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Abstract
In many areas of science, computer simulators are used to describe complex real-world
phenomena. These simulators are stochastic forward models, meaning that they ran-
domly generate synthetic realizations according to input parameters. A common task for
scientists is to use such models to infer the parameters given observations. Due to their
complexity, the likelihoods – essential for inference – implicitly defined by these simulators
are typically not tractable. Consequently, scientists have relied on “likelihood-free” meth-
ods to perform parameter inference. In this thesis, we build upon one of these methods,
the neural ratio estimation (NRE) of the likelihood-to-evidence (LTE) ratio, to enable
inference over arbitrary subsets of the parameters. Called arbitrary marginal neural ratio
estimation (AMNRE), this novel method is easy to use, efficient and can be implemented
with basic neural network architectures. Trough a series of experiments, we demonstrate
the applicability of AMNRE and find it to be competitive with baseline methods, despite
using a fraction of the computing resources. We also apply AMNRE to the challenging
problem of parameter inference of binary black hole systems from gravitational waves ob-
servation and obtain promising results. As a complement to this contribution, we discuss
the problem of overconfidence in predictive models and propose regularization methods
to induce uncertainty in neural predictions.
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Chapter 1

Introduction
In many areas of science, computer simulators are used to describe complex phenomena
like high energy particle interactions [1], compact binary coalescence events [2] or neuronal
ion-channel dynamics [3, 4]. These simulators are stochastic forward models or probabilis-
tic programs, meaning that they randomly generate synthetic realizations according to
input parameters. A common task for scientists is to use such models to perform statis-
tical inference [5, 6] of the parameters given one or more observations. Unfortunately,
due to their complexity, the likelihoods – essential for parameter inference – implicitly de-
fined by these simulators are typically not tractable. The problem of statistical inference
under intractable likelihoods is commonly referred to as likelihood-free inference (LFI) or
simulation-based inference (SBI) and is a rapidly expanding field of research [7].

Formally, a stochastic forward model takes a vector of parameters θ ∈ Θ as input, sam-
ples internally a series z ∈ Z of latent variables zi ∼ p(zi|θ, z<i) and finally produces a
realization x ∈ X ∼ p(x|θ, z) as output, thereby defining an implicit likelihood p(x|θ).
This likelihood generally is intractable as it corresponds to

p(x|θ) =
ˆ
Z
p(x, z|θ) dz =

ˆ
Z
p(x|θ, z)

∏
i

p(zi|θ, z<i) dz, (1.1)

the integral of the joint likelihood p(x, z|θ) over all possible trajectories through the latent
space Z. Moreover, in Bayesian inference, we are interested in the posterior

p(θ|x∗) = p(x∗|θ)p(θ)
p(x∗) = p(x∗|θ)p(θ)´

Θ p(x∗|θ′)p(θ′) dθ′ (1.2)

for some observation(s) x∗ and assuming a prior p(θ), which not only involves the poten-
tially intractable likelihood p(x∗|θ) but also an integral over the parameter space Θ. For
simulators with high-dimensional parameter spaces, this is a second source of intractabil-
ity, leading to even more challenging problems.

Consequently, instead of using the true likelihood to perform inference, scientists have
relied on “likelihood-free” surrogate models p̂(x|θ) of the likelihood or p̂(θ|x) of the pos-
terior, covered in Chapter 2.

1.1 Problem statement
Domain scientists are not always interested in the full set of simulator parameters at once.
In particular, when interpreting posterior predictions, they generally study several small
parameter subsets, especially singletons and pairs, while ignoring the others. This applies
to all fields of science: particle physics, astronomy, climatology, biology, medicine, etc
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[8–13]. For example, in the context of high energy particle interactions, physicists might
want to infer the mass of particles, regardless of their spin or charge.

Formally, a subspace Θa ≤ Θ of the parameter space is of interest, while the complement
subspace Θb : Θa×Θb = Θ is unobserved. The marginal posterior estimation (MPE) task
is then to estimate the marginal posterior

p(θa|x∗) =
ˆ

Θb
p(θ|x∗) dθb (1.3)

for some observation(s) x∗. For this task, current LFI methods resort to numerical integra-
tion of a surrogate model p̂(θ|x∗) of the full posterior, which is computationally expensive
if Θb is large. For domain scientists, the computation time introduced by this approach
is inconvenient, especially if several subspaces Θa are studied.

A naive solution to get rid of numerical integration is to learn a surrogate p̂(θa|x∗) by
considering θb as part of the latent variables. If we are interested in a single or a few
predetermined subspaces, this is perfectly reasonable. However, if we need to choose
arbitrarily the subspace at inference time, i.e. arbitrary MPE, this solution is not viable
anymore as there exists an exponential number (2|Θ| − 1) of marginal posteriors. In this
thesis, we focus on the development of a method able to estimate, without numerical
marginalization, the marginal posterior p(θa|x∗) over any parameter subspace Θa.

This study applies to all simulators as we consider them to be black boxes, meaning that we
do not have access to any information besides the realizations x, like the latent variables
zi, the latent likelihoods p(zi|θ, z<i) or the conditional likelihood p(x|θ, z), which can be
leveraged to improve inference [14, 15].

Prior
p(θ)

θ
Simulator
p(x|θ)

x

Learning
Surrogate
model

Method

θa x∗

p̂(θa|x∗)

Figure 1.1. The objective of this thesis is to develop a method able to perform arbitrary
MPE of any black box simulator, assuming a prior. This objective requires the design of
a suitable surrogate model and learning procedure.
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Chapter 2

Frontier
This chapter acts both as a background introduction and a literature review. First, we
take a look at traditional and recent LFI posterior estimation methods, comparing their
origins, strengths and limitations. Then, we cover the topic of feature imputation, closely
related to the problem at hand.

Note. The name of this chapter is a tribute to “The frontier of simulation-based inference”
by Cranmer et al. [7], a remarkable introduction to SBI and its challenges from which the
chapter’s structure is inspired.

2.1 Traditional estimation
For decades, the most widespread approaches to Bayesian inference were approximate
Bayesian computation (ABC) methods [16–18]. These methods approximate the posterior
by comparing simulated realizations x with the observation x∗. More precisely, in the
ABC rejection algorithm – the simplest form of ABC – parameters θ are drawn from the
prior and realizations x are generated with the simulator using these parameters. If x is
sufficiently close to x∗, θ is retained, and otherwise rejected. This condition of sufficient
proximity is formalized as

ρ(x, x∗) ≤ ε, (2.1)
where ρ : X 2 7→ R+ is a distance metric and ε ∈ R+ is an arbitrary tolerance.

After many iterations, the set of retained parameters is representative of the prior weighted
by the probability that (2.1) is satisfied, leading to an approximate version of the pos-
terior p(θ|x∗). In the limit of ε → 0, this approximate posterior becomes exact, but
the acceptance probability of samples vanishes for continuous realizations, especially if
high-dimensional. Thus, to increase sample efficiency, ABC often relies on hand-crafted
low-dimensional summary statistics s(x) to perform the comparison. The quality of in-
ference is tied to how well those statistics retain information about the parameters θ.
Consequently, ABC presents a trade-off between sample efficiency and inference qual-
ity. Moreover, since x∗ is directly used in the rejection process, inference for different
observations requires repeating the entire algorithm.

An alternative to ABC is to approximate the likelihood p(x|θ) of simulated data with
classical density estimation (DE) techniques like histograms or kernel density estimation
[19, 20]. Statistical inference then proceeds as if the likelihood was tractable. The main
advantage over ABC is that the computational cost of the simulation and likelihood
estimation stages can be amortized over several experiments with different observations,
making it particularly well-suited for problems with many independent and identically
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distributed (i.i.d.) observations, like high energy particle interactions in CERN’s Large
Hadron Collider.

Nonetheless, like ABC, classical DE presents a trade-off between sample efficiency and
inference quality, as it also scales poorly to high-dimensional data spaces. Similarly to the
k-nearest neighbors algorithm [21–23], both ABC and classical DE are said to suffer from
the curse of dimensionality1: the required number of samples increases exponentially with
the dimension of the data, in the worst case.

2.2 Neural density estimation
Fortunately, the relatively recent advances in deep learning (DL) [25] allow to handle much
higher-dimensional data without loss of quality [26], leading to an increasingly popular
use of neural networks (NNs) for DE [12, 27–33].

2.2.1 Normalizing flows
One class of these neural density estimation (NDE) techniques are normalizing flows (NFs)
[34–41], in which a random variable u with simple distribution pu (e.g. uniform or multi-
variate Gaussian) is mapped to the sample space through an invertible and differentiable
transformation x = g(u). The sample distribution is then given by the change-of-variables
formula

p(x) = pu(f(x))
∣∣∣det Jf (x)

∣∣∣ (2.2a)

= pu(f(x))
∣∣∣det Jg(f(x))

∣∣∣−1
, (2.2b)

where f is the inverse of g and Jf = ∂f
∂x

denotes the Jacobian of f . Therefore, with
the right transformation g and a base distribution pu, we can construct any tractable
distribution and sample from it, under reasonable assumptions [42, 43]. However, con-
structing arbitrarily complex bijections is not trivial, especially while keeping the Jacobian
determinant tractable. The approach of NFs is to leverage the fact that a composition
of invertible functions is itself invertible. Indeed, if g1, g2, . . . , gn are bijective functions,

g = g1 ◦ g2 ◦ · · · ◦ gn (2.3)
is also bijective, with inverse

f = fN ◦ · · · ◦ f2 ◦ f1, (2.4)

and the Jacobian determinant takes the form

det Jf (x) =
n∏
i=1

det Jfi(zi−1), (2.5)

where zi = fi(zi−1) and z0 = x. Thus, a sequence of simple differentiable bijective
transformations can be stacked together to construct more complex transformations which
are, in turn, invertible and differentiable. In this sequence, the probability density is said
to “flow” from an irregular distribution p(x) towards a simpler, more “normal” form pu(u),
hence the name “normalizing flow” [34].

1The expression was originally employed by Bellman [24] in the field of dynamic programming.
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If the transformations have adjustable parameters, we obtain a mechanism to construct
new families of distributions

qφ(x) = pu(fφ(x))
∣∣∣det Jfφ(x)

∣∣∣ (2.6)

whose parameters φ can be optimized to approximate an unknown distribution p(x) by
maximizing the likelihood of i.i.d. samples xi ∼ p(x). That is

φ∗ = arg max
φ

∏
i

qφ(xi) = arg max
φ

∑
i

log qφ(xi) = arg max
φ

E
p(x)

[
log qφ(x)

]
. (2.7)

This stacking of differentiable parametric functions is reminiscent of a NN and, as such, is
generally trained using stochastic gradient descent (SGD) [44–47] optimization techniques
within automatic differentiation (AD) [48–51] frameworks.

NFs extend naturally to the task of estimating a conditional density p(x|y) by conditioning
the transformations of x with y, i.e. x = gφ(u|y) and u = fφ(x|y), which allows to
construct and train families of conditional distributions

qφ(x|y) = pu(fφ(x|y))
∣∣∣det Jfφ(x|y)

∣∣∣. (2.8)

2.2.2 Neural posterior estimation
For neural posterior estimation (NPE), we approximate p(θ|x) with a conditional distri-
bution family qφ(θ|x). As in (2.7), the parameters φ are optimized by maximizing the
expected log-density over the implicit joint distribution p(θ, x) = p(θ)p(x|θ), i.e.

φ∗ = arg max
φ

E
p(θ,x)

[
log qφ(θ|x)

]
. (2.9)

With this approach, the trained surrogate posterior is amortized, meaning that, even if
the training stage requires a lot of samples, inference itself is simulation-free and can be
repeated several times with different observations.

θfφ(θ|x)

x

u gφ(u|x)

x

φ
fn ◦ . . . ◦ f1

φ g1 ◦ . . . ◦ gn

p(u) qφ(θ|x)

Figure 2.1. Illustration of the conditional flow architecture for NPE.

This is not the case of sequential neural posterior estimation (SNPE) methods [27–29], a
special type of NPE drawing inspiration from sequential Monte Carlo (SMC) techniques
[52–54]. The rationale is that, if we are ultimately interested in the posterior at a specific
observation x∗, drawing parameters θ from the prior p(θ) is wasteful as parameters with
low(er) posterior density p(θ|x∗) are less informative [29].
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Instead, SNPE iteratively refines a proposal distribution p̃(θ) to be more and more in-
formative about p(θ|x∗) and that replaces the prior during training (see Algorithm 1).
Unfortunately, optimizing (2.9) on samples drawn from a proposal no longer yields the
target posterior. Papamakarios et al. [27], Lueckmann et al. [28] and Greenberg et al. [29]
differ primarily in how they tackle this problem, mainly by defining an alternative loss
function L to minimize.

Algorithm 1 SNPE with per-round proposal updates [12, 29]
Input: simulator with (implicit) likelihood p(x|θ), observation x∗, prior p(θ), conditional

distribution family qφ(θ|x), loss function L, empty buffer D, number of simulations
N , number of rounds R

1 p̃(θ)← p(θ)
2 for 1 . . . R do
3 for 1 . . . N do
4 sample θ ∼ p̃(θ)
5 simulate x ∼ p(x|θ)
6 store (θ, x) in D
7 φ← arg min

φ

∑
(θ, x)∈D

L(θ, qφ(θ|x))

8 p̃(θ)← qφ(θ|x∗)
9 return qφ(θ|x)

SNPE is a typical example of active learning in that it simulates realizations for param-
eters which are expected to increase our knowledge the most, thereby improving sample
efficiency over standard NPE for single observation inference.

2.3 Neural ratio estimation
As shown by Cranmer et al. [55], NNs can also be trained to approximate the likelihood
ratio

r(x|θ0, θ1) = p(x|θ1)
p(x|θ0) (2.10)

between two parameters θ0 and θ1, traditionally used for hypothesis testing [56, 57], hence
the name neural ratio estimation (NRE). To do so, a classifier network d : X 7→ [0, 1]
is trained to discriminate realizations x ∼ p(x|θ0), labeled y = 0, from equally sampled
realizations x ∼ p(x|θ1), labeled y = 1. Indeed, for this task, the decision function

d∗(x) = p(y = 1|x) = p(x|θ1)
p(x|θ0) + p(x|θ1) (2.11)

which models the optimal Bayes classifier [55] leads to the likelihood ratio via

r(x|θ0, θ1) = d∗(x)
1− d∗(x) . (2.12)
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2.3.1 Likelihood-to-reference ratio
In the context of parameter inference, we are interested in the likelihood ratio between
arbitrary hypotheses. A solution proposed by Cranmer et al. [55] is to condition the
classifier with θ ∼ p(θ) and train d(x|θ) to distinguish pairs (θ, x) ∼ p(θ, x) from pairs
(θ, x) ∼ p(θ)p(x|θr), where θr is a fixed reference hypothesis. In this setting, the decision
function modeling the optimal Bayes classifier is

d∗(x|θ) = p(x|θ)
p(x|θ) + p(x|θr)

, (2.13)

thereby defining the likelihood-to-reference (LTR) [58] ratio

r(x|θ) = r(x|θr, θ) = d∗(x|θ)
1− d∗(x|θ) . (2.14)

The LTR ratio gives access to the likelihood ratio between arbitrary hypotheses as

r(x|θ0, θ1) = r(x|θ1)
r(x|θ0) . (2.15)

However, Thomas et al. [59] point out that the choice of reference hypothesis θr has a
significant effect on the approximation quality. For a realization x with null or numerically
negligible likelihoods p(x|θ) and p(x|θr), the evaluation of the LTR ratio is numerically
undefined.

2.3.2 Likelihood-to-evidence ratio
Assuming a prior p(θ), Hermans et al. [58] propose to train the classifier at discriminating
between (θ, x) pairs from the joint distribution p(θ, x) and pairs from the marginal model
p(θ)p(x). That is

φ∗ = arg min
φ

E
p(θ,x)p(θ′)

[L(dφ(θ, x)) + L(1− dφ(θ′, x))], (2.16)

where L is a strictly proper scoring rule (SPSR) [60, 61]. A scoring rule is a measure
of the accuracy of probabilistic predictions. A SPSR is a scoring rule that is uniquely
optimized by the true probabilities. Especially, for binary classification of events A and
B, a SPSR satisfies

arg min
q
p(A)L(q) + p(B)L(1− q) = p(A)

p(A) + p(B) . (2.17)

Popular examples of strictly proper scoring rules are the Brier/quadratic score L(p) =
(1− p)2 and the negative log-likelihood (NLL) L(p) = − log p. Based on these properties,
Hermans et al. [58] demonstrate that the optimal discriminator for their task is

d∗(θ, x) = p(θ, x)
p(θ, x) + p(θ)p(x) , (2.18)

from which follows the likelihood-to-evidence (LTE) [58] ratio2

r(θ, x) = d∗(θ, x)
1− d∗(θ, x) = p(θ, x)

p(θ)p(x) = p(x|θ)
p(x) = p(θ|x)

p(θ) . (2.19)
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θ

x

φ
log r̂(θ, x)

dφ(θ, x)

σ

Figure 2.2. Illustration of the classifier architecture for NRE of the LTE ratio.

Unlike the LTR ratio, the LTE ratio is always numerically defined, as it is only ever
evaluated where the marginal model p(θ)p(x) is strictly positive.

In practice, to prevent numerical stability issues when d(θ, x)→ 1, it is the approximate
log-ratio log r̂(θ, x) that is extracted from the NN and the class prediction is recovered as

σ(log r̂(θ, x)) = 1
1 + exp(− log r̂(θ, x)) = d(θ, x). (2.20)

Like NPE, NRE of the LTE ratio gives direct access to an amortized surrogate posterior
in the form of p̂(θ|x) = r̂(θ, x)p(θ). However, unlike NPE, we cannot directly sample from
this surrogate, meaning that an additional stage is necessary for inference. In their work,
Hermans et al. [58] apply Markov chain Monte Carlo (MCMC) [62, 63] sampling (see
Algorithm 2) to their surrogate posterior, which is asymptotically (T →∞) exact.

Algorithm 2 Metropolis-Hastings MCMC sampling [62]
Input: function f(x) ∝ p(x), transition distribution q(x′|x), initial sample x0, number of

steps T , burn-in period B
Output: Markov chain of p(x)
1 for t = 1 . . . T do
2 sample x′ ∼ q(x′|xt−1)

3 α← f(x′)
f(xt−1)

q(xt−1|x′)
q(x′|xt−1)

4 sample u ∼ U(0, 1)
5 if u ≤ α then
6 xt ← x′

7 else
8 xt ← xt−1

9 return {xt}Tt=B

2.4 Feature imputation
The problem of posterior inference is closely related to the one of feature imputation
(FI), i.e. the process of replacing missing data features by probable substitutes given the
features that remain observable. However, unlike parameters and observation in posterior

2Hermans et al. [58] use the same notation r(x|θ) for the LTR and LTE ratios. To prevent any
confusion, in this work, we use r(θ, x) to denote the LTE ratio.

8



inference, the sets of missing and observed features are not fixed, making FI a more
general problem from which we can take inspiration for our problem of arbitrary MPE
(see Section 1.1).

Widespread approaches to neural data generation are variational auto-encoders (VAEs)
[64] and generative adversarial networks (GANs) [65]. Both methods attempt to learn a
data distribution p(x), or p(x|y) in the case of conditional generation [66, 67], and allow
sampling from this distribution. The generative adversarial imputation net (GAIN) [68]
and VAE with arbitrary conditioning (VAEAC) [69] are FI methods. Precisely, the authors
consider the problem of learning all conditional distributions p(x|xo), where xo ⊆ x is a
subset of observable features in x ∈ X .

To this end, both methods introduce a binary mask b ∈ {0, 1}|X | that describes which
features are observed. This trick allows to condition the generative network with respect
to any subset of observed features instead of training a different one for each combination.
Eventually, the only conditional distribution that is learned is p(x|xb, b), where xb = (xi :
bi = 1).

Generalizing this concept, Belghazi et al. [70] introduce a second mask r ∈ {0, 1}|X | declar-
ing the features we request a substitute of. Their GAN, dubbed the neural conditioner
(NC), is therefore able to sample from the arbitrary conditional and marginal distribution
p(xr|xb, b, r), where xr = (xi : ri = 1). Interestingly, the authors demonstrate empirically
that the NC generalizes to mask pairs (b, r) never or barely encountered during train-
ing, suggesting a form of continuity across conditional/marginal distributions, essential
to neural approximators [26]. This result also implies that distinct networks trained for
specific conditionals/marginals would not be necessarily better at their task than a single,
potentially larger, NC.

2.5 Summary and discussion
NPE and NRE NPE and NRE are the two main DL approaches to posterior estima-
tion. They both give access to an amortized surrogate of the posterior, which can be
evaluated and sampled from. However, sampling from an NRE model requires MCMC
sampling, which could be computationally expensive.

On the other hand, because they are constrained to be invertible, NFs (NPE) often require
involved architectures, while classifier networks (NRE) can be as simple as multi-layer
perceptrons (MLPs) [26, 71]. This difference results in generally faster NRE models, even
taking MCMC sampling into account. There is also a difference in inductive bias, as some
NF transformations, especially coupling [72] and autoregressive [39, 73] ones, impose a
certain structure upon the modeled distribution [34, 74].

Masking What should be remembered from FI methods is the idea of conditioning the
network with masks in order to learn a single model of all conditional and marginal distri-
butions. Li et al. [75] take inspiration from this idea to develop an arbitrary conditional
normalizing flow (ACFlow) that can deal with the variable dimensionality of arbitrary
conditionals and marginals, which was previously infeasible in flow models.

Due to the constraint of invertibility, dealing with this variable dimensionality requires
specially designed transformations and propagation of the masks through the flow. Con-
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versely, because there is no such constraint in GANs, Belghazi et al. [70] condition the
NC by providing the masks as inputs. Since it does not present that constraint either, a
NRE classifier could be similarly conditioned to tackle arbitrary conditional or marginal
problems.
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Chapter 3

Methods
Following the discussion of Section 2.5, our approach to arbitrary MPE is to apply the
“masking” technique of the NC [70] to NRE and, in particular, to the amortized LTE ratio
estimators of Hermans et al. [58]. The result is a novel arbitrary marginal NRE (AMNRE)
method, which we describe in this chapter, alongside two comparison baselines.

3.1 Marginal NRE and NPE
As mentioned in Section 1.1, if we are interested in a few predetermined subspaces, a
reasonable solution would be to train a distinct surrogate marginal posterior p̂(θa|x) for
each parameter subspace Θa. Recycling notations from Section 2.4, let be a binary mask
a ∈ {0, 1}|Θ| = Ω representing a subspace Θa ≤ Θ such that θa = (θi : ai = 1) ∈ Θa.

The first approach we consider for this task is to train a (distinct) marginal NRE (MNRE)
classifier dφ(θa, x), for all masks a in the set of masks of interest A ⊆ Ω. This approach
is proposed by Hermans et al. [58] and used by Delaunoy et al. [76]. Adapting (2.16), we
have

φ∗a = arg min
φ

E
p(θ,x)p(θ′)

[
L(dφ(θa, x)) + L(1− dφ(θ′a, x))

]
, (3.1)

which allows to estimate the marginal LTE ratio with

r̂(θa, x) = dφ∗a(θa, x)
1− dφ∗a(θa, x) (3.2)

and, subsequently, the marginal posterior density as p̂(θa|x) = r̂(θa, x)p(θa). For simplic-
ity, we assume that the parameters are independently drawn, i.e. that p(θ) = ∏

i p(θi),
which gives direct access to the marginal prior

p(θa) =
∏
i:ai=1

p(θi). (3.3)

Our second approach is to train a marginal NPE (MNPE) distribution family qφ(θa|x) as
a surrogate for p(θa|x), from which we can sample and evaluate the density. Similarly to
(2.9), the optimal distribution parameters are retrieved as

φ∗a = arg max
φ

E
p(θ,x)

[
log qφ(θa|x)

]
. (3.4)

3.1.1 Shared embedding
For simulators with high-dimensional or structured realizations like text, images or time
series, it is common to use a neural embedding h : X 7→ Y to (pre-)process the realization
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x into a vector of features y = h(x) [33, 76]. This abstraction of the realizations’ struc-
ture enables simpler architectures for the estimator network, like MLPs [71] or residual
networks [77].

In the case of MNRE and MNPE, if the realizations are difficult to process, each marginal
posterior estimator needs the full capacity (width, depth and architecture) to do so, even
if it is to perform partially the same computations. To lower the capacity needed by
the estimators, we propose to share an embedding hψ(x) among them and train them
altogether. Doing so, the objectives of MNRE and MNPE respectively become

ψ∗, {φ∗a} = arg min
ψ,{φa}

E
p(θ,x)p(θ′)

[∑
a

L(dφa(θa, hψ(x)) + L(1− dφa(θ′a, hψ(x)))
]

(3.5)

ψ∗, {φ∗a} = arg min
ψ,{φa}

E
p(θ,x)

[∑
a

log qφa(θa|hψ(x))
]
, (3.6)

where {φa} is a shorthand for {φa | a ∈ A}, the set of trainable parameters of the
estimators.

x

ψ

hψ(x)

φa log r̂(θa, x)

dφa(θa, hψ(x))

σ

φb log r̂(θb, x)

dφb
(θb, hψ(x))

σ

θ θb

b

θa

a

Figure 3.1. Illustration of the classifiers’ architecture for MNRE with a shared embedding,
considering two masks a, b ∈ A.

3.2 Arbitrary marginal NRE
Even with a shared embedding, training a distinct model for each of the 2|Θ|−1 parameter
subspaces is not reasonably feasible. Instead, we would like a single model to learn all the
marginal posteriors p(θa|x). Taking inspiration from the NC [70], we propose to condition
a NRE classifier of the LTE ratio [58] with an additional binary mask a ∈ Ω that indicates
which parameters are provided.

During training, the masks are randomly sampled from a distribution p(a), such that the
optimization problem becomes

φ∗ = arg min
φ

E
p(θ,x)p(θ′)

E
p(a)

[
L(dφ(θa, x, a)) + L(1− dφ(θ′a, x, a))

]
, (3.7)
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where L is a SPSR (see Section 2.3.2). Reformulating this objective, we have

L =
˚

Θ×X×Θ
p(θ, x)p(θ′)

∑
a∈Ω

p(a)
[
L(d(θa, x, a) + L(1− d(θ′a, x, a))

]
dθ dx dθ′

=
¨

Θ×X

∑
a∈Ω

p(a)
[
p(θ, x)L(d(θa, x, a)) + p(θ)p(x)L(1− d(θa, x, a))

]
dθ dx

=
∑
a∈Ω

p(a)
¨

Θa×X

[
p(θa, x)L(d(θa, x, a)) + p(θa)p(x)L(1− d(θa, x, a))

]
︸ ︷︷ ︸

`(d(θa,x,a))

dθa dx,

which is minimized only if each term `(d(θa, x, a)) is itself minimized. Then, and since L
satisfies (2.17), the decision function that models the optimal AMNRE classifier is

d∗(θa, x, a) = arg min
q
`(q)

= arg min
q
p(θa, x)L(q) + p(θa)p(x)L(1− q)

= p(θa, x)
p(θa, x) + p(θa)p(x) . (3.8)

As desired, an AMNRE classifier gives access to an estimator

r̂(θa, x|a) = dφ∗(θa, x, a)
1− dφ∗(θa, x, a) (3.9)

of all marginal LTE ratios and an estimator p̂(θa|x, a) = r̂(θa, x|a)p(θa) of all marginal
posterior densities.

In terms of network architectures, like NRE, AMNRE does not have any particular re-
quirements, with the notable exception of the variable input size of θa. To make the
method more convenient, in practice, θa is replaced by the element-wise product θ · a,
carrying the same information at fixed size.

θ · a

x

a

φ
log r̂(θa, x|a)

dφ(θa, x, a)

σ

Figure 3.2. Illustration of the classifier architecture for AMNRE.

3.2.1 Masking strategy
The mask distribution is an important part of AMNRE’s training. If some masks a ∈ Ω
have a small probability p(a) to be selected, it is likely that the estimator will not model
their respective marginal posteriors as well as other, more frequent masks. On the other
hand, as mentioned in Section 2.4, Belghazi et al. [70] demonstrate that the NC generalizes
to never or barely encountered masks. To check if this property is shared by AMNRE,
we consider two masking strategies, with very different distributions p(a) over Ω.
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Uniform masking All (non-empty) masks have the same probability

p(a) = 1
2|Θ| − 1 (3.10)

to be selected. This strategy is nearly equivalent to randomly masking each parameter
θi according to a Bernoulli distribution of probability 0.5. Hence, the average mask size
(number of unmasked parameters) is slightly over |Θ|2 .

Poisson masking The mask size |a| is selected according to a Poisson distribution

Poisλ(k) = λke−λ

k! (3.11)

to favor low-dimensional subspaces. Formally,

p(a) =
(
|Θ|
|a|

)−1



0 if |a| = 0
Poisλ(|a| − 1) if |a| < |Θ|
∞∑

k=|a|
Poisλ(k − 1) else

, (3.12)

where λ = 1. Here, the average mask size is slightly under λ+ 1.
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Chapter 4

Experiments
In this chapter, we attempt to demonstrate and compare the applicability of our methods
to the problem of MPE. To this end, we design and perform a series of experiments on the
methods and discuss their results for simulators of different complexities. The experiments
focus on the accuracy achievable by the methods themselves, rather than by the trained
models. To mitigate the differences in inductive bias due to network architecture, we
mainly use simple networks (MLPs), with large capacities (depth and width) to ensure
sufficient expressiveness. We also allocate large simulation budgets to the methods, as
accuracy of the approximation is preferred over sample efficiency, from a scientific point
of view.

Note. The implementation of the methods, simulators and experiments is made available
at https://github.com/francois-rozet/amnre. The majority of the code is written in
Python and the neural networks are built and trained using the PyTorch [49, 78] automatic
differentiation framework. We also rely on nflows [79] to implement NF networks and
matplotlib [80] to display results graphically.

4.1 Quality assessment
Because the likelihood is by definition intractable, in LFI, it is usually challenging to
guarantee an accurate surrogate posterior, which is mandatory before drawing any sort of
scientific conclusions based on its predictions. In this section, we review the tools we use to
assess and compare the accuracy of our models, either quantitatively or qualitatively.

4.1.1 Receiver operating characteristic
A widespread indicator of a binary classifier’s performance is the receiver operating char-
acteristic (ROC) curve, which is obtained by plotting the false positive rate (FPR) of
the classifier against its true positive rate (TPR), at various threshold settings. If the
classifier is unable to discriminate between the two classes, the FPR and TPR are equal
at any threshold and the ROC curve is diagonal. Accordingly, the higher the performance
of the classifier, the more the curve deviates from the diagonal and the larger the area
under the curve (AUC) is. Hence, the AUC of the ROC curve, or ROC AUC, is a measure
of the quality of classifiers.

For our NRE-based methods, constructing the ROC curve is straightforward as the trained
model is already a LTE classifier. For NPE-based methods, the surrogate marginal pos-
terior(s) p̂(θa|x) must first be transformed into a decision function ranging from 0 to 1.
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Specifically, since r̂(θa, x) = p̂(θa|x)
p(θa) is an estimator of the LTE ratio,

d(θa, x) = r̂(θa, x)
1 + r̂(θa, x) =

(
1 + p(θa)

p̂(θa|x)

)−1

(4.1)

is a decision function approximating the optimal LTE classifier (see Section 2.3.2). There-
fore, we can construct ROC curves of both NRE and NPE-based models for the same
discrimination task, which allows to compare their performances.

Adversarial ROC

In their work, Hermans et al. [58] point out that if a surrogate LTE ratio r̂(θ, x) is
exact, a classifier would not be able to distinguish samples from the likelihood p(x|θ∗)
and the reweighted evidence model r̂(θ∗, x)p(x), for arbitrary parameters θ∗. Thus, the
discriminative performance of a sufficiently powerful classifier on the latter task is an
indicator of the exactness of r̂(θ∗, x). In this case, the ROC curve and ROC AUC are
not used to assess the performance of the classifier but rather the difficulty of its task:
discriminating between a distribution and an approximation thereof. In some sense, the
surrogate ratio is an adversary for the classifier.

Generalizing this concept, we propose to train a classifier cφ(θa, x) at discriminating
between the joint distribution p(θa, x) and the reweighted marginal model p̂(θa, x) =
r̂(θa, x)p(θa)p(x), that is,

φ∗ = arg min
φ

E
p(θa,x)

[
L(cφ(θa, x))

]
+ E

p̂(θa,x)

[
L(1− cφ(θa, x))

]
, (4.2)

which allows to assess the quality of r̂(θa, x) on the full parameter space, instead of a single
point θ∗. In practice, we sample from p(θa)p(x) and reweight the samples by r̂(θa, x), i.e.

φ∗ = arg min
φ

E
p(θ,x)p(θ′)

[
L(cφ(θa, x)) + r̂(θ′a, x)L(1− cφ(θ′a, x))

]
, (4.3)

which is mathematically equivalent. We recognize here an objective similar to the one
of MNRE, indicating that an adversarial classifier can be trained using almost the same
routines as a MNRE classifier.

4.1.2 Earth mover’s distance
Like the Kullback-Leibler (KL) divergence [81], the earth mover’s distance (EMD) [82] is a
measure of the distance between two distributions. Specifically, the EMD is the minimum
cost of transforming a distribution p(x) over a space X into another distribution q(x).
Formally, if γ(x, y) describes the density moved from x to y and c(x, y) is the price for
moving density from x to y,

EMD(p, q) = inf
γ∈Γ(p,q)

¨
X×X

γ(x, y)c(x, y) dx dy (4.4)

where Γ(p, q) is the collection of all joint distributions γ(x, y) with marginals p(x) and
q(y). The price c : X ×X 7→ R+ is a metric over the space X , i.e. a function that defines
a concept of distance between the members of X . The EMD is a more powerful tool to
compare distributions than the KL divergence, as it takes the geometry of the probability
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space into account. However, this power comes at a cost, as finding the best transport
plan γ∗ comes down to solving an optimal transportation (OT) [42] problem over the
metric space (X , c), which is computationally expensive in a general metric space.

Cuturi [83] propose an entropic regularization of the transportation problem, turning it
into a (strictly) convex problem that can be solved with matrix scaling algorithms, includ-
ing Sinkhorn-Knopp’s fixed point iteration [84] algorithm which is known to have linear
convergence [85]. Importantly, the optimal solution γλ of this regularized transportation
problem, where λ is an adjustable parameter, is guaranteed to converge to the optimal
transport plan γ∗ as λ → ∞ [83]. Therefore, the dual-Sinkhorn divergence [83] over the
metric space (X , c)

Dλ(p, q) =
¨
X×X

γλ(x, y)c(x, y) dx dy (4.5)

satisfies
EMD(p, q) = lim

λ→∞
Dλ(p, q). (4.6)

In our experiments, we use the dual-Sinkhorn divergence1 as a computationally cheap but
accurate approximation of the EMD between distribution histograms.

Histograms

Histograms are a convenient and versatile numerical representation of continuous dis-
tributions. They allow to marginalize distributions easily, obtain intrinsic quantities of
the distributions, like their entropy, or measure the difference between distributions, for
instance using the EMD. In one or two dimensions, they also help to understand the
distributions through visualization of the modes and confidence regions.

For these reasons, in our experiments, we make extensive use of histograms. In particular,
for low-dimensional parameter subspaces Θa, we cut the subspace into uniformly spaced
grid cells/bins (e.g. 100×100× . . . cells) and evaluate the surrogate marginal posterior(s)
p̂(θa|x) at the center of each of these cells, thereby creating a histogram of the surrogate
distribution.

Unfortunately, this routine is not tractable for high(er)-dimensional subspaces, as the
number of cells grows exponentially with the dimensionality of the subspace. In this case,
we sample a (large) population of points from the surrogate and build the histogram by
counting the number of points within each bin. Still, it is not tractable either to store a
value for each of the bins.

Instead, we store a value only for bins that contain at least one point, assuming the oth-
ers are empty. This kind of data structure is referred to as a sparse array and allows to
store and manipulate very large but almost empty arrays. PyTorch already implements
sparse arrays, but does not provide tools to compute histograms in multiple dimensions.
Conversely, NumPy [86] and SciPy [87] give access to such tools but only implement sparse
matrices, i.e. 2-d arrays. Furthermore, because our neural surrogates are hosted on graph-
ics processing units (GPUs), their samples are as well and it is preferable to process them
on-device with GPU-acceleration, which is not supported by NumPy.

1We select λ = 100 as Dλ typically approximates the EMD with accuracy when λ exceeds 50 [83].
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Because of these limitations, we decided to re-implement the histogram routines of NumPy
within the PyTorch framework. The result is torchist2, a small Python package to build
and manipulate dense and sparse histograms, with full support for GPU-acceleration.
The package also provides routines (functions) to compute the entropy, KL divergence
and EMD (as the dual-Sinkhorn divergence) of dense and sparse histograms.

4.1.3 Calibration
Given an observation x∗, a q-credible region is a subset S ⊆ Θ into which parameters θ
sampled from the posterior p(θ|x∗) have a probability q to fall. Formally,

q = E
p(θ|x∗)

[1(θ ∈ S)] =
ˆ
S

p(θ|x∗) dθ. (4.7)

Among all the q-credible regions, the smallest, i.e. the one with the fewest members, is
the region that contains the parameters of highest posterior density, sometimes called the
highest posterior density region (HPDR).

In their work, Delaunoy et al. [76] use an amortized surrogate posterior p(θ|x) to predict
the 0.5 and 0.9-HPDRs for realizations x∗ ∼ p(x|θ∗) and check whether they contain the
true parameters θ∗ ∼ p(θ) or not. If the expected surrogate posterior is consistent with
the prior, i.e. if

p(θ) ≈ E
p(x)

[p̂(θ|x)], (4.8)

θ∗ should be in the two predicted regions 50 % and 90 % of the time, respectively. It is
equivalent to state that the smallest probability q such that the q-HPDR contains θ∗,

q =
ˆ

Θ
p̂(θ|x∗)1[p̂(θ|x∗) ≥ p̂(θ∗|x∗)] dθ, (4.9)

should be uniformly distributed over [0, 1] for pairs (θ∗, x∗) ∼ p(θ, x). We can assess
visually that q is correctly distributed by plotting it against its empirical cumulative
density function (CDF), which should be diagonal. If not, the surrogate is not correctly
calibrated with respect to the prior.

This calibration test can also be performed with the percentile rank p of the true param-
eters θ∗ in the surrogate posterior, instead of q, since

p =
ˆ

Θ
p̂(θ|x∗)1[p̂(θ|x∗) < p̂(θ∗|x∗)] dθ = 1− q. (4.10)

In our experiments, we apply this latter version of the test to our amortized surrogate
marginal posteriors p̂(θa|x). To compute the percentile of θ∗a, we can either 1) sample a
large number of parameters θa from the surrogate p̂(θa|x∗) and calculate the proportion
that satisfies the condition p̂(θa|x∗) ≤ p̂(θ∗a|x∗) or 2) compute an accurate histogram of
p̂(θa|x∗) and integrate the region within which the same condition is satisfied.

Since we cannot sample from our NRE-based surrogates without MCMC sampling, we
select the second option, which can only be performed for low-dimensional subspaces Θa.
As the construction of the histogram has to be repeated for numerous pairs (θ∗a, x∗), this
calibration test is very expensive in practice. Due to time and resource constraints, we
only consider 1-dimensional marginal surrogates for this test.

2https://github.com/francois-rozet/torchist
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Figure 4.1. This figure demonstrates the visual inspection of the percentiles’ CDF for
the calibration test of a surrogate posterior p̂(θ|x) presented in Section 4.1.3. If the
CDF lies close to the diagonal, the surrogate is well calibrated. When the surrogate is
hesitant or overdispersed, unlikely parameters are ranked too high, likely parameters too
low and the CDF is under the diagonal. Conversely, when the surrogate is too confident or
underdispersed, the CDF is over the diagonal. Finally, when some percentiles are severely
under-represented, the CDF is flat for them. For instance, when the true posterior barely
supports the HPDR of the surrogate, the CDF is almost horizontal for high percentiles.

Note. This calibration test is actually a special case of simulation-based calibration (SBC)
[88] where the random variable f(θ) is chosen as the estimated posterior density p̂(θ|x∗).
The reader is invited to consult the work of Talts et al. [88] for a more in-depth analysis.

4.2 Simulators
Simple likelihood and complex posterior Papamakarios et al. [30] introduce a toy
simulator where θ ∈ R5 parametrizes a 2-d multivariate Gaussian from which four points
are independently sampled to construct a realization x. The generative process is

θi ∼ U(−3, 3) for i = 1, . . . , 5
µ = (θ1, θ2)
s1 = θ2

3, s2 = θ2
4, ρ = tanh(θ5)

Σ =
(

s2
1 ρs1s2

ρs1s2 s2
2

)
x = (z1, . . . , z4) where zj ∼ N (µ,Σ),

for which the likelihood p(x|θ) = ∏
j p(zj|θ) is tractable. Despite its simple likelihood, the

simulator has a complex posterior (SLCP) with four symmetric modes due to the squaring
of θ3 and θ4. SLCP is a non-trivial posterior estimation benchmark that allows to retrieve
the ground-truth (GT) posterior through MCMC sampling [62, 63] of the likelihood.
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Hodgkin-Huxley In neuroscience, the Hodgkin-Huxley (HH) model [3] is a widespread
non-linear mechanistic model of neural dynamics for which numerous parameter inference
methods have been proposed.

In particular, Gonçalves et al. [12] successfully apply SNPE (see Section 2.2.2) to in-
fer the posterior over the eight parameters θ = (gNa, gK, gl, gM, τmax,−VT , σ,−El) of a
HH simulator given summary statistics x of the electro-physiological recording (number
of spikes, mean and standard deviation of the resting potential, mean, standard devi-
ation, skewness and kurtosis of the voltage). The prior distribution of the parameters
is considered uniform, i.e. θ ∼ U(bl, bh), between the parameter space boundaries bl =
(0.5, 10−4, 10−4, 10−4, 50, 40, 10−4, 35) and bh = (80, 15, 0.6, 0.6, 3000, 90, 0.15, 100).

As we do not have any knowledge in the domain, we borrow the HH simulator from the
official code3 released by Gonçalves et al. [12] and use the implementation as a black
box.

Gravitational waves In recent years, the observations of gravitational waves (GW)
from compact binary coalescences (CBCs) have had a massive impact on our understand-
ing of the Universe, partly thanks to inference of the systems’ parameters. To obtain pos-
terior samples, the LIGO/Virgo collaboration (LVC) currently applies MCMC or nested
sampling [89, 90] algorithms to involved physical models of the likelihood of emitted waves
[91–93]. With these approaches, posterior calculation typically takes days for binary black
hole (BBH) mergers and has to be repeated from scratch for each observation, like ABC
(see Section 2.1).

With the primary intent to perform fast(er) inference, Green et al. [32] apply NPE (see
Section 2.2.2) over the full 15-dimensional set of precessing quasi-circular BBH param-
eters, conditioned on GW observations from the LVC detectors. They evaluate their
network on data surrounding the first recorded gravitational-wave event, GW150914, and
demonstrate that the approach performs inference in close agreement with conventional
sampling methods.

As they evaluate their network on real observations, the generation of realistic waveforms
is a key part of their work. The processing of the waveforms is also important as it
radically changes the representation of the realization fed to the network. Indeed, Green
et al. [32] compress the frequency-domain waveforms to a reduced basis corresponding to
the first 100 components of a singular value decomposition (SVD).

For our experiments, we borrow the waveform simulator and processing pipelines from
the official code4 released by the authors, but make a few modifications:

• The 15 parameters of the simulator are detector-frame masses (m1,m2), reference
phase φc, time of coalescence tc, luminosity distance dL, spin magnitudes (a1, a2), spin
angles (θ1, θ2, φ12, φJL), inclination angle θJN , polarization angle ψ and sky location
(α, δ). All parameters are independent, with the exception of the masses that satisfy
10 M� ≤ m2 ≤ m1 ≤ 80 M�. To obtain a completely independent prior, we replace m2
by the mass ratio

q = m2

m1
∈ [0.125, 1]. (4.11)

3https://github.com/mackelab/IdentifyMechanisticModels_2020
4https://github.com/stephengreen/lfi-gw

20

https://github.com/mackelab/IdentifyMechanisticModels_2020
https://github.com/stephengreen/lfi-gw


• Although a prior uniform in volume, d3
L ∼ U(1003, 10003), would be more physical, we

adopt a prior uniform in distance, dL ∼ U(100, 1000), to better cover the parameter
space.

• We use 128 SVD components instead of 100 in the waveform reduced basis. It should be
noted that 1) frequency-domain waveforms are represented by complex-valued numbers
and 2) an observation corresponds to two waveforms from two geographically distant
detectors (H1 and L1). Hence, a single realization is composed of 512 real-valued
numbers.

• Because waveform generation is costly to perform in real time, Green et al. [32] sam-
ple “intrinsic” parameters and save associated waveform polarizations h+ and h×, in
advance of training. At train time, they sample “extrinsic” parameters, project h+
and h× onto detectors and add Gaussian noise. In our implementation, we sample
all parameters at once to generate and process the waveforms ahead of training. The
noise is also added during training to prevent overfitting.

SLCP HH GW

Tractable likelihood Yes No No
Parameters 5 8 15
Realization size 8 7 512

Table 4.1. Summary of the simulators’ characteristics.

4.3 Experimental protocol
In this section, we present in details the experiments we perform. In the following sections,
if an experiment differs from what is presented here, it will be explicitly stated.

Datasets For each simulator, we use three fixed datasets of pairs (θ, x) ∼ p(θ, x) to
train, validate and test the methods, respectively. SLCP and HH have an additional
training set to train adversarial classifiers (see Section 4.1.1). The sizes of the datasets
are provided in Table 4.2.

SLCP HH GW

Training set 1 048 576 1 048 576 4 194 304
Validation set 131 072 131 072 131 072
Testing set 131 072 131 072 131 072
Adversarial set 1 048 576 1 048 576 −

Table 4.2. Dataset sizes for each simulator.

Methods The considered methods are NRE, NPE, MNRE, MNPE and AMNRE. In
the case of MNRE and MNPE, the subspaces of interest are all one and two-dimensional
subspaces. For SLCP, we add the full space Θa = Θ of parameters, for a total of 16
subspaces of interest. For HH, we also consider the full space, as well as the subset
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(gNa, gK, gl,−VT ) of parameters, for a total of 38 subspaces of interest. We do not use a
shared embedding by default. For AMNRE, we use the uniform masking strategy.

Architectures For NRE-based methods, the NN is a MLP with 7 hidden layers of
256 neurons and ELU [94] activation functions. For NPE-based methods, the NF is a
MAF [39] (see Appendix B) with 7 transformations5, each parametrized by a MLP with
3 hidden layers of 128 neurons and ReLU [95] activation functions, and a unit Gaussian
base distribution. For adversarial classifiers, the NN is a MLP with 11 hidden layers of
512 neurons and ELU [94] activation functions.

Statistic NRE classifier NPE flow Adversarial classifier

Architecture MLP MAF MLP
Parameters [−] 464 385 369 222 2 896 897
Evaluation rate [batch/s] 830± 13 195± 7 415± 4
Sampling rate [batch/s] − 34± 2 −

Table 4.3. Various estimator statistics for the SLCP simulator. Rates evaluated with
batches of 1024 elements on a single GTX 1080Ti GPU.

In all architectures, a static up-front layer standardizes the input parameters θi with
respect to their mean and variance in the training set.

Training All models are optimized with the AdamW [46, 47] stochastic optimization
algorithm. At each epoch, the batches are built by sampling without replacement from the
training set. The number of batches per epoch is 256, the batch size is 1024, the weight
decay is 10−3 and the initial learning rate is 10−3. We apply a “Reduce On Plateau”
scheduling of the learning rate, that is, we reduce the learning rate by a factor 2 each
time the loss on the validation set has not decreased for 7 consecutive epochs. The training
stops when the learning rate reaches 10−6 or lower.

Hyperparameter Default

Optimizer AdamW
Weight decay 10−3

Batches per epoch 256
Batch size 1024
Initial learning rate 10−3

Scheduling Reduce On Plateau
Reduce factor 2
Patience 7
Stopping learning rate 10−6

Table 4.4. Default training hyperparameters.

5MAFs with a larger number of transformations presented convergence issues during our experiments
and more expressive parameter networks did not improve the quality of estimations. These issues are
further discussed in Chapter 5.
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In the case of NRE-based methods, the independent parameters θ′ are obtained by shifting
circularly (i ← i + 1 and n ← 1) the batch of parameters θ. For AMNRE, each element
in the batch has a different mask, sampled from the mask distribution. For MNRE and
MNPE, all estimators are trained at once (see Figure 3.1), even without shared embedding.
Finally, the NLL L(p) = − log p is chosen as SPSR in NRE’s objective (2.16).

Training is repeated 5 times, leading to 5 model instances for each method and each
simulator. Each instance is evaluated separately, before aggregating the results.

Evaluation All evaluation tests are performed on the testing set. The ROC and adver-
sarial ROC curves are built for a few subspaces of different sizes.

As mentioned in Section 4.1.2, high-dimensional histograms are built from sampled pop-
ulations. For NPE-based methods, we sample 222 = 4 194 304 points from the surrogate
(marginal) posteriors. For NRE-based methods, the population is sampled with MCMC
sampling (see Algorithm 2). To guarantee a representative population, we generate 4192
independent Markov chains of T = 16 384 steps with a burn-in period of B = 8192
steps and a Gaussian transition distribution6. The same settings are used when sampling
from the tractable likelihood of SLCP to retrieve the ground-truth posterior (see Section
4.2). In both low and high-dimensional subspaces Θa, dimensions are discretized into 100
uniformly spaced bins.

For histograms that are not built from populations, we compute the total probability
P = ∑

i pi. Ideally, this value should be 1, as it indicates the probability of θa being in
Θa. For the following tests, the bins are normalized by P , i.e. pi ← pi

P
.

When the ground-truth posterior is available (SLCP), we measure the accuracy of our
surrogate marginal posteriors as the EMD between their histogram and the marginalized
histogram of the ground-truth posterior. We also evaluate the consistency of surrogates
over different subspaces as the EMD between their histograms, marginalized on their
common subspace.

For the calibration test, the empirical CDF is built from percentiles computed in his-
tograms of 256 bins, for 8192 pairs (θ∗, x∗) of the testing set.

6The Gaussian distribution is centered around the previous step xt−1 with a small standard deviation.
Precisely, the standard deviations are selected to be 2 % of the parameter space dimensions. For instance,
in SLCP, where θi ∈ [−3, 3], the standard deviation is 0.02× (3 + 3) = 0.12.
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4.4 Results
In this section, we present and discuss the results of our experiments.

Simple likelihood and complex posterior
As can be observed in Figure 4.2, all models seem to converge towards an optimum
consistent over the 5 instances, with the exception of MNPE for which some instances fail
to reach the same optimum as the others.

A second observation is that training and validation losses stay close to each other, indi-
cating little overfitting. However, the three NRE-based methods demonstrate a stronger
correlation between the training and validation losses than NPE and MNPE, which could
be due to the supervised nature of NRE’s task. This observation also indicates that the
training set is representative of the validation set.

We also notice that AMNRE’s loss is higher than the one of NRE, but lower than the
one of MNRE, averaged over the subspaces. This is not surprising as NRE classifier can
use the full set of parameters to perform discrimination, while only half (2.5) of those
are provided to AMNRE classifier on average (see Section 3.2.1). Similarly, due to our
selection of subspaces of interest (mostly 1-d and 2-d), less than two parameters are
provided to MNRE classifiers, on average.
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Figure 4.2. Mean training and validation losses of SLCP surrogate models. Each color
corresponds to a different model instance. All methods converge without clear signs of
overfitting.

This interpretation is confirmed by the ROC curves (see Figure 4.3) of the classifiers, which
get closer to the upper left corner as the number of provided parameters increases. We note
that AMNRE’s performance, measured by the AUC, is very close to the performance of
MNRE, despite using only one network for all subspaces. MNPE also performs similarly
to MNRE, with the exception of the parameter subset θ3, for which it is significantly
worse.

This is explained by the inability of a MAF to model one-dimensional distributions more
complex than its base distribution, as mentioned in Appendix B. Since the base distri-
bution is a unit Gaussian, the flow is unable to model the two modes of θ3 posterior. As
expected, adversarial classifiers detect this limitation, which translates into high adver-
sarial AUC (see Figure 4.3b). Conversely, for MNRE and AMNRE, adversarial classifiers
are not able to discriminate, which is manifested by their diagonal ROC curves.
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Figure 4.3. ROC and adversarial ROC curves of SLCP surrogate models. Curves are
averaged over the model instances. The AUC’s mean and standard deviation are given
in the legend. For the full set θ, MNRE (resp. MNPE) is equivalent to NRE (resp.
NPE). The performance of classifiers increases with the number of provided parameters.
Adversarial classifiers are not able to detect significant inaccuracies.

For multi-dimensional subspaces, MAF is not limited anymore and MNPE catches up with
MNRE and AMNRE. Particularly, adversarial classifiers are not able to detect significant
discrepancies between the full surrogate posteriors and the ground-truth posterior. To
some extent, this is supported by visual inspection of 1-d and 2-d HPDRs, for a real-
ization of the testing set (see Figure 4.4). Unfortunately, because these surrogates are
5-dimensional distributions, it is difficult to analyze them further.

Nevertheless, for low-dimensional surrogate marginal posteriors, we can build accurate
histograms and measure the differences with the marginalized ground-truth posterior.
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Figure 4.4. Ground-truth posterior against NRE (left) and NPE (right) surrogate SLCP
posteriors, marginalized in one and two-dimensional subspaces, for a realization x∗ of the
testing set. Density is averaged over the model instances. Contours represent the 68.3 %,
95.5 % and 99.7 % HPDRs. Stars represent the true parameters θ∗ of the realization.
(M)NRE and (M)NPE approximate correctly the structure of the ground-truth posterior.
(M)NPE present some density leaks outside of the ground-truth posterior support.

First, let us consider the total probability of these histograms. We observe in Figure
4.5 that all marginal methods present high variance in the total probability of their his-
tograms. This could indicate 1) density leaks outside of the subspace Θa, 2) spikes or
dips in the density that are lost during the discretization, 3) an estimator that is not a
probability measure, i.e. that does not integrate to 1, or a combination thereof. Although,
for MNPE, only the first two options are possible as, by construction, a NF always defines
a probability measure.

Unlike MNRE and AMNRE, MNPE has a tendency to underestimate the total probability,
especially for the θ3 and θ4 parameters, for which MAF cannot model the two modes, as
discussed previously. This particularly stands out in the second plot of Figure 4.5, where
the EMD to the ground-truth θ3 and θ4 posteriors is up to five times larger for MNPE than
for MNRE. Considering all the subsets, we observe that MNRE and AMNRE diverges
form the ground-truth very similarly, i.e. with close EMDmean and variance, while MNPE
is generally less accurate, especially for 1-d and multi-modal posteriors (e.g. (θ2, θ3) or
(θ1, θ4) subsets).

If there are perceivable differences between the ground-truth and the surrogates, there are
also differences between the surrogates themselves. Having consistent surrogate marginal
posteriors, i.e. surrogates that are close when marginalized on their common subspace,
is one of the challenges of MPE. For instance, the surrogate posteriors over (θ1, θ2) and
(θ2, θ3) should be equivalent when projected onto θ2. As explained in Section 4.3, we use
the EMD between (marginalized) histograms to quantify this consistency. Doing so for
all 1-d and 2-d subspaces, we obtain a consistency matrix, which can support interesting
discussions.
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In Figure 4.6a, we observe that MNRE surrogate marginal posteriors for subsets con-
taining θ5 are less consistent with each others than subsets containing other parameters.
The same disparity appears for AMNRE, although less significantly. This could indicate
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Figure 4.6. EMD between 1-d and 2-d surrogate marginal SLCP posterior histograms.
Values are averaged over 64 realizations from the testing set and the model instances.
Darker colors indicate larger average EMDs. Cells are greyed out at the intersection of
two marginal posteriors that are equal or that do not have a common subspace. AMNRE
surrogates are more consistent than MNRE’s. MNPE has consistency issues.

that, among the five parameters of SLCP, θ5 is the hardest to infer. This hypothesis
is supported by Figure 4.5, as the EMD to the marginalized ground-truth posterior is
significantly higher, on average, for subsets containing θ5.
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Figure 4.7. 1-d and 2-d surrogate marginal posteriors over a subset of SLCP’s param-
eters, for a realization of the testing set. Density is averaged over the model instances.
Projections of the 2-d surrogates onto their 1-d subspaces are drawn with the same color.
MNPE surrogates present artifacts in low density regions.
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In the consistency matrix of MNPE, we notice once again the limitations of MAF for the θ3
and θ4 parameters, as their surrogates are heavily inconsistent with other 2-d surrogates.
MNPE seems to also have difficulties with the (θ4, θ5) subset, but not (θ3, θ5). Since SLCP
is symmetric with respect to θ3 and θ4, this difference is likely due to model instances not
reaching the optimum during training (see Figure 4.2d). The said inconsistencies can be
visualized in Figure 4.7, for a realization of the testing set.

In the same figure, we notice that MNPE poorly models the low density regions of the
posteriors. We do not believe this phenomenon to be due solely to the MAF architecture,
as the problem also occurs for simple, Gaussian-like posteriors (see Figure A.2). In our
opinion, the unsupervised nature of NF training is partially accountable: where NRE
extracts knowledge from both high and low density samples during training, NPE only
leverages high density samples.

Overall, for SLCP, MNRE and AMNRE are fairly equivalent. The former is slightly
more accurate, but the latter has more consistent surrogates. In line with the findings of
Belghazi et al. [70] (see Section 2.4), this suggests a form of continuity across the marginal
posteriors that AMNRE takes advantage of. In conclusion of this section, for SLCP,
AMNRE definitely enables consistent arbitrary MPE. However, SLCP is toy simulator
with few parameters and, thus, not a sufficient benchmark.
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Hodgkin-Huxley
Thanks to its higher-dimensional parameter space and more complex generative process,
the HH simulator is a more challenging benchmark than SLCP. So much so that NRE
and NPE do not agree on the structure of the posterior (see Figure 4.9), which will be
discussed later on.

With HH, we wish to evaluate two additional (sub-)methods: MNRE with a shared
embedding and AMNRE with Poisson masking (see Chapter 3). In particular, for the
former, we introduce, as embedding, an MLP with 7 hidden layers of 256 neurons and
ELU [94] activation functions which processes the realization into a vector of 256 features.
Additionally, we reduce the capacity of the classifiers to 3 hidden layers of 64 neurons. To
prevent any ambiguity, in figures and tables, MNRE with shared embedding and AMNRE
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imation is significantly less dispersed than NRE’s.
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with Poisson masking are denoted MNRE-s and AMNRE-p, respectively. AMNRE with
uniform masking, which is the default, is sometimes denoted AMNRE-u.

Like for SLCP, all methods converge without signs of overfitting (see Figure A.4). The
performance of classifiers, measured by their ROC AUC, also increases with the num-
ber of provided parameters (see Figure A.5). However, unlike what we observed in the
previous section, adversarial classifiers are able to detect inaccuracies in the surrogate
marginal posteriors. Especially, all methods seem to perform worse in higher-dimensional
subspaces.

A reasonable explanation is that, for this simulator, the support of the joint distribution
p(θ, x) is very small with respect to the marginal model p(θ)p(x). Then, the regions in
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Figure 4.10. Adversarial ROC curves of HH surrogate models. Curves are averaged over
the model instances. Adversarial classifiers detect more and more inaccuracies as the
number of provided parameters increases. The AUC variance also increases.
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which the models should struggle, i.e. where r(θ, x) ≈ 1, are rare and do not impact
the training objective significantly. Consequently, NRE classifiers do not have enough
incentive to learn correctly the ratio in these regions and NPE flows do not stumble upon
low(ish) density samples enough to model correctly the associated regions. Fortunately,
adversarial classifiers are not affected by this phenomenon as their task is not to discrim-
inate between high and low density samples but rather to spot out-of-distribution (OOD)
samples in the reweighted marginal model p̂(θa, x).

Nevertheless, in low-dimensional subspaces Θa, the distribution p(θa, x) is much more
dispersed than p(θ, x), which allows to apply successfully our marginal methods. As can
be seen in Figures 4.11 and A.8, MNRE, MNPE and AMNRE seem to agree with the
marginalized surrogate posterior of NPE (cf. Figure 4.9). However, we observe that the
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Figure 4.11. MNRE against AMNRE 1-d and 2-d surrogate marginal HH posteriors, for
a realization of reference. Density is averaged over the model instances. MNRE and
AMNRE surrogates have a similar structure, but the former is more confident, i.e. less
dispersed, than the latter.
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HPDRs of MNRE surrogates are more narrow than those of AMNRE and MNPE, which
could either indicate that MNRE is overconfident or that AMNRE is underconfident.

Presented in Section 4.1.3, calibration tests allow to detect miscalibrated posterior ap-
proximations, including overconfident and underconfident ones. In Figure 4.12, we ob-
serve that the percentile CDFs of MNRE surrogates are above the diagonal, indicating
overconfident/underdispersed predictions. Conversely, AMNRE’s CDFs are closer to the
diagonal, which corresponds to better calibrated surrogates, with the exception of the
−El parameter.
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Figure 4.12. Calibration tests of 1-d surrogate marginal HH posteriors. Percentile CDFs
are averaged over the model instances. All models are almost calibrated. MNRE sur-
rogates are less well calibrated than AMNRE’s. Using a shared embedding (MNRE) or
does not seem to alter significantly the calibration. MNPE surrogates for the gM, τmax
and σ parameters are miscalibrated.
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It should be kept in mind that the calibration test does not judge of the accuracy of
approximations, but, rather, of their consistency with the prior. In particular, a surrogate
that is equal to the prior, i.e. p̂(θ|x) = p(θ), would be perfectly calibrated. Therefore, this
test allows us to say that AMNRE surrogates are better calibrated than MNRE’s, but
not that they are more accurate. The overconfidence issue and how to alleviate it using
regularizing loss functions is discussed in Appendix C. For MNPE, we observe a strong
miscalibration for the gM, τmax and σ parameters. As for θ3 and θ4 in SLCP, this is due
to the limitations of MAF, which cannot model non-Gaussian 1-d distributions.

Concerning the variants of MNRE and AMNRE, we note that sharing an embedding
among smaller classifiers does not deteriorate or improve significantly the accuracy of
MNRE in low-dimensional subspaces. However, the smaller classifiers are not expressive
enough to model the higher-dimensional marginal posteriors, as demonstrated by their
adversarial ROC curves (see Figure 4.10). In addition to slightly faster convergence
(see Figure A.4) and lightweight architecture (a tenth of the parameters), an unsuspected
benefit of sharing an embedding is to have more consistent surrogates (see Figure A.7). In
particular, MNRE with shared embedding has more consistent surrogates than AMNRE,
which is itself more consistent than MNRE without shared embedding.

The opposite happens for AMNRE with Poisson masking as it significantly deteriorates
the consistency of AMNRE surrogates, although it does not seem to affect their accuracy
in low dimension (see Figures 4.10 and A.10). In high dimension, the results are mixed
as adversarial classifiers consider AMNRE-p less accurate than AMNRE-u for the subset
(gNa, gK, gl,−VT ), but more accurate for the full set θ. Therefore, it is difficult to draw
any conclusions, especially with the large variability of the AUCs. Nevertheless, we note
that, even though AMNRE-p has mostly access to one or two parameters during training,
it learns how to discriminate when provided more parameters. Consequently, AMNRE
could be trained with data in which a lot of features are missing, and still approximate
correctly the full posterior.

Overall, the HH benchmark allows to demonstrate that MPE methods, and especially
MNRE and AMNRE, are able to model low-dimensional marginal posteriors accurately,
even when the full posterior is hard to approximate. However, it also demonstrates that
further work is needed to enable accurate arbitrary MPE over all subspaces for challenging
simulators.

Gravitational waves
As explained in Section 4.2, traditional methods used by the LVC (LIGO/Virgo collabo-
ration) typically take days to evaluate the posterior of a single GW observation. Green
et al. [32] demonstrate that NPE performs posterior inference over the full 15-dimensional
set of BBH parameters in close agreement with these sampling methods, for a fraction of
the time (minutes).

Similarly, we attempt to demonstrate that AMNRE performs inference of the 1-d and 2-
d marginal posteriors in agreement with sampling methods. Because the realizations
are more structured than in SLCP and HH, we introduce an embedding network to
(pre)process the realizations into vectors of 512 features. This embedding is a ResNet
[77] consisting of 10 residual blocks of 2 layers with 512 neurons and ELU [94] activation
functions. We also increase the capacity of the main network to 11 hidden layers of 512
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neurons. This architecture is small (a fifteenth of the parameters) in comparison to the
flow used by Green et al. [32].

For training, the number of batches per epoch is increased to 1024, the initial learning
rate is reduced to 2× 10−4 and the scheduling patience increased to 11. Three model
instances are trained, instead of five. The total training procedure, for each instance,
takes about 2 hours on a single GTX 1080Ti GPU. All model instances converge to a
common optimum, without signs of overfitting (see Figure 4.13).
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Figure 4.13. Mean training and validation losses of AMNRE surrogate models for GW.
All instances converge without signs of overfitting.

Like Green et al. [32], we evaluate our model(s) on the first recorded gravitational-wave
event, GW150914, which takes less than a second for all 1-d and 2-d surrogate marginal
posteriors combined. As reference, we use the posterior samples produced by Bilby [92, 93]
with the dynesty [90, 96] nested sampler. The sampler setup is borrowed from the official
implementation of Green et al. [32], although the prior is modified to be consistent with
our prior. It took 3 days for Bilby to complete the posterior inference of GW150914.

As can be seen in Figure 4.14, AMNRE surrogate marginal posteriors share the same
structure as the marginalized posterior inferred by Bilby. For some parameter subsets,
especially those containing the mass m1 and the mass ratio q, the predictions are not
accurate or, rather, not confident enough. However, for other parameters, including the
luminosity distance dL and sky location (α, δ), the surrogates are in close agreement with
Bilby.

Overall, these results are clearly less accurate than the ones of Green et al. [32]. Never-
theless, it should be reminded that our network has only a fifteenth of the parameters of
theirs and take 2 hours instead of 6 days to be trained. Our results could likely be im-
proved with a larger network and/or embedding. The sampling of extrinsic parameters at
train time could also improve accuracy, although it breaks the assumption of a black box
simulator. Eventually, even though these results are not impressive with respect to stat-
of-the-art methods, they are a promising demonstration of the applicability of AMNRE
in challenging scientific settings.
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Figure 4.14. AMNRE 1-d and 2-d surrogate marginal posteriors against marginalized
Bilby posterior samples over a subset of the parameters, for the GW150914 observation.
Density is averaged over the model instances. Most surrogates share the same structure
as Bilby’s predictions. The surrogates of the mass m1 and mass ratio q have too much
variance, i.e. are underconfident, but predict the correct modes. The surrogate of the
inclination angle θJN has a secondary mode. The surrogates of the coalescence time tc,
luminosity distance dL and sky location (α, δ) are in close agreement with Bilby.
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Chapter 5

Conclusion
The central contribution of this work is the novel AMNREmethod, which enables integration-
less amortized MPE over arbitrary parameter subspaces. The method is easy to use,
efficient and can be implemented with basic network architectures, like MLPs.

We demonstrate through a series of experiments the applicability of the method and
compare it to two baselines, MNRE and MNPE, in which a different estimator is trained
for each subspaces of interest. The results indicate that AMNRE is competitive with
the baselines, even though it uses only one estimator for all subspaces. In particular,
AMNRE learns accurate surrogate marginal posteriors over low-dimensional subspaces.
The surrogates of AMNRE also seem to be more consistent with each others than MNRE’s
or MNPE’s. However, we note that sharing an embedding between MNRE classifiers
improves greatly their consistency, measured as the EMD between distribution histograms.
The evaluation of the EMD, as well as the construction of histograms, is performed using
torchist, a Python package to build and manipulate histograms within the PyTorch
framework, which we developed for this thesis. Also based on histograms, a calibration
test inspired by coverage tests of credible regions is used to assess if surrogate posteriors
are consistent with respect to the prior. We find that some estimators, notably MNRE
classifiers, are overconfident in their predictions.

For high-dimensional subspaces, the results are mixed as AMNRE performs well for the
SLCP simulator but poorly for the more challenging HH simulator. We formulate and
motivate the hypothesis that the latter result is due to the low entropy of HH’s posterior,
which makes the discrimination task of NRE classifiers too “easy”. To diagnose this
problem, we introduce a novel adversarial ROC test that is able to detect differences
between the implicit joint distribution of the simulator and an approximation thereof.
We detect, with this test, that neither (M)NRE nor AMNRE were able to model the full
HH posterior.

Finally, we apply AMNRE to the challenging problem of BBH parameter inference from
GW observation and obtain promising results, paving the way for convenient and efficient
parameter inference for domain scientists.

Limitations
The main limitation of our work is the lack of comparison with alternative methods. To
the best of our knowledge, ACFlow [75] is currently the only alternative that enables
truly arbitrary MPE. During our work, we attempted several times to use the official
implementation1 of Li et al. [75]. Unfortunately, we were not able to adapt it to our use

1https://github.com/lupalab/ACFlow

38

https://github.com/lupalab/ACFlow


as 1) we are not familiar with the framework used by the authors (TensorFlow) and 2) the
implementation is centered around the paper’s experiments, i.e. not modular.

A second limitation of our experiments is the absence of hyperparameter optimization.
Especially, we use very simple network architectures with large capacities and allocate
large simulation budgets. These are important aspects of our methods that we do not
study. In particular, concerning MNPE, a lot of issues were linked to the MAF archi-
tecture. We suspect that more powerful NF architectures like neural spline flows (NSFs)
[40] or unconstrained monotonic neural networks (UMNNs) [41] could lead to better re-
sults, although they are slower than MAF. The impact of small simulation budgets on
the approximation quality is also an aspect worth inspecting.

Because NRE does not work correctly for the HH simulator, we are not able to assess
properly the performance of AMNRE in high dimension. Consequently, most of our ex-
periments focus on one and two-dimensional marginal posteriors. These are important
from the point of view of domain scientists, but do not cover the full capacity of AM-
NRE. Using another simulator, with a more dispersed posterior, could have allowed more
compelling results.

Finally, some quality assessment tools, like the consistency matrix or the calibration test,
can be applied to larger than one and two-dimensional subspaces, but, because they are
computationally expensive, we only apply them to the latter. With a better planning of
our experiments and a more systematic approach to research, we could have presented
more supporting results.

Perspectives
In this work, we sometimes scratch the surface of deep problems without actually inves-
tigating them. Here follows a list of problems, related or not to AMNRE, for which we
suggest a direction of investigation.

• As mentioned previously, we observe poor behaviors of NRE-based methods for the HH
simulator. Since adversarial classifiers are able to detect these behaviors, a promising
idea would be to use an adversarial classifier not as diagnostic of the ratio estimator
but as a correction.

• We notice on several occasions that (M)NPE tends to model poorly the low density
regions of the posterior. An interesting idea would be to apply the discrimination
objective of NRE to a NPE flow, reformulated as a LTE ratio estimator (see Section
4.1.1). This should lead to a NPE model that is accurate both in high and low density
regions.

• The overconfidence of some surrogates is also a problem we detect. We discuss and
propose regularization methods to alleviate this problem in Appendix C.

• In our experiments, the consistency of surrogates is used as a quality assessment tool.
In Appendix D, we consider to impose the consistency by minimizing measures of
deviation between the surrogates.

Generally, all the limitations of our work could also be the subject of future work.
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Acronyms

ABC approximate Bayesian computation 3, 4, 20
ACFlow arbitrary conditional normalizing flow 9, 38
AD automatic differentiation 5
AMNRE arbitrary marginal neural ratio estimation 11, 13, 21–39, 51, 52, 54,

57, 58, 61, 62
AUC area under the curve 15, 16, 25, 26, 32, 35
BBH binary black hole 20, 35, 38
CBC compact binary coalescence 20
CDF cumulative density function 18, 19, 23, 34, 49, 66
DE density estimation 3, 4
DL deep learning 4, 9
ELU exponential linear unit 22, 31, 35
EMD earth mover’s distance 16–18, 23, 27–29, 38, 58
FI feature imputation 8, 9
FL focal loss 65–68
FPR false positive rate 15
GAIN generative adversarial imputation net 9
GAN generative adversarial network 9, 10
GPU graphics processing unit 17, 18, 22
GT ground-truth 19
GW gravitational waves 20, 21, 35, 36, 38
HH Hodgkin-Huxley 20, 21, 31–35, 38, 39, 52–

54, 58–62, 66–68
HPDR highest posterior density region 18, 19, 26, 27, 34, 66, 68
i.i.d. independent and identically distributed 4, 5
KL Kullback-Leibler 16, 18
LFI likelihood-free inference 1–3, 15
LTE likelihood-to-evidence 7, 8, 11–13, 15, 16, 39
LTR likelihood-to-reference 7, 8
LVC LIGO/Virgo collaboration 20, 35
MADE masked autoencoder for distribution estimation 63
MAF masked autoregressive flow 22, 25–27, 30, 35, 39, 63,

64
MCMC Markov chain Monte Carlo 8, 9, 18, 20, 23
MLP multi-layer perceptron 9, 12, 15, 22, 31, 38
MNPE marginal neural posterior estimation 11, 12, 21, 23–30, 33–35,

38, 39, 49, 50, 52, 59
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MNRE marginal neural ratio estimation 11, 12, 16, 21, 23–35, 38,
50–52, 54–56, 58–60, 65,
66, 68, 69

MPE marginal posterior estimation 2, 9, 11, 15, 27, 30, 35, 38
NC neural conditioner 9–13
NDE neural density estimation 4
NF normalizing flow 4, 5, 9, 15, 22, 27, 30, 39,

63
NLL negative log-likelihood 7, 23, 65–67
NN neural network 4–6, 8, 22, 63, 64, 69
NPE neural posterior estimation 5, 6, 8, 9, 11, 15, 16, 20–24,

26, 27, 30, 31, 33, 35, 39
NRE neural ratio estimation 6, 8–13, 15, 16, 18, 21–24,

26, 27, 30, 31, 33, 38, 39,
52, 66

NSF neural spline flow 39
OOD out-of-distribution 33
OT optimal transportation 17
PL peripheral loss 65–68
ReLU rectified linear unit 22
ROC receiver operating characteristic 15, 16, 23, 25, 26, 32, 35,

38, 53
SBC simulation-based calibration 19
SBI simulation-based inference 1, 3
SGD stochastic gradient descent 5
SLCP simple likelihood and complex posterior 19, 21–23, 25–32, 35, 38,

49–51
SMC sequential Monte Carlo 5
SNPE sequential neural posterior estimation 5, 6, 20
SPSR strictly proper scoring rule 7, 13, 23, 66
SVD singular value decomposition 20, 21
TPR true positive rate 15
UMNN unconstrained monotonic neural network 39
VAE variational auto-encoder 9
VAEAC variational auto-encoder with arbitrary condi-

tioning
9

41



Bibliography
[1] M Clemencic et al. “The LHCb simulation application, Gauss: design, evolution

and experience”. In: Journal of Physics: Conference Series. Vol. 331. 3. IOP Pub-
lishing. 2011, p. 032023 (page 1).

[2] LIGO Scientific Collaboration et al. “LALSuite: LIGO Scientific Collaboration
Algorithm Library Suite”. In: Astrophysics Source Code Library (2020), ascl–2012
(page 1).

[3] Alan L Hodgkin and Andrew F Huxley. “A quantitative description of membrane
current and its application to conduction and excitation in nerve”. In: The Journal
of physiology 117.4 (1952), pp. 500–544 (pages 1, 20).

[4] CE Dangerfield, David Kay, and Kevin Burrage. “Stochastic models and simulation
of ion channel dynamics”. In: Procedia Computer Science 1.1 (2010), pp. 1587–1596
(page 1).

[5] George Casella and Roger L Berger. “Statistical inference”. Cengage Learning,
2021 (page 1).

[6] George EP Box and George C Tiao. “Bayesian inference in statistical analysis”.
Vol. 40. John Wiley & Sons, 2011 (page 1).

[7] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. “The frontier of simulation-
based inference”. In: Proceedings of the National Academy of Sciences (2020)
(pages 1, 3).

[8] Sara Bolognesi et al. “Spin and parity of a single-produced resonance at the LHC”.
In: Physical Review D 86.9 (2012), p. 095031 (page 2).

[9] Benjamin P Abbott et al. “Improved analysis of GW150914 using a fully spin-
precessing waveform model”. In: Physical Review X 6.4 (2016), p. 041014 (page 2).

[10] Nabila Aghanim et al. “Planck 2018 results-VI. Cosmological parameters”. In:
Astronomy & Astrophysics 641 (2020), A6 (page 2).

[11] Antti Solonen et al. “Efficient MCMC for climate model parameter estimation:
Parallel adaptive chains and early rejection”. In: Bayesian Analysis 7.3 (2012),
pp. 715–736 (page 2).

[12] Pedro J Gonçalves et al. “Training deep neural density estimators to identify mech-
anistic models of neural dynamics”. In: Elife 9 (2020), e56261 (pages 2, 4, 6, 20,
31).

[13] Fabian Fröhlich et al. “Efficient parameter estimation enables the prediction of
drug response using a mechanistic pan-cancer pathway model”. In: Cell systems
7.6 (2018), pp. 567–579 (page 2).

[14] Markus Stoye et al. “Likelihood-free inference with an improved cross-entropy es-
timator”. In: arXiv preprint arXiv:1808.00973 (2018) (page 2).

42



[15] Johann Brehmer et al. “Mining gold from implicit models to improve likelihood-
free inference”. In: Proceedings of the National Academy of Sciences 117.10 (2020),
pp. 5242–5249 (page 2).

[16] Donald B Rubin. “Bayesianly justifiable and relevant frequency calculations for the
applied statistician”. In: The Annals of Statistics (1984), pp. 1151–1172 (page 3).

[17] Mark A Beaumont, Wenyang Zhang, and David J Balding. “Approximate Bayesian
computation in population genetics”. In: Genetics 162.4 (2002), pp. 2025–2035
(page 3).

[18] Scott A Sisson, Yanan Fan, and Mark Beaumont. “Handbook of approximate
Bayesian computation”. CRC Press, 2018 (page 3).

[19] Peter Whittle. “On the smoothing of probability density functions”. In: Journal of
the Royal Statistical Society: Series B (Methodological) 20.2 (1958), pp. 334–343
(page 3).

[20] Emanuel Parzen. “On estimation of a probability density function and mode”. In:
The annals of mathematical statistics 33.3 (1962), pp. 1065–1076 (page 3).

[21] Evelyn Fix and Joseph Lawson Hodges. “Discriminatory analysis. Nonparametric
discrimination: Consistency properties”. In: International Statistical Review/Revue
Internationale de Statistique 57.3 (1989), pp. 238–247 (page 4).

[22] Naomi S Altman. “An introduction to kernel and nearest-neighbor nonparametric
regression”. In: The American Statistician 46.3 (1992), pp. 175–185 (page 4).

[23] Piotr Indyk and Rajeev Motwani. “Approximate nearest neighbors: towards re-
moving the curse of dimensionality”. In: Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 1998, pp. 604–613 (page 4).

[24] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–
37 (page 4).

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature
521.7553 (2015), pp. 436–444 (page 4).

[26] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–
366 (pages 4, 9).

[27] George Papamakarios and Iain Murray. “Fast ε-free inference of simulation models
with bayesian conditional density estimation”. In: Advances in neural information
processing systems. 2016, pp. 1028–1036 (pages 4–6).

[28] Jan-Matthis Lueckmann et al. “Flexible statistical inference for mechanistic models
of neural dynamics”. In: arXiv preprint arXiv:1711.01861 (2017) (pages 4–6).

[29] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. “Automatic poste-
rior transformation for likelihood-free inference”. In: International Conference on
Machine Learning. PMLR. 2019, pp. 2404–2414 (pages 4–6).

[30] George Papamakarios, David Sterratt, and Iain Murray. “Sequential neural likeli-
hood: Fast likelihood-free inference with autoregressive flows”. In: The 22nd Inter-
national Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 837–
848 (pages 4, 19).

43



[31] George Papamakarios. “Neural density estimation and likelihood-free inference”.
In: arXiv preprint arXiv:1910.13233 (2019) (page 4).

[32] Stephen R Green and Jonathan Gair. “Complete parameter inference for GW150914
using deep learning”. In: Machine Learning: Science and Technology 2.3 (2021),
03LT01 (pages 4, 20, 21, 35, 36).

[33] Maximilian Dax et al. “Real-time gravitational-wave science with neural posterior
estimation”. In: arXiv preprint arXiv:2106.12594 (2021) (pages 4, 12).

[34] Ivan Kobyzev, Simon Prince, and Marcus Brubaker. “Normalizing flows: An in-
troduction and review of current methods”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020) (pages 4, 9).

[35] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent
neural networks”. In: International Conference on Machine Learning. PMLR. 2016,
pp. 1747–1756 (page 4).

[36] Aaron van den Oord et al. “Conditional image generation with pixelcnn decoders”.
In: arXiv preprint arXiv:1606.05328 (2016) (page 4).

[37] Diederik P Kingma and Prafulla Dhariwal. “Glow: Generative flow with invertible
1x1 convolutions”. In: arXiv preprint arXiv:1807.03039 (2018) (page 4).

[38] George Papamakarios et al. “Normalizing flows for probabilistic modeling and in-
ference”. In: arXiv preprint arXiv:1912.02762 (2019) (page 4).

[39] George Papamakarios, Theo Pavlakou, and Iain Murray. “Masked autoregressive
flow for density estimation”. In: arXiv preprint arXiv:1705.07057 (2017) (pages 4,
9, 22, 63).

[40] Conor Durkan et al. “Neural spline flows”. In: Advances in Neural Information
Processing Systems 32 (2019), pp. 7511–7522 (pages 4, 39).

[41] Antoine Wehenkel and Gilles Louppe. “Unconstrained monotonic neural networks”.
In: Advances in Neural Information Processing Systems 32 (2019), pp. 1545–1555
(pages 4, 39).

[42] Cédric Villani. “Topics in optimal transportation”. 58. American Mathematical
Soc., 2003 (pages 4, 17).

[43] Vladimir Igorevich Bogachev, Aleksandr Viktorovich Kolesnikov, and Kirill Vladimirovich
Medvedev. “Triangular transformations of measures”. In: Sbornik: Mathematics
196.3 (2005), p. 309 (page 4).

[44] Léon Bottou. “Large-scale machine learning with stochastic gradient descent”. In:
Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186 (page 5).

[45] Ilya Sutskever et al. “On the importance of initialization and momentum in deep
learning”. In: International conference on machine learning. PMLR. 2013, pp. 1139–
1147 (page 5).

[46] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014) (pages 5, 22).

[47] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In:
arXiv preprint arXiv:1711.05101 (2017) (pages 5, 22).

44



[48] Atilim Gunes Baydin et al. “Automatic differentiation in machine learning: a sur-
vey”. In: Journal of machine learning research 18 (2018) (page 5).

[49] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017) (pages 5,
15).

[50] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning rep-
resentations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536
(page 5).

[51] Robert Hecht-Nielsen. “Theory of the backpropagation neural network”. In: Neural
networks for perception. Elsevier, 1992, pp. 65–93 (page 5).

[52] Scott A Sisson, Yanan Fan, and Mark M Tanaka. “Sequential monte carlo without
likelihoods”. In: Proceedings of the National Academy of Sciences 104.6 (2007),
pp. 1760–1765 (page 5).

[53] Gareth W Peters, Yanan Fan, and Scott A Sisson. “On sequential Monte Carlo,
partial rejection control and approximate Bayesian computation”. In: Statistics
and Computing 22.6 (2012), pp. 1209–1222 (page 5).

[54] Fernando V Bonassi and MikeWest. “Sequential Monte Carlo with adaptive weights
for approximate Bayesian computation”. In: Bayesian Analysis 10.1 (2015), pp. 171–
187 (page 5).

[55] Kyle Cranmer, Juan Pavez, and Gilles Louppe. “Approximating likelihood ra-
tios with calibrated discriminative classifiers”. In: arXiv preprint arXiv:1506.02169
(2015) (pages 6, 7).

[56] Jerzy Neyman and Egon Sharpe Pearson. “IX. On the problem of the most efficient
tests of statistical hypotheses”. In: Philosophical Transactions of the Royal Society
of London. Series A, Containing Papers of a Mathematical or Physical Character
231.694-706 (1933), pp. 289–337 (page 6).

[57] Quang H Vuong. “Likelihood ratio tests for model selection and non-nested hy-
potheses”. In: Econometrica: Journal of the Econometric Society (1989), pp. 307–
333 (page 6).

[58] Joeri Hermans, Volodimir Begy, and Gilles Louppe. “Likelihood-free MCMC with
Amortized Approximate Ratio Estimators”. In: arXiv preprint arXiv:1903.04057
(2019) (pages 7, 8, 11, 12, 16).

[59] Owen Thomas et al. “Likelihood-free inference by ratio estimation”. In: arXiv
preprint arXiv:1611.10242 (2016) (page 7).

[60] Tilmann Gneiting and Adrian E Raftery. “Strictly proper scoring rules, prediction,
and estimation”. In: Journal of the American statistical Association 102.477 (2007),
pp. 359–378 (page 7).

[61] Edgar C Merkle and Mark Steyvers. “Choosing a strictly proper scoring rule”. In:
Decision Analysis 10.4 (2013), pp. 292–304 (page 7).

[62] W Keith Hastings. “Monte Carlo sampling methods using Markov chains and their
applications”. In: (1970) (pages 8, 19).

[63] Ming-Hui Chen, Qi-Man Shao, and Joseph G Ibrahim. “Monte Carlo methods in
Bayesian computation”. Springer Science & Business Media, 2012 (pages 8, 19).

45



[64] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013) (page 9).

[65] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural infor-
mation processing systems 27 (2014) (page 9).

[66] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning structured output repre-
sentation using deep conditional generative models”. In: Advances in neural infor-
mation processing systems 28 (2015), pp. 3483–3491 (page 9).

[67] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”. In:
arXiv preprint arXiv:1411.1784 (2014) (page 9).

[68] Jinsung Yoon, James Jordon, and Mihaela Schaar. “Gain: Missing data imputa-
tion using generative adversarial nets”. In: International Conference on Machine
Learning. PMLR. 2018, pp. 5689–5698 (page 9).

[69] Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. “Variational autoencoder with
arbitrary conditioning”. In: arXiv preprint arXiv:1806.02382 (2018) (page 9).

[70] Mohamed Ishmael Belghazi et al. “Learning about an exponential amount of con-
ditional distributions”. In: arXiv preprint arXiv:1902.08401 (2019) (pages 9–13,
30).

[71] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage
and organization in the brain.” In: Psychological review 65.6 (1958), p. 386 (pages 9,
12).

[72] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear independent
components estimation”. In: arXiv preprint arXiv:1410.8516 (2014) (page 9).

[73] Durk P Kingma et al. “Improved variational inference with inverse autoregressive
flow”. In: Advances in neural information processing systems 29 (2016), pp. 4743–
4751 (page 9).

[74] Alessio Spantini, Daniele Bigoni, and Youssef Marzouk. “Inference via low-dimensional
couplings”. In: The Journal of Machine Learning Research 19.1 (2018), pp. 2639–
2709 (page 9).

[75] Yang Li, Shoaib Akbar, and Junier B Oliva. “ACFlow: Flow Models for Arbitrary
Conditional Likelihoods”. In: Proceedings of Machine Learning Research 119 (2020)
(pages 9, 38).

[76] Arnaud Delaunoy et al. “Lightning-Fast Gravitational Wave Parameter Inference
through Neural Amortization”. In: arXiv preprint arXiv:2010.12931 (2020) (pages 11,
12, 18).

[77] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–
778 (pages 12, 35).

[78] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learn-
ing library”. In: Advances in neural information processing systems 32 (2019),
pp. 8026–8037 (page 15).

[79] Conor Durkan et al. “nflows: normalizing flows in PyTorch”. 2020. url: https:
//github.com/bayesiains/nflows (page 15).

46

https://github.com/bayesiains/nflows
https://github.com/bayesiains/nflows


[80] John D Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in sci-
ence & engineering 9.03 (2007), pp. 90–95 (page 15).

[81] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In:
The annals of mathematical statistics 22.1 (1951), pp. 79–86 (page 16).

[82] Yossi Rubner, Leonidas J Guibas, and Carlo Tomasi. “The earth mover’s distance,
multi-dimensional scaling, and color-based image retrieval”. In: Proceedings of the
ARPA image understanding workshop. Vol. 661. 1997, p. 668 (page 16).

[83] Marco Cuturi. “Sinkhorn distances: Lightspeed computation of optimal transport”.
In: Advances in neural information processing systems 26 (2013), pp. 2292–2300
(page 17).

[84] Richard Sinkhorn. “Diagonal equivalence to matrices with prescribed row and col-
umn sums”. In: The American Mathematical Monthly 74.4 (1967), pp. 402–405
(page 17).

[85] Philip A Knight. “The Sinkhorn–Knopp algorithm: convergence and applications”.
In: SIAM Journal on Matrix Analysis and Applications 30.1 (2008), pp. 261–275
(page 17).

[86] Charles R Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(2020), pp. 357–362 (page 17).

[87] Pauli Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing
in Python”. In: Nature methods 17.3 (2020), pp. 261–272 (page 17).

[88] Sean Talts et al. “Validating Bayesian inference algorithms with simulation-based
calibration”. In: arXiv preprint arXiv:1804.06788 (2018) (page 19).

[89] John Skilling. “Nested sampling for general Bayesian computation”. In: Bayesian
analysis 1.4 (2006), pp. 833–859 (page 20).

[90] Edward Higson et al. “Dynamic nested sampling: an improved algorithm for pa-
rameter estimation and evidence calculation”. In: Statistics and Computing 29.5
(2019), pp. 891–913 (pages 20, 36).

[91] John Veitch et al. “Parameter estimation for compact binaries with ground-based
gravitational-wave observations using the LALInference software library”. In: Phys-
ical Review D 91.4 (2015), p. 042003 (page 20).

[92] Gregory Ashton et al. “BILBY: a user-friendly Bayesian inference library for gravitational-
wave astronomy”. In: The Astrophysical Journal Supplement Series 241.2 (2019),
p. 27 (pages 20, 36).

[93] IM Romero-Shaw et al. “Bayesian inference for compact binary coalescences with
BILBY: Validation and application to the first LIGO–Virgo gravitational-wave
transient catalogue”. In: Monthly Notices of the Royal Astronomical Society 499.3
(2020), pp. 3295–3319 (pages 20, 36).

[94] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accu-
rate deep network learning by exponential linear units (elus)”. In: arXiv preprint
arXiv:1511.07289 (2015) (pages 22, 31, 35).

[95] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltz-
mann machines”. In: Icml. 2010 (page 22).

47



[96] Joshua S Speagle. “dynesty: a dynamic nested sampling package for estimating
Bayesian posteriors and evidences”. In: Monthly Notices of the Royal Astronomical
Society 493.3 (2020), pp. 3132–3158 (page 36).

[97] Mathieu Germain et al. “Made: Masked autoencoder for distribution estimation”.
In: International Conference on Machine Learning. PMLR. 2015, pp. 881–889
(page 63).

[98] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and
scalable predictive uncertainty estimation using deep ensembles”. In: arXiv preprint
arXiv:1612.01474 (2016) (page 65).

[99] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-
of-distribution examples in neural networks”. In: arXiv preprint arXiv:1610.02136
(2016) (page 65).

[100] Gabriel Pereyra et al. “Regularizing neural networks by penalizing confident output
distributions”. In: arXiv preprint arXiv:1701.06548 (2017) (page 65).

[101] Chuan Guo et al. “On calibration of modern neural networks”. In: International
Conference on Machine Learning. PMLR. 2017, pp. 1321–1330 (page 65).

[102] Jishnu Mukhoti et al. “Calibrating deep neural networks using focal loss”. In: arXiv
preprint arXiv:2002.09437 (2020) (page 65).

[103] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Proceedings of the
IEEE international conference on computer vision. 2017, pp. 2980–2988 (page 65).

48



Appendix A

Additional figures
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Figure A.1. Calibration tests of 1-d surrogate marginal SLCP posteriors. CDFs are
averaged over the model instances. MNPE presents strong miscalibration of θ3 and θ4
surrogates.
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Figure A.2. MNRE against MNPE 1-d and 2-d surrogate marginal SLCP posteriors, for
a realization of the testing set. Density is averaged over the model instances. MNPE
surrogates present artifacts in low density regions.
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Figure A.3. MNRE against AMNRE 1-d and 2-d surrogate marginal SLCP posteriors,
for a realization of the testing set. Density is averaged over the model instances. MNRE
and AMNRE surrogates share sensibly the same structure.
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Figure A.4. Mean training and validation losses of HH surrogate models. All methods
converge without signs of overfitting. NRE almost reaches a null loss. Sharing an em-
bedding among smaller classifiers does not hinder MNRE’s convergence. AMNRE with
Poisson masking is significantly less stable.
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Figure A.6. Total probability (left) and entropy (right) of 1-d and 2-d surrogate marginal
HH posterior histograms. The bars represent the quantity mean and standard deviation
over 64 realizations from the testing set and the model instances. The total probability
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(c) AMNRE with uniform masking
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(d) AMNRE with Poisson masking

Figure A.7. EMD between 1-d and 2-d surrogate marginal HH posterior histograms.
Values are averaged over 64 realizations from the testing set and the model instances.
MNRE with shared embedding is more consistent than without. AMNRE with Poisson
masking is less consistent than with uniform masking.
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Figure A.8. MNRE against MNPE 1-d and 2-d surrogate marginal HH posteriors, for a
realization of reference. Density is averaged over the model instances. The two methods
agree on the structure of the marginal posteriors, with the exceptions of the τmax and σ
parameters, which are poorly modeled by MNPE.
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Figure A.9. MNRE 1-d and 2-d surrogate marginal HH posteriors, with (orange) and
without (blue) shared embedding, for a realization of reference. Density is averaged over
the model instances. Sharing an embedding among smaller estimators does not seem to
deteriorate MNRE’s approximations in low-dimension.
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Figure A.10. AMNRE 1-d and 2-d surrogate marginal HH posteriors, with uniform (blue)
and Poisson (orange) masking, for a realization of reference. Density is averaged over the
model instances. Poisson masking does not seem to affect 1-d and 2-d AMNRE surrogates.
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Figure A.11. AMNRE full surrogate marginal HH posteriors, with uniform (blue) and
Poisson (orange) masking, for a realization of the testing set. Density is averaged over
the model instances. Poisson masking affects high-dimensional AMNRE surrogates.
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Appendix B

Autoregressive flows
In NFs (see Section 2.2.1), autoregressive transformations impose the tractability of their
Jacobian by decomposing u = f(x) into a sequence of univariate transformations

ui = fi(x≤i), (B.1)

where xi is the i-th element of x. This constraint leads to a triangular Jacobian

Jf = ∂f

∂x
=



∂f1
∂x1

0 0 0
... . . . 0 0
∂fi
∂x1

. . . ∂fi
∂xi

0
... . . .

 , (B.2)

allowing to calculate the determinant as the product of the diagonal elements,∣∣∣det Jf (x)
∣∣∣ =

∣∣∣∣∣∏
i

∂fi
∂xi

(x≤i)
∣∣∣∣∣. (B.3)

Masked autoregressive flow
The masked autoregressive flow (MAF) [39] is a widespread example of NF implementing
autoregressive transformations. MAF uses affine univariate transformations

ui = xi − µi
exp(σi)

, (B.4)

where the terms µi and σi are unconstrained parametric functions of x<i, leading to the
simple Jacobian determinant ∣∣∣det Jf (x)

∣∣∣ = exp
(
−
∑
i

σi

)
. (B.5)

Taking inspiration from MADE [97], Papamakarios et al. [39] propose to compute (µi, σi)
for all i in a single forward pass of a NN by dropping connections to ensure that output
(µi, σi) is only connected to inputs x<i (see Figure B.1), thereby improving efficiency.

As a NF, a MAF is composed of several autoregressive transformations. However, by
design, autoregressive transformations are limited in what they can model by the order
of components in x. Especially, with (B.4), there is an affine bijection between u1 and x1,
regardless of the number of transformations. To overcome this problem, Papamakarios
et al. [39] propose to use a different component order in each autoregressive transforma-
tion.

Unfortunately, this is not applicable to one-dimensional distributions, i.e. scalar x. In
such cases, MAF is limited to shift and scale the base distribution.
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Figure B.1. Illustration of the dropped connections of the NN computing the pairs (µi, σi)
in MAF. For the sake of readability, we represent only three neurons per hidden layers.
In practice, this number can be arbitrary large, as long as (µi, σi) is only connected to
x<i and potential conditioning data y.
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Appendix C

Overconfidence
As mentioned in Section 4.4, (A)MNRE surrogates are sometimes too confident, i.e.
underdispersed with respect to the true marginal posteriors. In real-world situations,
like health care or self-driving cars, this overconfidence could become a serious threat if
the model predictions are used to take decisions. Ideally, predictive networks should not
only be accurate, but also know when they are likely to be incorrect. In practice, it is
preferable to have a hesitant network and fall back to more robust solutions when it is
not confident in its predictions than an overconfident network.

Overconfidence is actually a common issue of modern neural networks and many methods
have been proposed to alleviate this problem [98–101]. For classification, Mukhoti et al.
[102] propose to replace the widespread NLL L(p) = − log p by the focal loss (FL) [103]

L(p) = −(1− p)γ log p, (C.1)
where γ ≥ 1 is an adjustable parameter. The rational is that, with the NLL, even if an
item is perfectly classified, the gradient still pushes the network to increase its confidence,
i.e. the derivative of − log p is not null when p = 1. Conversely, the FL has a null
derivative when p = 1, which reduces the importance of already well classified samples.
Therefore, the FL prevents the predicted distributions from becoming too “peaky”, i.e.
it increases the entropy of the predictions [102]. The FL can be seen as a regularization
of the NLL and the larger γ, the stronger the regularization.
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Figure C.1. Comparison between the FL (left) and PL (right). As γ increases, the FL
deviates more from the NLL while the PL gets closer. Both have null derivatives at p = 1.
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A desirable property for regularization methods is the ability to reduce their strength
arbitrarily such that, at the limit, the method is equivalent to not applying regularization.
The FL does not possess that property as it is not possible to choose γ under 1 for
numerical stability reasons. To alleviate this problem, we propose the peripheral loss
(PL)

L(p) = −(1− pγ) log p, (C.2)
where γ ≥ 1 is an adjustable parameter. The FL and PL are complementary: the
former enables arbitrarily large regularization while the latter enables arbitrarily small
regularization. When γ = 1, the FL and PL are equivalent.

Demonstration We apply the FL and PL, with γ = 2, to MNRE of the 1-d and 2-d
marginal posteriors of the HH simulator. The experimental settings are not modified
otherwise (see Section 4.3).

As expected, the confidence of the surrogates is reduced with respect to NLL (see Figure
C.2). As a consequence, the entropy of predictions is increased (see Figure C.3) and the
HPDRs are more dispersed (see Figure C.4). Unlike the NLL, FL and PL are not SPSRs,
meaning that they do not lead to surrogates that are probability measures. In particular,
this implies that the surrogates will not integrate to a total probability of 1, which is
indeed observed in Figure C.3.

Further work is needed to analyze formally the implications of the FL and PL on NRE
approximations. However, these empirical results are promising.
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Figure C.2. Calibration tests of MNRE 1-d surrogate marginal HH posteriors, comparing
the FL and PL. CDFs are averaged over the model instances. The percentile CDFs are
below the diagonal, meaning that low percentiles are underrepresented, i.e. the surrogates
are underconfident. It was the opposite with NLL (see Figure 4.12).
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Figure C.3. Total probability (left) and entropy (right) of 1-d and 2-d surrogate marginal
HH posterior histograms, comparing the NLL, FL and PL. The bars represent the quantity
mean and standard deviation over 64 realizations from the testing set and the model
instances. FL and PL do not lead to surrogate posteriors with a total probability of 1.
FL and PL increase the entropy of predictions.
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Figure C.4. MNRE 1-d and 2-d surrogate marginal HH posterior over a subset of param-
eters, comparing the FL (top) and PL (bottom), for a realization of reference. FL and
PL induce more dispersed HPDRs, although FL significantly more.
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Appendix D

Consistency optimization
A solution to improve the consistency between several surrogate marginal posteriors is to
come up with measures of consistency and optimize them. In the case of MNRE, a simple
class of such measures are those that quantify how much the marginal ratio estimators
deviate from relations that the true ratios satisfy. For instance, let a, b and c be three
masks in {0, 1}|Θ| such that a = b+ c. Then, we have

r(θa, x) = p(θa|x)
p(θa)

= p(θc|θb, x)
p(θc)

r(θb, x) (D.1)

∇θb log r(θa, x) = ∇θb log p(θc|θb, x) +∇θb log r(θb, x), (D.2)

from which we derive

Ep(θc)[r(θa, x)] = r(θb, x) (D.3a)

Ep(θc|θb,x)

[
1

r(θa, x)

]
= 1
r(θb, x) (D.3b)

Ep(θc|θb,x)[∇θb log r(θa, x)] = ∇θb log r(θb, x). (D.3c)

Ideally, these relations should also be satisfied by the estimators r̂(θa, x) and r̂(θb, x). If
not, we can measure the respective deviations as

Lα = Ep(θa)p(x)
[
(r̂(θa, x)− r̂(θb, x))2

]
(D.4a)

Lβ = Ep(θa,x)

( 1
r̂(θa, x) −

1
r̂(θb, x)

)2
 (D.4b)

Lγ = Ep(θa,x)

∥∥∥∥∥∇θb log r̂(θa, x)
r̂(θb, x)

∥∥∥∥∥
2
. (D.4c)

Unfortunately, the true ratios r(θa, x) and r(θb, x) are not the only solutions to (D.3).
In particular, any estimators r̂(θa, x) = r̂(θb, x) satisfy the relations and minimize Lα,
Lβ and Lγ more than the true ratios. To prevent such degeneration of r̂(θa, x), r̂(θb, x)
must be the only one affected by these terms during training. Since NN optimization
is overwhelmingly gradient based, a solution would be to consider r̂(θa, x) as a constant
while evaluating the gradients of Lα, Lβ and Lγ. On the same principle, we could first
train r̂(θa, x) and fix its weights before training r̂(θb, x).

The formal study and application of these ideas is left to future work.
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