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Abstract

Software-defined networking (SDN) is a solution designed to make networks more flexible and
easier to manage. Cisco has designed the Application-Centric Infrastructure (ACI) for data
center networks, and Software-Defined Access (SDA) for campus networks. In addition, Cisco
is currently developing integrations between its Software-Defined Networks. This project
aims at building a use case for the integration between ACI and SDA to show how end-to-end
segmentation can be performed between the two domains, and to build a solution to automate
the deployment of configuration to ACI. The latter was extended and also demonstrates how
Infrastructure-as-Code and DevOps can be used to manage IT infrastructures that include
the container orchestrator Kubernetes, and VMware vSphere.
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Chapter 1

Introduction

Over the last ten years, Software-Defined Networks (SDN) and programmability have in-
troduced a different approach to building and managing computer networks. SDN is an
approach aiming to make networks more flexible and agile. The Open Networking founda-
tion originally defined SDN as a solution that decouples the control plane and the data plane,
enabling the control plane to become directly programmable[15]. As of today, SDN is globally
recognized as an architecture that opens the network to applications. This integrates the two
following aspects: enabling applications to program the network to accelerate its deployment;
providing a better visibility over the network. There is therefore no single SDN with a single
solution or protocol. Every vendor defines their SDN according to their own interests[11].

An SDN typically involves a central control point for managing the network called a
controller, through which, all network operations are performed either using a GUI, or an
interface that it exposes. This interface (Northbound API) is commonly a REST API and
enables programmability of the network and integration with other systems. Likewise, the
controller communicates with the network devices with an interface called the Southbound
API using protocols such as OpenFlow, RESTCONF, OpFlex, just to name a few.

Figure 1.1: Controller Communicating with Network Devices with the Southbound API using
the OpenFlow protocol. By W. Odom, 2020, CCNA 200-301 Volume 2, p. 364[42]

The degree of control and the type of control performed by SDN controllers vary widely.
There are 2 types of control: imperative and declarative control. Indeed, in early approaches
to software-defined networking, it was a question of programming the data plane of the
switches via protocols such as OpenFlow and having the controller conduct all the control
plane operations, as it is shown on Figure 1.1. In such a system, the controller explicitly tells
the switches how to handle network traffic by sending them down the exact commands or
instructions to make the change. The protocol Openflow uses an imperative approach. This
model endorsed by the Open Networking Foundation allows to completely decouple the data
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plane and the control plane.
Newer SDN solutions like the Application-Centric Infrastructure (ACI) are based on

declarative control and do not completely strip intelligence out of the devices. In this model,
policies are sent from a controller to networking devices, the latter responsible to implement
them. Recently, Cisco has developed several SDN solutions, including Software-Defined Ac-
cess designed for campus networks, and Application-Centric Infrastructure for the data center
environment. Both solutions are part of the Multidomain strategy that Cisco has recently
been pushing, which consists of integrating multiple SDNs.

By providing an open Northbound interface, SDN provides a different way to operate
networks. It allows network engineers to program the network using scripts or automation
tools such as Terraform or Ansible. More generally, providing a management platform with
an API also applies to other areas of the IT infrastructure such as the configuration of bare
metal servers, virtualized environments, public clouds, storage, etc. This concept of managing
the IT infrastructure with code refers to as ”Infrastructure-as-Code” (IaC) and implies that
it should be treated the same way as any other code, for instance, be uploaded to a version
control system (VCS) acting as a single source of truth.

IaC is also one of the key enablers of the DevOps movement, a set of ideas, practices,
and tools that increases an organization’s ability to deliver applications and services at high
velocity. An important concept of DevOps is the CI/CD pipelines commonly integrated
within the VCS software, it allows developers to automate any task upon some event such
as the push of new code into a Git repository. As a result, IT operations can also be carried
out directly from the VCS leveraging the pipelines. Gitlab is an example of VCS providing
CI/CD pipeline capabilities.

In today’s highly competitive environment where applications are the key element that
supports the business[66]. Businesses need to quickly deploy and run new applications within
their networks and react quickly to the ever-changing needs of their users. The problem
today is that there is a gap between the world of infrastructure and the world of applications:
it can take several weeks between the arrival of a new application and its availability to
users, particularly because of the time required to provision networks, storage, and server
resources[66]. In traditional networks, network operations involve many different devices to
be configured manually, which is time-consuming, repetitive, and vulnerable to error. This
growing need for simplifying network operations using automation and thus accelerating
the deployment of applications is the main driver behind the adoption of SDN, a different
approach to building and managing computer networks. This explains why Software-Defined
Networks and IaC are two key elements of the infrastructure of tomorrow.

This work is focused on the integration between ACI and SDA, and on programmability.
The main objective is to create and implement a use case for this integration. In particular,
this integration provides seamless and consistent identity and endpoint mapping between the
campus and data center networks, allowing administrators to create cross-domain policies.
In the meantime, as Cisco is putting a lot of effort into the Infrastructure-as-Code territory,
a second objective is to build a programmability demonstration to show how ACI can be
programmed following the DevOps principles.

2
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Figure 1.2: use case Overview

The use case takes place in the beer industry with a company named Cisco’s Beer Factory.
It involves three applications developed with a ”microservice” architecture, and three types
of users: the finance and retail employees sitting in the campus network, and the customers
from the Internet. Each of them has access to a particular application running in the data
center. A finance application for the finance employees, an inventory application destined to
retailers, and a webshop to buy beers from the company. This use case allows us to show
how end-to-end segmentation between the ACI and the SDA domain can be carried out. The
big picture is presented in Figure 1.2

Developing the applications, deploying them, and configuring the network around them
brings us to the second objective of this internship. Efforts were made to perform all IT
operations with IaC from the DevOps platform Gitlab by leveraging CI/CD pipelines. It
includes the configuration of ACI, the deployment of the applications to Kubernetes, and
the provisioning and configuration of virtual machines in a virtualized environment such as
vSphere. Initially, it was planned to perform the ACI-SDA integration with the applications
running in a Kubernetes cluster, but sadly, the integration does not allow it. This explains
why everything had to be migrated to virtual machines.

The structure of this thesis is the following. It starts by providing general information about
ACI in Chapter 2. Then, Chapter 3 explains the basics of Kubernetes and how container
networking is managed by ACI. Afterwards, the project objectives and the deliverables are
summarized in Chapter 4. Next, Chapter 5 and 6 explains what is Infrastructure-as-Code,
and how it was carried out in the lab. Last but not least, Chapter 7 summarizes the main
features of SDA. Finally, How the ACI-SDA integration works and how it is configured for
the use case is explained in Chapter 8.

3



Chapter 2

Application Centric Infrastructure

2.1 Application-Centric Infrastructure: Overview

On July 31, 2014, Cisco released its software-defined solution for data-center networks to
the market: Application Centric Infrastructure [65]. An overview of ACI is given in this
section.

When reimagining networking for the data center, the designers of ACI focused on the
applications running on the data center and their requirements[43]. As a consequence, they
have built networking concepts around application architectures, hence the name ’Application
Centric Infrastructure’. ACI is illustrated in Figure 2.1.

spine spine

leaf leaf leaf leaf

application policy
infrastructure

controller

web 1

web 2

web 3

EPG
web

app 1

app 2

app 3

EPG
app

db 1

db 2

db 3

EPG
db

ACI
fabric

policies

contr
act

contr
act

Figure 2.1: ACI Overview

ACI is based on a policy model that decouples the network design from the physical infras-
tructure and focuses on the needs (networking, security, and services) of the applications, and
allows application requirements to be defined as policies. In ACI, every aspect of network
configuration is defined by policies describing how the system should behave.
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For example, assume that we have a typical 3-tier web application consisting of a web
frontend, a backend, and a database. In ACI, instead of worrying about the details of how
the endpoints find each other (VXLAN, routing, etc.), a network engineer will define groups
(called endpoint groups (EPG) based on application attributes. Therefore, he will create
three endpoint groups (Web, App, and DB for instance). Once this is done, he will define
policies called contracts, which dictates the communication rules between the endpoints (you
can think of a contract as a traditional access-list). For instance, the EPG Web is allowed to
communicate with the EPG App over HTTP.

As we saw in the example above, ACI abstracts traditional network constructs (such
as VLANs, VRFs, IP subnets, and many more) and introduces new constructs including
application profiles, endpoint groups, contracts, objects associated with external connectivity
such as the L3out, as well as service graphs for the integration of L4-L7 services like load
balancers, firewalls and many more[47]. For more details about policy objects, see Section
2.4.

The two main components of ACI are the Nexus L3 switches wired in a leaf-spine topology
for the physical switching infrastructure, and the Application Policy Infrastructure Controller
(APIC) for centralized network management and real-time network health monitoring. The
APIC exposes the functionalities of the ACI fabric (an ACI fabric is the set of leaf and
spines nodes under the control of the same APIC domain) through a REST API supporting
JSON and XML payloads, and allows integration with cloud software (e.g Google Cloud
Platform, AWS), virtualization software (e.g VMware vCenter) and automation software (e.g
Terraform, Ansible). Engineers can also communicate with the APIC through a web-based
GUI offering a single pane of glass of the whole ACI fabric (see Figure 2.2) or via custom
scripts.

Figure 2.2: APIC Graphical User Interface

ACI is also hypervisor agnostic, meaning that policies can be applied to any workload
(bare-metal servers, virtual machines, containers).

2.2 Declarative Control with OpFlex in ACI

This section is dedicated to the southbound protocol OpFlex used for communications be-
tween the APIC and the Nexus switches in the ACI fabric. It describes the OpFlex protocol
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and points out the benefits of OpFlex and why Cisco has chosen OpFlex for ACI.

2.2.1 Differences Between Declarative Control and Imperative Control

Before delving into the details of OpFlex, it is preferable to explain the differences between
declarative and imperative control applied to networking.

In an imperative control system, the controller receives requests from the northbound API
and instructs the network devices on how they have to be configured. In other words, the
controller explicitly tells the switches how to handle network traffic by sending them down
the exact commands or instructions to make the change. The protocol Openflow uses an
imperative approach.

Declarative control uses concepts of promise theory, a model based on intelligent objects
that take care of the configuration state changes initiated by a central controller. These
intelligent objects are also responsible for informing the central system of anomalies and
exceptions. In declarative control, the switches are asked by the controller to reach a desired
state but are not being told precisely how to do so. One way to explain how declarative
control functions outside of the networking world is to look at how air traffic controllers
operate. They tell pilots to land on particular runways but do not explains how to reach
them. The job of flying and landing the plane is left to the pilot[63].

To sum up, imperative control focuses on the ’how’ whereas declarative control focuses on
the ’what’. As we will in section 5.1, the concepts of declarativeness and imperativeness can
also be applied to automation tools.

2.2.2 The OpFlex Control Protocol

In its broadest sense, OpFlex is a policy-driven system used to manage a large set of
devices[72]. It works by abstracting policies and relies on intelligent, autonomous devices to
interpret them, hence the declarative control.

As shown in Figure 2.3, this system is composed of several logical units:

• the policy repository.

• the endpoint registry.

• the observer.

• the policy elements.

As its name suggests, the policy repository is a logically centralized entity containing all
the policy definitions created by users of the system through an interface (API, graphical
user interface, etc.). The policies are stored in a tree data structure called the management
information tree (MIT) or management information model. For more information about the
MIT in ACI, refer to section 2.4.1.

The endpoint registry stores information (identity, location, etc.) about the endpoints
connected to the system. the policy elements register the endpoints to the endpoint registry.
In ACI, the endpoint registry is implemented as a distributed database.

The Observer is in charge of providing analytics of the system. It contains the state and
performance data of the managed devices.
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The policy elements are the units enforcing the policies. The MIT in the policy repository
has to be kept in sync with the policy elements, so the policy elements are automatically
notified when changes to the policy model occur. Moreover, only the managed objects relevant
for the policy elements are synchronized, therefore, only a subset of the logical model is stored.
In order to apply the policies to the hardware, the policies are rendered into a concrete model
that is analogous to compiled software; it is the form of the model that the switch operating
system (NX-OS in the Nexus switches) can execute[8]. This approach is called a model-driven
framework.

Figure 2.3: OpFlex Logical Model. By Cisco Systems, 2014, OpFlex: An Open Policy
Protocol White Paper[63]

Messages in an OpFlex system are transferred using remote procedure calls (RPC) and
the data is encoded in JSON or XML.

OpFlex was co-authored by the big players in the IT industry (Cisco, Microsoft, IBM,
Citrix, and Sungard Availability Service) and has been designed for interoperability between
systems from multiple vendors. Moreover, OpFlex was submitted to the IETF standard-
ization process. To illustrate the interoperability of OpFlex, we can look at the integration
between ACI and the container orchestrator Kubernetes. ACI can push policies to an OpFlex
agent running in a container inside Kubernetes, which in turn renders the network policies to
OpenFlow rules to program the virtual switches (Open vSwitch) of Kubernetes also running
inside containers.

2.2.3 Why OpFlex?

Declarative control systems like OpFlex offer a number of advantages over imperative
control systems.

In declarative control, new policies can no longer be pushed to the network devices if
the controller goes down, however, the data forwarding can continue to happen since the
APIC is removed from the data path. Indeed, after device configurations are completed,
communication between the APIC and the network devices may be only required only in
the event of policy updates or fault scenarios. Therefore, the APIC controller is no longer a
catastrophic single point of failure.
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The controller in Openflow networks can also be a performance bottleneck as the network
grows and becomes more complex. The complexity is distributed among the network devices
in ACI, offering better scalability.

Policies also adds a layer abstraction over the network, making it easier to configure since
the operators have to deal less with low-level constructs, and thus hides the details from
people like application developers that can reuse the groups and contracts that the network
engineer has define. Therefore, ACI with its abstract policy model introduces a new way of
interacting with the application teams that makes much more sense to them and allows them
to work closer together[45].

One of the main reasons behind the introduction of OpFlex as a southbound protocol by
Cisco is also economical. Cisco has spent decades and invested billions of dollars pushing
intelligence into its network devices, they were simply not going to throw years of work in
the trash and adopt a model in which the intelligence is stripped from the network devices.

2.3 ACI Physical Design

For many years, engineers have used a three-tier architecture for data center designs, consist-
ing of a core, aggregation, and access layer. But the leaf-spine has become the standard in
today’s deployment of data center networks, overcoming some of the limitations of traditional
three-tier architectures.

This section is focused on the physical architecture of the application-centric infrastruc-
ture, discusses why the topology of the spine-leaf was picked, and briefly outlines the ways
ACI can be deployed.

2.3.1 About The Application Policy Infrastructure Controller

The APIC is implemented as a replicated synchronized clustered controller. The recom-
mended minimum configuration for an ACI fabric is a cluster of three replicated controllers[8].
The policy repository is actually a distributed database that is divided into several parts called
shards. Each shard is assigned to a master APIC and is broken into three replicas that are
distributed among the controllers. Changes of policies in a Shard are performed by the mas-
ter APIC of that shard, and thus allowing to balance the workload among the controllers.
If one of the APIC goes down, the remaining APICs will negotiate who will be the master
of the shards that the down APIC was in charge of. Having such system allows for better
resiliency in case of failure scenarios.

2.3.2 Spine-Leaf Topology

The spine-leaf architecture is adapted from the clos network named after Charles clos in
1952[67]. As its name implies there are spine and leaf switches in a spine-leaf architecture.
In this design:

• Each leaf switch is connected to every spine switch.

• The leaf switches are not connected to each other.

• The spine switches are not connected to each other.

• Endpoints connects only to the leaf switches.
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In ACI, a controller is considered as an endpoint and is thus connected to a leaf switch.
Endpoints can be bare-metal servers, hypervisors, or any kind of networking devices such as
routers or firewalls. In particular, the part of the lab we are working on consists of three ESXi
hypervisors installed on Hyperflex servers connected to two Fabric Interconnects, themselves
connected to the ACI leaves. This is shown on Figure 2.4.

spine spine

leaf leaf

Fabric
Interconnect

Fabric
Interconnect

Hyperflex
servers

VM

Figure 2.4: ACI Lab Topology

To understand why this topology was selected for the physical design of ACI, we need to
look at traffic patterns in data center networks.

East-West traffic in Data Center Networks

Traffic patterns in the data center can be divided into two categories: north-south (or vertical)
and east-west traffic (or lateral).

North-south traffic is traffic entering (resp. leaving) the data center from (resp. to) the
outside world, whereas east-west traffic indicates traffic flows among endpoints within the
data center.

East-west traffic dominates in data center networks, this is highlighted in a study from
Samar Raza Talpu[64] and also by Cisco in the Global Cloud Index 2015-2020[55]. This
increase in east-west traffic is due to multiple factors.

First of all, the way applications are developed has changed. For a long time, the typ-
ical pattern was the monolithic application. This is a single large application consisting
of multiple sub-systems or capabilities. With monolith application, the traffic is generally
north-south[24]. Nowadays, applications tend to be broken into multiple components that
are called services, allowing each service to be developed and deployed independently of the
others. This is the microservice pattern. If a web application is deployed in a data center and
is built around the microservice architecture, a single query to the application may require
multiples services to communicate with each other, and thus generating lateral traffic flows
since the services may probably reside in different endpoints.

Then some applications like cloud storage requiring data replication, or distributed ap-
plications (e.g Hadoop, Apache Spark, etc.) are also driving the increase in traffic in data
center networks.
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Next, commonly used techniques in cloud environments are also drawing a large number
of network resources. One of them is live VM migration, it allows the transfer of running
virtual machines across multiple physical machines to balance the workload.[21]

Advantages of the Spine-Leaf Topology For East-West Traffic

A spine-leaf topology best manages lateral traffic flows and provides easier scalability.

This architecture shortens the communication paths between two endpoints. Indeed, the
traffic originated by an endpoint is always the same number of hops from its destination
(unless the destination endpoint is located on the same leaf) since the leaves are fully meshed
with the spines. Therefore, latency in east-west traffic is lower and predictable[16]. While
in a three-tier architecture, the number of hops can vary depending on the location of the
endpoints. In some cases, the data flows may only have to move up to the aggregation layer
before reaching destination. In others, traffic may have to reach the core routers. It creates
a discrepancy in latency, which is problematic for time-sensitive applications.

The spine-leaf design allows for easy network scalability as expanding the network is
straightforward. An additional spine switch can be added along with uplinks to every leaf
switch, and thus creates a new network path, which is used to load-balance the traffic. And
bandwidth scales linearly with the addition of spine switches in a spine-leaf topology[54].

2.4 ACI Policy Model

As we have learned in the previous sections, the entire ACI fabric is managed by policies
recorded in the management information tree.

This section details the structure of the policy model in ACI and presents common policy
objects used to configure the ACI network.

2.4.1 Management Information Tree

Physical and logical components that comprise the ACI fabric are recorded in a hierarchical
structure called the management information tree.

Each node of the MIT is a managed object (MO) that is an abstraction of a fabric resource.
The policy model is an object-oriented data structure comprised of managed objects that are
instances of classes. An MO can represent a physical object such as a switch, or a logical
object like an endpoint group. Each MO is identified by a distinguished name (DN) and
contain properties (child/parent relationships, object attributes, etc.) making up the object.
On a practical note, users can browse managed objects via a web-based GUI called Visore.

The northbound REST API of the APIC is actually an interface to the MIT allowing
CRUD (create, read, update and delete) operations to managed objects.

MOs can be placed in different categories. For instance, all MOs related to policies con-
figured under a tenant (contracts, endpoint groups, etc.) are direct or indirect children of a
Tenant object. Similarly, access policies and fabric policies are children of the Infra object.
A logical view of the management information tree is provided in figure 2.5
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Figure 2.5: logical view of the Management Information Tree

Tenant, Access, and L4-7 service policies are discussed below. The goal of the following
subsections is to give some insights on how policies are employed and fit together for some
simple use cases.

2.4.2 Tenant Policies

A tenant is a logical container in which network engineers will define the application re-
quirements such as application profiles, endpoint groups, etc. Figure 2.6 depicts the Tenant
object as well as its relations with other objects commonly used to write application policies.
In this figure, solid lines indicate that objects contain the ones below, dotted lines indicate a
relationship. For instance, we can infer from the graph that a tenant may contain multiple
application profiles due to the one-to-many cardinality relationship.
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Figure 2.6: Tenant Managed Object and Some of its Children

From a policy perspective, a tenant is a unit of isolation, it allows network infrastructure
administration to be segregated out. The notion of a tenant is quite flexible, it can represent
business units inside an organization or customers for a cloud provider. For instance, at
Cisco, engineers sometimes have to show demos running in a lab to their customers. They
build a tenant per demo and I make sure to perform experiments in my tenant so that I do
not mess up with what they have built. Policies can be shared among tenants if they are
defined in the Common tenant.

The Big Picture

Before digging into the details of some of these objects, let me illustrate 2.6 with an example.
Figure 2.7 depicts the policy objects and their relationships with each other used to configure
the network for a three-tier application in ACI.
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Figure 2.7: Tenant Policies for a Basic Web Application

Virtual Routing Forwarding

Tenants also provide Layer 3 network segmentation through virtual routing forwarding
(VRF). This is a technology allowing to create multiple instances of routing tables within a
single network device, and thus enable several L3 networks to co-exist. As a consequence,
ACI supports multi-tenancy since IP address spaces can be duplicated in separate VRFs.
Note that VRFs are nothing new, Layer 3 virtual private networks (L3VPN) providers have
been using this technique for years to segregate customer traffic.

Communication between multiple VRFs remains possible through a process called VRF
route leaking, so inter-tenant communication can still occur as long as the IP addresses do
not overlap.

A VXLAN network identifier (VNID) is always associated with a VRF, its use is discussed
in section 2.5.2.

Application Profiles

An application profile is simply a container for endpoint groups. Assume that we want
to build an e-commerce application using the microsevice pattern. First, we would create
an application profile named my-webshop for instance, and then proceed to create several
endpoint groups for the required services that we would place into the my-webshop application
profile.

Endpoint Groups

An endpoint group is a collection of endpoints providing a similar function. It is used
to logically group objects requiring similar policy. Endpoint examples include bare-metal
servers, containers, virtual machines. EPGs can also refer to endpoints located outside the
ACI fabric, in this case, we speak of external EPGs. Note that the concept of external EPGs
is used later on for the ACI-SDA integration.
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Bridge Domains

A bridge domain (BD) represents a layer 2 broadcast domain in ACI. While a VRF defines a
unique address space, that address space can be divided into multiple subnets. those subnets
are defined in one or more BDs referencing the corresponding VRF[9]. The bridge domain is
often referred to as being ”like a VLAN”, which is close but not entirely exact. BDs are not
subjected to the same limitations of VLANs such as the 4096 segments limits.

When a subnet is defined under a BD, a gateway is automatically created on all leaves of
the fabric where the bridge domain exists, this is called a pervasive or anycast gateway. As
we will see, the concept of anycast gateway is also used in Software-Defined Access. The IP
address and the MAC address of the bridge domain’s gateway is the same on all the leaves
so that endpoints can seamlessly move between leaf nodes. A VNID, as well as a multicast
IP address are associated with a bridge domain on its creation.

Contracts and Filters

ACI follows a zero-trust model, which means that inter-EPG communication is not allowed
unless there is a contract. However, endpoints belonging to the same EPG can freely commu-
nicate with each other by default. Contracts define the types of traffic that can pass between
EPGs, including the protocols and ports allowed.

The relationship between an EPG and a contract can be of two types: an EPG can provide
or consume a contract (or both). And to be of any use, a contract needs to have at least
a consumer and a provider. When an EPG provides a contract, communication with that
EPG can be initiated from other EPGs according to the rules of the contract. When an EPG
consumes a contract, endpoints in the consuming EPG are able to begin a communication
with any endpoints of an EPG providing this contract.

The policy object specifying the specific port and protocol is called a filter in ACI. As you
can see in Figure 2.6, contracts are not directly linked to filters. Instead, a contract can
contain one or more child objects called subjects, which are linked to filters.

2.4.3 Access Policies

So far, the fundamental constructs for configuring the network with an application centric
approach have been covered in the previous section. In fact, access policies have to be set up
beforehand, otherwise, tenant policies are not activated. They specify how endpoints such
as bare-metal servers, virtualization platforms such as VMware vSphere, or even Kubernetes
clusters are attached to the ACI fabric.

As with Tenant policies, access policies also make use of many policy objects. Some of
those are presented in Figure 2.8
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Figure 2.8: Access Policy Objects

Illustrating Access policies

Assume that a network engineer wants to deploy virtual port channels to connect his virtual
environment to ACI through a Fabric Interconnect on the interface 1/1 of the leaves 1 and
2, and links the EPGs of its three-tier web application to the VMM domain that is allowed
to pick VLANs tags in the 100 to 200 range. The logical constructs are presented in Figure
2.9.
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Figure 2.9: Illustrating Access Policies

We can say that access policies and tenant policies work hand-in-hand to define where
and how endpoints or applications are connected.
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Domain

All endpoints groups require a domain, which simply defines the scope of a VLAN pool
(i.e where the pool will be applied). A domain can either be physical, virtual, or external.
To illustrate, a VMware vSphere environment is an example of a virtual domain.

VLAN Pool

Why are VLANs needed in the first place? VLANs are still needed on the link between
a leaf node port and the device that connects to it because the leaf must know the EPG
of the endpoint originating the traffic. Therefore, VLANs are used by the leaves to identify
endpoints. It is relatively easy if a device like a laptop is directly plugged into a leaf node
port. In this case, Per Port VLAN can be used, which means that traffic reaching a leaf node
from that port will be automatically mapped to a VLAN. However, complexity arises when a
virtualization platform is connected to the ACI fabric as traffic initiated by virtual machines
belonging to different EPGs reaches leaf nodes using the same link (or group of links for
resiliency). Therefore, there must be an integration between the APIC and the management
software (e.g VMware vCenter) of the virtual environment so that network policies can be
applied to virtual workloads.

Attachable Access Entity Profile

The attachable access entity profile (AAEP) is the logical construct binding VLAN pools
defined in a domain to leaf switch interfaces.

Interface Profile, Interface Selector, Policy Group, and Interface Policies

Configuring link-layer policies and applying them to switch interfaces is performed with
several logical constructs. Interface policies are individual link layer policies, among them:
link speed, link aggregation type (regular access port, virtual port channels, etc.) and LLDP.
A policy group is simply is a collection of interface policies. An Interface profile is a container
of interface selectors. An interface selector specifies one or multiple interfaces (e.g interface
1/45) and references a policy group for the selected interfaces.

Switch Profile and Switch Selector

Similarly, There are switch profiles and switch selectors. The configuration is applied to
the interfaces of the switches when a switch profile is linked to an interface profile.

2.4.4 Integration of ACI and vCenter

The lab in Diegem runs a vSphere virtual environment managed by vCenter and is inte-
grated with ACI.

Each VMM domain maps to a vSphere Distributed Switch (VDS) [69] provisioned by
vCenter. A VDS functions as a single virtual switch across all the hypervisors (ESXi) and
enables the VMs to maintain consistent network configurations as they migrate across multi-
ple hosts, through vMotion for instance. Then, Each EPG linked to VMware VMM domain
is associated with a distributed port-group automatically created by vCenter, which can be
understood as a separate network within vSphere. The VM is then placed appropriately in
the distributed port-group by the VMware admin.

The technique employed by VMware to tag the frames is Virtual Switch Tagging[68].
With this technique, the frames are tagged when leaving the ESXi host using the 802.1Q
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protocol. Note that VXLAN can be used to overcome the 4096 VLAN limit. However, it
comes to the price of larger headers.

2.4.5 Layer 4-7 Services

L4-7 services such as firewalls or load-balancers can easily be integrated with ACI. As
one might expect, a multitude of policy objects are employed to insert such services, among
others, L4-7 devices, service graph templates, contracts, and Policy-Based Routing (PBR)
objects.

An L4-7 device is essentially the device applying functions to the network, it can be a
virtual (e.g a Cisco ASAv) or a physical device. When the device is virtualized, it is referred
to as a Virtualized Network Function (VNF).

A service graph is composed of function nodes referencing the L4-7 devices and terminal
nodes (i.e a provider and a consumer node). A chain of function nodes can be formed, this
process is called ”Service Function Chaining” (SFC) and is thoroughly explained in RFC
7665. For instance, an engineer may want to filter then load-balance network traffic.

While traffic is routed using routing tables, PBR provides a mechanism to route traffic
using policies, and there is a policy object for that. Therefore, you could for example redirect
all HTTP traffic from an EPG to a particular location of your choice. in our case, an interface
of the L4-7 device starting the chain of function nodes.

2.5 Routing and Forwarding in the ACI fabric

The routing and forwarding of packets in the ACI fabric are discussed in this section. It
starts with the major protocols used by ACI, then some routing scenarios are presented.

2.5.1 VXLAN: an Overlay technology

Overview of VXLAN

Any multi-tenants infrastructure requires network isolation. Years ago, the method com-
monly used to provide this isolation in the data center was the VLAN (802.1Q).

the VLAN ID field included in the Ethernet header is 12 bits long, allowing 4096 possi-
bilities. It is therefore possible to use 4096 different VLANs on the same device. However,
it induces some limitations for data center networks. 4096 VLANs seems like a lot, but
it is not enough in a cloud environment hosting the network infrastructure of hundreds of
customers. Then, using traditional approaches like the Spanning Tree Protocol to build a
loop-free topology can result in a large number of disabled links for an L2 network cover-
ing the whole data center. Hence, the introduction of Virtual Extensible LAN (VXLAN)
available in RFC 7348[73].

VXLAN is a tunneling protocol, which makes it possible to ”stretch” an L2 network over
an L3 network. In other words, VXLAN is a Layer 2 overlay scheme on top of Layer 3
underlay network. A VXLAN tunnel (or segment) is identified by its VNI (VXLAN Network
Identifier) that is encoded on 24 bits and gives over 16 million possibilities.

The functioning of VXLAN is rather simple. The Ethernet frame of the source endpoint
is encapsulated in a UDP datagram (Mac-in-UDP encapsulation) at the entrance of the
tunnel, then the packet is forwarded to the exit of the tunnel where it is de-encapsulated and
forwarded to the destination endpoint. The elements in charge of this encapsulation (and
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de-encapsulation) are called VTEPs, for VXLAN Tunnel Endpoints. The VXLAN packet
format is shown in Figure 2.10

The source (resp. destination) IP address of the outer IP header is the address of the
source (resp. destination) VTEP. Since the VXLAN packet is routed, a routing protocol is
needed in the underlay network (IS-IS in ACI). Also, routers knowing nothing about VXLAN
can be part of the underlay network; the only role they achieve is routing UDP datagrams.

Figure 2.10: VXLAN Packet Format. By Bradley Wong, 2015, BRKAPP-9004: Data Center
Mobility, VXLAN and ACI Fabric Architecture.

Endpoint Learning

How does the source VTEP know the destination VTEP it has to send the packet to?
And, How are MAC addresses of the endpoint learned? This subsection aims to answer these
questions. Essentially, there are two solutions to these problems: data plane learning and
control plane learning.

First, the location of an endpoint from a VTEP perspective has to be clear. An endpoint’s
location is a mapping of its MAC address and the IP address of the VTEP to reach it.

In data plane learning, The VTEPs learn the location of endpoints a bit like regular L2
switches with a flood-and-learn approach. However, VXLAN uses a few tricks to make it
more efficient.

One method is to use a multicast group for each VNI (or group of VNIs) that VTEPs
join or leave depending on the endpoints connected to them. A VNI could for instance be
an L2 network of a tenant. As a result, multi-destination traffic is forwarded to the VTEPs
using multicast.

The other way to handle broadcast traffic is to perform Head-End Replication, but it is
less efficient and scales poorly.

Unknown unicast (i.e destination MAC and IP addresses known by the source endpoint
but the source VTEP does not known the destination VTEP to contact), broadcast and
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multicast traffic (BUM traffic) is encapsulated in multicast VXLAN packets and sent to
VTEPs via a multicast underlay network[61].

Control plane learning is a more recent solution and relies on MP-BGP with the EVPN
address family combining MAC and IP information for learning the location of endpoints
behind the VTEPs, which allows to reduces flooding traffic (e.g unknown unicast, ARP
requests) in the network. In this model, the VTEPs run the MP-BGP protocol and exchange
endpoint reachability information.

2.5.2 VXLAN in ACI

The leaf switches of the ACI fabric serve as VTEPs, so as traffic reaches a leaf switch and
is destined for a remote leaf and assuming that the destination VTEP is known, the traffic
is encapsulated in VXLAN packets and forwarded across the fabric through a spine switch
chosen randomly with ECMP allowing ACI to automatically load balance the traffic and to
share the workload among the spine switches. Then, the packets are de-encapsulated upon
exiting the fabric and are delivered to the destination endpoint.[10]. With this model, ACI
uses a full mesh, single hop, loop-free topology without the need to use STP[47]. This is
illustrated in Figure 2.11. Note that as we will see with the COOP protocol, the spines are
also able to encapsulate and de-encapsulate VXLAN packets.

spine spine

leaf leaf leaf leaf

VXLAN

encap decap

Figure 2.11: VXLAN in ACI

When source and destination endpoints are reachable via the same VTEP, packets do not
travel over VXLAN tunnels.

Depending on whether the traffic is switched (e.g virtual machines belonging to the same
LAN) or routed (e.g inter-EPG traffic), the VNID used by the source VTEP will be different.
the VNID carried by the VXLAN header for switched traffic identifies a bridge domain
(L2VNID), while the VXLAN header for routed traffic carries a VNID identifying a VRF
(L3VNID).

Moreover, The ACI VXLAN header contains the source EPG for policy enforcement.

Also, one important selling point of ACI is that VXLAN is configured out-of-the-box and
entirely managed by the APIC.

2.5.3 Council Of Oracles Protocol and Endpoint Learning

The approach taken by the designers of ACI regarding endpoint learning is a bit different
than the solutions discussed in section 2.5.1. It can use the Council Of Oracles Protocol
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(COOP) for this purpose, which greatly reduces broadcast traffic in the data center network.
Despite its fancy name, COOP is a relatively simple protocol run by the leaf and spine
switches of the fabric, where the spines are the said oracles forming a council.

Whenever a leaf switch learns about a new endpoint, it records its location (i.e MAC and IP
addresses) in its Local Station Table. Then, this information alongside the leaf’s IP address
is reported to one of the spine selected randomly using COOP. The spine switches maintain
a distributed database containing the location of all the endpoints, so whenever the location
of an endpoint is learned by a spine, this information is stored in the spine’s Global Proxy
Table (or COOP database) then relayed to the other spines. Therefore, each spine has a
complete record of every endpoint in the system.

Because this database is accessible, a leaf does not necessarily need to use multi-destination
traffic to send packets to a remote endpoint for which it does not know the location. If a leaf
does not know about a particular remote endpoint, it can forward packets to a spine that
will forward packets to the remote leaf based on the information in its COOP database[52].
This explains why the oracles are also called spine proxies. This process is shown in Figure
2.13.

2.5.4 BUM traffic

L2 unknown unicast

One of the configuration options of a bridge domain is L2 Unknown Unicast that can be
set to either Flood or Hardware Proxy mode.

When set in Flood mode, the leaves operate in a multicast-based flood-and-learn approach
for unknown unicast L2 traffic. the traffic is sent from the source leaf along a multicast tree
using the multicast IP address associated with the bridge domain to all the leaves of the
fabric, it is then flooded in the bridge domain. Therefore, COOP is not used in this case.
Figure 2.12 illustrates this behavior.

Figure 2.12: L2 Unknown Unicast with Flood Mode Enabled. By Takuya Yishida, 2020,
BRKACI-3545: Mastering ACI Forwarding[74]
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The Figure speaks for itself, however, a few comments can be made concerning the multi-
cast tree. To begin with, all multi-destination (e.g broadcast, multicast) is carried as multicast
traffic in the ACI fabric. ACI uses Forwarding Tag (FTAG) trees rooted in the spine switches
to load-balance multi-destination traffic. There are 12 different FTAG trees in ACI used for
user traffic. The last four bits of the multicast IP address assigned to a bridge domain are
always set to zero, this room is for the FTAG that is part of the destination multicast address
(”GIPo” for Global IP outer) and is selected based on the hash of the initial packet’s content.

In Hardware Proxy mode, the leaves leverage the COOP databases of the spine switches;
L2 Unknown unicast traffic is sent to a spine and a lookup is performed to find the destination
VTEP, then the packet is forwarded to the leaf switch. the packet is dropped if no mapping
is found in the COOP database. It is obvious, a mapping has to exist in the COOP database
since the source endpoint knows the destination MAC address.

L3 unknown unicast

L3 unknown unicast is handled the same way as L2 unknown unicast in Hardware Proxy
mode using the spine proxies (setting the Unknown L2 Unicast to Flood mode does not affect
how L3 unknown unicast traffic is carried in the fabric). Figure 2.13 depicts how this is
performed in the ACI fabric

Figure 2.13: L3 Unknown Unicast. By Takuya Yishida, 2020, BRKACI-3545: Mastering ACI
Forwarding[74]

As we can see, the packet from TEP1 to one of the spine is still encapsulated using VXLAN
(step 3). What is interesting is the destination IP address (”dIPo” for destination IP outer)
used in this packet. This anycast IP address is installed on each switch and leverages ECMP
capabilities enabling load sharing. The destination MAC address (”dMACo”) of the packet
is also an anycast address since the leaf and the spine switches are directly connected.

Once the packet is received by the spine, it is de-encapsulated and the lookup is performed
against the COOP database (step 4). If successful, the spine encapsulates the initial packet in
a VXLAN packet whose destination IP address (”dIPo”) is the IP address of the destination
VTEP (TEP2 in this example) retrieved in the lookup (step 5).
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Assuming that the COOP lookup for and endpoint failed, the packet is dropped and a
technique called ARP gleaning is used in order to retrieve the location of the destination
endpoint. ARP glean packets are sent to all the leaves of the fabric, which instruct them to
generate ARP requests inside the BD subnet of the destination endpoint provided that the
BD subnet is present on the leaves. The destination endpoint responds to the ARP request
and thus allows the leaf switch to relay the location of the endpoint to an spine switch that
will record it in the COOP database. ARP gleaning is shown in Figure 2.14

Figure 2.14: ARP Gleaning. By Takuya Yishida, 2020, BRKACI-3545: Mastering ACI
Forwarding[74]
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Chapter 3

Kubernetes

Applications of the beer business are deployed in Kubernetes[2]. This chapter is dedicated
to the understanding of containers, Kubernetes, and the integration of Kubernetes and ACI.

3.1 Containers

Just as the transportation industry uses containers to isolate the various goods to be
transported on ships, trains, trucks and airplanes, software development is increasingly using
the concept of containerization.[39]

Container technology eliminates the ”it works on my machine” syndrome as it provides a
way to package software code and all its dependencies so that it can run the same, regardless
of the infrastructure. Once packaged, container-based applications can be easily deployed in
any environment, whether it’s a private or public cloud or a developer’s laptop. They also
help reduce conflicts between the development and operations teams by separating areas of
responsibility; developers can focus on the logic and dependencies of their application while
operation teams focus on deployment and management, without having to worry about details
like software version or application-specific configuration.[20] Therefore, it allows enterprises
to build and deploy applications faster.

Containers are one of the key enablers of the DevOps practices discussed later on, and are
closely related to microservices. Having a basic understanding of how they operate is thus
valuable.

3.1.1 Container terminology

Container technology comes with its own terms, the most important ones are explained
below.

• Container image: a container image is an immutable file, which packages an appli-
cation or a service, its configuration, and its dependencies. Often, a container image
is built upon another image, with additional customization. For instance, if one wants
to containerize a Python application, he will build his image upon an already available
Python image or a minimalist Linux image on which he will install Python.

• Container registry: a registry is a storage and distribution system for container
images. Container images can be pushed (resp. pulled) to (resp. from) the registry,
it can be seen as a bookshelf for container images[38]. Container images are usually
associated with a tag for versioning purposes. We are using an on-premise container
registry in the lab named Harbor. So, one might create his images or use images created
by others published in a registry.
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• Container engine: a container engine is a piece of software used for pulling, pushing
and building container images, and instantiating containers. Docker is an example of
a container engine, others include CRI-O, RKT, LXC, etc. More details about the
Docker engine are provided in section 3.1.2.

• Container: a container is the running instance of a container image.

3.1.2 Docker

Docker is technically a container engine but it can be seen as a complete platform for
running containerized applications. It enables developers to package up an application with
all its dependencies, to deploy it in any environment where Docker is installed, and to share
it publishing it to a registry. As we will see in the following sections, Kubernetes leverages
container engines, it is therefore important to have basics understandings

As shown in figure 3.1, Docker relies on a traditional client-server architecture. Clients can
communicate with the Docker daemon using a REST API.

The Docker daemon is responsible for listening to requests and does all the heavy lifting
such as running containers, pulling images, etc.[27]

When one installs Docker on its laptop, it is shipped with a Docker client. The communi-
cates with the Docker daemon using the client accepting commands such as docker run (for
running a container), the client then sends these commands to dockerd.

Note that one can communicate directly to Docker daemon by scripting API calls.

Figure 3.1: Docker architecture. by Docker.inc[29]

3.1.3 Containers vs. Virtual Machines

Like virtual machines, containers are isolated packaged computing environments that can
be spun up and torn down on a whim[28].
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Containers leverage OS-level virtualization whereas virtual machines depend on hardware
virtualization. Indeed, containers running on a host share the same underlying host’s oper-
ating system kernel, this is shown in Figure 3.2. Therefore, they do not embed a copy of the
operating system and rely on a container engine to create an isolated computing environment.

Figure 3.2: Containers vs. VMs. by Docker.inc[30]

On Linux systems, containerization uses kernel Linux features called namespaces to provide
the isolated workspace and control groups (cgroups) to control the resource usage of a con-
tainer. From the Linux Programmer’s manual, ”a namespace wraps a global system resource
in an abstraction that makes it appear to the processes within the namespace that they have
their own isolated instance of the global resource”[32]. Thanks to namespaces, containers be-
lieve that they exist in completely isolated environments within the host. Namespaces come
in different flavors in the Linux OS. For example, there is the PID namespace for process
isolation, the mount namespace for the setup of a container filesystem and volumes, and the
network namespace that will be covered in more details in the next section.

Containers will in no way replace virtual machines, they are complementary technologies
that help improve the use of IT resources, with their advantages and disadvantages.

Containers are lightweight entities that can be spun up in a matter of milliseconds, un-
like virtual machines that require to boot a whole operating system. Besides, the size of
container images is measured in megabytes and is therefore much smaller than virtual ma-
chine images, which typically consume gigabytes. However, from a security perspective, VMs
provide complete resource isolation, which allows for better security.

Overall, virtual machines solve infrastructure problems by enabling enterprises to get more
out of servers. Whereas containers solve application problems by increasing portability as
they are decoupled from the underlying infrastructure, enabling microservices and DevOps
practices, and improving resource utilization.

3.1.4 Docker networking

To understand how the network of a Kubernetes cluster is managed by ACI, it is first
necessary to understand the building blocks of container networking. the main elements are
the network namespace, bridges, virtual Ethernet interfaces.

Whenever a container is started, it runs in its network namespace, so the container is
isolated from the host network. A Linux network namespace virtualizes the network stack
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and can be considered a VRF in an ordinary network; the network namespace has its routing
table, network interfaces, IP addresses, etc.

A Linux bridge functions as a virtual network switch, it is used to forward packets between
interfaces that are connected to it within a single IP subnet. For example, Docker creates
a bridge (named docker0 by default) for container packet switching when installed on a
machine.

As mentioned earlier, a container operates in its network namespace. Communication
between different network namespaces is made possible by virtual Ethernet interfaces, these
interfaces also called veth interfaces are created in pairs. A veth pair can be seen as a cable
connecting a container to a bridge or a container to another container. By default, Docker
creates a veth pair between the newly created container and the default bridge docker0.

frontend db

veth1

eth0

veth3

eth0

backend

veth2

eth0

172.17.0.1

172.17.0.2 172.17.0.3 172.17.0.4

ns1 ns2 ns3

br

nsdefault

Figure 3.3: Containers networking constructs

These constructs are illustrated in Figure 3.3 for three containers (i.e. frontend, backend
and db), each of them are attached to the their namespace (i.e. ns1, ns2 and ns3 ). In this
example, traffic from the frontend container to the backend container would first be forwarded
to the bridge lying in the host namespace named nsdefault through the veth pair veth1@eth0,
then be directed to the backend container via the second veth pair veth2@eth0.

3.2 Kubernetes

Managing a containerized application is a challenging task, especially when it is broken down
into a large number of entities. To illustrate, Uber adopted a microservice architecture
around 2012 and their platform has grown to approximately 2200 services[19]. Container
orchestrators such as Kubernetes aim to solve this challenge[36].

Kubernetes also abbreviated K8s (for the 8 letters between the first and the last letter
of ”Kubernetes”), is a system for automating the deployment, scaling, and management
of containerized applications. For instance, Kubernetes comes with self-healing and can
automatically restart containers that fail, it can scale the number of containers based on
CPU utilization, and evenly distribute the network traffic to the containers.

This project has become open-source since 2014 and was started at Google around 15
years ago. It is is now maintained by the Cloud Native Computing Foundation[2].

The Kubernetes cluster was deployed using the Cisco Container Platform (CCP), it nicely
integrates with vCenter and ACI.
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3.2.1 Kubernetes Architecture

A working Kubernetes deployment also referred to as a Kubernetes cluster, is a distributed
system composed of master and worker nodes. The master node implements the control plane
functionalities that control the K8s cluster, much like the APIC for ACI. And, the worker
nodes or compute nodes are in charge of running the containerized workloads named Pods.
The different elements of Kubernetes architecture are presented in Figure 3.4.
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kube-
controller

etcd
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kubelet kube-proxy

container container

kube-
apiserver

pod pod

docker

kubelet kube-proxy

container container

pod pod

docker

master node

worker node

worker node

Figure 3.4: Kubernetes architecture

Master Node

The master node consists in an API server (kube-apiserver), a scheduler (kube-scheduler),
a controller (kube-controller) and a key-value store database (etcd).

• The API server is the entry point for configuring the K8s cluster. It allows a user
to configure the K8s cluster through a client (kubectl) using configuration files (K8s
manifests), scripts, or automation software (Terraform, Ansible, etc.). Manifest Files
are written in YAML, an example for deploying 3 replicas of an Nginx server with a
manifest is provided in Listing 3.1[1]

• The scheduler assigns Pods to nodes based on CPU utilization or other metrics.

• The role of the controller is to continually monitor the cluster and make sure that the
cluster runs is in the desired state the programmer has defined. It is actually composed
of multiple controllers responsible for different types of K8s objects. So, the controller
dictates the commands to the API server, which applies them.

• The database is used for storing configuration data and information about the state of
the cluster.
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1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: nginx -deployment

5 labels:

6 app: nginx

7 spec:

8 replicas: 3

9 selector:

10 matchLabels:

11 app: nginx

12 template:

13 metadata:

14 labels:

15 app: nginx

16 spec:

17 containers:

18 - name: nginx

19 image: nginx :1.14.2

20 ports:

21 - containerPort: 80

Listing 3.1: Kubernetes Manifest File

Worker Node

A Kubernetes cluster typically includes multiple worker nodes for resiliency purposes. For
example, a developer will deploy multiple instances of the front-end microservice of its ap-
plication on different nodes so that his application remains accessible in the event of a node
failure. It is composed of the following components:

• A compute node communicates with the control plane through an agent named kubelet.
It is this agent that commands the operations within a node, such as deploying Pods.

• Each node also runs a container engine (we are using docker in the lab) to run the
containers.

• A Pod is the smallest deployable unit of computation that can be managed in Ku-
bernetes. It represents a single instance of an application (such as the front-end of a
three-tier application) and consists of one or more containers. Pods are usually de-
ployed using a Deployment, which is a Kubernetes object allowing a developer to roll
out multiple Pods at the same time for one of its microservice.

• Pods can communicate with one another with the use of a Kubernetes object called a
Service. By default, Services are implemented by kube-proxy through the manipulation
of the IPtables rules of the worker node.

Closer View at Pods

From a networking point of view, a Pod is a single network endpoint, (although it may
contain multiple containers) as each newly created Pod is assigned an IP address from a range
assigned to the node. It means that if a developer deploys a new version of a microservice on
Kubernetes, the old set of Pods for that microservice will be destroyed and the IP addresses
of the newly created Pods will be different. Furthermore, the new Pods can even be deployed
on different worker nodes.
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A Pod is similar to a group of Docker containers with shared namespaces and file system
volumes. As shown in Figure 3.5 A Pod consists of a Pause container, and the containers
running the code of the application. The pause container is the first container that Kubernetes
creates for every Pod, it is responsible for holding the network namespace and serves as the
”parent container” for all the containers in the Pod[34] and acts as a gatekeeper. Its job is to
keep Pod alive even if one of the application container fails, it avoids the creation of a new
Pod and thus a new network namespace if one of the containers fails within the Pod.

Pausectn1

eth0

br

Pod

veth1

172.17.0.1

ctn2

Figure 3.5: Anatomy of a Pod

By default, Kubernetes relies on traditional Linux bridges, and veth pairs for the connec-
tivity.

Closer view at Services

A Service is a way to expose a microservice running on a set of Pods as a network service[3].
It solves the following problem: if a set of Pods (cart microservice of a webshop application)
provides some functionalities to another set of Pods (payroll microservice), how can the
payroll Pods find out and keep track of the IP addresses to connect to the cart Pods? And
as we know, if a new version of the cart microservice is deployed, a new set of Pods with
different IP addresses will replace the old ones so Services solves the dilemma of having to
keep up with every transient IP address assigned to the Pods.

To put it simply, a Service defines a single IP/port combination that provides access to
a set of Pods. The way a Service is tied to a set of Pods is through the use of labels and
selectors; Pods are labeled and a Service references one or multiple labels. And, a Service
has a domain name that can be resolved with kube-dns, an internal DNS server for the
Kubernetes cluster. As a result, even if a Service is destroyed and redeployed, Pods can still
use the Service without noticing the change in the IP/port combination of the newly created
Service.

By default, K8s implements the Services by manipulating the NAT table of the IPtables
rules of the worker nodes.

There are several types of services: ClusterIP, Nodeport and Loadbalancer services. Only
the ClusterIP and Loadbalancer services will be briefly discussed in this section as they are
the ones I use.

ClusterIP is a Service that can only be accessed by other Pods in the cluster, It is used for
inter-pod communications. ClusterIP Services leverage source NAT and destination NAT for
the forwarding of packets. Figure 3.6 shows how a payroll pod would communicate with a
cart pod using a Service.
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Figure 3.6: ClusterIP Service

A K8s Loadbalancer exposes an application running in Pods to be reachable from outside
the cluster. For instance, the frontend service of an application would lie behind a Loadbal-
ancer Service.

3.3 ACI and Kubernetes integration

3.3.1 ACI-CNI Plugin

Networking in Kubernetes is handled by network plugins (kubenet by default), which imple-
ments the Container Networking Interface (CNI) specifications[14]. This is why these plugins
are called CNI plugins. CNI plugins are responsible for handling the networking-related tasks
in K8s.

The ACI CNI plugin provides integration between the APIC and a Kubernetes cluster
connected to an ACI fabric. This integration is implemented across two main functional
areas:

Firstly, The Cisco ACI CNI plugin extends the ACI fabric capabilities to Kubernetes
clusters in order to provide IPAM, networking, load balancing, and security policies to con-
tainerized workloads. In addition, all Pods are connected to the VXLAN overlay network
provided by ACI thanks to the plugin.

Secondly, the entire K8s cluster is mapped to a VMM domain in ACI. This allows APIC
to have access to all resources deployed in the cluster, including the number of nodes, services,
Pods and their MAC and IP addresses, etc. The APIC, therefore, has full visibility of the
K8s cluster, just as it has visibility of a vSphere environment.

When the Kubernetes cluster is provisioned by the Cisco Container platform along with
ACI CNI, numerous ACI objects are automatically created for the integration: a tenant,
bridge domains, a K8s application profile, EPGs, contracts and a logical load balancer asso-
ciated with a service graph template with PBR capabilities.

The ACI CNI plugin is also transparent for the Kubernetes developers as all the networking
policies are implemented in ACI. One of the main advantages of ACI CNI is that it allows
applications running in Kubernetes to communicate with applications running in other form
factors such as bare metal, virtual machines, or other K8s clusters, without any constraint or
performance bottleneck, because a container is treated like any other endpoint in ACI[53].
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When provisioning resources to Kubernetes, all the developer needs to do is add some
annotation (metadata) for ACI, which may be different depending on the type of isolation
desired. There are 3 types of isolation, from the laxest to the strictest: cluster isolation (a
K8s cluster is mapped to an EPG); namespace isolation (a K8s namespace is mapped to
an EPG); deployment isolation (a k8s deployment is mapped to an EPG). In the case of
deployment isolation, which we use for the deployment of the microservice applications, we
need to specify the tenant, the application profile and the EPG. Then, ACI network policies
can be configured for the set of Pods belonging to the deployment. Note that once the
deployments are annotated and mapped to EPGs, all Pods can no longer freely communicate
with all other Pods belonging to different EPGs, unless a contract authorizes them to do so.

ACI CNI Plugin components

As seen in figure 3.7, ACI CNI consists in multiple components.

Host agent Opflex agent

Pod

mcast
daemon

Open vSwitch

Pod

kube-apiserver

aci container
controller APIC

Opflex proxy

data path

K8s master

K8s node

ACI leaf

Figure 3.7: ACI CNI components

The Opflex proxy process runs in the ACI leaf and propagates the network policies config-
ured in the APIC to an Opflex agent, which runs on the Kubernetes worker node.

On the K8s node, a pod consisting of 3 containers runs. It consists of the host agent,
the Opflex agent and a multicast daemon (not shown on the diagram). The Opflex agent
translates the network policies it receives from the Opflex proxy into Openflow rules and
programs the Open vSwitch (OVS), which is a virtual multilayer switch. Therefore, OVS
acts a bit like an ACI virtual leaf. The Host agent keeps track of the endpoint running in
the nodes and receives updates from the API server of the master node. The Open vSwitch
runs in a container that implements the data path so it takes care of configuring the routing
and switching between the Pods, the K8s Services, and enforces network policies like ACI
contracts.

The ACI container controller handles IPAM, delivers endpoint information and pushes
configurations to the APIC when required.

Open vSwitch

The Opflex implementation of OVS is composed two different OVS bridges, each of them
implements a different set of features: br-access and br-int. This is shown in figure 3.8
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Figure 3.8: Opflex OVS

The bridge br-access is used to enforce Kubernetes Network Policies, which are similar to
ACI contracts. These policies define how Pods are allowed to communicate with each other,
where Pods are identified by labels and can be used in conjunction with ACI policies. For
example, let’s say that we have 3 Kubernetes deployments, labeled red, blue, and green.
The Pods of the blue and red deployment belong to the same EPG, the Pods of the green
deployment belong to another EPG, and these two EPGs are able to communicate with each
other thanks to an ACI contract. With Kubernetes Network Policies, we can specify for
instance that the red Pods can not communicate with the green Pods even if a contract
authorizes them to do so.

Whereas br-int is in charge of performing routing, switching, enforcing ACI policies such
as contracts, NAT, and load balancing leveraged by Kubernetes Services. As a result, Clus-
terIP Services are no longer implemented via the modifications of IPtables rules.

Since the nodes of the cluster are forming an L2 overlay network, packets need to be
encapsulated in either VLAN or VXLAN frames when traffic is not destined to a Pod local
to the node. Hence the usefulness of the br-int vxlan interface.

Thankfully, OVS comes with utilities allowing to simulate network traffic between two
endpoints in the K8s cluster and to visualize the Openflow rules traversed, which is quite
insightful.

Traffic from Pod to another backend Pod running in two different nodes was simulated us-
ing the ovs-appctl ofproto/trace command (Listing 3.2). The following command was run on
the K8s master node and instructs a Pod (frontend Pod) to send traffic to another Pod (back-
end Pod) over port 3000. Some information needed to be retrieved such as the source MAC
and IP addresses of the Pods and the port of the OVS bridge the frontend Pod is connected to.

1 kubectl exec -n kube -system aci -containers -openvswitch -6bp4x -- ovs -appctl

ofproto/trace br -access tcp ,in_port =22, dl_src =06:0a:f4:52:f9:1d,dl_dst=f6

:91:16: c2:e6:a0 ,nw_src =10.51.0.110 , nw_dst =10.51.0.82 , tp_src =56000 , tp_dst

=3000

Listing 3.2: command to simulate traffic between two Pods

Listing 3.3 shows the output.
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1 bridge ("br-access ")

2 -------------------

3 0. in_port =22, vlan_tci =0x0000 /0x1fff , priority 100

4 load:0x3->NXM_NX_REG6 []

5 load:0x1->NXM_NX_REG0 []

6 load:0x15 ->NXM_NX_REG7 []

7 goto_table :2

8 2. reg0=0x1, priority 8192

9 goto_table :3

10 3. metadata =0/0xff , priority 1

11 output:NXM_NX_REG7 []

12 -> output port is 21 #see pa-veth3cceaea

13

14 bridge ("br-int")

15 ----------------

16 0. ip ,in_port =15, dl_src =06:0a:f4:52:f9:1d,nw_src =10.51.0.110 , priority 30

17 goto_table :1

18 1. in_port =15, dl_src =06:0a:f4:52:f9:1d, priority 140

19 load:0x708002 ->NXM_NX_REG0 []

20 load:0x1->NXM_NX_REG4 []

21 load:0x4->NXM_NX_REG5 []

22 load:0x1->NXM_NX_REG6 []

23 goto_table :3

24 3. priority 1

25 goto_table :4

26 4. reg4=0x1,dl_dst=f6 :91:16: c2:e6:a0, priority 10

27 load:0x720006 ->NXM_NX_REG2 []

28 load:0xa02684c ->NXM_NX_REG7 []

29 write_metadata :0x7/0xff

30 goto_table :11

31 11. tcp ,reg0=0x708002 ,reg2=0x720006 ,tp_dst =3000, priority 8064, cookie 0xe

32 goto_table :12

33 12. metadata =0x7/0xff , priority 15

34 move:NXM_NX_REG2[]->NXM_NX_TUN_ID [0..31]

35 -> NXM_NX_TUN_ID [0..31] is now 0x720006

36 move:NXM_NX_REG7[]-> NXM_NX_TUN_IPV4_DST []

37 -> NXM_NX_TUN_IPV4_DST [] is now 10.2.104.76

38 output :5

39 -> output to kernel tunnel #send traffic via VXLAN tunnel on port 5

40

41 Final flow: tcp ,reg0=0x1 ,reg6=0x3 ,reg7=0x15 ,in_port =22, vlan_tci =0x0000 ,dl_src

=06:0a:f4:52:f9:1d,dl_dst=f6 :91:16: c2:e6:a0 ,nw_src =10.51.0.110 , nw_dst

=10.51.0.82 , nw_tos=0,nw_ecn=0,nw_ttl=0,tp_src =56000 , tp_dst =3000, tcp_flags

=0

42 Megaflow: recirc_id =0,ct_state=-new -est -inv -trk ,ct_mark=0,eth ,tcp ,in_port =22,

vlan_tci =0x0000 /0x1fff ,dl_src =06:0a:f4:52:f9:1d,dl_dst=f6 :91:16: c2:e6:a0 ,

nw_src =10.51.0.110 , nw_dst =10.51.0.82 , nw_ecn=0,nw_frag=no,tp_src =0x8000 /0

x8000 ,tp_dst =3000

43 Datapath actions: set(tunnel(tun_id =0x720006 ,dst =10.2.104.76 , ttl=64, tp_dst

=8472, flags(df|key))),4

Listing 3.3: OVS Openflow rules traversed

As we can see on the trace, traffic is flowing through the two OVS bridges and is then
encapsulated in a VXLAN frame (39) and sent to a leaf switch. The VXLAN tunnel is
0x720006 (7471110), which corresponds to what is shown on the APIC (see Figure 3.9).

32



Figure 3.9: VXLAN Encapsulation Backend Pod

3.3.2 Accessing Pods From the Outside

When a client wants to access an application running in K8s from the outside, it is done
through a Kubernetes LoadBalancer lying in front of the application, and an ACI PBR service
graph. Upon the creation of a LoadBalancer Service in K8s, the ACI container controller
automatically performs some configuration on the APIC.

src_ip: dst_ip: 

192.168.0.1 FR1 ipsrc_ip: dst_ip: 

192.168.0.1 10.9.154.138

src_ip: dst_ip: 

192.168.0.1 10.9.154.138

client

router L3out

default_Ext_EPG
0.0.0.0/0

Svc_Ext_EPG
10.9.154.138/32

contract PBR service
graph

K8s
node1

K8s
node2

FR1 FR2 XX1

FR3XX2

provides

consumes

OVS

OVS

src_mac: dst_mac: 

BD_mac svc_mac_1

svc_mac_1svc_ip_1

svc_mac_2svc_ip_2

frontend PBR:
> svc_ip_1 / svc_mac_1
> svc_ip_2 / svc_mac_2

Figure 3.10: K8s Loadbalancer Packet Walk

In the example presented in Figure 3.10, the client wishes to access the frontend of an
application running in the Kubernetes cluster. The frontend deployment has three Pods,
FR1 and FR2 running on the first node, and FR3 running on the second node. And, a
K8s LoadBalancer named FR LB has been created to access the frontend application, which
instantiated a PBR service graph in ACI attached to a contract, and an external EPG mapped
to the IP address of the K8s Loadbalancer.

First, the request of the client reaches the ACI fabric, is going through the L3out and
is classified into the default external EPG (default Ext EPG) by ACI. Then, ACI performs
a lookup for the destination IP address of the packet (10.9.154.138), which is mapped to
the external EPG of the Loadbalancer Service (Service external EPG) exposing the frontend
application

Then, the PBR attached to the contract provided by the Service external EPG and con-
sumed by the default external EPG is applied. Next, ACI load-balances the request to a K8s
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node running the frontend application. Let us dig a little bit deeper to understand what is
happening during this step.

When ACI manages the K8s network with ACI CNI, a virtual endpoint (also called
a service endpoint) used solely for PBR purposes is assigned to each K8s node. These
endpoints belong to the bd-kubernetes-service bridge domain whose MAC address is BD mac.
Therefore, what the PBR service graph does after selecting the K8s node (K8s node1) as a
next hop, is replacing the source and destination MAC addresses by BD mac and svc mac 1.
The packet is then ready to be forwarded to the K8s node over the corresponding VXLAN
tunnel since the APIC is aware of those service endpoints.

The figure below (3.11) is a screen capture of the APIC showing the available service
endpoints for an exposed microservice. As we can see, the Pods are running on three different
nodes in this case.

Figure 3.11: ACI Service Endpoints of Pods Exposed by a K8s Loadbalancer

Once the request reaches the Open vSwitch, it is load-balanced among the Pods exposed
by the Service and DNAT is performed by the br-int bridge of the OVS. The final destination
is Pod FR1 in this example.
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Chapter 4

Project Objectives

4.1 Objectives and Deliverables Summary

This section summarizes the objectives pursued throughout the project. The objectives are
twofold, making a demonstration of the ACI-SDA integration, and building an Infrastructure-
as-Code demonstration around ACI, Kubernetes, and vSphere.

4.2 Story Telling

The IT infrastructure of the company is composed of two domains: the SDA domain for
enterprise networking, and the ACI domain for running the applications on premise. Three
applications are running in the data center:

• an inventory application accessed by the retail employees to add beers to the inventory.

• a webshop application accessed by customers to buy some beers.

• a finance application accessed by the financial department, and that displays the history
of the purchases.

4.3 Deliverables

• Three applications developed with a microservice architecture (Section 6.1).

• Automated ACI configuration deployment with Terraform (Section 6.2).

• Automated deployment of the applications to Kubernetes using either Terraform, or
Helm charts (Section 6.3).

• Automated deployment of the applications to virtual machines (Section 6.4).

• Ticketing system and CICD job notifications leveraging Gitlab issues, webhooks, and
Webex Teams (Section 6.5).

• Network configuration for the use-case (Section 6.1 & 8.2)

4.4 Remarks

Initially, the ACI-SDA integration was supposed to be performed with the applications run-
ning in the Kubernetes cluster. However, the first phase of the integration is too limited and
does not permit it. As a result, the applications were deployed on virtual machines with a
VM per container strategy. Details about the deposited code can be found in Section 10.
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Chapter 5

What is Infrastructure-as-Code?

The Cisco’s Beer Factory’s IT infrastructure is managed according to infrastructure-as-code
(IaC) and DevOps principles, from network configuration and virtual machine provisioning
to application deployment in Kubernetes.

In this chapter, IaC and DevOps principles are explained, followed by sections explaining
the main tools that were used.

5.1 What is Infrastructure-as-Code?

As the name suggests, IaC is the process of managing and provisioning IT infrastructures
(e.g. servers, network, storage, public clouds, etc.) through code and configuration files,
which specify infrastructure elements and how they should be configured.[49].

When using IaC, the configuration files contain the specification of the infrastructure,
which makes it easier to edit and distribute configurations. It can also help engineers to tear
down, or reproduce the infrastructure easily. But more than anything, IaC provides speed
and consistency when it comes to managing the environment.

Some IaC tools like Terraform also promote the immutable infrastructure approach, an
approach whereby infrastructure elements should never be changed after they have been
deployed, rather they should be replaced. This is where containers come in very handy as
destroying and spin up containers is not resource expensive. By doing so, it helps to avoid
”snowflakes”, i.e. infrastructure elements that require additional configuration beyond that
covered by the automation tools[7].

The concepts of declarativeness and imperativeness discussed in Section 2.2.1 and can also
be applied to IaC. In a declarative approach, the desired end state of the infrastructure is
defined and the automation software takes care of the rest, whereas in an imperative approach,
the script supplies the infrastructure step by step.[12]. Both approaches have their use-cases
and are complementary. For example, provisioning virtual machines in the public cloud
declaratively with a tool like Terraform would be the best fit. And it would more suitable
to configure these VMs in the next step of the provisioning process with a shell script or an
Ansible playbook.

As we will see in the next section, IaC and DevOps are closely linked.

5.2 DevOps

This section presents the DevOps practices, introduces the concept of CI/CD pipelines on
Gitlab, and finally explains how DevOps can be applied to IaC.
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5.2.1 Defining DevOps

The term DevOps is a mashup of the words ”development” (Dev) and IT ”operations”
(Ops). Defining DevOps is not an easy task, but broadly speaking, it is a set of ideas,
practices, and tools that increases an organization’s ability to deliver applications and services
at high velocity[51]. It explains why microservices and Kubernetes go hand in hand with
DevOps, as they allow for rapid deployment of an updated version of the application.

Since applications need IT resources, working under the DevOps model is also a kind
of cultural shift and require the development and infrastructure teams to work closer to-
gether[48]. However, going as far as saying that ”these two teams are merged into a single
team”[51] is still an utopia in my honest opinion, especially in big organizations where employ-
ees are siloed in multiple teams: virtualization, network, security, development, Kubernetes,
cloud, etc.

Continuous integration (CI) and either continuous deployment or either delivery (CD) are
two important principles of DevOps.

Continuous integration is a practice where all working copies (i.e branches) of the devel-
opers are frequently merged into a central repository, after which automated build and tests
are performed. All these automated tasks are run in what is called a ”pipeline”.

Continuous deployment is the process of automating the deployment of application re-
leases into test, staging, and production environments. Continuous delivery is similar, except
that the deployment of the release into production requires manual approval. Multiple tests
(load tests, integration tests, etc.) should also occur between the deployment to staging and
production.

5.2.2 Gitlab

Gitlab is a DevOps platform that is installed on-premise that we use for the project. Among
other things, it provides source control with git, continuous integration, and deployment
pipelines capabilities. The pipeline features of Gitlab are quickly explained in this sub-
section.

in Gitlab, a pipeline is a set of automated processes attached to a repository, it consists of
stages, which contain jobs that can be executed in parallel. A pipeline can either be triggered
when new code is pushed or even manually with an API call, and if a job of the pipeline
fails, the pipeline is said to be broken and the subsequent stages are not run. Examples of
pipelines will be provided in the following sections.

Anything can be executed within a job, one can for instance execute a script in Python,
deploy configuration with an IaC tool, build a Docker image and push it to a registry, or even
trigger the pipeline of another repository.

The jobs are picked up and run by an application called a runner, which must be associated
with an executor that determines the environment each job runs in. In our case, we use the
Docker executor, so each job runs in a container.

Therefore, if one wants to use Ansible in a job, he has to make sure that it is installed and
configured in the supplied Docker image. This step can involve the creation of tailored images
with Dockerfiles, which are nothing but text documents that contain all the commands a user
could call on the terminal to assemble images.

A pipeline is defined in a YAML file named .gitlab-ci.yml. An example is provided below in
listing 5.1 for illustration purpose. In this example, 3 stages are defined and there is one job
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per stage except for the second stage, which contains 2 jobs. Some rules can also be defined,
for instance, job-3 can only be executed manually.

1 stages:

2 - stage -1

3 - stage -2

4 - stage -3

5

6 job -1:

7 image: ubuntu:latest

8 stage: stage -1

9 script:

10 - echo "do some stuff"

11

12 job -2-1:

13 image: ubuntu:latest

14 stage: stage -2

15 script:

16 - echo "do some stuff"

17

18 job -2-2:

19 image: ubuntu:latest

20 stage: stage -2

21 script:

22 - echo "do some stuff"

23

24 job -3:

25 image: ubuntu:latest

26 stage: stage -3

27 script:

28 - echo "do some stuff"

29 rules:

30 - when: "manual"

Listing 5.1: .gitlab-ci.yml example

A pipeline can be better visualized as such (see Figure 5.1).

commit & 
push

stage-1 stage-2 stage-1

some repo

Figure 5.1: Pipeline Representation

There is of course much more to say about the DevOps capabilities of Gitlab, but the
basics are covered for what comes in the next sections.

5.2.3 Relationships Between DevOps and IaC

DevOps and infrastructure-as-code are closely related, in fact, we could say that IaC is one
of the key enablers, or is part of the DevOps movement.

Defining the whole infrastructure to code means that it should also be treated the same
way that any other code would be. Therefore, DevOps best practices can also be applied to
IaC.
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Consequently, git repositories can be used as a single source of truth to deliver IaC. And,
IT operations can be performed directly from the pipelines, which is the strategy adopted
by the infrastructure team of Cisco’s Beer Factory. Such a strategy is also called the GitOps
framework[18].

5.3 IaC Tools

Several automation tools used throughout this project are presented in this section. Among
them, Terraform, Helm charts, Packer, and Ansible.

5.3.1 Terraform

Terraform is an open-source IaC tool written in Go leveraging a declarative approach, it
is developed by Hashicorp and is mostly used for creating remote resources. This process is
referred to as provisioning.

The declarative approach is best suited to infrastructure provisioning as it allows the state
of the infrastructure to be fully captured. Indeed, at a glance, one can see what is currently
deployed and configured by looking at the code base, and running Terraform multiple times
will not affect the end result. That is why Terraform is said to be idempotent as it keeps
track of created resources.

This is not necessarily the case with procedural IaC tools as one would have to know
about the full history of all the changes that have taken place.

Configuration files are written in a human-readable language called HCL (Hashicorp Con-
figuration Language). An example of HCL for provisioning an ACI Tenant in Terraform
using a resource is shown below in listing 5.2. The set of available resources that one can use
depends on the Terraform Provider that he is using, which is responsible for understanding
API interactions and exposing resources.[23] For instance, There is a dedicated Provider for
ACI, Kubernetes, Amazon AWS, and vSphere, etc.

1 resource "aci_tenant" "tenant" {

2 name = "my_tenant"

3 }

Listing 5.2: Terraform HCL Example for Creating a Tenant in ACI

Terraform code is therefore no more than configuration files containing resources that can
be bundled into modules. One can think of a module as a regular function in programming,
which can be called, take in parameters, and then create some resources.

In my honest opinion, writing Terraform configuration files in itself is not hard as it is
just a matter of reading the documentation of the Providers correctly, however, the difficulty
lies in writing reusable and flexible modules because the expressive power in Terraform, as in
most declarative languages is rather limited, so doing logic (conditions, loops, etc.) is quite
tricky. And, keeping a Terraform codebase DRY, (Don’t Repeat Yourself), maintainable and
scalable.

As shown in Figure 5.2, Terraform uses a client-only architecture, which means that it
does not require the installation of additional software on the platform to be provisioned.
Under the hood, Terraform simply makes API calls based on the resources defined in the
configuration files.
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Figure 5.2: Terraform client-only Architecture

Terraform maintains the state of the infrastructure (i.e. what has been provisioned) in a
state file. This JSON file contains mappings from the Terraform configuration to objects pro-
visioned in the real world[6], it can be seen as a kind of internal database used by Terraform.

So, when Terraform creates a remote object, it will record the identity of that remote
object against a particular resource instance in the Terraform configuration, and then poten-
tially update or delete that object in response to future configuration changes.[25]

Gitlab integrates well with Terraform and provides a backend for storing state files. Stor-
ing the state file remotely allows it to be shared among all members of the infrastructure
team, and also enables state locking, which prevents concurrent writes to file.

The Terraform workflow is quite straightforward, it consists of a refresh, plan, and apply
phase.

Terraform starts with a refresh to update the state file, this phase is performed to reconcile
real-world configuration drifts, which can occur, for example, if a resource previously created
with Terraform has been deleted manually or by another configuration tool. In this case, it
will delete the resource from the state file before running the planning phase.

During the plan phase, Terraform determines the actions to be carried out in order to
achieve the desired state defined in the configuration files and outputs a plan. This phase
is convenient for reviewing the configuration and check whether the changes match your
expectations. The workflow of this plan step is illustrated in Figure 5.3.
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Figure 5.3: Terraform Plan Workflow

The diagram speaks for itself, however, a comment can be made on the last step when
Terraform creates an execution plan. Internally, Terraform builds a directly acyclic graph
(DAG) to determine the order of the actions it will perform, because some resources may
depend on other ones. For example, an application profile has to be created before an EPG.

Once the changes are reviewed, the apply phase is run, which applies the changes to the
infrastructure required to reach the desired state, and updates the state file accordingly.

5.3.2 Helm Charts

Helm is a package manager for K8s, it allows developers to bundle K8s applications in
what are called ”charts” and to share them with the community, following the same kind
of philosophy as Docker. Basically, a Helm chart contains templates used to generate K8s
manifest files based on possible inputs fed to the Helm template engine, which can then be
deployed in the cluster with the Helm client.

The packaging capabilities of Helm really shine when the complete application is developed
and needs to be deployed to multiple environments, or even published to a chart registry.

5.4 Image Building with Packer

5.4.1 Packer

Packer is another tool that automates the creation of machine images using Builders.
Packer’s Builders can be viewed in the same way as Terraform’s Providers. They are able to
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create an image for a single platform by reading a configuration file. Examples of Builders
include Docker, VMware, Amazon EC2.

Using Packer to build an image is quite simple as all there is to do is write a JSON
configuration file. In its simplest form, it be can separated into two sections; a building
section used to build the image, and a provisioning section used to edit it using regular shell
scripts, Ansible, Powershell, etc.

5.4.2 VM Templates

A VM template is a golden image of a virtual machine used for the purpose of VM cloning.
It is particularly useful when multiple VMs with similar configuration needs to be deployed.
Administrators can either convert a virtual machine to a template or clone a virtual machine
from a template, leaving the template intact.

One important feature of a VM template is that it can not be powered on or edited once
it has been created, which provides safety as administrators can not accidentally modify the
virtual machine used as a template.

When Deploying a VM from a template, vSphere also provides a functionality allowing
administrators to customize the guest operating system of the resulting VM during the cloning
phase. Among other things, the network interfaces, default IP gateway, and DNS can be
configured.

5.5 Ansible

Ansible is an open-source automation tool sponsored by Red Hat. As moving applications
to virtual machines was a kind of last resort solution, I did not have time to explore all the
good, the bad and the ugly things Ansible has to offer.

From an architectural point of view, Ansible works a bit like Terraform as it does not
require any additional software to be installed on the devices to be configured. So, it is made
up of a device running Ansible (i.e control node) and the devices managed by the control
node (i.e managed nodes). There is no limit to what Ansible can configure as long as it can
communicate with the device via an API or connect to it via SSH. For instance, Configuring
ACI, deploying virtual machines, and customizing Linux servers can be performed by this
tool. Unlike Terraform, Ansible does not keep track of the state of the infrastructure. It
is therefore up to the administrator to know what has already been deployed. Automation
work can also be implemented in modules (e.g. a module for creating an EPG in ACI), which
can be idempotent depending on how they are developed. This means that it is up to the
module code to check the state of the device and determine what changes need to be made.

Automation tasks are grouped into what is called a ”playbook”, a YAML file passed to the
Ansible engine, usually accompanied by an inventory file listing the devices to be configured.

Using Ansible to configure virtual machines is illustrated below in Figure 5.4.
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Chapter 6

Infrastructure-as-Code
Demonstration

6.1 The Applications

The inventory, webshop, and purchase history applications of the beer business are de-
veloped with the microservice pattern. These are deployed to Kubernetes, and to virtual
machines. In both cases, communication between the different microservices and access to
the applications are managed by ACI. Note that these applications are only for demonstration
purposes and are in no way production-grade applications.

6.1.1 Architecture and Technologies

The microservices

Figure 6.1 shows the different microservices composing the applications, and how they are
connected. each application is composed of a web frontend, and one or multiple backends.

inventory-
frontend

inventory-
backend database finance-

frontendfinance-backend

webshop-payroll

webshop-
frontend

webshop-
recommendation webshop-catalog

Inventory app Finance App

Webshop app

Figure 6.1: Cisco’s Beer Factory Microservices

On Kubernetes, each microservice runs in its Pod in the cluster. Each Pod of the backend
or database microservices is exposed by a ClusterIP Service since those are only during used
for inter-pod communications. Whereas the Pods of the frontend microservices sit behind a
LoadBalancer Service. On virtual machines, each microservice runs in a container on separate
VMs.
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Frontends

The frontends are single-page applications developed in Javascript using the Vue.js frame-
work. A single-page application loads only a single web document and then updates the
content of this document via AJAX requests. This, therefore, allows users to navigate on a
website without loading new web pages from the server, which can result in a more dynamic
experience.[40]. Vue.js was selected for its simplicity, user-friendliness, and documentation.
The Bootstrap[5] framework was used for the CSS. In addition, Wouter styled the frontends
by incorporating some CSS. The web documents are served by Nginx, which also provides an
API gateway redirecting the client requests to the corresponding backends. The frontends of
the web applications are shown below on Figure 6.2, 6.3, and 6.4.

Figure 6.2: Frontend of the Inventory application
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Figure 6.3: Frontend of the Finance application

Figure 6.4: Frontend of the Webshop application

Backends & Database

Each backend microservice exposes a REST API and is built in Javascript with the Node.js
Express framework. Database connection and manipulation of the data are performed thanks
to Mongoose, an Object Data Modeling library for the document database MongoDB.
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6.1.2 Storage

On Kubernetes

The database also runs as a Pod. Persistent storage is therefore required for, as the data
would be lost if it fails.

Storage in Kubernetes is based on volumes, which are abstract storage unit that containers
can use to store data. Allocating persistent storage for some Pods is done with Persistent
Volumes (PV), and Persistent Volume Claims (PVC). PVs are pieces of storage allocated to
the cluster that can be used by Pods, and PVCs are requests for storage. For example, the
inventory-db Pod may request 1GB of storage from a PV that has a capacity of 10GB. A
Statically provisioned hostPath Persistent Volume is used in the project. A hostPath PV uses
a directory on the K8s node to simulate network-attached storage. Therefore, the database
Pod must always run in the same node.

On Virtual Machine

since the database application runs as a container, persistent storage is performed with a
Docker volume.

6.1.3 Network configuration

There are two application profiles: tbf-internal for the inventory and finance applications,
and tbf-external for the webshop application.

On kubernetes, Deployment isolation is used so each application profile is composed of
multiple EPGs, one per microservice. And, these EPGs are all linked to the Kubernetes
VMM domain and placed in the bridge domain kube-pod-bd, which is the bridge domain
used for all Pods created by the developers.

It is similar for the deployment on virtual machines, except that a bridge domain and a
subnet had to be created for the applications.

ACI contracts are needed for allowing communication between the EPGs. All Express
applications listen on port 3000, therefore, the same filter could be reused by the contracts.

Contracts to EPGs relationships for the communication between the microservices are
shown in Figure 6.5, where contracts are represented by the circles and EPGs by the rectan-
gles. A green line means ”provides”, whereas an orange line means ”consumes”.

Some contracts are also needed for the deployment on virtual machines or in Kubernetes,
such as the contract allowing Ansible to communicate with the virtual machines, the HTTP
contracts for accessing the web applications, or the DNS contract used by the Pods in Ku-
bernetes since they use the domain name of the K8s Services for inter-pod communication.
Those contracts are not shown so as not to overload the diagram.

Additional network constructs are also necessary for the ACI-SDA integration, but will
be detailed in a further section.
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Figure 6.5: Contract Relationships of The Cisco’s Beer Factory Microservices

Creating a single contract for all Express traffic would have worked, but communication
between some Pods would have been allowed when they should not be able to communicate
with each other. For instance, traffic from the finance-frontend Pod to the inventory-backend
Pod would have been permitted with this approach.

Loadbalancing the Webshop Frontend

We decided to insert a loadbalancer for the Nginx server of the webshop application. As a
result, three virtual machines implements the server of the webshop. The loadbalancer also
runs as a VM and is implemented by HAproxy[22].

To steer the traffic to HAproxy upon a request from a client from the Internet to the
webshop, a service graph is applied to the contract linking the clients to the webshop servers
(http-lb-external). The clients no longer use the IP addresses of the VMs, but the Virtual IP
of the loadbalancer to reach the application. As we can see on Figure 6.6, HAproxy performs
SNAT and DNAT.

webshop-frontend
Nginx VMs

http-lb-
external

External EPG

src dst

Homer IP LB VIP

LB VIP

src dst

LB VIP VM IP

Figure 6.6: Loadbalancing the Webshop Frontend with HAproxy and PBR
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6.1.4 Query Example

Here is, for illustration purposes, an example of the messages exchanged when a retail em-
ployee opens the inventory application. First, the web document is retrieved from the Nginx
server (1). Second, an API call is performed upon the creation of the web document to
retrieve the beers stored in the database (2). As we can see, the API call is received on the
Nginx API gateway, which proxies the request to the corresponding backend microservice
querying the database. Then, the beers stored in the JSON format are sent back to the
client. This is shown on Figure 6.7
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Figure 6.7: Opening the Inventory Application

6.2 Terraforming ACI

Terraform has been my tool of choice for deploying configuration. How it works and why
people use it will be briefly explained, followed by a section describing how ACI is configured
using this tool.

6.2.1 Automating Configuration deployment

The First Attempt

Now that the basics of Terraform are covered, it is a good time to discuss how I first
envisioned IaC in this project.

Not going to lie, I was personally a bit brainwashed by the messaging of marketing people
about how ACI brings developers and network engineers together, and the whole DevOps
religion.

So my first idea was to follow an ”application-centric” approach, where all requirements
are defined by the application themselves. For example, an application deployed needs an
EPG, resides in a bridge domain, can consume contracts, lies behind a K8s Service, etc.
Therefore, ACI and Kubernetes resources were declared in a single Terraform module.

Although it is a nice idea on paper, such an approach is not going to work in the real world
for multiple reasons. First, it would not scale well as it would lose flexibility as it grows.
Second, thanks to Wouter’s insights, I’ve learned that employees are working in silos and
there is no chance that the network team would allow developers to even touch ACI, and
that is quite fortunate when I think about it.
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As a result, automation in the Kubernetes and the ACI domain is fully segregated. How
it is performed in ACI is explained in the next section.

Project Structure

In this sub-section, the structure of the Terraform code base to configure ACI is described.

Terraform modules are needed to avoid duplication of code. When one looks at the panes
shown in the APIC GUI when a tenant has been selected, he can see 5 configuration panes:
application profiles, networking, contracts, policies, and services. Therefore, it makes sense to
build one Terraform module per pane. For example, the application-profiles module can create
applications-profiles, EPGs, link these EPGs to VMM domains, and make them consume or
provide contracts.

The good news is that Terraform modules do not have to be in the same project folder
as the configuration files that call them. They can be located for instance in a different git
repository, which is interesting because multiple branches can be created for the development
of new features. And, when calling a module residing in a remote git repository, the branch,
or release can be specified.

So far, we have one git repository (ACI-modules) that will act as a sort of module library,
and another git repository (ACI-live) containing Terraform files that will perform module
calls for creating resources in the real world. As a matter of safety and making the code
base manageable, it is convenient to have a Terraform state file per ACI tenant. Therefore,
ACI-live is composed of several root folders, one per tenant. The pseudo-architecture of
the Terraform code base is shown below in Figure 6.8 (not all files are displayed so as not
to overload the diagram). In our case, there are two production tenants (the first one for
the applications running on the virtual machines), renamed ”TBF-virtual-machines” and
”TBF-k8s-cluster” in the diagram for clarity purposes. The last one is a development tenant.
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ACI-live:master
    L
      TBF-virtual-machines
          L
            module-calls.tf
            variables.tf
            networking.auto.tfvars
            contracts.auto.tfvars
            aps.auto.tfvars
    L
      TBF-K8s-cluster
          L
            module-calls.tf
            variables.tf
            networking.auto.tfvars
            contracts.auto.tfvars
            aps.auto.tfvars
    L
      william-dev
          L
            module-calls.tf
            variables.tf
            networking.auto.tfvars
            contracts.auto.tfvars
            aps.auto.tfvars
 

ACI-modules:prod
    L
      application-profiles
          L
            resources.tf
            variables.tf
    L
      networking
          L
            resources.tf
            variables.tf   
    L
      contracts
          L
            resources.tf
            variables.tf

ACI-modules:dev
    L
      application-profiles
          L
            resources.tf
            variables.tf
    L
      networking
          L
            resources.tf
            variables.tf   
    L
      contracts
          L
            resources.tf
            variables.tf

Figure 6.8: ACI-live and ACI-modules repositories

Working with such a project structure, the network team can develop new modules in the
development branch and test them in a test tenant. Once the changes have been validated,
they can perform a merge request from the test branch to the production branch of the
ACI-modules repository.

As we can see in Figure 6.8, each tenant folder contains multiple variable files: variables.tf
contains the variable declarations, the others (*.tfvars) contain the definitions. The variables
in these files are used as module arguments. As such, the network team can easily reason
about the state of the infrastructure by looking at these files.

In most cases, the variables are either lists or dictionaries as we want to be able to
provision multiple resources of the same types (application profiles, EPGs, contracts, etc.)
within the same tenant.

Flexibility Demonstration

The tricky part was building something easily usable, flexible and that integrates well
with resources already created manually or by another system such as the Cisco Container
Platform. For instance, the TBF-virtual-machines tenant in the diagram is actually Wouter’s
tenant and contains resources already created manually such as filters, a VRF, an L3out,
EPGs (Gitlab) that I had to use in Terraform. Fortunately, it is feasible to fetch remote
resources in Terraform and to integrate them in the code. An example is provided below to
provide a glimpse of what it is possible to configure. In particular, this example allows the
communication between Ansible running in Gitlab and a virtual machine running one of the
application (inventory-backend).
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This snippet (6.1) creates a bridge domain (the-beer-factory), places it in the Wouter’s
VRF, and associates it to an existing L3out. Then, a subnet is created for the bridge domain.

1 vrfs = {

2 Wouter = {

3 exists = "true"

4 tenant = "Wouter"

5 }

6 }

7

8 l3outs = {

9 L3Out -Wouter = {

10 tenant = "Wouter"

11 }

12 }

13

14 bds = {

15 the -beer -factory = {

16 vrf = "Wouter"

17 l3out = "L3Out -Wouter"

18 }

19 }

20

21 subnets = {

22 the -beer -factory = {

23 gw = "10.9.200.254/24"

24 bd = "the -beer -factory"

25 scope = [" public "]

26 }

27 }

Listing 6.1: networking.auto.tfvars example
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Next (Listing 6.2), a contract (tbf-services) and a contract subject (tbf-service-subj) are
created. The contract subject reuses two existing filters (icmp and ssh) and a newly created
filter (http).

1 filters = {

2 http = {}

3 icmp = {

4 exists = "true"

5 }

6 ssh = {

7 exists = "true"

8 }

9 }

10

11 filter -entries = {

12 http = {

13 filter = "http"

14 ethertype = "ipv4"

15 ip_protocol = "tcp"

16 destination_port_from: 80

17 destination_port_to: 80

18 },

19 }

20

21 contracts = {

22 tbf -services = {}

23 }

24

25 contract_subjects = {

26 tbf -services -subj = {

27 contract = "tbf -services"

28 filters = ["http", "icmp", "ssh"]

29 }

30 }

Listing 6.2: contracts.auto.tfvars example
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Finally, an application profile (tbf-internal) is created within the existing tenant of Wouter,
and an EPG named inventory-backend is provisioned within this application-profile. This
EPG lies in a bridge domain (the-beer-factory) and is linked to an existing VMM domain
(HX-VMM). Finally, contracts (tbf-services) are attached to the manually created EPG De-
vOps, in which Gitlab resides. both EPGs provide and consume this contract. It is shown in
listing 6.3. Some arguments are optional, for instance, the user can create a bridge domain
without specifying an L3out.

1 app_profiles = {

2 Applications = {

3 exists = "true"

4 }

5 tbf -internal = {}

6 }

7

8 vmms = {

9 HX -VMM = "uni/vmmp -VMware"

10 }

11

12 epgs = {

13 DevOps = {

14 exists = "true"

15 ap = "Applications"

16 }

17 inventory -backend = {

18 ap = "tbf -internal"

19 bd = "the -beer -factory"

20 vmm = "HX -VMM"

21 }

22 }

23

24 epg_to_contract = {

25 DevOps -tbf -services -cs = {

26 epg = "DevOps"

27 contract = "tbf -services"

28 type = "consumer"

29 },

30 DevOps -tbf -services -pv = {

31 epg = "DevOps"

32 contract = "tbf -services"

33 type = "provider"

34 },

35

36 inventory -frontend -tbf -services -cs = {

37 epg = "inventory -frontend"

38 contract = "tbf -services"

39 type = "consumer"

40 },

41 inventory -frontend -tbf -services -pv = {

42 epg = "inventory -frontend"

43 contract = "tbf -services"

44 type = "provider"

45 },

46 }

Listing 6.3: aps.auto.tfvars example
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Continuous Delivery

As said earlier, all the IT operations are performed from Gitlab. As such, the pipeline of
ACI-live is triggered upon when a new configuration is pushed and consists of 3 stages: A
validation phase verifying that the configurations is valid, a plan phase that will output an
execution plan used by the last apply phase.

I did not have to resort crafting my own Terraform Docker image as one already exists[17].
The pipeline is presented below in Figure 6.9

ACI-live

commit & 
push

Figure 6.9: Pipeline of ACI-live

Assuming that there are 2 tenants defined in ACI-live, it means that each tenant should
have its own Terraform pipeline since there is a state file per tenant. However, making a
change in tenant ”A” should not trigger the pipeline of tenant ”B”. Fortunately, Gitlab
comes with rules specifying that a job is to be run only if there has been a change in a certain
folder.

6.3 Deploying The Applications to Kubernetes

This section is about the deployment of microservices in Kubernetes following the DevOps
ideas. Multiple ways have been tried out; the first one using Terraform and the second one
using Helm charts. Prior to delving into these topics, a short subsection on how continuous
integration is performed is given.

6.3.1 Continuous Integration

Each microservice is associated to a repository in Gitlab, and as you might expect, a
pipeline is triggered every time new code is pushed.

The first step of the pipeline is to build a new Docker image automatically and to publish
it to a registry, Harbor in our case. Building a Docker image is not hard, all that needs to
be provided is a Dockerfile, a document containing commands to assemble an image. The
image is tagged with the 8 first characters of the commit hash.

Building a Docker image inside a pipeline when the Docker executor is used requires to
use ”Docker in Docker” or more commonly called dind. Dind makes things really convenient
for developers, however, it comes with security risks and should be used with caution in real
environments[44][46].

Note that the first pipeline job of the frontend microservices is to build the frontend using
Webpack, which outputs a folder containing the HTML and Javascript bundled together, and
that can be sent (thanks to Gitlab artifacts) to the second job that will build an Nginx image
using this bundle.
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6.3.2 Deployment Using Terraform

The first to deploy the applications in Kubernetes was with Terraform and the Kubernetes
Provider. How It was carried out is explained in this sub-section.

The Terraform project architecture is similar to what is described in Section 6.2.1. As a re-
sult, there are two git repositories: K8s-live, and K8s-modules, and the Terraform operations
are also running inside a pipeline just as ACI-live.

Each root folder in K8s-live represents a namespace in the cluster, as such, there is a
namespace in which all the microservices of Cisco’s Beer Factory are deployed.

Concerning the modules, there is a module for deploying the applications, another one
for the databases along with the persistent volumes, and the last one for the K8s Services.
The project structure is presented in Figure 6.10.

K8s-live:master
    L
      the-beer-factory
          L
            module-calls.tf
            variables.tf
            deployments.auto.tfvars
            storage.auto.tfvars
            services.auto.tfvars
            tags.auto.tfvars

 

K8s-modules:prod
    L
      deployments
          L
            resources.tf
            variables.tf
    L
      storage
          L
            resources.tf
            variables.tf   
    L
      services
          L
            resources.tf
            variables.tf

Figure 6.10: K8s-live and K8s-modules Repositories

You should notice a variable file named tags.auto.tfvars on the diagram above, his purpose
is to map Docker image names, to tags. The existence of such a file is a consequence of
how the Terraform plan phase is working and why a new image tag is used every time an
image is built. Indeed, if a new image is pushed with exactly the same tag in the registry
(latest for instance) and that a Deployment for this application is already running in the
cluster, problems arise; the desired state is already reached since the configuration remains
unchanged.

As such, the tag of the image in the Terraform configuration has to be changed every
time a new image is built, which is not really convenient but works nonetheless.

The CICD workflow is illustrated in Figure 6.11.
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K8s-live

inventory-
backend

Harbor

commit &
push

commit &
push

Figure 6.11: K8s CICD workflow K8s with Terraform

6.3.3 Deployment Using Helm Charts

Deploying applications from a centralized location, as is the case in the previous approach
has its perks and downsides. One one hand, it provides visibility as the Kubernetes captain
has a clear view of the whole system. On the other hand, it makes continuous deployment a
bit trickier.

Each microservice is directly deployed in the cluster using a Helm client[26]. Of course,
using such a client in a pipeline job requires some configurations. Fortunately, configurations
can be baked into the Docker image used for the deployment, hence removing the hassle of
reconfiguring it every time in the pipeline file. In the end, an IaC Docker image packing tools
(Helm, kubectl, Python, Ansible, and Packer) preconfigured for automating the infrastructure
in the lab has been created.

The CICD workflow is presented below in Figure 6.12. In this case, the repository contains
a Helm chart used by the Helm client to deploy the app to K8s.

inventory-
backend

Harbor

commit &
push

Figure 6.12: K8s CICD workflow with Helm Charts

6.4 Deploying The Applications to Virtual Machines

This section is dedicated to the template creation, provisioning, and configuration of virtual
machines. The whole deployment process, from the creation of the VM template, provisioning
of the VMs, to the configuration of the VMs is automated.
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The pipeline steps are shown in Figure 6.13. In a few words, a virtual machine template
to run our applications is firstly created with Packer. Then, the virtual machines are provi-
sioned in vSphere using Terraform. Lastly, Ansible instructs each VM to run a containerized
application.

microservices-
on-VMS

commit &
push

VMs

Figure 6.13: From Kubernetes to VMs pipeline

For illustration purposes, the structure of the repository is shown in Figure 6.14. The
next subsections describe these steps in more details.

microservices-on-VMs:master
    L
      terraform
          L
            module-calls.tf
            variables.tf
            terraform.auto.tfvars
    L  
      packer
          L
            microservice.json
            ansible-key.pub
            docker.sh
            preseed.cfg
    L
      ansible
          L
            playbook.yml
            inventory.yml
            reach_test.py

 

vSphere-modules:prod
    L
      vm
          L
            resources.tf
            variables.tf

Figure 6.14: microservices-on-Vms Repository

Because more steps and tools are involved, Figure 6.15 gives more insights on the workflow,
and will be used as a basis to describe the deployment process.
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preseed.cfg

ansible-key.pub,
docker.sh

(1)

(2)

(3)

(4)

(5)

Packer VM VM template

(6)

microservice
VMs

(7)

(8) (9)

Figure 6.15: Automating The Provisioning and Configuration of Virtual Machines

6.4.1 Virtual Machine Templates Creation with Packer

Our goal is to create a master template to run our applications in the vSphere environment,
the vSphere builder was employed, which allows to create a VM template from a source ISO
file.

The Packer workflow has a validate phase, which lints makes sure that the configuration
is valid, and a building phase depicted in Figure 6.15.

It starts by instructing vCenter (1) to provision a virtual machine with the specified ISO
file used to install the operating system (2). Quite a lot of information needs to be provided
in the building section of the configuration file, such as where the virtual machine is to be
run, compute resources needed, the network.

A configuration file (preseed.cgf) is also provided to vCenter to install the guest OS
without any manual intervention. Information includes the IP address of the virtual machine,
layout keyboard, software packages needed, and so on.

Once the OS is installed, the guest VM is restarted and ready to be edited over SSH (3).
The File Provisioner was used to upload a public key to the VM and the shell Provisioner
to run a script on the virtual machine, which configures SSH for the configuration step done
later with Ansible, and installs Docker (docker.sh) (4).

When the configuration of the guest OS is performed, the VM is shut down, converted to
a template and, then deleted (5).

6.4.2 Provisioning

Once the golden image is created, Terraform applies the changes to the vSphere environ-
ment (6), resulting in a deployment of a dozen of VMs from the template created by Packer
(7) (see Figure 6.15).
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It is in this step that guest OS customization occurs, in particular, each virtual machine is
placed in the corresponding network (distributed port-group) pushed by ACI when an EPG
is created, and the network interfaces are configured accordingly. Other parameters can also
be set in this step, such as the disk or RAM size.

6.4.3 Configuration Management with Ansible

The final step in this migration process is to run a container in each virtual machine. As
the simultaneous configuration of multiple devices is a relevant use case for Ansible, this tool
was used for this task. This subsection starts with a short explanation of how Ansible works,
and is followed on how the task is performed.

Ansible setup and Configuration Deployment

To configure our Ubuntu servers, Ansible needs to be able to connect to them via SSH.
Therefore, it is better to check that the VMs are reachable beforehand. To this end, the
script reach test.py pings all the hosts defined in the inventory file, and the job is successful
when all the machines are reachable (8). This preliminary step also holds another purpose, it
makes sure that ACI knows how to reach these devices prior to attempting SSH connections
to them. Indeed, ARP gleaning has to be performed since those machines are silent hosts
and are thus unknown to the ACI fabric after the provisioning process, thus it takes a few
packets before ACI knows the exact location of these endpoints. Not performing this lookup
step can result in some failed SSH connection attempt to the hosts the first time.

SSH clients can either authenticate to servers using a password or SSH keys. The second
option was preferred because Ansible must be able to seamlessly connect to the virtual
machines and for security reasons. So, a pair of keys consisting of a private and a public
key was generated with Ed25519, an elliptic curve signature scheme[37]. The public key was
uploaded to the VM run by Packer, which was then converted into a template, therefore, each
virtual machine provisioned by Terraform possesses the public key. While the private key is
baked into the container on which Ansible runs. This is relatively safe as long as the Docker
image of the container is not shared. While putting the private key into the Docker image
is the most convenient option, it is not the only one. I could have for instance written some
instructions in the pipeline file to copy the private key to the container every time Ansible is
to be run.

Finally, Ansible running in the IaC container starts the playbook, which configures Docker
to use the Harbor registry, and then runs the corresponding container and also creates a
Docker volume for each database container (9). Ansible can be instructed to run a different
container in each VM thanks to variables defined in the inventory file.

There are probably existing Ansible modules to manage containers on hosts, but I decided
to keep things simple and just write shell commands in the Ansible playbook.

6.5 Integration With Webex Teams

The Cisco’s Beer Factory has two teams, a network team and a development team, and
each team has its Webex Teams room. When developers need some network resources to run
their applications, they open an issue on the ACI-live git repository. Then, the network team
can comment on the ticket, make changes to the network if the request is reasonable, and
then close it. All of these actions send notifications to the corresponding Webex rooms.
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First, rooms are needed. Fortunately, Webex provides an API that can be used to create
rooms, provided the developer has a token that can be retrieved from the Webex developers’
website. Notification messages are sent by a bot that can be registered and added to rooms.
Thus, the rooms were created and setup using a script in Python.

The next necessary component is Gitlab webhooks, which are API calls that are automat-
ically triggered and sent to a server of our choice when a specific event occurs. On Gitlab,
events are classified into different categories, pipeline and issue events, among others. Using
webhooks is quite simple as all the developer needs to do is select the type of event they want
to monitor and provide the destination of the API calls triggered by the events.

The final components are web servers that listen for API calls sent by Gitlab webhooks,
and will post messages to the rooms using the Webex bot. All it needs are the room IDs and
the bot token.

In our case, there are two web servers written in Python using the Flask framework, the
first is in charge of ticket notifications, and the second posts messages related to pipeline
events. Both web servers are deployed in Kubernetes with Helm charts.

ACI-live

Hi network
team, I need,

...

Ticket opened web server

Cisco's Beer Factory -
Network room

(1)

(2)

(3)

(4)

Jan the network
engineer

Mike the
developer

Figure 6.16: Gitlab Webhooks and Notifications to Webex Teams Rooms

The workflow is shown in Figure 6.16. First, Mike the developer opens a ticket on the
ACI-live repository (1), it triggers a webhook to the web server running in Kubernetes, which
instructs the bot to post a message on the room of the network engineers (3), and finally,
Jan the network engineer receives and reads the notification in the room (4). Similarly, if
Jan comments on the tickets, a notifications is sent to the developer rooms.

Sending pipeline notifications is based on the same principles. An example of pipeline
notifications is shown below in Figure 6.17 for illustration purposes.
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Figure 6.17: Pipeline Notifications
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Chapter 7

Software-Defined Access

This chapter starts by introducing Cisco Software-Defined Access (SDA), describes its main
components, explains how packets are routed and forwarded within SDA, and finally shows
how users are authenticated and authorized in the network.

7.1 Software-Defined Access Overview

Figure 7.1: Cisco SDA overview, by Shawn Wargo in Cisco SD-Access - Solution Fundamen-
tals - DGTL-BRKCRS-2810, p. 19, 2019[70]

Software-Defined Access is the solution to build campus networks using an SDN approach,
where access refers to the endpoints (users, printers, cameras, etc.) connecting to the network
through wired or wireless connections. In a few words, SDA automates the configuration and
deployment of the enterprise network using policies, enables dynamic host mobility for wired
and wireless endpoints, and performs identity-based network segmentation.

This solution uses a centralized controller named DNA center and includes a network
fabric composed of an overlay and an underlay network leveraging the Locator/ID Separation
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Protocol (LISP)[35] for the control plane, and VXLAN[73] for the data plane.
As we will see in further sections, using LISP in the corporate network has many perks

such as improving the mobility of users within the network.

SDA also goes hand in hand with Cisco Identification Service Engine (ISE)[56], a security
policy management platform providing network access control (NAC), dealing with AAA,
which refers to the authentication, authorization, and accounting of users (i.e. who you
are, what you can do and what you have done) using, for instance, 802.1X[50] and Cisco
TrustSec[59]. ISE is not a new product, it already existed when SDA came out.

A high-level diagram of SD-Access is presented in Figure 7.1. The next sections explain in
more detail the components and concepts of SDA.

7.2 SDA Main Components

7.2.1 DNA Center

The DNA Center controller provides lots of mechanisms to manage the enterprise network.
It provides a single-pane-of-glass GUI that allows the administrators to configure the network
using policies and have full visibility of the network by providing site layouts, topology maps
(see Figure 7.2), or a device inventory.

Figure 7.2: DNA Center Topology

DNA Center also speeds up the onboarding of new devices, and the deployment of config-
uration through templates called network profiles leveraging network policies.

As most of the controllers nowadays, it features a northbound REST API that engineers
can use to deploy configurations on SDA. Just like ACI, SDA does not completely separate
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the control plane from the data plane of the devices it manages, however, it is not using
Opflex. Instead, DNA Center supports several southbound APIs to directly communicate
with the devices it manages, it includes NETCONF[4] and RESTCONF[71]. The controller
also allows you to connect via SSH or telnet into older network devices directly from its
graphical user interface.

On top of that, it offers assurance mechanisms, and metrics to analyze the health of the
network, which aims at automating the process of identifying and resolving network issues.

7.2.2 Identification Service Engine

ISE is the platform provisioning user access policies to the network devices and provides
information over the endpoints connected to the network. For instance, it can be used to
check whether endpoints connected to the network are compliant with the security policies
of the company (e.g. devices without a given antivirus installed are not granted access to
the network). ISE provides multiple ways for the users to connect to the campus; web-based
authentication, 802.1X, or even MAC address bypass for IOT devices. In the case of 802.1X,
ISE acts as a RADIUS server.

ISE is quite a large platform, we will mainly focus on a component of ISE named Cisco
TrustSec (CTS) allowing network administrators to perform network segmentation using tags.

Note that some access policies can also be created directly on DNA Center. In that case,
DNA Center will pushes those policies to ISE, so DNA Center just acts as a second ”GUI
over ISE”.

Cisco TrustSec

TrustSec makes network segmentation easier by assigning tags to traffic, and allows the
network devices to treat that traffic based on source and destination tags, as opposed to source
and destination IP addresses. In the case of Trustsec, the tags are called Security/Scalable
Group Tags (SGT).

In TrustSec, once endpoints are authenticated, they are classified into a group using an
SGT, which is a 16-bit value assigned to the user or endpoint’s session upon login. Assuming
that we are managing the network of a company, we can imagine an SGT for the human
resources employees, another one for the engineering team, etc. Then, group-based access
control (GBAC) can be performed based on these SGTs using Secure Group ACLs (SGACLs),
which are similar to ACI contracts. In fact, the SGTs can be thought as the EPGs of ACI.
The different SGTs are defined within a given Virtual Network (VN).

In addition, different VRFs named Virtual Networks can also be provisioned in SDA,
hence adding another layer of segmentation. It provides complete isolation between traffic
and devices in one VN from that of other VNs. For instance, it can be useful to create a VN
dedicated to the employees, and another one for the IOT devices (cameras, etc.).

In SDA, segmenting the network based on Virtual Networks (resp. SGTs) is called macro-
segmentation (resp. micro-segmentation). This is illustrated in Figure 7.3
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Figure 7.3: Contracts and Virtual Networks in TrustSec, Cisco Software-Defined Access
Enabling intent-based networking 2nd edition, p. 121[58]

7.3 Routing and Forwarding in SDA

This section describes how routing and forwarding is performed in SDA. It starts by ex-
plaining how SDA is leveraging the LISP protocol for the control plane. After that, it explains
how packets are forwarded and why it improves the mobility of the users.

7.3.1 LISP Control plane in SDA

SDA has a routed access layer and uses a combination of VXLAN and LISP (Locator/ID
Separation Protocol). In traditional IP routing, an IP address has two functions: identifying
the endpoint, and locate the endpoint in the network. LISP is a map and encapsulation
protocol that aims to decouple the identity of an endpoint from its location. Its major
role SDA is to provide a routing architecture that allows the network to track the point of
attachment of every endpoint in the network.

10.10.10.1 10.10.11.1

identity &
location

10.10.10.1 10.10.11.1/24

identity

location

Traditional routing
architecture LISP architecture

Figure 7.4: Separating the Identity from the Location

In LISP, the location is known as a Routing Locator (RLOC), and the identity refers to
as an endpoint identity (EID). To track users, LISP uses a mapping database (LISP map
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server) implemented by the control plane node that can be queried by other nodes. As shown
in Figure 7.5 An entry in this database maps the identity of an endpoint to its location.

Figure 7.4 presents the different types of nodes in SDA. The LISP map server is imple-
mented in the control plane node and is queried by either the fabric border nodes connecting
the SDA fabric to the outside or the fabric edge nodes (FE) connecting the endpoints to the
enterprise network.

In SDA, an RLOC is an advertised loopback IP address that is assigned to each fabric
edge, and fabric border nodes. And, the EID consists of the IP address of the endpoint. This
implies that there needs to be a registration mechanism. Indeed, upon discovering a new
endpoint, the FE will register it (Map-Register message) to the control plane node, and will
also cache this information.

10.10.10.1 10.10.11.1

FE2

1.1.1.1

Control Plane
node

10.10.10.1 1.1.1.1

10.10.10.2 2.2.2.2

2.2.2.2

EID RLOC

FE1

Figure 7.5: Control Plane Node Entries

Forwarding the packets within the SDA fabric is performed through a VXLAN overlay
network built between the RLOCs. In fact, a FE is a VTEP and called ITR (resp. ETR) in
the LISP terminology, which stands for Ingress Tunnel Router (resp. Egress Tunnel Router).

When an endpoint sends traffic to another endpoint not connected to the same FE in the
SDA fabric, the packet is encapsulated in a VXLAN frame at the ingress FE (ITR). The
source IP address of the VXLAN packet is the ingress RLOC, and the destination IP address
is the destination RLOC. The ITR learns and caches the destination RLOC by querying
(Map-Request message) the LISP map server, which either directly replies to the query to
the ITR, or forwards the request to the ETR that will answer to the ITR; An ETR may also
request during the registration of an EID, that a map server directly answers Map-Requests
instead of forwarding them to the ETR by setting the ”proxy Map-Reply” flag[13]. Both cases
are illustrated in Figure 7.6. As we can see, the LISP mapping system is a bit analogous to
a DNS lookup.
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Figure 7.6: Map-Request messages in LISP

Once the VXLAN packet arrives at the destination RLOC, it is decapsulated, and the
original frame is forwarded to the endpoint. The forwarding of a packet via the VXLAN
overlay is shown in Figure 7.7.
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Figure 7.7: VXLAN Encapsulation and Decapsulation in the Fabric Edge Nodes in SDA

As we have seen, SDA allows the nodes of the fabric to only learn the topology information
that is relevant to them by providing a LISP map server that is used by the FEs to query
the location of the endpoints, whereas nodes in a traditional IP routing infrastructure have
to learn and store the entire topology of the fabric at all times, and thus improve the scaling
of the network.

Routing in the underlay network is, however, performed with IS-IS.
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7.3.2 User Mobility

One of the major advantage of using a LISP control plane is that it improves the mobility
of the endpoints within the network.
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Figure 7.8: User Mobility in SDA

As we can see in Figure 7.8, if an endpoint moves to a new location (1), the fabric edge it
is connected to, registers it with the map server (2). If the entry already exists, it is updated
with the new RLOC (3). Then, the map server notifies the FE, to which, the endpoint was
previously connected (4). Finally, the FE updates its cache with the new location (2.2.2.2)
to reach the endpoint (5).

This mobility process raises an interesting question. How are the default gateways of the
FEs configured? Indeed, if an endpoint changes location, he shouldn’t have to reconfigure its
default gateway. In SDA, all the FEs share the same virtual switch interface (SVI), which
has the same IP and MAC addresses. An SVI represents a logical L3 interface on a switch
and was introduced for inter-vlan routing. This shared SVI is used as a default gateway for
the endpoints and is called an L3 anycast gateway in SDA.

7.4 Authentication and Authorization of Users

This section briefly explains the authentication and authorization of users in the enterprise
network using 802.1X and ISE.

In a lot of companies, an external identity store is also employed to manage the credentials,
user accounts, and so on, of the employees, Active Directory (AD) from Microsoft is one of
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them and can be integrated with ISE. In particular, AD allows the administrators to also
define groups for the different employees, and, ISE can map the groups defined in AD to
SGTs.

Figure 7.9 gives the big picture of how a finance employee is authenticated and authorized
in the network using 802.1X, ISE and AD.

supplicant FE
(authenticator) ISE Identity store

EAPoL RADIUS LDAP

credentialsEAP

802.1X

credentials

credentials

credentials Finance Group

LDAP

If AD group EQUALS Finance -> SGT =
Finance

5

42

1

6

credentialsEAP

RADIUS

3

SGT of
supplicant =

Finance

7

Figure 7.9: DNA Center Topology

First, the user named the supplicant in 802.1X logs in to his computer by entering his
credentials (1). Then, the credentials are transported using the EAP protocol[33] over 802.1X
to the access switch (2), this is also called EAP over LAN (EAPoL). In SDA, access switches
are referred to as fabric edge nodes (see Figure 7.4). After that, the authenticator proxies
the EAP data to ISE, which acts as a RADIUS server (3). Next, ISE extracts the credentials
and performs an LDAP[41] query to the AD server to retrieve the group the user belongs to
(4). Finally, the identity of the user is verified by AD (5). The group the user belongs to
is returned to ISE. ISE contains authorization policies, which states that users belonging to
the AD group Finance must be placed into the Finance SGT (6). Finally, ISE notifies the
FE that the endpoint belongs to the Finance SGT (7).

7.4.1 Policy Enforcement

In SDA, policy enforcement is performed with the SGTs and the Secure Group ACLs
defined in TrustSec.
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Figure 7.10: SDA Ingress Tagging and Egress Filtering

TrustSec uses ingress tagging and egress filtering to enforce the access policies[60]; the
SGACLs are always applied at the egress node. Such a technique improves the scalability of
SDA because the FEs do not need to know the SGTs of all endpoints, and download all the
SGACLs in the system. Ingress tagging is performed at the ITR, which tags the source SGT
in the VXLAN header of the packet. When the packet arrives at the ETR, the source SGT
is retrieved and the filtering is performed using the SGACLs. This is illustrated in Figure
7.10.
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Chapter 8

ACI-SDA Integration

This last chapter is about the integration of Software-Defined Access and Application-Centric
Infrastructure, which are part of the Multidomain strategy pushed by Cisco these last few
years[57]. As we will see, one of the assets of this multidomain integration is the ability
to defined cross-domain policies to simplify the management of network policies, which can
span across multiple domains.[62]. In particular, this integration gives the ability to filter
the traffic between the two domains using group information exchanged by the controllers,
Scalable-Group Tags in SDA, and Endpoint Groups in ACI.

It begins by presenting the integration of ACI and SDA in a theoretical way and then
explains how the integration was achieved for the use case.

8.1 Theory

8.1.1 Phase 1 of the ACI-SDA integration

As of May 2021, there are two phases of the ACI-SDA integration. Due to hardware
constraints in the lab, we had to limit ourselves to use the phase 1 of this integration, which
bears some limitations as it only works between one VRF of an ACI tenant and one VN
of SDA. Plain ethernet and regular IP routing are used for the communication between the
domains.

8.1.2 Exchange of Identity/Group Information

The Integration of ACI and SDA enables the exchange of identity information between
the two domains. As we have seen, ACI has some similarities with SDA when it comes to
performing segmentation within the network: both use contracts and groups (EPGs in ACI,
and SGTs in SDA). The integration allows administrators to apply policies within the ACI
domain leveraging group information learned from SDA, and vice versa, enabling end-to-end
segmentation from user to application to be performed seamlessly. For instance, they can
define policies allowing a group of users in the campus network to access a particular set of
applications running in the data center.

In the first phase of the integration, group information of only one ACI tenant (single
VRF) can be sent to SDA, in particular, the APIC sends the EPGs and their IP mappings
to ISE, And in reverse, ISE sends the SGTs and their IP mappings to the APIC. The ISE
administrator can choose which SGTs to propagate to ACI. Communication between ISE
and the APIC is handled by REST APIs, and the exchange is illustrated in Figure 8.1
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Figure 8.1: APIC and ISE exchange Group Information and IP Mappings

In ACI, the SGTs propagated are translated into external EPGs, and the EPGs are
translated into SGTs in ISE. It is shown on Figure 8.2. In this example, an SGT named
FINANCE is propagated to ACI, along with the IP information regarding the endpoints
(10.10.100.102) belonging to this group. Note that on ISE, an IP to an SGT mapping is
called an SXP mapping because SXP (Scalable-Group Tag eXchange Protocol)[31] is the
protocol used by ISE to push the mappings to the network devices such as the fabric edge
nodes.

Figure 8.2: Finance SGT Translated Into an External EPG in ACI

Since normal IP routing and forwarding between the domains, ACI has to classify the
traffic from SDA into the correct external EPG, this explains why IP addresses have to be
sent along with the group information. The same process also applies to SDA.

8.1.3 Policy Enforcement

Given that the two domains can communicate with each other and that the SGTs (resp.
EPGs) are propagated to ACI (resp. SDA), the administrators can use them to enforce
policies with contracts. Contracts have to be created in both domains. To illustrate, imagine
that a finance employee of the FINANCE SGT needs to access a web server running in ACI
belonging to the APP EPG. To allow the communication between these two endpoints the
administrator has to create two contracts. A contract in SDA allowing the FINANCE SGT
to talk to the imported APP SGT, and a contract in ACI enabling the imported FINANCE
External EPG to communicate with the APP EPG. This is shown below on Figure 8.3
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Figure 8.3: Multidomain Policy Enforcement

The main advantage of this integration is that it removes the need of maintaining large
and hard-to-maintain access lists using IP addresses to filter the traffic between the two
domains.

8.2 Use-Case Implementation

This section explains how the integration was carried out for the Cisco’s Beer Factory use-
case.

8.2.1 The ACI side

Once the integration is set up, what is left to do on the ACI side is to connect each applica-
tion (inventory, finance, and webshop) to its corresponding external EPG via a contract. In
that case, we have two external EPGs propagated by SDA (Finance and Retail) consuming
an HTTP contract provided by the finance-frontend and inventory-frontend EPGs. Note that
access policies are already enforced in the SDA domain, so there was no point in setting up
two separate contracts. Customers are accessing the webshop application from the outside,
so a default external EPG named RoW (Rest of the World) was created for this purpose. It
consumes the contract http-lb-external, to which the service graph for the load balancing is
attached (see Section 6.1.3). The contract relationships are shown on Figure 8.4
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Figure 8.4: Contract Relationships for the Multidomain Integration

8.2.2 The SDA side

On the SDA side, there are two virtual machines, one for the finance employee, and the
other one for the retail employee. Both of them authenticate to the network using 802.1X
with an account managed in Active Directory as explained in Section 7.4. When logged in,
they either belong to the Finance SGT or the Retail SGT. Then, just like in ACI, there is a
contract allowing the Finance (resp. Retail) SGT to connect to the imported finance-frontend
(resp. inventory-frontend) EPG over HTTP.

What was Already Setup

In the SDA lab, most of the setup was already configured as many demonstrations are
given to customers with ISE and DNA Center. In particular, the virtual machines and the
authentication of the users using 802.1X were already configured before the start of the
internship. Consequently, the only lacking piece was to propagate the SGT of interest to ACI
and setting up the contracts on DNA Center. In addition, the underlay for the connectivity
between the ACI and SDA domains was also already set up.

75



Chapter 9

Conclusion

Software-Defined Networking has been a hot topic in the industry for years. Cisco has
developed multiple SDN solutions, each of them targeting a particular domain of the IT
infrastructure. Consequently, there is one solution for campus and enterprise networks named
Software-Defined Access, and another one for the data center environment called Application-
Centric Infrastructure. Those solutions are part of their Multidomain strategy aiming to
integrate networking domains (the campus, data center, and WAN) with each other. As of
now, ACI and SDA are quite complete products that are already running in the production
environment of many customers, and the ability to create cross-domain policies between ACI
and SDA is interesting as customers using Cisco technology on several domains can simplify
their network management.

The objective pursued was to build a use case for this integration so that it can easily
be explained and shown to Cisco customers. The use case takes part in the beer business
and simulates the infrastructure of a small company named Cisco’s Beer Factory running
ACI and SDA. Two types of employees are sitting in the campus network, the finance and
retail employees, and each of them has access to an application running in the data center,
either a finance application or an inventory application. The company also runs a webshop
application that can be accessed from the outside world by customers.

The DevOps and Infrastructure-as-Code movement is a second area of the IT industry
that is gaining more and more ground. A second objective was to build an IaC demonstration
for ACI to show its programmability features. This idea has been extended in the sense that
all IT operations are performed using IaC.

So far, the point of the ACI-SDA integration is the ability to filter the traffic between the
two domains using group information exchanged by the controllers, Scalable-Group Tags in
SDA, and Endpoint Groups in ACI. This removes the need to maintain large access lists
using IP addresses to filter the traffic. This feature, also called end-to-end segmentation was
demonstrated in the use case by authorizing the finance (resp. retail) employees to only have
access to the finance (resp. inventory) application.

There are multiple ways to pilot ACI. One can for instance deploy all the configurations
using the graphical user interface of the controller, which seems to be a popular option as
network engineers are not initially trained to write software. The other option is to rely on
automation tools such as Terraform or Ansible, or by directly scripting API calls. Terraform
was selected for this task. As a result, using Terraform and a GitOps approach to automate
ACI was also achieved. The difficult part was to build a flexible code that remains manageable
when the infrastructure grows.

In addition, the integration of other systems were also shown throughout this project.
From the integration of ACI and, VMware Vsphere and Kubernetes, to the integration be-
tween Gitlab and Webex Teams. Then, performing all IT operations with IaC for these
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systems was quite challenging as it involves learning a large number of tools (e.g. Terraform,
Packer, Ansible, Docker, etc.), concepts, and the systems themselves.

The first phase of the integration between ACI and SDA is quite limited at the moment,
however, it is a first step in this journey of integrating networking domains and will keep
developing in the next years.

Regarding Infrastructure-as-Code, it makes no doubt that this practice of developing
the infrastructure will keep evolving as it enables companies to bring their products to the
market faster by making the infrastructure less of a bottleneck, and the majority of tech
vendors are developing controllers or management platforms with open interfaces alongside
the products that they are selling. Although IaC was heavily used during this internship, the
task was greatly eased by having a greenfield environment. For large enterprises, adopting
IaC and DevOps practices for managing the infrastructure is a journey whose destination is
not reached overnight, as it is a complete culture change, involves training, and starting with
a manually configured infrastructure already in place makes the task harder.
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[46] Jérôme Petazzoni. Using Docker-in-Docker for your CI or testing environment? Think
twice. 2015. url: https://jpetazzo.github.io/2015/09/03/do-not-use-docker-
in-docker-for-ci/.

[47] Adam Raffe. Learning ACI - Part 1: Overview. 2014. url: https://adamraffe.com/
aci/nexus%5C%209000/2014/12/03/learning-aci-part-1-overview/.

[48] Inc. Red Hat. Understanding DevOps. url: https://www.redhat.com/en/topics/
devops.

[49] Inc. Red Hat. What is Infrastructure as Code (IaC)? url: https://www.redhat.com/
en/topics/automation/what-is-infrastructure-as-code-iac.

[50] P. Congdon; B. Aboba; A. Smith; G. Zorn; J. Roese. IEEE 802.1X Remote Authen-
tication Dial In User Service (RADIUS) Usage Guidelines. 2003. url: https : / /

datatracker.ietf.org/doc/html/rfc3580.

[51] Amazon Web Services. What is DevOps? url: https://aws.amazon.com/devops/
what-is-devops/.

[52] Cisco Systems. ACI Fabric Endpoint Learning White Paper. 2020. url: https://

www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/

application-centric-infrastructure/white-paper-c11-739989.html.

[53] Cisco Systems. ACI Plugin for Red Hat OpenShift Container Architecture and Design
Guide. 2019, p. 9.

[54] Cisco Systems. Application Centric Infrastructure Overview: Implement a Robust Trans-
port Network for Dynamic Workloads. 2013. url: https://www.leadkeeper.net/
files/downloads/ImplementARobustTransportNetworkForDynamicWorkloads.pdf.

[55] Cisco Systems. Cisco Global Cloud Index 2015-2020. 2015. url: https://www.cisco.
com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_

15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf.

[56] Cisco Systems. Cisco Identity Services Engine. url: https://www.cisco.com/c/en_
be/products/security/identity-services-engine/index.html.

[57] Cisco Systems. Cisco Multidomain Integrations for Intent-Based Networking At-a-Glance.
2019. url: https://www.cisco.com/c/en/us/solutions/collateral/data-

center-virtualization/application-centric-infrastructure/at-a-glance-

c45-741877.html.

[58] Cisco Systems. Cisco Software-Defined Access Enabling intent-based networking 2nd
edition, p. 111.

[59] Cisco Systems. Cisco TrustSec. url: https://www.cisco.com/c/en/us/solutions/
enterprise-networks/trustsec/index.html.

[60] Cisco Systems. Cisco TrustSec Switch Configuration Guide. 2015. url: https://www.
cisco.com/c/en/us/td/docs/switches/lan/trustsec/configuration/guide/

trustsec/arch_over.html.

80

https://www.trendmicro.com/en_us/research/19/l/why-running-a-privileged-container-in-docker-is-a-bad-idea.html
https://www.trendmicro.com/en_us/research/19/l/why-running-a-privileged-container-in-docker-is-a-bad-idea.html
https://oswalt.dev/2014/09/sdn-protocols-part-4-opflex-and-declarative-networking/
https://oswalt.dev/2014/09/sdn-protocols-part-4-opflex-and-declarative-networking/
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://jpetazzo.github.io/2015/09/03/do-not-use-docker-in-docker-for-ci/
https://adamraffe.com/aci/nexus%5C%209000/2014/12/03/learning-aci-part-1-overview/
https://adamraffe.com/aci/nexus%5C%209000/2014/12/03/learning-aci-part-1-overview/
https://www.redhat.com/en/topics/devops
https://www.redhat.com/en/topics/devops
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://datatracker.ietf.org/doc/html/rfc3580
https://datatracker.ietf.org/doc/html/rfc3580
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/what-is-devops/
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739989.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739989.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-739989.html
https://www.leadkeeper.net/files/downloads/ImplementARobustTransportNetworkForDynamicWorkloads.pdf
https://www.leadkeeper.net/files/downloads/ImplementARobustTransportNetworkForDynamicWorkloads.pdf
https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf
https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf
https://www.cisco.com/c/dam/m/en_us/service-provider/ciscoknowledgenetwork/files/622_11_15-16-Cisco_GCI_CKN_2015-2020_AMER_EMEAR_NOV2016.pdf
https://www.cisco.com/c/en_be/products/security/identity-services-engine/index.html
https://www.cisco.com/c/en_be/products/security/identity-services-engine/index.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/at-a-glance-c45-741877.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/at-a-glance-c45-741877.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/at-a-glance-c45-741877.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/trustsec/index.html
https://www.cisco.com/c/en/us/solutions/enterprise-networks/trustsec/index.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/trustsec/configuration/guide/trustsec/arch_over.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/trustsec/configuration/guide/trustsec/arch_over.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/trustsec/configuration/guide/trustsec/arch_over.html


[61] Cisco Systems. Deploy a VXLAN Network with an MP-BGP EVPN Control Plane
White Paper. 2015. url: https://www.cisco.com/c/en/us/products/collateral/
switches/nexus-7000-series-switches/white-paper-c11-735015.html.

[62] Cisco Systems. Intent-Based Networking’s Next Evolution: Policy Integrations Between
Multiple Domains. 2019. url: https : / / www . cisco . com / c / en / us / solutions /

collateral/enterprise-networks/nb-06-multidomain-wp-cte-en.html.

[63] Cisco Systems. OpFlex: An Open Policy Protocol White Paper. 2014. url: https://
www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/

application-centric-infrastructure/white-paper-c11-731302.html.

[64] Samar Raza Talpu. “Network Traffic Observations in Data Centers andForecasting
Techniques for Resource Utilization”. In: Future Technologies Conference (FTC) 2017
(2017), p. 990. doi: https://saiconference.com/Downloads/FTC2017/Proceedings/
137_Paper_21-Network_Traffic_Observations_in_Data_Centers.pdf.

[65] Gideon Tam. Happy Birthday, Cisco Application Centric Infrastructure. 2014. url:
https://blogs.cisco.com/perspectives/happy-birthday-cisco-application-

centric-infrastructure.

[66] Cyxtera Technologies. Why Slow Provisioning IT Infrastructure Derails Digital Trans-
formation. 2018. url: https://www.cyxtera.com/blog/data-centers/why-slow-
provisioning-it-infrastructure-derails-digital-transformation.

[67] Huawei Technologies. Huawei DCN Design Guide. 2018. url: https : / / support .

huawei.com/enterprise/en/doc/EDOC1100023542?section=j00z&topicName=

spine-leaf-network-architecture.

[68] VMware. VLAN configuration on virtual switches, physical switches, and virtual ma-
chines. 2020. url: https://kb.vmware.com/s/article/1003806.

[69] VMware. vSphere Distributed Switch. url: https://www.vmware.com/be/products/
vsphere/distributed-switch.html.

[70] Shawn Wargo. Cisco SD-Access - Solution Fundamentals - DGTL-BRKCRS-2810. 2019.
url: https://www.ciscolive.com/global/on-demand-library.html?search=sda%
5C%20fundamentals#/session/1573153543008001J8XI.

[71] M. Bjorklund; A. Bierman; K. Watsen. RESTCONF Protocol. 2017. url: https://
datatracker.ietf.org/doc/html/rfc8040.

[72] M. Smith; R. Adams; M. Divorkin; Y. Laribi; V. Pandey; P. Garg; N. Weidenbacher.
OpFlex Control Protocol draft-smith-opflex-03. 2016. url: https://tools.ietf.org/
html/draft-smith-opflex-03.

[73] M. Mahalingam; D. Dutt; K. Duda; P. Agarwal; L. Kreeger; T. Sridhar; M. Bursell; C.
Wright. Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying
Virtualized Layer 2 Networks over Layer 3 Networks. 2014. url: https://tools.ietf.
org/html/rfc7348.

[74] Takuya Yishida. Mastering ACI forwarding. 2020. url: https://www.ciscolive.com/
c/dam/r/ciscolive/emea/docs/2020/pdf/BRKACI-3545.pdf.

81

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white-paper-c11-735015.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white-paper-c11-735015.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/nb-06-multidomain-wp-cte-en.html
https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/nb-06-multidomain-wp-cte-en.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
https://www.cisco.com/c/en/us/solutions/collateral/data-center-virtualization/application-centric-infrastructure/white-paper-c11-731302.html
https://doi.org/https://saiconference.com/Downloads/FTC2017/Proceedings/137_Paper_21-Network_Traffic_Observations_in_Data_Centers.pdf
https://doi.org/https://saiconference.com/Downloads/FTC2017/Proceedings/137_Paper_21-Network_Traffic_Observations_in_Data_Centers.pdf
https://blogs.cisco.com/perspectives/happy-birthday-cisco-application-centric-infrastructure
https://blogs.cisco.com/perspectives/happy-birthday-cisco-application-centric-infrastructure
https://www.cyxtera.com/blog/data-centers/why-slow-provisioning-it-infrastructure-derails-digital-transformation
https://www.cyxtera.com/blog/data-centers/why-slow-provisioning-it-infrastructure-derails-digital-transformation
https://support.huawei.com/enterprise/en/doc/EDOC1100023542?section=j00z&topicName=spine-leaf-network-architecture
https://support.huawei.com/enterprise/en/doc/EDOC1100023542?section=j00z&topicName=spine-leaf-network-architecture
https://support.huawei.com/enterprise/en/doc/EDOC1100023542?section=j00z&topicName=spine-leaf-network-architecture
https://kb.vmware.com/s/article/1003806
https://www.vmware.com/be/products/vsphere/distributed-switch.html
https://www.vmware.com/be/products/vsphere/distributed-switch.html
https://www.ciscolive.com/global/on-demand-library.html?search=sda%5C%20fundamentals#/session/1573153543008001J8XI
https://www.ciscolive.com/global/on-demand-library.html?search=sda%5C%20fundamentals#/session/1573153543008001J8XI
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc8040
https://tools.ietf.org/html/draft-smith-opflex-03
https://tools.ietf.org/html/draft-smith-opflex-03
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKACI-3545.pdf
https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKACI-3545.pdf


Chapter 10

Appendix

10.1 Code Deposited

An invite to the group ’wcollin-TFE’ has been sent on the Gitlab of Montefiore to the members
of the jury. It contains three subgroups:

• microservices. It contains the code of the applications (inventory-frontend, inventory-
backend, finance-frontend, etc.). Each repository has three branches of interest: ’mas-
ter’ for the deployment on K8s using Terraform, ’helm’ for the deployment on k8s using
Helm charts, and ’vm’ for version of the code deployed on virtual machines.

• IaC. Contains the code related to the automation of ACI (ACI-live & ACI-modules)
using Terraform, the deployment of the applications to K8s with Terraform (K8s-live
& K8s-modules), the code for the migration of the applications to virtual machines
(microservices-on-vms & vSphere-modules), the load-balancer config (HAproxy), and a
swiss knife IaC docker image.

• webex. Related to the creation of Webex Rooms (webex-rooms), the tickets and
pipeline notifications system deployed on K8s with Helm charts (webex-tickets & webex-
pipelines)
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