, performance drops of various magnitudes can be observed for
cats, cows, horses and sheep. Note that performance degradation could also be observed
in Table 4.4 for a ResNet-101 classifier, where three classes (among which cats) suffered
from fine-tuning.

Finally, these results can be compared with [11], where they notably tested the detection
performance of a fine-tuned YOLO detector on the 10 most occurring musical instruments.
There, only two instruments reach average precision scores above 25%, for an IoU of 0.5,
and two others achieve an average precision around 5% while the six last ones have scores
close to zero. It can be underlined from Table 5.2 that there are some classes that also
reach such low scores, but more animals achieve a non-negligible average precision score.
It is worth noting that, as was discussed in [11], the drop of performance with respect
to standard results obtained for photo-realistic images could be expected due to the
smaller size of the training data along with the higher variation of styles that is inherent
to artworks. We can also try to quantify the influence of training data size on average
precision scores, using as before a Spearman correlation test that will assess the correlation
between the amount of training occurrences and the corresponding AP measures, for each
animal.

Correlation coefficient | p-value
COCO-backbone 0.642 1.2 x107°
ResNeXt-backbone 0.756 5.4 x 1074

Table 5.6: Spearman rank correlation results for the correlation between training occur-
rences and AP, for both Faster-RCNN models.

For both Faster R-CNN models, it can be observed from Table 5.6 that the number
of training occurrences has, as expected, a strong impact on the downstream detection
performance.

YOLO: backbone influence

Identically to the previous case, fine-tuning will be carried out on YOLO for both types
of backbone: the first one being pre-trained on COCO (CSP-Bottleneck backbone) and
the second one being the fine-tuned ResNeXt-101 32 x 8d, as was done for the previous
experiment on Faster R-CNN. Note that YOLO’s head will be initialized with COCO
pre-trained weights if the backbone is initialized with such weights too. Otherwise, it will
be initialized with new weights.

YOLO’s loss is composed of three elements:

- loss_box, which represents a measure of the accuracy of predicted bounding boxes
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- loss_obj, which represents a measure of the quality of the confidence that the model
has about the presence of objects in the different cells

- loss_cls, which represents a measure of the classification quality for the predicted
bounding boxes

COCO-backbone ResNeXt-backbone

0.200
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Figure 5.3: Training losses for the fine-tuning of YOLO, with a backbone pre-trained on
COCO (left) and with a backbone already fine-tuned on paintings (right).

Training losses are displayed for both backbones in Figure 5.3 while validation fitness is
depicted in Figure 5.4. As can be observed from these figures, both settings show a very
similar behavior, even though starting from a backbone fine-tuned on paintings converges
in less epochs (57 vs 69). Losses reach close values in both settings and their decrease
looks much alike: at first, the classification module contributes the most to the total
loss but it reduces more continuously than the two other components, such that in the
end, the box accuracy component dominates. It is worth noting that starting from the
ResNeXt backbone seems to increase the convergence of the classifier head. Indeed, values
for loss_cls are smaller using a ResNeXt backbone than when using a COCO backbone,
at identical epochs, although both start from close initial values (obtained after one epoch
of training).

As far as validation fitness is concerned, the same observations as for training losses hold
since both models present the same learning trend. However, it should be noted that the
model that relies on a ResNeXt backbone starts with a lower validation fitness. Still, it
easily catches up with the other model and even achieves higher values before it, probably
taking advantage of the feature representations that its backbone has constructed during
its preliminary fine-tuning. Nevertheless, the YOLO detector fine-tuned with a COCO-
pre-trained backbone eventually reaches a higher validation fitness score, even though
the difference between both peak performances is relatively small. This could contradict
our initial and intuitive hypothesis that a model built with a backbone fine-tuned on
paintings will eventually perform better. Please note however that, as was the case for
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Figure 5.4: Validation fitness for the fine-tuning of YOLO, with a backbone pre-trained
on COCO (left) and with a backbone already fine-tuned on paintings (right).

mAP @.5 Ass Bat Bear Bull | Camel Cat Cow | Deer Dog Elephant | Fox | Goat
COCO-backbone 18.30 19.60 0.88 9.01 | 31.60 5.31 9.88 | 22.30 | 27.40 | 34.80 41.00 13.30 | 19.20
ResNeXt-backbone | 19.30 14.20 2.91 | 14.60 | 27.00 8.48 10.60 | 30.10 | 20.80 | 37.50 36.20 19.90 | 21.40

Horse Leopard | Lion | Mouse | Pig | Primate | Rabbit | Rat | Sheep | Squirrel Tiger Boar | Wolf
COCO-backbone 32.10 28.50 9.15 1.13 741 31.00 21.40 7.07 | 21.90 10.20 35.20 8.89 9.65
ResNeXt-backbone 28.40 4190 |15.20 | 0.77 5.74 28.40 21.90 5.11 | 17.20 | 17.00 28.80 22.10 | 6.31

Table 5.7: Performance of a fine-tuned YOLO with two different backbones, on the paint-
ings test set.

Faster R-CNN too, these values are obtained on the validation set. Furthermore, they do
not correspond to the metric that will be used to assess the performance of each model,
the latter being the mAP @.5. In addition, since both settings achieve similar fitness
scores, we could expect them to perform similarly on the test data, which could not have
been expected for Faster R-CNN from Figure 5.2.

Comparing to Figure 5.2, we can see that YOLO achieves a higher validation fitness score
with respect to Faster R-CNN, whatever the backbone. This should imply that YOLO’s
performance on the test set will also be better, thereby endorsing the general observation
concluded from Table 5.1 on the COCO intersection.

Results for both backbones are reported in Table 5.7, where average precision scores
are again displayed for each animal. We can notice the same behavior as for the previ-
ous Faster R-CNN settings, where the detector built upon the COCO-backbone reaches
a higher validation fitness but a lower test mAP @.5, with a notable difference of 1%.
Identically to what was done for Faster R-CNN, we can compute the mAP @.5 on the
validation data, which is reported in Table 5.8. On the contrary to Faster R-CNN, vali-
dation and test results are ordered in the same manner, with similar differences in mAP
magnitude. Thus, we can conclude that the YOLO model fine-tuned from a fine-tuned
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ResNeXt backbone indeed outperforms its COCO equivalent.

‘ Test set ‘ Validation set
18.30 27.70

COCO-backbone

ResNeXt-backbone 19.30 28.40

Table 5.8: Performance of YOLO on the paintings validation and test sets, for both
backbones.

Similarly to Faster R-CNN, the ResNeXt-backbone model does not outperform its COCO
counterpart for all classes. Animals that are easy to recognize have again a decent AP,
such as elephants, tigers and even leopards, which was not the case for Faster R-CNN. In
addition, leopards even have the highest average precision score with a ResNeXt backbone,
while Faster R-CNN only achieved an AP equal to 5.10% for this setting. YOLO has
no animals for which the AP is equal to 0.00%. Similarly to Faster R-CNN, YOLO’s
performance for small animals is poor, for say mice and rats, although non zero.

Correlation coefficient | p-value
COCO-backbone 0.546 4.7 x 1073
ResNeXt-backbone 0.402 0.046

Table 5.9: Spearman rank correlation results for the correlation between mean bounding
box area and AP, for both YOLO models.

Correlation coefficient | p-value
COCO-backbone 0.572 2.8 x 1073
ResNeXt-backbone 0.445 0.026

Table 5.10: Spearman rank correlation results for the correlation between training occur-
rences and AP, for both YOLO models.

To confirm this observation, we can compute the same Spearman tests as were conducted
for Faster R-CNN. Results are reported in Table 5.9 for the correlation between bounding
box area and AP while results about the correlation between training occurrences and
AP are displayed in Table 5.10. We can observe a similar behavior as for Faster R-CNN,
although the impact of the amount of training occurrences on downstream performance
seems less pronounced; still a positive correlation between both quantities is not negligible.
However, it can be noted that the best YOLO model (ResNeXt backbone) seems less
affected by bounding box size, and we can observe that its performance on the animals
with the smallest bounding boxes (rats, mice, bats, sheep, cows, squirrels) has improved
for most of them.

In order to study the impact of fine-tuning on the downstream performance of YOLO,
we can compare average precision scores obtained for a YOLO model pre-trained only on
COCO with those of the fine-tuned YOLO model with a COCO pre-trained backbone.
This comparison is provided in Table 5.11. We can observe that YOLO improves with
fine-tuning for only three classes out of seven: bears, dogs and elephants. Since this
was already the case for Faster R-CNN, as reported in Table 5.5, we can argue that this
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‘ Bear ‘ Domestic cat ‘ Cow ‘ Domestic dog ‘ Elephant ‘ Horse ‘ Sheep
9.58 21.30 35.30 25.20 36.40 | 35.50 | 41.70

COCO only

Fine-tuned | 14.60 9.88 22.30 34.80 41.00 32.10 | 21.90

Table 5.11: Performance (paintings test set) of YOLO with the same backbone, pre-
trained on COCO, without and with fine-tuning on paintings.

degradation of performance is most likely due to the variance of the artistic styles used
to depict these particular animals.

Comparing Faster R-CNN with YOLO

A summary of the performance of each model, for both settings, is provided in Table
5.12. As was already underlined, YOLO with a ResNeXt backbone achieves the highest
mAP @.5 with a value of 19.30%, outperforming its COCO equivalent by 1% and outper-
forming both Faster R-CNN models by 6%, which agrees with the conclusion derived for
both models in Section 5.2.1.

mAP @.5
Faster R-CNN - COCO backbone 12.30
Faster R-CNN - ResNeXt backbone 13.00
YOLO - COCO backbone 18.30
YOLO - ResNeXt backbone 19.30

Table 5.12: Fine-tuning performance comparison, for both models and both settings.

5.3 Transfer learning with frozen modules

Instead of fully fine-tuning object detectors on paintings, other approaches can be con-
sidered. For example, one could try an off-the-shelf method [55], as was done in Chapter
4 for the setting where only the last layer is re-trained. The idea is to freeze the feature
extracting module, i.e. a convolutional neural network, and to train a single additional
linear layer. This principle can be transposed for object detectors, in which case the
backbone would be frozen and the classifying head would be trained from scratch. This
approach has been demonstrated to be beneficial [56] for a domain gap between natural
and synthetic pictures. In this work, we want to extend this technique and study the
impact of sequentially freezing the feature extracting part of the network, training the
rest of the detector in an off-the-shelf manner, unfreezing the feature extractor and fi-
nally fine-tuning the whole model. A motivation for this approach is that it could help
stabilizing the object detector as, potentially, non-frozen weights would have started to
converge and the domain shift influence would thus have a reduced impact. Although
authors illustrated in [56] that this approach degraded final performance compared to the
setting where only the feature extractor remains frozen, we can still explore this path as
it may depend on the type of training data.

In order to make the rest of this section clearer, an overview of all the freezing settings
that will be experimented next is displayed in Figure 5.5. All the following sections are
organized in a similar fashion.
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5.3.1 - Entire training: COCO-initialized, directly fine-tuned
5.3.2: New weights, directly fine-tuned + 5.3.1: New weights
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“

Figure 5.5: Overview of the different freezing settings that will be considered, for each
architecture.

Section 5.3.1 will consider a Faster R-CNN detector whose backbone and RPN are initial-
ized with COCO pre-trained weights, and whose predictor head is replaced by a new Fast
R-CNN head. Firstly, it will study the impact of freezing both pre-trained modules (back-
bone and RPN) for NV epochs while fine-tuning the head, before unfreezing both modules
and fine-tuning them. Then, it will also study the impact of freezing only the backbone,
during the entire training, while letting the pre-trained RPN and the new predictor head
fine-tune.

Section 5.3.2 will consider a Faster R-CNN model whose backbone is initialized with the
paintings fine-tuned ResNeXt model obtained in the previous chapter. In contrary to
Section 5.3.1, the RPN has to be initialized with new weights. Once again, the predictor
head is initialized with a new Fast R-CNN head. Similarly, it will first study the impact
of freezing the pre-trained module (here, only the ResNeXt backbone) for N epochs while
fine-tuning the RPN and the head, before unfreezing it to fine-tune the whole architecture.
Afterwards, it will explore the influence of freezing the backbone during the entire training
while both the new RPN and the new predictor head are being trained.

Section 5.3.4 will consider a YOLO detector whose backbone is initialized with COCO
pre-trained weights and whose head is replaced by a new predictor head. It will study the
impact of freezing the backbone for the first N epochs while the head is being trained,
before unfreezing it and fine-tuning the entire model. Then, it will analyze the impact of
freezing the backbone throughout training while the new head is being trained.

Finally, Section 5.3.5 will consider a YOLO model whose backbone is initialized with
the paintings fine-tuned ResNeXt model obtained in the previous chapter. Once again,
the head is initialized with new weights. Likewise, it will assess the influence of freezing
this backbone for N epochs whilst training the head, before unfreezing the backbone and
fine-tuning the model. Subsequently, it will study the impact of freezing the backbone
during the entire training while training the predictor head.
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Figure 5.6: Training loss and validation fitness for Faster R-CNN initialized with COCO
pre-trained weights, with the backbone and RPN being frozen for N epochs vs no freezing.

5.3.1 Faster R-CNN - COCO pre-trained weights

In this section, experiments will be conducted on a Faster R-CNN detector initialized with
COCO pre-trained weights. As was the case before, the RPN will also be initialized with
such weights and only the predictor head will be replaced by a new one. The goal is to
study the impact on performance when using a pre-trained backbone and RPN as is (for
N epochs) before fine-tuning them on paintings, as was done in the previous section. It is
natural to start from pre-trained weights for the RPN, even though it is not responsible
for feature extraction, since its influence was clearly visible on Figure 5.1. Even though we
can expect that region proposals tuned for natural images will not be of the finest quality
for paintings, we still arbitrarily decide to freeze the pre-trained RPN since it will be
fine-tuned anyway after N epochs and by doing so, we will be able to assess through the
fitness score the adequacy of these generated regions. Note that, moving away from the
idea of freezing pre-trained components, we could have investigated similar experiments
where both the backbone and RPN are initialized with COCO pre-trained weights but
where, this time, only the backbone is frozen for N epochs and the RPN would thus
be fine-tuned from the very beginning. Due to time and computational constraints, this
could not have been explored.

Given the relatively small size of training data, freezing will be tested for N = 5,10, 15, 20
and 25 consecutive epochs before unfreezing the affected layers. Compared to the previous
scenario where full fine-tuning was carried out, here only total loss values will be reported
for each epoch to compare the influence of N rather than the freezing influence for a
particular value of N. Training loss and validation fitness are displayed on Figure 5.6. As
can be observed, all models eventually converge and they all reach a final loss value lower
than that of their equivalent obtained in the previous section. The same observation can be
made for validation fitness scores that are all substantially higher. We can thus expect that
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Figure 5.7: Training loss and validation fitness for Faster R-CNN initialized with COCO
pre-trained weights, with the backbone and RPN being frozen during 20 epochs.

any such model will eventually perform better than the fully fine-tuned model, although
this hypothesis has to be checked on the test data with our mAP @.5 reference metric
since it is possible that the main difference in validation scores between both scenarios is
attributable to the mAP @[.5,.95] instead, by definition of the fitness criterion.

It is worth noting that there is a visible peak in training losses at the epoch right after
the backbone and RPN are unfrozen, and this peak increases as we wait longer before
unfreezing the backbone and the RPN. This can be attributed to the sudden training
of the unfrozen modules, i.e. the backbone and the RPN, which could be due to several
reasons. For instance, it could be caused by the momentum in the optimizer, for which
gradients before unfreezing are not cleanly reset, thereby irrelevant gradients are consid-
ered during the momentum (and weights) update. Another reason could be linked to
batch normalization layers in the lower modules. For example, if their weights (8 and )
are updated for the second part of training, it could ruin the features learnt so far by the
higher layers. This peak can be visualized on individual loss components, as is illustrated
for N = 20 in Figure 5.7. From this figure, we can observe that the loss components
corresponding to the RPN stagnate around their initial values during their frozen epochs
and suddenly decrease as they are unfrozen. Thus, the spike in total loss is caused by the
predictor head and is mostly attributable to the classification loss.

Nevertheless, the assumptions put forward remain speculations and, due to time con-
straints, the reason for this spike could not be investigated any further. Still, it can be
noted that this behavior has already happened for a similar situation® where lower layers
start frozen and are unfrozen after a certain amount of epochs.

However, it appears clear that unfreezing the backbone and the RPN to enable their

3https://forums.fast.ai/t/learn-unfreeze-causes-spike-in-loss-when-training-unet-on-
image-segmentation-challenge/21460
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fine-tuning eventually helped the model to reach losses that are significantly smaller than
those that would be obtained if freezing was continued indefinitely. In a next step, we
will consider an approach where the backbone and the RPN are initialized with COCO
pre-trained weights but where only the backbone is frozen during the whole training,
corresponding to the best performing setting in [56]. In this way, we will be able to assess
the impact of (un)freezing the feature extracting module and we will also be in state to
verify that there exists a substantial gap between losses and performance obtained in both
settings. Note that the training loss for that particular approach will not necessarily line
up exactly with the loss trend observed during backbone and RPN freezing, since only
the backbone (and no longer the RPN) will be frozen for all epochs.

As was evoked, freezing the pre-trained RPN allows, to some extent, to assess the quality
of the regions proposed during training. This quality is reflected directly into the corre-
sponding training loss components (loss_objectness and loss_rpn_box_reg) but it also
translates into the validation fitness at the corresponding epochs. We can observe from
Figure 5.7 that the losses achieved by the RPN before unfreezing are considerably higher,
mostly due to its objectness component. Thus, it means that the regions proposed fit
quite well the ground truth objects but the RPN has a harder time differentiating posi-
tive boxes (objects) from negative boxes (background). Note that, since each network is
initialized with the same COCO pre-trained weights, loss values for loss_objectness and
loss_rpn_box_reg will be identical whatever the value of N as long as the RPN remains
frozen. Furthermore, it can be observed from the fitness scores that freezing the RPN
with pre-trained weights leads to proposals of sufficient quality in order to improve the
entire detection pipeline, but fine-tuning it after unfreezing leads to a much higher fitness,
significantly higher than when full fine-tuning is performed without any freezing. How-
ever, we cannot claim from this figure whether this improvement mainly comes from the
fine-tuning of the RPN or from the fine-tuning of the backbone. This will be made pos-
sible when investigating the setting where the backbone remains frozen during the whole
training with the RPN being fine-tuned already at the very first epoch. Nevertheless, we
can still conclude that this specific freezing-unfreezing technique leads to a large increase
in fitness, meaning that better regions are generated, which is visible from the losses in
Figure 5.7, but also that the predictor head becomes finer. As was already debated in
previous paragraphs, a larger validation fitness score does not necessarily imply larger
mAP @.5; therefore this metric will be computed for each model on the test set, along
with the average precision for each animal.

Test set results for these freezing experiments are reported in Table 5.13. As a general
observation, we can see that the trend that emerged for the validation set is confirmed
for the test set. Indeed, models for which the backbone and the RPN were frozen and
then unfrozen consistently outperform their counterpart with no freezing involved, the
best setting (N = 25) outperforming it by 2.56%. Looking at each class separately, we
can notice huge improvements for two specific animals, whatever the number of freezing
epochs: bats, moving away from an AP of 0.00% to one around 15.00% and leopards,
previously with a 4.31% AP and now with an AP of 32.20% for N = 25. For the latter, it
seems that the longer both components are frozen, the more its average precision increases.
This could mean that, for these animals, the model first needs to learn to localize and
classify them using features built from natural images before incorporating new features
related to the artistic style. Still, we can observe a similar degradation of performance as
regards animals intersecting with COCO classes, as was already underlined for previous
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mAP Q.5 Ass Bat Bear Bull Camel Cat Cow | Deer Dog Elephant | Fox Goat
No freezing 12.30 14.95 0.00 | 13.65 | 30.46 3.40 3.87 | 21.90 | 18.60 | 33.66 45.22 6.08 7.57

N =5 13.90 8.18 14.39 | 13.2 | 31.78 2.82 422 | 2325 | 1752 | 33.04 40.63 13.23 | 10.32
N =10 14.54 11.78 16.41 | 13.42 | 33.07 3.15 3.05 22.70 | 20.15 | 35.31 44.67 12.68 | 6.38
N =15 14.13 10.49 | 18.66 | 8.89 | 29.73 4.36 3.15 22.59 | 1848 | 3441 40.78 11.14 | 7.72
N =20 14.80 9.44 14.85 | 12.96 | 35.06 3.12 4.95 | 2041 | 22.21 | 33.64 44.78 12.75 | 7.85

N =25 14.86 12.68 14.29 | 12.88 | 35.40 4.22 4.23 22.21 | 19.89 | 34.95 44.78 15.79 | 8.65

Horse Leopard | Lion | Mouse | Pig | Primate | Rabbit | Rat | Sheep | Squirrel Tiger Boar | Wolf
No freezing 21.82 4.31 0.57 0.00 1.87 18.16 12.20 1.99 10.54 2.05 30.75 3.45 0.45
N=5 22.34 23.53 0.94 0.28 2.50 19.91 9.68 2.71 | 12.35 5.26 30.12 2.87 2.42
N =10 23.74 24.31 0.70 0.93 2.96 19.58 13.41 3.03 | 11.32 5.48 33.16 1.72 0.28
N =15 23.47 28.07 0.68 0.00 3.44 18.29 1342 | 3.12 | 11.17 4.57 33.12 2.11 1.45
N =20 21.58 28.65 0.68 0.00 3.97 20.51 | 13.92 | 4.03 | 10.34 3.85 32.97 517 | 2.24
N =25 20.49 32.20 0.50 0.00 | 4.08 20.34 13.43 | 2.28 | 10.29 2.42 32.74 1.72 1.10

Table 5.13: Performance of a fine-tuned Faster R-CNN with a COCO backbone frozen
for the first N epochs, on the paintings test set.

fine-tuned versions of Faster R-CNN and YOLO.

Freezing during the entire training (backbone only)

We will now consider a similar Faster R-CNN detector, whose backbone and RPN are
initialized with COCO pre-trained weights but where only the backbone will be frozen.
Thus, the RPN will get fine-tuned from the very beginning and the backbone will remain
frozen through the entire training stage. We will thereby be in state to judge whether
using an object detector (almost) off-the-shelf indeed yields better performance than the
previously considered freezing and unfreezing technique, as claimed in [56]. Although
not explicitly mentioned in [56], we decide to initialize the RPN with COCO pre-trained
weights instead of training it from scratch since we have observed from Figure 5.1 that
this leads to lower training losses.

From Figure 5.8, we can observe that the training loss for the setting where only the
backbone is frozen but for the entire training eventually converges to a significantly higher
loss value than settings where the backbone is eventually fine-tuned, after being frozen or
not. As was also expected, the loss trend does not exactly line up with the one observed
for the N-epochs-frozen settings since the RPN gets fine-tuned from the beginnning of
training, thereby vastly reducing its corresponding loss as could be seen from Figure 5.1
and 5.7, inducing a reduction of total loss.

As regards validation fitness, the model reaches a very low fitness score, close to those
obtained during the freezing stage of the backbone and of the RPN, for a number of epochs
greater than 15. However, we can notice that the model achieves its peak performance in
a significantly smaller amount of epochs if only its backbone is frozen and not if both the
backbone and the RPN are. This highlights the impact of fine-tuning the RPN from the
start and not after N > 15 epochs, emphasizing the fact that studying the scenario with
a COCO pre-trained backbone and RPN where only the backbone is frozen for N epochs
is an interesting path to explore.

This approach is also assessed on the paintings test set, on which it achieves an mAP @.5
equal to 7.01%, thereby endorsing the fact that it produces worse predictions than any
freezing-unfreezing setting.

We can thus conclude that freezing the backbone during the entire training is less bene-
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Figure 5.8: Training loss and validation fitness for Faster R-CNN initialized with COCO
pre-trained weights, with the backbone and RPN being frozen for N epochs vs no freezing
vs backbone freezing during the entire training. “Backbone only” represents the case
where the backbone is frozen during the entire training.

ficial than freezing and unfreezing lower layers, contradicting what was observed in [56].
Freezing the backbone for all epochs also yields worse downstream performance than
that of the fully fine-tuned detector, which could be expected since no paintings features
would be incorporated in the backbone. Finally, given that the fitness score for the set-
ting with only the backbone being frozen quickly stagnates while the RPN and predictor
head are being fine-tuned, we can argue that unfreezing the backbone, as was done in the
freezing-unfreezing setting along with the unfreezing of the RPN, contributes the most
to the improvement that could be observed in Figure 5.6. This thus suggests to try the
aforementioned approach of freezing and unfreezing only the backbone, and no longer the
RPN.

5.3.2 Faster R-CNN - Fine-tuned ResNeXt backbone

In this section, similar freezing experiments will be carried out on a Faster R-CNN model
but now considering as backbone the fine-tuned ResNeXt. In this case, the RPN has
to be initialized with new weights and, therefore, only the backbone will be frozen for
N epochs, which differs from the previous setting. Identically to the experiments ran
considering COCQO pre-trained weights, the backbone will be frozen for N = 5,10, 15, 20
and 25 epochs before getting unfrozen. Since the RPN is initialized with new weights,
it was decided not to freeze it, although it does not correspond to the setting considered
for COCO pre-trained weights in Section 5.3.1, because the main idea was to study the
influence of freezing the pre-trained modules.

Training loss and validation fitness can be visualized on Figure 5.9, where both quantities
for their no freezing equivalent are also reported. A similar trend as with COCO pre-
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Figure 5.9: Training loss and validation fitness for Faster R-CNN with a paintings fine-
tuned ResNeXt backbone, the latter being frozen for N epochs vs no freezing.

trained weights can be observed, where the freezing-unfreezing approach reaches lower
loss values and higher fitness scores. However, there is now a much higher difference in
loss (and fitness) values when comparing with the no-freezing setting than the difference
obtained starting from COCO pre-trained weights. Thus, we could expect these models
to perform much better than their no-freezing equivalent, although this will have to be
checked on the test set. Note that, as was the case previously, peaks are visible in the
training losses at the epoch following the unfreezing. Nevertheless, they now appear only
for N > 15 while they already appeared for N = 5 with a COCO pre-trained backbone
and RPN. In addition, the longer we wait before unfreezing the backbone, the higher the
peak but also the lower the final loss value, which was also the case before. Furthermore,
it appears clear that peaks obtained with a paintings-fine-tuned ResNeXt backbone are
much smaller than those obtained, at equal epochs, with a COCO pre-trained backbone
and RPN.

It seems that starting from COCO pre-trained weights or from a fine-tuned ResNeXt
backbone eventually yields similar fitness values when freezing for N epochs, as can be
visualized in Figure 5.10. However, as could be observed in both no-freezing settings, the
test mAP @.5 for the ResNeXt backbone was higher than that of the COCO backbone,
while the latter achieved a much higher validation fitness score than the former. There,
metrics were also computed on the validation set to see whether this was due to chance,
which turned out to be true. Therefore, both freezing-unfreezing approaches will be
compared on the validation set as well to see if any difference in mAP @.5 performance
on the test data also translates to the validation data.

Test set results for this ResNeXt freezing-unfreezing setting are reported in Table 5.14.
Once again, we can observe that such an approach improves the downstream test set
mAP @.5, this time even outperforming the no-freezing counterpart by 8.45%. We can
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mAP Q.5 Ass Bat Bear Bull Camel Cat Cow | Deer Dog Elephant | Fox Goat

No freezing 13.00 8.09 0.00 8.16 | 25.70 9.83 15.36 | 14.68 | 20.23 | 31.54 32.06 15.28 | 12.04
N =5 21.45 22.80 9.76 | 16.25 | 33.21 9.35 18.11 | 23.88 | 26.18 | 34.35 45.80 33.11 | 29.00
N =10 20.28 19.49 14.39 | 14.87 | 27.87 7.20 14.58 | 20.82 | 27.79 | 35.02 46.08 33.35 | 20.17
N =15 20.61 17.37 | 16.47 | 18.93 | 31.22 8.72 10.57 | 26.29 | 24.98 | 29.59 47.01 30.19 | 21.96
N =20 18.42 16.21 10.47 | 13.76 | 29.31 7.19 13.08 | 20.07 | 27.15 | 31.49 39.27 24.08 | 23.18

N =25 19.52 17.29 3.70 | 14.77 | 30.02 9.59 11.21 | 24.02 | 20.93 | 31.55 43.48 33.27 | 23.64

Horse Leopard | Lion | Mouse | Pig | Primate | Rabbit | Rat | Sheep | Squirrel Tiger Boar | Wolf

No freezing 30.84 5.10 5.78 0.00 0.92 18.30 27.58 | 4.05 | 19.10 0.00 20.29 0.00 0.00
N=5 29.02 43.07 | 2239 | 1.73 5.06 19.42 22.17 | 3.03 | 26.65 9.92 37.60 4.25 | 10.06
N =10 26.61 37.27 | 2090 | 2.59 7.80 17.42 24.88 | 2.81 | 24.19 | 13.73 34.87 3.45 8.94
N =15 32.15 47.87 13.27 | 4.47 | 6.29 20.14 20.37 | 1.44 | 22.86 | 13.12 35.05 6.32 8.57
N =20 23.77 37.19 18.05 | 2.67 5.25 18.53 22.06 1.89 | 20.95 | 10.32 34.41 4.31 5.51
N =25 27.41 43.10 19.80 | 2.14 6.70 15.08 23.81 1.45 | 24.28 | 13.34 33.77 8.33 | 5.31

Table 5.14: Performance of a fine-tuned Faster R-CNN with a fine-tuned-ResNeXt back-
bone frozen for the first N epochs, on the paintings test set.

thus conclude that freezing the backbone for a few epochs leads to significant improve-
ments compared to a model fine-tuned from the very beginning. This also confirms the
intuitive hypothesis that a model built upon a backbone fine-tuned on paintings should
perform better than one built upon a backbone pre-trained on photo-realistic images,
since it already incorporates relevant features.

Validation Test
COCO | ResNeXt | COCO | ResNeXt
N=5 1] 2235 29.94 13.90 21.45
N =10 | 2291 29.88 14.54 20.28
N =15| 22.65 28.00 14.13 20.61
N =20| 22.62 28.54 14.80 18.42
N =25 22.68 27.94 14.86 19.52

Table 5.15: Validation and test performance (mAP @.5) comparison for freezing-
unfreezing Faster R-CNN with a COCO pre-trained/fine-tuned ResNeXt backbone.

These results can be put in contrast with those obtained for identical settings but starting
from a COCO pre-trained backbone and RPN, and are reported in Table 5.15. From
this table, it appears clear that the trend observed for the test set also holds for the
validation set. Therefore, freezing-unfreezing should be considered for any backbone but
a fine-tuned ResNeXt backbone should be preferred if we want to maximize the mAP @.5.
Since both backbones achieve relatively similar fitness scores, as is illustrated in Figure
5.10, we can deduce that they only reach comparable performance for the mAP @[.5,.95],
although it should be noted that both models could show different performance for each
of these thresholds, as this represents an average over 10 IoU thresholds. Note that this
performance gap can be due to the fact that the ResNeXt backbone already incorporates
paintings-specific features, but it could also be due to the fact that the RPN was frozen
for N epochs.

Freezing during the entire training

In a similar manner to what was carried out for the Faster R-CNN with COCO pre-trained
weights, a setting where the backbone remains frozen throughout training is considered,
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Figure 5.10: Validation fitness comparison for Faster R-CNN with two different backbones.
“Backbone only” refers to the setting where the backbone remains frozen during the entire
training, with all other components being fine-tuned.

which can be called off-the-shelf. This will allow us to compare what was highlighted
with the COCO backbone equivalent to see whether it also performs worse than the
freezing-unfreezing scenario.

As can be observed from Figure 5.11 and 5.10, freezing the backbone during the whole
training yields significantly higher losses and significantly lower fitness scores, which was
already observed with a COCO pre-trained backbone. We can thus expect its performance
to be worse than that of any Faster R-CNN model encountered so far, since it achieves
the lowest validation fitness.

When evaluated on the test set, this model achieves an mAP @.5 equal to 8.61%, which
surprisingly outperforms its COCO equivalent by 1.60%. Since an identical scenario oc-
curred between both backbones for the no-freezing setting, performance on the validation
set will be assessed for both settings where freezing is carried out throughout training.
On the validation set, the Faster R-CNN with COCO backbone achieves an mAP @.5
of 10.01% while its ResNeXt counterpart reaches 12.15%. Therefore, even though the
validation fitness of the latter is lower than that of the former, it still performs better for
an IoU threshold of 0.5. This also means that its performance with higher thresholds will
necessarily be worse than that of the model with the COCO backbone.

Finally, we can underline the fact that using the object detector with a paintings fine-
tuned ResNeXt backbone off-the-shelf does not lead to gains of performance compared to
freezing-unfreezing settings.
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Figure 5.11: Training loss comparison for Faster R-CNN with two different backbones.
“Backbone only” refers to the setting where the backbone remains frozen during the entire
training, with all other components being fine-tuned.

5.3.3 Freezing Faster R-CNN: Conclusions

As could be observed through the different freezing experiments conducted on Faster R-
CNN, results are of similar nature whatever the considered backbone, i.e. starting from a
paintings fine-tuned ResNeXt backbone or from a COCO pre-trained backbone and RPN.
In both cases, the highest improvements are achieved when the backbone (and RPN, for
the COCO pre-trained Faster R-CNN) is frozen for N epochs and then unfrozen in order
to let it fine-tune on paintings.

It can be noted that no common value of N leads to the finest enhancements across both
backbone settings. Indeed, for the COCO pre-trained version, mAP @.5 performance
seems to improve as we wait longer before unfreezing the backbone and RPN. On the
other hand, for the ResNeXt version, it rather seems to decrease as N increases. There
is also a large difference in the improvements across backbones since the setting with the
ResNeXt backbone improves by 8.45% compared to its no-freezing equivalent while the
setting with COCO pre-trained weights only improves by 2.56%.

Whatever the considered backbone, freezing it during the entire training leads to the
worst results and to the highest losses, which could somehow be expected since no artistic
features are incorporated during training.

Similar experiments where the COCO pre-trained RPN is replaced by a new RPN with
randomly initialized weights (as is the case with the ResNeXt backbone) could be con-
sidered to investigate whether using a pre-trained RPN eventually results in a learning
bottleneck compared to a “from scratch” RPN, since performance achieved with a pre-
trained RPN is nowhere near that of the model relying on a ResNeXt backbone, which
does not start from pre-trained weights for the RPN. However, as could be observed from
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Figure 5.1, starting from pre-trained weights leads to lower losses for the RPN, hence
it should not represent a bottleneck in the learning process. We can thus claim that
the model that uses the ResNeXt backbone mainly benefits from the fact that its back-
bone has already embedded paintings-specific features compared to a COCO pre-trained
backbone which only incorporates features from natural images. Another sanity check to
verify this claim would be to run the same freezing-unfreezing experiments with a COCO
pre-trained backbone and RPN where only the backbone would get frozen for N epochs.
If we then observe that the final performance for the latter is even with that of the best
ResNeXt-initialized freezing-unfreezing setting, it would mean that the main benefit does
not necessarily come from the ResNeXt backbone but rather from the fact that the RPN
is not frozen.

5.3.4 YOLO - COCO pre-trained weights

In a similar philosophy as for Faster R-CNN, we can initialize YOLO’s backbone with
COCO pre-trained weights and initialize its head with new weights. Note that this differs
from the full fine-tuning setting considered previously since the head was also initialized
with pre-trained weights at that moment. Here, the idea is to study the influence of freez-
ing and unfreezing the backbone along with the influence of the backbone itself; therefore
it made more sense to start from a new head, as was done for Faster R-CNN.
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Figure 5.12: Training loss and validation fitness for YOLO, with a backbone initialized
with COCO pre-trained weights and frozen for N epochs vs no freezing vs freezing during
the entire training. “Backbone only” refers to the setting where the backbone is frozen
for the whole training.

Once again, freezing will be considered for N = 5,10, 15, 20 and 25 epochs before allowing
the fine-tuning of the backbone. Training loss and validation fitness are displayed on
Figure 5.12. From this figure, we can observe that only three settings achieve relatively
comparable performance: no-freezing (full fine-tuning obtained in Section 5.2.2), freezing
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for 5 epochs and backbone freezing throughout training, which will be discussed later.
All the other freezing-unfreezing settings do not manage to surpass a validation fitness of
10%, therefore their performance can only be expected to degrade.

These poor performing settings also stop training quicker than the other ones. In fact,
they all stop training after the first ten epochs that follow unfreezing since no improvement
is observed based on the fitness criterion. We can observe that, for the epoch following
the unfreezing, validation fitness increases but then suddenly drops and it is impossible to
catch up for the next ten consecutive epochs. This also translates into the training losses,
where we can see, e.g. for N = 20, that the loss decreases at the 21st epoch but then
suddenly increases, reaching a peak that is too hard to recover in ten epochs. The longer
we wait before unfreezing, the higher the peak, which explains why the setting with N =5
could recover and continue its training, although never reaching a loss nor validation
fitness better than those obtained for the full fine-tuning setting, which is different than
what was observed for Faster R-CNN where the no-freezing setting performed the worst.
These peaks were also observed for Faster R-CNN but the model always managed to catch
up. Similar hypotheses can be evoked, i.e. relating to momentum and batch normalization
layers trained after unfreezing, but we can add the possibility that the network started
from a too high learning rate after unfreezing, which could have made it bifurcate from
its original path derived during the freezing stage. One could argue that this effect is
dampened for N = 5 because the learning rate at the fifth epoch did not have the time
to decrease too much thanks to learning rate scheduling. This is not the case for Faster
R-CNN where learning rate scheduling is only involved after unfreezing lower layers; the
learning rate thus remains constant during the freezing stage.

mAP @.5 Ass Bat | Bear Bull | Camel Cat Cow | Deer Dog Elephant | Fox | Goat
No freezing 18.30 19.60 0.88 9.01 31.60 5.31 9.88 22.30 | 27.40 | 34.80 41.00 13.30 | 19.20

N =5 18.40 18.50 | 4.88 | 12.20 | 35.50 5.97 798 | 28.80 | 20.10 | 32.70 36.70 21.30 | 17.20
N =10 10.10 7.92 0.23 | 3.53 | 27.60 1.28 9.08 20.90 | 13.80 | 32.10 27.60 1.16 9.09
N =15 11.30 11.20 0.27 | 7.23 | 25.80 3.95 10.00 | 22.30 | 12.50 | 28.60 37.60 175 9.50
N =20 12.20 9.58 0.24 | 13.10 | 25.80 1.35 8.87 27.00 | 18.60 | 32.50 32.60 4.75 8.70
N =25 12.90 17.70 0.32 | 10.10 | 23.40 1.63 8.26 24.50 | 17.20 | 26.90 40.80 4.95 9.07

Horse Leopard | Lion | Mouse | Pig | Primate | Rabbit | Rat | Sheep | Squirrel Tiger Boar | Wolf
No freezing 32.10 28.50 | 9.15 1.13 7.41 31.00 21.40 7.07 | 21.90 10.20 35.20 8.89 9.65
N=5 31.30 25.50 | 6.34 | 1.38 8.29 28.30 21.30 | 7.48 | 23.70 | 18.00 29.80 7.65 8.76
N =10 29.60 8.26 1.67 | 0.48 2.77 18.70 4.38 1.82 8.60 0.67 17.10 2.76 1.49
N=15 27.80 11.70 | 0.93 | 1.04 4.71 19.60 9.54 2.57 | 11.00 1.06 16.00 3.07 | 231
N =20 28.80 14.10 1.07 | 1.94 3.46 16.20 12.70 2.21 | 15.20 3.05 14.80 4.91 4.62
N =25 31.80 17.30 1.88 | 1.33 791 14.80 18.30 | 3.97 | 10.30 6.14 19.00 2.68 3.38

Table 5.16: Performance of a fine-tuned YOLO with a COCO backbone frozen for the
first IV epochs, on the paintings test set.

From the validation fitness, we could expect all freezing-unfreezing models to be outper-
formed by their fully fine-tuned counterpart. Results on the test set are reported in Table
5.16. From these, we can notice that, as was expected, settings with N > 10 perform very
poorly compared to N = 5 or when no freezing is involved. We can however notice that,
the longer we wait before unfreezing, the higher the mAP @.5. This can be explained by
the fact that YOLO’s head is composed of several layers compared to Faster R-CNN whose
head, i.e. the Fast R-CNN predictor, is only composed of two linear layers. Therefore,
it is natural that waiting longer before unfreezing (and, to some extent, before stopping
training, since unfreezing results in model degradation) allows for a better tuning of the
head’s weights.
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Test set | Validation set
No freezing | 18.30 27.70
N =5 18.40 27.00
N =10 10.10 14.50
N =15 11.30 16.60
N =20 12.20 19.20
N =25 12.90 17.90

Table 5.17: Performance of YOLO on the paintings validation and test sets, for a backbone
initialized with COCO pre-trained weights (fully fine-tuned vs frozen for N epochs).

We can notice that the best mean average precision is obtained for the setting with
N =5 and not for the fully fine-tuned model, as could be expected from Figure 5.12. As
a sanity check, models will also be assessed on the validation set, as was already carried
out multiple times for previous Faster R-CNN settings. Validation results are reported
in Table 5.18. We can observe from these results that performance indeed deteriorates
for N > 10 but that models improve if we wait longer before unfreezing. In addition,
it also tells us that the fully fine-tuned YOLO model outperforms by 0.70% the setting
with N = 5, which contradicts the observation made for the test set. In any case, both
models perform similarly well, and models for which freezing is carried out for too long
perform much worse. This can be put in contrast with the results obtained for Faster
R-~-CNN considering a backbone and RPN initialized with COCO pre-trained weights, for
which it was concluded that this freezing-unfreezing technique was successful enough to
improve downstream mean average precision performance.

Freezing during the entire training

YOLO can also be trained off-the-shelf with COCO pre-trained weights to assess whether
this approach yields better results than the previous freezing-unfreezing one. From Figure
5.12, we can see that this is indeed the case, at least comparing with settings for which
N is not equal to 5. Comparing to the latter, its performance seems a little bit worse.
In addition, the fully fine-tuned YOLO model seems to outperform all other considered
settings.

It is also worth noting that this setting took the most time to finish training. However,
we can see that it tends to converge to loss values slightly worse than those obtained for
the full fine-tuning setting, while validation fitness seems much worse compared to its
fine-tuning counterpart. Furthermore, we can see that, whatever the considered setting,
training is stopped before losses have converged on the training set. This seems mainly due
to YOLQ'’s learning behavior as regards the validation fitness, which is quite messy.

Validation and test set performance for this setting is reported in Table 5.18 where it
is compared with the performance obtained by its fully fine-tuned equivalent and the
setting with V = 5. We can see that it achieves worse mean average precision scores
whatever the assessment data set and should therefore not be preferred. However, it is
worth noting that freezing the backbone during the entire training leads to a dampened
degradation of model performance compared to settings where unfreezing is considered.
Keeping in mind previous assumptions about reasons for the observed loss peaks, this
behavior can be expected since we will never mess with the gradients history nor with
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Test set | Validation set

No freezing 18.30 27.70
N=5 18.40 27.00
Entire training | 15.00 23.80

Table 5.18: Performance of YOLO on the paintings validation and test sets, for a backbone
initialized with COCO pre-trained weights, fully fine-tuned, frozen for 5 epochs or frozen
during the entire training.

batch normalization layers present in the backbone, which remain frozen indefinitely. It
thus has no peak to recover from and can continue training freely. In addition, the head
trained from scratch will be trained longer and therefore be more performant.

In general, we can observe that, for all settings previously considered, training seems to not
have completely converged. This is trivial to verify for the freezing-unfreezing approach,
but for the other techniques, we can argue that the model could have achieved lower
losses and higher validation fitness scores if it had the opportunity to continue training
any further. This could be checked by running similar experiments and dropping the early
stopping criterion which cuts off training whenever no validation fitness improvement is
seen in ten consecutive epochs. Of course, we would still keep as final model the one that
achieved the highest validation fitness. Please note that these experiments were not run
due to time and computational constraints, as was already the case previously with the
COCO pre-trained version of Faster R-CNN.

5.3.5 YOLO - Fine-tuned ResNeXt backbone

Instead of starting from COCO pre-trained weights, we will now begin our freezing-
unfreezing experiments with weights obtained for the fine-tuned ResNeXt model, and we
will also compare with results obtained for the (almost) fully fine-tuned version of this
model, where only the head was trained from scratch. In these experiments, contrary to
those conducted with COCO pre-trained weights, both the fine-tuned YOLO model and
its freezing-unfreezing equivalents will start from a new head. In the previous scenario,
only the fully fine-tuned version started from a pre-trained head too.

Freezing epochs will be the same as before. The corresponding training loss and validation
fitness curves are represented in Figure 5.13. In opposition to the freezing-unfreezing
approach carried out with COCO weights, we can see that the setting with N = 10 also
manages to recover from the loss peak, ending at very close loss values to the fine-tuning
setting, which also translates into validation fitness scores. As was the case previously,
models with N > 15 stop training too early but manage to achieve higher fitness scores
than their COCO counterparts. This means that using the paintings fine-tuned backbone
as starting point is beneficial thanks to the particular features it embeds.

Similarly to Faster R-CNN, peaks in training losses are smaller when the ResNeXt back-
bone is used rather than COCO pre-trained weights, which explains why the setting with
N = 10 could recover. Once again, training seems to be stopped too early and it could
be expected that models would achieve higher performance with no stopping criterion. If
time had permitted, we could have re-run these experiments with no stopping criterion
to assess the performance of (the best of) these models after say 300 epochs.
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Figure 5.13: Training loss and validation fitness for YOLO, with a paintings fine-tuned
ResNeXt backbone frozen for N epochs vs no freezing vs freezing during the entire train-
ing. “Backbone only” refers to the setting where the backbone is frozen for the whole
training.

Test sets results are available in Table 5.19. Similarly to the previous scenario where
COCO weights were used, we can see that the final performance degrades as backbone
freezing and unfreezing is applied. Nevertheless, the degradation is less severe with this
paintings fine-tuned backbone, emphasizing the fact that starting from such a backbone
allows to quickly reach a performance that is comparable to that achieved with a fully fine-
tuned YOLO starting from a backbone and head pre-trained on photo-realistic images,
although it starts from a head with random weights.

Freezing during the entire training

Finally, the ResNeXt backbone will be frozen throughout training, while the head still
starts from new initial weights. For a YOLO detector with a COCO initialized back-
bone, we observed that freezing the backbone during the entire training also led to a
degradation of downstream performance, but it was less severe than when unfreezing was
considered.

This final setting can be observed in Figure 5.13, where both training loss and fitness scores
are displayed across epochs. Similarly to the same scenario with a COCO backbone, we
can notice that it will reach final loss values higher than those obtained when fine-tuning
the backbone, which could be expected. It also achieves loss values higher than what
is obtained for the freezing-unfreezing setting but seems to achieve a higher final fitness
score. This improvement in performance will have to be compared to other settings based
on the test set.

From Table 5.20, we can observe that freezing the backbone during the entire training
consistently outperforms previously obtained mAP @.5 on both the validation and test
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mAP Q.5 Ass Bat Bear Bull Camel Cat Cow | Deer Dog Elephant | Fox Goat
No freezing | 19.30 14.20 2.91 | 14.60 | 27.00 8.48 10.60 | 30.10 | 20.80 | 37.50 36.20 19.90 | 21.40

N =5 17.70 17.00 8.96 | 16.30 | 27.50 7.06 9.42 21.80 | 25.40 | 31.90 32.40 20.00 | 16.60
N =10 18.70 14.70 | 10.80 | 14.30 | 32.60 6.42 10.10 | 26.30 | 24.00 | 34.60 37.00 18.30 | 17.50
N =15 18.80 15.50 5.63 | 11.20 | 28.20 4.60 16.70 | 24.90 | 23.30 | 36.70 41.30 17.80 | 22.20
N =20 19.10 15.70 7.67 | 10.10 | 31.20 4.84 12.10 | 23.20 | 19.80 | 40.00 37.10 25.50 | 23.00
N =25 18.80 8.30 7.40 | 10.20 | 32.10 5.19 16.40 | 27.40 | 16.50 | 37.70 44.00 14.90 | 22.50

Horse Leopard | Lion | Mouse | Pig | Primate | Rabbit | Rat | Sheep | Squirrel Tiger Boar | Wolf
No freezing 28.40 41.90 15.20 | 0.77 5.74 28.40 21.90 5.11 17.20 17.00 28.80 2210 | 6.31

N =5 26.20 34.00 12.60 | 2.03 4.69 24.30 22.80 4.53 | 12.90 6.31 29.50 1770 | 9.44
N =10 31.90 31.50 7.25 2.86 3.70 22.60 25.50 6.54 | 18.20 12.30 33.60 19.30 | 5.71
N =15 21.50 40.40 13.40 | 1.75 5.78 22.10 30.20 | 9.55 | 11.10 3.58 38.50 16.40 | 8.85

N =20 32.50 35.00 14.30 | 1.96 5.40 17.90 29.10 6.40 | 20.80 3.84 39.50 13.80 | 6.85
N =25 26.70 39.10 14.50 | 2.26 7.75 19.20 33.70 | 9.52 | 12.00 4.92 32.80 15.80 | 8.18

Table 5.19: Performance of a fine-tuned YOLO with a fine-tuned-ResNeXt backbone
frozen for the first N epochs, on the paintings test set.

Test set | Validation set

No freezing 19.30 28.40
N =20 19.10 29.90
Entire training | 20.10 33.40

Table 5.20: Performance of YOLO on the paintings validation and test sets, for a backbone
initialized with COCO pre-trained weights, fully fine-tuned, frozen for 5 epochs or frozen
during the entire training.

sets, with an improvement of 0.80% on the latter. This confirms the trend represented
in Figure 5.13. Still, we can once again underline the fact that the model could have
potentially achieved higher fitness scores, thus higher performance, if training had not
stopped based on the stopping criterion. Note that opposite results can be observed
for N = 20 and the fine-tuning setting between the validation and test results, which
illustrates that both achieve similar performance.

5.3.6 Freezing YOLO: Conclusions

Throughout the experiments conducted on YOLO, we have mostly observed close behav-
iors for both backbones although the corresponding magnitudes are different. Indeed,
freezing and unfreezing the backbone generally leads to a degradation of downstream
performance. Nevertheless, this degradation is less severe when YOLO starts from a
backbone that is already fine-tuned on paintings rather than a backbone pre-trained on
natural images. This could seem intuitive since the former already integrates features
related to the artistic domain while the latter does not, which greatly helps to overcome
the peak happening after unfreezing is conducted.

As concerns the setting where the backbone remains frozen throughout training, it ap-
pears that it still deteriorates performance for the COCO initialized YOLO but allows to
improve final performance with the ResNeXt backbone. An interesting experiment would
be to remove the stopping criterion and freeze the backbone for a high number of epochs,
say 50, then to unfreeze it and let training continue, but also to re-run the experiment
where the backbone remains frozen during the entire training with no stopping criterion
either. This way, we would be able to assess whether there are any gains to eventually
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fine-tune the backbone on full size paintings (since the backbone is currently fine-tuned
on crops) after the head has had enough time to stabilize. As was already mentioned, we
could also run all previous experiments with no stopping criterion, which could not be
carried out due to time and computational constraints.

The best resulting YOLO detector corresponds to the model whose backbone is frozen
throughout training, as was illustrated before. It outperforms the second best detector
(its fine-tuned equivalent) by 0.80% on the test set and by 5% on the validation set.

5.4 Analyzing the final object detector

In this section, we will try to provide some visual intuitions about the predictions made
by the best model obtained in the previous experiments, i.e. the Faster R-CNN detector
initialized with the ResNeXt backbone that was frozen for 5 epochs. For that purpose, we
will provide several visual samples of correct and incorrect predictions and try to underline
some interesting patterns.

(/upz'tﬂd,
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Figure 5.14: Examples of correct detections.

Some examples of correct detections are depicted in Figure 5.14. It is worth noting that
the model incorrectly detected a cow instead of a bull in the last painting of the first row.
This error points back to the intuitive misclassifications that we could observe for the
ResNeXt model in the confusion matrix.

What could also be observed from the predictions made by the model is that it seems to
frequently detect humans as primates, as is illustrated in Figure 5.15. Interestingly, they
are all standing up, although the last one only focused on the head, similarly to the first
one, where both heads are facing towards the observer. It could be insightful to run the
detector on photo-realistic images of people standing up or sitting, but also facing the
camera. This could be solved by adding a human category.
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Figure 5.15: Examples of incorrect primate detections.
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Figure 5.16: Influence of colorimetry on detections.
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Figure 5.17: Examples of incorrect detections when facing animals that did not appear
during training.

We could also observe that the model was sensitive to slight changes in colorimetry and
lighting conditions. From Figure 5.16, it can be noticed that the model produces different
detections as colorimetry varies. For the detections to the right of the figure, the model is
unable to detect the bat depicted on top of the painting. Furthermore, these colorimetry
changes also show that the model is not insensitive to symmetry. Indeed, both paintings
are horizontally flipped but represent the same scene. However, no detections are produced
for the last picture.

In Figure 5.17, we illustrate the behavior of the model when it is provided with artworks
that mix animals present in the 25 output classes with animals that are not. The model
tries to make sense out of their depictions although it has never seen instances of these
animals. For example, in the drawings to the right of the figure, the model correctly
detects the rabbit in the first row and the squirrel in the last row but it then detects
marmots and beavers as mice, which are in some sense the most resembling animals that
it has seen during training. An identical observation can be made for the bottom left
depictions, where the model should only detect the bat on top. Instead, it detects all
other flying animals except the latter, and classifies them as camels.

Finally, in Figure 5.18, we represent an error pattern that does not appear too frequently
but which is still not negligible. This pattern consists in producing multiple bounding
boxes for the same animal, resulting in more false positives for the redundant detections.
Usually, a non-maximum suppression (NMS) technique is applied to remove redundant
bounding boxes. This technique consists in removing lower scoring bounding boxes that
have an IoU greater than a specified loU threshold with a higher scoring box. However,
in this work, we applied NMS with an IoU threshold of 0.3, which is already quite strict.
We could decrease this threshold even more, but then it could lead to smaller animals not
being detected if they are standing in front of another larger animal, since the smaller
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Figure 5.18: Examples of redundant bounding boxes.

bounding box will most likely be included in the larger box. It is worth noting that most
duplicate bounding boxes correspond to the head or the legs of the animal, which could
indicate that they are representative features to detect these animals.

5.5 Conclusions

In this chapter, we have tried to thoroughly compare two object detection approaches:
a region-based object detection technique against a unified regression model. For that
purpose, we have opted for Faster R-CNN and YOLO respectively.

As a very first step, we have have assessed their performance as detectors pre-trained on
natural images, in particular on the COCO dataset. Only seven animals happened to lie
in the intersection with COCO, therefore we could only evaluate them on seven classes.
It appeared that YOLO was a clear winner against Faster R-CNN, outperforming it for
every class.

Afterwards, we have studied, for each model, the influence of using a backbone (and RPN,
in the case of Faster R-CNN) pre-trained on COCO in opposition to a backbone that was
already fine-tuned on paintings. In this case, we relied on the convolutional layers of
the fine-tuned ResNeXt model obtained in Chapter 4. Each model was then fine-tuned
adequatly on paintings and performance was assessed to see whether improvements were
indeed visible compared to detectors only pre-trained on COCO.

For Faster R-CNN, we have observed that, contrary to what could have been expected,
fine-tuning a COCO pre-trained model yields a slightly higher mAP @.5 than fine-tuning
a detector whose backbone already incorporates artistic features, even though we can
underline that both approaches reached relatively similar performance. Indeed, the former
performed better on the validation set while the latter performed better on the test set.
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We have also compared results obtained with the COCO pre-trained version against those
obtained for its fine-tuned counterpart to understand the impact of fine-tuning, at least for
the animals present in the intersection. There, it was observed that the model improved
on three animals but its performance degraded for the four others.

As regards YOLO, no hesitation exists between both backbones: the best mAP @.5 is
achieved with the backbone already fine-tuned on paintings, whatever the evaluation set.
Contrary to Faster R-CNN, none of both YOLO’s fine-tuned models have 0.00% average
precision for any animal. Nevertheless, an identical pattern was observed between the
COCO pre-trained YOLO model and its fine-tuned equivalent, whose performance also
deteriorated for the same animals as for Faster R-CNN. This most likely indicates a
case of negative transfer due to the probable variance in artistic styles depicting these
particular classes. For both Faster R-CNN and YOLO, Spearman correlation tests have
pointed out that there exists a positive (non negligible) correlation between the amount of
training occurrences for each animal and their corresponding average precision scores. In
addition, they have also underlined that, for animals with smaller bounding boxes, models

were more likely to achieve worse performance. Both observations were hypothesized in
Chapter 3.

The performance gap that was highlighted between both models when evaluated as COCO
pre-trained models, as shown in Table 5.1, persists for their fine-tuned versions, what-
ever the backbone. The best fine-tuned detector is YOLO with the paintings fine-tuned
backbone, reaching an mAP @.5 equal to 19.30% on the test set.

In a slightly different approach, freezing was considered for both detectors, once again for
both types of backbone. Concretely, the idea was to see whether freezing the backbone
(and RPN, for the case of the COCO pre-trained Faster R-CNN model) for N epochs
before unfreezing it could lead to improvements with respect to the settings where both
the backbone and the head are directly fine-tuned from the very first epoch. There, a
different behavior was observed between both Faster R-CNN and YOLO models.

Concerning Faster R-CNN, freezing for N epochs improved downstream performance
compared to direct fine-tuning, whatever the considered backbone. However, a notable
difference could be observed in the magnitude of these improvements, as starting from the
ResNeXt backbone yields a gain of 8.45% while starting from the COCO backbone (and
RPN) only produced a 2.56% improvement on the test set. This underlines the benefits
of combining this freezing-unfreezing approach with a backbone already incorporating
artistic features, which helps the predictor head to converge to a higher performance level
when unfreezing is carried out.

For YOLO, the opposite effect can be observed. Indeed, this freezing-unfreezing technique
deteriorates performance for both backbones. This can be attributed to the fact that
YOLO'’s head takes more epochs to train from scratch compared to Faster R-CNN’s head
as it is composed of more layers. When unfreezing the backbone, similar loss peaks as for
Faster R-CNN can be observed, which indicate that training is disturbed at some point.
Faster R-CNN is able to recover in less than ten epochs and can then continue training
and achieve higher performance. YOLO could unfortunately not recover in ten epochs
for most freezing settings, which could also be endorsed by a too high initial learning
rate after unfreezing. We can however notice that degradation is less pronounced when
YOLO starts from the ResNeXt backbone, which underlines the fact that starting from a
backbone already fine-tuned on paintings really helps the head when it needs to be trained
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from scratch. As was already explained, removing the stopping criterion for YOLO models
would very likely be beneficial, although this could not have been investigated.

Finally, a setting where the backbone remains frozen throughout training was considered
for both models, and both types of backbone. For both detectors, it was observed that
freezing the paintings fine-tuned backbone lead to better results than freezing the COCO
backbone, which could be expected as the heads, trained from scratch, are able to take ad-
vantage of feature representations that are more specific to paintings. For Faster R-CNN;,
this approach leads to worse results than the freezing-unfreezing approach, which can be
expected since no fine-tuning of the backbone is involved. For YOLO, we can observe
that it consistently outperforms the freezing-unfreezing settings, which underlines that
disturbed too much when unfreezing is performed. Indeed, freezing the ResNeXt back-
bone for the entire training even yields the best results across all other YOLO variations.
We can thus expect that, if we let the backbone frozen for a sufficiently high number of
epochs such that the head can stabilize, and that we eventually unfreeze the backbone
in order to fine-tune the entire network with a small enough learning rate, then we could
improve results for both backbones. Naturally, it would imply to target and to resolve
the learning issues encountered when unfreezing.
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Chapter 6

Conclusion

In this thesis, as part of the INSIGHT project, we have investigated the application of
deep learning techniques to the field of digital humanities. In a perspective directed
towards the automatic annotation of artworks to ease their digital integration, several
convolutional neural network architectures have been studied to tackle the related tasks
of classification and object detection. In particular, this work focused on the classification
and detection of animal depictions although a collection of artworks illustrating fruits has
also been annotated by project members for similar purposes.

For the classification task, we have assessed the performance of several state-of-the-art
classifiers in multiple settings. The initial baseline consists of their performance as ar-
chitectures pre-trained on ImageNet. There, we have been able to appraise how these
architectures performed when facing such a domain transfer. It resulted that the best
achieved top-1 accuracy was equal to 37.24% for the ResNeXt-101 32 x 8d model, clearly
highlighting the gap implied by domain transfer.

From there, different approaches were explored to evaluate their impact on classification
accuracy. Models trained from scratch were compared to off-the-shelf and completely
fine-tuned models, the latter achieving the highest accuracy whatever the considered ar-
chitecture. Once again, the best performance was reached by the ResNeXt architecture,
with an accuracy of 65.01%, outperforming by almost 28% its pre-trained counterpart.
In addition, we have also provided different interpretational means to gain a deeper un-
derstanding about model predictions and about its performance for each animal. For
instance, we have presented several visual illustrations to characterize regions of the in-
put images thought as important by the model to make its final prediction.

Regarding the detection task, we followed a similar path as for the classification problem.
Two distinct object detection approaches were compared and their performance was first
assessed using detectors pre-trained on COCO. This allowed us to get a first flavour of
how well they could deal with the domain shift from photo-realistic pictures to artworks,
although, unfortunately, a deep comparison with their performance on natural images
when used as pre-trained detectors could not be obtained.

As a last step, we have studied the influence of several transfer learning approaches to deal
with this domain transfer. For that purpose, a meta-comparison of backbone influence was
provided to determine whether starting from a backbone already fine-tuned on paintings
would necessarily yield better performance. Different training behaviors were obtained
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depending on the considered setting but also on the considered model and backbone.
From all experimented settings, the best object detector that we have derived is a Faster
R-~-CNN model, using as backbone the fine-tuned ResNeXt classifier obtained during the
classification task, for which its backbone was frozen for 5 epochs. This model achieved
a final mAP @.5 equal to 21.45%. In addition, we have highlighted other experiments
that could have been carried out to further assess the impact of the models’ individual
components and of the training setting. Along with those, some ideas and intuition to
improve current results have been proposed.

All approaches explored in this work can be extended from the task of classifying/detecting
animals to that of classifying/detecting fruits. Even more, it is not necessary to construct
an ImageNet fruits-only dataset as we could directly fine-tune pre-trained classifiers on
fruit crops, unless we want to assess per class fruit accuracy for pre-trained architectures.
In addition, we could even reuse the ResNeXt classifier fine-tuned on animal crops and fine-
tune it further on fruit crops. Then, we could either use this final classifier as backbone to
an object detector and repeat the various experiments or simply apply the same technique
with a detector that is fine-tuned on animal artworks, i.e. reuse the detector to fine-tune
it further on fruit depictions.

To try to improve upon current results, we could investigate other learning approaches
than strict supervised object detection where input pictures are matched with output
bounding box annotations. For instance, we could explore techniques of few-shot learning
applied to object detection [57, 58]. These approaches help detectors to better detect
objects that have only a few annotated examples. This would potentially improve perfor-
mance for the tail of less frequent animals. In [57], for example, they rely on a two-stage
pipeline. In the first stage, the entire object detector is trained on objects that appear
frequently. The second stage consists in freezing the feature extracting modules and only
fine-tuning the predictor head on a balanced set of frequent and rare classes. Another
possibility could be [59], where authors propose a novel deep learning framework to tackle
the problem of zero-shot object detection by relying on textual descriptions to help the
optimization of the network. An easy way to provide textual descriptions automatically
(with no human involved) would be to retrieve the animal names as we retrieve their
images and bounding boxes.
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Appendix A

Building blocks of CNNs

To illustrate all the following concepts, an example of a convolutional neural network
is provided in Figure A.1. It graphically and abstractly represents the usual stack of
convolutional and pooling layers, followed by some fully-connected layers.

A.1 Convolutional layer

A convolutional layer takes as input a tensor of dimensions C' x H x W and outputs a
tensor of dimensions D x H' x W', where C' and D denote the number of input and output
channels, respectively, and where the other dimensions indicate the height and width of
the tensor. For example, in Figure A.1, the number of output channels D after the first
convolutional layer is equal to 32. Each output channel d corresponds to a particular
kernel (filter) of dimensions C' x h x w, which will capture specific features using spatial
information thanks to the convolution operation: every component (i,7) in an output
channel is calculated as the the sum of the elements of the component-wise product
between its corresponding filter and a window of the same size as the filter centered at
(+,4,7) in the input tensor. This window is called the receptive field of element (¢, j), and
the effective receptive field is defined as the receptive field with respect to some input
tensor, e.g. with respect to the input image.

A stride is also defined, to reduce the spatial dimensions of the input tensor, which is
called downsampling, by moving the filter multiple elements at a time (horizontally and
vertically) instead of one element at a time.

Padding can be added to the input tensor to deal with spatial downsampling in the
output tensor and it consists in adding dummy bordering elements to the input. Without
padding, the output tensor will inevitably shrink if the spatial dimensions of the filter are
greater than 1.

A.2 Pooling layers

The idea of a pooling layer is to reduce tensor dimensions while keeping as much infor-
mation as possible, to decrease the amount of parameters needed as depth increases. The
number of channels remains unimpaired. For this purpose, pooling layers apply a certain
operator (e.g. the max operator) by sliding a n X m pooling window, with a stride of
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Figure A.1: Example of a CNN architecture for digit classification. (Source: [60])

(n,m). This means that, for an input tensor of dimensions H x W, the output will be a
tensor of dimensions % X % where each element corresponds to the value resulting from
the corresponding n x m window in the input tensor on which the operator is applied.
This principle is illustrated in Figure A.1 between the first two convolutional layers, where
the input tensor is downscaled by a factor of 2.

A.3 Activation functions

Activation functions are mostly non-linear functions applied to increase the representation
capacity and complexity of successive layers. It will eventually help the decision function
to be more discriminative, however less interpretable.

Most widely used activation functions are namely the sigmoid function and the hyperbolic
tangent function, defined as:

B 1

1+ exp(—2)
_exp(z) — exp(—2)
tanh(z) = ep(e) + exp(=2)

a(2)

which will output a value in [0, 1] or [—1, 1] respectively. However, such functions have a
tendency to saturate (to a high or low response) for most values of their domain, and are
firmly responsive only around O-inputs. In addition, they also lead to vanishing gradient
issues as network depth is increased, since the maximum derivative value that can be
obtained from a sigmoid function when backpropagating is 0.25.

ReLU [15], which stands for rectified linear unit, accounts for these issues and is defined
as follows:
ReLU(z) = max(0, z)

A.4 Softmax layer

In general, a softmax layer applied to an input tensor t € RE*#*W is defined by the
following function:
eXp(tchw)

ZZC: 1 €XPp (tihw )
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Pchw =



with ¢, h, w indices respectively < C', < H and < W, where C' denotes the number of
channels of the tensor while H and W correspond to its spatial dimensions. Thus, such
a layer is applied to every element in a channel-wise manner. This function has the nice
property that

C
Z Pehw = 1
c=1

giving similar behavior as with probabilities. For example, one could imagine a softmax
layer applied after the final fully-connected layer in Figure A.1. There, the input tensor
would have H =W =1 and C' = 10.

A.5 Batch normalization

A batch normalization layer [24] consists most of the time of an added layer between a
convolutional layer and an activation layer, which shifts and rescales the current mini-
batch according to the mean and variance estimated during training. It yields better
performance and higher stability, often permitting to achieve similar or finer performance
with fewer training steps.

fully-connected layers (fc, fc7)

fixed-length representation

A

— —
4 16x256-d 4 4x256-d 4 256-d

L

spatial pyramid pooling layer

feature maps of convs
(arbitrary size)

t convolutional layers
input image

Figure A.2: Example of an SPP operation with three layers. (Source: [61])

A.6 Spatial pyramid pooling

Spatial pyramid pooling [61] alleviates the issue of using fixed-size images in CNNs. In-
deed, for most CNN architectures that perform classification or detection, fully-connected
layers are required in order to perform the final classification (for example). However, such
layers require a fixed-size input vector, thereby implying that the last convolutional layer
outputs a fixed-size vector. Since the number of feature maps is fixed beforehand and is
independent of the image dimensions, the solution is to impose fixed dimensions to the
input image, which can result in a loss of information.

With spatial pyramid pooling (SPP), flattening the output feature map of the last con-
volutional layer is no longer needed, as SPP breaks the latter down into a fixed-length
1-dimensional vector. In general, this is carried out by concatenating outputs of max-
pooling layers applied with varying scales, as is illustrated in Figure A.2.
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