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Abstract

Handling distributed systems which must be highly available is a challenge for many compa-
nies. One of the issues is to maintain data consistency while maintaining the service highly
available. In this work, we review the data handling of a service in order to be able to run
multiple instances of that service, enabling load balancing and redundancy,

This work has been carried out at EVS Broadcast Equipment, which is specialised in live
video broadcast, providing among others the XT server family of products. With the aim to
provide a better experience when managing remote production, EVS has recently developed
an application, called Multi-Monitoring, displaying the real-time status of the operations
happening on remote sites.

The starting point for this work was to review the data handling of the Multi-Monitoring
application and to remove any barrier preventing the concurrent execution of multiple
instances of the service while maintaining or improving the overall performance, and in
particular, to review the caching infrastructure.
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Chapter 1

Introduction

This work has been carried out at EVS Broadcast Equipment, which is specialised in live
video broadcast, providing among others the XT server family of products. In addition to their
production servers, EVS provides also production and content management tools (scheduler,
logger, clipper, playlist management, media manager and browser) and live editing tools
(slow motion, graphic insertions, etc). Those products are used in several fields such as sport
events, TV shows and news production.

Some EVS products process video clips (rewrap, transcoding) and transfer them from
one location to another. An application allows the user to monitor the real-time status and
the progress of those operations (called jobs). However, the job monitoring is limited to
one production site. With the aim to provide a better experience when managing remote
production, EVS has recently developed an application, called Multi-Monitoring, displaying
the jobs happening on several remote sites.

In this work, we review the data handling of the Multi-Monitoring application in order to
be able to run multiple instances of that service, enabling load balancing and redundancy.
However, handling distributed systems which must be highly available is a challenge for
many companies. One of the issue is to maintain data consistency while maintaining the
service highly available.

1.1 Motivation

The starting point for this work was to review the data handling of the Multi-Monitoring
application and to remove any barrier preventing the concurrent execution of multiple
instances of the service while maintaining or improving the overall performance, and in
particular, to review the caching infrastructure.



2 Introduction

The caching infrastructure was not really sophisticated and consisted in a set of in-
memory lists corresponding to the most recent jobs as well as the information related to the
remote site application.

One of the issues was that there was no mechanism designed for keeping the database
and the cache synchronised, the service always modified both of them. So, if another service
were to rely on the same database, the other services would not be informed of the changes.
Another area to investigate was the data structure used for the cache. This implementation
led to poor performance. Indeed, requests were executed by travelling entirely and several
times the list of jobs. This involved a high CPU consumption that limited the number of
requests that could be handled and thus the number of clients that could interact with the
server. Moreover, the lists used offered no mechanism for improving performance of the
queries performed, like indexes. Finally, storing the database content in-memory imposed a
burden on the RAM usage.

While the above limitations were known to the team, the team had never really assessed
the benefit of the caching infrastructure, relying on the intuition that keeping data in-memory
could only improve the query performance.

The caching strategy is inherited from a cache used in another application developed
by EVS. Though, this strategy isn’t really suited to the studied application. The first flaw
of this caching strategy is that some jobs are stored in the database but are never queried.
Indeed, the cache contains only the most recent jobs and its capacity is constant. Since new
jobs are constantly added (in the cache and in the database), a purge mechanism is used to
delete older jobs from the cache. Those jobs are thus present only in the database after the
purge. Since requests are executed on the cache, the older jobs that are only in the database
are useless because they are never sent to clients anymore. Moreover, the Multi-Monitoring
server receives up to 20 times more job insertions than the other application from which the
caching strategy is inherited. Some recently processed jobs could be not present in the cache
if its capacity isn’t large enough. However, choosing a fixed capacity is hard because the jobs
insertion rate is not constant. Thus, a solution to this problem should be found.

1.2 Contributions

This work first provides an analysis of the query-handling performance of the existing
Multi-Monitoring service. This analysis identifies the cache as a bottleneck and shows the
performance heavily depends on the query being performed. The study also compares the
performance of the system when the complete caching infrastructure is removed. This shows
that accessing directly the database is both more efficient and more predictable. Based on
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this, we implemented and tested a new version of the service not relying on an explicit
caching mechanism. Thus, the concurrent execution of multiple instances of this new version
is now possible. Removing the cache also solves the caching strategy problem linked to the
fixed cache capacity. With the removal of the cache and the use of OData (tool allowing the
creation and consumption of queryable RESTful APIs), the code of the server is now shorter
and simplified. Finally, we also list some limitations encountered when using the OData
library for Microsoft .NET. Since we could not find those mentioned in the existing literature,
this list will help people to use OData in an adapted way.

1.3 Outline of the Thesis

Chapter 2 presents the Multi-Monitoring application. It first explains the context in which
the application is used. Then, the REST architectural style is briefly presented. Next, the
architecture and the components of the Multi-Monitoring application are explained. Finally,
we define a typical configuration used for the tests.

Chapter 3 analyses the performance of the initial application. It first explains how the
database is filled with test data and measures the memory used by the Multi-Monitoring
server. Then, it presents how the queries contained in URIs are translated to be executed on
the cache. A performance analysis is conducted to discover the cache behaviour and obtain
results to compare with alternative solutions.

Chapter 4 studies the performance of the database. It first explains how the database
can be queried using the ORM. Then, it analyses the caching mechanism provided by the
database and measures its performance when executing queries. The obtained results are
then compared with those of the cache.

Chapter 5 presents a tool called OData used for its query capabilities. It explains how
using this tool in the Multi-Monitoring server to query the database, It explains also how
the cache is removed and the simplifications that are obtained thanks to that removal. The
performance of OData are then measured and improved using database indexes.





Chapter 2

Description of the MultiMonitoring
application

This chapter aims to explain the context of use of the MultiMonitoring application, its
features, its architecture, its components and provides a typical usage configuration.

2.1 Context

In this section, we first describe the data on which the MultiMonitoring application works
and explain the origin of those data. Then, we explain the goal of the MultiMonitoring
application and present its components.

2.1.1 Video processing jobs

Video clips are stored in video servers (XT servers). For example, video clips can come
from HD cameras located in a football stadium. EVS provides production and content
management applications that work on those video clips: IPDirector and Xedio. Using those
client applications, users can perform operations on video clips (rewrap, transcoding, copy,...).
The video processing operations are not directly performed by the client applications but by
processing devices called XTAccess, as illustrated in Figure 2.1. Indeed, a client application
must send to an XTAccess the information describing the operation it want to apply on a
video clip. That information is represented by a video processing job, which consists of

• a source material (video clip) selected by the client application.

• an operation (copy, rewrap, transcoding, restore, grab, etc) executed on the source
material.
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• a destination that stores the result of the operation on the source material. The
destination corresponds to an XT server.

Jobs are thus initiated by client applications which provide the source video clip that will
undergo the operation. The jobs are then sent to processing devices that process the jobs that
they receive.

Fig. 2.1 Video processing job sent by a client application to a processing device.

2.1.2 Job orchestrator: Xsquare

A configuration can contain several client applications that initiate a lot of jobs and several
processing devices (XTAccess). A job orchestrator, called Xsquare [7], is used to centrally
manage resources (CPU/RAM/network) used by the processing devices. It distributes the
jobs to processing devices according to available resources, as illustrated in Figure 2.2.

In addition of being a central job orchestrator, an Xsquare provides also a monitoring
tool used to monitor and manage all the jobs handled by that Xsquare. While the jobs are
processed, an Xsquare sends to client applications notifications about the progress of their
jobs.

2.1.3 Outside broadcast trucks

Outside broadcast (OB) trucks are used for the production of television programmes that
cover sport and news events. An OB truck is a kind of mobile studio equipped with several XT
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Fig. 2.2 Xsquare, a job orchestrator distributing jobs initiated by client applications to
processing devices according to available resources.

servers, one or two Xsquares, an XFile (file archiving tool) and sometimes an IPDirector [5,
6].

2.1.4 MultiMonitoring application

A broadcast centre is usually connected to several OB trucks through a VPN, as represented
in Figure 2.3. Like the trucks, the broadcast centre also contains one or several Xsquares.

Each Xsquare provides a monitoring tool that displays jobs managed by that Xsquare.
However, there is no way to monitor remotely the jobs managed by the Xsquares present
in all the OB trucks from the broadcast centre. As its name suggests, the goal of the
MultiMonitoring application is to centralise the jobs handled by Xsquares from all OB trucks
on the same monitoring screen. The notion of job monitor is used to represent the job
monitoring activity of a remote Xsquare.

MultiMonitoring agent and server

The MultiMonitoring application relies on two entities, represented in grey in Figure 2.3:

• The MultiMonitoring server, located in the broadcast centre, that stores information
about the jobs managed by all Xsquares of the setup.

• The MultiMonitoring agent located in each truck.
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Fig. 2.3 Xsquares present in broadcast centre and OB trucks.

MultiMonitoring agents are primarily used as proxies. In that way, the Xsquares are not
visible from outside the trucks. The agents are also used to avoid disturbing the Xsquares by
the remote monitoring. Indeed, an agent is responsible for managing and sending notifications
instead of the Xsquare.

MultiMonitoring high-level architecture

MultiMonitoring agents send notifications about job progression to the MultiMonitoring
server that stores this information to expose it to clients. This high-level architecture is
illustrated in Figure 2.4. The remainder of this text is based on this organisation in agents,
server and clients.

MultiMonitoring client

The MultiMonitoring client consists in a web browser application that queries each second
the MultiMonitoring server to obtain the jobs corresponding to a particular filter. The web
page returned by the MultiMonitoring server to the web client is displayed at Figure 2.5.

The main element of the job monitoring window is the job grid that displays all the
operations processed by the processing devices, i.e. the jobs. The columns of the grid
correspond to metadata about the jobs and each line of the grid corresponds to a job.
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Fig. 2.4 MultiMonitoring high-level architecture.

Fig. 2.5 Job monitoring window.

The grid displays filters that can be used by the user to select the jobs that are displayed
in the job monitoring window. Rows can be sorted based on the values of a column of the
grid and filtered by selecting a predefined filter or by typing a text to search.

The second part of the job monitoring window allows to:

• Choose the number of jobs displayed on the screen.

• Navigate between pages of jobs (pagination system).
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• Enable/disable the one second auto refresh of the job grid.

• Reset all the filters and sortings.

Table 2.1 describes the information displayed for each job and the corresponding allowed
operations (filter or sort). We can notice that destination fields can’t be sorted. Indeed, there
can be several destinations and thus several sort keys for one job, which is ambiguous.

Field name Description Sort Filter
Id Unique job identifier yes yes
Agent Job Id Unique job identifier for the corresponding no yes

agent
Status Status of the job (in progress, scheduled, yes yes

failed, successful or cancelled
Type Job monitor type (Xsquare) yes yes
Reception Time Date and time when Xsquare has received yes yes

the job request
Start Time Date and time when Xsquare has started the yes yes

job request
End Time Date and time when Xsquare has finished yes yes

the job request
Initiator Xsquare initiator yes yes
Username Xsquare username yes yes
Source Agent Source agent yes yes
Source Path Location of the source material (path or IP yes yes

address)
Source Filename Name of the source material yes yes
Source Clipname Name of the source material yes yes
MBytes/s Transfer rate in megabytes per second yes yes
Frames/s Transfer rate in frames per second yes yes
Job Monitor Name Job monitor nickname no yes
Destination Agent Destination agent no yes
Destination Path Location where the job output will be stored no yes
Destination Filename Name of the destination material no yes
Destination Clipname Name of the destination material no yes
Message Message giving information on the outcome no yes

of the job
Table 2.1 Job information displayed at the client and allowed operations.
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2.2 Representational State Transfer (REST)

In the previous section, we explained that the MultiMonitoring server exposes jobs that
can be queried by web clients. The server defines an API that conforms to the constraints
defined by REST. In this section, we describe what is REST and how it can be used in the
MultiMonitoring application.

2.2.1 Introduction

Representational State Transfer (REST) is an architectural style for distributed hypermedia
systems defined by Roy Thomas Fielding in chapter 5 of his PhD dissertation "Architectural
Styles and the Design of Network-based Software Architectures" [8].

An architectural style consists of a set of architectural constraints. Those constraints
induce properties for the resulting architecture. Some properties induced by REST constraints
are desirable such as performance, scalability, simplicity, visibility, interoperability and
reliability. However, other induced properties lead to design trade-offs like reduction of
efficiency.

An application that conforms to REST constraints is called «RESTful». REST is inde-
pendent of a particular communication protocol. However, most RESTful architectures use
HTTP as the communication protocol.

The six constraints that define the REST architectural style are:

1. Client-Server
The client-server constraint consists in separating the user interface (client) from the
data storage (server). Client and server are thus distinct components.

2. Statelessness
Statelessness is about the server. The server must not store information about the state
of the client. Thus, each request sent by the client to the server must contain all of
the information necessary to understand and service the request. If a session state is
needed, it must be stored on the client and given to the server when needed.

3. Cacheability
The data in a response to a request must be implicitly or explicitly labelled as cacheable
or non-cacheable. The client cache can then reuse the data of a cacheable response for
new requests.

4. Uniform interface
This constraint is about the interface between clients and servers. Its goal is to decouple
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clients and servers and allow them to evolve independently. This constraint consists of
four sub-constraints:

A. Identification of resources

The resource is the key abstraction of information in REST and corresponds to
any information that can be named such as a document, an image, a collection of
resources, etc. This first sub-constraint states that each resource must be given
a unique and stable identifier. Uniform Resource Identifier (URI) are used to
identify resources when using HTTP.

B. Manipulation of resources through representations

Clients and servers can store data in several ways. A representation is a sequence
of bytes that captures the current or intended state of a resource. Representations
are used to exchange information between the client and the server and is thus
contained in requests and responses.

In HTTP, resources are manipulated using a set of HTTP verbs. The number of
verbs is limited and describes the uniform interface. HTTP verbs map to CRUD
operations in the following way:

• Create: PUT, POST

• Read: GET

• Update: PUT

• Partial update: PATCH

• Delete: DELETE

C. Self-descriptive messages

Messages exchanged in requests and responses must be self-descriptive. To do
so, a message contains

• data : representation of the resource

• metadata: description of the resource

HTTP provides the Content-Type response header to describe the type of the
representation (JSON, XML, etc). JavaScript Object Notation (JSON) is used for
the representation of resources between client and server of the MultiMonitoring
application. Metadata can be contained in the body of the response.

D. Hypermedia As The Engine Of Application State (HATEOAS)

HATEOAS provides the client a way to control the application state. A state
transition can be done through actions identified in an hypermedia. A resource
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representation corresponds to an hypermedia. This one can contains hyperlinks
representing the actions. The client can thus change the application state by
following the hyperlinks.

In the MultiMonitoring application, the client can navigate through the paging
system by following hyperlinks points, for example, to pages before and after the
current page.

HTTP Link header contains a link to another resource and allows thus hypermedia
control in HTTP responses. Hypermedia control can also be added directly in the
resource representation.

5. Layered system
The layered system constraint states that an architecture can be composed of hierar-
chical layers where each component can’t see beyond the layer to which it is directly
connected. For a given component, knowledge of the system is thus restricted to a
single layer.

6. Code on demand (optional)
This final constraint allows to extend client functionality by downloading and executing
code in the form of applets (e.g., Java applets) or client-side scripts (e.g., JavaScript).

2.2.2 MultiMonitoring resources

As said previously, resources are identified by URIs. It is recommended to use human-
readable URIs. In particular, URIs should be hierarchical and predictable.

In the MultiMonitoring application, the resources correspond to jobs. The following URI
identifies a collection of jobs:

http://localhost:9018/multimonitoring/jobs

A job can also be accessed by its identifier. For instance, to get the job whose identifier is
5, the URI to use is:

http://localhost:9018/multimonitoring/jobs/5

2.2.3 Query Language

The job monitoring window displayed at the client allows him to select the jobs he is
interested in. Indeed, the window permits the client to filter and sort the jobs and to use a
pagination system. All those operations are applied on the jobs and so on the corresponding
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resources. Thus, a query language is used in the URI and is interpreted at the server side to
return the jobs corresponding to the query.

The MultiMonitoring application defines a query language based on query parameters.
A query on the resource jobs has the following form:

.../jobs/?param1=val1&param2=val2&...&paramN=valN

It begins with a question mark followed by a list of query parameter-value pairs separated
by an ampersand.

Filtering

The first operation consists in filtering a resource representing a list of other resources to
obtain a sublist corresponding to the filter. Filters are based on fields of the resources. We can
use query parameters corresponding to those fields in the URI. For instance, the following
URI identifies the list of jobs whose agent job identifier is 1, the mean byte rate is lower or
equal to 40 megabytes per second and the job monitor identifier is either 2, 3 or 4:

.../jobs/?AgentJobId=1&MeanByteRate:lte=40&JobMonitorId=2,3,4

Filter conditions on the same field form a disjunction and conditions on different fields
form a conjunction.

Sorting

Then, we want to sort a list of resources. We want to sort on several fields in ascending or
descending order. The _sort query parameter is used in the URI. The value of this parameter
is a comma-separated list of values corresponding to fields of the resources. Each field is
optionally followed by a colon and the sort direction. The following URI identifies the list of
jobs sorted by identifiers in ascending order, then by mean byte rates in descending order:

.../jobs/?_sort=Id:asc,MeanByteRate:desc

Pagination

To construct a pagination system, we need to separate the list of resources in pages of a given
number of resources and access a page using its number. To do this, two query parameters
are used:

• _max: number of resources per page, i.e. the maximum number of resources returned
to the client.
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• _offset: the number of resources to skip to reach the wanted page.

For instance, to access the 5th page of 20 resources, we use:

• _max = 20

• _offset = page number * _max = 5 * 20 = 100

The 100 first resources are skipped and resources from 101 to 120 are returned.

2.3 MultiMonitoring Architecture

In this section, we present the architecture of the MultiMonitoring server and agent. The
different data models used are explained. Then, the cache implementation and mechanisms
are presented. Finally, we give a description of Entity Framework, the ORM used at the
server.

2.3.1 Server architecture

As illustrated in Figure 2.6, the server architecture consists in three main layers:

1. HTTP Api / Hosting

2. Application

3. Infrastructure / Domain.

The first layer exposes a REST API represented by the Job API (that allows to do
CRUD operations on jobs) and Job Monitor API (that allows to do CRUD operations on job
monitors). It also hosts html and javascript files used in the GUI.

The second layer is composed of 4 modules:

• Job Service: service exposing jobs to other modules, mostly HTTP controllers.

• Job Monitor Service: service exposing job monitors to other modules, mostly HTTP
controllers.

• Data Purge Controller: removes older jobs from the database to keep its size below a
given limit.

• Job Monitor Observer: collects the jobs from the job monitors and insert them using
the Job Service module.
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Fig. 2.6 Architecture of the MultiMonitoring server.

The third layer manages the data of the application and provides access to the database.
It also contains a listener that subscribes to job notifications (job creation, job update,...) of a
remote Xsquare accessed via a MultiMonitoring agent.

As already mentioned, the server contains an in-memory cache of jobs. Mechanisms of
the cache are presented in Section 2.3.4.

An Object-Relational Mapper (ORM) is used by the server to convert easily domain
objects from the server to scalar values organised within tables in the database. More
information about the ORM is given in Section 2.3.5.

The server manages three representations of jobs and job monitors. Each representation
corresponds to a different class. Those classes contain in general the same properties (Id,
Status,...) with small differences:

• Type of properties
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• Name of properties

• Addition/removal of properties

We will call those representations data models. Three data models are used, as illustrated
at Figure 2.7:

• The API model is the model that is serialised in JSON and sent to the client.

• The domain model is the model used to store jobs in the cache.

• The core model is used by the ORM and corresponds to columns in database tables.

Fig. 2.7 Data models used at the MultiMonitoring server.

Having three different models requires to convert jobs between them several times in
the server code and increases its complexity. Moreover, the models contain only small
differences between them and are thus maybe not necessary.

2.3.2 Agent architecture

The agent architecture is a simplified version of the server architecture, as illustrated in
Figure 2.8. Indeed, GUI, jobs and database are not needed here.

This architecture contains 6 modules:

• The Job Monitor API and the Job Monitor Service have the same roles as in the server.

• The Job Monitor Observer collects job monitors and forward them to the server.

• Data Layer here doesn’t provide access to a database but to an XML file used to persist
job monitors.

• The Xsquare Listener subscribes to job notifications of the local Xsquare.
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Fig. 2.8 Architecture of the MultiMonitoring agent.

2.3.3 Database

A relational database management system (RDBMS) is used by the MultiMonitoring server
to store information about jobs and job monitors. The RDBMS used is MICROSOFT SQL
SERVER. The MultiMonitoring database is composed of three tables: Jobs, Destinations
and JobMonitors. Destinations of jobs are separated from jobs information because a
job can have multiple destinations. We can use a join operation between tables Jobs and
Destinations to obtain jobs information with their destinations.

The only indexes present in the database are:

• The primary key Id in the JobMonitors table.

• The primary key Id and foreign key JobMonitorId in the Jobs table.

• The primary key Id and foreign key Job_Id in the Destinations table.
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The number of jobs in the database is limited to 300,000. The Data Purge Controller
module is responsible to remove older jobs when this limit is passed. A purge removes 1000
jobs at once.

2.3.4 Cache

An in-memory cache is used to store the 100,000 out of 300,000 newer jobs from the database.
When the server is started, those jobs are copied in the cache. The cache is then used in two
distincts ways:

• Read operations are performed only on the cache.

• Create, update and delete operations are performed on both the cache and the database.
In this way, the cache and the database are in a consistent state.

Like the database, the cache has a limited size. The Data Purge Controller module is
also responsible to remove older jobs from the cache when jobs are added into it.

Read and modification operations are performed at the same time on the cache. To avoid
reading inconsistent data, a read-only copy of the cache is used for reading. This copy is
completely overwritten after that the original cache is modified. The update of the read-only
copy is protected with a lock.

As explained in the introduction, the fact that the cache contains only a subset of the jobs
in the database is not appropriate for the MultiMonitoring application. So, we’ll study the
performance of the cache containing all the jobs from the database.

2.3.5 Object-Relational Mapper: Entity Framework

Difficulties appear when a program written in an object-oriented language uses a RDBMS.
Indeed, data is not represented and accessed in the same way. This problem is called the
object-relational impedance mismatch.

An Object-Relational Mapper (ORM) is a tool used to convert data between domain
objects and relational database. For instance, Entity Framework (EF) is an Object-Relational
Mapping framework [10]. It is used in the MultiMonitoring application to link domain
objects to SQL SERVER tables. EF provides several additional features like query translation
and caching.

Entity Data Model

Data can be stored in many forms (relational databases, XML files, text files, etc). An abstract
data model is needed to have a general way to access all those forms of data. The Entity
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Data Model (EDM) is such a model that describes the structure of data independently of the
storage type [3, 9]. It is an extended version of the entity-relationship model. Indeed, the
structure of data is described in terms of entities and relationships (see Figure 2.9).

Fig. 2.9 Entity Data Model: entities and relationships [3].

The EDM must be mapped to the data storage schema. For example, if the data store
is a relational database, each entity could correspond to a table and the relations could be
represented by the foreign keys contained in those tables.

The entity type is the key concept used by EDM to describe the structure of data. An
entity type contains properties and navigation properties:

• A property contains data.

• A navigation property represents a relationship between two entities.

An entity is an instance of a specific entity type. A collection of entities is called an entity
set. Then, entity sets are grouped in an entity container. All those concepts are illustrated in
Figure 2.10.

EF uses the EDM to map domain objects to SQL SERVER tables. Indeed, it instantiates
entities as domain objects. Those objects are then used to manipulate the corresponding
EDM entities. The EDM is also used by OData, as described in Section 5.1.

2.4 Typical MultiMonitoring setup

In this work, a typical setup is simulated. The server interacts with 20 Xsquares. Each of
them sends two types of notifications to the server:

• a job creation every 5 seconds.
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Fig. 2.10 Entity Data Model: entity container, entity sets and properties [3].

• for each job, an update every 7 seconds.

The application should support around 100 clients. Each of them can open up to three tabs in
its web browser application (each tab corresponding to a particular query). Thus, the server
could receives up to 300 read requests per second. So, the ratio read / modify requests is
high.

2.5 Summary

The MultiMonitoring application is composed of three components:

• A server

• Agents

• Web clients

An Xsquare, which corresponds to one job monitor, emits notifications about job creations
and progression of jobs processing. Those notifications are caught by the agent to which the
Xsquare is linked. Then, the agent pre-processes those notifications and sends them to the
server to fill its database. The server has an in-memory cache that contains only the newer
jobs contained in the database. Jobs extraction requests are performed on the cache, not on
the database. The server exposes a RESTful API for jobs which also provides query features
like filtering, sorting and pagination. Finally, a web client requests every second the web
server to obtain jobs corresponding to a filter that he defined in the job monitoring window
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displayed in its web browser application. Since there are much more client requests than
Xsquare notifications, the read/modification requests ratio is high.



Chapter 3

Performance analysis of the cache

The goal of the cache used in the MultiMonitoring server is to improve performance by
querying data in memory. In this chapter, we study the performance of that cache to compare
it later to alternative solutions.

3.1 Testing environment

All the tests in this work are performed on a computer running a Windows 7 Enterprise
operating system. The computer has 16 Go of RAM and an Intel Core i7-4790 (3.6 GHz).
The installed .NET Framework version is 4.5 and SQL Server 2012 is used as the database.

3.2 Database loading

The first step to analyse the cache is to fill the database. To be consistent with the setup from
Section 2.4, we inserted 20 job monitors named "Xsquare01", "Xsquare02", ..., "Xsquare20"
in the database. To reach the 300,000 jobs database limit fixed by the application, we added
15,000 jobs for each job monitor. Each job has two destinations: a high and a low quality file.

Jobs are inserted by notifications sent by an agent to the server. A tool generating
job creation and deletion notifications is available in the project solution (Tools.Utils).
However, it only supported jobs with one destination. Thus, the tool has been modified to
allow a job to have two destinations. We also coded a Power Shell script that uses this tool to
simulate the creation of the 300,000 jobs by the 20 job monitors (fill_db.ps1).
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3.3 RAM usage

Since the number of jobs stored in cache increased from 100,000 to 300,000, we measured
the RAM usage when increasing the number of jobs to check if it was not too high. To do so,
we used performance counters. Performance counters are used to monitor system compo-
nents such as memory, CPU, disk I/O and network I/O. One of them is Process\Private
Bytes and represents the memory allocated exclusively to a process. Here, the RAM usage
corresponds to the RAM used by the whole server instance, not only the cache. For a given
number of jobs in cache, that usage varies slightly over time. Thus, we took the median of
values observed over a little period.

Figure 3.1 displays the RAM usage corresponding to several cache capacities. As
expected, the RAM usage increases linearly with the number of jobs. For 300,000 jobs, the
server instance uses around 600 Mo. Since servers usually contain several gigabytes of RAM,
this value is acceptable.
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Fig. 3.1 Server RAM usage for several cache sizes.

3.4 Querying resources: LINQ and LINQ to Objects

The Language Integrated Query (LINQ) is a component from the MICROSOFT .NET frame-
work that provides data querying capabilities to .NET languages such as C# [15]. Several
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query operators are available to construct query expressions. For example, operators can be
filtering, sorting, aggregation or projection actions.

LINQ can be used to query several kinds of data sources like in-memory collections
(arrays, lists, etc), relational databases, XML documents and so on. A LINQ provider
translates LINQ expressions to queries understandable by the target data source.

LINQ to Objects is one of the available LINQ providers. It is used to query in-memory
collections. In the MultiMonitoring server, the query contained in the URI is translated to a
LINQ expression that is then used to query the cache using LINQ to Objects.

3.5 Performance analysis

We will represent the performance of a request by its execution time. More generally, the
performance of the server can be represented by the number of clients it can support. There
is a direct link between the query execution time and the number of clients supported by the
server: faster requests result in a bigger number of clients supported. However, another factor
can limit the number of supported clients: bottlenecks (resource contention, lack of memory,
high CPU usage, etc). There may be contention for shared resources either in the application
itself (e.g., lock on data structures) or by the OS (number of simultaneous TCP connections,
etc) or in the network (bandwidth). Here, network is not an issue since the client and the
server are on the same computer.

3.5.1 Query execution time

We measure the execution time of a client query at three locations:

• At the client: time between the sending of the HTTP request and the receiving of the
corresponding response.

• At the middleware (web server).

• At the controller (MVC pattern): time taken by the cache to apply the query and return
the corresponding data.

The most interesting measure here is the one taken at the controller. The two others are useful
to determine where the request spends most of its execution time.

The duration are measured using the Stopwatch class from the .NET framework. This
class allows to measure the elapsed time in milliseconds. The three measured times are
logged in separate log files and linked together thanks to identifiers. Since the client execution
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time contains the middleware time that contains the controller time, we can subtract them to
obtain the time spent only in the cache, spent only in the middleware and spent only between
the client and the server.

A program has been developed to execute sequentially a specific request a given number
of time (ClientMM directory in the annexes). Another program computes the mean values of
the three execution times from the three corresponding log files (Parsing directory in the
annexes).

We determined five typical requests that will be measured according to the presented
methodology:

1. 20 first jobs

2. 20 first jobs, sorted by ascending start time

3. 50 jobs (100th to 150th jobs), sorted by ascending start time

4. 20 first jobs, sorted by ascending start time, where the job status is "failed" (a little
portion of jobs has this status)

5. 20 first jobs, sorted by ascending start time, where the job status is "failed" and where
at least one destination contains "file5" substring in its destination file name.

Table 3.1 presents the mean of the measured execution times when the 5 typical requests
are executed 1000 times.

Request Controller (cache) Middleware Client
#1 15 9 3
#2 125 8 5
#3 115 25 5
#4 452 9 6
#5 452 8 5

Table 3.1 Mean times spent on the cache, in the middleware and between client and server, in
ms.

Most of the execution time is spent when querying the cache. Reducing the time taken to
query the cache will thus reduce greatly the whole execution time of the query.

The middleware time of request 3 is about three times greater than request 2. Indeed, the
middleware is responsible for instance to serialise data and sending it on the network. Thus,
since request 3 has almost three times more jobs to process, execution time is around three
times greater than request 2.
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From request 1 to request 2, a sort operation is added to the request and the execution
time increased by about 100 ms. Requests 2 and 3 show that taking 20 or 50 jobs results in
about the same querying time at the cache. Then, adding a filter to request 3 to obtain request
4 increased the execution time by around 300 ms, which is a lot. Finally, adding one more
filter has nearly no impact on the measured time. Indeed, the resulting set of jobs from the
previous filter is small because it is a good filter. Thus, the second filter has only a few jobs
to consider and is executed very quickly.

This little analysis showed that sorts and filters can lead to very different execution times
on the cache. So, it is interesting to study in more details the behaviour of sort and filter
operations.

Sorting performance

We measured the execution time at the cache for incremental combination of sorts. For each
sort combination, we performed 1000 measures and we took the mean of the execution times.
Those measures are presented in Figure 3.2. We can notice that the execution time increases
nearly linearly. This could mean that the list is travelled once for each sort operation, which
is not very efficient. It is hard to check this supposition since LINQ to Objects can be
implemented in various way.
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Fig. 3.2 Query execution time for increasing number of sorts.
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Filtering performance

The execution time varies greatly depending on the filtered field. The execution time of a
query containing one filter can vary from 100 to 500 ms. When multiple filters are applied,
the execution time stops to vary significantly once the current result contains a little number
of jobs. Indeed, the remaining filters are applied to few jobs.

3.5.2 Number of supported clients

We now try to find the number of clients that the server can handle at the same time. A client
requests the sever each second. The response must thus be received within one second from
the sending of the request. Therefore, we search the maximum number of clients for which
the server can respond within one second for almost all the requests. Indeed, we can tolerate
a small portion of responses to arrive a bit later than one second. We set the threshold to 95%
of responses received within 1200 ms.

We use GATLING [4], a load testing framework, to simulate the clients. It allows
to define scenarios that are executed by clients. In our case, the scenario is quite simple:
executing a request every second during, for instance, 5 minutes. We defined several scenarios
that differ by the query contained in the URI. Then, a given number of clients is started
uniformly during the first second of the test. At the end of the test, a report of statistics is
generated and contains distribution of responses times. The scenarios are defined in the file
cache_max_clients.scala.

We measured seven queries with several sorting and filter combinations, covering nearly
all operations possible at the client. Those queries are defined as follows:

1. No sorting, no filter.

2. Sort jobs in decreasing MeanFrameRate order.

3. Take the jobs with failed ShortStatus.

4. Sort jobs in decreasing ReceptionTime order and take the jobs with SourceFileName
containing the "mp4" string.

5. Take jobs whose at least one destination FileName contains "file1".

6. Sort jobs in decreasing MeanByteRate order, then in increasing StartTime order.

7. Sort jobs in increasing ShortStatus order, then in increasing EndTime order and take
only jobs whose MeanByteRate is greater than 30.
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Job notifications sent by the agents to the server increases the number of requests that the
latter has to handle. To determine the impact of job notifications, we measured the maximum
number of clients with and without job notifications sent by the agents. Table 3.2 displays
for each request its cache execution time and the maximum number of clients reached (with
and without the 20 Xsquares sending job notifications).

Query Query execution time (ms) Clients Clients (with notifications)
#1 17 60 40
#2 170 17 9
#3 400 6 5
#4 130 30 23
#5 125 25 13
#6 255 5 5
#7 350 4 2

Table 3.2 Maximum number of clients for several queries.

We first analyse the results obtained without job notifications. We can observe that the
higher maximum number of clients are reached for queries that have smaller cache execution
times. The higher number of clients is reached with the query that applies no sort and no
filter (query 1).

The number of clients decreases for all queries when the job notifications are enabled.
Indeed, the cache is locked when a job is inserted/updated. Read queries must thus wait that
the ongoing insertion/update finishes.

3.6 Conclusions

We first showed that loading 300,000 jobs in the cache instead of 100,000 was not a problem
for RAM consumption. We then analysed the performance of some queries to understand the
impact of query operators on the execution time. We discovered that the list was travelled for
each sort operation. Filtering operations are quite uncertain, which is not wanted. We also
measured the maximum number of clients that the server can support at the same time.

The cache is used to perform query in memory. However, databases also use caching.
Moreover, databases are optimised to execute complex queries. For example, they contain a
query optimiser and provide indexes to speed up operations. The performance of the database
is studied in the next chapter.





Chapter 4

Performance analysis of the database

This chapter provides an analysis of the database performances. It studies the page caching
of SQL SERVER and its query execution performance. The results obtained in this chapter
are then compared to those obtained in the previous chapter. Finally, the consequences of a
cache removal are discussed.

4.1 Querying resources: LINQ to Entities

We don’t query directly the database but we query entities defined by the ORM, as presented
in Section 2.3.5. Those entities correspond to database tables. The LINQ to Entities [15]
provider is used. This provider translates LINQ expressions to SQL queries that are executed
on the database.

In the MultiMonitoring server, queries contained in URIs are translated to LINQ expres-
sions that are used with the LINQ to Objects provider. However, LINQ expressions for the
LINQ to Objects and LINQ to Entities providers are not completely compatible. Thus, in the
following test, LINQ query will be hard coded directly in the server.

4.2 Page caching

When executing a query, the database must access data. However, accessing the disk is very
slow. That is why SQL SERVER caches the data and always reads data from the cache and
never from the disk when executing a query. SQL SERVER caches pages of 8Kb. When the
requested data is not in the cache, the query must wait until data is retrieved from the disk
and inserted in the cache. When a query must modify data, it modifies pages in the cache.
Those pages are then written to the disk [17].
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Since disk I/O are very slow, we want to avoid them. We first try to understand what data
is cached in the MultiMonitoring database. To do so, we use three performance counters about
the cache of SQL SERVER: Page reads/sec, Page writes/sec and Buffer cache hit
ratio. The first two track the number of physical database page reads and writes. The third
corresponds to the percentage of pages found in cache without reading the disk.

To study the SQL SERVER disk I/O, we proceed as follows. We start the MultiMoni-
toring server and the corresponding SQL SERVER instance. We start to monitor the three
performance counters. Then, we execute a read request returning all the jobs and we observe
that a lot of pages are read from disk while the request is processed, as shown in Figure 4.1.
After that, we execute several types of read requests. We observe no disk reads during those
requests. We can also notice that while the pages are read from the disk, the Buffer cache
hit ratio decreases, since requested pages are not in the cache. Its value rises to 100 while
new queries are processed. The Page writes/sec counter is always zero, which means that
the database doesn’t write any pages from cache to disk. Indeed, read queries don’t modify
the jobs.

Fig. 4.1 Evolution of SQL Server performance counters during read queries.

With this experiment, we showed that SQL SERVER loaded all the pages corresponding
to the jobs in the cache during the first request. After that, no disk I/O were needed since
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the following read requests read data in the cache and because there were no modification
requests that would modify pages in the cache and copy them to disk.

We then performed modification requests and observed disk writes thanks to the Page
writes/sec performance counter. Those writes correspond to copy of modified cached
pages to disk.

Now, we know that all the jobs can be stored in the cache and thus in memory, like the
in-memory cache used at the server. However, a drawback of the database is that pages must
be written to disk when modified. Since the read/modification ratio of job requests is high,
we can hope that it won’t reduce too much the performance.

Another point is the concurrent access protection of pages. In the cache contained at the
server, a lock on the list provides that protection. In SQL SERVER, each page in the cache
has a latch to protect it.

4.3 Performance analysis

As for the cache, we measure the execution times of the five typical queries defined in Section
3.5.1. In addition to measuring the time at the client, the middleware and the controller, we
also measure it at the database. To do so, we use SQL SERVER PROFILER [11] that is able
to log every request sent to the database.

All execution times of this chapter are obtained by executing the corresponding query
1000 times and taking the mean of those 1000 measured execution times. Table 4.1 presents
the execution times for the 5 typical requests.

Request Database Controller Middleware Client
#1 3 3 8 3
#2 183 2 8 5
#3 188 2 16 5
#4 26 3 8 5
#5 26 3 8 5

Table 4.1 Mean times spent on the database, in the controller, in the middleware and between
client and server, in ms.

Most of the time is spent at the database, where the query is actually executed. The
controller time is low because the controller just sends the query to the database and receives
the results back. As for the cache, the midlleware time is greater when the query returns 50
jobs.
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Database time of request 2 increased by 180 ms compared to request 1 because of the
additional sorting operation. Requests 2 and 3 times are fairly the same. Pagination has
thus little consequence on the execution time. The additional filtering operation in request 4
greatly reduces the execution time in database. Adding a second filter in request 5 has almost
no impact on the execution time because the resulting set of jobs from the previous filter is
small.

There are several ways to execute a query on a database. Some are more efficient than
others. SQL SERVER uses a query optimiser to find the better alternative and construct the
corresponding query execution plan. The query optimiser used by SQL SERVER is a cost
based one. It means that it assigns cost to each alternative and chooses the one that has the
lowest cost. Costs are computed according to the size of data that must be read, the CPU
consumption, the memory usage and so on. To compute those costs, the optimiser uses
statistics about the table sizes and the distribution of columns values [17].

Figure 4.2 shows the typical query execution plan generated for most of queries on jobs.
The first thing to mention is that the sorting operation is the most expensive. The sorting is
allowed on the fields of jobs, but not on the fields of destinations. Operations are performed
from right to left in the diagram.

Fig. 4.2 Simplified query execution plan generated for a query on Jobs and Destinations
tables, linked by a join.

The first operation performed is jobs filtering. Indeed, the sorting execution time increases
with the number of jobs to sort. This is why it is advantageous to first reduce this number
of jobs by filtering them. The second operation is the sorting of jobs. Using statistics
computed by the database, the sort operator outputs less jobs that it receives in input. With
this optimisation, the next operation, the filtering of destinations, will have to examine less
data and will be faster. So, the following operation is the destinations filtering. For each filter,
the corresponding job identifiers are found in the Destinations table using the Job_Id
column and they are used to filter the jobs. The next operation is the TOP operation. This
operator keeps only a given number of jobs taken in the sorting order. The final operation is
the join between the resulting set of jobs and the corresponding destinations. A join is a time
consuming operation. That is why it is done at the end, on a small number of jobs.

We will now study in more details the behaviour of the database when sorting and filtering
jobs and destinations.
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(a) Usual sort operator (b) Top N Sort operator

Fig. 4.3 SQL Server sort operators

4.3.1 Sorting performance

The execution plan does not contain the usual sort operator but an optimised operator, as
shown in Figure 4.3. This optimised sort operator is called Top N Sort. It is defined as
follows [12]:

«Top N Sort is similar to the Sort iterator, except that only the first N rows are needed,
and not the entire result set. For small values of N, the SQL Server query execution engine
attempts to perform the entire sort operation in memory. For large values of N, the query
execution engine resorts to the more generic method of sorting to which N is not a parameter.»

In our case, the Top N Sort operator is used because we take the N first jobs of the
sort result. Indeed, the TOP and ORDER BY SQL operators are present in the same SELECT
statement from the SQL query generated by LINQ to Entities.

Microsoft doesn’t document the sorting algorithms used by SQL SERVER. However,
the behaviour of the Top N Sort operator can be studied experimentally [18, 20]. We can
observe that the threshold value N is equal to 100. For values of N lower than or equal to 100,
the operator uses the optimised sort algorithm. Otherwise, it uses the usual sort algorithm.
This limit is adapted to the MultiMonitoring application since allowed page sizes are 10, 20,
25 or 50.

The optimised algorithm uses the fact that only N lines must be returned to avoid
completely sorting the data set. This allows it to perform the sort entirely in memory, which
is faster. The algorithm must still consider all rows in the table but keeps only the N first
lines of the ranking progressively.

The experimentally discovered worst case (for performance) of the optimised algorithm
appears when keys are long, similar and presented in the reverse sort order.

We want to know the effect of various sorting combinations on the query execution time.
The tested queries have the following pattern:

• Join between Jobs and Destination tables.
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• Sort the jobs on a set of given fields, in decreasing order

• Take the 20 first jobs

Since jobs are presented to the user in decreasing identifier order, we complete the sort
fields set by the Id field. Since the lines of the Jobs table are sorted by Id in the database
pages (a clustered index is defined on this field), the database simply reads the Jobs table by
decreasing Id instead of increasing Id and performance are not impacted. The corresponding
LINQ to Entities queries have the following pattern:

context.Jobs.Include("Destinations")
.OrderByDescending(field-1)
.ThenByDescending(field-2)
...
.ThenByDescending(field-n)
.ThenByDescending(Id)
.Take(20);

Table 4.2 gives the tested sorting combinations and the corresponding execution times
measured at the database. For each sorted field, it gives the dispersion of corresponding
column values in the database. If the column contains a lot of different values, the dispersion
is high. If all the values of the column are the same, the dispersion is null.

First, we can observe that the execution times are fairly constant for queries 1 to 5. Indeed,
keys have high dispersion and non similar keys, so comparisons are done quickly.

Queries 6 and 7 are slower than the first five queries. The keys are not very long, but each
has a null dispersion. Type equals "Xsquare" and JobInitiatorFull equals "MyMachine
Tools.Utils". So, the database must compare character by character the entire key at each
comparison, which takes more time than a simple number comparison for instance. That is
why the execution times are higher than others. Then, the execution time of query 7 is higher
than that of query 6 because the key is longer.

Queries 8 and 9 contains the three same keys, but in two different orders. In query
8, the high dispersion key is the first and in query 9 it is the third. The two others (Type
and JobInitiatorFull) have constant values. The set of three keys defines in the two
configurations a high dispersion key since it contains a high dispersion key. Query 9 is
executed slower than query 8. This could come from the fact that it must first compare the
2 null dispersion keys before comparing the third key to determine the sorting order. The
comparisons take thus more time and that is why the execution time is a bit greater.
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Query Sorted field(s) Dispersion DB time
#1 MeanByteRate High 155
#2 AgentJobId High 166
#3 MeanByteRate High 156

AgentJobId High
#4 SourceFileName Medium 162
#5 StartTime High 180
#6 Type Null 225
#7 JobInitiatorFull Null 322
#8 AgentJobId High 182

JobInitiatorFull Null
Type Null

#9 JobInitiatorFull Null 217
Type Null
AgentJobId High

#10 JobMonitorId (FK) Low 1.5
Table 4.2 Execution time (ms) at the database for several sort combinations (LINQ to
Entities).

Query 10 is executed very quickly because it uses the index defined on the foreign key
(FK) JobMonitorId and not the Top N Sort operator.

Thus, the Top N Sort allows to return N jobs in a given sorting order with an execution
time that varies slightly with the sorted columns. This operator is slower when sorting column
values with low or null dispersion, especially when the keys are long strings, leading to long
comparisons. In the case of the MultiMonitoring, the two fields which have constant values
would have more diverse values in a real situation.

4.3.2 Filtering performance

We begin by measuring the execution time (at the database) of queries that return the first 20
jobs corresponding to a filter. Once again, the jobs are sorted in decreasing Id order, which
implies that the database travels the Jobs in the reverse order and has no significant impact
on performance. The LINQ to Entities queries have the following form:

context.Jobs.Include("Destinations")
.Where(filer-expression)
.OrderByDescending(Id)
.Take(20);
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Table 4.3 displays the queries along with the type of the filtered column, the number of
jobs (thousands) obtained after filtering and the execution time at the database in milliseconds.
First of all, we notice that all the execution times are quite small. This mean that a filtering
operation, which requires to travel at most once the table, is very fast. However, since we
need only the first 20 jobs, the table examination can stop once 20 lines satisfying the filter
are found. The filter from query 1 is satisfied by 300 thousands jobs, i.e. by all jobs of the
table (bad filter). The 20 jobs returned by the query are thus the first 20 jobs examined. Query
2 is a bit slower than query 1. Indeed, only 60 thousands jobs match the filter and thus the
database needs to examine more jobs to find 20 jobs satisfying the filter.

Queries 3, 4, 5 and 6 are slower than queries 1 and 2. Indeed, the search of a substring
takes more time than a simple comparison between two double values. Once again, query 4
execution time is greater than that of query 3 because it must examine more lines to obtain
20 jobs satisfying the filter. Query 6 execution time is greater than that of query 5 for the
same reason.

Queries 3 to 6 are all filters that search a substring in a string column of the database.
However, the queries that filter on the destination file name are slower than those filtering
on the source file name. Indeed, there are two destinations per job and the corresponding
lines in the Destination table are stored one after the other since they are inserted at the
same time. Thus, the filter operator must examine two destinations to obtain one job and the
overall execution time is thus greater.

Query Type Filter(s) Jobs DB time
#1 double MeanByteRate > 15 300 0.956
#2 double MeanByteRate > 35 60 0.993
#3 string SourceFileName contains "jm" 300 3.522
#4 string SourceFileName contains "file5_jm13.flv" 2.5 5.809
#5 string Destination.FileName contains "jm" 300 3.772
#6 string Destination.FileName contains 2.5 13.159

"file5_jm13.flv"
Table 4.3 Execution time (ms) at the database for several filtering queries (LINQ to Entities),
type of filtered columns and number of jobs (thousands) satisfying the filtering condition.

To force the database to fully filter the table, we add a sorting operation. The sorted
column is not important because it will always be the same. So, we decide to sort the result
of the filter by decreasing MeanFrameRate. LINQ to Entities queries have now the form:

context.Jobs.Include("Destinations")
.Where(filer-expression-1)
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...

.Where(filer-expression-n)

.OrderByDescending(MeanFrameRate)

.ThenByDescending(Id)

.Take(20);

Query Type Filter(s) Jobs DB time
#1 double MeanByteRate > 15 300 149
#2 double MeanByteRate > 35 60 47
#3 double MeanFrameRate > 15 300 151
#4 datetime Hour of StartTime > 16 50 47
#5 int ShortStatus = Successful 300 148
#6 double MeanByteRate > 15 300 154

int ShortStatus = Successful
#7 double MeanByteRate > 15 50 52

int ShortStatus = Successful
datetime Hour of StartTime > 16

#8 datetime Hour of StartTime > 16 50 52
double MeanByteRate > 15

int ShortStatus = Successful
#9 double MeanFrameRate > 15 50 52

datetime Hour of StartTime > 16
double MeanByteRate > 15

int ShortStatus = Successful
#10 string SourceFileName contains "jm" 300 297
#11 string SourceFileName contains "mp4" 65 127
#12 string SourcePath contains "source" 300 301
#13 string SourceFileName contains "mp4" 65 141

string SourcePath contains "source"
#14 string Destination.FileName contains "jm" 300 402
#15 string Destination.FileName contains "mp4" 65 196

Table 4.4 Execution time (ms) at the database for queries containing several filter combina-
tions followed by a sort on MeanFrameRate, type of filtered columns and number of jobs
(thousands) satisfying the filtering condition.

Results are shown in Table 4.4. We first examine the first nine queries, ignoring the
filters on string columns. We can observe that the execution time depends on the number
of jobs returned by the filter. The more returned jobs the higher the execution time. Indeed,
the sort operator takes more time when it sorts more jobs. Then, we observe that several
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filter combinations returning the same number of jobs have approximately the same exe-
cution time. Indeed, the time spent sorting is preponderant and the filter combination (on
double/int/datetime) has nearly no impact on the execution time. Queries 1, 3, 5 and 6 sort
all the table since each filter returns nearly 300 thousands jobs. The execution time of those
queries is around 150 ms, which is approximately the time observed in Table 4.2 displaying
only sort queries.

Queries 7 and 8 contains the same filters but in a different order. Yet, the query execution
plan shows that the database applies filters in the same order in both cases: MeanByteRate
filter, ShortStatus and then StartTime filter. The StartTime filter is the more filtering
one. However, the database must extract the hour information from the complete date. That
is maybe why the database performs this filter in the last position. We then add a new filter
on MeanFrameRate to query 8 to obtain query 9. We observe in the query execution plan
that this new filter took the first place of the filtering order. The query optimiser is quite
complex but we saw that it reorganises the filters to obtain the best execution plan, according
to him. Then, contrary to the cache, the database applies all filters at the same time when
examining a line.

For the same number of jobs satisfying the filters, the execution time of queries filtering
on string columns (queries 10 to 15) is higher. So, the performance problem comes from
the filtering part of the queries. As already mentioned, searching a substring in another string
takes more time than a number comparison. That is why the filtering part of the query for
queries 10 to 15 has more impact on the execution time than for queries 1 to 9.

For the same filtered number of jobs, the execution time of queries filtering on destination
fields (queries 14 and 15) is greater than that of queries filtering on job fields (queries 10 to
13) because the former examine twice more lines since there are two destinations for one job.

The query execution plan of query 13 shows that the database applies first the SourceFileName
filter (the more filtering one), which is the desired result. We can also notice that, as for
previous queries, the execution time is higher when the sort operator has more jobs to sort.

4.4 Comparison with the cache

As for the cache, the database can maintain all the jobs in memory and thus perform operations
directly in memory. However, pages cached in memory must be copied to disk each time
their are modified. Since the ratio job read/updates is quite high for the MultiMonitoring
application, this shouldn’t happen too often and performance should stay good.

The database sorts the jobs in a more efficient way than the cache. Indeed, the execution
time increases for each additional sorted fields for the version with the cache while this time
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is quite independent of the number of fields to sort for the version using the database. Then,
the query optimiser of the database provides clever filtering features. Contrary to the cache,
the table of jobs is travelled only once and the sort conditions are applied in an order that
seems efficient to the query optimiser. This results in a filtering operator executed quickly in
most cases. Yet, filtering on string columns requires string matching that is handled quite
inefficiently. On the other hand, the filtering performance of the cache is quite random and
can lead to poor execution times.

The database query-handling performance seem more appropriate for the MultiMon-
itoring application because the execution time is in most cases reasonable and bounded.
Moreover, its performance can be optimised by using indexes.

4.4.1 Removing the cache

We can analyse the consequences of deleting the cache. This would allow to distribute the
application, which is the main objective of this work. Then, the intermediate data model
(domain model) and some conversions between data models could be deleted, simplifying the
application. However, the data model of the cache (domain model) contains two information
in addition to the list of jobs:

• the number of jobs matching the filter of the query

• the name of the corresponding job monitor for each job

If we remove this model, we must find another way to add these values to the result.
Finally, remember that we hard-coded LINQ queries in the server. The module that

translates queries contained in URIs to LINQ expressions must be deeply modified to be
compatible with LINQ to Entities. Since that module is quite complex, a lot of time would be
needed to modify it to use LINQ to Entities. Moreover, it should be heavily tested to ensure
its reliability before using it in a company product. That is why we searched for an existing
tool providing a translation of queries executed on a REST API to LINQ to Entities query. A
tool providing this feature is OData.

4.5 Conclusions

The database performances appear to be competitive with those of the cache. All the tables
can be kept in memory and queries are generally well executed thanks to the query optimiser.
Moreover, the use of indexes may improve query execution times. However, the impact of
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table modifications (job insertions and updates) on the performances of the database must be
studied.

Removing the cache allows to distribute the application and simplifies its code. However,
we loose some features and the URI to LINQ query translation. In the next chapter, we will
present and study the performance of the tool OData, which provides that translation.



Chapter 5

Open Data Protocol

In this chapter, we present OData and explain how we can create an OData endpoint in the
MultiMonitoring application. We then measure the performance of the queries generated by
OData and we use indexes to speed up query execution. We finally measure the number of
clients the MultiMonitoring server can support.

5.1 Presentation

The Open Data Protocol (OData) is a web-based protocol that allows the creation and
consumption of queryable RESTful APIs [1]. The goal of OData is to provide a common
way to access diverse data sources. Version 4 of OData has been standardised by OASIS in
March 2014 [16]. As shown in Figure 5.1, the OData technology can be divided into four
components:

1. OData data model
OData needs an abstract data model to describe in a generic way the data coming from
several data sources. To do so, it uses the Entity Data Model (EDM) defined in Section
2.3.5.

2. OData protocol
This protocol defines a set of rules for the transmission of information between OData
clients and OData services. The OData protocol is based on REST and is built on HTTP,
as explained in Section 2.2.1. Resources can be represented in JSON or XML. In
addition to the usual CRUD operations, the protocol defines a rich query language. This
query language allows a client to issue precise queries on resources when performing
a read operation. To do that, a set of options can be appended in the URI of a GET
request. A subset of those options includes:
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• $top=n: returns the first n entities of the corresponding entity set.

• $skip=n: skips the first n entities in the corresponding entity set.

• $orderby=order-expression: orders the resulting entities according to one or
several properties, in ascending or descending order.

• $filter=filter-expression: returns entities that match the filter-expression
in the corresponding entity set.

• $select=select-expression: returns a subset of the entity properties speci-
fied by the select-expression.

• $count=true/false: if true, inserts in the response the number of entities
corresponding to the filter-expression; does nothing otherwise.

• ...

The complete query language options and the correct syntax can be found in the
documentation of OData [1].

3. OData service
The OData service implements the OData protocol and exposes the data via the OData
data model. It also translates the OData data model to the data store model.

4. OData client libraries
Those libraries are used in client applications and provide features to easily perform
OData requests and handle the corresponding results. The use of those libraries is
optional.

Fig. 5.1 Components of the OData technology [3].
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5.1.1 OData .NET library

Several client-server libraries implement the OData protocol. In particular, Microsoft pro-
vides an OData .NET library that can be used with Web API to build an OData v4 service [19].
This library includes several features in addition to the protocol implementation: query op-
tions checking, EDM security, etc.

We will now explain how OData queries the EDM defined by EF. The process is shown in
Figure 5.2. First, a scanner and a parser translates the query contained in the URI in an abstract
syntax tree (AST). The OData visitor then visits that AST to create the corresponding LINQ
query. Finally, that LINQ query is given to LINQ to Entities which makes the translation to
SQL.

Fig. 5.2 OData query translation from URI to SQL.

5.2 Using OData with the MultiMonitoring application

In this section, we explain how an OData endpoint can be added in the MultiMonitoring
server and how we removed the cache. We also detail the code modifications performed.
The modified version of the MultiMonitoring application can be found in the directory
MultiMonitoring (modified version) in the annexes. Comments starting by // TFE:
are present in the code to show the main modifications.

5.2.1 OData and MultiMonitoring server

As shown in Figure 2.7, the MultiMonitoring server used three data models: the API model,
the domain model used by the cache and the core model for the Entity Data Model. The
domain model can be deleted since the cache is not used anymore. One goal of the API
model is to hide the internal representation of data in the server. However, an OData endpoint
exposes the model corresponding to the EDM, so the core model.

A solution is to use AutoMapper [2] that can provide a translation of OData queries on
an API model to the core model (corresponding to the EDM). However, our tests showed that
this translation mechanism results in very poor performance and restricts the set of allowed
query functions.
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That is why we decided to expose directly the core model. OData allows to hide some
properties of the entity types from the EDM if we don’t want them to be part of the interface.

What interests us in OData is its querying functionality. So, we use only OData for read
requests and use the initial REST API for create-update-delete operations. Only the jobs
must be queried. Thus, the job monitors still use the API model. The resulting configuration
is shown in Figure 5.3. The CRUD operations on the job monitors are handled by the initial
job monitor controller. Since the cache and thus the domain model has been removed, the
API model is directly converted to the core model. The CUD operations on jobs are handled
by the initial job controller. It has been modified to work on the core model. Finally, the read
operation (that provides the query language) is handled by the OData controller and thus
uses the core model.

Fig. 5.3 MultiMonitoring server: link between CRUD operations and data models.

Code modification

The code of the MultiMonitoring server has been modified to remove the cache and to install
an OData endpoint. Here is a list of the main modifications performed on the code:

• Http.Api.Controllers.JobController:
Deletion of the two methods handling GET requests, modification of the methods to
use the core model and not the API model.
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• Http.Api.Controllers.JobMonitorController:
Modification of the SaveJobMonitor method to convert the API model to the core
model instead of the domain model.

• Http.Api.Controllers.JobsController:
OData controller class added, addition of a method handling read queries. Notice that
OData needs a controller name equals to the plural entity set name (Jobs).

• Http.Api.Model.JobMonitor:
Modification of the constructor to construct an API model job monitor from the core
model instead of the domain model.

• Application.Services.IJobMonitorService:
Modification of the function signatures from the interface to return core model job
monitors instead of domain model job monitors.

• Application.Services.IJobService:
Removal of cache-specific function signatures.

• Application.Services.JobMonitorService:
Removal of the job monitor cache, modification of functions to execute operations
directly on the database (using the job monitor repository) instead of the cache, domain
model has been replaced by the core model.

• Application.Services.JobService:
Removal of the job cache: jobs are accessed directly at the database, updates of the
cache have been removed, the cache purge system has been removed, the cache loading
at start-up has been removed, the read-only copy of the cache and its refresh mechanism
have been removed. Addition of a function overwriting an existing core jobs.

• Infrastructure.Data.Repositories.IJobRepository:
Modification of the function signatures of the interface to work with core jobs instead
of domain jobs, removal of the function signature used to fill the cache from the
database at start-up.

• Infrastructure.Data.Repositories.JobRepository:
Removal of all conversions from core model to domain model, removal of a function
returning the jobs from database to fill the cache at start-up.
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• Infrastructure.Data.Repositories.IJobMonitorRepository:
Modification of the function signatures of the interface to work with core job monitors
instead of domain job monitors.

• Infrastructure.Data.Repositories:
Removal of all conversions from core model to domain model.

• Infrastructure.Core.Job:
Addition of two properties (ShortStatus and JobInitiatorFull) and a navigation
property to allow joins with job monitors (JobMonitor).

• Infrastructure.Core.Destination:
Addition of a property (ShortStatus)

• Infrastructure.Core.Status:
Simplification of the InternalCode representation, addition of a constructor used by
the tool sending job notifications.

• Host.Startup:
Configuration of the OData endpoint: creation of an OData controller based on the
entity sets (Jobs, Destinations and JobMonitors) and creation of a route for the
OData service,

• Tools.Utils.Command:
Addition of some parameters to the command.

• Tools.Utils.SendXsquareJobsCommand:
Addition of a second destination for job notifications, addition of missing information.

The code has been greatly simplified and shortened. Indeed, the following classes have
been removed:

• In Http.Api.Controllers:
ExpressionBuilder, MultimonitoringExpressionVisitor, FilterParser and
SortParser.

• In Http.Api.Model:
Job, Destination, JobCollection, IMapper, JobMapper, DestinationMapper,
StatusMapper, Map and ComparisonOperatorMapper.
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• In Domain:
IDomainToCoreConverter, DomainToCoreConverter, IDomainUpdater and
DomainUpdater.

• In Domain.Model:
IJob, Job, IDestination, Destination, JobType, ShortStatus and StateType.

5.2.2 OData and MultiMonitoring client

OData uses a different syntax than the MultiMonitoring for its query language. The Multi-
Monitoring client must thus be updated to generate queries in URIs that follows the OData
query language. To do so, two files have been modified:

• Http.UI.app.services.jobService.js

• Http.UI.app.controllers.jobController.js

When we removed the cache, we lost an information that was present in the cache but not
in the database: the number of jobs corresponding to the filter of the query. This information
is used to determine the total number of pages in the pagination system. Hopefully, OData
inserts this information in the server response when we set the $count query option to true
in the URI. This is done in the jobService.js file.

5.3 Performance analysis

In this section, we study the performance of OData queries. We can expect to observe similar
performance to the performance of the database from Section 4.3 since OData uses LINQ to
Entities. However, OData performs the translation of the query parameters contained in the
URI to LINQ expressions. Those resulting LINQ expressions are not necessarily optimal.
Moreover, the query translation mechanism can’t be altered. We recall that queries return
only 20 jobs by using the $top query option.

All execution times of this chapter are obtained by executing the corresponding query
1000 times and taking the mean of those 1000 measured execution times.

5.3.1 Filtering

We measured the execution times of the same queries as in Section 4.3.2. We obtained the
same results as those displayed in Table 4.3. Indeed, the query execution plan obtained with
OData is the same as the one generated for LINQ to Entities for filtering queries.
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5.3.2 Count query option

When the $count query option is set to true, a second query is executed on the database.
That query computes the number of jobs corresponding to the filter contained in the principal
query. This second query travels all the table and applies the filter on each line. It then
counts the number of jobs satisfying the filtering condition. This is a different situation form
the previous section since here the table is completely travelled for each query. Table 5.1
displays the execution times of count queries for several filtering conditions.

Query Type Filter(s) Jobs DB time
#1 double MeanByteRate > 15 300 22
#2 double MeanByteRate > 35 60 21
#3 int ShortStatus = Successful 300 22
#4 double MeanByteRate > 15 300 25

int ShortStatus = Successful
#6 string SourceFileName contains "mp4" 65 97
#7 string SourcePath contains "source" 300 80
#8 string SourceFileName contains "mp4" 65 112

string SourcePath contains "source"
#9 string Destination.FileName contains "jm" 300 325

#10 string Destination.FileName contains 2.5 249
"file5_jm13.flv"

Table 5.1 Execution time (ms) at the database for several count queries, type of filtered
columns and number of jobs (thousands) satisfying the filtering condition.

We first analyse queries 1 to 4 that filter on numbers. The execution time is quite the
same for the four queries because the filter is tested for all the lines. Query 4 is a bit slower
because it must check two conditions.

The execution times of queries 6 to 10 are greater than those of queries 1 to 4 because
searching a substring is slower than a number comparison. The execution time of query 8 is
greater than those of queries 6 and 7 because the filter contains two conditions.

Finally, we notice that queries 9 and 10 are much slower than the other queries. Indeed,
those two queries filter on columns of the Destinations table, contrary to the others that
filter on the Jobs table. However, the query want to count the number of jobs corresponding
to the filter and not the number of destinations. Thus, queries 9 and 10 must perform
an additional operation: determining the jobs corresponding to the destinations matching
the filtering condition. This is done by performing a join between the jobs table and the
destinations resulting from the filtering operation. Yet, a join is a very costly operation.
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Query 9 is slower than query 10 because the join is performed on 600,000 (2 × 300,000)
destinations matching the filtering condition against 5,000 (2 × 2,500) for query 10.

5.3.3 Sorting

As explained in Section 4.3.1, the query execution plan corresponding to the SQL query
generated by LINQ to Entities used an optimised sort operator called Top N Sort. Indeed,
this operator was used because the TOP and ORDER BY keywords were present in the same
SELECT statement. So, the query optimiser was aware that it should not sort the whole table
but only return the N first lines in the given sorting order.

In the SQL query generated by OData, however, the TOP and ORDER BY keywords are
not in the same SELECT statement and the optimised sort operator is not used. Indeed, OData
inserts some constants (for its internal function) in an inner SELECT statement, which contains
the ORDER BY keyword. The TOP keyword is present in an outer SELECT statement.

We measured the execution times of queries defined in Section 4.3.1. Those queries
contained various sorting combinations. Table 5.2 contains the query execution times for
OData and for LINQ to Entities, as a reminder.

Query Sorted field(s) Dispersion DB time OData time
#1 MeanByteRate High 155 244
#2 AgentJobId High 166 196
#3 MeanByteRate High 156 250

AgentJobId High
#4 SourceFileName Medium 162 323
#5 StartTime High 180 195
#6 Type Null 225 211
#7 JobInitiatorFull Null 322 264
#8 AgentJobId High 182 208

JobInitiatorFull Null
Type Null

#9 JobInitiatorFull Null 217 301
Type Null

AgentJobId High
#10 JobMonitorId (FK) Low 1.5 3.6

Table 5.2 Execution time (ms) at the database for several sort combinations (LINQ to Entities
and OData).

We can observe that the OData execution times are generally higher and more varied than
the LINQ to Entities execution times. This is due to the loss of the optimised sort operator.
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5.4 Use of database indexes

5.4.1 Introduction

An index is a data structure associated with a table used to accelerate the data retrieval on the
corresponding table. An index is created using keys built from one or more columns of the
table. It can be of two types:

• Non-clustered: The index contains keys in a sorted order and row pointers to the row
storage location. The rows of the underlying table are not sorted following the keys
order. There can be several non-clustered indexes per table.

• Clustered: The index sorts the table rows according to the key values. Since the
physical order of the rows is the same as the clustered index order, a table can contain
only one clustered index.

In SQL SERVER, clustered and non-clustered indexes are both organised as B-trees [14].
The leaf level of the tree contains either data rows (clustered index) or pointers to those rows
(non-clustered index).

When creating an index, the sort key order must be defined (ascending or descending).
An index can avoid having to use a sort operator to sort the data. Indeed, the table rows can
be retrieved from the index directly in the good sort order. The key columns of the index
must of course match the columns of the ORDER BY clause. However, an index is generally
used by the query optimiser to sort a table only if the columns specified in the ORDER BY
clause are in the same order and in the same sort direction that in the index key.

Without index, all table rows must be examined to check the condition specified in a
WHERE clause. This is not efficient, particularly when the database contains a lot of data.
Since indexes maintain keys in a sorted order, it enables look-up in sub-linear time.

Indexes must be updated when the columns of the corresponding table are updated.
Insertion, modification and deletion of rows are thus slower when indexes exist on the table.

The goal of the query optimiser is to find the optimal data access path. Indexes provide
new ways to access data. The query optimiser won’t necessarily use an index when it is
possible. Indeed, a full table scan is sometimes more efficient, depending on data statistics
and table sizes for instance.

We added a non-clustered index on each column of the Jobs and of the Destinations
tables, in both sorting orders. In each table, we also added a non-clustered index on each pair
of columns, on both sorting orders. In the following sections, we analyse the performance of
queries and the effect of indexes.
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5.4.2 Filtering

We obtain the same performance as before because indexes are not used. Indeed, the LINQ
query given in Section 4.3.2 orders the results by decreasing job Id. The database thus travels
the table in this order and performs the filtering condition on each line. It doesn’t use indexes
to filter in this case but we will see how he can use them for filtering in the next section.

5.4.3 Count query option

We perform the same queries as in Table 5.1. The query execution times are shown in Table
5.3. Queries 1 to 4 are executed quicker than previously because the filters use the indexes.
They help to find quickly keys satisfying the (in)equality condition since they keep keys
ordered.

Query Type Filter(s) Jobs DB time
#1 double MeanByteRate > 15 300 17
#2 double MeanByteRate > 35 60 3
#3 int ShortStatus = Successful 300 16
#4 double MeanByteRate > 15 300 17

int ShortStatus = Successful
#6 string SourceFileName contains "mp4" 65 294
#7 string SourcePath contains "source" 300 227
#8 string SourceFileName contains "mp4" 65 342

string SourcePath contains "source"
#9 string Destination.FileName contains "jm" 300 840

#10 string Destination.FileName contains 2.5 787
"file5_jm13.flv"

Table 5.3 Execution time (ms) at the database (with indexes) for several count queries, type
of filtered columns and number of jobs (thousands) satisfying the filtering condition.

Queries 6 to 10 are much slower than before. For each job, the database performs an index
search to retrieve the value to test and then performs the search of the substring. Performing
an index search for each job is clearly much slower than travelling directly the table and
examining the values of the filtered columns.

5.4.4 Sorting

Table 5.4 show the execution times of sorting queries. Only the columns of the Jobs table can
be sorted. Queries 1 to 6 are executed very quickly. Indeed, the keys are already sorted in the
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indexes. The database can thus travel the index corresponding to the filtered column(s) in the
good sorting direction and take the 20 first corresponding jobs. Query 7 is slow because there
is no index created on 3 columns and thus a sort operation is needed. The query optimiser
didn’t use the index used in query 3 to first sort the jobs on the first two columns and then
sorting according to the third column.

Query Type Sorted column(s) DB time
#1 double MeanByteRate 3.805
#2 datetime StartTime 3.775
#3 double MeanByteRate 3.769

datetime StartTime
#4 string SourcePath 3.614
#5 string UserName 3.862
#6 string SourcePath 3.944

string UserName
#7 double MeanByteRate 254

datetime StartTime
int ShortStatus

Table 5.4 Execution time (ms) at the database (with indexes) for several sort queries.

5.4.5 Sorting and filtering

We measured the same queries as in Table 4.4, where we performed some filtering followed
by a sort on MeanFrameRate to ensure that the filters examined all the table. The results
obtained with OData and indexes are displayed in Table 5.5.

Globally, all execution times are smaller than before. This is because there is no sort
operation performed. Indeed, the database first uses the index on MeanFrameRate to fetch a
set of job identifiers already sorted in the right order. Then, for each returned job identifier, a
key look-up is performed on the jobs/destinations table to fetch the corresponding line of the
table and to apply the filter. The number of job identifiers fetched in the index is computed
based on statistics. Indeed, more identifiers must be returned for filters satisfied by few jobs.

5.4.6 Full-text index

We saw that performing a search on text columns wasn’t particularly efficient. Improving
that kind of filtering would improve greatly the query-handling database performance. A
Full-text search is used to search words and phrases in a text [13]. A full-text index defined
on a text column cuts the text in words based on rules of a particular language. It is still
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Query Type Filter(s) Jobs DB time
#1 double MeanByteRate > 15 300 3.747
#2 double MeanByteRate > 35 60 3.848
#3 double MeanFrameRate > 15 300 3.889
#4 datetime Hour of StartTime > 16 50 3.980
#5 int ShortStatus = Successful 300 3.482
#6 double MeanByteRate > 15 300 3.882

int ShortStatus = Successful
#7 double MeanByteRate > 15 50 4.241

int ShortStatus = Successful
datetime Hour of StartTime > 16

#8 datetime Hour of StartTime > 16 50 3.983
double MeanByteRate > 15

int ShortStatus = Successful
#9 double MeanFrameRate > 15 50 4.044

datetime Hour of StartTime > 16
double MeanByteRate > 15

int ShortStatus = Successful
#10 string SourceFileName contains "jm" 300 3.926
#11 string SourceFileName contains "mp4" 65 4.130
#12 string SourcePath contains "source" 300 3.911
#13 string SourceFileName contains "mp4" 65 4.117

string SourcePath contains "source"
#14 string Destination.FileName contains "jm" 300 3.987
#15 string Destination.FileName contains "mp4" 65 6.654

Table 5.5 Execution time (ms) at the database (with indexes) for queries containing several
filter combinations followed by a sort on MeanFrameRate, type of filtered columns and
number of jobs (thousands) satisfying the filtering condition.

a character-based search but the search begins at the beginning of the words and it is thus
quicker to search them.

Full-text indexes could be used to improve the filters on text fields. For instance, the
full name of the job initiator (JobInitiatorFull) could be cut into words. For fields like
SourceFileName representing a path and not a phrase, the cut into words is ambiguous and
the resulting cut is not satisfactory.

To search words using full-text indexes in SQL Server, the SQL query must use the
Transact-SQL predicate CONTAINS. However, the SQL statement generated by OData uses
the SQL LIKE operator. It is thus hard to use full-text index using OData.

The OData protocol defines the $search query option that allows to look for terms and
phrases and return matching entities [1]. However, the meaning of "matching" depends on
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the implementation of OData. The .Net OData library doesn’t implement the $search query
option currently [19].

5.5 Indexing strategy

5.5.1 Query performance summary

We can now review the performance obtained using OData and indexes. When we want to
obtain a small number of jobs (e.g., 20) corresponding to a filter, the filtering operation is
performed quickly, even without indexes.

The $count query option requires to filter all the table (Jobs or Destinations) and
to count the resulting number of jobs. This operation is quite fast for all types of columns,
excepting when filtering on the Destinations table. Indeed, an expensive join operation is
needed to count the corresponding number of jobs. This operation takes more time when
there is a lot of destinations satisfying the filter condition because the join is bigger. Adding
indexes on filtered columns decreases lightly the execution time of $count queries filtering
on non-text columns. However, the execution time of $count queries filtering on text
columns becomes very high because indexes are used in an inappropriate way.

When using OData, we lost the optimised sort operator Top N Sort and the sorting
queries are thus slower and vary more. Adding indexes on sorted columns improves signifi-
cantly the execution time.

A sort operation is much slower than a filter operation, except when filtering on text
columns. Using indexes on queries containing both sorts and filters decreases greatly the
execution time. Indeed, the sort is avoided by looking in the index. Then, filters are applied
on a small number of jobs.

5.5.2 Indexed columns

Indexes can decrease greatly the query execution time. However, they need to be updated and
require storage space. We must thus choose carefully columns on which indexes are created.

We can only filter on destination fields and all those fields are text columns. Filtering on
those columns is not too slow. However, if we add indexes on those columns, they are used
in a inappropriate way by the $count query, so we won’t create indexes on those columns.

Sorts and filters are allowed on jobs columns. For non-text columns, indexes improves
both filtering and sorting, so we will create indexes on these 6 columns. For text columns,
sorts are quicker but we obtain the same performance flaws as for destination columns, so
indexes won’t be used for non-text job columns.
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The MultiMonitoring application allows the client to sort on any combination of columns
but we can’t create indexes for all possible combinations. Indeed, there would be too much.
We will therefore restrict the sort combinations to two columns at most. That won’t disturb
the user as sorting on more than two columns is not useful in general. So, we can create
an index on each non-text Jobs table columns, in each sorting direction (ascending or
descending). There are 2×6 = 12 single column indexes. Then, we can create an index for
each combination of two columns, taking each column in both sorting orders. The number
of permutations of 6 distinct columns taken 2 at a time is given by P6

2 = 6!
(6−2)! = 30. For

each pair of columns, four sorting orders are possible: (ascending, ascending), (ascending,
descending), (descending, ascending), (descending, descending). There are thus 30×4= 120
double columns indexes. An SQL statement creating those 132 indexes has been generated
by a little script in C# and is available in file create_indexes.sql.

Dynamic index creation

Sorting on two jobs may be sometimes not enough. One can imagine creating dynamically
indexes for queries sorting on more than two jobs and then deleting those indexes when not
used anymore.

We created new indexes in the condition of the setup described in Section 2.4. The
creation of an index was quite fast (less than one second) and didn’t decrease the number of
clients supported by the server. However, this feature has not been implemented.

Job monitor names

When we removed the cache, we lost two information: the number of jobs satisfying the
filtering condition (that is now given by the $count query option) and the job monitor name
of each jobs. We can perform a join with the JobMonitors table to obtain this information.
This join operation is very fast when performed on a few number of jobs.

5.6 OData limitations

OData is a useful tool because it simplifies the code and provides a rich query language
and several interesting features. However, we saw that OData has some limitations. First,
it generates SQL statements that don’t use the optimised sort operator Top n Sort. This
results in slower sorting queries whose execution time varies more. Then, OData exposes
directly the model corresponding to the EDM. Although we can hide some properties from
the entity types, we can’t hide completely the EDM. AutoMapper provides this feature but
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using it decreases strongly the query performances and limit the allowed operations of the
query language. Next, we explained that OData defines a $search query option that could
be used to perform full-text search in order to improve search performance for text fields.
However, the .Net OData library doesn’t implement this option.

OData became a standard to create, consume and query RESTful APIs and is more and
more used. Although OData libraries have currently some limitations, they evolve rapidly.

5.7 Number of supported clients

As for the cache, we can try to find the number of clients that the server can handle at the
same time. We measured the same queries as in Section 3.5.2 and defined the scenarios in
the file database_max_clients.scala. The results are shown in Table 5.6.

Query Query execution time (ms) Clients Clients (with notifications)
#1 30 110 60
#2 30 100 54
#3 18 113 80
#4 190 7 3
#5 260 6 2
#6 30 110 60
#7 25 133 86

Table 5.6 Maximum number of clients for several queries using OData.

The query execution time is the sum of the main query and the $count query execution
times (because they are executed sequentially). All main queries are executed in less than 10
ms. All $count queries are executed in maximum 20 ms, except those of queries 4 and 5.
Indeed, they contain filters on text columns and the corresponding $count query execution
time is high.

As expected, the number of clients reached without notifications is higher than the number
of clients reached when notifications are enabled.

We can compare the results with those obtained for the cache. For queries 1, 2, 3, 6
and 7, the obtain numbers of supported clients are higher than those reached with the cache.
However, the number of clients reached for queries 4 and 5 are lower than for the cache
because of the slow $count queries.
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5.7.1 Count queries and pagination system

The count queries are used to computes the total number of pages in the pagination system.
This number doesn’t need to be updated every second. We could update this number every
10 seconds for example and send 10 times less $count queries to the server. This will reduce
the overall load of the server (especially for $count queries filtering on text columns) and
thus allow to support more clients. We measure the number of clients handled by the server
with this modification. Results are displayed in Table 5.7.

Query Query execution time (ms) Clients Clients (with notifications)
#1 30 181 121
#2 30 179 122
#3 18 184 125
#4 190 115 65
#5 260 102 52
#6 30 182 125
#7 25 194 128

Table 5.7 Maximum number of clients for several queries using OData, with reduced counts
frequency.

As expected, reducing the $count queries frequency allows to increase the number of
clients. The obtained results are much higher than those obtained for the cache.

5.8 Conclusions

OData libraries are useful to create and consume queryable RESTful APIs. We showed
how we used the OData .NET library with the MultiMonitoring application. Then, the
performance of OData has been measured. The main difference between queries generated
by OData and hard-coded LINQ to Entities queries is that OData doesn’t use the optimised
sort operator. Hopefully, the use of indexes helped to speed-up the queries. By limiting the
frequency of count queries, the server can handle more clients than the version of the server
using the cache.
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Conclusion

We reviewed the data handling of the Multi-Monitoring application in order to remove
any barrier preventing the concurrent execution of multiple instances of the service while
improving the performance.

The main obstacle to concurrent execution was that the caching infrastructure didn’t
provide synchronisation between the cache and the database. Moreover, the cache was
implemented by a set of lists. This data structure lead to unpredictable performance when
handling various queries.

We showed that the database could contain all the jobs in its cache and thus perform
queries in memory like the in-memory cache at the server. The database executed most of the
queries in a more efficient and predictable way than the cache. Indeed, the database contains
a query optimiser computing the best way to execute a query based on statistics. In particular,
the query execution plan contained an optimised sort operator that avoids to sort completely
the table of jobs.

Based on those results, we decided to remove the cache and perform queries directly on
the database. This removal simplified and shortened the code of the application. However,
there was no mechanism of translation of the query contained in the URI to the database.
Queries contained in the URI were initially translated to query expressions applied to the
list. However, this translation mechanism was not easily adaptable to query the database. We
thus used OData, a tool providing a query language for RESTful APIs, that can translate
automatically query parameters from the URI to SQL queries. Yet, OData came with some
performance flaws. To restore performances, we used indexes to speed up queries execution
and we restricted query parameters combinations.

This work resulted in a solution allowing the concurrent execution of multiple instances
of the service. Moreover, queries are in most cases faster and thus the service can now
support more clients.
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The performance of the Multi-Monitoring application could still be improved. Indeed,
the filtering of string columns is the weak point when querying the database. Although tested,
some features improving performance still need to be implemented, such as the dynamic
creation of indexes and the adaptive count of jobs.
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