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Abstract

Digital microscopy and radiology generate growing amounts of imagery data. To
help practitioners find the information crucial to establish the most accurate possible
diagnoses, Artificial Intelligence tools need to be developed.

This master thesis, based on the study of existing literature and open-source
code, proposes a distributed deep learning architecture that allows a user, by using a
fast approximate nearest neighbour search, to retrieve similar histopathology images
to a query image.

The retained Deep Learning architecture, ResNet50 with some modifications,
was distributed on different servers in order to allow the handling of up to million
or billion images.

It was trained on a large-scale dataset of 67 classes of annotated medical images
and the obtained results are quite promising, as well for the visual similarity of the
retrieved images as for the search time. This research also analyses the generalisation
to classes on which the system was not trained, and the impact of the approximated
search on the accuracy and the retrieval time.

Nevertheless, even though the results are positive, this system might present
some limitations as it was tested on only one dataset and was not reviewed by
medical practitioners.
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Chapter 1

Introduction

This chapter explains the motivation and the context of this research. It also states
the objectives to be attained. And finally, it details the structure of this work.

1.1 Motivation
The expanding use of digital microscopy and radiography in pathology departments
contributes to large amounts of imagery data. These fast-growing collections of
images can convey a lot of useful and relevant information for medical practitioners.
To ensure easy retrieval of the details that will help establish diagnoses in the most
accurate and rapid way, efficient Artificial Intelligence (AI) tools need to be further
developed.

At the University of Liège, Cytomine ULiège Research and Development, a group
of computer science researchers, is involved in such projects. In the context of
BigPicture European project, one of their goals is to create the biggest database of
pathology images to increase the development of AI in medicine 1 2.

In 2010, they initiated the Cytomine open-source project to facilitate the work
of multidisciplinary teams dealing with very large imaging data. Thanks to their
initiatives, remote collaboration is made possible through sharing of images, algo-
rithms, and quantitative results over the web. Cytomine is used worldwide in a wide
range of areas: biomedicine, digital collections, industrial quality control, . . . 3

1.2 Objectives
Whole-slide images (WSI) refer to the digital scan of a tissue section. Thanks to
the Cytomine platform, those WSIs can be inspected on a web browser (Figure 1.1).
Manual annotations can be added by selecting parts of a WSI (Figure 1.2). To help
practitioners or researchers diagnose unknown features to them, they could select
the unknown feature, and retrieve similar annotated images from a database based
on a similarity measure (Figure 1.3). This is called Content-Based Image Retrieval
(CBIR).

1https://uliege.cytomine.org/
2https://cytomine.be/
3Ib. 1 and 2

1

https://uliege.cytomine.org/
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Figure 1.1: Whole-slide image(WSI) of a lymph node section image captured from the
Cytomine platform.

Figure 1.2: Manual annotation of a whole-slide image.

2



Figure 1.3: Illustration of CBIR. Left: feature selected by a practitioner. Right: one of
the returned annotated images.

A Content-Based Image Retrieval (CBIR) system was previously developed by
the Cytomine R&D team. This method was built on a randomised tree-based
method and applied on small scale datasets. But the goal here is to apply the
method to potentially million or billion images.

To do so, this master thesis will focus on the literature on deep learning-based
methods, implement some of these and compare their performances on a large
dataset of digital pathology image annotations acquired over several years using
the Cytomine platform. This study would enable to select the best method to in-
tegrate into the Cytomine web plateform in the future, e.g. in the context of the
BigPicture project where millions of images will be collected.

Another major goal of this thesis is to store the dataset on different servers, and
if possible, integrate the new application into Cytomine.

1.3 Structure
This thesis is organised as follows:

• Chapter 2 gives insight into the background necessary to understand Deep
Learning. It then summarises the key publications that contributed to the
creation of the new code and the implementation of the training method;

• Chapter 3 is dedicated to the methodology adopted to fulfil the first key ob-
jective;

• Chapter 4 analyses and compares the obtained results;

• Chapter 5 is devoted to the distribution of the retained method on different
servers, i.e. the second main objective;

• Chapter 6 presents the conclusions and makes suggestions for the future work
of this research.

3



Chapter 2

Theoretical basis and state-of-the
art content-based image retrieval
methods

First of all, for the sake of clarity, it is important to emphasise that, in this work,
the retrieval of similar images is carried out with Content-Based Image Retrieval
(CBIR). It is different from other, most commonly used, types of image retrieval
systems, such as Text-Based Image Retrieval where textual queries are used to
describe desired images. In contrast, in CBIR systems, queries only rely on the
visual content of the image, and not on text entered by a user. An example of a
popular CBIR system is Google Reverse Image Search Engine.

With such a system, the user must enter an image for which he/she wants to
find similar images. This is the query image. In turn, Google Reverse Image Search
Engine returns a list of similar images it found. Those images come from a specific
database designed for the image retrieval problem. An image that is stored in this
database and ready to be retrieved is said to be indexed in this database. Examples
of retrieved images with Google Reverse Image Search Engine are shown in Figure
2.1.

To facilitate understanding, this chapter first presents the concept of Deep Learn-
ing as it is used by most of the recent approaches for CBIR. Then, it summarises
key publications that served as a basis to achieve the first main objective of this

Figure 2.1: Examples of retrieved images with Google Reverse Image Search Engine
(right), based on a histopathology query image (left).
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thesis, namely create an open-source implementation to enable content-based image
retrieval on histopathology images using Deep Learning. These recent and/or most
popular publications in the field of digital image retrieval, can, for the purpose of
this thesis, be divided in two categories.

The first category describes specific CBIR systems that were previously devel-
oped for histopathology image retrieval. These methods are compared and their key
advantages are discussed to identify which features could be reused for our purpose.
In a second step, we analyse further deep learning methods for image similarity
computation as well as methods for approximate, fast indexing/retrieval, as our
purpose is to apply such methods on large datasets. These different approaches will
be evaluated on our large dataset in the next chapter.

2.1 Deep learning
This section was inspired by both [Zhang et al., 2021] and [Louppe, 2021], and it
is intended to, first, throw light on the necessary background to understand the
following sections of this chapter, and, second, present the image feature extractors
that will be used for this thesis.

2.1.1 Neuron
The building block of deep learning is the neuron. It is a unit with n inputs, each
of which is associated a weight wi, 0 ≤ i ≤ n, and a bias b. If x is an input of size
n, the output of a neuron is:

y = σ(xw + b) (2.1)
where σ is the activation function of the neuron. This function must be differ-

entiable, and decides whether a neuron should be activated or not, while adding
non-linearities to the network.

2.1.2 Multilayer perceptron
By combining several neurons, it is possible to create very complex networks. The
simplest one is the Multilayer Perceptron (MLP).

Putting several neurons side-by-side creates a linear layer, and the multilayer
perceptron is made of a succession of those. The last layer is called the output layer
and each intermediate layer is called a hidden layer (Figure 2.2).

If an arbitrary layer i ≥ 1 of h neurons has an input xi−1 ∈ Rn, this layer has a
weight matrix Wi ∈ Rn×h and a bias vector bi ∈ Rh. Therefore, the ouput of the
layer xi ∈ Rh is given by:

xi = σ(xi−1Wi + bi) (2.2)
The output y of a multilayer perceptron, given an input x, of l layers is computed

by using equation 2.2 in series, where x0 = x and y = xl.

5



Figure 2.2: Visualisation of a multilayer perceptron [Zhang et al., 2021].

Figure 2.3: Illustration of the max pooling [Zhang et al., 2021].

2.1.3 Convolutional neural network
MLPs are not suited for processing images as they cannot capture spatial information
about the pixels. One application of the Convolutional Neural Networks (CNN) aims
to compensate the incapability of the MLPs to understand images well.

The main operation of a CNN is the convolution: for a 3D tensor x ∈ RC×H×W

and a convolution kernel u ∈ RC×h×w, the output is a 2D object y ∈ R(H−h−1)×(W−w−1):

yj,i = bj,i +
C−1∑
c=0

(xc ~ uc) = bj,i +
C−1∑
c=0

h−1∑
n=0

w−1∑
m=0

xc,n+j,m+iuc,n,m (2.3)

More informally, u acts as a filter sliding on the image.
By stacking several convolutional layers, in the same way as for the MLP, and

using pooling operations to reduce the size of the input of a layer, one builds a
convolutional neural network, that is capable of processing images well. There are
two kinds of pooling operations used in CNN: the max pooling, and the average
pooling. The max pooling takes the maximum value in the window of the image,
and reports this value for the output (Figure 2.3). The average pooling does almost
the same, but reports the average value in the window instead.

2.1.4 Training a neural network
For a neural network to provide decent results, a particular set of weights and biases
need to be found. For the CNN, the weights to be found are the convolution kernels
weights.

6



Figure 2.4: Shortcut connection [He et al., 2016]

The main problem is to find the right set of weights and biases that will provide
the best results possible. This set is found during the operation called training.

In this master thesis, only supervised learning algorithms are used: this section
will therefore only cover supervised learning.

The main idea of supervised training is to provide the network elements of a
labelled dataset to make predictions. Those predictions can be compared to the
ground truth, i.e. the true prediction to make. This comparison with the ground
truth is made possible by using a loss function, or loss for short, that results in a
training error to minimise.

In order to minimise the training error, an optimisation algorithm called Stochas-
tic Gradient Descent (SGD), or one of its derivative such as the Adam optimiser, is
used. It is an iterative algorithm, that slowly converges towards a local minimum
of the loss function by updating the weights and biases of the network accordingly.
Each iteration is called an epoch, and it consists of having forwarded each sample
from the training dataset in the network. Usually, the samples are provided to the
network by batches of a given size. This allows to speed up the training and to re-
duce the variance of the gradient estimation. The weights and biases of the network
are updated after each batch.

2.1.5 ResNet50
The paper "Deep Residual Learning for Image Recognition" [He et al., 2016] solves
a problem happening during the training of a deep CNN known as degradation:
when the network depth increases, the accuracy gets worse. This is unexpected
because the network should be able to model more complex functions when it has
more layers.

This degradation actually might indicate that the optimiser is having difficulty
approximating identity mappings by multiple non-linear layers. For this reason, the
authors introduce the shortcut connection:

y = F(x,Wi) + x (2.4)
where F represents a mapping to be learned, with weights Wi. Figure 2.4 shows

a graph of the operations.
With this formulation, the optimiser can simply put the weights to 0 to approx-

imate a linear mapping. The shortcut connection also has the auxialiary benefit
of preventing gradient vanishing during training. ResNet50 is a deep CNN that
uses those shortcut connections and that will be used as a feature extractor for this
master thesis.
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Figure 2.5: DenseNet [Huang et al., 2017]

2.1.6 DenseNet-121
The paper "Densely Connected Convolutional Networks" [Huang et al., 2017] intro-
duced the concept of DenseNets, that solves a problem related to ResNets: the
identity function and the output of the function F are combined by summation,
and this may hurt the information flow in the network.

As a solution, the authors propose the dense connectivity: the output of a layer
is connected to all the subsequent layers. More formally, layer i receives the outputs
of all its preceding layers x0,x1, . . . ,xi−1:

xi = Hi([x0,x1, . . . ,xi−1]) (2.5)
where H is a non linear transformation.
DenseNet-121 is a deep CNN that uses this dense connectivity. It is made of

several densely connected dense blocks, between which there are transition blocks.
Figure 2.5 shows a diagram of the DenseNet architecture. It will also be used as a
feature extractor in this master thesis.

2.1.7 DeiT
The paper "Training data-efficient image transformers & distillation through atten-
tion" introduces the network DeiT. It is an image classifier that does not make use of
convolution, but that instead uses the Transformer architecture [Vaswani et al., 2017].
It can be used as a feature extractor in the context of similar image retrieval, just
as ResNet50 or DenseNet-121. This Transformer and the Vision Transformer are
described here below.

2.1.7.1 Transformer

The Transformer makes use of the attention mechanism. In the context of the
attention mechanism, a query vector q ∈ Rd interacts with a matrix of keys K ∈
Rk×d to obtain the output. This output is the weighted sum of the k vectors of the
value matrix V ∈ Rk×d. In the case of the Transformer, the weights of the sum are
obtained with the following rule:

Attention(Q,K,V) = softmax(QK>/
√
d)V (2.6)

The Transformer takes the attention mechanism two steps further: it uses self-
attention, and a Multi-Head attention layer.

Given a sequence of input tokens x1,x2, . . . ,xn, where xi ∈ Rd, 1 ≤ i ≤ n, the
self-attention outputs a sequence yi of the same length [Zhang et al., 2021]:

yi = f(xi, (x1,x1), (x2,x2), . . . , (xn,xn)) (2.7)

8



Figure 2.6: Multi-Head attention [Vaswani et al., 2017]

The output of the self-attention shows how relevant vector xi is to the other
vectors in the sequence.

Last but not least, the Multi-Head attention uses h attention transformations
with different weights. The results of each transformation are concatenated and
given to a linear layer (Figure 2.6).

Put all together, this describes the Multi-Head Attention block in Figure 2.7.
Given the sequence is processed in parallel, the network needs positional information
about each element in the sequence: this is the role of the Positional Encoding block.
As can be seen in Figure 2.7, the Transformer architecture also uses the shortcut
connections that are used in ResNet50.

Figure 2.7: Transformer architecture [Vaswani et al., 2017]

9



DeiT only uses the encoder Transformer, so the decoder does not need to be
explained.

2.1.7.2 Vision Transformer

DeiT is an enhancement of ViT [Dosovitskiy et al., 2020], but the main workflow
remains globally the same. The image is first divided into several patches, that
are unrolled into a sequence. Those patches are flattened and transformed with a
trainable linear projection.

In the Vision Transformer, the Positional Encoding is learned during training,
which is not the case in the original Tranformer architecture.

The [class] token is an extra learnable parameter prepended to the sequence
given to the encoder. Only the output of the encoder corresponding to this [class]
token is fed to the classification layer.

Figure 2.8 summarises those operations.
DeiT is used in this work instead of ViT as it is more data-efficient. Indeed, ViT

requires to be trained on too large datasets to be effective.

Figure 2.8: Transformer architecture [Dosovitskiy et al., 2020]

2.2 Publications describing specific CBIR systems
This section first summarises the methods used by the previous CBIR system that
was implemented on the Cytomine platform. It then summarises either popular or
recent publications based on deep learning in the field of histopathology content-
based image retrieval.

2.2.1 Incremental Indexing and Distributed Image Search
using Shared Randomized Vocabularies

The paper "Incremental Indexing and Distributed Image Search using Shared Ran-
domized Vocabularies" [Marée et al., 2010] (later referred to as randomised vec-
tors system) proposes a distributed CBIR technique based on randomised vectors.
This image retrieval technique was the one implemented in Cytomine in 2010. It

10



stands out from the ones summarised hereafter, as it is the only one that presents
a fully unsupervised approach. The code is available at the following address :
https://github.com/cytomine/CBIRetrieval

2.2.1.1 Methods

A centralised architecture for the distributed approach is developed: a central server,
that might be the client, is aware of a network of cooperating image servers; each
of these image servers stores and indexes a part of the complete image dataset.

How is the image similarity measure derived? A common mapping structure is
deployed on each image server and on the central server, and it assigns multiple
visual words to multiple patches of an image. A visual word is a tuple describing
a patch that will be defined later. This mapping structure is made of an ensemble
of T vectors Vt (t = 1, t = 2, . . . t = T ). Each of these vectors has a fixed size
and is constructed in the following way: Vt is composed of the m binary tests
(test1(t), . . . testm(t)). Each test is chosen this way: testi(t) ≡ 1(xji < thi), where
the attribute xji and the threshold value thi are randomly chosen.

The threshold values are the same for the central server and each image server.
Each image server manages its own index. For each new reference image IR stored,
the image server extracts patches of random sizes at random locations. These are
resized to 16 × 16. Each of these patches is then mapped by each Vt to a binary
code B = b1 . . . bm, bi = 1 if testi(t) = 1, 0 otherwise. The tuple (B, t) is a visual
word describing a patch. Therefore, each patch is mapped by each Vt to a visual
word, which is indexed through a hash table. For each t and each B, a list of pairs is
maintained and composed of image identifiers IR and the number NIR,B,t of patches
of IR mapped by Vt to that visual word, as well as the total count NBlocal,t of patches
of the local image set mapped to this visual word.

An estimation of the similarity measure between a query image IQ and a reference
image IR is given by :

k(IQ, IR) =
T∑
t=1

1
T

∑
B∈νIQ,t

1
NB,t

NIQ,B,t

NIQ

NIR,B,t

NIR

(2.8)

where νIQ,t is the set of non-empty visual words induced by the vector Vt for the
query image IQ, NB,t is the number of patches from all reference images that are
mapped to word B by Vt, NIQ,B,t (resp. NIR,B,t) is the number of patches from IQ
(resp. IR) that are mapped to B by Vt and NIR

and NIQ
are respectively the number

of patches extracted from the reference image and the query image.
A communication protocol is implemented between the central server and the

image servers to retrieve similar images, as each image server must known the value
NB,t to compute the similarity. When a client makes a request, he/she sends a list
B of triplets (B, t, NIQ,B,t

NIQ

) to the central server (the central server can compute it,
if the client does not know the mapping structure), that describes his/her query
image. The central server sends each (B, t) to the central server, to request their
value NBlocal,t. The central server can then compute the global value NB,t, and
send the four-tuples (B, t, 1

NB,t
,
NIQ,B,t

NIQ

) to each image server. The servers can then
compute the global similarity between the query image and its local index images,
and return the top list to the central server, that forwards the list to the client.
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2.2.1.2 Datasets and results

The solution proposed in the paper has been tested on three different datasets :
IRMA-2005, SPORTS and a dataset composed of whole-slide histopathology images.

IRMA-2005 is composed of 10,000 X-ray images : 9000 are used for the database,
1000 for the query. About 40 methods were evaluated on this dataset with results
ranging from 26.7% to 87.4%. The proposed method scored 81.6%. This inferior
score is due to the unsupervised approach of the method.

SPORTS consists of 2449 images of sport grouped into five classes. 75% of images
are used as the reference dataset, 25% for the query. A score of 71.02% is obtained
(average accuracy per class). The results obtained are better than in a reference
that uses supervised approaches.

Histopathology is made of 8 whole-slide images of about 20,000×20,000 pixels.
These images are divided into tiles of 256×256. Because ground-truth is not available
for such amount of data, only qualitative results are shown.

2.2.2 Similar image search for histopathology: SMILY
The paper "Similar image search for histopathology: SMILY" [Hegde et al., 2019]
proposes a deep-learning based reverse image search tool for histopathology images:
Similar Images Like Yours.

2.2.2.1 Methods

Smily is based on a convolutional neural network called a deep ranking network (see
Section 2.3.1). Unfortunately, there seems to be no model publicly available, neither
is the dataset used for learning.

The network is trained on about 500,000,000 natural images from 18,000 dis-
tinct classes (it is never trained on histopathology images). In this way, the network
learned to distinguish similar images from dissimilar ones by computing and com-
paring the embeddings of input images. This network was successfully leveraged to
generate embeddings that discriminated between cellular phenotypes in high-content
screening.

To test the database, slides from The Cancer Genome Atlas (TCGA, public
dataset) were used. The slides are divided into patches of 300×300 and compressed
into embedding vectors of size 128. Moreover, the four 90° rotations and the mir-
rored versions for the patch are generated as well as their corresponding embeddings
(Figure 2.9). In the absence of any compression, storing the embeddings only re-
quires a 0.4% storage overhead.

To query the database, Smily computes the embedding of the query patch, and
then compares this embedding with those stored into the database (with Euclidian
distance). Only the most similar orientation is returned, and no results within 1000
pixels from each other is returned. For efficient lookups, k-d trees are used, with
leaf size of 40 and depth of 6. The authors provide no explanation to justify these
choices. Furthermore, the search is parallelised. To perform a search, the user has
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Figure 2.9: The two major steps of the Smily architecture. Top: indexation of annotated
WSIs in the database. Bottom: retrieval of similar patches. [Hegde et al., 2019]

to provide a patch of height and width between 200 and 400 pixels (Figure 2.9).
The patch is resized to 224×224.

2.2.2.2 Results

The evaluation used 127,000 patches of 45 slides from TCGA, and 22,500 query
patches from another 15 slides, which are not identified in the paper. The patches
were annotated with various non-exhaustive histologic features, however, no mention
is made of how many features were used. Their annotations are not made public, but
some annotations of TCGA are available on GDC website. A top-5 score was used
to assess the performance of retrieving patches with the same histologic features.

On prostate specimens, Smily achieved a top-5 score of 62%, which is significantly
higher than SIFT, a traditional feature extractor (44.2%). When Smily retrieved
results that did not exactly match the histologic feature, it commonly returned a
similar feature. When the search was expanded to multiple organs, the histologic
feature match score was at 65.3%, but the combined histologic feature and organ
match was lower at 40.0%.

Smily was also evaluated by pathologists. This is a crucial step because if a
query image contains only fat, a retrieved image search result that contains both
fat and an artery (but is only annotated as “artery”) will be considered as an error
during the prior evaluation. As a control to ensure that graders were not artificially
scoring Smily results highly, some search results were from a random search instead
of Smily. On prostate specimens, a top-5 score of 62.1% to find similar histologic
features was achieved. On multiple organs, it achieved 57.8%.

The parallel computation for the lookup is indeed needed : using 400 computers
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Figure 2.10: Construction of the mosaic for Yottixel. The WSI is divided into patches,
that are clustered based on their colour and their location. Only one patch from each
cluster is selected to be part of the mosaic. [Kalra et al., 2020]

with ten compute threads each, queries had a median query time of 1.3s. With 100
less patches in the database while using a naive loopkup, the query time was 25
seconds.

2.2.3 Yottixel – An Image Search Engine for Large Archives
of Histopathology Whole Slide Images

The paper "Yottixel" [Kalra et al., 2020] proposes an unsupervised technique to ef-
ficiently create a representative set of patches of images.

2.2.3.1 Methods

There are two major phases in the execution of Yottixel : (i) the offline indexing
phase and (ii) the run-time search.

Offline indexing phase Yottixel indexes a WSI in two steps: by creating its
mosaic (a set of representative patches) and by converting the mosaic to a Bunch
of Barcodes (BoB). To create the mosaic of an image, a WSI is first segmented into
Kch regions based on their colour, using k-means (Figure 2.10). This segmentation
frequently results in the segmentation of different tissue types. A small percentage
of patches (5%) is then randomly selected by preserving the spatial diversity of
the patches. This is done by using k-means for grouping the patches based on
their location. The reason k-means is used a second time instead of using random
sampling is that random sampling will provide inconsistent results.

After the mosaic is created, the patches are converted into a set of barcodes
(Figure 2.11). First a patch is converted to a feature vector using a DenseNet,
which is pretrained on ImageNet. DensetNet seems to capture more compound/-
complex patterns within histopathology images than VGG19, Inception or in-house
solutions. After the extraction, a discrete differentiation or the MinMax algorithm
[Tizhoosh et al., 2016] is used to enable a fast Hamming distance search. The Min-
Max algorithm takes a matrix as an input. The matrix is projected into several
vectors, and these vectors are smoothed in order to remove small peaks and valleys.
Then all the maxima and minima of the vectors are found : the elements that are
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Figure 2.11: Derivation of the BoB index for Yottixel. The mosaic of the slide is first
computed, and each feature vector of each patch is binarised. [Kalra et al., 2020]

between a maximum and a minimum are set to 1, 0 otherwise. Finally, all the vec-
tors are appended to each other, and the result is returned. For an average 700MB
WSI, the BoB index is as small as 10KB.

Run-time search There are two modes of searching : a vertical and a horizontal
search. The vertical search is confined to the same organ as the query patch ; for
the horizontal one, the entire index is searched.

2.2.3.2 Datasets and results

Two datasets are used to validate the efficiency of Yottixel. The first one is pri-
vate and composed of 300 WSIs across more than 80 diagnoses on multiple organs
(104GB). The second one consists of 2,020 WSIs from The Cancer Genome Atlas
(2TB). Only WSIs that contain Formalin-Fixed Paraffin-Embedded tissue are kept.
Each slide is labelled with the diagnoses and the organ. While the exact list of slides
the authors have used is not available, it is possible to know which slide contains
FFPE tissue, because it is mentioned in the name of the file.

The researchers observed that their quantitative results were three to four times
better than a random approach. They also noticed that satisfactory results can be
obtained with a smaller mosaic (except for rare organs or diagnoses). However, they
did not compare their results with other works.

The most interesting result is the one provided by users’ feedbacks. These users
were three pathologists and users with knowledge in computer vision. They were
presented a query image and the corresponding top three search results. The results
were however presented in a random order, and they were asked to label the results
with the very poor, poor, fair, good or very good label. The top results were assigned
the most very good labels, and pathologists assigned more very good labels to the
top results than other users. The top results were also assigned more very good
labels than the other results. In a general way, the results were all quite positive.

2.2.4 Luigi: Large-scale histopathological image retrieval
system using deep texture representations

The paper "Luigi" [Komura et al., 2018] proposes the first publicly available CBIR
system for histopathological images.
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2.2.4.1 Methods

The network used as the backbone of Luigi is VGG-16, which is only trained on
ImageNet.

For the retrieval, the feature map of the layer "conv3 1" is used to compute an
approximation of the following matrix :

Gij =
∑
k

FikFjk

where G, F and k are respectively the correlation matrix, the feature map and the
position in the image. This operation is called bilinear pooling, and results in a
representation that has a high spatial invariance, but that has a too high dimension
(65,536). Therefore, Compact Bilinear Pooling [Gao et al., 2016] is used. It is a
method that approximates bilinear pooling with two random matrices, and does not
need training. The final dimension of the feature vector is 1024. When making a
query, the feature vector is computed for the query image and also for its rotation
by 90°, 180° and 270°. Then an approximation of the nearest neighbour is searched
in the database with randomised kd-trees. The distance metric used is the cosine
similarity.

When a WSI is indexed in the database, patches of 256×256 are extracted from
approximately 50% of the tissue area. Tissue areas are detected with Otsu’s method,
which is used for automatic thresholding. Patches are extracted at scale ×10 and
×20. Then, the feature vector of each patch is computed. k-means clustering
(k = 500) is used to remove similar patches within a same slide, and only the
patches that are the nearest from their centroid are stored in the database.

2.2.4.2 Dataset and results

The slides used in the database are from The Cancer Genome Altas (public dataset).
The diagnostic of some slides were downloaded from the National Cancer Institute
GDC legacy archive. Slides without enough information were discarded. As already
mentioned, no dataset was used for training.

To assess the performance of the system, the authors have made queries for 4
cancer types. Then, the average precision is computed for three queries of each
type for the top 20 images. For each cancer type, the precision is over 0.75. But
most of the retrieved incorrect images seemed to be similar to the diagnosis of the
pathologists, because the classification of cancer type is not always strict.

2.2.5 Discussion about the litterature
Based on the papers presented above, it seemed to make sense to explore the Ran-
domised Trees system, Smily, Yottixel and Luigi more deeply.

This section discusses the characteristics of these systems, to highlight what can
be exploitable to create a new effective architecture.

The randomised vectors system and Smily both propose a distributed approach.
This makes them good candidates for very large collections of images: by splitting
the images on different servers, the search will naturally be faster. In addition, in
the randomised vectors system, the image servers can be added or removed at will,
which means that it is fault-tolerant, in other words, a crashed image server will not
cause the whole system to fail.
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The randomised vectors system and Yottixel both present an architecture that
uses patches of medical images for the similarity search, even though the first one is
for images while the second one is for WSIs. But it can be assumed that if it works
for WSIs, it can work for images.

Three systems, Smily, Yottixel and Luigi, are not trained on specific data. Smily
is trained on natural images, and Yottixel and Luigi are only pretrained on Ima-
geNet. This leads to the idea that, for this research, an exploration of datasets
containing natural images will have to be carried out to check whether this can
possibly impact positively on accuracy compared with an untrained model.

Finally, both Smily and Luigi retrieve similar images based on a nearest neigh-
bour search of the feature vector of the images. A similar method for fast nearest
neighbour search will be described in the next section.

2.3 Publications about general image similarity
This section, through summaries of a number of publications, outlines the deep
learning methods for image similarity, and describes Faiss, a library for fast approx-
imate nearest neighbours search, often used for image retrieval systems.

The purpose of this section is twofold. It wants, on the one hand, to look for
relevant material to construct the new architecture, and, on the other hand, to
render the above described systems comprehensible for the readers.

2.3.1 Learning Fine-grained Image Similarity with Deep Rank-
ing

This paper [Wang et al., 2014] explains the key notion of deep ranking (DR), crucial
to understand the Smily architecture. A convolutional neural network trained with
DR allows to measure the distance between two images. The similarity measure
between two images P and Q is defined as :

D(P,Q) = ‖f(P )− f(Q)‖2 (2.9)

which is the squared Euclidian distance between the embedding vectors of P and
Q. The smaller this distance is, the more similar the images are. In Equation
2.9, the embedding function f(·), by mapping an image P to its corresponding
embedding vector, describes the input image. This definition formulates the similar
image ranking problem as finding the closest neighbour of an image in the Euclidian
space. The goal of this technique is therefore to find an embedding function f(·)
that assigns smaller distances to more similar image pairs.

The network is composed of three convolutional networks in parallel : a Con-
vNet, which can be any deep CNN, encodes strong invariance and captures image
semantics. The other two parts take down-sampled images and use only one con-
volutional layer and a max pooling layer to capture the visual appearance (Figure
2.12).
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Figure 2.12: Architecture used for DR [Wang et al., 2014]

Figure 2.13: Training for DR [Wang et al., 2014]

During training, three of these networks, that share the same set of weights, are
put in parallel: one is fed an image pi, another one is fed a similar image p+

i and the
last one is fed a dissimilar image p−i (Figure 2.13). Each of these networks computes
the embedding vector of its input image. The following loss is evaluated and the
gradient is back-propagated in each network:

L(pi, p+
i , p

−
i ) = max(0, g +D(f(pi), f(p+

i ))−D(f(pi), f(p−i )) (2.10)

where g is a gap parameter.
The triplets ti = (pi, p+

i , p
−
i ) are computed in the triplet sampling layer, for which

the authors propose an algorithm to efficiently sample the triplets. This algorithm
is based on the relevance of each image within its class. To compute this relevance,
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they use the "golden feature", a weighted linear combination of 27 features. Some
of the features are learned through image annotation data, and the weights of the
linear combination are learned based on human rated data. This annotation can be
a very tedious task. Another possibility is to randomly chose p+

i in the same class
as pi, and to select a random image from another random class for p−i (later referred
to as the random sampling). But doing so will only be efficient if images from the
same class are visually similar.

The ConvNet network is pretrained on the ImageNet dataset.

2.3.2 Deep metric learning
Just as in Deep Ranking, the goal of Deep Metric Learning (DML) is to find an
embedding function φ : X → Φ ⊆ RD mapping the datapoints x ∈ X into an
embedding space Φ [Roth et al., 2020]. It allows to measure the similarity between
two datapoints xi, xj as d(φ(xi), φ(xj)) with d(·, ·) a predefined distance function
(in this case, the Euclidian distance). Therefore, Deep Ranking can be interpreted
as a particular case of Deep Metric Learning.

Three key components have to be defined to train a DML model:

• the architecture of the model: the feature extractor that will serve as the
embedding function φ(·);

• the objective function: the training loss that will enforce the similarity mea-
sure;

• the data sampling strategy: a strategy that samples informative minibatches.

2.3.2.1 Margin loss

The Margin Loss [Wu et al., 2017] is a ranking-based objective used within the
framework of DML. It leads to an objective similar to the DR objective: learn-
ing a function φ such that dφ(xa,xn) − dφ(xa,xp) < γ, where xa is an anchor, xp
is a positive image (meaning xa and xp are of the same class), and xn is a negative
image (xa and xp are of different classes).

If P = {(i, j)|i, j ∈ B}, B is a minibatch, then

Lmargin =
∑

(i,j)∈P
γ + Iyi=yj

(d(φi, φj)− β)− Iyi 6=yj
(d(φi, φj)− β) (2.11)

This loss differs from the triplet margin loss used for DR in the use of the
learnable parameter β. In practice, the pairs (i, j) are obtained with tuple mining:
as in DR, it is suboptimal to consider all the pairs you can make with the minibatch.
Only one positive sample and one negative sample from the minibatch are selected
per sample. In this case, distance weighted sampling [Wu et al., 2017] is used for the
negative samples: the smaller the distance to the anchor is, the likelier this sample
will be chosen to make a pair. The motivation is that the training will be more
effective by selecting negative samples with small distances to the anchor than by
selecting negative samples of already high distances.

q(d(φi, φj)) ∝ d(φi, φj)D−2[1− 1
4d(φi, φj)]

D−2
3 (2.12)
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P (n|a) ∝ max(λ, 1
q(d(φa, φn))) (2.13)

The positive sample is a random sample from the minibatch of the same class as
the anchor.

Roth et al. [Roth et al., 2020] noticed that for the network to generalise better,
it is preferable to have a high number of features with significant variance than a
few. As there are shifts in the distributions of the training set and the tests sets,
having a few numbers of features with significant variance will lead to a model that
fits the training set better but that will generalise less well. For this reason, they
propose the following training regularisation for the ranking-based objective: they
randomly switch the positive and the negative samples with a probability pswitch.
This pushes samples of the same class apart, which leads to a model that generates
feature vectors with a higher number of features of significant variance.

2.3.2.2 ProxyNCA++

ProxyNCA++ [Teh et al., 2020] is a proxy-based objective function: the model
learns a class representative for each class, and pushes the feature vector of a sample
towards its corresponding class representative. As the Margin Loss, ProxyNCA++
is used in DML. In Equation (2.14), A is the set of learnable proxies (the class rep-
resentatives), fy is the proxy for class y and T is a temperature that is typically set
to 1

9 .

LProxyNCA++ = −1
b

∑
i∈B

log
exp

(
− d( φi

‖φi‖2
,

fyi

‖fyi‖2
)/T

)
∑
fyj∈A exp

(
− d( φi

‖φi‖2
,

fyj

‖fyj ‖2
)/T

) (2.14)

In the original paper, the authors use three different modifications they found
to improve the results: instead of using the commonly used Global Average Pool-
ing before the last layer of the feature extractor, they use Global Max Pooling
[Lin et al., 2013]. The maximum value of each feature map is computed, and each
maximum value corresponds to one element of the resulting vector. They also use a
higher learning rate for the proxies than for the model because the gradient of the
proxies is much smaller. Finally, they use layer normalisation [Ba et al., 2016] on
top of the Global Max Pooling operation. If the input al of a layer is of size H, it
is normalised with the following mean and variance:

µl = 1
H

H∑
i=1

ali (2.15)

σl =

√√√√ 1
H

H∑
i=1

(ali − µl)2 (2.16)

2.3.2.3 Normalised Softmax

The normalised softmax [Zhai and Wu, 2018] is another proxy-based objective, where
pi is the proxy for class i. The temperature 0 < σ < 1 is used for exaggerating the
differences between classes

Lsoft = − log exp(x>py/σ)∑
z∈Z exp(x>pz/σ) (2.17)
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2.3.3 Faiss
Faiss [Johnson et al., 2019] is a library used for fast k-nearest neighbours searches.
The search can either be real or approximate, and can be performed on the CPU
or on the GPU. By default, the search is performed on the CPU and parallelised on
all the cores.

Faiss achieves the real k-nearest neighbours search by brute-force search: the
distance ‖xj − yi‖2 is expanded to ‖xj‖2 + ‖yi‖2 − 2〈xj,yi〉, where 〈., .〉 is the dot
product. The first two terms are precomputed, so the bottleneck is to evaluate
〈xj,yi〉.

For the approximate search, Faiss uses following the approximation: y ≈ q(y) =
q1(y)+q2(y−q1(y)), where q1 : Rd → C1 ⊂ Rd and q2 : Rd → C2 ⊂ Rd are quantizers.
q1 is a coarse quantizer and q2 is a fine quantizer.

q1 is trained via k-means, where the number of centroids |C1| is typically equal
to
√
l where l is the number of elements in the database. q2 is a product quantizer:

it interprets the vector y as b subvectors y = [y0,y1, · · · ,yb−1], where b is a divisor
of d. The subvectors each possess its own subquantizer, which has 256 centroids to
fit in one byte. The resulting quantization is then q2(y) = 2560 × q0(y0) + 2561 ×
q1(y1) + · · ·+ 256b−1 × qb−1(yb−1). Each subquantizer is also trained with k-means.

With this formulation, the nearest neighbours search problem comes down to

LADC = k − argmini=0:l‖x− q(yi)‖2 (2.18)

where ADC stands for "Asymmetrical Distance Computation". In this case, the
search is not exhaustive in the database: vectors for which the distance is computed
are preselected depending on the coarse quantizer

LIV F = τ − argminc∈C1‖x− c‖2 (2.19)

where τ is the number of centroids to consider. This comes down to an exact nearest
neighbour search on the centroids. Then, Johnson et al. compute

LIV FADC = k − argmin
i=0:l s.t. q1(yi)∈LIV F

‖x− q(yi)‖2 (2.20)

To proceed, they use an inverted file that groups the vectors yi into |C1| lists,
where all the vectors that belong to a list are in the same cluster.
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Chapter 3

Implementation of methods for
image similarity computation and
search

Based on our literature analysis where several promising methods were identified
(in Chapter 2), we have decided to implement them into a common open-source
library. This chapter presents the two families of methods and their variants that
were implemented and tested, including those that did not meet expectations (see
chapter 4). The two methodologies are fundamentally different for computing the
most similar images. The first one is based on image patches and is inspired by
both the randomised vectors technique [Marée et al., 2010] and Yottixel (Figure
3.1), while the second one is more inspired by Smily and Luigi (Figure 3.2). For the
second methodology, we tested several variants (including different deep learning
architectures) that were not previously tested in this context.

Figure 3.1: Overview of the first methodology. The retrieved images share the most
feature vectors with the query image.

Figure 3.2: Overview of the second methodology. The retrieved images are to the nearest
feature vectors of the query image feature vector.
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Figure 3.3: Left: histopathology image. Right: thresholded image. A patch that is more
than 90% white is considered as not containing tissue.

3.1 First methodology: using a mosaic with Deep
Ranking

For this work, it was initially intended to try a method similar to the previous
randomised vectors technique (Section 2.2.1) to compute the similarity, but by using
a deep learning network instead of randomised vectors.

Yottixel (Section 2.2.3) uses a similar approach to retrieve similar WSIs, and it
motivated the choice of this first method.

3.1.1 Mosaic construction
In this section, in order to meet the goals set for this master thesis, a first step is to
compare two different approaches: the k-means and the completely random mosaic
approaches, to compute the mosaic which is meant to be a representative set of
patches of an image.

3.1.1.1 k-means

In this first approach, inspired by Yottixel, the image is first resized to (1952,1952),
and this resized image is then divided into 64 patches of size (224,224). In order to
only have patches that contain tissue sections, the image is thresholded using Otsu’s
method. The thresholded patches that are more than 90% white are discarded
(Figure 3.3).

If there are less than 8 patches left, these will form the mosaic. Otherwise, more
processing is needed.

The histogram of each patch is computed and is then clustered using the k-means
algorithm, with 8 clusters. On each of these clusters, k-means is once again applied,
where the number of groups is this time set to 0.25×(the number of elements in the
cluster).

Only one patch from each group is taken to form the mosaic of an image.
In the paper Yottixel, the authors explain that k-means clustering is used instead

of random sampling because it is supposed to provide more consistent results. For
example, if you ask to retrieve an image that is already available in the database,
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it is unlikely that this image will be retrieved when random sampling is used. It is
more likely to happen with the k-means extraction method.

A pseudocode for the k-means mosaic construction is presented below in Algo-
rithm 1.

Algorithm 1 mosaic construction with k-means
1: Set kCH (number of clusters)
2: Set pM (percentage of patches to build the mosaic)
3: Set w_resized (width of resized image, multiple of 224)
4: procedure BuildMosaic(img)
5: grid_size = 224
6: nbr_el = w_resized / grid_size
7: resized_img = resize(img, (w_resized, w_resized))
8: thresholded_img = Otsu(resized_img)
9: patch_list = []

10: for i in range(nbr_el)*grid_size do
11: for j in range(nbr_el)*grid_size do
12: if sum(thresholded_img[i:i+grid_size, j:j+grid_size]) < 0.9 ×

grid_size× grid_size× 255 then
13: patch_list.append(resized_img[i:i+grid_size, j:j+grid_size])
14: end if
15: end for
16: end for
17: if len(patch_list) <= kCH then
18: return patch_list
19: end if
20: histograms = []
21: for i in patch_list do
22: histograms.append(computeHist(i))
23: end for
24: C1, C2, . . . , CkCH

= k-means(histograms, kCH)
25: mosaic = []
26: for i in range(kCH) do
27: end = pM × |Ci|
28: A1, . . . , Aend = k-means(Ci, end)
29: for j in range(end) do
30: mosaic.append(element of patch_list corresponding to Aj[0])
31: end for
32: end for
33: return mosaic
34: end procedure

3.1.1.2 Completely random mosaic

In the completely random mosaic approach, the image is first resized to (224,224).
A given number of sizes between 16 and 223 are then randomly generated, and
random coordinates are generated for each of these sizes. Those random sizes are the
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dimensions of patches extracted at those random locations. Those patches compose
the mosaic. The procedure is summarised in Algorithm 2.

Algorithm 2 random mosaic construction
1: Set num_patches (number of extracted patches)
2: procedure BuildMosaic(img)
3: resized_img = resize(img, (224, 224))
4: sizes = random_int(16, 223, num_patches)
5: positions = []
6: for s in sizes do
7: positions.append(random_int(0, 223 - s)
8: positions.append(random_int(0, 223 - s)
9: end for

10: mosaic = []
11: for i in range(num_patches)*2 do
12: x, y = positions[i], positions[i+1]
13: size = sizes[i/2]
14: mosaic.append(img[x:x+size, y:y+size])
15: end for
16: return mosaic
17: end procedure

3.1.2 Indexation
These two different methods now being developed, the next step is to index images in
a database by computing the mosaic of each image. The network used for computing
the feature vectors of the mosaic patches is DenseNet-121 trained for deep ranking
(DR) on ImageNet, with random horizontal and vertical flipping, random cropping
and random hue and saturation shifts. On the one hand, the first three data aug-
mentations are used given the image similarity measure should be invariant to linear
transformations. On the other hand, the last two data augmentations are applied
because the WSIs might be prepared with different methods, and therefore have
different colours: if the hue and the saturation of the training images are slightly
modified, this will have less impact on the similarity measure [Tellez et al., 2019].
Examples of those augmentations are shown in Figure 3.4.

The feature vector of each patch of each mosaic is then computed, and binarised
with the following rule : bi = 1 if xi > threshold else 0. These binarised vectors
are keys in a hash table where each element is associated to a list of tuples. The
tuples consist of two elements : the first one is the name of the image from which
the binarised vector has been taken from; the second element is 1

# elements in the mosaic .
A diagram describing the indexation is found in Figure 3.5.

3.1.3 Retrieval
To allow the retrieval of an image, other actions are needed:

• first, the mosaic of the query image is computed;
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Figure 3.4: Illustration of the data augmentations used during training for the Deep
Ranking network used for the mosaic. Top left: initial image. Top right: random crop.
Bottom left: random flips. Bottom right: random hue and saturation shifts.

• second, the feature vector of each patch of the mosaic is computed with the
same network used during the indexation;

• third, the feature vectors are binarised with the same rule as for the indexation;

• fourth, the binarised vectors are used as keys in the hash table.

• finally, the lists of the hash table corresponding to the keys are looped. For
each image name appearing in those lists, a counter is maintained, to which
the second member of the tuple is added.

The most similar image is the image that has the largest counter in the end. A
diagram describing the retrieval is found in Figure 3.6.

26



Figure 3.5: Diagram of indexation for the mosaic mathodology
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Figure 3.6: Diagram of retrieval for the mosaic methodology

3.2 Second methodology: using Faiss for similar-
ity search

Another way to retrieve similar images is to assign near feature vectors to similar
images, without explicit patch extraction but by relying directly on deep learning
architectures to generate these feature vectors. Several such methods were tested:

• networks only pretrained on ImageNet;

• classic Deep Ranking (Section 2.3.1);

• Deep Metric Learning:
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∗ Margin loss (Section 2.3.2.1) with different networks;
∗ ProxyNCA++ (Section 2.3.2.2) with different networks;
∗ Normalised Softmax loss (Section 2.3.2.3) with different networks.

With all these methods, to retrieve similar images, the nearest neighbours of the
query image feature vector must be retrieved. However, a major drawback is that
the nearest-neighbor based retrieval can take considerable time when the database
expands to millions of objects. So, instead of undertaking an exhaustive search, an
alternative solution is to conduct an approximate search of the nearest neighbours,
given the similarity measure is not exact. We choose Faiss (Section 2.3.3) for brute-
force and approximate search. The primary reason for why Faiss was chosen for
similarity search is that a retrieval can be kept quick to carry out, even if it is done
at the expanse of accuracy.

3.2.1 Networks pretrained on ImageNet
In this first method, pretrained networks on ImageNet are used as feature extractors.
The classification layer of the network is replaced by a linear layer of fixed size with
random weights. Such a network can be set as a baseline that a trained network
should beat.

Moreover, the untrained DR version of the networks are also tested, where the
two shallow convolutional networks and the last linear layer are randomly initialised.

The selected models are ResNet50 (Section 2.1.5), DenseNet-121 (Section 2.1.6)
and DeiT (Section 2.1.7).

3.2.2 Classic Deep Ranking
For Deep Ranking (DR), the deep CNN chosen as the ConvNet is DenseNet-121, be-
cause it provides better classification results than AlexNet [Krizhevsky et al., 2012],
the network used in the original paper.

As already mentioned in Section 2.3.1, sampling the training triplets based on
the relevance of the images can be cumbersome, because the training images have to
be rated by humans. For this reason, only the random sampling will be considered
in this master thesis.

The same data augmentation as for the mosaic is applied (Section 3.1.2).
In the rest of this thesis, ResNet50_DR and DenseNet-121_DR will respectively

correspond to ResNet50 and DenseNet-121 where the last layer is replaced by a linear
layer of fixed size, and with the two parallel shallow convolutional networks.

3.2.3 Deep Metric Learning
As described in Section 2.3.2, three key components have to be defined to train a
Deep Metric Learning (DML) model: the choice of the model, the objective function
and the data sampling strategy.

3.2.3.1 The choice of the model

The tested architectures are the following:
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• ResNet50 and DenseNet-121 where the last layer is replaced by a linear layer
of fixed size;

• ResNet50_DR and DenseNet-121_DR;

• DeiT where the last layer is replaced with a linear layer of fixed size.

The training is tested with both frozen and unfrozen weights for the feature
extractor, since the training might be faster by freezing the weights.

Two types of learning rate schedulers are tested:

• the exponential scheduling: lr = lrinit × exp(−γ × t) where t is the number of
the epoch;

• the step scheduling: the initial learning rate is multiplied by γ when half the
epochs have been performed.

For training, the same data augmentation as for the mosaic is once again applied
(Section 3.1.2).

3.2.3.2 The objective function

The different objective functions used for DML are the following:

• the Margin loss (Section 2.3.2.1);

• the ProxyNCA++ loss (Section 2.3.2.2);

• the Normalised Softmax (Section 2.3.2.3).

3.2.3.3 The minibatch sampling

The "Samples Per Class" [Roth et al., 2020] strategy is used to create informative
minibatches. Given a minibatch B of size b, b

n
different classes are randomly selected,

from which n different images are selected.

3.2.4 Indexation
To index a dataset in the database, a loop iterates on the folder that contains it.
Each image is resized to (224,224) and normalised, and then given to the model.
Faiss does not allow the use of string ID’s, only numbers can be used: a mapping
between the Faiss ID and the image name has to be implemented. The simplest way
to do so, is to append the name of the image to a list at the same time the image
is added to the Faiss index, such that the first vector in the index corresponds to
the first name in the list, the second vector in the index corresponds to the second
name in the list, ... The operations are summarised in Figure 3.7.

3.2.5 Retrieval
To retrieve similar images, the input image is resized to (224,224) and normalised,
and then fed to the model. The Faiss index is searched for the nearest neighbours,
which gives the line number of the nearest neighbours in the index. Eventually, the
names in the list at the corresponding line numbers are returned. The operations
are summarised in Figure 3.8.
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Figure 3.7: Indexing a dataset with Faiss. The feature vector of each image is computed,
and added to the Faiss index. At the same time, the name of the images are added to a
list, in order to provide a mapping between the Faiss ID and the image name.

Figure 3.8: Searching similar images with Faiss. The feature vector of the query image
is computed. At the same time, the name of the images are added to a list, in order to
provide a mapping between the Faiss ID and the image name.

31



3.3 Implementation details and use of open-source
code

The implementation of our open-source library for content-based image retrieval
was made possible by the integration of already existing image retrieval and deep
learning libraries. Here we describe open source components that were combined for
the image similarity measure computations, as well as image indexing and searching.
In Chapter 5 we will describe the whole system that allows to execute the whole
retrieval process in a distributed fashion through web APIs.

In the first place, the whole code is written in Python and considerably relies
on the PyTorch [Paszke et al., 2019] library for the deep learning framework. The
pretrained ResNet50 and DenseNet-121 models come from torchvision, which is part
of the Pytorch project.

The pretrained DeiT, for its part, comes from the huggingface [Wolf et al., 2020]
library.

The mosaic methodology was heavily inspired by Yottixel (Section 2.2.3) and the
randomised vectors system (Section 2.2.1). It makes use of the opencv [Itseez, 2015]
library to compute the histogram of the patches and read the images, and the scikit-
learn [Pedregosa et al., 2011] library for the k-means clustering. The hash table
containing the list of tuples is a Redis [Redis, 2009] database for data persistance,
and the Python code uses redis-py [McCurdy, 2011] library to communicate with
it. Finally, to index a dataset, the code is parallelised on all cores using the joblib
[Joblib Development Team, 2020] library.

As to DR, the random triplet sampling uses the following open-source code:
[Tejaswi, 2019].

For DML, the Margin loss and its distance weighted sampling strategy, the
Normalised Softmax come from [Roth, 2020]. The ProxyNCA++ loss comes from
[Teh, 2020]. The "Samples Per Class" strategy is taken from [Roth, 2019].

When using Faiss as a database, the code does not need to explicitly be paral-
lelised as it already is in backend. The code uses the pillow [Clark, 2015] library
to read the images. Finally, it uses a Redis database for the list storing the names
of the images for data persistance, where the key in the hashtable is the number of
indexed images in the database.

The exact parameters that are used by each method will be discussed in their
dedicated section in Chapter 4, but at this stage, it is important to point out that
the hyperparameters were not tuned, except for the choice of the model, due to a
lack of time.
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Chapter 4

Image retrieval results

This chapter presents empirical results of the different approaches presented previ-
ously for content-based image retrieval on a large histopathological dataset.

First, we describe our datasets. Then, we describe the metric used to determine
whether or not a model meets the requirements, and also how this metric is applied.
Then, a summary table gives an overview of the results achieved with each evaluated
method. Finally, more detailed results are provided for each of them, as well as
for the previous randomised method (Section 2.2.1) precedently integrated into the
Cytomine web application.

4.1 Datasets description
This section makes a presentation of the datasets used for the training and the tests
to compute the accuracy of the retrieval.

The first dataset consists of a dataset of histopathology images, divided in three
parts. The methods can be trained on one of these parts. All of them are assessed
with the two other parts.

The two other datasets are only used for training. This allows to evaluate the
impact of the training data on the results.

4.1.1 Histopathology
Our main dataset was previously used in [Mormont et al., 2020] and was downloaded
from https://dox.uliege.be/index.php/s/7BijhdSac8o9vDP. It will be later re-
ferred to as the histopathology dataset. It is divided into a training set, a test and
a validation set. Samples from each class are shown in Figure 4.1. This dataset
contains 67 classes, and the training set, the test set and the validation set respec-
tively contain 633,499, 106,357 and 96,192 images. The mean width and height for
the images of each class is 230 and 230. The number of images and their frequency
per class in the training, test and validation set are respectively presented in Tables
4.1, 4.2 and 4.3. When the names are identical but the last number, it means that
they belong to the same original Cytomine project (e.g. an experimental study on
a specific organ where images were acquired with the same acquisition protocol).
For example, camelyon16_0 and camelyon16_1 are both from Camelyon16 project
(https://camelyon16.grand-challenge.org/).
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Figure 4.1: A sample for each class of the histopathology training set, including different
organs, tissue and cell types, staining and preparation protocols.
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Name # per classs Frequency
camelyon16_0 218938 0.3456
camelyon16_1 18815 0.0297
cells_no_aug0 1326 0.0021
cells_no_aug1 317 0.0005

glomeruli_no_aug0 9772 0.0154
glomeruli_no_aug1 2385 0.0038

iciar18_micro0 444 0.0007
iciar18_micro1 852 0.0013
iciar18_micro2 648 0.0010
iciar18_micro3 816 0.0013
janowczyk1_0 7051 0.0111
janowczyk1_1 10499 0.0166
janowczyk2_0 437 0.0007
janowczyk2_1 1264 0.0020
janowczyk5_0 12470 0.0197
janowczyk5_1 4090 0.0065
janowczyk6_0 160790 0.2538
janowczyk6_1 64032 0.1011
janowczyk7_0 408 0.0006
janowczyk7_1 504 0.0008
janowczyk7_2 438 0.0007
lbpstroma_0 650 0.0010
lbpstroma_1 297 0.0005
mitos2014_0 2645 0.0042
mitos2014_1 9150 0.0144
mitos2014_2 28569 0.0451

patterns_no_aug_0 714 0.0011
patterns_no_aug_1 465 0.0007

tupac_mitosis0 50114 0.0791
tupac_mitosis1 12760 0.0201

ulb_anapath_lba0 622 0.0010
ulb_anapath_lba1 939 0.0015
ulb_anapath_lba2 234 0.0004
ulb_anapath_lba3 322 0.0005

Name # per class Frequency
ulb_anapath_lba4 590 0.0009
ulb_anapath_lba5 686 0.0011
ulb_anapath_lba6 163 0.0003
ulb_anapath_lba7 64 0.0001
ulb_anapath_lba8 431 0.0007
ulg_bonemarrow0 28 0.0000
ulg_bonemarrow1 39 0.0001
ulg_bonemarrow2 28 0.0000
ulg_bonemarrow3 36 0.0001
ulg_bonemarrow4 78 0.0001
ulg_bonemarrow5 145 0.0002
ulg_bonemarrow6 83 0.0001
ulg_bonemarrow7 85 0.0001

ulg_lbtd2_chimio_necrose0 275 0.0004
ulg_lbtd2_chimio_necrose1 420 0.0007

ulg_lbtd_lba0 323 0.0005
ulg_lbtd_lba1 360 0.0006
ulg_lbtd_lba2 450 0.0007
ulg_lbtd_lba3 101 0.0002
ulg_lbtd_lba4 58 0.0001
ulg_lbtd_lba5 179 0.0003
ulg_lbtd_lba6 216 0.0003
ulg_lbtd_lba7 35 0.0001

umcm_colorectal_01 408 0.0006
umcm_colorectal_02 355 0.0006
umcm_colorectal_03 395 0.0006
umcm_colorectal_04 494 0.0008
umcm_colorectal_05 288 0.0005
umcm_colorectal_06 426 0.0007
umcm_colorectal_07 393 0.0006
umcm_colorectal_08 590 0.0009

warwick_crc0 848 0.0013
warwick_crc1 652 0.0010

Table 4.1: Number of images and their frequency per class in the training histopathology
set.
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Name # per class Frequency
camelyon16_0 23810 0.2240
camelyon16_1 2713 0.0255
cells_no_aug0 1452 0.0137
cells_no_aug1 369 0.0035

glomeruli_no_aug0 11720 0.1103
glomeruli_no_aug1 2888 0.0272

iciar18_micro0 504 0.0047
iciar18_micro1 228 0.0021
iciar18_micro2 312 0.0029
iciar18_micro3 276 0.0026
janowczyk1_0 4006 0.0377
janowczyk1_1 5669 0.0533
janowczyk2_0 434 0.0041
janowczyk2_1 862 0.0081
janowczyk5_0 3209 0.0302
janowczyk5_1 550 0.0052
janowczyk6_0 15089 0.1420
janowczyk6_1 5679 0.0534
janowczyk7_0 138 0.0013
janowczyk7_1 156 0.0015
janowczyk7_2 144 0.0014
lbpstroma_0 639 0.0060
lbpstroma_1 320 0.0030
mitos2014_0 1052 0.0099
mitos2014_1 2680 0.0252
mitos2014_2 7978 0.0751

patterns_no_aug_0 289 0.0027
patterns_no_aug_1 222 0.0021

tupac_mitosis0 5152 0.0485
tupac_mitosis1 2000 0.0188

ulb_anapath_lba0 95 0.0009
ulb_anapath_lba1 523 0.0049
ulb_anapath_lba2 61 0.0006
ulb_anapath_lba3 161 0.0015

Name # per class Frequency
ulb_anapath_lba4 29 0.0003
ulb_anapath_lba5 47 0.0004
ulb_anapath_lba6 57 0.0005
ulb_anapath_lba7 24 0.0002
ulb_anapath_lba8 26 0.0002
ulg_bonemarrow0 31 0.0003
ulg_bonemarrow1 49 0.0005
ulg_bonemarrow2 30 0.0003
ulg_bonemarrow3 47 0.0004
ulg_bonemarrow4 88 0.0008
ulg_bonemarrow5 185 0.0017
ulg_bonemarrow6 108 0.0010
ulg_bonemarrow7 101 0.0010

ulg_lbtd2_chimio_necrose0 26 0.0002
ulg_lbtd2_chimio_necrose1 65 0.0006

ulg_lbtd_lba0 207 0.0019
ulg_lbtd_lba1 557 0.0052
ulg_lbtd_lba2 228 0.0021
ulg_lbtd_lba3 365 0.0034
ulg_lbtd_lba4 61 0.0006
ulg_lbtd_lba5 244 0.0023
ulg_lbtd_lba6 153 0.0014
ulg_lbtd_lba7 31 0.0003

umcm_colorectal_01 217 0.0020
umcm_colorectal_02 270 0.0025
umcm_colorectal_03 230 0.0022
umcm_colorectal_04 131 0.0012
umcm_colorectal_05 337 0.0032
umcm_colorectal_06 199 0.0019
umcm_colorectal_07 232 0.0022
umcm_colorectal_08 35 0.0003

warwick_crc0 283 0.0027
warwick_crc1 217 0.0020

Table 4.2: Number of images and their frequency per class in the test histopathology
set.
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Name # per class Frequency
camelyon16_0 25697 0.2673
camelyon16_1 2253 0.0234
cells_no_aug0 121 0.0013
cells_no_aug1 52 0.0005

glomeruli_no_aug0 1941 0.0202
glomeruli_no_aug1 507 0.0053

iciar18_micro0 252 0.0026
iciar18_micro1 120 0.0012
iciar18_micro2 240 0.0025
iciar18_micro3 108 0.0011
janowczyk1_0 1806 0.0188
janowczyk1_1 2694 0.0280
janowczyk2_0 105 0.0011
janowczyk2_1 300 0.0031
janowczyk5_0 3691 0.0384
janowczyk5_1 860 0.0089
janowczyk6_0 22859 0.2378
janowczyk6_1 9075 0.0944
janowczyk7_0 132 0.0014
janowczyk7_1 174 0.0018
janowczyk7_2 150 0.0016
lbpstroma_0 279 0.0029
lbpstroma_1 128 0.0013
mitos2014_0 948 0.0099
mitos2014_1 3190 0.0332
mitos2014_2 8661 0.0901

patterns_no_aug_0 94 0.0010
patterns_no_aug_1 73 0.0008

tupac_mitosis0 6267 0.0652
tupac_mitosis1 1560 0.0162

ulb_anapath_lba0 139 0.0014
ulb_anapath_lba1 41 0.0004
ulb_anapath_lba2 13 0.0001
ulb_anapath_lba3 92 0.0010

Name # per class Frequency
ulb_anapath_lba4 17 0.0002
ulb_anapath_lba5 2 0.0000
ulb_anapath_lba6 24 0.0002
ulb_anapath_lba7 8 0.0001
ulb_anapath_lba8 10 0.0001
ulg_bonemarrow0 8 0.0001
ulg_bonemarrow1 9 0.0001
ulg_bonemarrow2 8 0.0001
ulg_bonemarrow3 8 0.0001
ulg_bonemarrow4 18 0.0002
ulg_bonemarrow5 36 0.0004
ulg_bonemarrow6 20 0.0002
ulg_bonemarrow7 23 0.0002

ulg_lbtd2_chimio_necrose0 14 0.0001
ulg_lbtd2_chimio_necrose1 82 0.0009

ulg_lbtd_lba0 207 0.0022
ulg_lbtd_lba1 95 0.0010
ulg_lbtd_lba2 163 0.0017
ulg_lbtd_lba3 54 0.0006
ulg_lbtd_lba4 3 0.0000
ulg_lbtd_lba5 64 0.0007
ulg_lbtd_lba6 98 0.0010
ulg_lbtd_lba7 32 0.0003

umcm_colorectal_01 0 0.0000
umcm_colorectal_02 0 0.0000
umcm_colorectal_03 0 0.0000
umcm_colorectal_04 0 0.0000
umcm_colorectal_05 0 0.0000
umcm_colorectal_06 0 0.0000
umcm_colorectal_07 0 0.0000
umcm_colorectal_08 0 0.0000

warwick_crc0 284 0.0030
warwick_crc1 216 0.0022

Table 4.3: Number of images and their frequency per class in the validation histopathol-
ogy set.
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Figure 4.2: Some samples from the INaturalist training set

4.1.2 INaturalist and ImageNet training sets
The Smily architecture (Section 2.2.2) is trained on natural images. For this thesis,
the same kind of training datasets were looked for, but it goes without saying that
those datasets contain far less images.

The INaturalist dataset of 20211 is the first that was used. It is made of natural
images, such as plants, mushrooms, insects, birds,... The training dataset contains
almost 2.7M images from 10,000 different classes. It was specially made for fine-
grained image classification, which could prove to be useful for image retrieval. A
small sample of the INaturalist training dataset is shown in Figure 4.2.

The second dataset is the well-known ImageNet-20122. It is made of 1.2M natural
images from 1,000 different classes.

4.2 Evalutation protocol
The metric used for the evaluation is the top-k accuracy:

top-k =
∑

xi∈Xtest I(∃xi ∈ F s.t. yi = yq)
|Xtest|

, F = argmin
|F|=k

d(φ(xi), φ(xq)) (4.1)

When k = 1, the image retrieval problem comes down to a classification problem,
where the predicted class of the input image is the class of the retrieved image.

In our protocol, the learning set is only used to train methods that require learn-
ing. To compute the accuracy, the test dataset is indexed in the database, and the
validation set is used to perform image retrieval queries. The problem is that some
classes are a lot more represented in both the test set and the validation set (came-
lyon16_0 and janowczyk6_0 e.g.): it would be misleading to compute the accuracy
with the whole validation set, simply because images from more represented classes
will have a higher chance of being retrieved. And since they are more represented in

1https://github.com/visipedia/inat_comp/tree/master/2021
2https://www.image-net.org/download.php
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Figure 4.3: Proposed evaluation protocol for each tested method.

both sets, the correct predictions of those classes will completely drown the wrong
predictions of underrepresented classes. To correct this drawback, we created an
alternative validation set where the same number of images per class are randomly
selected from the original validation set when possible (some of them do not have
images at all, or just a few). In total, only 1,000 images from the original validation
set were selected, as quite a significant number of classes have less than 15 images
per class. Such a small number of images could seem surprising, but it allows to
better perceive at first glance if a model is just fair or excellent. This protocol choice
will be compared to two other more classic evaluation protocols in Section 4.10.

A figure explaining the three evaluation protocols is shown in Figure 4.3.
Concerning the computation time, each methodology is evaluated on the same

computer, that has the following configuration:

• CPU: AMD Ryzen 9 3900X of 12 cores (3.8 GHz);

• GPU: Nvidia RTX 3070;

• 32GB of RAM.

For the methodology with Faiss, the images are indexed in the database by
batches of 128 using Pytorch Dataloader with 12 workers.

4.3 Overall results
This section presents the best results obtained with each method in table form (Table
4.4). Those results will be discussed in more detail in their dedicated section. In
this table, "frozen" means that only the weights of the feature extractor are frozen
during training: the weights of the last linear layer and possibly the two parallel
shallow convolutional layers are updated during the training.

4.4 Results with Randomised Trees
The previous system used on Cytomine was based on randomised vectors (Sec-
tion 2.2.1). This method, when it was developed, was not evaluated on a large
histopathology dataset. Therefore, in this subsection, we provide baseline results
with this method, see Sable 4.5 and 4.6.
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Method Training Dataset top-1 accuracy top-5 accuracy
Randomised vectors technique
(1,000 random patches, 5 test vectors) / 24% 44%

Mosaic with DenseNet-121_DR
(k-means, feature vector of size 128) ImageNet-2012 14% 36%

Pretrained ResNet50 / 45% 69%

Pretrained ResNet_DR / 48% 72%

Pretrained DenseNet-121 / 44% 69%

Pretrained DenseNet-121_DR / 49% 73%

Pretrained DeiT / 54% 76%

Deep Ranking with DenseNet-121_DR
(frozen weights, 5 epochs) histopathology 40% 68%

Deep Ranking with DenseNet-121_DR
(frozen weights, 5 epochs) ImageNet-2012 35% 60%

Margin Loss with ResNet50
(5 epochs, frozen weights) histopathology 53% 79%

Margin Loss with ResNet50_DR
(5 epochs, frozen weights) histopathology 57% 81%

Margin Loss with DenseNet-121_DR
(5 epochs, frozen weights) histopathology 61% 84%

Margin Loss with DenseNet-121_DR
(20 epochs, frozen weights, exp scheduling) histopathology 64% 84%

Margin Loss with DenseNet-121_DR
(20 epochs, frozen weights, step scheduling) histopathology 63% 84%

ProxyNCA++ with DenseNet-121
(5 epochs, frozen weights) histopathology 52% 78%

Margin Loss with ResNet50
(50 epochs, exp scheduling) histopathology 77% 89%

Margin Loss with ResNet50_DR
(50 epochs, exp scheduling) histopathology 77% 90%

MarginLoss with DenseNet-121
(50 epochs, exp scheduling) histopathology 78% 89%

Margin Loss with DenseNet-121_DR
(50 epochs, exp scheduling) histopathology 78% 90%

Margin Loss with DeiT
(50 epochs, exp scheduling) histopathology 53% 79%

Margin Loss with DeiT
(14 epochs, step scheduling) INaturalist 32% 56%

Margin Loss with DenseNet-121
(11 epochs, step scheduling)
did not have time to finish training

INaturalist 50% 75%

ProxyNCA++ with DenseNet121
(30 epochs, step scheduling) Imagenet-2012 46% 69%

MarginLoss with DenseNet-121
(30 epochs, exp scheduling) ImageNet-2012 44% 68%

Table 4.4: Summary of the accuracies obtained with the different tested methods. For
pretrained, see section 3.2.1. For *_DR, see Section 3.2.2. For the scheduling, see Section
3.2.3.1. Computed with 1,000 queries from the validation set.
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Number of random patches top-1 top-5 Time per request (s)
100 17% 40% 3
500 21% 40% 8
1000 24% 44% 16

Table 4.5: Results and time per request of the randomised vectors technique, by modi-
fying the number of random patches extracted per image. Computed with 1,000 queries
from the validation set.

Number of test vectors top-1 top-5 Time per request (s)
2 14% 31% 5
5 24% 44% 16
10 20% 37% 22

Table 4.6: Results and time per request of the randomised vectors technique, by modi-
fying the number of test vectors. Notice that with 10 vectors, it was impossible to index
the whole test dataset on a computer with 32GB of memory, only 70,000 images were
effectively indexed. Computed with 1,000 queries from the validation set.

4.5 Results with the mosaic
The results obtained with the methodology based on the mosaic construction are
discussed in this section.

DenseNet-121_DR was trained on ImageNet for 5 epochs, with frozen weights
for DenseNet-121 (except for the replaced last linear layer) and a batch size of 32.
The Adam optimiser was used during training, with a learning rate of 0.01, which
is divided by 2 at the fourth epoch. Those values were set in an arbitrary manner,
and the weights of DenseNet-121 were frozen.

The accuracy on the test dataset used for indexation is computed with a feature
vector size of 32. Figure 4.4 shows the accuracy on the test dataset for different
sizes of feature vectors. Here, the k-means extraction method was used to compute
the mosaic, and a threshold of 0.5 was used for the binarisation, but in retrospect,
this threshold value was probably set way too high, and this might be the cause of
the poor results of this method. In this graph, the hit rate is the number of keys in
the hash table that were used to find the similar images over the size of the mosaic.
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Figure 4.4: Accuracy on the test dataset with the mosaic using k-means extraction.
Comptuted with 1,000 queries from the valitation set.

4.6 Results with Classic Deep Ranking
DenseNet-121_DR is trained on the histopathology dataset for 5 epochs, with frozen
weights for DensNet-121 (except for the last linear layer), and a batch size of 32.
Once again, the Adam optimiser is used with an initial learning rate of 0.01, where
the learning rate is divided by 2 at the fourth epoch. The feature vector size is set
to 128, and the weights of DenseNet-121 are frozen.

With DR, on the test dataset, a top-1 accuracy of 40 % and a top-5 accuracy
of 68 % are obtained, which is less than the pretrained DenseNet-121_DR (Table
4.4). There are two reasons for those poorer results: first the random sampling
for the triplets, and second, the fact that some images from the same class do not
look visually alike in the training set. Using the "golden feature" (Section 2.3.1 for
definition) would help alleviate this problem, but since there is no other training set
to train the golden feature at disposal, another method less sensitive to images of
the same class not visually looking alike will have to be used. Tables 4.7 and 4.8
are produced when the test set is indexed and with the validation set is used for the
queries, with the trained DR model on the histopathology dataset, and Faiss used in
brute force. For indexation and retrieval, it takes the same time as for DML when
DenseNet-121_DR is used as the network (section 4.7).

4.7 Results with DML
All the models were trained with a feature vector size of 128 (as in Smily), the
Adam optimiser, a batch size of 128 and γ = 0.3 [Roth et al., 2020] if learning rate
scheduling is used. Once again, the hyperparameters were not optimised. Unless
mentioned otherwise, the hyperparameters used were, for each different loss:
• Margin Loss: a learning rate of 10−4 and a weight-decay of 4 × 10−4 for the

model, and a learning rate of 5 × 10−4 for the learnable boundary β, as sug-
gested by [Roth et al., 2020].
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Name Precision
camelyon16_0 1.0
camelyon16_1 0.26
cells_no_aug0 0.63
cells_no_aug1 0.11

glomeruli_no_aug0 0.84
glomeruli_no_aug1 0.47

iciar18_micro0 0.37
iciar18_micro2 0.32
iciar18_micro3 0.16
janowczyk1_0 0.16
janowczyk1_1 0.21
janowczyk2_0 0.21
janowczyk2_1 0.32
janowczyk6_0 0.89
janowczyk6_1 0.63
janowczyk7_0 0.37
janowczyk7_1 0.58

Name Precision
janowczyk7_1 0.58
janowczyk7_2 0.26
lbpstroma_0 0.68
lbpstroma_1 0.58
mitos2014_0 0.11
mitos2014_1 0.16
mitos2014_2 0.37

patterns_no_aug_0 0.32
patterns_no_aug_1 0.58

tupac_mitosis0 0.26
tupac_mitosis1 0.05

ulb_anapath_lba0 0.11
ulb_anapath_lba1 0.42
ulb_anapath_lba2 0.15
ulb_anapath_lba3 0.21
ulb_anapath_lba4 0.06
ulb_anapath_lba8 0.1

Name Precision
ulg_bonemarrow1 0.22
ulg_bonemarrow3 0.12
ulg_bonemarrow4 0.28
ulg_bonemarrow5 0.42
ulg_bonemarrow6 0.26
ulg_bonemarrow7 0.47

ulg_lbtd2_chimio_necrose0 0.71
ulg_lbtd2_chimio_necrose1 0.37

ulg_lbtd_lba0 0.11
ulg_lbtd_lba1 0.21
ulg_lbtd_lba2 0.26
ulg_lbtd_lba3 0.11
ulg_lbtd_lba5 0.26
ulg_lbtd_lba6 0.05
ulg_lbtd_lba7 0.05
warwick_crc0 0.26
warwick_crc1 0.21

Table 4.7: Top-1 precision per class with DR on test dataset, Faiss used in brute force.
Computed with 1,000 queries from the validation set.

Name Precision
camelyon16_0 1.0
camelyon16_1 0.53
cells_no_aug0 0.95
cells_no_aug1 0.58

glomeruli_no_aug0 1.0
glomeruli_no_aug1 0.84

iciar18_micro0 0.89
iciar18_micro1 0.58
iciar18_micro2 0.58
iciar18_micro3 0.68
janowczyk1_0 0.47
janowczyk1_1 0.68
janowczyk2_0 0.63
janowczyk2_1 0.53
janowczyk5_0 0.37
janowczyk5_1 0.16
janowczyk6_0 1.0
janowczyk6_1 0.89
janowczyk7_0 0.47

Name Precision
janowczyk7_1 0.95
janowczyk7_2 0.63
lbpstroma_0 0.84
lbpstroma_1 1.0
mitos2014_0 0.47
mitos2014_1 0.79
mitos2014_2 0.95

patterns_no_aug_0 0.63
patterns_no_aug_1 0.89

tupac_mitosis0 0.63
tupac_mitosis1 0.26

ulb_anapath_lba0 0.16
ulb_anapath_lba1 0.89
ulb_anapath_lba2 0.62
ulb_anapath_lba3 0.63
ulb_anapath_lba4 0.24
ulb_anapath_lba6 0.26
ulb_anapath_lba8 0.2
ulg_bonemarrow0 0.25

Name Precision
ulg_bonemarrow1 0.44
ulg_bonemarrow2 0.38
ulg_bonemarrow3 0.25
ulg_bonemarrow4 0.67
ulg_bonemarrow5 1.0
ulg_bonemarrow6 0.79
ulg_bonemarrow7 0.74

ulg_lbtd2_chimio_necrose0 0.86
ulg_lbtd2_chimio_necrose1 0.63

ulg_lbtd_lba0 0.42
ulg_lbtd_lba1 0.79
ulg_lbtd_lba2 0.68
ulg_lbtd_lba3 0.47
ulg_lbtd_lba5 0.63
ulg_lbtd_lba6 0.16
ulg_lbtd_lba7 0.21
warwick_crc0 0.42
warwick_crc1 0.53

Table 4.8: Top-5 precision per class with DR on test dataset, Faiss used in brute force.
Computed with 1,000 queries from the validation set.
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Model top-1 accuracy top-5 accuracy
ResNet50 77% 89%

ResNet50_DR 77% 90%
DenseNet-121 78% 89%

DenseNet-121_DR 78% 90%
DeiT 53% 79%

Table 4.9: Results for models trained with unfrozen weights with the Margin Loss on
histopathology test dataset. Computed with 1,000 queries from the validation set.

Model Indexation time Time spent in model per request Time spent in search per request
ResNet50_ 3 min 56 s 6.42 ms 4.36 ms

ResNet50_DR 3 min 48 s 7.48 ms 4.37 ms
DenseNet-121 4 min 25 s 15.3 ms 4.44 ms

DenseNet-121_DR 4 min 40 s 15.5 ms 4.46 ms
DeiT 7 mins 43 s 16.75 ms 4.41 ms

Table 4.10: Retrieval time for different models, 100,000 images indexed in the database,
Faiss used in brute force on CPU.

• ProxyNCA++: a learning rate of 4 × 10−3 for the model and of 4 × 102 for
the proxies, with no weight decay, as suggested by [Teh et al., 2020].

• Normalised Softmax: a learning rate of 10−4 and a weight-decay of 4 × 10−4

for the model, and a learning rate of 10−5 for the proxies, as suggested by
[Roth et al., 2020].

This section will only present the results obtained without frozen weights for the
network, as these were the best obtained results. Still, all the results obtained are
reported in Table 4.4.

For the histopathology dataset, Table 4.9 regroups the results. All those mod-
els were trained with exponential scheduling and the Margin Loss for 50 epochs.
The best models for which the best results are obtained is DenseNet-121_DR, but
ResNet50_DR is only very slightly behind.

On the INaturalist and ImageNet-2012 datasets, the results were lower than those
obtained with the models only pretrained on Imagenet for both the Margin Loss and
ProxyNCA++. This is not the case when DenseNet-121 is trained with the Margin
Loss on the INaturalist, but still, the results obtained lag far behind those obtained
when the network is trained on the histopathology dataset, even after 11 epochs.
By comparison, a top-1 accuracy of 77% and a top-5 accuracy of 88% are obtained
by training DenseNet-121 with the Margin Loss on the histopathology dataset for
11 epochs.

The two best models are therefore ResNet50_DR and DenseNet-121_DR. But
by analysing the search time for each models (Table 4.10), it can be observed that
the search time for ResNet50_DR is substantially faster. For this reason, this model
will be the final model retained for similarity search. Tables 4.11 and 4.12 summarise
the top-1 and top-5 accuracies per class. Those tables show that some underrepre-
sented classes in the training, testing, and validation sets are less well retrieved, e.g.
ulb_anapath_lba8.

In order to analyse which classes are retrieved for each tested class, it is possible
to plot a confusion matrix. In Section 4.2, it was already mentioned that when com-
puting a top-1 accuracy, the image retrieval problem came down to a classification
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Name Precision
camelyon16_0 1.0
camelyon16_1 0.74
cells_no_aug0 0.89
cells_no_aug1 0.89

glomeruli_no_aug0 1.0
glomeruli_no_aug1 0.89

iciar18_micro0 0.63
iciar18_micro1 0.89
iciar18_micro2 0.42
iciar18_micro3 0.58
janowczyk1_0 0.68
janowczyk1_1 0.79
janowczyk2_0 0.95
janowczyk2_1 0.79
janowczyk5_0 0.37
janowczyk5_1 0.16
janowczyk6_0 0.95
janowczyk6_1 0.95
janowczyk7_0 0.95

Name Precision
janowczyk7_1 1.0
janowczyk7_2 0.89
lbpstroma_0 1.0
lbpstroma_1 1.0
mitos2014_0 0.05
mitos2014_1 0.63
mitos2014_2 0.74

patterns_no_aug_0 1.0
patterns_no_aug_1 0.37

tupac_mitosis0 0.68
tupac_mitosis1 0.32

ulb_anapath_lba0 0.84
ulb_anapath_lba1 1.0
ulb_anapath_lba2 0.77
ulb_anapath_lba3 0.84
ulb_anapath_lba4 0.94
ulb_anapath_lba6 0.63
ulb_anapath_lba7 0.62
ulg_bonemarrow0 0.75

Name Precision
ulg_bonemarrow1 0.89
ulg_bonemarrow2 1.0
ulg_bonemarrow3 0.88
ulg_bonemarrow4 0.94
ulg_bonemarrow5 0.84
ulg_bonemarrow6 0.95
ulg_bonemarrow7 1.0

ulg_lbtd2_chimio_necrose0 1.0
ulg_lbtd2_chimio_necrose1 1.0

ulg_lbtd_lba0 0.89
ulg_lbtd_lba1 0.74
ulg_lbtd_lba2 1.0
ulg_lbtd_lba3 0.63
ulg_lbtd_lba4 0.33
ulg_lbtd_lba5 0.84
ulg_lbtd_lba6 0.32
ulg_lbtd_lba7 0.58
warwick_crc0 0.79
warwick_crc1 0.68

Table 4.11: Top-1 precision per class on test dataset with ResNet50_DR trained with the
Margin Loss, Faiss used in brute force. Computed with 1,000 queries from the validation
set.

Name Precision
camelyon16_0 1.0
camelyon16_1 0.95
cells_no_aug0 1.0
cells_no_aug1 1.0

glomeruli_no_aug0 1.0
glomeruli_no_aug1 0.95

iciar18_micro0 0.79
iciar18_micro1 0.95
iciar18_micro2 0.58
iciar18_micro3 0.79
janowczyk1_0 1.0
janowczyk1_1 1.0
janowczyk2_0 1.0
janowczyk2_1 1.0
janowczyk5_0 0.74
janowczyk5_1 0.58
janowczyk6_0 1.0
janowczyk6_1 1.0
janowczyk7_0 1.0
janowczyk7_1 1.0

Name Precision
janowczyk7_2 0.95
lbpstroma_0 1.0
lbpstroma_1 1.0
mitos2014_0 0.42
mitos2014_1 0.84
mitos2014_2 0.89

patterns_no_aug_0 1.0
patterns_no_aug_1 0.68

tupac_mitosis0 1.0
tupac_mitosis1 0.63

ulb_anapath_lba0 0.89
ulb_anapath_lba1 1.0
ulb_anapath_lba2 1.0
ulb_anapath_lba3 1.0
ulb_anapath_lba4 0.94
ulb_anapath_lba5 0.5
ulb_anapath_lba6 0.68
ulb_anapath_lba7 0.62
ulb_anapath_lba8 0.1
ulg_bonemarrow0 0.88

Name Precision
ulg_bonemarrow1 1.0
ulg_bonemarrow2 1.0
ulg_bonemarrow3 1.0
ulg_bonemarrow4 0.94
ulg_bonemarrow5 0.95
ulg_bonemarrow6 0.95
ulg_bonemarrow7 1.0

ulg_lbtd2_chimio_necrose0 1.0
ulg_lbtd2_chimio_necrose1 1.0

ulg_lbtd_lba0 0.95
ulg_lbtd_lba1 0.89
ulg_lbtd_lba2 1.0
ulg_lbtd_lba3 0.79
ulg_lbtd_lba4 0.67
ulg_lbtd_lba5 0.95
ulg_lbtd_lba6 0.47
ulg_lbtd_lba7 0.79
warwick_crc0 0.84
warwick_crc1 0.95

Table 4.12: Top-5 precision per class on test dataset with ResNet50_DR trained with the
Margin Loss, Faiss used in brute force. Computed with 1,000 queries from the validation
set.
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problem, where the predicted class is the class of the retrieved image. Therefore,
it seems logical to plot a confusion matrix. This confusion matrix is plotted when
the training set is indexed in the database, and the test set is used to query the
database. Those datasets are used because the validation set does not contain im-
ages for some classes, and the confusion matrix would be less informative in that
case. It is shown in Figure 4.5, and the ordinate is the true class, and the abscissa
is the predicted class. It took 24 minutes to index the training dataset and 26 s to
compute the 1,000 queries. The time spent in the Faiss searches is 19.5 s, that is
0.02 s for each query. It is an indication that Faiss should be used in approximate
search. The impact of the approximate search on the search time and the precision
will be studied in Section 4.9.

As a general remark, it must be said that most mislabelled images are mislabelled
with classes from the same Cytomine project: images from ulg_lbtd_lba are only
mislabelled with images from this project, as well as images from ulg_bonnemarrow
are only mislabelled with images from ulg_bonemarrow. Since they belong to the
same project, those images have the same visual look (Figure 4.6).

Figure 4.6: Top: two images from ulg_lbtd_lba from different sub-classes. Bottom: two
images from ulg_bonnemarrow from different sub-classes.

But some classes, as ulb_anapath_lba7, are not only mislabelled with classes
from their same Cytomine project. This particular class is also mislabelled with
glomeruli_no_aug (first row of Figure 4.7). The first retrieved image does not look
alike at all, except for the turquoise borders. For the other mislabelled classes with
classes from other projects, the retrieved images do look alike (rest of Figure 4.7).
Those other mislabelled classes are:

• janowczyck_5 with tupac_mitosis, that are both relatively well represented;

• ulg_lbtd_lba7 with patterns_no_aug_0, patterns_no_aug_0 is 10 times
more represented in the training set;
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Figure 4.5: Confusion matrix obtained with ResNet50_DR trained on the histpathol-
ogy dataset for 50 epochs with the Margin Loss. The dataset indexed is the training
histopathology dataset, and the queries are made with images from the test set.
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Figure 4.7: Examples of mislabelled images when ResNet50_DR is trained with the
Margin Loss on histopathology. Left: query image. Right: retrieved image from another
Cytomine project.
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janowczyk2_0
janowczyk2_1
lbpstroma_0
lbpstroma_1

patterns_no_aug_0
patterns_no_aug_1

mitos2014_0
mitos2014_1
mitos2014_2
ulg_lbtd_lba0
ulg_lbtd_lba1
ulg_lbtd_lba2
ulg_lbtd_lba3
ulg_lbtd_lba4
ulg_lbtd_lba5
ulg_lbtd_lba6
ulg_lbtd_lba7

iciar18_micro0
iciar18_micro1
iciar18_micro2
iciar18_micro3
tupac_mitosis0
tupac_mitosis1
camelyon16_0
camelyon16_1

umcm_colorectal_01
umcm_colorectal_02
umcm_colorectal_03
umcm_colorectal_04
umcm_colorectal_05
umcm_colorectal_06
umcm_colorectal_07
umcm_colorectal_08

warwick_crc0

Table 4.13: List of classes used to trained the network when performing the test on
generalisation.

• ulg_lbtd_lba7 with ulb_anapath_lba7, that are equally represented.

Except for ulb_anapath_lba7 that seems to be a real error, all the mislabelled
classes outside the project are mislabelled with classes looking alike and at least as
well represented.

Some examples of retrieved images are shown in Figure 4.8. Examples for each
class of the dataset are shown in Appendix B.

For validation, the training set is indexed in the database, and the test set is
used to make the queries. A top-1 accuracy of 77% and a top-5 accuracy of 82% are
obtained.

4.8 Generalisation to unseen classes
While the network must provide good results on trained classes, it should also be
able to generalise well to unseen classes, as it will surely be used more often on
classes it has not been trained on.

In order to test the generalisation performance, we carried out an additional
experiment where the network is trained on only the first half of the classes from
the training histopathology set (the exact list of the used classes is provided in
Table 4.13). When doing this test, the other half of the classes from the test set are
indexed in the database and the queries are also made from the other half of the
classes from the validation set. A top-1 accuracy of 57% and a top-5 accuracy of
82% are obtained, which is still acceptable, as the retrieved images are still visually
looking alike.

Samples of retrieved images are shown in Figure 4.9.
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Figure 4.8: Examples of retrieved images when ResNet50_DR is trained with the Margin
Loss on histopathology. Left: query image. Right: first five retrieved images.
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Figure 4.9: Retrieved images when ResNet50_DR is trained on half the image classes.
Left: query image. Right: first five retrieved images.

4.9 Training Faiss for faster similarity search
While previous experiments yield promising results in terms of image retrieval accu-
racy, their actual implementation requires additional developments and evaluation
due to the larger amounts of images that might be encountered in practice. In such
a very large scale setting, a classical nearest neighbour search over feature vectors
might not fulfil requirements in terms of response time.

This section studies the impact of the approximate search on the search time
and the precision. To study this impact, the whole training dataset is indexed in
the database (as it is the largest one with more than 600K images), and the test
set will be used to make the queries. First, only the ideal case where the index is
trained on the whole database will be studied. Then, a more difficult case will be
studied: the index will be trained on the test set, the training set will be added to
the database, and the validation set will be used for the queries.

As a first result, when the training dataset is indexed in the database, the time
spent in the Faiss search is 2.5 s for 1,000 queries, or 2.5 × 10−3 s per query. That
is 7.8 times faster than the brute force search. Concerning the accuracy, a top-1
accuracy of 77% and a top-5 accuracy of 82% are obtained, which is exactly the same
as for the brute force search. Figure 4.10 is obtained by indexing several times the
images of the training dataset with data augmentation. Up to 5,701,491 images were
indexed in the database in total. As expected, the top-1-accuracy is pretty similar to
the top-1 accuracy of the exact search: it keeps in line with the comment in section
3.2 that said that since the similarity measure is not exact, another approximation
will not have much of an impact. But the top-5 accuracy drops close to the top-1,
meaning that if the first retrieved image is not of the same class as the query image,
no image of the same class is retrieved. By analysing the obtained results, the reason
for this behaviour is immediately identified: the first five retrieved images are all
coming from the same original image but with data augmentation (Figure 4.11).
This illustrates the fact our network architectures are robust to variations generated
by data augmentation.

On another hand, the search is more than 10 times faster using the approximate
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Figure 4.10: Top-1 and Top-5 accuracy with trained Faiss index as a function of the
number of images indexed in the database (left y-axis). Red curve is the mean time spent
in the Faiss search (right y-axis).

Figure 4.11: Retrieved images with trained Faiss index. At some points, the index
retrieves several times the same image as it was indexed several times in the database
(due to data augmentation).
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Method Training dataset Top-1 Top-5
Selected ResNet50_DR histopathology 82 94
Pretrained DenseNet-121 / 70 88
Pretrained DenseNet-121_DR / 71 88
MarginLoss with DenseNet-121
(30 epochs, exp scheduling) ImageNet-2012 67 86

Margin Loss with DenseNet-121_DR
(20 epochs, frozen weights, exp scheduling) histopathology 73 91

Table 4.14: Accuracy on the test dataset using all the images from the validation set as
queries

search. This speed-up factor might be reduced or increased at will: by tuning the
parameter τ (Equation 2.19), it is possible to consider more or less centroids during
the similarity search. A larger τ will bring a better accuracy, but will lead to a slower
retrieval time, and the search time increases linearly with τ . In our experiment, it is
set to

√
# indexed vectors/10, so that the retrieval time does not increase linearly

with the size of the database. Given that the top-1 accuracy is not impacted by
much, the factor τ could be reduced even more. In practice, this could be adjusted
to meet the good accuracy-speed compromise.

When the index is trained on the test dataset, and the training set is indexed,
the following results are obtained with the previously used validation set (with 1,000
queries): a top-1 accuracy of 77%, a top-5 accuracy of 85% and a total Faiss search
time of 2.67 s. This means that if the training distribution is a representative sample
of the indexed database, the quality of the search is not significantly impacted.

For an even faster search, Faiss could be used on the GPU. But it was chosen
not to do so for reasons presented in Chapter 5.

4.10 Legitimacy of the protocol
This section compares the evaluation protocol to two more classic ones, that will be
called first protocol and second protocol.

The first protocol is very simple. The accuracy is just computed by using the
images from the validation set as queries. But it must be remembered that by doing
so, the wrong predictions of underrepresented classes will be drowned by the correct
predictions of overrepresented classes.

The second protocol provides a solution to alleviate this problem: the two most
represented classes, camelyon16_0 and janowczyk6_0, are removed from the vali-
dation set.

Tables 4.14 and 4.15 display the results obtained with both protocols with pre-
viously tested methods.

The results in the tables correspond to the results obtained in Table 4.4: the
model that are better in Table 4.4 are also better in Table 4.14 and 4.15, and the
contrary is also true for models that are worse.

The idea of the proposed evaluation protocol was that by eliminating the dispar-
ities in the validation set, the accuracy would reflect more the quality of the search,
and that it would be easier to discard a model without analysing its results further.
It seems that the second protocol leads to similar results.
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Method Training dataset Top-1 Top-5
Selected ResNet50_DR histopathology 70 91
Pretrained DenseNet-121 / 49 77
Pretrained DenseNet-121_DR / 49 78
MarginLoss with DenseNet-121
(30 epochs, exp scheduling) ImageNet-2012 45 75

Margin Loss with DenseNet-121_DR
(20 epochs, frozen weights, exp scheduling) histopathology 54 83

Table 4.15: Accuracy on the test dataset using the images from the validation set, by
removing the classes camelyon16_0 and janowczyk6_0.

If it were not for the lack of time, all the results would have been recomputed
with this second protocol.

4.11 Discussion about the results
As Table 4.4 shows, the 90% top-5 accuracy obtained with ResNet50_DR comes
from a long way, as the first implemented method with the mosaic methodology
only obtained a top-5 accuracy of 36%. The entirety of the results computed with
the mosaic were not presented in this work as they are quite poor, and this, with
both the k-means extraction and the completely random mosaic. This method, even
if it is used with a small dataset consisting in a carefully selected number of classes
from this histopathology dataset, is very slow and moreover provides poor results
compared to using a Faiss index.

In our study, it was initially thought that the weights of the network should be
frozen during training, and only the last linear layer should be updated. This is
because the network is used as a feature extractor, and therefore, it should not have
needed to be updated. Afterwards, it was hypothesised that the reason for the poor
results was that images from the same class in the training histopathology dataset
do not necessarily look alike (Figure 4.12). This is the reason why, ultimately,
other datasets containing natural images were explored, similar to what was done
with Smily, a successful architecture where the network is exclusively trained on
natural images. But the datasets used were either not adapted for this task, or not
large enough for this task, as the results provided by the networks trained on both
INaturalist and ImageNet-2012 provided results less than their baseline. And this,
with both frozen and unfrozen weights.

It appears that this initial hypothesis was very wrong. As soon as the network
DenseNet-121_DR was trained with the Margin Loss under the same training condi-
tions, but with unfrozen weights, it provided much better results. In fact, DenseNet-
121_DR and ResNet50_DR provide similar results when trained with the Margin
Loss on the histopathology dataset, but since ResNet50_DR is considerably faster,
it is the network that was retained. Moreover, ResNet50_DR generalises quite well
to unseen classes when trained with the margin loss.

In this master thesis, a more recent architecture than the usually used ResNet50
and DenseNet-121 for image retrieval, was also tried. The tested architecture
is DeiT, simply because it is was already successfully used for image retrieval
[El-Nouby et al., 2021]. But both DenseNet-121 and DeiT appear to be much slower
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Figure 4.12: Two images from the class camelyon16_0 that do not visually look alike

than ResNet50 (more than twice). And while the results obtained with DenseNet-
121 and ResNet50 are on par, DeiT results lag far behind. Either it was not trained
for long enough (it is trained for at least 2,000 epochs in [El-Nouby et al., 2021]) or
the Margin Loss is not well suited for DeiT.

Concerning the generalisation, ResNet50_DR provides more than satisfactory
results. As a reminder, retrieval results for ResNet50_DR for one image of each
class of the histopathology dataset is shown in appendix B.

In Luigi, the authors suggest to perform some transformations on the query
image, such as rotations and flipping, and to compute the nearest neighbours of
each transformed image and the query, and to return the k images to which the
least distances are associated. Doing so resulted in a drop of 5% top-5 accuracy and
a computation time 4 times longer for the retrieval.

In Smily, vectors of augmented images are indexed. This does not bring any
accuracy improvement as it was shown in Section 4.9: indexing augmented images
will lead to the retrieval of the same image for the first few images. Our experiments
suggest it is better to apply geometry data augmentations during training.

Finally, the resulting model has a much larger accuracy on the dataset than
the Randomised Trees technique, i.e. the previous method used on the Cytomine
website.
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Chapter 5

Distribution on different servers

In order to handle large datasets in a reasonable amount of time, they need to
be stored on different servers, to parallelise the search. This is a solution that was
already adopted by Smily (Section 2.2.2) and the Randomised Trees system (Section
2.2.1).

The solution proposed in this work is a master-worker architecture, as it simplifies
the synchronisation between the different servers. Moreover, the clients only need
to know the IP address of the master, which means that the image servers can be
added or removed at will without the need of notifying the clients about the change.

In this setting, clients interact with the master only. They can ask to retrieve
similar images, or to index a new image for example. The role of the master is
merely to be an interface between the clients and the image servers. Each image
server stores a part of the global dataset. Figure 5.1 presents an overview of the
architecture.

The model is deployed on each image server, as computing the feature of an
image is where a large part of the time is spent (cf. Table 4.10). Deploying it on
the master could be a bottleneck.

A REST Api is created for the clients. The master and the servers are developed
using FastAPI1. It was preferred to Flask2 as it allows the use of the new asyn-
chronous capabilities of Python with the await mechanism. A problem encountered
during the development was that the Faiss indices stored on the GPU would some-
times be duplicated for an unknown reason, leading to an out-of-memory error. This
is the reason why Faiss is used on the CPU, as the indices are never duplicated.

The different implemented actions are described in the following sections.

5.1 Retrieval of similar images
The most important operation of the proposed system is indeed the retrieval of
similar images sent by the client.

To do so, the client must send the input image to the master along with his/her
Cytomine public and private key and the number n of desired similar images. The
master first check if the public/private key pair is valid. Then the master acquires
a lock related to the client: it needs to do so, as several concurrent requests from a
same client might corrupt data related to that client on the image servers.

1https://fastapi.tiangolo.com/
2https://flask.palletsprojects.com/en/2.0.x/
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Figure 5.1: Illustration of the proposed architecture for the distribution. Several clients
can interact with the master, that itself interacts with several servers, each indexing a
part of the dataset.

When the master has checked the validity of a public/private key pair, it forwards
the image, and the key pair to the image servers. If no server replies, the master
sends an error to the client. The servers then each check the validity of this pair as
a security measure. Each server acquires a reader-writer lock in reader mode. The
reason is that Faiss is thread-safe for concurrent reading (only when the index is
on the CPU, it is not thread-safe for concurrent readings when the index is on the
GPU), but not for concurrent reading and modification of the index, such as adding
or removing vectors. This means that every operation on the index, such as reading
or modifying the index, must be protected.

When locked, each image server retrieves the names and the distances of the n
most similar images in their own index. They need to store those names, and send
the distances to the master. This is the reason why there is a lock related to the
client on the master: two concurrent requests from a same client could corrupt the
name list.

Once the master receives the distances from each server, it can figure out which
images are the closest and request them, along with their names, their class, and
the distances between the query and the retrieved images. It can finally send them
to the client with their names. Figure 5.2 summarises the operations.

In fact, the client can actually ask to retrieve either only labelled, unlabelled or
a mix of both labelled and unlabelled images, depending on the application. The
server returns either the label, if the image is labelled, or "Unkown" if the image is
not labelled. For this reason, each image servers actually manages two Faiss indices,
that are queried according to the type of the user’s query. Only one Redis database
is used since it is sufficient to append "labelled" or "unlabelled" to the ID of the Faiss
vectors.
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Figure 5.2: Workflow of operations for the retrieval
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REST endpoint: /get_nearest_images, with the following query parameters:

• nrt_neigh: the number of similar images the user wants to retrieve;

• client_pub_key: the public key of the user;

• client_pri_key: the private key of the user;

• only_labeled: if ’true’, it retrieves only labelled images, if ’false’, it retrieves
only unlabelled images, if ’mix’, a mix of both.

The user must also send his/her image as multipart form-data. The endpoint returns
a json string with the following keys:

• images: contains the list of returned images encoded in base64;

• cls: class of the returned images;

• name: name of the retrieved images;

• distances: distance between each retrieved image and the query.

5.2 Uploading a single image from the client’s
computer

For a client to post an image, he/she must post the image, his/her public/private
key pair and possibly a label on the master. Once again, the master first checks if
the public/private key pair is valid. The master posts the image to the server that
contains the less images, in order to provide a similar search time on each server.

The server receives the image, and once again checks if the public/private key
is valid, as a security measure. The server first saves the image. Then, it computes
the feature vector of the image, and acquires a writer lock. It adds the image to
the right index, depending on whether the image is labelled or not. It finally adds
it to the Redis database by appending "labelled" or "unlabelled" to the key. It also
adds the image name as a key and along with the Faiss ID, so that the image can
be removed without searching the whole keyspace of the Redis database.

Figure 5.3 summarises the operations.
REST endpoint: /index_image, with the following query parameters:

• client_pub_key: the public key of the user;

• client_key: the private key of the user;

• label: the optional label of the image.

The user must also send his/her image as multipart form-data.
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Figure 5.3: Indexing a single image
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5.3 Uploading a folder from the client’s computer
For a client to index a folder of images, he/she must post the folder as a zip file,
along with a public/private key pair, and a boolean variable telling if the images are
labelled or not, on the master. It is not possible to upload a folder that contains
labelled and unlabelled images at the same time. If the images are labelled, then
the label is the name of the subfolder the image is in. If the images are not labelled,
then the folder should not contain any subfolder. Once again, the master checks if
the key pair is valid. If it is valid, the master forwards the zip file to the server that
contains the less images.

The server checks the validity of the pair, as a security measure, and then checks
if the folder respects the format. If the format is not respected, an error is returned
to the client. If there is no error, the server unzips the folder, and indexes all the
images by batches, acquiring a writer lock at each loop.

Figure 5.4 summarises the operations.
REST endpoint: /index_folder, with the following query parameters:
• client_pub_key: the public key of the user;

• client_key: the private key of the user;

• labeled: True or False, depending on if the image to index are labeled or not.
The user must also send his/her folder as multipart form-data.

5.4 Removing an image
If a client receives an image that needs to be deleted for any reason, he/she can do
so by providing the name of the image to the master, along with its public/private
key pair. Once again, the master checks the validity of the pair. If it is valid, the
master sends the name of the image to each server.

The server receives the name and the key pair. It checks the validity of the pair.
If the pair is valid, the server checks if it stores the image. If it does, the server
acquires a writer lock and fetches the Faiss ID by providing the image name to the
Redis database. It also knows that way if it is a labelled image or not. It can
then remove all the data concerning the image stored on the Faiss index, the Redis
database and the image file.

Figure 5.5 summarises the operations.
REST endpoint: /remove_image, with the following query parameters:
• client_pub_key: the public key of the user;

• client_key: the private key of the user;

• name: the name of the image to remove.

5.5 Indexing labelled patches of slides stored on
Cytomine servers

If a user wants to add all the annotations from a Cytomine project, he/she can
do so by providing the project ID, the label of the patches he wants to index (e.g.
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Figure 5.4: Indexing a folder
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Figure 5.5: Removing an image
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TUMOR), and of course his/her public/private key pair. The master first checks
the validity of the key pair. If it is valid, it asks the server that has the less images
to index the slides.

Once again, the server first checks the validity of the key pair. If it is valid, it
fetches all the annotations of the project annotated with the provided label. The
indexed annotations must have an area between 700mm2 and 5000mm2, so that
they are neither too small nor too big. The patches are saved, and then added by
batches, acquiring a writer lock at each loop.

Figure 5.6 summarises the operations.
REST endpoint: /index_slide_annotations, with the following query parame-

ters:

• client_pub_key: the public key of the user;

• client_key: the private key of the user;

• project_id: the ID of the desired Cytomine project;

• label: the label of the annotations to index.

5.6 Indexing a project of slides stored on Cy-
tomine servers.

As a very large amount of different patches can be extracted from a WSIs, the size
of the database could rapidly increase if all those patches are indexed. In order to
extract a minimum amount of informative patches, the same method as that used for
Luigi is applied (Section 2.2.4.1): the tissue section of the slide is extracted with Otsu
thresholding method. Then, patches of size 224 × 224 at different magnification
levels, and the feature vectors are computed for each of those patches. Those vectors
are clustered with k-means (k=500), and only the patches that are the nearest to
their clusters are stored in the database.

For a client to index patches from a project of slides, he/she needs to send the ID
of the project to the master, along with his/her public/private key pair. The master
checks the validity of the pair, and fetches all the necessary information about the
slides of the project. Then the master sends, slide by slide, the information about a
single slide to the server that indexes the less images, along with the public/private
key pair of the client.

The server checks once again the validity of the public/private key pair. It then
downloads the slide, and applies the Luigi’s method to gather the patches to index.
It saves those patches, and then indexes the patches by batches, acquiring a writer
lock at each loop. It must be taken into account that those patches are indexed as
unlabelled.

Figure 5.7 summarises the operations.
REST endpoint: /index_slides, with the following query parameters:

• client_pub_key: the public key of the user;

• client_key: the private key of the user;

• project_id: the ID of the desired Cytomine project.
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Figure 5.6: Adding slide annotations

65



Figure 5.7: Adding project of slides.
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Figure 5.8: Connection and hearbeat message.

5.7 Heartbeat messages
For the search time to be minimal, the number of images needs to be equally spread
on each image servers. When a user makes a query to retrieve similar images, the
master needs to receive the response from each server to send it to the client. If one
image server contains more images than the others, it will take more time to reply
to the master, and as a result, the master will take more time to reply to the client.

So, when a user wants to index images, the master needs to know the number of
images each server contains, in order to send the images on the server that contains
the less.

This is done with a heartbeat mechanism: every few seconds, the master sends
a heartbeat message to every worker, which replies with their number of indexed
images. When the master does not receive the response of a worker, it considers
that it crashed.

For the master to be aware of a server, the server must send a "connect" request
beforehand, which is typically done when the server is started.

The operations are summarised in figure 5.8.

5.8 Tests conducted
This section describes the few numbers of tests that were conducted with the dis-
tributed architecture. For tests that require several servers, two servers were run on
two different machines.

A client can successfully retrieve images from the two different servers. He/She
can also successfully put images from his/her own computer on one of the servers,
one by one or by sending a zip file, even when one crashes just before or during the
operation. A client can also successfully delete an image from the global index.
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For the following tests, the master and the only worker were run on the same
computer. The test dataset is already indexed in the database, and the obliga-
tory connection to Cytomine is removed, in order to simulate a large amount of
connections at the same time.

For the retrieval time, the system can retrieve 100 "simultaneous" requests from
different users in about 10 seconds.

For indexing a new image, it takes the system 18 seconds to handle 100 "simul-
taneous" requests from different users.

When combining 50 indexations and 50 retrievals, it takes the system 13 seconds
to handle.

68



Chapter 6

Conclusions

This study responds to a request from Cytomine R&D and to needs in the digital
pathology field. In 2010 Cytomine developed a Content-Based Image Retrieval
system that could be applied on small scale datasets. Their wish was now to integrate
into their platform a new one applicable to million or billion images.

For this master thesis, they set the following goal to achieve: to design a new
architecture and a training method to allow the retrieval of histopathology images
on a large scale.

But to go even further, we decided to aim at an additional goal: to store the
dataset on different servers.

Have these objectives been achieved?

At the beginning of this research, many hopes were placed in the mosaic method, but
after a while, it became clear that it was not adequate to bring about the expected
results. It was thus necessary to turn to other models found in academic articles to
move forward.

Three publications largely contributed to the construction of an architecture
yielding very encouraging results: Smily and Luigi, for the idea of the approximate
nearest neighbour search, and "Revisiting training strategies and generalization per-
formance in deep metric learning" by [Roth et al., 2020], for exposing us the Margin
Loss.

By slightly modifying ResNet50 and training it with the Margin Loss, the devel-
oped architecture is able to retrieve similar histopathology images. On the evaluated
dataset, it retrieves an image of the same class as the query image in the top-5 results
nine times out of ten.

Concerning the search time, the results can be available in 20 ms on a database
of more than 5,000,000 images thanks to the use of a trained Faiss index for ap-
proximate search. Considering these results, we can say this project fulfils the
expectations Cytomine expressed.

As far as our objective is concerned, it was also achieved as the solution is
distributed on different servers, and users can retrieve most similar images spread
on each of them

Limitations and future works

This study obviously contains some limitations.
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First, the solution was tested on only one dataset. Although this dataset was
quite large, we cannot be sure of how it will fare in real conditions.

Second, this work was not reviewed by practitioners or researchers. They might
not have the same idea of visually looking alike histopathology images as we have.

The network we built provides results we had not hoped for, but there is of
course still room for improvement.

The scores could certainly be increased by tuning the hyperparameters of the
network, what was not done for this research, and/or by choosing another loss than
the Margin Loss.

To maintain the best possible results during the lifetime of the solution, the
network could, for instance, be retrained from time to time on the newly gathered
labelled dataset.

Our architecture and REST API were created to facilitate the seamless integra-
tion of the distributed solution into the Cytomine platform. But it must be noted
that, so far, this integration has not yet been carried out, and that the architecture
can still be optimised.

Our code is open-source and available at https://github.com/stephdef08/tfe
(for the Mosaic methodology) and https://github.com/stephdef08/tfe2 (Deep
metric learning and Faiss).
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Appendix A

Using the REST API

The REST API can be used with each architecture presented in this thesis, except
for the mosaic.

To launch the master, the following command must be executed:
$ python rest/master.py --host CYTOMINE_HOST [--ip IP

--port PORT --http]

where --host is the Cytomine host. The following arguments are optional: --ip is the
IP address of the server to use (default: 127.0.0.1), --port is the port to use (default:
8000). If the flag --http is raised, the server uses the HTTP protocol instead of
HTTPS.

Before launching a server, a Redis server must first be launched, then the server:
$ redis -server redis.conf
$ python rest/server.py --host CYTOMINE_HOST [--

master_ip MASTER_IP --master_port MASTER_PORT --ip
IP --port PORT --model MODEL --num_features
NUM_FEATURES --weights WEIGHTS --use_dr --gpu_id ID
--folder FOLDER --http --db_name NAME]

where

• --host is the Cytomine host;

• --master_ip is the ip address of the master (default: 127.0.0.1);

• --ip is the ip address of the server to use (default: 127.0.0.1);

• --master_port is the port of the master (default: 8000);

• --port is the port used by the server (default: 8001);

• --model is the model of the network, either ’resnet’, ’densenet’ or ’transformer’
(default: densenet);

• --num_features is the number of features the model extracts (default: 128);

• --weights is the name of the file storing the weights of the network;

• --use_dr uses the _DR version of the network (not for the transformer);

• --folder is the folder where the added images will be stored;
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• --http to use the HTTP protocol instead of HTTPS;

• --db_name is the name of the files storing the Faiss indices.
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Appendix B

Examples of retrieved patches

In this appendix are shown the results of the retrieval for each class of the histopathol-
ogy dataset that are obtained with ResNet50_DR, trained with the Margin Loss
on the histopathology training set. The training set is indexed in the database, and
the test set is used to make the queries.
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