
https://lib.uliege.be https://matheo.uliege.be

Implementing the beta machine on a Terasic DE10 SoC + FPGA development board

Auteur : Polet, Quentin

Promoteur(s) : Fontaine, Pascal; Mathy, Laurent

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil électricien, à finalité spécialisée en "electronic systems and devices"

Année académique : 2020-2021

URI/URL : http://hdl.handle.net/2268.2/11612

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Implementing the beta machine on a Terasic DE10
SoC+FPGA development board

Master’s thesis carried out to obtain the degree of Master of Science
in Electrical Engineering by Polet Quentin

University of Liège - School of Engineering and Computer Science

Academic year 2020-2021

Contents

1 Overview of the hardware 7

1.1 Features of the DE10-Nano development board . 7

1.2 Programmable logic devices . 8

1.2.1 ROM based PLDs . 8

1.2.2 PAL and PLA . 9

1.2.3 Programming methods . 9

1.3 The case of FPGAs . 10

1.3.1 Programmable logic blocks . 10

1.3.2 Non-programmable blocks . 12

1.3.3 Programmable interconnect . 12

1.3.4 Programmable I/Os . 13

1.3.5 Programming the FPGA . 13

1.4 Inside Cyclone V . 13

1.4.1 Programmable logic side . 13

1.4.2 ARM processor side . 15

1.4.3 Cyclone V interconnect . 16

1.5 On-board and on-chip memories comparison . 17

1.5.1 DDR3 memory . 18

1.5.2 M10K and MLAB memories . 19

2 Hardware design flow on FPGA 20

2.1 Design flow . 20

2.1.1 I/O Planning . 20

2.1.2 Design Entry . 20

2.1.3 Interconnect Design Entry . 24

2.1.4 Simulation . 25

1

2.1.5 Synthesis and Fitter . 25

2.1.6 Timing Analysis and Design Optimal . 26

2.1.7 On-Chip Debug . 26

3 The Beta machine CPU and IO unit design 28

3.1 Beta machine components . 28

3.1.1 Program counter . 28

3.1.2 ALU . 31

3.1.3 Memories, generalities . 35

3.1.4 Instruction memory . 36

3.1.5 Data memory . 37

3.1.6 Register file . 38

3.1.7 Control logic . 39

3.1.8 Clock controller . 40

3.2 Instruction Set Architecture . 41

3.2.1 Instructions formats . 41

3.2.2 Instruction set . 41

3.3 Beta machine . 43

3.3.1 Module sequence . 44

3.3.2 Instructions and control logic . 45

3.3.3 Other signals and ports . 47

3.4 IO Unit (IOU) . 48

4 GPU and Clock Unit design 50

4.1 GPU . 50

4.1.1 Screen and tile representation . 50

4.1.2 Mask representation . 53

4.1.3 Using the GPU . 53

4.1.4 VESA protocol . 54

4.2 GPU components . 56

4.2.1 Graphic memory . 56

4.2.2 Mask memory . 61

4.2.3 Shifter . 62

4.2.4 Mask Logic Unit (MLU) . 65

2

4.2.5 Graphic Counter (GC) . 66

4.2.6 Synchronizer . 68

4.2.7 I2C HDMI Config . 69

4.2.8 Complete circuit . 69

4.3 Clock Unit (CLKU) . 71

5 Memory Access Unit and Control Unit design 72

5.1 Communication between ARM and FPGA sides . 72

5.1.1 Read operation . 72

5.1.2 Write operation . 73

5.2 Memory Access Unit (MAU) . 74

5.2.1 Memory Access . 76

5.2.2 Memory Access Unit circuit . 77

5.3 Control Unit (CTRLU) . 78

5.3.1 Control Unit circuit . 78

6 System design 82

6.1 Generating the HPS module . 82

6.2 Golden Hardware Reference Design (GHRD) and system circuit 83

6.3 ARM side Operating System . 84

7 Accessivity tools and demonstrations 86

7.1 Tools . 86

7.1.1 Beta assembler . 86

7.1.2 Beta utils . 86

7.1.3 Mask Drawer . 87

7.2 Assembly demonstrations . 88

7.2.1 Assembly libraries . 89

7.2.2 Hanöı towers . 89

7.2.3 Stacker game . 89

8 Conclusion 90

3

Acknowledgements

I am grateful to all those who helped and supported me during this work. In particular professors
Pascal Fontaine and Laurent Mathy who were very regular in their follow-up by participating with
me in regular meetings. In addition to that, they were available to answer all my questions during
the whole duration of this work, which was very reassuring and helpful. I would like to thank
Professor Fontaine in particular for his very careful review of this work and for the many pertinent
suggestions that resulted from it. But also for putting me in touch with people who could guide
me on certain choices for this work.

These two people are Alexander Nadel who is a research scientist at Intel Israel and Gyuszi
Suto a principal engineer at Intel Oregon. I thank them greatly for the time they devoted to
me through several emails and a video conference meeting during which I could present my work
and discuss with them. They specifically helped me in the choices of how I could improve the
confidence one could have in a Central Processing Unit (CPU) such as the one developed in this
work.

I would also like to thank Romain Mormont, a PhD student at the University of Liège in
machine learning who provided an assembler software that outputs beta machine code. He also
took the time to explain me how it works and how to use it. One last person directly involved
in this work is Gauderic Schnackers, a physics engineer who took the time to try out the system
designed in this work by programming a 2D video game on it. I thank him for this and for his
friendship.

Finally, I could not end my thanks without thinking of all my family and friends who have
always been very supportive and who knew how to entertain me when I wanted to work too much.

4

Introduction

Although some liberties have been taken at the end of the work, the main objective of this master
thesis is to provide a laboratory tool for the computation structures course INFO0012-2 at the
University of Liège. Indeed, the professors of the course needed a replica of the beta machine,
an Harvard architecture based CPU that is learned throughout the course. This machine had
to be physically implemented so that the students could really take it in hand rather than using
simulations. In order to design it in hardware, it was decided to work on an Field Programmable
Gate Array (FPGA), a Cyclone V from Altera to be precise. In fact, everything was done on
a development board, the DE10-Nano from Terasic. This allows to focus almost exclusively on
the logic and structural implementation rather than on all the electrical details intrinsic to such
implementations.

This document therefore starts with a first chapter containing an enumeration of the different
functionalities of this board as well as a description of the generalities about FPGAs. A quick
comparison with other similar technologies is also made. Then, an overview of the two parts of the
FPGA, starting with the programmable logic followed by the ARM processor part is done. The
existing interconnection between these two parts is also described afterward. The last part of this
chapter is a comparison between the different memories available on the board and on the FPGA.

After introducing the hardware, an introduction to the FPGA development flow is given. In
this chapter, a brief discussion on the different specific tools used throughout this work is made.
The specificities of the programming language used, i.e., Verilog, are also presented. The chapter
finally closes with a discussion on the compilation flow.

Now that the groundwork has been laid, the core of the matter can be addressed. This is why
the third chapter contains a description of the beta machine. In this description, the reader is
made aware of the dimensioning of the machine: the word size, the endianness of the machine,
its instruction set, etc. Following this, the implementation of the CPU on FPGA is presented in
detail. The IO unit which provides access to several IOs of the DE10-nano board to the CPU is
also described in this chapter.

At this stage, the specifications are fulfilled for the hardware part of this master thesis. That
said, it would have been a shame to deliver this machine without any interface other than what
is possible using the IO unit. This is why the following chapter details the implementation of a
graphics accelerator which will be abusively called GPU (Graphics Processing Unit). The HDMI
controller and the protocols allowing its use are introduced beforehand. The clock unit (CLKU)
is also presented.

5

Chapter 5 covers the design of the Memory Access Unit (MAU) which gives access to the
memories of the beta machine from the ARM processor. The description of the Control Unit
(CTRLU) allowing the startup and shutdown of the machine from the ARM processor is given
here. The communication protocol common to both units is first presented before detailing the
implementations.

In order to provide easy access to the machine, an operating system must be installed on the
ARM part of the FPGA. Chapter 6 discusses the choices made at this level.

Finally, a chapter is dedicated to the different tools developed to facilitate the access and the
programming of the machine by the users. This last chapter also lists different demonstrations
programmed in assembly language that serve as proof of concept. The assembly libraries written
for this work are also briefly presented.

6

Chapter 1

Overview of the hardware

1.1 Features of the DE10-Nano development board

Numerous devices are made available to the user on the DE10-Nano development board. Some
of them are very interesting for this work. The Cyclone V FPGA is one of them. It includes a
configurable part (the programmable logic) and an ARM processor (A in Figure 1.1). The Cyclone
V is basically the main component of the system as almost everything on the board is driven by it.
It is also where all the hardware designed in the work resides. The 1GB DDR3 RAM (B) which
is used by the ARM side of the FPGA. An ethernet port (C) which can be useful to connect to
the ARM processor from any external environment. For instance, SSH can be used to connect to
it if the installed system can handle it. Then there are the SD card reader and the SD card (D,
on the other side of the board). The SD card consists in the mass storage of this board. The one
used offers 8GB of memory. Another important component is the HDMI output (E) that can be
used from the programmable logic side of the Cyclone V. Other less important devices, mainly IOs
are available: General Purpose Input / Output pins (GPIOs), LEDs, buttons and switches. All of
these devices are discussed at some point in this report. The ones that are not listed (such as the
Inertial Measurement Unit, IMU) haven’t been used.

Figure 1.1: DE10 Nano development board main features.

7

1.2 Programmable logic devices

Field Programmable Gate Arrays (FPGAs) are a type of Programmable Logic Device (PLD) which
are, as the name suggests, programmable logic circuits. Programmable means that the user can
choose which circuitry is implemented in these devices. As seen later in this chapter, some of these
devices are very versatile! They can implement almost any kind of digital circuit.

PLDs come in different flavors but follow a similar pattern for most types. In fact, they almost
all are composed of an AND array and an OR array that are both programmable or not. Here,
a discussion of the different types of PLDs and their evolution is made before describing FPGAs.
The advantages and disadvantages of these technologies are also detailed.

1.2.1 ROM based PLDs

This first type is very simple, as shown in Figure 1.2. In fact, the circuit, which can only be
combinatorial, is simulated by a ROM. Each address corresponds to an input of the circuit and
each word in memory to an output of the circuit. The ROM therefore simply contains the truth
table of the logic circuit to be implemented.

2k × n

ROM

k inputs noutputs

Figure 1.2: An external view of ROM based PLDs.

The inside of a 22 × 4 ROM can be seen as a 2-to-4 decoder followed with a 4-by-4 OR gates
array, as shown in Figure 1.3, where the connections in the array are configurable. They can be
opened or closed while programming the device. The decoder can be interpreted as the AND gates
array here. Thus, the AND gates array is fixed and the OR gates array is programmable for this
kind of devices.

In the example of Figure 1.3, the array is represented by a grid. All horizontal lines represent
a 1-bit signal that can be connected to an OR gate. The signal is connected if a red x is present
at the connection point. In the figure, each OR gate can thus be connected to at most 4 decoder
bits. As can be seen, the OR gates array is here programmed to describe the truth tables of these
boolean equations


A0 = I0 · Ī1
A1 = Ī1

A2 = 0

A3 = Ī0 · I1

8

Obviously, real devices contain a lot more signals and gates to be cost effective and useful. As
stated previously, the ROM PLDs can only represent combinatorial circuits. There is no register
or feedback loop in the circuits that are described with this technology.

x

x

x x

A3 A2 A1 A0

0

1

2

3

2-to-4

decoder

I0

I1

Figure 1.3: An internal view of ROM based PLDs.

1.2.2 PAL and PLA

The Programmable Array Logic (PAL) and Programmable Logic Array (PLA) devices differ from
the ROM based PLDs since they both have a programmable AND gates array. However, only
the PLAs have both AND and OR gates arrays that are programmable, the OR array is not
programmable for PALs. The PLAs are thus the most flexible devices of the three. As expected,
this flexibility makes them also more complex and complicated to program. The outputs of these
devices can often be complemented through programming too. It should also be noticed that both
the inputs and the inverted inputs are directly available in the arrays here, as illustrated on Figure
1.4.

I0

I1

I2

A0

A1

x

x

x
x

x

x

x

xx

Figure 1.4: An internal view of PLAs.

1.2.3 Programming methods

This section contains a brief discussion of the various usual programming techniques.

9

Initially, these devices were mainly programmable in two ways. The first was to use fuses and
anti-fuses at each interconnection. The user then had to apply destructive currents to the right
places for the fuses to open the connections and the anti-fuses to close them. The second method
was to leave it to the user to complete the IC design. One would then make a mask to select which
interconnects to open and close during a lithography process. To provide some examples, the
fuse methods are used in PROMs and masks for ROM based PLDs. Both of these programming
methods make the devices non-erasable, which at the same time makes them non-reprogrammable.
However, they are both non-volatile which can be an advantage when the user don’t want any boot
latency at startup, as no programming phase is needed at boot time.

Later, other programming techniques were developed following the emergence of transistors.
Indeed, these transistors are placed at the interconnections and controlled by their gate with the
help of a bit kept in a memory. The memory can then be programmed to define the behaviour of
the connections without them being frozen forever. As the memory is usually SRAM, the devices
become reprogrammable but still volatile. Other technologies have subsequently made it possible
to have non-volatile memory in addition to memory by using, for example, floating gate transistors.
These two types of interconnections are usually configured by applying a high current to set or
reset the memory state.

1.3 The case of FPGAs

Now that PLDs and programming methods are introduced, it is time to get to the core of the matter
with a description of FPGAs. This section aims to be general enough to cover the operation of a
large number of FPGAs. More details specific to the FPGA actually used in this work are given
in the next section.

FPGAs have three main programmable levels. These three levels are discussed in turn, start-
ing with the programmable logic blocks, then the programmable interconnect and finally the
programmable I/Os.

1.3.1 Programmable logic blocks

Programmable blocks are present in very large numbers in modern FPGAs (usually tens to hun-
dreds of thousands). They are the basic elements of the circuits implemented on FPGAs. Due to
their architecture, which can be seen in Figure 1.5, they allow both combinatorial and sequential
circuits to be implemented.

10

RST

D Q

Arithmetic

C0

C1

C2

I0

I1

I2

A0

Carry in

Carry out φ RST

LUT

f(I0, I1, 0)

LUT

f(I0, I1, 1)

Figure 1.5: An FPGA programmable logic block.

The combinatorial part of the circuits is implemented using a LookUp Table (LUT). The truth
table is simply stored in this LUT as for the ROM PLDs but the bits are now stored in SRAM.
If one LUT is not sufficient, the logic function can be implemented in several LUTs connected at
the output by a multiplexer that is controlled by the remaining inputs. This is made fully valid
by Shannon’s expansion theorem.

Theorem 1 Any boolean function f(x1, x2, ..., xn) can be expressed as

f(x1, x2, ..., xn) = xn · f(x1, x2, ..., xn−1, 1) + x̄n · f(x1, x2, ..., xn−1, 0)

As shown in Figure 1.5, the blocks also have an arithmetic sub-block and a register. Having this
arithmetic block in each single programmable block greatly increases the efficiency of the FPGAs
and reduces the latency of the blocks, even if most of the time these circuits are simple carry adders.
Fixed hardware is always faster than programmable one as they are better optimized. In addition
to the programmable LUTs, other configuration bits are available to control the behaviour of the
multiplexers: C1, C2 and C3 allowing respectively to add a feedback loop to the block, to select
the result of the boolean function or that of the arithmetic sub-block and to make the output of
the block registered or not.

In brief, these blocks are the heart of the FPGA. All their features and configuration bits allow
them to describe almost any kind of digital circuit in an efficient way.

11

1.3.2 Non-programmable blocks

Other non-programmable or less programmable blocks are also available within FPGAs. They are
divided into two main groups: memories and utilities. Memories are simply blocks that can store
data. A specific discussion of these memory blocks is made in a later section. On the utility side,
there can be a wide variety of blocks: multipliers, PLLs, DSPs and even whole CPUs. In short,
enough to make FPGAs even more powerful!

1.3.3 Programmable interconnect

Programmable blocks are very versatile and efficient, but they need to be connected to each other
to make large circuits. As can be seen in Figure 1.6, the blocks are positioned on a grid and the
interconnection passes around them.

Programmable
Logic Block

Programmable
I/Os

Programmable
Interconnect

Configuration
Block

Figure 1.6: High level view of an FPGA.

For this purpose, there is the programmable interconnection that allows the signals to be routed
from one block to another. To do this, configurable switches are placed at the crossings of the
tracks. However, everything must be connected, whether the blocks are close or distant. As this
cannot be done directly without causing problems in terms of time and power constraints, several
hierarchical connection levels are present. However, in order to keep the explanations simple, it is
considered here that there is only one level. It should also be noted that each switch adds latency
to the signal, so the interconnection is optimised to limit the number of switches between blocks.

12

In addition to this configurable interconnection, there are also tracks to bring global signals
everywhere. Among these signals are the clock, the resets, ... On a more local level, some signals
are also shared between the blocks. These include, for example, the carry signals of the arithmetic
sub-blocks.

1.3.4 Programmable I/Os

Now that almost the entire interior of the FPGA has been described, all that remains is to connect
it to the outside. This is why there are these I/O pins all around the FPGA in Figure 1.6. These
as well as the other parts of the FPGA are also configurable. As it is desirable for the FPGA to
adapt to a wide variety of external hardware, these pins can be configured to the standard used.
They can also be used as input, output, bi-directional, differential pairs, ... In short, they allow
a large number of configurations so that the designed circuit can be adapted and coupled with a
maximum of other circuits.

1.3.5 Programming the FPGA

Due to their complexity, the configuration circuitry of the FPGA is just as complex. For this
reason, few details are provided in this section. That said, it should be noted that part of the
FPGA is assigned to this function. This block takes care of configuring all the configuration
bits in the relevant memories. However, since the memories holding the configuration within the
FPGA are volatile, it is often necessary to couple a non-volatile memory to the FPGA to retain
its configuration. The configuration therefore has to be re-configured each time the FPGA is
rebooted, which can create some latency. It is also important to note that the memory holding
the configuration must be relatively large, as the number of configuration bits is very large. More
details on compiling designs and configuring FPGAs in practice are given in a later section.

This closes the theoretical discussion on FPGAs. As already said, FPGAs are extremely pow-
erful and versatile. This enables them to describe a large number of circuits and to adapt to many
existing circuits. Another advantage is that they are massively parallel due to their structure. De-
spite all these advantages, FPGAs still have some drawbacks. One of them is cost. Some FPGAs
can cost several thousand euros. The complexity and difficulty of access is another problem for
designers, the datasheets are numerous and extremely long, the tools are also numerous and not
always easy to use. Electrical power requirements and start-up latency are also two other factors
that must be taken into account when a user chooses an FPGA for circuit development. Nothing
is perfect, not even FPGAs.

1.4 Inside Cyclone V

1.4.1 Programmable logic side

In the Cyclone V, things are even a little more evolved than previously explained but it is still quite
accessible. In fact, the programmable logic blocks is replaced here by Logic Array Blocks (LAB)
which are themselves made up of ten Adaptive Logic Modules (ALMs) which are the equivalent

13

of the programmable logic blocks studied previously. A high level view of the LAB units is given
in Figure 1.7. In the LAB, the different ALMs, the inputs and outputs of the LAB, can be
interconnected at the user’s convenience.

LAB logic and

interconnection

carry in

carry out

clk signals

clk en signals

rst signals

inputs outputs

ALMs

Figure 1.7: High level view of a LAB unit.

There is also another type of LAB, the Memory LAB (MLAB) which allows to describe SRAM.
They can store up to 640 bits and represent 25% of all the LABs present on the Cyclone V. These
MLABs do not have memory instead of the ten ALMs, they also have the ten ALMs and all the
logic necessary to use them. They are a superset of LAB somehow.

These LABs (and MLABs) are placed in the FPGA fabric in an array as explained in the
previous section. However, it should be noted that the array is not symmetrical with respect to
the vertical and horizontal connections at the local level (this part was not detailed previously).
Indeed, the horizontal connections aim to connect the blocks close to each other by ensuring a high
speed of operation. These are the inputs and outputs that are mainly linked to it. The columns,
although they are also fast, are mainly used for carry signals. At the local level, a LAB can have
control over 30 ALMs: its own ten, and the ten of its two horizontal neighbors. This allows to
build very complex logic in a restricted space. Of course, a more global interconnection allows all
LABs to be connected together. There are many more details about the internal connections of
the LABs that could be discussed, but these are not explained in this report.

Concerning the ALMs, as just said, they are very similar to the Logic Array Blocks of the
previous section. The main differences are that they accept more inputs, up to eight. The internal
arithmetic block is in fact two separate adders, and four registers are provided in each ALM.
Depending on their configuration (set during the programming phase), ALMs are adapted to
specialize in a functionality to make the circuits more efficient (for example more entries, an
optimization for arithmetic, shared arithmetic with an input of the adder that is fed by an input
of the ALM, ...).

14

Other blocks

The LAB blocks are very customizable and extremely numerous on the Cyclone 5. However, there
are several other types of blocks that are worth listing and briefly explaining. The overall structure
of the Cyclone V FPGA is shown in Figure 1.8.

Figure 1.8: Overall structure of the Cyclone V FPGA [1].

The largest block visible on the diagram is the one at the top right which represents the entire
ARM system, this block is discussed in the next section. Then one can see many dark green
columns that designate the M10K memories. These memories are the main source of on-chip
storage. A sub-section of this chapter is dedicated to the memories, and they are studied in more
detail there. The PLLs are also visible in the light gray band on the left. PLLs allow to generate
clocks at a given frequency from a reference clock. Again, this unit is studied later. Another
element present in large quantities is represented by the dark blue columns. It is the Digital Signal
Processing (DSP) Hard IP Blocks. These blocks have a multitude of functions. Indeed, they
provide arithmetic units of addition, subtraction and multiplication, allow the implementation of
filters, ... In this work, they are only used to perform operations such as addition, subtraction
and multiplication in the Arithmetic Logic Unit (ALU). It should be noted that using these DSPs
is much more advantageous than using ALMs. Indeed, the arithmetic circuits of the DSPs are
”hard-made” which means that they have no programmable interconnection logic in their internal
circuits, so the delays are much smaller and their architecture is totally optimized. For the user,
this allows him to use higher clock frequencies than he would have been able with circuits designed
with ALMs. Other units are available but are not discussed.

1.4.2 ARM processor side

Inside the FPGA, a 32bits ARM processor, often named Hard Processor System (HPS), is in-
tegrated. It is a Cortex A9. No bare-metal programming is done on this processor. It is used
as an interface to access the beta machine. Indeed, an operating system has been installed on
it and utilities have been developed so that the use of the architecture developed in this work is
easily accessible. Discussions about the operating system and the tools are done at the end of this

15

document. For the moment no description is made. That said, it was important to mention it in
this part of the report as it constitutes a large part of the Cyclone V hardware. Furthermore, it
was necessary to introduce it before starting the next two sections.

1.4.3 Cyclone V interconnect

As just mentioned in the previous section, the ARM processor serves as the user interface. There-
fore, one needs a way to communicate between the ARM processor and the programmable logic
of the FPGA (which will now be refered to as FPGA although the ARM processor is also part of
the FPGA).

In fact, there are bridges between the two sides. These bridges are the link between the two
parts and can be used for communication. Each of these bridges has a specific purpose, it is not just
the same one put several times in parallel. The first and most basic bridge is the Lightweight HPS-
to-FPGA bridge. This one is designed for small transactions that are ponctual, the user should
avoid for example streaming data on this channel (even if nothing prevents it). The limitation in
size comes from the fact that the data bus of this bridge is only 32 bits wide. As the name of the
bridge indicates, it is unidirectional and goes from the HPS to the FPGA. Then come two more
interesting bridges: the FPGA-to-HPS Bridge and the HPS-to-FPGA Bridge. The directions of
these two buses are obvious. What is less obvious is their size. On the HPS side, their dimension
is fixed at 64 bits, but on the FPGA side, they have the great advantage of being able to be
configured to 32, 64 or 128 bits. These bridges are ideal for large data transfers. Finally, there are
the FPGA-to-SDRAM bridges which allow six masters on the FPGA side to have a non cached
and non coherent access to the RAM memory. This is discussed in the next section in more detail.
These different bridges all allow several masters on one side to be connected to multiple slaves
on the other. The selection of the slaves is done by byte aligned addresses. The address space is
therefore the only thing limiting the number of slaves on a bridge. In order to better visualize the
interconnection, a diagram is provided in Figure 1.9. In this work, only the HPS-to-FPGA bridges
are used.

FPGA side HPS side

L3 Interconnect

SDRAM Controller

Cyclone V

Slaves

Slaves

Masters

Masters

HPS FPGA

Bridge

FPGA HPS

Bridge

Lightweight

HPS FPGA

Bridge

Figure 1.9: Interconnect bridges.

16

In Figure 1.10 the address mappings from different viewpoints are shown. For the two buses
going from the HPS to the FPGA, it is the MPU column (Memory Protection Unit, the unit that
protects memory accesses on ARM architectures) that is of interest. One can see that the address
space is much larger for the HPS-FPGA bridge than for its lightweight equivalent. These addresses
are those to which the slaves on the FPGA side are associated and therefore those to which one
has to send the transactions from the ARM processor in order to communicate with these slaves.
The protocol is of course studied in this document but this is done when the transactions between
the two parts are discussed.

Figure 1.10: Address maps for system interconnect masters [2].

1.5 On-board and on-chip memories comparison

As seen in the previous sections, several types of memories are available. Directly on the board
there is the SD card storage and DDR3 RAM memory. On the Cyclone V there are also two types
of memory which are MLAB units and M10K blocks. Each memory has its own features. Since
both the beta machine and the ARM system require memory, it is interesting to consider the use
of these different memories, compare them and finally make a choice.

Let’s start with the simplest, the ARM processor. In fact, on this side no choice is left to the
user. The DDR3 memory serves as the main memory and the SD card as the secondary memory
for non-volatile storage.

17

Concerning the Beta machine, the choice is less obvious. Which memory to choose to store
instructions and data, as main memory? Given the nature of the SD card memory, it can imme-
diately be ruled out of the possible choices. What about the other memories?

1.5.1 DDR3 memory

The DDR3 memory offers 1GB shareable between the ARM processor and the FPGA, which is
really huge. However, an almost direct access to this memory is only possible if the access is
done in a non-caching and non-coherent way with respect to the ARM processor caches. Another
possibility is to use the ACP ID mapper which ensures a cached and coherent access (using the L2
cache). The two access paths are identified in Figure 1.11. The problem with these two accesses
is that they are not instantaneous, the writes and reads do not take the same number of cycles
and the number of cycles is not unitary. To use these memories, it is therefore necessary to either
slow down the whole system on the FPGA or to have a cache memory on the FPGA with faster
memory next to it. In addition to this, in the first case (direct access) it is necessary to configure
the operating system on the ARM processor to ensure that it never accesses the part of memory
reserved for the FPGA system and in the second case (with the ACP) it is necessary to configure
the ACP correctly so that its operation is as expected. In both cases this means modifying the
kernel of the operating system, which is not necessarily simple. For these two reasons: the delays
and the necessary modifications at the kernel level, this memory has not been chosen. However, it
could be a very interesting modification of the system built in this work to provide more memory
to it.

Figure 1.11: DDR3 accesses from the FPGA. Red path uses the ACP and blue path is a direct
access to the memory controler [2].

18

1.5.2 M10K and MLAB memories

What about the M10K and MLAB memories? These two memories are directly present on the
FPGA, which means that they can be read and written in one clock cycle. Moreover, they are not
used by the ARM processor, which avoids having to take care of the coherence of the caches. How
to choose between these two memories? The first difference is the amount of memory available.
Indeed, there are 553 M10K memory blocks in the Cyclone V SE A6 used in this work. As a
M10K memory contains 10Kb, the whole of these blocks represents a little more than 5Mb which
is already very large for a machine like the beta machine. There are also 994 MLABs blocks
containing 640 bits each, as seen previously. This makes a total of a little more than 600kb.
However, there are three reasons why the choice is made for the M10K rather than the MLABs.
The first reason is that MLABs use up programmable logic; the more MLAB memory is used the
less custom logic can be added to the FPGA, up to a loss of 25% if all memory is used. The second
is that the datasheet advises to use these memories in cases where shallow and large memories
are needed. This is because it is complicated to create large memories locally with MLABs. Last
but not least, MLABs do not provide dual-port access, which is a huge handicap because it is
necessary to duplicate the memories if the user wants this kind of access. As the choice of M10Ks
seems to be the most suitable for this work, it is decided to use this source of memory. To keep
things simple, hybrid systems are avoided. Another difference between MLABs and M10Ks is that
MLABs have no problem running at frequencies up to 420 MHz while M10Ks do not go beyond 315
MHz. However, the system of this work does not exceed a 50 MHz clock frequency, so frequencies
are of little concern here.

19

Chapter 2

Hardware design flow on FPGA

Now that the reader is aware of the internal structure of FPGAs, the design flow on these FPGAs
can be discussed. Indeed, a series of more or less compulsory steps are required to carry out the
design of an embedded system on FPGA. This chapter is dedicated to the description of this design
flow and the tools used to carry it out. All the tools that are discussed in this chapter are part
of a super-tool named Quartus. Quartus is the main software used for the development on Intel
FPGA. In fact, it is a kind of IDE for hardware development. It interfaces many tools together to
ease the work of the users.

2.1 Design flow

The very first step is of course to choose an FPGA, once this is done, one must start by assigning
the inputs and outputs of the FPGA. This step is named I/O Planing in Figure 2.1.

2.1.1 I/O Planning

During this I/O Planing step, the user has to choose which input or output of his design goes to
which physical input or output of the FPGA. It is also during this step that the types of I/Os, the
standards they should use etc. are set. In the context of this work, this step could be skipped.
Indeed, the manufacturer of the DE10-Nano board provides with its board a Quartus project
containing the definition of the I/Os in order to correspond to what is present on the board. This
greatly simplifies the task and avoids digging through all the datasheets of the different components
of the board to find out how to set up all the IOs.

2.1.2 Design Entry

In this step, the user defines the different logical entities that are needed to build up the desired
circuit. A logical entity or a module is simply a sub-circuit with a given interface, an example is
shown later in this section.

20

Figure 2.1: Intel FPGA design flow on Quartus [3].

All this is done in a so-called hardware description language. There is no need for special tools
here, a simple text editor will do. However, Quartus contains an editor that can be used for this
purpose. Concerning the languages, there is a multitude of choices. But there are three frequently
used languages. These are VHDL, Verilog and System Verilog. VHDL is a high level language
that is highly typed. Verilog and System Verilog are weakly typed and lower level. For example, in
VHDL it is frequent to work directly on data-structures, complex types that can quickly hide the
logic of an architecture. In Verilog and System Verilog, few types are provided and the hardware
architect does regularly work with registers and words in which the bits are assignable one by one.
Since System Verilog is a newer language and not always (correctly) supported by the tools, it was
decided to use Verilog for this work.

It should be noted that these languages, although similar to software programming languages,
do not work in the same way. Indeed, in a Verilog file for example, one defines so-called modules.
A module has inputs and outputs. Each input and output can either be defined as a wire, which
means that this I/O have no specific functionality, it just serves as a connection, or as a reg, which
means that this I/O is registered. A register is therefore placed at this I/O.

21

Inside the module, the developer then defines how these inputs and outputs are linked. Here
again, two possibilities are available to the user. Indeed, it is possible to define circuits that
are either combinatorial or sequential. For the combinatorial circuits, they can take any input
(registered or not) and transmit its outputs to non-registered outputs. It is important that the
output is non-registered because combinatorial circuits are asynchronous, the compiler would not
understand who is driving the register if it was put directly at the output of a combinatorial circuit.
The other possibility is to describe sequential circuits. For these, a sensitivity list must be chosen.
That is to say, signals that have the effect of updating the circuit. In general, only the clock is
used, and the state of the circuit changes at each clock cycle. Note that any other signal specified
in that list might result in an asynchronous response of the circuit, as the circuit responses to a
clock change and also to a change of this signal. This is useful to implement asynchronous resets in
synchronous circuits. Inputs of sequential circuits can be registered or not but sequential circuits
can only transmit their output to registers. It should be noted that a combinatorial circuit and
a sequential circuit can be cascaded since sequential circuits accept non-registered inputs. This
makes it possible to put a combinatorial output on an output register for example, even though it
is impossible with the combinatorial circuit alone.

At the level of sequential circuits, another subtlety compared to software programming lan-
guages should be noted. The assignment of registers is done in a blocking way. This means that
these assignments are only effective at the next clock cycle (or next sensitivity signal update) and
that all these assignments are made at the same time in parallel. One should not forget that
the language describes circuits. And so all outputs appear at the same time once the rising or
falling edge of the clock is perceived. For example assigning x to a and then a to b results in a[t]
containing x[t− 1] and b[t] contains a[t− 1], which might not be obvious for a software developer.

To better illustrate the above notions, a small example of a module described in Verilog is
given below. It simply describes an AND logic gate whose output is registered. The corresponding
circuit is shown in Figure 2.2.

Verilog Registered AND gate example.
module r e g i s t e r e d a n d (

c lk ,
input0 ,
input1 ,
output0

) ;

// c l k i s de f ined as an input wire
input wire c l k ;
// input0 i s de f ined as an input wire
input wire input0 ;
// input1 i s de f ined as an input wire
input wire input1 ;
// output0 i s de f ined as an output and i t i s r e g i s t e r e d
output reg output0 ;

// An i n t e r n a l wire i s de f ined
wire and output ;

22

// Descr i bes an and ga te between input0 and input1
// and put the r e s u l t on the wire and output asynchronous ly
assign and output = input0 & input1 ;

// Sequen t i a l c i r c u i t t h a t updates at r i s i n g edge o f c l k
always @(posedge (c l k)) begin

// The c i r c u i t s imply d i r e c t s the va lue pre sen t on ” and output ” at
// t ha t moment to the r e g i s t e r e d output (i . e . , i t s e t s the r e g i s t e r) .
output0 <= and output ;

end

endmodule

Register

input0

input1

clk

output0

and output

Figure 2.2: Intel FPGA design flow on Quartus.

Other tools than programming allow to define modules. A particularly useful tool is the IP
creation Mega Wizard shown in Figure 2.3. This tool allows the user to create some common blocks
such as on-chip RAMs using a graphical interface where one can choose the different options. For
a RAM the user can choose the word size, the number of words, whether the memory has two
ports or not, etc. At the end of the configuration, the wizard generates the Verilog file describing
the module just defined.

23

Figure 2.3: IP creation Mega Wizard window.

2.1.3 Interconnect Design Entry

This step is equivalent to the simple design entry, i.e., the goal is to describe the architecture.
However, as the tool to design the interconnect is specific, a section is dedicated to it. As discussed
previously the interconnect is the part of the architecture that links the FPGA and the ARM. The
use of the buses is done through several signals, which can quickly become intricate to maintain
directly through Verilog files. The specific tool for this, Qsys, allows to link the masters and slaves
of the FPGA to those of the ARM processor in a graphic interface. In fact, one can add several
slaves or masters in QSys and link them to the desired bridge. In this tool, the address space of
each slave has to be specified. Qsys checks if the specified addresses are not outside the address
space of the master to which they are connected. Figure 2.4 shows the interface to the HPS (ARM
processor) and the connections to a slave.

In addition to the signals that are useful for communication on the interconnect, others allow
interaction with the FPGA. This means that these signals are inputs or outputs of the Verilog
code that is generated by QSys. They can thus be connected to other circuits on the FPGA side,
contrary to the other signals shown in QSys. These signals are called exported signals and the
user can chose which one is exported, usually the ones that are not direct links of the interconnect.
Once a system is described, it only remains to ask Qsys to generate the system. It then creates all
the necessary Verilog files that can be used as a single module later in user’s Verilog code. This
module receives as inputs and outputs all the signals that have been exported. To summarize,
QSys is a kind of graphical programming software.

24

Figure 2.4: QSys window with an HPS named hps 0 and a slave module named mm bus.

Figure 2.4 highlights different elements. The two entities present in the system are represented
in yellow, there is thus the HPS named hps 0 which is an external representation of the ARM
processor and an Avalon to External Bus Bridge called im bus which makes it possible to make
the link between a bus of the interconnection and a bus defined by the user on the FPGA. This
module is discussed again later. In each module, some lines are in red, to denote the different
slaves of the system. In the base and end columns, it can be seen that these slaves have a defined
address space. They all start at 0 because they are relative to the starting address of the master.
In the im bus an exported signal is highlighted in green: it is accessible from the FPGA. In fact,
most of the lines shown in QSys represent several signals describing entities, bus, ... Finally, a
master-slave connection is shown in blue.

2.1.4 Simulation

Once the different modules of the system have been defined, it can be interesting to simulate some
of them. This step is not necessarily mandatory but it can save a lot of time if the system is large.
Indeed, compiling a large system can quickly take several hours, or days. It is thus beneficial to
conduct verifications before compilation using simulation rather that later on by measurements on
the working system. Sometimes, the simulation is also more practical because it allows to easily
generate detailed scenarios. To simulating tool used by quartus is Modelsim. In this tool, signals
can be fixed and tests can be performed. All signals are then displayed so that the user can verify
the behavior.

2.1.5 Synthesis and Fitter

These two steps are the firsts of the compilation. The compiler transforms the descriptions made
in Verilog into a logic circuit and then try to fit everything on the target FPGA. It checks that the
resources are sufficient for the given design. The whole fitting process is time-constrained. This

25

means that it places the different blocks in such a way that the delays are minimal. After the
Synthesis, the user can display the circuit to verify parts of its design visually. The tool used for
this is the RTL net viewer. An example is given in Figure 2.5.

Figure 2.5: The beta machine CPU high level view in RTL viewer.

2.1.6 Timing Analysis and Design Optimal

FPGA designs are strongly dictated by time constraints. The purpose of this step is to check if the
constraints are well respected by the design, after fitting. All this is done by simulation by testing
the signal propagation delays at different temperatures. If one of the tests fails, the design is not
validated and it has to be modified. For a timing to be validated, it is necessary for example that
all the stages of a circuit have finished their work in the time existing between two rising edges of
the clock. The software responsible for these verifications (TimeQuest) conducts many tests and
measurements but these are not discussed here since this is beyond the scope of this work. What
is important to remember though is that the user sets the constraints, e.g., by imposing the clock
frequencies, and the software then takes care of checking them in the worst possible scenarios.

2.1.7 On-Chip Debug

The last step is to program the FPGA with the just compiled and timing-validated design. This
is done using the Quartus Programmer, it is a straight forward step for the user, so there is not
much to say about it here. Nevertheless, one still has to perform a last verification, the one in real
environment. Most of the time, it is errors made during the Design Entry that are seen here. For

26

example, the user has connected components incorrectly, in a way that is not structurally wrong
but is functionally wrong. Other errors that are not totally due to the user can also occur but are
very specific (e.g. bugs due to operations on clock signals, ...).

To help the user in this debugging task, a very handy tool is provided in the Intel suite. This
tool is the Signal Tap Logic Analyzer. Indeed, it allows to add a logic analyzer to the design which
is connected to signals of the design that the user can choose. If the design and the analyzer are
present on the FPGA, it is possible to display the signals in real time in the tool window when
the board is connected to the computer. This tool also allows more advanced measurements such
as triggered measurement which launches the recording of the data when a given trigger occurs
(when a signal goes high for example). In short, it is the perfect tool for debugging.

27

Chapter 3

The Beta machine CPU and IO unit
design

As explained in the introduction, the goal of this work is to design a Beta machine. This machine
is in fact a minimal CPU based on the Harvard architecture, i.e., data and instructions are stored
in two different memories. The machine uses words of 32 bits, stored in memory according to
the little-endian convention, and only implements operations on 2’s complement signed 32 bits
integers.

In this section the different modules making up the Beta machine are studied one by one, from
their functionality to their design. Simulation results are provided for some of them. Once the
different elements are explained, the desired instruction set for the Beta machine is described.
And finally, the different modules are connected to each other to form the Beta machine with the
desired instruction set.

3.1 Beta machine components

Github link to the verilog files of the CPU.

3.1.1 Program counter

The program counter is a module with seven inputs (clk, clk en, rst, pcsel, offset, data, pc in) and
two outputs (pc out and pc next), as shown in Figure 3.1. Its functions are to provide the current
counter on pc out (PC) and its next value (PC + 4) on pc next, and to react to a control signal
named pcsel. This control allows to choose the program counter’s operating mode. The different
modes and their functions are listed in Table 3.1. Note that if one connects pc new to pc in and
that pcsel is set to 0b00, the program counter acts like a simple 32bits 4-by-4 counter.

28

https://github.com/AnotherGitAccount/TFE/blob/master/hardware/rtl/cpu

Program Counter

pc in.32

offset.16

data.32

clk.1

rst.1

pcsel.2

clk en.1 pc out.32

pc next.32

Figure 3.1: Program Counter.

Mode pcsel Details

NORMAL 0b00
The current value of the counter program pc out becomes
the value taken from the input pc in.

BEQ 0b01
The current value of the counter program pc out becomes
the value taken on the input pc in if the value on data is not 0.
Otherwise, the current value becomes pc in + 4 × offset.

JMP 0b10
The current value of the counter program pc out becomes the
value on data.

BNE 0b11
The current value of the counter program pc out becomes
the value taken on the input pc in if the value on data is 0.
Otherwise, the current value becomes pc in + 4 × offset.

Table 3.1: Program counter modes.

Concerning the internal circuit (that is shown in Figure 3.2), the pc out values is evaluated for
the different modes and is put on a multiplexer which chooses the right output according to the
pcsel value. For the BNE and BEQ modes, another multiplexer is used to select between the two
possible results, the comparison data == 0 naturally controls these two multiplexers.

For the offset, it should be noted that it first undergoes a conversion from signed 16 bits to
signed 32 bits before actually being used in the circuit.

The result selected by the multiplexer controlled by pcsel then goes to the register where it is
stored at the next rising edge of the clock if the clk enable is high. The pc out thus has the desired
value and the pc next simply corresponds to pc out + 4. When the reset (rst) is high, the register
is synchronously reset to 0.

29

pc in

+

= data

pcsel

pc out

pc next+4Reg

rst clk

clk en
D Q
EN

RST

×4offset 16->32

Figure 3.2: Program Counter internal circuit.

The Verilog implementation of the program counter is relatively straight-forward.

Program counter simulations

The different modes of the program counter have been verified by simulation. In the first mode
(NORMAL mode, pcsel = 0b00), it was checked that with a pc in at 4 294 967 292 (the maximum
value with the last two bits at 0 that holds on 32 bits), the program counter returned 0 for pc next
and did not give a random value. Other random values for pc in were checked to be sure that
it worked correctly. Results of this first simulation are shown in Figure 3.3. Note that the input
values are changed only once per two clock cycles but the module is totally able to manage input
changes once per cycle.

Figure 3.3: Program Counter in normal mode simulations for various pc in values.

To test the JMP mode (pcsel = 0b10), it was simply tried to set data to several values to check
if pc out became this value. Results are provided in Figure 3.4.

Figure 3.4: Program Counter in jmp mode simulations for various data values.

30

The last simulation was for the BEQ (pcsel = 01) and BNE (pcsel = 11) modes in order to
check different offsets (positive and negative) with data fixed at a certain value and then at 0.
Results are given in Figure 3.5 for BEQ and 3.6 for BNE.

Figure 3.5: Program Counter in BEQ mode simulations for various data and offset values.

Figure 3.6: Program Counter in BNE mode simulations for various data and offset values.

In the different simulations the results are all valid, which adds confidence to this design before
moving on to the practical implementation that comes later.

3.1.2 ALU

The Arithmetic Logic Unit (ALU), as its name suggests, is used for arithmetic, logic and bit
shifting operations. These operations are selected using the alufn signal. The chosen operation is
then applied on the two operands data a and data b and the result is sent on res. The various
operations are listed in Table 3.21 and the module is pictured in Figure 3.7.

The internal design of the ALU, given in Figure 3.8, is very simple. Indeed, all operations
are executed in parallel and a multiplexer is in charge of selecting the result that appears on the
output. This value is then recorded in the register on the rising edge of the clock if the clk en is
in the high state. For the ALU, there is no reset, that’s why the register reset is always 0.

For the implementation of the ALU in Verilog, the operators are directly used in the code and
the compiler selects the right circuits to perform them. The arithmetic operations are performed
by DSPs while the logic operations are performed directly by logic gates. Concerning the shifts,
they are basically free on an FPGA. Indeed, this essentially correspond to shifting the connections
of the signals.

1unsigned(data b[4:0]) in the table means that only the five last bits of data b are used and that they are
interpreted as an unsigned number

31

ALU

data a.32 data b.32

alufn.4clk.1

clk en.1

res.32

Figure 3.7: Arithmetic Logic Unit (ALU).

Operation alufn Result
No operation 0b0000 res = 0
Addition 0b0001 res = data a + data b
Substraction 0b0010 res = data a - data b
Multiplication 0b0011 res = data a × data b
No operation 0b0100 res = 0
Bitwise-and 0b0101 res = data a & data b
Bitwise-or 0b0110 res = data a | data b
Bitwise-xor 0b0111 res = data a ⊕ data b
Compare equal 0b1000 res = (data a == data b) ? 1 : 0
Compare less 0b1001 res = (data a <data b) ? 1 : 0
Compare less or equal 0b1010 res = (data a ≤ data b) ? 1 : 0
Logical left shift 0b1011 res = data a << unsigned(data b[4:0])
Logical right shift 0b1100 res = data a >> unsigned(data b[4:0])
Arithmetic right shift 0b1101 res = data a >>> unsigned(data b[4:0])
No operation 0b1110 res = 0
No operation 0b1111 res = 0

Table 3.2: ALU operations.

ALU simulations

In order to check the behavior of the ALU, all the operations have been tested with different
operands : the tested combinations data a, data b are listed in Table 3.3. All the results are
correct for these test cases.

32

data b
data a

alufn

Reg

clk

clk en
D Q
EN

RST

res

+ >>>>><<≤<=&×-

Figure 3.8: Arithmetic Logic Unit (ALU) internal circuit.

data a data b
800 8
0 0
0 8
8 0
-1 8
8 -1
-8 8
8 -8

Table 3.3: Operand combinations used in the ALU simulations.

The results of the simulations are shown in Figures 3.9 to 3.16.

Figure 3.9: ALU simulations for alufn = 0b0000 (No operation), 0b0001 (Addition), 0b0010 (Sub-
straction) and 0b0011 (Multiplication). data a, data b and res values are shown in signed decimal
representation.

33

Figure 3.10: ALU simulations for alufn = 0b0100 (No op) and 0b0101 (Bitwise-and). data a,
data b and res values are shown in hexadecimal representation.

Figure 3.11: ALU simulations for alufn = 0b0110 (Bitwise-or) and 0b0111 (Bitwise-xor). data a,
data b and res values are shown in hexadecimal representation.

Figure 3.12: ALU simulations for alufn = 0b1000 (Compare equal), 0b1001 (Compare less) and
0b1010 (Compare less equal). data a, data b and res values are shown in signed decimal represen-
tation.

Figure 3.13: ALU simulations for alufn = 0b1011 (Logical left shift). data a and res values are
shown in hexadecimal representation. data b is shown in signed decimal representation.

Figure 3.14: ALU simulations for alufn = 0b1100 (Logical right shift). data a and res values are
shown in hexadecimal representation. data b is shown in signed decimal representation.

Figure 3.15: ALU simulations for alufn = 0b1101 (Arithmetic right shift). data a and res values
are shown in hexadecimal representation. data b is shown in signed decimal representation.

34

Figure 3.16: ALU simulations for alufn = 0b1110 (No operation) and 0b1111 (No operation).
data a, data b and res values are shown in signed decimal representation.

3.1.3 Memories, generalities

On the Cyclone V, all memory definitions are specified through the same interface: the altsyncrams.
Whether it is for RAM, ROM, one port, two ports, two real ports (independent clocks), ... this
module is used. Also, both MLAB and M10K are represented by this Verilog module. Obviously,
for all these different functions, the module must be configured. This is done on the one hand
by a parameterization (for example to specify the size of the memory, the size of the words, the
choice of the type MLAB or M10K, the number of ports, of clocks, the inputs / outputs which are
registered, if there is a clock enable or not, ...) and on the other hand by the inputs and outputs
which are used or not (for example for the ROM all the ports linked to the writing are unused and
the write enable is put at the ground, in the low state). In Figure 3.17 the most general interface
with two true ports is shown.

Figure 3.17: Altsyncram - True Dual-port mode [4].

Fortunately for the user, all this can be done through a graphical interface: with the Megawiz-
ard, seen earlier in this report. This tool is therefore used intensively for the generation of different
memories, which is the subject of the following sections.

35

3.1.4 Instruction memory

The purpose of the instruction memory is, as its name indicates, to contain instructions. These,
as detailed later, are coded on 32 bits. It is thus necessary to have words of 32bits. The access to
the memory only needs to be done in read mode, to read the instructions, so it would be tempting
to use a ROM. However, it is also necessary to have a write access in order to be able to modify
the program dynamically, without having to pass by a recompilation and reprogramming of the
FPGA. For the configuration of the Altsyncram, the memory only has one port, the outputs are
not registered in order to have the results of the reads and writes after one clock cycle (the inputs
are obligatory registered), only one clock is used and clock enable signals are added. The only
thing left to do is to choose the size of the memory. For the instruction memory, it is set to 32
768 words (thus 32 768 operations coded on 32 bits), which corresponds to an address aligned on
words of 15 bits. This memory described with the Megawizard is called ram 32768 in the project,
its ports are shown in Figure 3.19.2

Now that the module based on the altsyncram is created, an interface to enable access from the
rest of the beta machine is required. One also needs to add the programming ports. The module
that represents this interface is actually the instruction memory itself, the module ports are shown
in Figure 3.18.

Instruction Memory

data read.32

mau clk en.1

mau address.32

mau data write.32

mau wren.1

alive.1

clk.1

cpu clk en.1

cpu address.32

cpu data write.32

cpu wren.1

Figure 3.18: Instruction memory.

In fact, two different buses can be chosen, with the bit named alive: one that is used for accesses
from outside the CPU (from the Memory Access Unit, this is discussed in another section) and
one for access from the CPU. There is therefore a multiplexer on each input which chooses one of
the two buses according to the value of alive. These signals are then redirected to the ram 32768
to access the memory.

2The notation cpu address[16:2] in the figure means that bits 2 to 16 of cpu address are selected. The other bits
are unused.

36

ram 32768

clk.1

clk en.1

address.15

data write.32

wren.1

data read.32

alive

mau data write

cpu data write

mau wren

cpu wren

cpu clk en

mau clk en

mau address[16:2]

cpu address[16:2]

clk

data read

Figure 3.19: Instruction memory internal circuit.

3.1.5 Data memory

The data memory is used to store data from the CPU. It corresponds to the main memory of the
CPU.

This memory is similar to the instruction memory. The only thing that changes is the size of
the internal RAM. Indeed, this one is 16384 words of 32 bits. This value has been chosen to be
twice as small as the instruction memory, so that both fit together in the FPGA (in addition to
the other memories that are presented later). The interface of this module is displayed in Figure
3.20 and its internal circuits in Figure 3.21.

Data memory

clk.1

cpu clk en.1

cpu address.32

cpu data write.32

cpu wren.1

mau clk en.1

mau address.32

mau data write.32

mau wren.1

data read.32
alive.1

Figure 3.20: Data memory.

37

alive

mau data write

cpu data write

mau wren

cpu wren

cpu clk en

mau clk en

mau address[15:2]

cpu address[15:2]

clk

data read

ram 16384

clk.1

clk en.1

address.14

data write.32

wren.1

data read.32

Figure 3.21: Data memory internal circuit.

3.1.6 Register file

The purpose of the register file is to provide access to 32 registers to the CPU. Two simultaneous
reads and one write operations may occur. Register 31 has a special role. A read to this register
always results in a 0 value written on the data read output.

In the register file, two memories of 32 words of 32 bits are used, this memory then represents
the 32 registers. As the register file needs two simultaneous read and write accesses, it is mandatory
to use two separate memories because Altsyncrams do not support tri-port accesses. By having
two rams with two ports, one port of each can be used to perform mirrored writes and the other
port is used to have a read access. This gives two independent reads and a single write. In fact,
the memories are copies of each other in this configuration.

Although writing and reading are never enabled at the same time in this work (the reason is
explained later in this chapter), the register file implements all three ports anyway in order to
provide the correct interface for future works,

Four ports are used to control the operation of the register file. First of all, the two clock
enable signals (cpu clk en) allow reading for cpu clk en[0] and writing for cpu clk en[1]. Then, a
cpu wren signal indicates whether writing operations are allowed. However, in the case where the
writes and reads of the register file are executed in two different steps, cpu wren and cpu clk en[1]
must be in the high state for a write to take place. In case a user would like to use all the ports
simultaneously, it would be required to set both cpu clk en signals to the high state. In this
configuration, writing is then totally controlled by the cpu wren signal. Finally, the alive signal
allows, as for the instruction and data memories, to make the register file listen to the CPU or
MAU buses. The different ports of the register file are shown in Figure 3.22.

For access from the MAU, the register file exposes only one port which is used either for reading
or writing (depending on the state of mau wren). That is why the mau bus only has one address
signal, a read signal and a write signal. When writing, the value is stored on both memories, while
reading only operates on one memory.

38

Register File

cpu data read 1.32 cpu data read 2.32

cpu read address 1.32 cpu read address 2.32

clk.1

cpu clk en.2

cpu write address.32 cpu data write.32

mau address.32

mau data write.32

mau clk en.1

mau wren.1

alive.1

cpu wren.1

Figure 3.22: Register file.

As shown in Figure 3.23, although two memories are now present, the internal circuit remains
very similar to that of the memories previously seen. The notable differences are at the level of
the cpu clk en and of the cpu wren where the two clock enable signals must now be managed. At
the output, a multiplexer is positioned on each of the two data-read signals in order to make a
selection between the value in memory and 0. The value 0 is put on the output when the input
address points to register 31.

alive

mau data write

cpu data write

mau wren

cpu wren

cpu clk en[0]

mau clk en

mau address[6:2]

cpu read address 1[6:2]

clk

register file bank

clk.1

clk en.1

read address.5

data write.32

wren.1

data read.32

write address.5

cpu read address 2[6:2]cpu clk en[1]

cpu clk en[1]

mau address[6:2]

cpu write address[6:2]

read address

read address

clk

register file bank

clk.1

clk en.1

read address.5

data write.32

wren.1

data read.32

write address.5

cpu read address 2[6:2]

cpu data read 1

cpu data read 2

Figure 3.23: Register file internal circuit.

3.1.7 Control logic

The control logic is the core element of the cpu. Its purpose is to convert the opcode of an
instruction into a set of control signals that adequately configure the different modules of the
system so that the instruction executes properly. The control logic used in this work is simply a
ROM (thus an Altsyncram configured in read-only mode) whose address is the opcode. The read
value contains all control bits. As seen in the following section, the opcodes of the Beta machine
are represented on 6 bits. The addressing of the control logic is therefore done on 6 bits. The
words contained in the memory are represented on 12 bits.

The ROMs can be written at the compilation of the project on Quartus. This is done by
associating a hexadecimal file (.hex) to the ROM. The configuration of this file and the meaning
of the different bits of the words in this memory are explained later in the report.

39

This module being a wrapper of the Altsyncram configured in ROM, only the interface of this
module is given, in Figure 3.24.

Control Logic

clk.1

clk en.1

address.6

data read.12

Figure 3.24: Control logic.

3.1.8 Clock controller

As mentioned earlier, the different modules making up the machine are executed in sequence and
not in parallel. This allows to avoid pipelining in the machine and to simplify its realization.
The execution of an instruction takes seven clock cycles. Implementing pipelining could be a very
interesting and useful subject for future works.

For this sequence to be realized, the modules must be executed in the right order. It is therefore
important to have a module that generates the sequence. This module is the clock controller. It
generates a signal named clk sequence which contains the seven clk enable signals which orchestrate
the machine. The interface of the clock controller is given in Figure 3.25.

Clock Controller

clk.1

alive.1

clk sequence.7

Figure 3.25: Clock controller.

At the level of the realization, this module is very simple, it initializes a register to 0b0000001
when the alive signal is low, then when alive is high, it carries out a circular logical left shift at
each clock cycle. Thus, only one bit of the clk sequence signal is high at any time, and thus only
one module is activated. The internal circuits of this module are shown in Figure 3.26. It is then
sufficient to associate the generated signal with the clk en signals of the different modules in the
right order to obtain the expected execution sequence.

40

Reg

clk

D Q
EN

RST

clk sequence

0b0000001

alive

<<
rot

Figure 3.26: Clock controller internal circuit.

3.2 Instruction Set Architecture

3.2.1 Instructions formats

Two instruction formats are used in the instruction set. The first one is used for all instructions
requiring two operands (Ra and Rb in Figure 3.27) which is for example the case for simple
arithmetic instructions. The second format is used for all instructions requiring a single operand
and a constant. This is the case for example for conditional jump operations. As can be seen in
Figure 3.27, the Rx contain register addresses. As they are on 5 bits and no bank change operation
exists, 32 registers are addressable. Rc stores the result of the instruction when a result exists. It
should be noted that the constants are on 16 bits and signed.

Opcode Rc Ra 16bits signed constant

016212632

Opcode Rc Ra Rb Unused

01116212632

Figure 3.27: Instructions format.

3.2.2 Instruction set

Arithmetic and logic instructions

The different arithmetic and logic instructions are managed by the Arithmetic Logic Unit (ALU).
The different instructions listed in Table 3.4 are supported.

41

Name Operation Opcode Const Operation Const Opcode
Addition ADD 0x20 ADDC 0x30
Substraction SUB 0x21 SUBC 0x31
Multiplication MUL 0x22 MULC 0x32
Bitwise and AND 0x28 ANDC 0x38
Bitwise or OR 0x29 ORC 0x39
Bitwise xor XOR 0x2A XORC 0x3A
Compare equal CMPEQ 0x24 CMPEQC 0x3A
Compare less CMPLT 0x25 CMPLTC 0x35
Compare less or equal CMPLE 0x26 CMPLEC 0x36
Logical left shift SHL 0x2C SHLC 0x3C
Logical right shift SHR 0x2D SHRC 0x3D
Arithmetic rifht shift SRA 0x2E SRAC 0x3E

Table 3.4: Arithmetic and logic instructions.

All these instructions simply perform the operation associated with them on the operands Ra

and Rb in the normal case and on the operands Ra and the constant in the case of instructions with
constants. Ra is always used as the first operand. For example, the instruction given in Figure
3.28 results in [R10] = [R14]− 17. The notation [Rx] means the content of register Rx.

Opcode = 0x31 Rc = 10 Ra = 14 16bits signed constant = 17

016212632

Figure 3.28: SUBC instruction example.

The comparison operations simply put a 0 in Rc when the comparison is false, and 1 otherwise.

Memory instructions

Here, only two instructions are present. One is to load a value from the data memory and the
other is to store a value in it. The notation < x > means at address x in memory. Note that here
Rc doesn’t necessarily contains a result at the end of an operation and is used as an operand for
ST. Also, addresses must be byte aligned here and offsets contained in Constant must also be byte
aligned. Both instructions are detailed in Table 3.5.

Name Operation Opcode Action
Load LD 0x18 [Rc] = <[Ra] + Constant>
Store ST 0x19 <[Ra] + Constant> = [Rc]

Table 3.5: Memory instructions.

42

Program counter instructions

The purpose of these instructions is to modify the value of the program counter conditionally or
not. The different instructions are listed in Table 3.6. The values of column Next PC is written to
PC and the address of the next instruction before the jump is stored in Rc. Note that [Ra] should
be byte aligned for JMP but the constant should be 32 bits aligned for BEQ and BNE (as they
already multiply the constant by 4).

Name Operation Opcode Condition Next PC
Jump JMP 0x1B None [Ra] & 0xFFFFFFC
Branch Equal BEQ 0x1D [Ra] == 0 PC + 4 × (Constant + 1)
Branch Not Equal BNE 0x1E [Ra] != 0 PC + 4 × (Constant + 1)

Table 3.6: Program counter instructions.

Control instructions

Only one control instruction exists. This instruction bascally stops the machine and has no operand
or result. The instruction is detailed in Table 3.7

Name Operation Opcode
Exit EXIT 0x3F

Table 3.7: Exit instruction.

3.3 Beta machine

The final circuit of the beta machine is shown in Figure 3.29. The details of this circuit and how
the modules have been interconnected are explained in this section.

43

ALU

data a.32 data b.32

alufn.4clk.1

clk en.1

res.32

Control Logic

clk.1

clk en.1

address.6

data read.12

Data memory

clk.1

cpu clk en.1

cpu address.32

cpu data write.32

cpu wren.1

mau clk en.1

mau address.32

mau data write.32

mau wren.1

data read.32
alive.1

Instruction Memory

data read.32

mau clk en.1

mau address.32

mau data write.32

mau wren.1

alive.1

clk.1

cpu clk en.1

cpu address.32

cpu data write.32

cpu wren.1Program Counter

pc in.32

offset.16

data.32

clk.1

rst.1

pcsel.2

clk en.1 pc out.32

pc next.32

data

data

clk
clk

clk

clk

clk

clk

clk

Clock Controller

clk.1

alive.1

clk sequence.7

alivealive
alive

alive

alive

alive

alive

alive

clk sequence

clk sequence[5, 2]

clk sequence[3]

clk sequence[1]

clk sequence[6]
clk sequence[0]

clk sequence[4]

Register File

cpu data read 1.32 cpu data read 2.32

cpu read address 1.32 cpu read address 2.32

clk.1

cpu clk en.2

cpu write address.32 cpu data write.32

mau address.32

mau data write.32

mau clk en.1

mau wren.1

alive.1

cpu wren.1

alu res

alu res[31]
alu res[30]

exported data

exported address

mau write data im
mau address im

mau wren im

mau read data im

mau write data rf
mau address rf

mau wren rf

mau read data rf

mau write data dm
mau address dm

mau wren dm

mau read data dm

[1:0]

[2]

[3]

[5:4]

[6]

[7]

[11:8]

pcsel

ra2sel

wr

wdsel

bsel

werf

alufn

[3]
exported wren

wr

wdsel

pcsel

alufn

ra2sel

bsel

clk sequence

halt

[20:16] [15:11] [25:21]

[25:21]

[15:0]

[31:26]

[15:0]

[31:30]

io data

Figure 3.29: Beta machine internal circuit.

3.3.1 Module sequence

The first thing to establish is the execution sequence. The first step is to fetch an instruction
from the memory instruction, so it is executed first. Then, the opcode of this instruction must
be decoded by the control logic. The control logic has the second position. The register file can
now be operated in read mode, in order to obtain the values of the registers useful in the current
instruction. This step could not have been carried out at the same time as the previous one because
a multiplexer controlled by a signal from the control logic is present at the cpu read address 2 input
of the Register File. This allows it to choose between Rb and Rc, Ra always being the address of
the first port.

The values of the registers are now present at the output of the Register file, the ALU is then
executed. In case the result of the ALU should be stored in Data memory, it is then executed.
Also, when executing the Data memory, it could provide data that must be stored in a register.
That is why the next step is the execution of the Register file in write mod. Finally, the Program
counter is enabled so that the PC is updated. The execution sequence is displayed in Figure 3.30.

Data MemoryRegister File (write)Program Counter

Instruction Memory Control Logic Register File (read) ALU

Figure 3.30: Execution sequence.

44

3.3.2 Instructions and control logic

In this section, the content of the control logic is defined. At the same time, the connections
between the different modules forming the Beta machine are also explained. The complete circuit
of the Beta machine is shown in Figure 3.29. The reader can refer to it to follow the developments
of this section.

First of all, the output pc next of the program counter is connected to its input pc in to form a
counter by 4. The output pc out of the program counter can be connected to the CPU address of
the memory instruction in order to read the current instruction. The first six bits of this instruction
are connected to the address of the control logic so that the opcode is decoded. Of course, the clk
and clk enable signals of all modules are also set to follow the sequence described in the previous
section.

Arithmetic and logic instructions

In order for an ALU instruction to perform correctly, two things are required. First, the necessary
registers must be read from the register file and second the ALU must execute the operation. To
do this, the instruction coming from the instruction memory is split. The bits corresponding to
Ra go to the address of the first port and the bits corresponding to Rb to the second port. As the
results are stored in the register Rc, the bits corresponding to Rc in the instruction are used as
the write address for the register file. The two operand registers can then be loaded.

For the ALU, it needs on its first input the value read in the register Ra, this is why the reading
of the first port directly goes to the first input of the ALU. As for the second operand of the ALU,
it can either be the value of Rb or a constant. This is why a multiplexer is placed on the input
corresponding to the second operand. Finally, the result of the ALU is redirected to the register
file so that it can store this value in Rc.

At the control logic level, three signals are necessary. The first is used to control the operation
of the ALU, it is alufn. The second is bsel and allows to choose if the second operand of the ALU
is the constant or the value read in register Rb. And last, the signal werf allows to authorize the
write operation in the register file. The current content of the control logic is shown in Table 3.8.

Instruction alufn werf bsel
ALU instruction opcode 1 1
ALU constant instruction opcode 1 0

Table 3.8: Control logic - ALU instructions.

Memory instructions

As shown in Table 3.5, the load operation (LD) executes [Rc] = <[Ra] + constant>. To make this
operation possible, a sum with constant must be performed and its result used as an address for
the data memory. This is why the output of the ALU is set as an address for the data memory.
Then the value read from the data memory must be used as a write value to the register file. As

45

a signal has already been connected to this register file entry, a multiplexer must be added which
chooses between the ALU output and the value read from the data memory. This also means the
control logic must provide a signal, named wdsel, to drive the newly added multiplexer.

For the storage operation in data memory (ST), <[Ra] + constant> = [Rc] must be executed.
Everything remains the same as for the load at the ALU and the first port of the register file.
However, the value in Rc must be read in the register file and nothing allows it until now. As Ra
is already using the first port, Rc is put on the second port for reading. A multiplexer must be
added to it as Rb was already associated with this port. The output of the second port of the
register file must be connected to the cpu data write input of the data memory so that [Rc] is
written there.

Two new signals are added to the control logic. The first, wr, allows the data memory to
be written and the second, ra2sel, drives the multiplier which has just been added. The current
content of the logical control is displayed in Table 3.9.

Instruction alufn werf bsel wdsel wr ra2sel
ALU instruction opcode 1 1 01 0 0
ALU constant instruction opcode 1 0 01 0 x
Load instruction add 1 0 10 0 x
Store instruction add 0 0 xx 1 1

Table 3.9: Control logic - ALU and memory instructions.

Program counter instructions

For the JMP instruction, it is first necessary to save the value of PC + 4 in Rc. This means that
the pc next output of the program counter must be usable as a write value for the register file.
pc next is therefore added to the multiplexer driven by wdsel. Then, the value of PC must be set
to the value given in Ra. The reading of the first port of the register file is therefore connected to
the data port of the register file. The register file must also be set to JMP mode.

Only one signal, pcsel, must be added to the control logic: it will allow the program counter
mode to be set.

For the branch instructions, everything happens as for JMP except that the value of pc is
different in the control logic and that the constant contained in the instruction is connected to the
offset input of the program counter. The final content of the control logic is given in Table 3.10.

Instruction alufn werf bsel wdsel wr ra2sel pc
ALU instruction opcode 1 1 01 0 0 00
ALU constant instruction opcode 1 0 01 0 x 00
Load instruction add 1 0 10 0 x 00
Store instruction add 0 0 xx 1 1 00
JMP instruction xxxx 1 x 00 0 x 10
BEQ instruction xxxx 1 x 00 0 x 01
BNE instruction xxxx 1 x 00 0 x 11

Table 3.10: Control logic - ALU, memory and program counter instructions.

46

In the control logic, all values corresponding to don’t care (x), are set to 0.

Control instructions

The last instruction to be handled is EXIT which is intended to generate a halt signal. As the
EXIT instruction corresponds to opcode 0x3F, it is sufficient to put all the bits of the opcode at
the input of an AND logic gate in order to have at the output the halt signal which will be high
when EXIT is called.

3.3.3 Other signals and ports

The Beta machine is only one part of the system designed during this work. In fact, it consists
of the CPU of this system. It therefore has other ports which allow its connection with other
super-modules.

First there are the four ports exported address, exported data, exported wren and io data,
the first three allow to add listeners to the ST instruction. io data allows, with the three signals
mentioned above, to add the IO unit (IOU) as a listener to the LD instruction. In the context of
this work, the first two bits of the address are used to designate the listener which is concerned by
the ST and LD operations. For the LD part, it is therefore necessary to add a multiplexer before
putting the result of a data memory load on the multiplexer controlled by wdsel. The purpose of
this multiplexer is to select where the load comes from. io data therefore constitutes an input of
this multiplexer. The addressing table for the different units is described in Table 3.11.

Super unit Address
CPU 00
IOU 01
GPU 10

Table 3.11: Super unit addresses.

Then, there are the halt and alive signals. These two signals allow communication with the
control unit (CTRLU), their use is discussed later.

Finally, there are all the signals starting with mau. These are connected to the Memory Access
Unit (MAU). Again, this unit is seen later in the report.

In the end, this gives the CPU a more complex interface than usual. This interface is that of
Figure 3.31. In order to simplify the CPU interface, not all signals are put in the CPU and a bus
representation is used. However, all signals are available in the internal circuit.

47

CPU

alive.1

halt.1

exported wren.1

exported data.32

exported address.32

io data.32

clk.1

clk sequence.7

im mau bus.bus

dm mau bus.bus

rf mau bus.bus

Figure 3.31: Beta machine, the CPU.

3.4 IO Unit (IOU)

Github link to the verilog files of the IOU.

The IO unit was very briefly discussed in the previous section, especially in terms of its ad-
dressing by the store (ST) and load (LD) operations. It should be noted that this module is very
experimental in this work. It was mainly added to add interaction to the programs that are loaded
on the beta machine. Its implementation is therefore very straightforward, naive and incomplete.
Incomplete means that only three IOs of the DE10 Nano have controllers in the IOU. These three
IOs are the 8 LEDs, the 2 buttons and the 4 switches respectively shown in pink, green and red
in Figure 3.32.

Figure 3.32: Used IOs of the DE10 Nano board.

The interface that the IOU exposes is the one in Figure 3.33. It is identical to the memory
instruction except that the IOU has the three ports, i.e., buttons, leds and switches, that allow to
connect this module to the physical IOs on the board.

48

https://github.com/AnotherGitAccount/TFE/blob/master/hardware/rtl/iou

IOU

alive.1

io mau bus.bus

clk.1

cpu clk enable.1

cpu wren.1

cpu data write.32

cpu address.32

data read.32

buttons.2
leds.8
switches.4

Figure 3.33: IO Unit (IOU).

The internal circuit, shown in Figure 3.34, looks again very much like a memory with the
multiplexing between the two ports (MAU and CPU). Inside, a register represents an IO. The
buttons and switches are read-only, the multiplexer added for writing thus has only one output
port, the one of the LEDs. On the output side, the values of each register are multiplexed to
data read. As it can be deduced from the multiplexers, the addresses of the IOs are 0x0 for the
buttons, 0x1 for the LEDs and 0x2 for the switches.

When it comes to reads and writes, the data word contains the value of all the elements of the
addressed IO on its last bits. For example, when writing the LEDs, the last 8 bits of data write
contain the new state of each LED. To know to which bit corresponds a precise LED, the user can
look at the DE10 Nano board. The LEDs, buttons and switches are identified on the board.

alive

mau data write

cpu data write

mau wren

cpu wren

cpu clk en

mau clk en

mau address[1:0]

cpu address[1:0]

clk en

wren

Reg

clk

D Q
EN

RST

clk en & wren

Reg

clk

D Q
EN

RST

clk en & wren

Reg

clk

clk en & wren
D Q
EN

RST

buttons

switches leds

data read

[7:0]

Figure 3.34: IO Unit (IOU) internal circuit.

49

Chapter 4

GPU and Clock Unit design

4.1 GPU

Github link to the verilog files of the GPU.

The GPU bears its name rather badly because it is not really programmable. But this is the
only name that was found for it and therefore kept. This unit provides a graphic memory and the
tools to draw patterns of 8x8 pixels, called masks. The writing in this memory is done from the
beta machine (the CPU) through the store instruction (ST). The specific way of addressing the
memory and the structure of the commands are described later. As far as the colors are concerned,
it has been decided to work with 12 bit RGB colors, that is to say 4 bits per primary color.

In addition to this, the GPU also provides the HDMI controller. This controller simply reads
the graphic memory in loop and draws its content on the screen. The controller handles a 16:9
screen using a resolution of 848x480 pixels and a refresh rate of 60Hz. The protocol used is the
VESA 848x480, it is described later.

Before moving on to the description of the different modules making up the GPU, a description
of how the screen and the masks are interpreted by the GPU is done. The VESA protocol is also
detailed.

4.1.1 Screen and tile representation

As said before, the masks are 8x8 pixels and the goal is to be able to apply them anywhere on the
screen. The screen is therefore naturally divided into a set of 8x8 pixels squares which are called
tiles. In memory, the idea is that there are 3 sub-memories whose words contain a color of the
three primary colors (red, green or blue) of a whole tile. A tile corresponding to 64 pixels and a
primary color being coded on 4 bits, it gives words of 256 bits. Then, by dividing the dimensions of
the screen (848x480 pixels) by 8, one finds that 106x60 tiles, so 6360, are enough to represent the
screen. In order not to use too much memory, it is decided to use 72x54 tiles. This corresponds to
the largest integer size allowing a 4:31 ratio with a maximum use of 4096 tiles. It is decided to limit

1This ratio corresponds to the ration between the width and the height, in terms of tiles, of the useful screen.
This has nothing to do with the resolution ratio of the screen that is 16:9.

50

https://github.com/AnotherGitAccount/TFE/tree/master/hardware/rtl/gpu

to 4096 tiles because to use 6360 tiles it would be necessary to have a memory with 8192 words,
which would use too much memory unnecessarily. The useful screen is centered in the physical
screen. Figure 4.1 summarizes all this.

72 tiles
576 pixels

54 tiles

432 pixels

60 tiles

480 pixels

106 tiles

848 pixels

Useful screen

Physical Screen

Figure 4.1: Useful screen area in the physical screen.

The problem with putting all tiles in a single memory like this is that only one tile is accessible
at a time. This means that a mask can only be applied to one tile. This is a pity because it prevents
the mask from being drawn anywhere on the screen. Indeed, the mask cannot for example be drawn
between two tiles as shown in Figure 4.2.

Tile 1
Tile 2

Mask

Figure 4.2: Mask overlapping two tiles.

51

When such a placement of the mask takes place, what actually happens is a tile is chosen first.
And then an offset in pixels is added to the mask. In the example in Figure 4.2, the mask has
a positive offset of N pixels with respect to Tile 1. The idea is then to allow a mask to have an
abscissa and an ordinate offset ranging from 0 to 7. It is not useful to go further than 7 as this
corresponds to placing the mask at the next tile. To be able to apply the mask, it is therefore
necessary to be able to load four tiles. The first one being the one chosen to draw the mask in (x,
y), the others being those in (x + 1, y), (x, y + 1) and (x + 1, y + 1). A naive solution to load
these four tiles would be to have a memory for each tile. However, this has two problems. The
first one is that this is impossible for the Cyclone V. Indeed, it was seen earlier that the Cyclone
V has just over 500 M10K memory blocks. However, to represent all the tiles, one would need
3888 memories because the definition of a memory in the code must use at least one whole M10K,
which is simply impossible. Secondly, this would generate way to many connections in the circuits
and a complex multiplexing stage in the memory circuits. This is not tractable for the Cylone V
neither.

Another way is to try to divide the set of tiles into four groups. These four groups should be
distributed on the screen in such a way that the placement of a mask loads 4 tiles of different
groups each time. If one thinks about it, it is possible to convince itself that a simple paving of 4
colors allows this (a color represents a group). Figure 4.3 shows such a tiling.

Figure 4.3: Screen tiling.

And the different cases possible by choosing four tiles in the way explained earlier, i.e. one tile,
the one to the right of it, the one below it and the one at the bottom right are shown in Figure
4.4. It can be seen that in each case, a group is present only once, which validates the possibility
of representing all tiles using four distinct memories.

Figure 4.4: Screen tiling selection cases.

52

4.1.2 Mask representation

A mask has the same dimensions as a tile but does not have the same content. Indeed, a mask can
contain four different values. The first value is keep, corresponding to a 0 in the mask. This value
means that no modification is made to the pixel targeted by this position in the mask. Then there
is set primary, corresponding to 1, which sets the pixel at this location to the primary color, this
is better explained later. When the value is 2, for set secondary, it is then the secondary color that
is applied. And finally, for the value 3 corresponding to a reset, the pixel becomes black. Each of
these values can therefore be represented on 2 bits. Table 4.1 summarizes the possible operations
of a mask.

Mask Operation Mask Value
Keep 0b00
Set primary 0b01
Set secondary 0b10
Reset 0b11

Table 4.1: Mask operations.

In terms of representation, a mask is a simple vector of 8x8x2 (128) bits. Its LSB corresponds
to the upper left corner of the mask and its MSB corresponds to the lower right corner of the
mask. This correspondence is shown in Figure 4.5.

0

64

b0b1

yi × 8 + xi

Mask on screen

x

y

(xi, yi)

Figure 4.5: Mask vector representation.

4.1.3 Using the GPU

As introduced, to use the GPU, it is necessary to use the store instruction from the CPU. But
the address and data must be correctly formatted. For the address, it must start with 0b10 as
seen in the chapter on the CPU (so that the addressed unit is the GPU). Then, it was decided to

53

make the address natural, that is to say that it is readable without any conversion. The address
therefore contains the exact pixel position where a mask should be applied. A pixel being located
by four variables: block x, block y (corresponding to the tile), off x and off y (corresponding to
the offset from the tile), these four variables are directly present in the address. The format of the
address is detailed in Figure 4.6.

0b10 block x block y off x off y

03632 30 1219

unused

Figure 4.6: Store instruction address.

Concerning the data writen by the store instruction, it must contain the mask identifier and the
values of the two colors. As a color is represented on 12 bits and a word on the CPU is represented
on 32 bits, 8 bits remain for the mask. The GPU can therefore support 256 masks. The data
format is detailed in Figure 4.7.

032 24 12

Primary ColorSecondary ColorMask ID

Figure 4.7: Store instruction data.

4.1.4 VESA protocol

The VESA protocol [5] works exactly like the VGA protocol. That is, four signals are present. On
the one hand there is the 24 bit color signal (8 bits for each primary color, only 4 are truly used
here, the least significant bits are replaced by zeros), the vertical and horizontal synchronization
signals and the display enable signal. The synchronization signals inform the screen of the end of
a line for horizontal synchronization and the end of a frame (all the lines on a screen) for vertical
synchronization. Between two horizontal synchronization signals, several things happen. First,
there is a pause just after the signal. This time is called horizontal back porch. Then, after this
pause the colors are sent, the value must be maintained for a certain time to fix a pixel. All
the pixels of the line are assigned one after the other, in a burst. Of course there are specific
timing criteria that must be met for this to work, this is discussed next. After sending all the
colors, a new pause takes place, called horizontal front porch. And finally, after this pause, a new
horizontal synchronization signal is sent. For the frames, it is similar. Before the frame, there is a
pause (vertical front porch) followed by the vertical synchronization followed by the vertical back
porch. Note that the horizontal and vertical synchronizations are independent, so both must be
evaluated at each moment. When no pause or synchronization occurs, either horizontal or vertical,
the display is said to be enable. The display enable signal is then high and the colors are actually
used for the pixels. Outside this condition, the color signal can be set to any value and is not
listened to.

The operation of the protocol is shown in Figure 4.8. The legend and length of the signals
are available in Table 4.2. In this figure, the protocol is described in relation to the pixels, and
therefore the position on the screen. As the screen only includes the pixels of the region where

54

display enable is high, the frame shown is a virtual screen, not the physical one, which is smaller.
The description is made in relation to the pixels because it is easier to understand but also to
implement. Indeed, as shown later in this report, pixel counters are sufficient to implement this
protocol. Then, it is enough to fix the right clock frequency so that the timings of each pixel
are respected. For VESA 848x480, a 33.750MHz clock is used. Figure 4.9 shows the value of the
signals according to the position on the screen.

Screen

VBP

VSYNC

VFP

H

B

P

H

S

Y

N

C

H

F

P

H

D

E

N

VDEN

Figure 4.8: VESA virtual screen schematic.

Signal Complete name Length (pixels)
HFP Horizontal Front Porch 16

HSYNC Horizontal Sync 112
HBP Horizontal Back Porch 112

HDEN Horizontal Display Enable 848
VFP Vertical Front Porch 6

VSYNC Vertical Sync 8
VBP Vertical Back Porch 23

VDEN Vertical Display Enable 480

Table 4.2: VESA 848x480 counts.

55

Figure 4.9: VESA signals - video signal represents both display enable signals [5].

4.2 GPU components

4.2.1 Graphic memory

The graphic memory has two functions. The first one is of course to store the state of all the
pixels of the screen. This is done as discussed above by splitting the memory into four parts. One
for each group of the Figure 4.3 tiling. Each of these sub-memories is then divided into three
memories, one for each primary color. This was done this way because it is more optimal to have
three memories whose word size is a power of two. By dividing by three, each word has 4 bits
while it would have had 12 bits in the case of full colors, which is not a power of 2. A fifth port
with a different clock from the first 4 ports is also exposed by the graphic memory. This one allows
the reading of the memory tile by tile for the HDMI controller part of the GPU. This operation
is completely independent of the CPU accesses of this memory, that is why another port is used.
The tile loaded from this port is referred to as Tile b.

The second function is to correctly direct the values in memory to the outputs when reading,
and the values in input to the memories when writing. Indeed, depending on the editing position
(address), the current tile belongs to one of the memories. And the memories of the other three tiles
to be selected also depends on this position. See Figure 4.4 for the different possible configurations.

From now on, the current tile (at the target position) will be tile 0. The one to the right of it
will be tile 1, the one below it will be tile 2 and the one below it on the right will be tile 3. Figure
4.10 summarizes this. Note that the colors are set by tiles. A memory word is therefore 4× 64 =
256 bits.

56

Tile 0 Tile 1

Tile 2 Tile 3

Addressed tile

Figure 4.10: Tile identifiers.

Memory unit

The memory units are the modules representing the groups of tiles, so there are 4 of them in
the graphic memory. Each memory unit is composed of three Altsyncram configured in true-
dualport RAM representing the three primary colors. True dualport means that they come with
two completely independent ports whose clocks are different. The module simply interfaces these
three Altsyncrams. The internal circuit is given in Figure 4.12 and its interface in Figure 4.11. As
can be seen, the wren b and data b signals of each memory are grounded since the second port is
read-only, that is the one corresponding to Tile b. The HDMI controller doesn’t need to write in
memory. For the rest, the signals are simply retransmitted. The addresses in the three internal
memories are the same since it is the same tile that is targeted each time. The words are all 256
bits long as each word contains 64 pixels and one of their color components on 4 bits.

Now that the memory units are described, it is possible to establish the complete memory
circuit. The complete circuit is shown in Figure 4.13. It consists of a parallel connection of four
memory units.

Each color input of each memory unit is multiplexed between the four color inputs of the same
color. The four inputs of these multiplexers are in fact the colors of each of the tiles used (tile 0,
tile 1, tile 2 and tile 3). Then, each of the outputs of the memory are multiplexed from the values
in memory in the different memory units. All these multiplexers ensure that the tiles are correctly
routed, as explained above. These multiplexers are controlled by five signals: sw0, sw1, sw2, sw3
and swb which are respectively linked to tile 0, tile 1, tile 2, tile 3 and tile b. The determination of
the values of these switches as well as those of the addresses of the memory units are not displayed
in the circuit for simplicity. But their value are simply based on the selected tile location, Tile 0.
Depending on its location, it belongs to one of the four tile groups. The groups of the neighbor
tiles are also computed based on the locations of these tiles and their respective switches are set
according to the group of the tile.

57

Memory Unit

address a.10

clk en a.1

clock a.1

clr.1

reds.256

wren.1

blues.256

greens.256

clock b.1

address b.10

sreds.256

qreds.256

sblues.256

qblues.256

sgreens.256

qgreens.256

Figure 4.11: Memory Unit.

58

address a

address b

clk en a

Memory Color Unit

q a.256

q b.256

address a.10

clk en a.1

clock a.1

wren a.1

data a.256

aclear a.1

address b.10

clock b.1

wren b.1

data b.256

aclear b.1

clock a

clock b

clr

reds

wren
qreds

sreds

clr

address a

address b

clk en a

Memory Color Unit

q a.256

q b.256

address a.10

clk en a.1

clock a.1

wren a.1

data a.256

aclear a.1

address b.10

clock b.1

wren b.1

data b.256

aclear b.1

clock a

clock b

clr

blues

wren
qblues

sblues

clr

address a

address b

clk en a

Memory Color Unit

q a.256

q b.256

address a.10

clk en a.1

clock a.1

wren a.1

data a.256

aclear a.1

address b.10

clock b.1

wren b.1

data b.256

aclear b.1

clock a

clock b

clr

greens

wren
qgreens

sgreens

clr

Figure 4.12: Memory Unit internal circuit.

59

sw1

sw1

sw1

sw2

sw2

sw2

sw3

sw3

sw3

swb

swb

sw0

swb

blk 0 qred
blk 1 qred
blk 2 qred
blk 3 qred

blk 0 qgreen
blk 1 qgreen
blk 2 qgreen
blk 3 qgreen

blk 0 qblue
blk 1 qblue
blk 2 qblue
blk 3 qblue

blk 0 qred
blk 1 qred
blk 2 qred
blk 3 qred

blk 0 qgreen
blk 1 qgreen
blk 2 qgreen
blk 3 qgreen

blk 0 qblue
blk 1 qblue
blk 2 qblue
blk 3 qblue

blk 0 qred
blk 1 qred
blk 2 qred
blk 3 qred

blk 0 qgreen
blk 1 qgreen
blk 2 qgreen
blk 3 qgreen

blk 0 qblue
blk 1 qblue
blk 2 qblue
blk 3 qblue

blk 0 qred
blk 1 qred
blk 2 qred
blk 3 qred

blk 0 qgreen
blk 1 qgreen
blk 2 qgreen
blk 3 qgreen

blk 0 qblue
blk 1 qblue
blk 2 qblue
blk 3 qblue

blk 0 sred
blk 1 sred
blk 2 sred
blk 3 sred

blk 0 sgreen
blk 1 sgreen
blk 2 sgreen
blk 3 sgreen

blk 0 sblue
blk 1 sblue
blk 2 sblue
blk 3 sblue

qreds0

qgreens0

qblues0

sw0

sw0

qreds1

qgreens1

qblues1

qreds2

qgreens2

qblues2

qreds3

qgreens3

qblues3

qreds b

qgreens b

qblues b

blk0 addr

clk en a

clk a

wren

clr

blk 0 qred

blk 0 qgreen

blk 0 qblue

blk 0 sred

blk 0 sgreen

blk 0 sblue

Memory Unit

address a.10

clk en a.1

clock a.1

clr.1

reds.256

wren.1

blues.256

greens.256

clock b.1

address b.10

sreds.256

qreds.256

sblues.256

qblues.256

sgreens.256

qgreens.256

greens0
greens1
greens2
greens3

blues0
blues1
blues2
blues3

sw0

reds0
reds1
reds2
reds3

blkb addr

clk b

blk1 addr

clk en a

clk a

wren

clr

blk 1 qred

blk 1 qgreen

blk 1 qblue

blk 1 sred

blk 1 sgreen

blk 1 sblue

Memory Unit

address a.10

clk en a.1

clock a.1

clr.1

reds.256

wren.1

blues.256

greens.256

clock b.1

address b.10

sreds.256

qreds.256

sblues.256

qblues.256

sgreens.256

qgreens.256

greens0
greens1
greens2
greens3

blues0
blues1
blues2
blues3

sw1

reds0
reds1
reds2
reds3

blkb addr

clk b

blk2 addr

clk en a

clk a

wren

clr

blk 2 qred

blk 2 qgreen

blk 2 qblue

blk 2 sred

blk 2 sgreen

blk 2 sblue

Memory Unit

address a.10

clk en a.1

clock a.1

clr.1

reds.256

wren.1

blues.256

greens.256

clock b.1

address b.10

sreds.256

qreds.256

sblues.256

qblues.256

sgreens.256

qgreens.256

greens0
greens1
greens2
greens3

blues0
blues1
blues2
blues3

sw2

reds0
reds1
reds2
reds3

blkb addr

clk b

blk3 addr

clk en a

clk a

wren

clr

blk 3 qred

blk 3 qgreen

blk 3 qblue

blk 3 sred

blk 3 sgreen

blk 3 sblue

Memory Unit

address a.10

clk en a.1

clock a.1

clr.1

reds.256

wren.1

blues.256

greens.256

clock b.1

address b.10

sreds.256

qreds.256

sblues.256

qblues.256

sgreens.256

qgreens.256

greens0
greens1
greens2
greens3

blues0
blues1
blues2
blues3

sw3

reds0
reds1
reds2
reds3

blkb addr

clk b

Figure 4.13: Memory internal circuit.

The interface of the memory can be found in Figure 4.14. The red, green and blue signals of
each tile are put together in a bus to simplify the representation of the module.

60

Memory
clk b.1

block address b.13

qtileb.bus

clr.1

clk a.1
clk en a.1
wren.1
block address a.13

tile3.bus
tile2.bus
tile1.bus
tile0.bus

qtile3.bus
qtile2.bus
qtile1.bus
qtile0.bus

Figure 4.14: Memory.

4.2.2 Mask memory

The mask memory is identical to the CPU instruction memory except that the Altsyncram used
contains only 256 words of 128 bits. This allows to store 256 masks. The circuit is given in Figure
4.15 and 4.16 provides its interface. Note that if the address is equal to 255, then the mask sent
to the data read output is a constant mask (named clear mask) which clears all pixels.

alive

mau data write

cpu data write

mau wren

cpu wren

cpu clk en

mau clk en

mau address

cpu address

clk

data read
ram 256x128

clk.1

clk en.1

address.8

data write.128

wren.1

data read.128

clear mask

address

address

=255

Figure 4.15: Mask memory internal circuit.

alive.1

Mask Memory

data read.128clk.1

cpu clk en.1

cpu address.8

cpu data write.128

cpu wren.1

mau clk en.1

mau address.8

mau data write.128

mau wren.1

Figure 4.16: Mask memory.

61

4.2.3 Shifter

The objective of this module is to replicate the mask four times and to shift it in each of these
copies so that it corresponds to the mask offset given by the user. After that, each of the copies
can be associated with one of the four tiles loaded out of memory. This association is done in
another module.

Shifter Unit

This module is responsible for shifting. To do this it simply takes the signed offsets given in input
and shifts the bits of the mask. The offsets being given in pixels and the masks having two bits
per pixel, it is necessary to multiply by two each offset. To achieve an horizontal offset, each line
of the mask is shifted 2 × offset x while for a vertical offset, the whole mask is shifted of 16 ×
offset y given that there are 8 pixels by line. The circuit and the interface of the shifter unit are
respectively given in Figures 4.17 and 4.18.

62

img[15:0]

img[31:16]

img[47:32]

img[63:48]

img[79:64]

img[95:80]

img[111:96]

img[127:112]

<<

signed

offset x

<<

signed

offset x

<<

signed

offset x

<<

signed

offset x

tmp[15:0]

tmp[31:16]

tmp[47:32]

tmp[63:48]

tmp[79:64]

tmp[95:80]

tmp[111:96]

tmp[127:112]

<<

signed

offset x

<<

signed

offset x

<<

signed

offset x

<<

signed

offset x

<<

signed

16 × offset y

tmp shifted

Reg

clk

clk en
D Q
EN

RST

Figure 4.17: Shifter unit internal circuit.

Shifter Unit shifted.128

clk.1

clk en.1

offset x.5

offset y.5

img.128

Figure 4.18: Shifter unit.

The complete shifter is just a simple parallelization of four shifters but one has to choose the
right offsets for each shifter unit. In Figure 4.19 are shown the different offsets needed to obtain
the desired masks. Each offset is taken with respect to the upper left corner of the mask to which

63

it is associated. off 0 is of course equal to (off x, off y) since the offset is always given from the
selected tile and the selected tile is identified by id 0. For the others, the offsets are off 1 = (off x
- 8, off y), off 2 = (off x, off y - 8) and off 3 = (off x - 8, off y - 8).

Mask 1

Mask 2 Mask 3

Mask 0

Figure 4.19: Masks offsets.

The complete shifter circuit can then be established and is given in Figure 4.20. Figure 4.21
contains the shifter interface.

64

Shifter Unit shifted.128

clk.1

clk en.1

offset x.5

offset y.5

img.128

offset

offset

clk

mask

clk

mask

Shifter Unit shifted.128

clk.1

clk en.1

offset x.5

offset y.5

img.128

offset

offset

clk

mask

clk

mask 1

Shifter Unit shifted.128

clk.1

clk en.1

offset x.5

offset y.5

img.128

offset

offset

clk

mask

clk

mask

Shifter Unit shifted.128

clk.1

clk en.1

offset x.5

offset y.5

img.128

offset

offset

clk

mask

clk

mask

Figure 4.20: Shifter internal circuit.

Shifter

clk.1
clk en.1
offset x.3
offset y.3

mask.128

mask0.128
mask1.128
mask2.128
mask3.128

Figure 4.21: Shifter.

4.2.4 Mask Logic Unit (MLU)

The MLU is simply used to modify the current value of a pixel in a tile according to the operation
described for this pixel in the corresponding mask. This module is a kind of giant multiplexer. In
fact, it contains a multiplexer for each primary color of each pixel and will select an input (the
current value of the pixel, the primary color, the secondary color or the black color) according to
the value of the mask at that position. Its operation is very simple to understand and its circuit
impossible to draw on a page of this report, so the circuit is not detailed here. The interface is
however given in Figure 4.22. Note that this circuit is completely combinatorial. Concerning the
tile buses, they are simply made up of the three color signals of the corresponding tile.

65

Mask Logic Unit

primary.12

secondary.12

mask0.128

mask1.128

mask2.128

mask3.128

tile0.bus

tile1.bus

tile2.bus

tile3.bus

next tile0.bus

next tile1.bus

next tile2.bus

next tile3.bus

Figure 4.22: Mask Logic Unit.

4.2.5 Graphic Counter (GC)

The graphics counter is the first element fully included in the HDMI controller part of the GPU.
It simply counts and provides several counts. First, it provides the current position of the pixel
taken into account, so cnt h and cnt v representing the horizontal and vertical position of the
pixel. These go through all the virtual screen of the VESA, that is to say from 0 to 1087 for cnt h
and from 0 to 516 for cnt v. These counts are then used to correctly generate the synchronization
signals of the VESA in another module.

Then, it provides four other counters blk x, blk y, off x, off y which again give the position of
a pixel but using this time the GPU coordinate system. It should be noted that these counters
only count from the start of the useful screen. In other words, blk x and blk y are both at 0 when
cnt h and cnt v correspond to the location of the first pixel of the first tile in memory, the one at
the top left corner of the useful screen. And their values continue to increase until the end of the
VESA virtual screen.

Notice also that the useful screen does not correspond to the entire active area of the VESA.
As mentioned earlier, not all the space is used because of memory constraints. The useful screen is
centered in this active region. When the counter is in the useful region of the screen, the in mem
signal is high to warn that the position given by the counter corresponds to a tile present in
memory. The range of the counters and a schematic of the positioning of the useful region are
given in Figure 4.23.

66

VESA active region

Useful screen

h cnt

v cnt

blk x, off x

blk y, off y in mem = HIGH

Figure 4.23: Counters range and useful screen.

All these counters are implemented with the help of registers by choosing correctly the clk enable
signals and the reset signals. The inner circuit without the in memory which is only a condition
on the values of h cnt and v cnt is given in Figure 4.25. The interface is also shown in Figure 4.24.

Graphic Counter

clk.1

cnt h.11

cnt v.10

blk x.7

blk y.6

off x.3

off y.3

in mem.1

Figure 4.24: Graphic counter.

67

+1

Reg

clk

D Q
EN

RSTline end

blk x
off end & h cnt > 135

+1

Reg

clk

D Q
EN

RST

blk y
line end & v cnt > 23

frame end

+1

=

517

Reg

clk

D Q
EN

RST

line end
v cnt

frame endline end

h cnt+1

=

1088

Reg

clk

D Q
EN

RST

+1

=

2

Reg

clk

D Q
EN

RST

off y
line end

+1

=

2

Reg

clk

D Q
EN

RST

off x

off end

1

1

Figure 4.25: Graphic counter internal circuit.

4.2.6 Synchronizer

The synchronizer is in charge of generating the synchronization and display enable signals of the
VESA protocol. It simply looks at the values of the h cnt and v cnt signals provided by the graphic
counter. If the values are within the ranges associated with the synchronizations or display enable,
the synchronizer sets the signal to high. As a reminder, the ranges were described in Figure 4.8
and Table 4.2. As the internal circuit is only a condition, it is not shown. The interface is shown
in Figure 4.26.

68

Synchronizer

clk.1

sync h.1
sync h.1
disp en.1

cnt h.11

cnt v.10

Figure 4.26: Synchronizer.

4.2.7 I2C HDMI Config

This module is provided by Terasic to configure the HDMI controller present on the DE10 nano
board. In this work, it is used as a library, i.e., its description is not detailed here since it has
been used as a black box. In the GPU, it is simply connected to the pins of the physical HDMI
controller as Terasic suggests in its tutorial. The interface is provided in Figure 4.27.

I2C HDMI Config
I2C SCLK.1

I2C SDAT.1

HDMI TX INT.1

iCLK.1

iRST N.1

Figure 4.27: I2C HDMI Config.

4.2.8 Complete circuit

The GPU whose internal circuit is given in Figure 4.28, like the CPU, runs in sequence. It starts
by reading the mask in the mask memory. Then it reads the tiles to be edited in the memory and
shifts the masks at the same time. The results of these two operations arrive in the mask logic unit
where they are processed in a combinatorial way. Each mask operates on the tile associated to it,
taking into account the primary and secondary colors. Once this is done, the memory is enabled
again, in writing mode this time.

Similarly to some CPU memories, the mask memory has a MAU access that allows reading
and writing of this memory from the ARM processor.

This constitutes the computational part of the GPU, the one that the CPU controls through
its ST and LD operations.

Then, there is the controller that fetches each tile in memory one by one and draws all the
pixels on the physical screen. It also manages the synchronization signals of the VESA protocol.
The graphic counter is used to provide the address of the memory. To do this, the blk x and blk y
outputs are concatenated to form the address. Then, the offsets are added together to form an
index in the tile and select the current pixel. The selected pixel is then put on the output if the
signal in memory of the graphic counter is high, otherwise the color is black. It is to this effect
that the two multiplexers are used on the hdmi tx d output. It should be noted that the index

69

and the im mem signal must be delayed so that they arrive at the multiplexers at the same time
as the tile requested from the memory. This is why two registers are left on their way. The cnt h
and cnt v signals go to the synchronizer which is responsible for generating the synchronization
signals. And finally, there is also the I2C HDMI Config to configure the physical HDMI controller.

It should be noted that two clocks are present. On the computational side, it is the same clock
as the CPU that is used to ensure that the two modules are synchronized. On the HDMI side, it
is the VESA protocol clock that is used. It is called gpu clk. The GPU interface is available in
Figure 4.29.

Mask Logic Unit

primary.12

secondary.12

mask0.128

mask1.128

mask2.128

mask3.128

tile0.bus

tile1.bus

tile2.bus

tile3.bus

next tile0.bus

next tile1.bus

next tile2.bus

next tile3.bus

Synchronizer

clk.1

sync h.1
sync h.1
disp en.1

cnt h.11
cnt v.10

Graphic Counter

clk.1

cnt h.11
cnt v.10

blk x.7
blk y.6

off x.3
off y.3

in mem.1

Memory
clk b.1

block address b.13
qtileb.bus

clr.1

clk a.1
clk en a.1
wren.1
block address a.13

tile3.bus
tile2.bus
tile1.bus
tile0.bus

qtile3.bus
qtile2.bus
qtile1.bus
qtile0.bus

Concatenate

+×
8

R
E
G

hdmi tx d

hdmi sync h
hdmi sync v
hdmi disp en

gpu clk

gpu clk

cpu clk

R
E
G

1

I2C HDMI Config
I2C SCLK.1
I2C SDAT.1

HDMI TX INT.1

iCLK.1
iRST N.1

hdmi i2c scl
hdmi i2c sda
hdmi tx int

cpu clk

clk sequence[4]

data[31:24]

alive alive.1

Mask Memory

data read.128clk.1

cpu clk en.1

cpu address.8

cpu data write.128

cpu wren.1

mau clk en.1

mau address.8

mau data write.128

mau wren.1

mau address mask

mau write data mask

mau wren mask

cpu clk
clk sequence[4]

address[5:3]
address[2:0]

data[11:0]

data[23:12]

cpu clk

clk sequence[4] | clk sequence[6]
wren & clk sequence[6]

address[18:6]

Shifter

clk.1
clk en.1
offset x.3
offset y.3
mask.128

mask0.128
mask1.128
mask2.128
mask3.128

Figure 4.28: GPU internal circuit.

GPU

hdmi tx d.24

hdmi sync h.1
hdmi sync v.1
hdmi disp en.1

hdmi i2c scl.1
hdmi i2c sda.1
hdmi tx int.1

cpu clk.1

clk sequence.7

data.32

alive.1

address.32

gpu clk.1

wren.1

mau mask.bus

Figure 4.29: GPU.

70

4.3 Clock Unit (CLKU)

Github link to the verilog files of the CTRLU.

As seen previously, two clocks are needed. One as high as possible for the CPU and the
modules working synchronously with it and one for the 33.750MHz HDMI controller. The CPU
clock cannot exceed 50MHz. Indeed, other higher frequencies have been tested but do not meet
the timing constraints at compile time. For the CPU, the clock unit only passes the FPGA 50MHz
physical clock from the input to the output (the CPU clock circuit is a simple wire). For the GPU
clock, the frequency has to be modified. This is done using a PLL (Phased-locked loop) which
allows to generate a clock with a given frequency from another clock with a fixed frequency. This
PLL is easily configured in a GUI using the Quartus Mega Wizard by setting the input and output
frequencies. The CLKU then consists in a PLL. Its interface is given in Figure 4.30.

CLKU
clk.1

rst.1

cpu clk.1

gpu clk.1

Figure 4.30: CLKU.

71

https://github.com/AnotherGitAccount/TFE/tree/master/hardware/rtl/clku

Chapter 5

Memory Access Unit and Control Unit
design

This section describes the Memory Access Unit, which gives the ARM part read and write access to
several memories of the system. Another super-unit, the Control Unit is also described here. The
latter keeps the state of the machine (on or off) and gives access to this register to the ARM part.
The ARM processor can therefore switch the machine on and off as it wishes from this access.
Before introducing these two super-units, the Avalon protocol is first described. This protocol
allows the communications through the bridges existing between the ARM and FPGA parts of the
Cyclone V.

5.1 Communication between ARM and FPGA sides

The communication between the two parts takes place via one of the previously mentioned bridges
using the Avalon protocol [6] described by Intel. This protocol allows high-speed communication.
The Avalon interface has different sub-interfaces for different types of communication. Each type
is adapted to certain applications. In this project where the protocol is used to communicate
between master and slave devices, the Avalon MM is used. The Avalon MM protocol is address-
based which is very suitable for the needs of this project. We here describe the read and write
operations of this protocol.

5.1.1 Read operation

The sequence diagram of the protocol for the reading operation is visible in Figure 5.1. In the
diagram, two masters are represented but only the unique master case is described. In the first
place, the master simply has to give the start address to which it wants to read, the length of
the burst (the number of words desired). It also has to switch the read and beginbursttransfer
signals to high. The slave then responds to this with a waitrequest that goes up. The master
must imperatively keep all signals unchanged — except beginbursttransfer which returns to the
low state — during the waitrequest to give the slave time to capture them. Once ready, the slave
removes the waitrequest and informs that data is available by switching readdatavalid to high and
sending the first word. The other words are then sent to the master in the order of their addresses.

72

Figure 5.1: Read operation using Avalon MM [6].

5.1.2 Write operation

For writing, it’s even simpler. As can be seen in Figure 5.2, the beginning is similar to reading. The
master has to provide the first address, the length of the burst and also to switch beginbursttransfer
to high. In addition to that, the first word is also provided. Here again, the slave responds with a
waitrequest. As soon as the waitrequest is switched off, the master sets the beginbursttransfer to
low and sends the words one after the other, starting at the next clock cycle. If the write signal
goes down, the burst is paused and resumes as soon as it goes up again.

Figure 5.2: Write operation using Avalon MM [6].

This protocol is not very complicated. However, it has a lot of signals and is not necessarily
practical to use directly in user-developed slaves and masters. This is why interface modules are
used. These modules are described in the sections where they are needed.

73

5.2 Memory Access Unit (MAU)

Github link to the verilog files of the MAU.

Like previously mentioned several times the MAU allows access to several memories of the
machine. In order to simplify the protocol in the machine, a module called Avalon to External
Bus Bridge is used. This module manages the Avalon protocol and exposes an interface (the
external bus) using a simpler protocol. This module is used as many times as there are memories
to connect to the interconnect. The various signals used by this module are shown in Figure 5.3.
Note that this module has an integrated timer that is reset each time the Avalon to external
bus bridge receives an acknowledgement from the external slave. When this timer reaches 0, the
request from the master (denoted by Avalon Switch Fabric in Figure 5.3) is deleted.

Figure 5.3: Avalon to external bus bridge interface and signals [7].

Compared to the Avalon protocol, this protocol is considered simpler because it offers an
interface closer to that used by the memories. Indeed, the usual signals address, write data, read
data and RW are present. Moreover, this protocol is very simple to use. Indeed, as can be seen
in Figure 5.4. The master places all the necessary elements on the bus and then switches the bus
enable signal to high. This means that the slave can act. The slave then does what it has to do.
Either take the data and write it to the address given by the master or send the requested data
that is present at the address given by the master. Once the slave has finished its job, it switches
the acknowledgement signal to high during a clock cycle to validate the transaction.

It is possible to configure the address range and the word size used by these bus. For this work,
it is decided that the addressable space is 256 Kbytes long and that the words are on 32 bits for
each access except for the access to the GPU mask memory which is on 4 Kbytes with 128 bits
words. Each of these accesses are put on the HPS-FPGA bridge, their offset is given in Table

74

https://github.com/AnotherGitAccount/TFE/tree/master/hardware/rtl/mau

Figure 5.4: External bus protocol timings [7].

5.1. These dimensions were chosen to make the offset easy to remember. Indeed, only the sixth
number changes in the hexadecimal address. Moreover, this gives future users a large margin if
they want to change the dimensions of the memories. As far as the mask memory is concerned, the
address range is simply the size of the memory. This has been done especially to discourage any
modification at this level. Indeed, this would lead to a large modification of the GPU which could
degrade its performance or make it impossible to include in the design (due to lack of space on the
FPGA). More over, the size of this memory is already the maximum addressable size possible for
the store operation, using the GPU format.

Access Base End Address range Word size
Instruction Memory (CPU) 0x0000 0000 0x0003 FFFF 256kB 32
Data Memory (CPU) 0x0010 0000 0x0013 FFFF 256kB 32
Register File (CPU) 0x0020 0000 0x0023 FFFF 256kB 32
I/Os (IOU) 0x0030 0000 0x0033 FFFF 256kB 32
Mask Memory (GPU) 0x0040 0000 0x0040 0FFF 4096B 128

Table 5.1: Memory bus description.

The connections in QSys are shown in Figure 5.5. The different modules and the HPS are
highlighted in yellow. The different Avalon slaves and the master are shown in red. It can be
noticed by following the connection highlighted in blue that it is indeed the HPS-FPGA bridge
that is used (h2f axi master in Qsys) and that the offsets of the slaves are indeed those previously
given. The signals corresponding to the buses are displayed in green. Each of them is exported,
that is to say that they can be used from the FPGA. They are the ones that are connected to the
different memories.

Now that the descriptions of the external bus bridge and its implementation are done, the
design of the MAU can be considered.

75

Figure 5.5: Avalon to external bus bridges connections in Qsys.

5.2.1 Memory Access

In fact, the Memory Access Unit is composed of only two types of modules. The Memory Access
32, and the Memory Access 128 both allowing the interfacing between an external bus and a
memory (these two modules respectively manage words of 32 and 128 bits). To do this, they both
implement a finite state machine. That of Memory Access 32 is given in Figure 5.6. The only
difference that the 128 bits version has is that the address is not multiplied by 4 in the Idle state.

76

bus enable = 1

and bus rw = 1

bus enable = 1

and bus rw = 0

otherwise

Idle (00)

address = bus address × 4
wren = 0

bus acknowledge = 0

Read 1 (01)

bus acknowledge = 1
write data = bus write data

wren = 1

Write (11)

bus acknowledge = 1
bus read data = read data

Read 2 (10)

Figure 5.6: Memory Access 32 finite state machine.

This state machine simply follows the protocol described earlier. It only acts when the bus is
high and sends an acknowledge during a clock cycle once the request is executed (the finite state
machine is reevaluated at each clock cycle). On the read side, a state seems to be useless (Read
1). This one is in fact very important, it gives the memory time to fetch the value present at the
requested address. The interfaces of the memory access are given in Figures 5.7 and 5.8.

Memory Access 32

clk.1

bus acknowledge.1

bus irq.1

bus address.16

bus bus enable.1

bus byte enable.4

bus rw.1

bus write data.32

bus read data.32

address.32

read data.32

write data.32

byte en.4

wren.1

Figure 5.7: Memory Access 32.

5.2.2 Memory Access Unit circuit

The Memory Access Unit is therefore a simple parallelization of four Memory Access 32 modules
and one Memory Access 128 module. The MAU is later connected to the different signals exported
in QSys. The circuit of the MAU is given in Figure 5.9 and its interface is shown in Figure 5.10.
In order to simplify the interface of the MAU, not all signals are put in it and a bus representation
is used. However, all signals are shown in the internal circuit.

77

Memory Access 128

clk.1

bus acknowledge.1

bus irq.1

bus address.8

bus bus enable.1

bus byte enable.16

bus rw.1

bus write data.128

bus read data.128

address.8

read data.128

write data.128

byte en.16

wren.1

Figure 5.8: Memory Access 128.

5.3 Control Unit (CTRLU)

Github link to the verilog files of the CTRLU.

The control unit is a very simple unit. It manages the state of the machine. This means that
it decides whether the machine is switched on or off. Initially, the machine is switched off (alive
is in the low state). When alive is low, the memories of the machine can be manipulated by the
ARM processor. It is thus at this moment that the machine is programmed. Once this is done,
the ARM processor can start the machine by switching alive to the high state, the means by which
this is achieved are seen just after. During the execution of a program, it can be stopped in two
ways. First, the ARM processor can stop it by passing alive to the low state. Second, the beta
machine itself can order the stop by executing the EXIT instruction which changes the halt signal
to high. The control unit then responds to this signal by switching alive to low.

As for the MAU, it is necessary to connect a module to the interconnect to make this unit
accessible from the ARM processor. Once again, the Avalon protocol is not used directly. Instead,
a module called Parallel IO (PIO) is used. This one gives direct access to a register from the
interconnect (and thus from the ARM processor). This module also uses Avalon MM, so the
register has an address from the point of view of the ARM processor. A difference with the
Avalon to external bus bridge of the MAU is that the PIO is put on the lightweight HPS-FPGA
bridge. This choice is made because the PIO is not frequently used and does not require large data
transfers. For this kind of modules, the HPS documentation advises to use the lightweight bridge.
The connection of the parallel IO in QSys is shown in Figure 5.11. The usual color code is used.

One of the ports is exported. In fact this one exposes two signals. One input and one output.
The output allows to read what the ARM processor proposes as new value of the register while
the input allows to set the value of the register. A module must therefore be added between the
input and the output in order to listen to the ARM processor port and the beta machine port and
to set the register accordingly. This module is in fact the control unit itself.

5.3.1 Control Unit circuit

The Control Unit, like the memory access, simply implements a finite state machine. This one
is described in Figure 5.12. The hps cmd signal represents the signal coming from the PIO (thus
from the HPS) and the halt is the stop signal of the beta machine. According to these signals,
the value of alive is fixed. The on/off transitions initiated by the ARM processor are done in two
steps. A transition is completed when the ARM processor sends a 1 followed by a 0. This has been

78

https://github.com/AnotherGitAccount/TFE/tree/master/hardware/rtl/ctrlu

Memory Access 32

clk.1

bus acknowledge.1

bus irq.1

bus address.16

bus bus enable.1

bus byte enable.4

bus rw.1

bus write data.32

bus read data.32

address.32

read data.32

write data.32

byte en.4

wren.1

Memory Access 32

clk.1

bus acknowledge.1

bus irq.1

bus address.16

bus bus enable.1

bus byte enable.4

bus rw.1

bus write data.32

bus read data.32

address.32

read data.32

write data.32

byte en.4

wren.1

Memory Access 32

clk.1

bus acknowledge.1

bus irq.1

bus address.16

bus bus enable.1

bus byte enable.4

bus rw.1

bus write data.32

bus read data.32

address.32

read data.32

write data.32

byte en.4

wren.1

Memory Access 128

clk.1

bus acknowledge.1

bus irq.1

bus address.8

bus bus enable.1

bus byte enable.16

bus rw.1

bus write data.128

bus read data.128

address.8

read data.128

write data.128

byte en.16

wren.1

Memory Access 32

clk.1

bus acknowledge.1

bus irq.1

bus address.16

bus bus enable.1

bus byte enable.4

bus rw.1

bus write data.32

bus read data.32

address.32

read data.32

write data.32

byte en.4

wren.1

clk

bus acknowledge im

bus irq im

bus address im

bus bus enable im

bus byte enable im

bus rw im

bus write data im

bus read data im

clk

bus acknowledge dm

bus irq dm

bus address dm

bus bus enable dm

bus byte enable dm

bus rw dm

bus write data dm

bus read data dm

clk

bus acknowledge rf

bus irq rf

bus address rf

bus bus enable rf

bus byte enable rf

bus rw rf

bus write data rf

bus read data rf

clk

bus acknowledge io

bus irq io

bus address io

bus bus enable io

bus byte enable io

bus rw io

bus write data io

bus read data io

clk

bus acknowledge mk

bus irq mk

bus address mk

bus bus enable mk

bus byte enable mk

bus rw mk

bus write data mk

bus read data mk

address im

read data im

write data im

wren im

address dm

read data dm

write data dm

wren dm

address rf

read data rf

write data rf

wren rf

address io

read data io

write data io

wren io

address mk

read data mk

write data mk

wren mk

Figure 5.9: Memory Access Unit internal circuit.

79

MAU

im mau bus.bus

dm mau bus.bus

rf mau bus.bus

io mau bus.bus

mk mau bus.bus

clk.1

im external bus.bus

dm external bus.bus

rf external bus.bus

io external bus.bus

mk external bus.bus

Figure 5.10: Memory Access Unit.

Figure 5.11: Parallel IO connections in QSys.

done as so to have only one bit for the command. If the change of state was done directly when
a 1 appeared, the final state would have been uncertain. Indeed, it is impossible to know for how
many clock cycles the 1 is maintained by the ARM. Depending on the number of cycles it would
take to reset its signal to 0, the state would switch several times between on and off. With the
intermediate state, any bounce between states is avoided. Furthermore, simply using 1 for alive
and 0 for stop is not a good idea either since the ARM processor would have to always listen to
state changes coming from the beta machine to ensure that theirs values are coherent.

The control unit then exposes its state and the alive signal. The two bits of the state are passed
into a logic AND gate whose two inputs are inverted and the output of this gate is used to set
the PIO register (the corresponding circuit is shown when the entire system is connected later in
this report). The PIO register is therefore high when the machine is stopped and low at any other
time. This is done because when the register goes from low to high, an interrupt is sent to the
ARM processor. Since it is interesting to receive the interrupt when the machine is shut down,
it has been done this way. However, this interrupt is not used in this work but it could trigger
an interaction between the ARM processor and beta machine. A visual summary is displayed in
Figure 5.13 and the interface of the Control Unit is therefore the one given in Figure 5.14.

80

hps cmd = 1

hps cmd = 0 hps cmd = 1

hps cmd = 0

halt = 1

Stopped (00)
alive = 0

Stopping (10)

Started (11)
alive = 1

Starting (01)

Figure 5.12: Finite state machine of the Control Unit.

PIO

Lightweight
HPS-FPGA

Bridge

Register

CTRLU

hps cmd

state

halt alive

Beta Machine

write

read

interrupt

ARM

Figure 5.13: ARM, Beta Machine and CTRLU interaction summary.

CTRLU

cpu halt.1 alive.1

hps cmd.1

state.2

clk.1

Figure 5.14: Control Unit.

81

Chapter 6

System design

Github link to the GHRD file.

In this chapter the final steps of the system design are described. The generation of the HPS
system allowing the connection between the FPGA and the ARM processor, the interconnection
of the different super units as well as the installation of the system on the FPGA and the OS on
the ARM processor are detailed.

6.1 Generating the HPS module

In the previous sections, the ARM-FPGA interconnect was described using QSys. Now that all the
required elements have been defined, all that remains is to generate the HPS system from QSys.
This is done simply by pressing the generate button and choosing Verilog as output language in
QSys. This operation generates a module that can be used in the project. In fact, the module
gives access to all the signals exported to QSys (as input or output depending on the signal). In
addition to that, some signals such as reset, clock, etc. are present in the module interface. Inside
the HPS module are the different modules that have been added in QSys (PIO and Avalon to
external bus bridge) as well as other modules necessary for the operation of the interconnection.
The HPS is also connected to the different FPGA-ARM bridges inside. The interface of the HPS
is given in Figure 6.1.

clk.1

pio in.1

pio out.1

im external bus.bus

dm external bus.bus

rf external bus.bus

io external bus.bus

mk external bus.bus

HPS

Figure 6.1: HPS system.

82

https://github.com/AnotherGitAccount/TFE/blob/master/hardware/DE10_NANO_SoC_GHRD.v

6.2 Golden Hardware Reference Design (GHRD) and sys-

tem circuit

The GHRD has already been mentioned in this report. It is a project provided by Terasic, the
manufacturer of the board used for this work, the DE10 Nano. This project includes the definition
of the different inputs and outputs of the system as previously discussed. A Verilog file is also
provided. This file describes a module whose inputs and outputs are redirected to physical inputs
and outputs, this file is called the top-level module. It is then a question of linking all the units
defined in this project within the top-level module and of correctly redirecting the IOs of the
system to those of the top-level. The HDMI outputs, buttons and leds are part of the IOs of the
top-level module.

The system circuit is fairly straight-forward. Indeed, all the units have already been described
and their interraction briefly detailed. It is now a matter of connecting everything together. The
HPS provides on the one hand the access to the PIO for the startup control to the CTRLU and on
the other hand the different external buses for the CPU, GPU and the IOU. These signals are first
directed to the MAU that links the external buses and the memories. Then the CLKU provides
the clocks to all units, including the HPS. Finally, connections are made between the CPU, the
GPU and the IOU to ensure the control of the latter two by the ST and LD instructions.

The circuit of the system is displayed in Figure 6.2. In this circuit, the inputs and outputs
are the ones of the top-level module. These are thus directly connected to the physical IOs of the
FPGA.

83

mk bus

cpu clk

gpu clk

alive

sequence

exported wren

exported data
exported address

GPU

hdmi tx d.24

hdmi sync h.1
hdmi sync v.1
hdmi disp en.1

hdmi i2c scl.1
hdmi i2c sda.1
hdmi tx int.1

cpu clk.1

clk sequence.7

data.32

alive.1

address.32

gpu clk.1

wren.1

mau mask.bus

hdmi tx d

hdmi sync h
hdmi sync v
hdmi disp en

hdmi i2c scl
hdmi i2c sda
hdmi tx int

fpga debounced buttons
LED
SW

IOU

alive.1

io mau bus.bus

clk.1

cpu clk enable.1

cpu wren.1

cpu data write.32

cpu address.32

data read.32

buttons.2
leds.8
switches.4

io bus

cpu clk
alive

sequence[4]

exported wren

exported data

exported address

io data

clk.1

pio in.1

pio out.1

im external bus.bus

dm external bus.bus

rf external bus.bus

io external bus.bus

mk external bus.bus

HPS

MAU

im mau bus.bus

dm mau bus.bus

rf mau bus.bus

io mau bus.bus

mk mau bus.bus

clk.1

im external bus.bus

dm external bus.bus

rf external bus.bus

io external bus.bus

mk external bus.bus

CTRLU

hps cmd.1
state.2

clk.1 cpu halt.1

alive.1

im bus

dm bus

rf bus

io bus

mk bus

im bus

dm bus

rf bus

cpu clk

cpu clk

cpu clk cpu clk
alive

alive

sequence

CPU

alive.1

halt.1

exported wren.1

exported data.32

exported address.32

io data.32

clk.1

clk sequence.7

im mau bus.bus

dm mau bus.bus

rf mau bus.bus

exported wren

exported data

exported address

io data

halthalt

CLKU
clk.1

rst.1

cpu clk.1

gpu clk.1

cpu clk

gpu clk

hps debug reset

fpga clk 50

Figure 6.2: Whole system.

6.3 ARM side Operating System

The ARM processor can be used in two ways. Either in bare metal where the programming is
done directly in assembly on the processor. This method has the disadvantage of not being very
accessible and of being expensive. The bare metal programming tools for the processor are not free
and are professional licensed softwares. The second method is to install an operating system. This
can be done by flashing an SD card that serves as storage for the ARM processor. On this card

84

are created several partitions containing the bootloader (u-boot generally), the OS (Angström on
the images of Terasic but any Linux can be adapted) and the programming file of the FPGA part.
In this configuration, the bootloader configures the FPGA before launching the operating system.

The image used to flash the SD card in this work is one provided by Intel using u-boot and
ubuntu. The Terasic image containing Angström was also tested but this distribution is no longer
maintained, so the image was not selected for use. The big disadvantage of the Intel image is that
it takes up a lot more space, Ubuntu being much larger than an embedded Linux like Angström.
It could be the work of another master thesis to improve the choice of the OS. Once the OS is
installed and booted, one just has to program on it to be able to interact with the system on
FPGA. This is the subject of the next section.

85

Chapter 7

Accessivity tools and demonstrations

With the entire system designed and programmed on the FPGA, it is time to test it. But before
that, one needs tools to allow to write in the memories of the machine from Linux, on the ARM
processor. In addition to that, tools simplifying the development on the system are presented.
After the presentation of the different tools, the various assembly demonstrations are detailed.

7.1 Tools

Github link to the files of the tools.

7.1.1 Beta assembler

The first tool was developed by Romain Mormont. It compiles assembly code using the ISA
described earlier in the report into machine code for beta machine. This tool had already been
created before this work, so it was decided to take advantage of it and not reinvent the wheel. Some
minor modifications were made to add a binary file backup that could be used for programming
the beta machine of this work, to add the exit instruction and to remove the div instruction.

7.1.2 Beta utils

Beta utils is a utility that allows access to memory and system control from the ARM processor.
In fact, to do this it is enough to write and read in the space address of the bridge Avalon on
which a slave is connected in QSys. To have access to a given slave, it is necessary to add its offset
(specified in QSys) to the starting address of the bridge in the physical memory. The start and
end addresses of each bridge are constant and specified in Figure 1.10.

To keep things simple, it was decided to implement everything in the user space of the OS.
Beta utils is therefore only an application. This application does not have direct access to the
physical addresses. In order for it to be able to read and write to specific locations in physical
memory, a mapping must first be created between the physical memory and the virtual memory
of the Beta utils process. To do this, the system call mmap is used. This creates a mapping and
returns a pointer allowing access to the specified physical memory in a contiguous manner from

86

https://github.com/AnotherGitAccount/TFE/tree/master/software

the virtual memory. This means that pointer + n corresponds to the nth element of the mapped
physical region. This solution is not the fastest but it is more than sufficient for the operations
performed by Beta utils and has the advantage of being simple.

For the communication with the memories, the tool allows two operations. Both can only be
done when the system on FPGA is stable, in other words when the alive signal is low. The first
one is writing. This one allows to write the content of a binary file in the chosen memory, with a
certain offset in it.

Program command.
−p , −−program <memory id> < f i l e p a t h > <s i z e> <o f f s e t >
Programs a memory with a binary f i l e − only works i f machine i s o f f ,
parameters are

. memory id : the id o f the memory to be programmed

. f i l e p a t h : path to the binary f i l e

. s i z e : number o f bytes in the binary f i l e

. o f f s e t : o f f s e t where to s t a r t wr i t i ng

Reading is done from a starting offset to an ending offset. The bytes are simply displayed,
there is no saving to a file. The memory identifiers are IM for instruction memory, DM for data
memory, RF for register file, IO for io memory and MK for mask memory.

Read command.
−r , −−read <memory id> <s t a r t> <end>
Reads and d i s p l a y s the content o f a memory from byte s t a r t to byte end

. memory id : the id o f the memory to be programmed

. s t a r t : the f i r s t byte to read

. end : the l a s t byte to read

To switch on and off the system, two commands are provided: start and shutdown.

Start and shutdown commands.
−st , −−s t a r t
S t a r t s the machine

−sd , −−shutdown
Stops the machine

7.1.3 Mask Drawer

The mask drawer is a small tool coded in Python developed for this work. It provides a graphical
interface, shown in Figure 7.1, that allows editing of masks. In the window there are five buttons.
Four are used to select the state to be applied: keep, primary color, secondary color and clear.
Once a state has been selected, simply click on the grid to change the state of the pixel. A square
on the grid represents a pixel. If the mouse is held down on the left button, all the cells through
which the cursor passes have their state changed. It is also possible to simply click one cell by one

87

cell. The right click is a shortcut to the keep state. Once the mask is drawn, it can be saved as a
binary file by clicking on generate. Note that the mask drawer takes as argument the name of the
file, without its extension. If this file already exists, it is opened and its edition can be resumed.
If it does not exist, it is created.

Figure 7.1: Mask drawer

7.2 Assembly demonstrations

Assembly codes and demonstrations.

Once the implementation of the system was completed, I was fortunate to be put in contact
and have a discussion with two Intel employees, Alexander Nadel research scientist at Intel Israel
and Gyuszi Suto principal engineer at Intel Oregon. During this discussion, they provided us
with guidance on how it was appropriate to verify the system. The easiest way, for them, was to
perform several demonstrations using the different parts of the system and verify experimentally
that everything worked. This is far from the verification methods presented in an article [8]
explaining how verification is done at Intel that Nadel Alexander suggested reading. But doing

88

https://github.com/AnotherGitAccount/TFE/tree/master/asm

such verification (formal verification and so on) would be the work of one or more master theses.
Therefore, after discussion and reading of the article, it was decided to use the experimental
approach, in addition to the simulations done on the ALU to prove that some confidence can be
given to this system. The demonstrations are explained in this section.

7.2.1 Assembly libraries

Before moving on to the demos, this section briefly describes the libraries written for this job to
simplify programming for users. The first one gpu utils provides all the functions to use the gpu.
io utils provides exactly the same thing but to access the IOs of the IOU. And finally, there is the
stack library which provides an implementation of stack. The different functions of these libraries
are all documented in their files.

7.2.2 Hanöı towers

The first demonstration is to solve the Towers of Hanoi problem graphically. The Hanoi Towers
problem consists of moving a stack of N elements of different dimensions that are ordered from the
widest at the base to the narrowest at the top of the tower. To do this, the elements can be moved
one by one and placed on a stack. There are three stacks. The tower is initially placed on one of
them. For a move to be valid, the element at the top of the stack on which the moved element
is to be placed must be larger than this one. In other words, an element must always be placed
on top of a larger element. The goal is then to move the whole tower to another stack. When the
demo is launched on the machine, a tower of height 6 is created on the first of the three piles and
then the program solves the problem step by step, until the tower is placed in the center. Between
each movement, there is a wait so that the resolution is possible to follow. This demonstration in
action on the system developed in this work is available on YouTube.

7.2.3 Stacker game

Solving the Towers of Hanoi does not include the IOs part, so a small game with interactions
has been added. However, here the task was delegated to a friend, Gauderic Schnackers who is
a graduated physicist engineer. This allowed two things. First this validated the whole system,
but it also validated the accessibility of the system. This is important as the system is to be used
as laboratory material in an introductory course. Since Gauderic had never worked so low on a
machine and never programmed in assembly, he was the perfect tester.

This game is very simple, the goal is to stack sticks of a certain length to the top of the screen.
If two sticks don’t stack perfectly, the protruding part of the stick is subtracted and the next stick
to be placed is shorter. If the stick is completely consumed before reaching the top, the player
loses the game. Again, this demonstration performed on the system of this work is available on
YouTube.

89

https://www.youtube.com/watch?v=0W0SXzncl-Q
https://www.youtube.com/watch?v=yHJDM_ckR1g

Chapter 8

Conclusion

The goal of this work was to design a harvard 32bits CPU, the beta machine, for the laboratories
of the Computer Structures [INFO0012] course at the University of Liège. As described in this
document, this has been done completely. The machine is implemented with arithmetic, shift,
conditional branch and jump operations. As it is a Harvard architecture, it has two memories: one
for data (65kB) and one for instructions (131kB). In addition to all this, a register file provides 32
registers of 32 bits to the machine. This is more than enough for many applications.

Access to some IOs as well as a graphical accelerator called GPU in the work has been im-
plemented. They allow to add a lot of interraction for the students. The IO access unit is easily
accessible through the CPU Load and Store operations and allows the reading and/or writing
of three IOs: two push buttons, four switches and eight LEDs. Concerning the GPU, it allows
rendering on a 16:9 60Hz screen with a resolution of 848x480 pixels (of which 576x432 can be
written). The writing is done using masks that the user can program. The masks allow to write
8x8 pixels per operation with two different colors (it can also be chosen to clear a pixel or to keep
its current value). This allows for a more efficient GPU, in fact in the best case it accelerates the
writing by 64, which is a great saving in terms of clock cycles.

In addition, a facility to write and read the values in different memories from the ARM processor
has been provided. The ARM processor was chosen as the access to the system developed in this
work in order to simplify the access. Thanks to this, it is enough to know how to navigate in a
Linux terminal and to launch a program to be able to use the system and the beta machine, which
is very simple. The whole work was done with simplicity in mind. Finally, several demonstrations
were made to show that everything worked as it should.

This work has therefore fully met its objectives. However, several things could be improved
in future work. First, it would be possible to greatly increase the performance of the processor
by pipelining its different paths and modules. Just by removing the execution sequence, the
troughput would be multiplied by 7. Concerning pipelining, if it is done at all levels (especially for
complex operations of the alu: multiplication and division), it would increase the clock frequency
of the CPU. With this done correctly, it would certainly be possible to go up to 100 or 200 MHz,
compared to the current 50MHz. Then, it is possible to add more IOs. At least managing all the
ones on the card and adding audio management on the HDMI would be a nice addition. Finally,
modifications to the software on the ARM side and memory access on the FPGA side could allow
debugging with breakpoints in the code etc., which could be really interesting for the labs.

90

Although the system is already functional and easy to use, there are still many possibilities
for modifications. The only limit is the capacity of the FPGA, which could be changed anyway if
needed.

91

Bibliography

[1] Cyclone v FPGAs features. https://www.intel.fr/content/www/fr/fr/products/

details/fpga/cyclone/v/features.html. Accessed: 2020-2021.

[2] Intel Altera. Cyclone v hard processor system technical reference manual, 2018.

[3] Intel quartus prime design software - support center. https://www.intel.com/

content/www/us/en/programmable/support/support-resources/support-centers/

quartus-support.html. Accessed: 2020-2021.

[4] Altera. Internal memory (RAM and ROM) user guide, 2014.

[5] Video Electronics Standards Association. VESA and industry standards and guidelines for
computer display monitor timing (dmt), 2008.

[6] Intel. Avalon interface specifications, 2021.

[7] Altera. Avalon to external bus bridge, 2015.

[8] Roope Kaivola et al. Replacing testing with formal verification in intel core i7 processor
execution engine validation. Springer, 2009.

[9] Tom Martin Morris Mano, Charles R. Kime. Logic and Computer Design Fundamentals.
Pearson, fifth edition, 2016.

[10] Robert H. Halstead Stephen A. Ward. Computation Structures. The MIT press, 1989.

[11] John L. Hennessy David A. Patterson. Computer Organization and Design. Elsevier, 2014.

[12] Niklaus Wirth. The design of a RISC architecture and its implementation with an FPGA.
2015.

[13] Jikku Jeemon. Pipelined 8-bit RISC processor design using verilog HDL on FPGA. In 2016
IEEE International Conference on Recent Trends in Electronics, Information Communication
Technology (RTEICT), pages 2023–2027, 2016.

[14] Yamin Li and Wanming Chu. Using FPGA for computer architecture/organization education.

[15] Intel Altera. Cyclone v device overview, 2018.

[16] Intel Altera. Cyclone v device handbook: Volume 1: Device interfaces and integration, 2020.

[17] Intel Altera. Cyclone v device handbook: Volume 2: Transceivers, 2018.

92

https://www.intel.fr/content/www/fr/fr/products/details/fpga/cyclone/v/features.html
https://www.intel.fr/content/www/fr/fr/products/details/fpga/cyclone/v/features.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/support-centers/quartus-support.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/support-centers/quartus-support.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/support-centers/quartus-support.html

[18] Intel. Embedded peripherals IP user guide, 2021.

[19] Intel Altera. AN 709: HPS SoC Boot Guide - Cyclone V SoC Development Kit, 2016.

[20] ARM. Cortex-A9 technical reference manual, 2008.

[21] Chris Terman. MIT course, 6.004 computation structures, 2019.

[22] Hunter Adams. Cornell university course, ECE4760 designing with microcontrollers, 2012.

[23] Mathy Laurent Fontaine Pascal. University of liège, INFO0012-2 computation structures,
2019.

93

