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Abstract

The best performing machine learning models to date are by essence difficult
to interpret like neural network or consist in ensemble of models like random
forests.

These black-box models don’t benefit from any direct tool to interpret their
predictions unlike simpler models like linear regression that embodied in their
definition an explanation of their predictions.

Although black-box models perform well, their deployment to real life ap-
plication might be undermined by their lack of understanding.

Interpreting the predictions of a model is a key component to the study of
each model. This thesis focus on understanding each prediction of an ensemble
of tree. The methods that are studied and compared provide an importance to
each feature that summarizes the dependence of the model on the feature to
correctly predict the outcome.

To the end of understanding the individual predictions of a model, the local
methods defined by Saabas and SHAP are compared with two newly introduced
methods based on the mean decrease in impurity and mean decrease in accuracy
global methods defined by Breiman 2001 [3].

In the second part of the thesis, the methods are used to infer local regulatory
networks and are shown to outperform previous state of the art methods.
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Chapter 1

Introduction

The topic of this thesis is to study and compare local ranking methods ap-
plied to ensembles of trees with the aim to interpret each prediction of a model.
Understanding a model is a key part of its deployment to critical application in
the fields of justice, medicine and strategic decisions.

The performance of ensembles of trees is largely studied in the literature as
well as methods that extract a global ranking of the features such as the global
MDI method defined by Breiman[3]. This work contributes to the understanding
of the ensembles of trees through the study of methods that locally identify the
variables that are important for a prediction.

The second contribution of the thesis is the further application of local rank-
ing methods to the Gene Regulatory Network inference problem. The results
of the local methods are compared with ground-truth data inferred from a sim-
ulator and their performances are compared to the state of the art method of
that field.
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Chapter 2

Background

The background section describes the decision tree algorithm that is the base
model used throughout the work. Important metrics such as the Jaccard Index
and the Spearman correlation are defined in this section, as well as an overview
of the the main global and local feature ranking methods used in the literature.

2.1 Models

The topic of the master thesis being the application of feature ranking meth-
ods to ensemble of trees in order to interpret their predictions, this section de-
scribes the decision tree algorithm and its further generalisation to an ensemble
of trees.

2.1.1 Decision Tree algorithm

Decision trees are parts of the supervised learning framework which means
that the model optimizes a loss function defined over a learning set (LS). The
loss function aims at selecting the best internal model’s parameters by optimiz-
ing them over LS so that the predictions of the model are close to the real Y
values of LS. Decision tree can handle both classification and regression prob-
lems and can be used on categorical or qualitative features.

The (binary) decision tree successively partitions the LS in two sub-LS
according to the evaluation of a particular variable. Both the variable and its
evaluation value are found to be optimal at each step and are the parameters
learned. The decision tree was first described in 1984 by Breiman[2]. It consists
in a tree where interior nodes test a value and the branches correspond to the
evaluation result and the leaves are labelled with a class or value.

The goal of the supervised model is to learn differentiating the samples of the
LS based on their value and output Y . The decision tree algorithm decomposes
the differentiation problem by choosing at each node the splitting criterion that
distinguishes the best their output values. The differentiation is referred to as

5



a reduction in impurity (classification problem) or as the reduction in output
variance (regression problem).

Classification tree: Impurity Reduction

The splitting criterion is a 2-tuple of a variable and its value that reduces
the most the impurity in the child nodes. The measure of impurity typically is
the entropy or the Gini criterion. The result of a split is the creation of two sub-
trees (sub-spaces) and the decrease in impurity is weighted by the number of
samples that reaches either of the sub-trees from the parent node. The samples
further propagate in these child nodes where other splits may occur.

With regard to the entropy as a measure of uncertainty and information,
the best split is the one that removes the most the uncertainty that is left in
the two sub-paces after the split occurs. The bigger the decrease in impurity,
the better a model distinguishes a class from the others.

Using the formalism of L.Wehenkel [24], for a feature A with A(LS) its set
of different values, LSa the subset of samples o from LS such that A(o) = a
and I a measure of impurity:

∆I(LS,A) = I(LS)−
∑

a∈A(LS)

|LSa|
|LS|

I(LSa) (2.1)

Regression: Variance Reduction

In the regression problem, the biggest reduction of variance is sought and
the splitting criterion that leads to the biggest decrease in variance is the best
split:

∆I(LS,A) = vary|LS{y} −
∑

a∈A(LS)

|LSa|
|LS|

vary|LSa
{y} (2.2)

2.1.2 Random Forest - ExtraTrees

The lack of performance of trees has been shown to moslty come from their
high variance (Geurts,2002[9]) that comes from the strong sensitivity of a tree
to the variability of the learning set. Hastie[17] proposes to combine several
models to reach better performances than single models. Several trees compose
an ensemble and the prediction is either averaged over all trees (regression task)
or corresponds to the class of the majority votes (classification task).

Random forests are ensembles of trees that contain some degrees of freedom
at critical parts of the decision tree algorithm. Trees individually loose a bit of
their predictive accuracy when randomization is added. However, averaged over
the forest, results have shown that the ensembles of trees have a lower variance.
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ExtraTreeRegressor and ExtraTreeClassificator, implemented in the scikit-
learn library, are the two models used in this report. They allow to specify
randomization factors such as the maximum number of features to be considered
at each split. This parameter, K, will be extensively considered in the latter
sections. If K is set to 1, the forest is perfectly randomized as no feature
selection occurs. When K is smaller than the number of features, K features
are randomly sampled from the feature space X. In Extra Trees, Geurts2006[8],
random splits are sampled for the randomly selected features and the best split
is chosen among them.

2.2 Metrics

This section of the report describes the metrics that are used to interpret
and compare results.

2.2.1 Normalization

Normalization on ranking values is applied when the rankings are compared
with regards to the importance being associated to each feature instead of its
position in the ranking. The normalization projects each value v in the range
|v| = [0, 1].

It is also necessary to consider the absolute values of rankings in order to
compare methods that output signed values to methods that outputs unsigned
importance values. As this will be the case latter, all rankings are normalized
and features importance are kept non-negatives.

l1 - norm

The l1-norm is known to give less influence on large values and tends to
produce more 0’s. l1-normalisation consists in dividing each element of a vector
by the sum of the absolute values of its elements. ∀xi ∈ X, the normalized
vector N is composed of:

ni =
xi∑
i |xi|

(2.3)

The l1-normalization has the advantage that the absolute values of the nor-
malized data sum to 1.

l2 - norm

The square norm puts more emphasis on large values and reduces the influ-
ence of smaller ones. The l2-norm is the square root of the sum of the squared
values. ∀xi ∈ X, the normalized vector N is composed of:

ni =
xi∑
i x

2
i

(2.4)
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Normalization is not a metric itself but it enables the use of some of the
follwing metrics that compare rankings:

2.2.2 Spearman Rank Correlation

The Spearman rank correlation coefficient is a non-parametric measure of
the monotonicity of the relationship between two datasets (rankings)1. The
coefficient takes value between [−1, 1], where a value of 1 means that ranking
are identical and -1 that rankings are in reverse order. 0 implies no correlation
between the rankings.

Let ui and vi be the rank of the ith variable of two samples, the Spearman
correlation coefficient rS corresponds to:

rS =
n
∑n
i=1 uivi − (

∑n
i=1 ui)(

∑n
i=1 vi)√

[n
∑n
i=1 u

2
i − (

∑n
i=1 ui)

2][n
∑n
i=1 v

2
i − (

∑n
i=1 vi)

2]

= 1−
6
∑n
i=1 d

2
i

n(n2 − 1)
where di = ui − vi

(2.5)

The second equality being a shortcut approximation formula.
The Spearman coefficient has been chosen over other correlation measures

such as Pearson as it assumes no linear dependency between variables and fo-
cuses instead on the monotonic relationship between two sets. Both methods
would fail at detecting correlation if the dependency between variables is more
complex. Correlation will be extensively used to compare the feature rankings
of several methods and no linear assumption is made between ranking’s feature’s
values.

2.2.3 Jaccard Index

The Jaccard Index is a similarity coefficient measured between the elements
of two sets. It informally consists in the ratio between the number of common
elements and the number of different elements. Mathematically, it is the size of
the intersection divided by the size of the union. The Jaccard index results in
a proportion and J ∈ [0, 1].

J(A,B) =
|A ∩B|
|A ∪B|

(2.6)

The index will be used to compare subsets of rankings e.g. study the simi-
larity of the p most important features of two rankings of N features (p < N).
The Jaccard Index is computed on vectors whose data is the id of features.
If N = 6, computing the index on the p = 3 most important features of two
rankings indicates to what extent the two methods are close enough to detect

1Description from the documenation of scipy.stats.spearmanr - August 2021
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the same important variables. Averaging the Jaccard Index over all samples
(all local rankings) shows the propensity of the two methods to detect the same
variables in the top3 of the most important features.

It is interesting to observe how different can be the results of methods that
share the same aim (to provide a ranking of features) and that are based on the
same data (a random forest).

2.2.4 Method Expressivity

The feature rankings provided by different methods are usually compared
using the Spearman correlation coefficient that uses the relative position of
each feature among the two rankings to compute a similarity measure. The
expressivity of a method consists in measuring the gap between the biggest
and least importance values among all rankings of a method, all gaps are then
reported on the same graph for different methods. The graph enables a visual
analysis of the importance values assigned by each method. If the method finds
that all features are equally important to explain the prediction, the gap will
be small while if some features are found to be very important to explain the
prediction, the gap will be higher.

Observing the plot of all gaps makes possible to quickly compare methods
and see which one identifies or not some features to be more important than
the others. In order to compare methods with importances in the same range
of values, the ranking are normalized with the l1 -norm that makes values sum
to 1.

2.2.5 AUROC and AUPR

The area under the Receiver Operating Characteristic curve and the area
under the Precision/Recall curve are two measures used for judging the quality
of a classifier. A definition of the two measures exists for multi-class classification
problems. In this report, the AUROC and AUPR metrics will be used in the
context of a binary classifier in the Gene Network Inference section.

The metrics are used to compare the ground truth data to a model’s predic-
tion i.e. a vector of probability whose magnitudes are linked with the certainty
of predicting a specific class. The main advantage of the metrics is to pro-
vide a measure of a classifier’s quality without inferring a fixed threshold on
probabilities’ values to separate predictions between the two classes.

The ROC curve consists in a plot representing the true positive rate (TPR
or Recall) as a function of the false positive rate (FPR). Each dot of the curve
corresponds to the evaluation of the model for a specific threshold value. Each
different value of the prediction vector is typically associated to a threshold. The
metric therefore summarizes a the quality of a model by considering all possible
probability thresholds and builds a confusion matrix for each threshold.
The area under the ROC curve represents the degree of separability between
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the predictions and thus, how much a model is capable of distinguishing the two
classes. If a model has no predictive power and cannot distinguish the classes,
then its AUROC value will be close to 0.5. The more the area under the curve
gets closer to 1 or 0, the more a model is able to distinguish the classes. An
AUROC close to 0 still requires to switch the labels of the predicted classes to
be a performing classifier.

1. TPR(k) = recall(k) = TP (k)
TP (k)+FN(k) = TP

P

2. FPR(k) = FP (k)
FP (k)+TN(k) = FP

N

3. FP : false positive (negatives classified as positive)

4. TP : true positive (positive predicted as positive)

5. TN : true negative (negative well classified as negative)

6. FN : false negative (positive classified as negative)

The precision - number of true positive among all predicted positive - is
compared to the recall - proportion of well predicted positive - in the PR curve.
This metric is often used to quantify a classifier’s quality in a strong class-
imbalance situation. By definition, the metric shows how the proportion of
positives detected (TPR) relates to the proportion of true positive detected
among all positive predictions. Indeed, a model can reach a high TPR and
therefore detect most of the positive elements at the cost of a large number
of false positive predictions, which is captured in the precision indicator. An
AUPR close to 1 is synonym of quality and a random classifier would have an
AUPR close to P

P+N which corresponds to the average precision of a random
classifier [19].

Precision = TP (k)
TP (k)+FP (k)

AUPR and AUROC are the main metrics one could find in the literature to
assess models’ quality in the gene inference problem [5].

2.3 Related Work: Global Methods

This section presents the two main global feature importance methods that
were originally described by Breiman[3] in 2001. The first method is the Mean
Decrease in Impurity that evaluates the importance of a feature with regard to
its contribution in impurity reduction. The second method, Mean Decrease of
Accuracy uses the predictive accuracy of a feature to derive its importance.
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2.3.1 Global MDI

The MDI method is based on the splitting criteria that is used to expand
the trees which usually consists in the Entropy, the Gini criterion of a variance
reduction measure. At each split, the decrease in impurity is recorded for each
variable xj of the feature space X that is used to build the splitting condition.
The weighted-average of all decreases in impurity associated to xj among all
trees yields the feature importance of the feature xj . The weight associated to
each decrease in impurity corresponds to the size of the node[22] i.e. the ratio
of the number of samples passing through the node (Nt for nodet) and the total
number of samples in the learning set (N).

Using the formalism of A. Sutera [22] and Louppe et al.[13], the mean de-
crease of impurity importance of feature xj ∈ X is:

V IMPmdi(xj) =
1

NT

∑
T

∑
t∈T :v(st)=xj

p(t)∆i(st, t) (2.7)

Where p(t) is the ratio Nt/N at node t and v(st) is the feature of split st.

MDI provides a non-null importance value to all features involved in the
forest. The method extracts the features that discriminate most the output i.e.
that contribute the most to the reduction of impurity. Relevant features are
useful to discriminate the output, these features will be used in splits within the
forest at some point and lead to a decrease of impurity. If on the contrary, less-
relevant features are assumed to have a lower discriminating power, they would
only be seldomly considered in the forest and their likelihood to be selected as
the splitting variable at a node close to the root is low with regard to relevant
features.

As mentioned in Breiman,2001 [3], an advantage of the MDI method is its
computational simplicity as the decrease in impurity is already computed in
each node of the tree. One only needs to navigate once in each tree of forest to
derive the MDI importance of all variables.

2.3.2 Global MDA

The second method calculates the importance of a feature as the mean de-
crease of accuracy(Breiman [3]) implied by adding noise to features’ values. The
noise usually consists in a permutation of the values or in adding a Gaussian
noise to a variable. The MDI method requires the definition of an impurity
metric and MDA requires to define an error function to measure the decrease
in accuracy between the predictions of the sample and its noised form.

The importance associated to each variable xj of the feature space X is the
average over the forest of the mean decrease in accuracy measured between each
sample si and sji , where sji correspond to si with noise on the jth feature.

In its original definition, the MDA measure is applied to ensemble of trees
using bootstrapping which consists in training each tree of the ensemble on a
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different subset of the sample set. The importance of a feature xj is measured
by its mean decrease of accuracy based on the out-of-bag (OOB) error when
this feature is removed. The removal of a feature is simulated by permuting
its value[22] and its impact is measured on all OOB samples. Global-MDA
is also referred as the permutation importance: it is indeed the decrease in
a model score when a single feature value is removed. The OOB context, in
which f is a predictor (tree), allows to define V IMPMDA as follow: given a
set of samples D of input/output pairs (x,y), a loss function L and a shuffled
version of D according to feature xj , Dj , the MDA importance of feature xj for
D corresponds to[22]:

V IMPG−MDA,f (xj , f,D,Dj) =
1

|D|
(

∑
(x,y)∈Dj

L(f(x), y)−
∑

(x,y)∈D

L(f(x), y))

(2.8)
The dependence on the particular permutation is removed by averaging the
importance over several permutation schemes.
Previous definition naturally scales to random forests as the averaged feature
importance measured over all trees. With T being the forest and LS the learning
sample[22]:

V IMPG−MDA,T (xj , T,LS) =
1

NT

NT∑
i=1

V IMPG−MDA,f (xj , Ti,LSoobi ,LSoobi,j )

(2.9)
The main assumption of MDA is that features that are important to predict

Y are important contributors to the model capacity to predict Y. Permuting
the values of a feature breaks the statistical link inferred by the tree between
the feature and Y [1] and this permutation is said to mimic the removal of
the feature[22]. A feature with a high feature importance is found to be very
important for the model as its removal leads to large prediction errors. Less
relevant variables are instead assumed to be of lesser importance for the model
and therefore should lead to smaller predictive errors.

The loss functions considered in practice always provide non-negative im-
portances and one usually use the Mean Square Error or the Mean Absolute
Error. A importance close to zero means the features is useless to predict a
sample. The method is model agnostic and the following discussion concerns its
application on trees and forests.

Sensitivity to correlation: Auren et al.[1] mention the sensitivity of the per-
mutation to the features’ correlation structure. As said, removing the variable
xj destroys its association to Y and all other variables xi, (i 6= j). The decrease
in accuracy can then imply the dependence of Y on xj or the dependence of
any xi on xj . Conditional permutation framework allows to reduce this effect
(Strobl et al.[21]).
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Suggested property 1 Auren et al.[1] suggest the following property: Tree
ensemble variable importance measures are less accurate (more likely to rank
unimportant variables as important ones) when input variables are correlated.

Influence of Random split selection parameter: In their 2010 paper[7],
Genuer et al. suggested two observations:

1. The optimal number of features to consider at each split (K) is different for
model accuracy and for variable importance purposes. This means that
the sequence of splits that reduces the most the variance in leaves and
therefore provides the best model accuracy isn’t necessarily the sequence
that will bring out the most important variables.

2. The authors also mentioned that larger values of K increases the magni-
tude of variable importance for truly important variables. This conforms
the intuition that when K is bigger, the model can better choose a split-
ting variable among the important ones. Choosing K small with regard
to the set of possible features may give a higher importance than merited
to less-important/irrelevant variables or even correlated variables.

Suggested property 2 Auren et al.[1] suggest this second property for vari-
ables importance measures: importance measures are more accurate for ensemble
of trees which include more randomly sampled split variables at each split.

2.4 Related Work: Local Feature Ranking

2.4.1 Local-MDI

The Local-MDI method is formalized by A. Sutera, G. Louppe, V.A. Huyn-
Thu, L. Wehenkel and P. Geurts in From global to local MDI variable impor-
tances for random forests and when they are Shapley values. The method is
defined as the local version of Global-MDI and a straight relation exists be-
tween the definition of both methods.

Let T be a forest of trees t, x a sample and xj a variable from the feature
space X. The local-MDI importance associated to a feature xj for a sample x
corresponds to the sum of all differences in impurity (i) over all nodes of a tree
traversed by x that uses xj as splitting variable. txj

is the successor of node t
traversed by x as feature xj is tested at the split. For a forest, the importance
of xj is computed over all trees and averaged on the forest’s size (|T |).

V IMPlocalMDI(xJ ,x) =
1

|T |
∑
T

∑
t∈T :v(st)=xM

i(t)− i(txj ) (2.10)

The method collects all differences in impurity caused by xj along all tra-
jectories of x in the forest. The bigger the difference in impurity, i(t) − i(txj

),
the better xj contributed in distinguishing x from samples with different values.
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Such xj is good at discriminating x and therefore is a relevant feature to predict
Y from sample x.
Local-MDI is very efficient if the node impurities that are measured during the
training process are stored.

Subsequently, the link between Local-MDI and Global-MDI consists in in-
ferring the global measure from the local one by averaging the importance of
each feature among all samples of the learning set. For a learning set X of N
samples xi i = 1, ..N , the importance associated to xj corresponds to:

V IMPMDI(xj) =
1

N

N∑
i

V IMPlocalMDI(xJ ,xi) (2.11)

Note that unlike Global-MDI, the importance the local method associates to
a feature can be negative. The negative importances associated to a sample are
mitigated by the greater positive importances that the same feature has in other
samples as the importances measured by the global methods are exclusively non-
negative. A negative importance would mean that after using xj in a split, the
impurity of the successor node is bigger than its parent. This means that xj
does not participate at discriminating x at a particular node and therefore,
helps predicting other instances. Negative importances are difficult to interpret
locally as, when K > 1, the chosen splitting feature is the one that discriminates
the most instances globally i.e. over the training set.

2.4.2 Shapley Values

Shapley values comes from the cooperative game theory where each game is
a pair of a set of players and a function that assigns a value to any coalition
of players. The method defined by Lloyd Shapley consists in assigning payouts
to players depending to their individual contribution to the total[16]. In the
context of model-interpretation, the players are the features, the game is the
prediction task and a coalition is a subset of built on features values.

The goal of Shapley values is to explain how each feature of a model con-
tributes to its prediction. The importance of each feature is measured as the
contribution of the feature to the discrepancy of the prediction with regard to
the average output of the model (average output on training data) i.e. Shap-
ley values explain how each feature contributes in a prediction that is different
than the average value. Christoph Molnar [16] provides a one sentence defini-
tion: the Shapley value of a feature is the average marginal contribution of a
feature value accross all possible coalitions.

Practically, from the feature space X of p features, x1, ..., xj ∈ X. To study
the impact of v(xj) - value of feature xj - to the subset of feature values S
(coalition), one first randomly samples values for all features that are not in
the coalition & xj which provides a first prediction: P1. Another prediction,
P2 is obtained by randomly sampling another value for xj (which could still
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be the same as in P1). The contribution of xj to the coalition is defined as
φj = P1 − P2. The sampling step is often repeated to get better estimates.
The Shapley value is defined as a contribution accross all possible coalitions i.e.
summed and averaged over all coalitions, the complexity of the method increases
exponentially with the number of features. A common approximation consists
in computing contributions on a subset of all possible contributions [16].

Christoph Molmar presented the following formalism:

φj(v) =
∑

S⊆{x1,...,xp}\{xj}

|S|!(p− |S| − 1)!

p!
(v(S ∪ {xj})− v(S)) (2.12)

with v(S) the prediction for the feature values in the coalition S that are marginal-
ized over the features that are not included in S.

The book of Interpretable Machine Learning [16] emphasizes that Shapley
values are interpreted as an average contribution and not as difference of pre-
diction when a feature is removed from a model. Shapley values can either be
used in classification problems as in regression tasks. The term feature value
corresponds to a numerical or categorical value of a feature.

The Shapley value is the only solution to the payout attribution problem that
satifies the properties of Efficiency, Symmetry, Dummy (Null-player) and
Additivity.

1. Efficiency: the method decomposes the total payout among all features.

2. Symmetry: features with the same contribution get the same Shapley
value.

3. Dummy: feature with no contribution over all coalition receives a Shapley
value of 0 - null importance.

4. Additivity: for a game resulting in combined payouts p and p∗, Shapley
value of features sums too: φj + φ∗j .

Using Shapley values as indicators of features importance is straightforward.
By essence, relevant variables contribute a lot to define Y and the distinguishing
ability of a feature is here measured with regard to how much it intrinsically de-
fines the value prediction instead of how much it separates the target prediction
from others (impurity reduction of MDI).

2.4.3 SHAP

SHapley Additive Explanation (SHAP) is a model agnostic method defined
by Lundberg et al [14] in 2017. To explain any model, SHAP builds a surrogate
model that consists in a linear function: a linear sum of features’ contribution
(SHAP values) that equals the prediction. Any explanation of the original
model’s prediction is seen as a model itself called the explanation model. SHAP
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is said to derive feature importances through the decomposition of the prediction

SHAP values are defined as the Shapley values of a conditional expectation
function of the original model :

Figure 2.1: SHAP additive decomposition of the prediction[14]: Each
prediction is decomposed as the sum of a base value and the contribution each
features of a coalition Z.

Using the formalism of Lundberg et al. [14], the prediction of the model f
of a sample x using the features z of the coalition S can be written as: fx(z) =
E[fx(z)|zS ]. The prediction is explained using a subset of features and as models
usually cannot handle arbitrary patterns of input features, fx(z) is conditionally
approximated.

As shown in Figure 2.1, SHAP values explain how to successively find the
prediction by successively adding knowledge on features starting from the base
value (average value: E[f(z)]). The order in which the expectation is built i.e.
in which features are added matters and SHAP values are built from averaging
contribution across all orderings.

The python package SHAP provides the TreeExplainer method which im-
plements the exact algorithm to compute SHAP values on trees and random
forests.

2.4.4 SAABAS

The Saabas method is described in a blog post[18] dating from October
2014 and is implemented in the python package TreeInterpreter. This method
is not model agnostic as feature importances are extracted from the structure
of the tree. In short, Saabas decomposes the output into a sum of contributions
measured at each node, from the root till the leaf.

Saabas brought the novelty of breaking down the prediction in terms of value
changing along the prediction path. The method defines the prediction as the
sum of the features’ contributions and the bias (mean of the training set i.e.
value at root node). And the prediction f(x) of a tree can be written as:

f(x) = Bias+

K∑
k=1

contrib(x, k) (2.13)
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Figure 2.2: Saabas output decomposition[18]: Each prediction is decom-
posed as the sum of feature contributions and the output’s mean value.

Figure 2.2 shows the output decomposition within the structure of the tree
for a particular sample[18].

With K the number of features and contrib(x, k) the contribution of the
kth feature to the sample x. This definition is superficially similar to a linear
regression[18] - f(x) = a + bx - where the weight vector (b - features’ contri-
butions) isn’t fixed but depends on the decision path and therefore depends on
the other features. Saabas depends on the structure of the tree.

The application of Saabas to an ensemble of trees is straightforward as the
prediction of the ensemble is the average prediction over all trees. The impor-
tance of a feature linked to a sample x corresponds to the average contribution
of the feature over all trees.

The method explicitly provides a specific explanation for each prediction. As
mentioned in previous sections, relevant variables should be mainly used in the
trees and be responsible for splits that reduce the most the impurity ( they help
distinguishing the predictions). The same logic applies to induce that relevant
variables should be responsible for the biggest contributions.

The hyperparameter K is known to have an impact on MDA and MDI but it
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is unclear how it influences the rankings issued by Saabas on deep/shallow trees
and big/small forests. The method proposed by Onda Saabas is poorly studied
in the literature and mostly used to compare importance with other methods.

The method is implemented in the python package TreeInterpreter and can
be applied to decision trees and random forests of the scikit-learn package.

2.5 Datasets

Several datasets are imported from the scikit-learn library. 20% of the data
set is used to test the model and the other 80% is used to train the model. All
results shown in this work come from the evaluation of a model on the test set.

2.5.1 Friedman1

The Friedman1 dataset is defined by Friedman 1991[6] and consists in 10
independent features where only the 5 first features are used to define the output:

y(X) = 10 sin(πx0 × x1) + 20(x2 − 0.5)2 + 10x3 + 5x4 + noise ∗N(0, 1) (2.14)

500 samples are generated from this dataset.

2.5.2 Friedman2

The Friedman2 dataset is defined by Friedman 1991[6] and consists in 4
independent features uniformly distributed on the intervals:

1. 0 < x0 < 100

2. 40π < x1 < 560π

3. 0 < x2 < 1

4. 1 < x3 < 11

5. y(x) = (x2
0 + (x1x2 − 1

x1x3
)2)0.5 + noiseN(0, 1)

100 samples are drawn from this dataset generator.

2.5.3 Boston

The Boston dataset is loaded from sklearn, it contains 506 samples and has
13 features that are all real and positive.

2.5.4 Iris

The iris dataset is also loaded from sklearn, it contains 150 samples and has
4 features. The dataset is used for classification problems.
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2.5.5 Dataset for the linear regression problem

This dataset is designed for the purpose of an experiment. It contains 5
variables that are sampled uniformly in the range [0, 1] and that are uncorrelated
with each other. The output is computed as a linear combination of the features.
The dataset defines a linear regression problem. The dataset generator defines
4 parameters:

1. weights: weights of the linear regression = [3, 5,−7,−2, 6]

2. b: real value, intersection with y-axis, the value is set to 0

3. feature range: multiply the values of the randomly sampled feature with a
fixed real value r. This extends the range of a feature to [0, r]. The range
is set to [2, 2, 2, 2, 2]

4. feature translate: add the values of a feature by a fixed real value t. The
final range of a feature xj corresponds to [t, t + r]. The translation term
is set to [0, 0, 0, 0, 0].
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Chapter 3

Local Mean Decrease of
Accuracy

This chapter introduces a new method to derive local feature importances.
The method is inspired by the global Mean Decrease in Accuracy method. The
local MDA method assigns to each feature an importance that corresponds to
its impact on the model’s prediction when the feature has been removed from
the model.

3.1 Method

3.1.1 Model-Agnostic Method

A straight relation exists between the local and global MDA methods - this
section shows that the local method is a component of the global one. Consider
a model f , a sample x, its prediction ỹ = f(x), true value y and a loss function
L. One defines the importance of a feature xj with regard to x as the decrease
in accuracy of the model when the value of xj is noised (permuted/shuffled) in
x producing a new sample xj . The following equation uses the OOB context
as OOB samples are available to test the model. The second equation shows
the difference in accuracy between the model’s predictions of x and its shuffled
version xj .

V IMPlocal−MDA(xj , f,x,x
j)1 = L(f(xj), y)− L(f(x), y)

V IMPlocal−MDA(xj , f,x)2 = L(f(x), f(xj))
(3.1)

A classical error function E consists in the squared error: E(a, b) = (a− b)2

and the feature importance is averaged over several permutations of xj [22]:

V IMPlocal−MDA(xj , f,x)1 = Ej∗[V IMPlocal−MDA(xj , f,x,x
j∗)1] (3.2)
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A feature’s local importance in a forest is the averaged sum of its importance
value over all trees. The global method is derived as we average each sample
importance over the whole dataset.

Note that the permutation of a variable aims at artificially removing that
feature from the model[3]. The prediction of a model divested by a relevant
feature should be strongly different from the original prediction. This effect is
captured locally by the MDA method and the detected important variables are
those whose removal causes an important change in the model’s prediction.

Unless explicitely specified, MDA corresponds to the local MDA method
likewise MDI, it refers to the local MDI method.

3.1.2 Tree-specific local MDA

The agnostic method uses feature values permutations to mimic the impact
of removing a feature from the model. Depending on the base predictor used,
model-specific implementations of MDA can differently implement the artificial
removal of a feature. The method proposed in this thesis is specifically designed
for trees as it uses their structure to artificially remove a feature from the tree
model. The tree-based MDA method is referred to as MDA in the next sections.

In order to simulate the removal of a feature, MDA modifies the trajectory of
a sample in a tree at all nodes whose splitting variable is the target feature. Say
one studies the local impact of feature xj on a sample x: each time the sample
navigates through a node n testing xj , it is propagated in both child nodes,

i.e. right and left with weights corresponding to
Nright

N and
Nleft

N . Nleft being
the number of samples from the learning set that crossed n and propagated in
the left sub-trees and N the total number of learning samples that navigated
through n. The sample is then propagated in both sub-trees the same algorithm
applies in all sub-trees visited by the sample. As a conclusion, the algorithm
builds a probability distribution on the tree’s leaves that corresponds to the
likelihood of the sample to reach the leaf if xj is removed from the sample. This
procedure provides a different result than retraining a tree on the feature space
X excluding xj and is much more efficient. The probability distribution on the
leaves depends on the distribution of xj in the training data.

The importance of feature xj at predicting x is measured as the difference
between the prediction f(x) and the prediction built as the sum of leaves values
weighted by the distribution derived after removing xj from the sample and
propagating x in the tree.

3.2 Implementation

The application of MDA to a set of S samples and F features provides an
array of size (S × F ), each of the S rows contains the feature importances of
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the F features. As the importances are averaged over all trees, the algorithm
propagates all samples in each tree and builds an array where each value ai,j
corresponds to the importance of xj for the sample xi.

For each tree, the method loops over all samples and successively computes
all leaves probability distributions that result from propagating a sample in the
tree of which a feature as been removed.

Figure 3.1: Example of decision tree: The sample’s decision path is x2 - x3

- x2 and the sample propagates in the right child of the node testing x1.

Figure 3.1 shows how a sample whose feature x2 has been removed propa-
gates in the decision tree. The sample reaches a with the a probability p1 and
it reaches e & f with the respective probabilities p2p3 & p2p4. The prediction
of the model corresponds to p1a+ p2p3e+ p2p4 and p1 + p2p3 + p2p4 = 1.

3.3 MDA - Regression Task

Once the algorithm computed a prediction for x and the removed feature
xj , one still needs to compare the prediction of the disrupted sample with the
non-disrupted prediction of tree/forest. This section presents the two functions
that compute the difference of the predictions at the scope of the forest. The
result of this evaluation is the importance associated to xj .

3.3.1 Error Measurement

The python module computing the MDA importances implements two loss
functions: the Mean Square Error over all trees and the squared error between
the forest prediction and the average prediction over disrupted trees.

Let’s consider a random forest T of NT trees (ti), the prediction of the

forest corresponds to the average predictions over the trees: Y = 1
NT

∑NT

i=1 y
∗
i ,

y∗i being the prediction of ti for a sample x. The prediction of ti resulting from
the disrupted sample xj is ỹi,j .

1. Mean Square Error - MSE: V IMPxj
= 1

NT

∑NT

i=1(y∗i − ỹi,j)2
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2. Squared Error: V IMPxj = (Y− 1
NT

∑NT

i=1 ỹi,j)
2 = ( 1

NT

∑NT

i=1 y
∗
i− 1

NT

∑NT

i=1 ỹi,j)
2

The following equations compare both expressions of the loss function and
derive a link between them. Let’s first extent the definition of both measures:

1

NT

NT∑
i=1

(y∗i − ỹi,j)2 =
1

NT

NT∑
i=1

[(y∗i )2 + (ỹi,j)
2 − 2× ỹi,j × (y∗i )]

(
1

NT

NT∑
i=1

y∗i −
1

NT

NT∑
i=1

ỹi,j)
2 =

1

N2
T

(

NT∑
i=1

y∗i )2 +
1

N2
T

(

NT∑
i=1

ỹi,j)
2 − 2

N2
T

NT∑
i=1

NT∑
k=1

(y∗k × ỹi,j)

(3.3)

Let’s now generically compare the squared terms:

1

n

n∑
i=1

x2
i ≥

1

n2
(

n∑
i=1

xi)
2 Derived from Cauchy-Schwarz inequality

1

n

n∑
i=1

x2
i =

1

n2
(

n∑
i=1

xi)
2 +

1

2n2

n∑
i=1

n∑
j=1

(xi − xj)2

1

n

n∑
i=1

x2
i =

1

n2
(

n∑
i=1

xi)
2 +

1

n

n∑
i=1

(xi − x̄n)2 with x̄n being the average value

(3.4)

1
n

∑n
i=1(xi− x̄n)2 represents the variance of x among all trees - i.e. it corre-

sponds to the variance in models’ predictions and the variance among disrupted
predictions.

The MSE loss function contains slightly more information than the other
measure as it integrates the variance coming from the forest.

3.3.2 Variations

In addition to the loss functions, other parameters can be tuned. Their
impact on the rankings will be studied in the next chapter.

Graph propagation weights - Uniform parameter

In addition to permuting features values, Breiman[2001] [3] proposed, in
its description of the tree-Global-MDA, to uniformly propagate samples among
child nodes when the removed feature is the splitting criterion. Each trajectory
in both sub-trees is therefore weighted by 0.5 and not weighted by the proportion
of training samples that navigated through the child nodes.

The parameter uniform releases the weighting from the dependence of xj ’s
distribution in the training sample when set to True.
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Willingness to propagate

This variation implements a lazy version of MDA that does not remove the
feature xj from the sub-trees that are not part of the decision path of the
sample. When v(n)1 = xj , the sample is propagated in the two sub-trees of its
child nodes. Further node-tests that use xj in the sub-tree that does not belong
to the sample’s decision path don’t propagate the sample in both child nodes
anymore. The sample recovers its lost feature and the sub-tree is explored as x
wasn’t modified.

When the parameter Split is set to False, the lazy propagation scheme is
implemented and child-nodes propagation only occurs at the nodes testing xj
that belong to the sample’s decision path.

Weighting on the Tree Ensemble

Depending on the hyperparameter K, it might be that a feature xk is never
used in a tree. Removing such feature from the sample does not affect the
prediction and a null importance is associated to this feature in a particular tree.
Features that are not selected are less important than others to discriminate the
output and therefore might also not be locally relevant i.e. important for the
sample. However, when the feature importance is summed over all trees and
divided by the forest size, one considers trees that brought a null contribution
to the sum.

When the parameter weighted is set to anything but ’n’, the sum of impor-
tances is divided by the number of trees that bring a positive contribution to
the sum. A null-importance however is not synonym of null-information as it
brings the important information that xk is useless to predict x within a tree.

3.4 MDA - Classification Task

To simply recall the MDA algorithm: each sample of a set is propagated
in each tree of the forest - one feature being removed at a time. Each time a
sample reaches a node testing the removed variable, the sample is propagated
in both child nodes with a uniform probability or a weight:

Nleft

N or
Nright

N .
N being the number of samples crossing that node and Nleft the number of
samples reaching the left child of the node.

Within the code, probabilities are propagated till the leaves. In a classifi-
cation task, a leaf is not a real value but a probability distribution built from
the classes of the samples reaching the leaf. These probability distributions are
averaged over all leaves and the distributions are weighted by the probability
of the sample to reach them. Therefore, the result of predicting sample x with
the removed feature xj is a probability distribution over all possible classes.

1Splitting feature at node n
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3.4.1 Error Measurement

One loss function is defined to measure the disturbance that removing a
feature induced on the model’s prediction. The loss function directly provides
the importance of a variable and should therefore indicate how sensible the
model is to output a different forecast when a feature is removed.

1. If altering a variable leads to a big error, say the prediction of another
class or a big reduction in the likelihood associated to class previously
predicted by the model - the feature should be marked as important.

2. If the probability of the model’s prediction (class with biggest likelihood)
remains similar - the feature should be marked as poorly relevant.

3. Note p∗ the probability of the model’s prediction (class c∗) and p̃ the
probability associated to c∗ after removing xj from the sample x. The
feature importance is defined as:

V IMPMDAClassifiction(x, xj) = (1− p∗)− (1− p̃) (3.5)

3.4.2 SHAP and SAABAS rankings

The TreeInterpreter and SHAP methods provide for each sample x the con-
tribution of a feature to the prediction of each class. It takes the form of an array
with as many contributions as they are classes in the classification problem.

In order to compare methods, it is the contribution to the model’s predicted
class that summarizes the importance of a feature: the feature importance of
xj for x is the contribution of xj in the class predicted by the original model.
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Chapter 4

Experiments and Results

4.1 Results and Experiments - Regression task

4.1.1 Spearman Rank Correlation

This section especially compares MDA with SHAP, SAABAS and MDI. The
aim of this section is to observe how MDA rankings compare to other methods
when the parameters of the MDA are modified.

The previous chapter defined the parameters:

1. Uniform, which propagates samples in the child nodes with a probability
of 0.5 after a split involving the target feature xj .

2. Split controls the propagation of the sample in the sub-trees that do not
belong to the decision path.

3. Error function, that selects the MSE function when set to True.

The forests are composed of 300 trees, K is set to 2 and the models are
trained on the Boston dataset. The average Spearman correlation coefficients
resulting from comparing the MDA rankings with MDI, SHAP and Saabas are
provided in Table 4.1. A variable whose name is crossed in the following table
is set to False.
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avg Corr, MSE Uniform, split Uniform, split Uniform, split Uniform, split

MDI 0.815 0.814 0.769 0.752
SHAP 0.808 0.804 0.789 0.768
SAABAS 0.829 0.824 0.8 0.782

avg Corr, MSE Uniform, split Uniform, split Uniform, split Uniform, split

MDI -0.771 -0.785 -0.792 -0.806
SHAP -0.756 -0.774 -0.784 -0.782
SAABAS -0.779 -0.797 -0.765 -0.801

Table 4.1: Average Spearman correlation: Computed between all methods
and averaged over the test samples.

The Table corresponding to MSE shows that activating the Uniform and
the Split parameters always increases the correlation with the other methods.
However, Uniform has a much bigger importance than Split as it is responsible
for the biggest change in correlation.

The results for MSE are truly surprising as the rankings are extremely anti-
correlated with MDI, SHAP and Saabas. A possible explanation comes from
the fact that the measure of the square error doesn’t capture the variance in
the prediction of the trees that results from both the normal and the perturbed
samples. It might then change the intuition about the measure and provide
variables that are important to interpret the prediction with the smallest ’im-
portance’ and give irrelevant feature with a bigger ’importance’. The average
Spearman correlation detects a strong anti-monotonic relation between MDA
and the other rankings. This result is open for further research and experiments.

The MDA rankings are computed in the rest of the work with the following
parameters: Uniform, Split and MSE.

4.1.2 Results on dataset with unused variables

This section uses the Friedman1 dataset to train the model. This dataset
has 10 features and only the 5 first features are used to derive the output.
The rankings provided by the local method are studied with regard to different
forest’s hyperparamaters.

Impact of NT The number of trees in an ensemble is critical for its predictive
ability [17]. Therefore, it is interesting to compare the rankings inferred by the
different local methods and observe to what extent, methods provide similar
information on the interpretation of a prediction as the number of trees (NT )
varies.
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Table 4.2 shows the Spearman correlation between the different methods for
different values of NT = [50, 100, 500]. The parameter K is set to 2 in the right
part - the forest is therefore not considered as a perfectly randomized predictor
and K is set to 1 in the left part of the table. Note that trees are fully expanded.

avg Corr, NT = 50 MDAK=2 MDK=2I SHAPK=2 MDAK=1 MDIK=1 SHAPK=1

MDI 0.65 – – 0.32 – –
SHAP 0.73 0.66 – 0.29 0.52 –
SAABAS 0.70 0.66 0.85 0.32 0.51 0.79

avg Corr, NT = 100 MDAK=2 MDIK=2 SHAPK=2 MDAK=1 MDIK=1 SHAPK=1

MDI1 0.73 – – 0.36 – –
SHAP1 0.77 0.71 – 0.39 0.57 –
SAABAS1 0.75 0.70 0.88 0.40 0.54 0.84

avg Corr, NT = 500 MDAK=2 MDIK=2 SHAPK=2 MDAK=1 MDIK=1 SHAPK=1

MDI 0.79 – – 0.42 – –
SHAP 0.79 0.79 – 0.45 0.65 –
SAABAS 0.80 0.80 0.92 0.46 0.65 0.93

Table 4.2: Average Spearman correlation: The correlation between the
feature rankings is computed for each sample and averaged over all samples.

From Table 4.2, one can see that increasing the size of the forest results in
increased correlation coefficient. Methods’ interpretation become more similar
as there are more trees. SHAP and Saabas are very close in all models and
despite the model on the right being fully randomized (K = 1), their interpre-
tation of the model remains similar. MDI and even more MDA seem to be very
dependent on the number of features considered at each split. K > 1 increases
the likelihood of the model to choose a splitting features that explains the model
i.e. features: x0, x1, x2, x3 or x4 which are the relevant features of the model as
the output is only built from the 5 first features.

Only the first 5 variables are known to be relevant for the output and the
Jaccard Index is measured between two rankings on their respective top5 fea-
tures. We won’t observe the propensity of the methods to detect the 5 relevant
features as the most important for their local predictions but we will observe
how similar the set of the best 5-features of the rankings are.
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avg Jaccard Index, NT = 100 MDAK=2 MDK=2I SHAPK=2 MDAK=1 MDIK=1 SHAPK=1

MDI 0.74 – – 0.49 – –
SHAP 0.73 0.78 – 0.48 0.63 –
SAABAS 0.75 0.78 0.90 0.50 0.63 0.88

Table 4.3: Average Jaccard Index: The Jaccard Index computed over the
top5 features of each ranking.

Table4.3 shows that the average proportion of features detected by two rank-
ings to be in the top 5 is also slightly dependent from the parameter K and that
methods gain in similarity as K increases.

4.1.3 Study of the impact of K on rankings

Suggestion 2, described in the Global MDA section, mentions that higher
values of K provide more accurate variable importances. The motivation of
this section is to study how rankings computed by the same method change as
K becomes greater using the Spearman correlation coefficient and the Jaccard
Index. Results are also compared between methods to see whether bigger values
of K unify the rankings methods.

Parameters

The dataset Friedman2 (4 features) is used in this section and the models
consists in two random forests with 500 trees and K = 1 or K = 4 (4 being the
total number of feature in Friedman2). The MDA local rankings are computed
with the following parameters: Split = True, Uniform = True and MSE =
True. The rankings with subscript 1 are computed on the totally random forest
and rankings with subscript 4 are inferred from the trees where the splitting
variable is chosen among all 4 features.

Spearman Correlation and Jaccard Index

Table4.4 and Table4.5 display the methods’ pair-wise Spearman correlation
coefficient average on all samples. The correlation coefficients from Table4.4
are computed on the forest where K = 1 and the coefficient of Table4.5 are
computed on the forest built with K = 4.

We observe that, indeed, the coefficient K has a strong influence on the rank-
ings. The different methods output rankings that are more similar (correlated)
as more variables are being considered at each split. The correlation measured
in Table4.5 shows that all rankings are on average very correlated.

To observe how much the rankings change and become similar as K increases,
the Jaccard Index is used to compare the two most important variables iden-
tified by each method for each sample i.e. the two features with the highest
importance. The index is the size of the intersection divided by the size of the
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union. The Jaccard Index takes a finite number of values and for the compari-
son of vectors of size 2: J(Frank1, F rank2) ∈ [0, 0.33, 1] and Frank being the
features’ id of the two most important variables.

Table4.6 and Table4.7 display the results for restpectively K = 1 and K = 4.
One can observe that Saabas and Shap methods always identify the same two
features as the most important ones and that as K increases the similarity of the
set compared increased too. Indeed, when K = 4, the similarity score is close
to 1 between all methods. The test set associated to Friedman2 contains 20
samples so a Jaccard similarity value of 0.96 means that for one sample, the two
methods only share one similar feature among their top-2 and that the top-2 of
the 19 other samples contain the same features. The position of the variables
in the top-2 being not considered.

avg Corr MDA1 MDI1 SHAP1

MDI1 0.64 – –
SHAP1 0.73 0.63 –
SAABAS1 0.68 0.62 0.96

Table 4.4: Average Spearman correlation: The correlation between the
feature rankings is computed for each sample and averaged over all samples.
Forest with K = 1

avg Corr MDA4 MDI4 SHAP4

MDI4 0.89 – –
SHAP4 0.94 0.89 –
SAABAS4 0.94 0.91 0.96

Table 4.5: Average Spearman correlation: The correlation between the
feature rankings is computed for each sample and averaged over all samples.
Forest with K = 4

avg Jaccard Index MDA1 MDI1 SHAP1

MDI1 0.73 – –
SHAP1 0.73 0.73 –
SAABAS1 0.73 0.73 1

Table 4.6: Average of the Jaccard Index: The Jaccard Index is measured
on the id of the two most important features detected by each method. The
Index is measured on each sample and averaged over all test samples. Forest
with K = 1
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avg Jaccard Index MDA4 MDI4 SHAP4

MDI4 0.96 – –
SHAP4 0.96 1 –
SAABAS4 0.96 1 1

Table 4.7: Average of the Jaccard Index: The Jaccard Index is measured
on the id of the two most important features detected by each method. The
Index is measured on each sample and averaged over all test samples. Forest
with K = 4

How much did rankings changed?

Previous section shows that on Friedman2, methods output very similar
results when K is set to its maximum value - allowing the model to always
choose the best possible split at each node. This section studies how the rankings
inferred by the same method change as K increases.

Table 4.8 shows the Jaccard measure of similarity measured between the
top-2 features identified by each method for K = 1 and 4. Saabas and Shap
seems to have only slightly changed as K increased while MDA is the method
whose ranking evolved the most.

– MDA1 & MDA4 MDI1 & MDI4 SHAP1 & SHAP4 SAABAS1 & SAABAS4

avg Jaccard Index 0.73 0.83 0.89 0.89

Table 4.8: Average of the Jaccard Index: The Jaccard Index is measured
on the id of the two most important features detected by each method. The
rankings of the same methods are compared for K = 1 and K = 4.

It seems, in this experience, that the methods that are the most influenced
by the internal composition of the tree (split variable, depth of node, impurity
reduction) - MDA & MDI - are also the ones that are the most affected by
K. SHAP and Saabas depend indirectly on the tree structure as the predictive
power of the tree is crucial in determining variable importance. By definition,
MDA & MDI are more affected than SHAP & SAABAS if the position of a
variable changes within a tree while only slightly affecting its prediction.

One can also see that, on Friedman2, SHAP and Saabas provide more ”sta-
ble” top2-rankings when K = 1: Table 4.8 shows that the top-2 only slightly
evolve as K increased and Table 4.5 shows that for K = 4 all rankings are
extremely similar. So the rankings of MDA and MDI converge close to the
rankings of SHAP & Saabas as K increases.
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Comparison with Forest Global MDI

Modifying the parameter K leads to changes in splitting variables chosen
at each node and as it modifies the results of local methods, global measures
might also have been changed. This section compares the global MDI (G-MDI)
ranking with local methods for the two different values of K. The global ranking
is obtained through the feature importances parameter of Scikit-Learn-based
random forests.

The feature importances and the ranking of G-MDI is different within the
two models M1 and M4:

1. G-MDIM1
= [0.13, 0.31, 0.42, 0.12] → ranking : [2, 1, 0, 3]

2. G-MDIM4
= [0.012, 0.41, 0.55, 0.017] → ranking : [3, 1, 0, 2]

– MDA1 & GMDI1 MDI1 & GMDI1 SHAP1 & GMDI1 SAABAS1 & GMDI1

avg Corr 0.62 0.67 0.80 0.81

– MDA4 & GMDI4 MDI4 & GMDI4 SHAP4 & GMDI4 SAABAS4 & GMDI4

avg Corr 0.80 0.84 0.83 0.83

Table 4.9: Average Spearman Correlation: The Spearman correlation is
computed between G-MDI and local methods and averaged over all samples.
M1 and M4 are studied.

Table 4.9 displays the Spearman correlation between the different methods
for K = 1, 4. The correlations between SHAP/Saabas and G-MDI remain
similar for both values of K and is relatively high - around 0.8. The correlations
between MDI / MDA and G-MDI increase with K and also reach 0.8 which
makes sense as we have seen all local methods are very correlated when K = 4.

Note that the Jaccard Index computed with regard to G-MDI on the top-2
features equals 1 with MDI, SHAP and SAABAS and 0.96 with MDA when
K = 4. The G-MDI importances of M4 indicate that :

1. the two least important variables are much less important than the two
others ;

2. they both contribute to a very small and similar decrease in impurity on
the forest and are therefore poorly distinguishable within the rankings.

Knowing which feature ranks 3rd or 4th does not bring lots of information
and might not be relevant, even locally.
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4.1.4 Comparative example with Linear Regression

The local feature importance methods presented in this work either use the
structure of the tree (Saabas, MDA and MDI) or use its predictive capacity
(SHAP) in order to understand its predictions: it is all about model inter-
pretability. The methods aim at extracting some of the complex knowledge
that is held in trees - in the context of this work, identifying which variables are
found to be important by the forest - through different means: decomposition
of the prediction and decreases in impurity & accuracy. Previous sections have
shown that the different methods provide either similar or different rankings
depending on the dataset and forest’s hyperparameters.

This section aims to compare the rankings derived by MDI, MDA, SHAP
and Saabas with ground-truth rankings derived from a linear regression problem.
Through this experience, one will observe the capacity of a random forest to use
the variables similarly as the linear model and therefore rank the features closely
to the local feature rankings inferred from the weights of the linear regression.

Results are studied for different values of the Forest hyperparameters in
order to quantitatively track their influence on the structure of the Forest and
observe how the feature rankings derived from the tree evolve.

Important: The feature importance methods explain the model. By defini-
tion, relevant variable should be important within the tree. The forest’s feature
importances first explain the model, one can’t directly infers that these fea-
tures are relevant for the outcome - they are only detected as important for the
prediction of the tree.

Linear Regression parameters

The ground truth local importance of each feature xj with linear regression
weight wj for a sample x corresponds to the absolute value of the effect of xj
weighted by the sum of absolute effects.

V IMPlocalGT =
|wj × xj |∑
i |wi × xi|

(4.1)

Parameters of the random forest

The forests trained for this section are made of 100 estimators and the
min samples split parameter is set to 2. The differences between results ob-
tained for forests of size 20, 100 and 500 trees are not significant and are not
reported in this report.

The MDA method used has parameter Split set at True, Uniform set as
False and feature importances are computed with the MSE loss function.

Example1 - Global ranking similar to Ground Truth

In this first example, the parameters of the Linear Regression are:
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1. weights = [3, 5,−7,−2, 6]

2. b = 0

3. ranges = [2, 2, 2, 2, 2]

4. translation = [0, 0, 0, 0, 0]

All 5 features are completely uncorrelated and the random forests trained
on the linear regression data globally rank the features in the same order as the
absolute values of the linear regression weights. The ranking issued by Global-
MDI is equivalent to the linear regression weights (global ranking of the linear
problem).

Table 4.10 displays the correlation between local methods and the global
feature ranking for different hyperparameters of the random forest. One can
observe that the correlation of the local ranking with the model global rank-
ing always increases as K increases and that the standard deviation tends to
decrease. The correlation between MDA and the global ranking significantly
increases as K = 3, the correlation increases by 0.3 and reaches 0.7. Limiting
trees to a depth of 3 also increases the average correlation of the local ranking
with the global one. A greater value of K has a big impact on the correlation
of SHAP & Saabas on shallow trees. Their correlation with the global ranking
increases from 0.45 to 0.82 and the standard deviation is reduced by a factor of
2. The MDA method is also highly influenced by the depth of the trees and its
average correlation with the global ranking is high: 0.74 and 0.89 for both values
of K. It is surprising to see that the local MDI ranking is nearly the same as
the global ranking for nearly all samples. As local MDI is based on the decrease
in impurity, it seems that no splits especially favor specific samples with regard
to the impurity measure so that no feature emerges to be more important to
predict a sample. One cannot conclude on the quality of the methods using
Table 4.10 as the local methods are compared with the global one. However it
is interesting to see that local rankings tend to get closer to the global ranking
as some parameters are modified.

LR weights MDIn MDAn SHAPn SAABASn MDI3 MDA3 SHAP3 SAABAS3

avg CorrK=1 0.98 0.40 0.52 0.52 0.96 0.74 0.45 0.45
avg StdK=1 0.045 0.45 0.38 0.38 0.05 0.20 0.41 0.42
avg CorrK=3 1.0 0.71 0.58 0.58 0.99 0.89 0.82 0.82
avg StdK=3 0.0 0.24 0.35 0.34 0.01 0.11 0.20 0.20

Table 4.10: Average & Std Spearman correlation coefficients: The Spear-
man correlation between local methods’ rankings and the global feature ranking
is measured for all samples. The average correlation and the standard devia-
tion are reported in the table. The global ranking corresponds to the weights
of the linear regression problem. The subscript attached to the row elements
corresponds to the depth of the trees (′n′ stands for no depth-limit). Results
are displayed for K = 1 and 3.
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Table 4.11 shows the correlation of the tree-based local methods with the
ground-truth local ranking directly inferred from the linear regression problem.
Previous table has shown that local MDI provides the same ranking for most
samples - independently from the different tree parameters. It is therefore not
surprising to observe that local MDI keeps nearly constant correlation scores
among all models. For this example, MDI failed to provide sample-specific in-
formation/interpretation on the forest’s predictions. Although the other meth-
ods are less correlated with the local feature, they are more expressive as their
rankings are influenced by the structure of the forest and therefore, they each
better explain the forest’s predictions than MDI.

Quality of the ranking can be assessed on this table as local methods are com-
pared with ground-truth data. MDA, SHAP and Saabas are all very influenced
by the depth of the trees and the parameter K. All methods perform better i.e.
they are more correlated to the ground-truth as the depth of the trees decreases
and as the number of variables considered at each split increases. The MDA
method performs generally better than SHAP and Saabas. The best results are
obtained on the shallow-trees which suggest that:

1. as stated in the Background section, the accuracy performance of a
model is not always linked to the capacity of the model to make local
decisions based on the most relevant variables. We observe in Table 4.11
that the model better uses/detects relevant features when K and depth
equal 3 but the most accurate model corresponds to the model built with
K = 3 and no depth limit. One observes the propensity of a model to use
relevant variables to make prediction by analysing local feature rankings
- 4 of them being studied in this work.

2. the importance of a feature (decision) is influenced by its depth with
regard to the root node. Results show that the model tends to better
identify relevant variables at the early stages of all trees. By successively
increasing the depth of the forest, I observed that the average correlation
of local methods with the ground-truth ranking decreases.

Ground-Truth MDIn MDAn SHAPn SAABASn MDI3 MDA3 SHAP3 SAABAS3

avg CorrK=1 0.503 0.066 0.139 0.144 0.49 0.34 0.10 0.10
avg StdK=1 0.41 0.533 0.52 0.526 0.43 0.48 0.51 0.51
avg CorrK=3 0.51 0.29 0.20 0.20 0.505 0.43 0.38 0.38
avg StdK=3 0.41 0.49 0.51 0.51 0.405 0.47 0.48 0.48

Table 4.11: Average & Std Spearman correlation coefficients: The Spear-
man correlation between local methods’ rankings and the local feature ranking
inferred from the linear problem is measured for all samples. The average cor-
relation and the standard deviation are reported in the table. The subscript
attached to the row elements corresponds to the depth of the trees (′n′ stands
for no depth-limit). Results are displayed for K = 1 and 3.
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Example2 - Global Ranking different than Ground Truth

In this second example, the parameters of the linear regression problem are
slightly modified such that the random forests learned on the linear regression
data globaly rank the feature in a different order than the linear regression
weights. In this second example, forests fail to identify the global hierarchical
relationship between variables. The impact on the local rankings are observed
as well as the capacity of the forests to locally identify the relevant variables.
Global-MDI switches the position of the fourth and first features and more
importantly of the second and third features. The feature with weight of −7 is
considered to be globally less relevant than the x2 with value 5. The parameters
of the linear problems are the following:

1. weights = [3, 5,−7,−2, 6]

2. b = 0

3. ranges = [1, 5, 2, 3, 2]

4. translation = [0, 0, 0, 0, 0]

Table 4.12 shows in 3 tables the average correlation between the local meth-
ods and linear regression weights, the ground-truth rankings and the Global-
MDI where the local rankings are derived from 4 different forests. One observes
again that the local-MDI rankings are independent from the variations in the
trees’ structure: indeed, varying the depth or the K does not change the extent
to what MDI is correlated with the other rankings. SHAP, Saabas and MDA
are all three very influenced by the depth and by K. The biggest correlation
with the ground truth data is obtained on shallow trees and K = 3. MDA and
MDI perform well on this dataset and their correlation with the ground truth
feature ranking respectively reached 0.64 and 0.66.

The tables show that MDI is extremely correlated to its global version. The
correlation between Global-MDI and other local methods increases with K and
inversely proportionally to the depth. The model that locally uses the best
relevant features (i.e. that correlates most with ground-truth rankings) is also
the model whose local rankings are very similar to the global ranking. Finally, it
is also the model that correlates most with the linear regression weights. We also
observe that the correlations of the local methods with the linear regression are
similar to the values of the correlation between local methods and ground-truth
samples.
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LR-weights MDIn MDAn SHAPn SAABASn MDI3 MDA3 SHAP3 SAABAS3

avg CorrK=1 0.60 0.29 0.42 0.41 0.59 0.48 0.35 0.35
avg StdK=1 0.05 0.43 0.38 0.36 0.04 0.23 0.37 0.37
avg CorrK=3 0.60 0.54 0.46 0.46 0.6 0.57 0.57 0.58
avg StdK=3 0.003 0.23 0.30 0.31 0.012 0.04 0.17 0.16

GT-rankings MDIn MDAn SHAPn SAABASn MDI3 MDA3 SHAP3 SAABAS3

avg CorrK=1 0.64 0.20 0.34 0.34 0.66 0.57 0.32 0.34
avg StdK=1 0.33 0.47 0.44 0.45 0.33 0.37 0.44 0.44
avg CorrK=3 0.66 0.49 0.40 0.39 0.66 0.64 0.57 0.57
avg StdK=3 0.32 0.40 0.42 0.42 0.32 0.34 0.37 0.36

Global-MDI MDIn MDAn SHAPn SAABASn MDI3 MDA3 SHAP3 SAABAS3

avg CorrK=1 0.96 0.50 0.66 0.65 0.98 0.87 0.63 0.64
avg StdK=1 0.053 0.40 0.32 0.33 0.04 0.13 0.35 0.34
avg CorrK=3 0.99 0.82 0.72 0.72 0.99 0.97 0.89 0.90
avg StdK=3 0.003 0.18 0.28 0.28 0.01 0.04 0.15 0.14

Table 4.12: Average & Std Spearman correlation coefficients: The Spear-
man correlations between the rankings of the local methods and the linear re-
gression weights, the ground-truth local rankings and the Global-MDI ranking
inferred from the forest are measured for all samples. The average correlation
and the standard deviation are reported in the table. The subscript attached
to the row elements corresponds to the depth of the trees (′n′ stands for no
depth-limit). Results are displayed for K = 1 and 3.

The average correlation between the linear regression weights and the ground-
truth rankings corresponds to 0.40. The average correlation between the ground-
truth ranking and the forest global-MDI equals to 0.66. Finally, the correlation
between both global rankings corresponds to 0.6. These values correspond to
the forest trained with K = 3 and a maximum depth of 3. It seems from these
statistics that the local ground-truth rankings are on average closer to the forest
global ranking than the linear regression weights. The fact that many samples
have a different ground-truth ranking than the regression weights might partly
explain why Global-MDI (an aggregate version of the local method) identifies a
global ranking which does not correspond to the linear regression weights but
to a local ranking that predominates in the training samples.

Conclusion

Due to their simplicity, it is very easy to interpret the predictions of linear
models. The weights of the regression and the samples values are sufficient. The
artificial problem described in this section allows to derive ground-truth feature
rankings and the data drawn from uniform distributions is used to train a forest
that should model the linear regression function in the range of the input data.
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Since the forest should model the linear regression, one can freely compare both
methods.

Firstly, it is interesting to see how rankings issued by local methods evolve
as the parameters of the forest change. Table 4.12 and Table 4.10 show that
local ranking become more similar to the global ranking as K increases and the
depth decreases.

Secondly, the extent to which forests are able to use features in a similar way
as the linear regression function depends on the forest hyperparameters which is
observed in the GT-rankings section of Table 4.12. For K = 1, the correlation
between ground-truth ranking and rankings issued by SHAP, Saabas and MD
is relatively small, which means that the variables that are important for the
forest are in fact poorly relevant for the output.

The forest that relied the best on relevant features (K = 3 and depth=
3) is also one of the less accurate estimator as the forest developed without
depth limit provide the best results. Therefore, the most accurate forests don’t
necessarily identify the best relevant features.

4.1.5 Ranking Expressivity

This section studies the values of the importance associated to each feature
and observes how different the importance associated to the most important
feature is from the value associated to the least important feature. For each
sample the difference between the maximum and minimum value is reported.
The l1 -norm is used to regularize the rankings so that the importance of all
features sums to 1.

The expressivity of all methods are shown for a variation for K = 1 and 2 and
for a tree of maximum depth set to 3. The graphs are in the Appendix A. One
can observe that the expressivity of all methods are very similar despite tuning
parameters. These parameters influence the correlation between the rankings
but we observe that the importance difference between the most important and
least important variables is not affected. This was observed on other datasets
such as Friedman1.

4.1.6 Performances

The MDA method is fully implemented in python with loops and therefore
doesn’t benefit from a fair comparison compared to the other methods. Saabas,
SHAP and the MDI methods are partly implemented in python. The computa-
tion time is measured in seconds for forests of 100 and 500 either fully expanded
(d) or with a maximum depth set at: d = 3. Results are obtained on a 11th
Gen Intel(R) Core(TM) i7-1165G7 processor.
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Computation time in seconds 100 Trees, d 500 Trees, d 100 Trees, d = 3 500 Trees, d = 3

MDA 0.0039 0.0119 0.0029 0.0079
MDI 4.44 22.70 2.0321 10.19
SHAP 0.382 1.81 0.0179 0.092
SAABAS 0.842 4.38 0.009 0.0479

Table 4.13: Average Spearman correlation: The correlation between the
feature rankings is computed for each sample and averaged over all samples.
The table shows the results for trees built with K = 1 and 3 and with no limit
on the depth of the trees - using the Iris dataset.

The computation-complexity of all methods scales linearly with the number
of trees which is expected as trees are studied independently from each other.
The local MDI method is by far the simplest and the most efficient.

4.2 Classification Task

This section studies the rankings provided by the local methods: MDA,
MDI, SHAP & Saabas with regard to different values of the forest’s hyperpa-
rameters. The absolute values of all feature importances are considered in order
to compare rankings. Rankings are then normalized with the l1 -norm to study
their expressivity.

4.2.1 Study of the Spearman correlation coeficient on the
Iris dataset

Table 4.14 provides the average Spearman correlation coefficients between
all local methods for a forest built with no constrain on its trees’ depth and
K = 1 and 3 on the Iris dataset.

avg Corr MDAK=1 MDIK=1 SHAPK=1 MDAK=3 MDIK=3 SHAPK=3

MDI 0.80 – – 0.85 – –
SHAP 0.86 0.84 – 0.886 0.84 –
SAABAS 0.81 0.85 0.91 0.90 0.87 0.9

Table 4.14: Average Spearman correlation: The correlation between the
feature rankings is computed for each sample and averaged over all samples.
The table shows the results for trees built with K = 1 and 3 and with no limit
on the depth of the trees - using the Iris dataset.

Table 4.15 provides the average Spearman correlation coefficients between
all local methods for a forest made of trees of maximum depth 3 and K = 1
and 3 on the Iris dataset. The trees of the models trained in Table 4.14 had a
maximum depth of 9.
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avg Corr MDAK=1 MDIK=1 SHAPK=1 MDAK=3 MDIK=3 SHAPK=3

MDI 0.69 – – 0.83 – –
SHAP 0.78 0.92 – 0.91 0.92 –
SAABAS 0.73 0.90 0.94 0.94 0.92 0.96

Table 4.15: Average Spearman correlation: The correlation between the
feature rankings is computed for each sample and averaged over all samples.
The table shows the results for trees built with K = 1 and 3 and trees are
expanded till depth 3 - using the Iris dataset.

All models presented in Table 4.14 and Table 4.15 contain 500 trees and
trained on the Iris dataset. The first important observation is that the local
rankings are very correlated among all forests. Increasing the value of K for
unconstrained-depth trees shows very little impact on the correlation between
ranking on the Iris dataset. The same observation applies to the SHAP, Saabas
and MDI methods on the forests containing trees of depth 3: increasing K has a
marginal effect on the correlation. However, it seems that the rankings obtained
from the MDA method are more sensible to the depth of trees. Indeed, for K = 1
in Table 4.15, MDA has lost around 0.10 point in correlation with regard to the
other methods compared to the fully expanded forest. Increasing K to 3 restore
a high correlation between MDA and the other methods.

Results show that all methods tend to interpret the prediction of the tree
in a similar way. Indeed, a sample’s feature ranking is nearly the same among
all methods. One cannot conclude that the methods successfully retrieved the
most relevant variables but it is equally interesting that all methods identify the
same - or at least a very similar - interpretation to the model’s local predictions.

Ranking Expressivity

This section studies the values of the importance associated to each feature
and observes how different the importance associated to the most important
feature is from the value associated to the least important feature. For each
sample the difference between the maximum and minimum value is reported.
The l1 -norm is used to regularize the rankings so that the importance of all
features sums to 1.
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Figure 4.1: Ranking Expressivity: Expressivity measured among the 30
rankings of the test set. The rankings are derived from the random forest con-
taining trees unlimited-depth trees and trained with K = 3 on the Iris dataset.

Figure 4.2: Ranking Expressivity: Expressivity measured among the 30
rankings of the test set. The rankings are derived from the random forest
containing trees limited to depth 3 and trained with K = 1 on the Iris dataset.
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Figure 4.1 and Figure 4.2 respectively show the expressivity of each method
a forest trained with K = 3 and no limit on trees’ depth and a forest trained
with K = 1 and trees’ depth limited to 3. One can see that MDI, SHAP and
Saabas are very similar and tend to discriminate the most important feature
from the least important feature with nearly the same importance gap among
all test samples. Additionally, the rankings of these methods are only slightly
influenced by the forest’s hyperparameters. However, as seen in the previous
section, the rankings derived by MDA are much more influenced by the tree
parameters that are tweaked in this experiment. Once can see that in Figure
4.2, MDA harldy distinguishes any particular hierarchy among the features while
MDI, SHAP and Saabas already figured out a strong hierarchy. An average gap
of 0.33 is already high as the l1 -normalization makes importances sum to 1.

In addition to providing similar rankings (MDI, SHAP and Saabas are very
correlated), the methods also provide similar importance values. Note that, de-
spite MDA does not reflect a strong hierarchy in the feature importance values,
it remains - surprisingly - highly correlated to all methods as shown in the left
part of Table 4.15 with an average correlation of 0.75.

As usual, the results from the Saabas and SHAP methods are very similar.
Both methods decompose the prediction to assign a contribution, i.e. impor-
tance score, to each feature. One could expect major differences between the
two methods as SHAP is model agnositic and as Saabas directly uses the struc-
ture of the tree to assign feature importances. This major difference seems to
have little impact on the rankings provided by the two methods as they have
always been highly correlated in all experiences realised in this work.
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Chapter 5

Application to Gene
Network Inference

This section of the report aims to compare local ranking methods applied
to a tangible application from the biomedical study domain. The motivations
for this section are manifold: the methods described in the Background and the
second chapter are here studied in a practical context, their results are compared
to ground truth data and the performances of the methods are contrasted with
state of the art algorithms from the field of study.

The attention is high on the benefits machine learning techniques can bring
to medicine as models are being used for both the purpose of improving diag-
nosis quality - e.g. through medical imaging - and for the purpose of better
understanding the human body and grasp information about the numerous in-
teractions that occur in an organism.

This section is about inferring the regulatory interactions that exist between
genes of the same cell. Such study is made possible through the availability of
large datasets of genes expression obtained by advances in genomics in the field
of DNA microarrays.

5.1 Gene Network Inference Problem

5.1.1 Gene Regulatory Network

The concept of Gene Regulatory Network (GRN) has grown popular over the
last decade as an approach for describing transcriptional interactions. The tran-
scriptional regulation is the control mechanism by which cells respond to intra-
and extracellular signal by monitoring the retranscription rate of several genes.
Observing transcriptional regulations and thus changes in gene expression levels
summarizes in studying the genes’ orchestration among a cell.

43



GRN can be global and therefore be inferred from a population of cells.
However, since single-cell expression become more available, cell-specific GRN
can be inferred from biological techniques which open the door to local studies,
here: using local inference methods to approximate a cell-specific regulatory
network.

Gene Regulatory Network inference consists in building a network - seen
as a graph - in which nodes are genes and the weight of edges indicates the
level of regulatory interaction between them. Note that the interaction between
two genes in a GRN does not necessarily imply physical interaction but can
also refer to indirect regulation via proteins. Previous works have shown that
GRN are relatively sparse[20]: many poorly connected nodes and few highly
connected ones. In the network inference problem, the ground truth data is
usually considered as boolean: 0 denoting the absence of regulation between
two genes and 1 representing a regulatory interaction. The Boolean problem of
inferring interactions between genes is thus a highly class-imbalanced problem
as the number of possible interactions largely exceeds the number of connected
nodes in the true network.

The quality of GRN inference models is crucial to understand the develop-
ment, functioning and pathology of organisms studied at cellular level.

5.1.2 Deriving gene regulation through genes’ expression

As seen in the previous section, cell-specific Gene Regulatory Network ex-
plains the interactions between genes in a single cell and therefore the expression
level of the genes. GRN are typically obtained by reverse-engineering i.e. GRN
are inferred from the computational analysis of the genes’ expressions. These
algorithms rely on the assumption that the existence of a strong statistical re-
lationship between genes’ expression is an indication of a potential functional
relationship (regulatory interaction) [25].

Algorithms inferring genes interactions usually compute a score for each pair
of gene. The first[15] methods used the Pearson correlation coefficient on the
expression of genes but they failed to capture non-linear dependencies between
genes. In this report, ensembles of regression trees are used to capture relation-
ships from the expression of genes. The tree-based method can possibly capture
higher-order conditional dependencies than the Pearson correlation coefficient
as it makes less assumptions on the input data.

5.2 Background - Dyngen

The paper ”dyngen: a multi-modal simulator for spearheading new single-
cell omics analyses”, released in June 2020 is the main reference of this section.
The authors developed a tool to generate databases of single cells expressions
through a simulator from which they infer ground truth measurements.
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This paper brought a significant contribution to the field as the ability to
generate datasets allow to perform better quantitative assessment of the quality
of singe-cell analysis that was often jeopardized by the lack of data. Indeed, in
addition to providing models’ input data, the dyngen simulator can be used to
benchmark single-cells analysis such as cell-specific network inference, trajectory
alignment methods and RNA velocity predictions.

5.2.1 Generation of Genes’ expressions

The multi-modality simulator of single-cell expression described in the pa-
per uses an improved version of Gillespie’s stochastic simulator algorithm [4].
Dyngen can simulate 14 different types of dynamic processes using different ex-
perimental conditions for each. The simulator described in the manuscript is
able to generate 42 different datasets of single-cell gene expressions.

The dataset generation starts by the definition of a global gene regulatory
network i.e. a set of rules between genes that is not cell-specific. The different
types of simulated cells develop over time according to this GRN and additional
experimental conditions. The design of this GRN has a crucial impact on the
cellular development processes of the simulation.

Figure 5.1 graphically showcase the functionality of dyngen. The genes’
expressions being inferred at the end of the simulation. A dataset of genes’ ex-
pressions consists of N rows (cells) and F features (expression value of each gene
for each cell) and with each column of the database representing the expression
of a gene.types of novel computational approaches: RNA velocity, cell-specific network inference and trajectory alignment

methods.
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Figure 1: Showcase of dyngen functionality. A: The typical process of generating a dataset with dyngen. B: Evaluat-

ing different types of computational tools requires simulating different types of experiments and extracting different

layers of information from the simulation.

Results

A cell consists of a set of molecules, the abundance of which are affected by a set of reactions: transcription, splicing,

translation, and degradation (Figure 2A). A gene regulatory network (GRN) defines the reactions that are allowed to

occur (Figure 2B), which is constructed in such a way that cells slowly develop over time (Figure 2C,D). With every

time step d𝑡 in the simulation, the probability of a reaction occurring is computed (not shown). From the probabilities

are sampled which reactions occur during this time step d𝑡 (Figure 2E).

dyngen returns many modalities throughout the whole simulation: molecular abundance, number of reaction firings,

reaction likelihoods, and regulation activations (Figure 2C–F). These modalities can serve both as input data and

ground truth for benchmarking many types of computational approaches. For example, a network inference method

could use mRNA abundance and regulation activities as inputs and its output could be benchmarked against the gold

standard GRN.

Depending on how the GRN is designed, different cellular developmental processes can be simulated. dyngen in-

cludes generators of GRNs which result in many different developmental topologies (Figure 3), including branching,

converging, cyclic and even disconnected. Custom-defined GRNs offer more fine-grained control over the simula-

tion.

Together, these qualities allow it to be applicable in benchmarking a broad range of use-cases. In practice, dyngen

has already successfully been used to evaluate trajectory inference [10], trajectory-based differential expression [14],

and network inference [15] methods. To demonstrate this point even further, we apply dyngen on several promising

novel computational approaches for which quantitative assessment of the performance was until now lacking.

RNA velocity

In eukaryotes, a gene is first transcribed to a pre-mRNA and subsequently spliced into mature mRNA. Because reads

coming fromboth unspliced and spliced transcripts are observed in expression data, the relative ratio between the two

can tell us something about which genes are increasing, decreasing or remaining the same [16, 17]. To determine this,

some parameters have to be estimated to determinewhich fraction of unspliced and splicedmRNAs correspond to an

increase or decrease. The estimation of these parameters makes some assumptions and can be handled in different

ways in the two main algorithms that are now available for RNA velocity estimation: velocyto [17] and scvelo [18]. It
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Figure 5.1: Showcase of Dyngen functionality[4]. A: The typical process
of generating a dataset with Dyngen. B: Evaluating different types of compu-
tational tools requires simulating different types of experiments and extracting
different layers of information from the simulation.
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5.2.2 Cell-specific Gene Regulatory Network

The authors defined a method to determine the cell-specific ground-truth
regulatory network. The regulatory effect of a regulator gene R on a target gene
T is measured by observing the contribution of R in the propensity transcription
of T i.e. observing by how much the transcription1 (expression level) of T is
affected by the expression level of R. Indeed: the regulatory effect of R on T is
defined as the change in propensity transcription of T when the expression of R
is set to 0. The interactions are computed among all pairs of the regulator and
target sets of gene to build a cell-specific GRN.

The regulatory effect of gene R on gene T at a particular state S is the
difference of propensity transcription weighted by a factor wprT corresponding
to the pre-mRNA production rate of T.

regEffectT =
propTransT (S)− propTransT (S[yR ← 0])

wprT
(5.1)

The regulatory effect lies between [−1, 1], the extremums represent complete
inhibition or maximal activation and 0 is synonym of an inactive regulatory
interaction in the {R, T} pair. Note that the simulator studies the trajectories
of cells over time, the propensity transcription rate is a metric of a dynamic
problem while the expression of a gene is a static measure made at each step.

5.2.3 Methods

The ground-truth data extracted from the simulator is used to further com-
pare the performance of cell-specific network inference (CSNI) methods: LI-
ONESS, SSN and pySCENIC. These methods are shortly described in the fol-
lowing section as their results are compared to local feature ranking methods in
the Experiments section.

LIONESS + Pearson

LIONESS[11] stands for Linear Interpolation to Obtain Network Estimates
for Single Samples. It consists in a methodology that can be used with different
(gene regulatory) network construction algorithms i.e. methods that output an
adjacent matrix whose values correspond to the weight between two edges of
the network.
LIONESS is based on the ideas that:

1. Each cell/sample has its own regulatory network

2. Each edge of the global regulatory network is a linear combination of that
edge across all individual samples’ network. The global network is seen as
an aggregated network

1Transcription corresponds to the replication of the RNA copy of a gene’s sequence i.e. it
refers to the quantity of some proteins within a cell - US National Human Genome Research
Institute
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3. It is then possible to measure the contribution of a single sample in the
aggregate network

Through a network construction algorithm, LIONESS builds a network on
the entire cell population and a second network on all samples but the target
cell. The method compares both networks and uses a linear equation to estimate
the network of the selected sample. The value of an edge between nodes (genes)
i and j in the target cell q is defined by:

e
(q)
ij = N(e

(α)
ij − e

(α−q)
ij ) + e

(α−q)
ij (5.2)

With e
(α)
ij being the value of the edge in the global network and e

(α−q)
ij the value

of the edge in the network that withheld q.

This algorithm is repeated for all edges and all samples to build cell-specific
networks.

In this implementation of LIONESS, networks are generated using the Pear-
son correlation formula applied on the genes expression data (correlation is
measured between all pairs of genes).

SSN

The methodology of the Sample Specific Network[12] (SSN) is very close to
LIONESS as the SSN of each sample (cell) is constructed through a statistical
perturbation analysis of this sample against the sample population. The Sample
Specific Network method also uses Pearson correlation coefficients (PCC) to
build the regulatory network.

Three networks are constructed by PCC:

1. A network that excludes the target cell, the reference network : PCCn

2. A network that includes the target cell, the perturbed network : PCCn+1

3. The differential network is computed on every edges. ∆PCC is a first
sketch of the sample’s SSN. The SSN of a sample is based on the contrast
that this sample brings to the expression of genes.
Differential network: ∆PCC = PCCn+1 − PCCn[12]

The PCC values of some edges of the perturbed network show significant
discrepancies with the reference network if they are evident differences between
the expression patterns of the target sample and the reference samples. ∆PCC
would then be significant and should be kept in the SSN of the target sample.

The SSN method then filters the ∆PCC and only keeps the edges with
significant differential correlations. The statistical significance of a differential
edge is established by comparing the Z-score of the ∆PCC to a threshold P −
value (P = 0.05). The Z-test has the null hypothesis that a distribution can
be approximated by a normal distribution. The authors[12] of the method have
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shown that the ∆PCC’s of a network follow a symmetrical distribution (volcano
distribution) whose tails regions are similar to those of a normal distribution
and therefore confirms the relevance of using the Z-test.

Z =
∆PCC − µ∆PCC

ρ∆PCC
(5.3)

The resulting SSN corresponds to the GRN of the target sample (cell).

pySCENIC

PySCENIC is the python implementation of the SCENIC method[23]. The
SCENIC method consists in a workflow of several steps[4]:

1. Step1: A global Gene Regulatory Network is inferred from the gene ex-
pression data using tree-based methods similar to GENIE3[10]. GENIE3
consists in training an ensemble of tree on the gene expression data and
inferring regulators from the feature ranking of the ensemble. Because of
genes’ co-expression, the regulatory network contains many false positives
and indirect regulations such as downstream effect.

2. Step2: The 10 main regulators of each target are selected and interactions
are grouped in modules - each module containing a regulator and all its
targets i.e. all genes for which the regulator is important. The main
regulators are selected by the RcisTarget method which aims to detect
direct regulatory links inside a GRN.

3. Step3: Using AUCell, an activity score for each module is determined in
each cell. This step provides a matrix with a score for each module in
each cell. It is then possible to filter modules through a module-specific
threshold value that decides whether or not the regulatory interactions
represented by the module exist within a cell. This last step provides a
cell-specific gene regulatory network.

5.3 Experiments

5.3.1 Methodology

The purpose of this section is to compare the cell-specific gene regulatory
networks derived from Random Forest using local feature ranking methods to
the 3 methods described above: SSN, LIONESS + Pearson and SCENIC. A
model is built for each target gene and each model is trained on the expression
data of the regulatory genes - regulators. Random Forest are trained on genes
expression with the assumption that complex relations at the cellular level be-
tween some regulators and the target gene can be captured by the model and
that these relationships can be retrieved by drawing the ranking of the genes
locally i.e. for each cell.
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In this section, one observes which genes are important to predict a target
gene with the assumption that genes that are measured to be important (rank
high in feature importance) are also the genes that regulate the target gene.
Using a global ranking method on the random forest provides a global GRN
(GENIE3 and SCENIC) i.e. a summary (aggregation) of the genes’ interactions
among all cells of the input dataset. However, cells can be of different types
and result from different trajectories and thus, pairwise genes interactions are
different for each cell and a cell-wise feature ranking method might succeed at
reproducing these specific interactions.

Comparing pySCENIC with local ranking methods results in comparing two
kinds of methods: one that directly provides cell-specific GRN’s and the other
that infers a cell-specific network from the analysis of a global feature ranking.

In order to compare methods, 9 datasets were generated using the dyngen
simulator. Each simulation computes the ground truth network and provides
specific prior information such as the regulator (R) and target (T ) sets of genes,
usually: R ⊂ T . These priors are used by all methods and the Random Forest
are trained on the set of regulators from which the target gene is excluded.

Each dataset describes the genes’ expression over 1000 cells (samples). The
results of applying any local ranking method on a modeli is a matrix of shape:
1000× size(R), that provides for each cell and target genei the feature ranking
of the regulatory genes. Each feature importance corresponds to a confidence
score of the interaction of a regulatory gene and the genei in a specific cell.

5.3.2 Scoring Method

A feature importance value is obtained for each {R, T} gene pair of each cell.
The ground truth data is a binary vector with 0′s being the absence of regulation
and 1′s being the presence of a regulatory interaction. The regulatory network
inference problem is strongly class-imbalanced as the ground truth data is a
sparse vector. Indeed, very few direct interactions are found to exist withing
the genes of a cell. The local methods provide O(T.R) feature importance values
for each cell, among all datasets: O(T ) = O(R) = O(100), while the ground-
truth data lists an average of O(100) regulatory interactions2 per cell. The large
number of false positive i.e. wrong regulatory interactions, is a weakness of all
methods. Note that pySCENIC filters its modules and therefore reduces its
propensity to detect false links.

In order to prevent the analysis to depend on the choice of a threshold
applied on feature importance values, the local ranking methods are compared
using the same methodology as most network inference tools. The AUROC and
AUPR values are computed for each cell. The PR and ROC curves are drawn
from all {R, T} pairs and the area under the curve is used as a comparison
metric. The metric is averaged among all cells of the dataset and the reported

2This information was computed among the 9 datasets. Note that O(R) ≈ O(T )
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metrics are the meanAUPR and meanAUROC. The propensity of the methods
to contain false positive links is (partially)3 monitored by the meanAUPR score
and the propensity of the methods to detect most of the correct interactions is
(partially) monitored by the meanAUROC.

The cell-wise GRN computed by Dyngen sometimes gives a regulatory in-
teraction within the same gene i.e. a non-null cyclic edge. Genes are directly
regulated by proteins and RNA sequences that are replicated from or stimulated
by themselves or other genes. However, none of method studied in this section
is able to detect self-regulatory interactions.

5.3.3 Methods Comparison

Tree parameters

Each Random Forest consists of 40 trees, R − 4 variables are randomly
sampled among the R regulators at each split and trees are expanded till a
minimum of 5 samples per leaf. The local methods (MDA, MDI, SHAP and
SAABAS) are then used to infer a feature ranking for each cell and each target
gene.

Remark on AUPR & AUROC:

The background section introduces the AUPR and AUROC metrics and
describes the metric values for a model with little or no distinguishing power
between predictions: class-wise (AUROC) and regarding to positive and false
positive (AUPR). A random classifier has a AUROC score close to 0.5 and
AUPR score corresponding to the average precision of a random classifier: P

P+N
(proportion of positive in the dataset). Over the 9 datasets, the proportion of
positive examples approximately corresponds to 0.02.

Results 1 - Graph visualisation

Figure 5.2 exhibits the scores of the methods that the reference paper used to
infer regulatory networks. The python implementation of the SCENIC method
provides better results than the two Pearson-Correlation-based algorithms with
regard to both the AUROC and AUPR metrics. Note that on these datasets,
the SSN performs very poorly with meanAUROC close to 0.5 and therefore
exhibits very little distinguishing power between predictions. The LIONESS-
Pearson algorithm ranks intermediate and shows better scores than SSN while
its implementation only slightly differs from SSN. Finally, SSN’s meanAUPR
scores are close to 0.02.

Figure 5.3 presents the scores of the local feature ranking methods whose
weights are used to infer the regulatory interactions within cells.

3”Partially” because both the AUROC and AUPR scores have a more complex definition
- please refer to the Background section
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SHAP and SAABAS show, as their similar implementation induces, alike re-
sults. The most interesting result comes from the observation that local methods
clearly outperform pySCENIC with regard to both metrics. One could think
that by filtering regulatory modules, pySCENIC could maintain a better AUPR
score than the other methods that do not implement any filter. However, re-
sults show that one can better set a threshold on the predictions of the local
ranking methods to distinguish true positives from false positives (AUPR4). All
three based methods show better AUPR score, the reason might be inherent to
the tree structure that is directly used to infer cell-specific ranking in the local
methods. The number of feature considered at each split being close to the
number of regulators, many features can be skipped at the level of the ensemble
and as they are not used in the tree, no regulatory interaction can be inferred
from them. This reduces the number of false positive edges and seems not to
affect the amount of true interactions detected by the method as the AUROC
score of MDA and MDI is generally higher than pySCENIC.

Note that pySCENIC is also based on ensemble of trees but the hyper-
parameters of the random forest being used are not shared by the authors of
Dyngen. A second important difference is that pySCENIC uses the global fea-
ture ranking to build a global GRN from which local networks are infered.
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Figure 5.2: Showcase of cell-specific GRN inference tools on 9 test
datasets: The meanAUPR and meanAUROC scores for each dataset are re-
ported.

4AUPR shows how effectively one could set a threshold on feature values (predictions) to
distinguish false positive from real positives
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Figure 5.3: Showcase of local feature ranking methods on 9 test
datasets: The meanAUPR and meanAUROC scores for each dataset are re-
ported. The cyan dots correspond to the scores of pySCENIC and the grey dots
is the mask of the other local methods

Results 2 - In depth tabular visualisation

Table5.1 and Table5.2 show the meanAUROC and meanAUPR score of all
methods on each dataset and Table5.3 and Table5.4 show the standard deviation
of each score for all methods and datasets.

meanAUROC: The local MDA method provides the best AUROC score on 2
datasets and MDI & SHAP score better than other methods on 3 datasets each.
pySCENIC only performs a little better than all methods on the 7th dataset.
The highest mean scores and the smallest standard deviation of the scores are
highlighted in blue for each dataset.

In addition to providing very similar results, the AUROC scores of each
method are similarly spread with regard to their mean. As one can see on
Table 5.3, the standard deviation values are similar among all methods for each
dataset.

meanAUPR: Table 5.2 shows that MDA scores best on 3 datasets, MDI on
4 datasets and SHAP & SAABAS on one dataset each. The tree-based local
methods have significantly better scores than SSN, LIONESS and pySCENIC.
The meanAUPR scores of the local methods seems to be relatively close to each
other for each dataset. The main difference occurs between MDI and MDA on
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the 5th and 6th datasets where MDI reaches scores close to 0.2 and MDA has
scores of around 0.07.
As no method provides significantly better scores on all datasets, it could be
interesting to study juxtapositions of local feature rankings and try optimiz-
ing the AUPR score while maintaining the high AUROC scores local methods
provide.

meanAUROC score SSN LIONESS pySCENIC MDA MDI SHAP SAABAS

Dataset 1 0.5319 0.6479 0.7560 0.8498 0.8755 0.8475 0.8519
Dataset 2 0.4957 0.5309 0.5273 0.6451 0.625 0.6351 0.6283
Dataset 3 0.4852 0.5216 0.5325 0.6868 0.714 0.6864 0.6842
Dataset 4 0.4857 0.5197 0.5519 0.6516 0.6759 0.6423 0.6448
Dataset 5 0.4822 0.7165 0.6436 0.901 0.9215 0.9269 0.9155
Dataset 6 0.4864 0.6852 0.72 0.912 0.9345 0.9352 0.9229
Dataset 7 0.4801 0.5892 0.7803 0.717 0.7764 0.7667 0.7572
Dataset 8 0.4868 0.5418 0.6128 0.7834 0.8019 0.811 0.8042
Dataset 9 0.4667 0.5846 0.6458 0.6934 0.6863 0.6493 0.6433

Table 5.1: AUROC scores tabular summary. The reported scores correspond to
the average over all cells of the AUROC precision score. The method with the
highest score is highlighted in blue for each dataset.

meanAUPR score SSN LIONESS pySCENIC MDA MDI SHAP SAABAS

Dataset 1 0.0168 0.0327 0.0642 0.1012 0.1132 0.124 0.1506
Dataset 2 0.0288 0.032 0.0307 0.0773 0.055 0.0579 0.0.0684
Dataset 3 0.0226 0.025 0.0255 0.0945 0.0739 0.0679 0.0774
Dataset 4 0.0243 0.0269 0.0344 0.0823 0.0826 0.0618 0.0629
Dataset 5 0.0106 0.0479 0.0361 0.0656 0.1987 0.1199 0.1341
Dataset 6 0.0101 0.037 0.0678 0.0762 0.2086 0.1412 0.1533
Dataset 7 0.0162 0.0254 0.0789 0.0793 0.1195 0.1571 0.1186
Dataset 8 0.0245 0.032 0.0430 0.166 0.1805 0.1433 0.1752
Dataset 9 0.0215 0.0306 0.0353 0.1595 0.0927 0.0633 0.077

Table 5.2: AUPR scores tabular summary. The reported scores correspond to
the average over all cells of the AUPR precision score. The method with the
highest score is highlighted in blue for each dataset.

53



std AUROC score MDA MDI SHAP SAABAS

Dataset 1 0.0552 0.0487 0.0423 0.0517
Dataset 2 0.0348 0.0331 0.032 0.035
Dataset 3 0.0312 0.0252 0.0335 0.0317
Dataset 4 0.0341 0.0296 0.0342 0.0361
Dataset 5 0.0185 0.0144 0.008 0.0135
Dataset 6 0.012 0.0104 0.0066 0.009
Dataset 7 0.0437 0.026 0.0293 0.0271
Dataset 8 0.0297 0.0314 0.0312 0.0312
Dataset 9 0.0419 0.0701 0.0463 0.041

Table 5.3: std AUROC scores tabular summary. The reported values correspond
to the standard deviation of the AUROC values among all cells. The methods
that provide AUROC scores that spread the least with regard to the mean are
highlighted in blue.

std AUPR score MDA MDI SHAP SAABAS

Dataset 1 0.0544 0.052 0.0506 0.0546
Dataset 2 0.0749 0.0463 0.0507 0.0674
Dataset 3 0.1086 0.0609 0.0672 0.0744
Dataset 4 0.0975 0.066 0.0712 0.0737
Dataset 5 0.0307 0.0436 0.0629 0.0681
Dataset 6 0.0251 0.0376 0.0422 0.009
Dataset 7 0.0677 0.039 0.0647 0.0505
Dataset 8 0.0681 0.0659 0.0773 0.0679
Dataset 9 0.1173 0.0563 0.054 0.071

Table 5.4: std AUPR scores tabular summary. The reported values correspond
to the standard deviation of the AUPR values among all cells. The methods
that provide AUPR scores that spread the least with regard to the mean are
highlighted in blue.

Figure 5.4 show a box plot comparison of the meanAUPR scores of the local
methods and pySCENIC. MDA is the local method that has the lowest median
AUPR score and MDI has the highest median score. It is again clear that local
methods perform better that pySCENIC and share similar performances.
Box plots of the meanAUPR scores on all datasets shows that MDI is the tech-
nique that usually provides higher AUPR scores and 50% of MDA’s scores are
included between 0.075 and 0.1 on Figure5.5.
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Figure 5.4: meanAUROC - Boxplots comparison of local methods and
pySCENIC. The vertical line corresponds to the median and the box extends
from the first to the third quartile
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Figure 5.5: meanAUPR - Boxplots comparison of local methods and
pySCENIC. The vertical line corresponds to the median and the box extends
from the first to the third quartile
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5.3.4 Gene Interactions Example on cell id

Figure 5.6 to Figure 5.10 show the regulatory network of the cell 145 of
the first dataset inferred through the local feature ranking methods. Because
MDA’s rankings are exclusively non-negative, it is the only method that cannot
infer whether a regulation is inhibiting or stimulating the expression of a gene.
As explained, the ground-truth network stimulated by Dyngen contains very
few interactions between genes.

Figure 5.6: Display of interactions predicted by SHAP: The predictions
correspond to the normalized feature importance levels (cell145 - Dataset1).
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Figure 5.7: Display of interactions predicted by SAABAS: The pre-
dictions correspond to the normalized feature importance levels (cell145 -
Dataset1).

Figure 5.8: Display of interactions predicted by MDI: the predictions
correspond to the normalized feature importance levels (cell145 - Dataset1).
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Figure 5.9: Display of interactions predicted by MDA: The predictions
correspond to the normalized feature importance levels (cell145 - Dataset1).

Figure 5.10: Display of ground-truth regulatory network: The predictions
correspond to the normalized feature importance levels (cell145 - Dataset1).
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5.4 Conclusion

The results from the application of local ranking methods to the Gene Net-
work Inference problem are very promising. The four local methods studied in
the thesis outperform the state of the art methods that are mainly used in the
literature: SSN , LIONESS and pySCENIC.

The local ranking methods are compared with ground-truth data, the cell-
specific GRN inferred by the simulator and they have been measure to be effec-
tive. Indeed, the average AUROC score is high over all cells.
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Chapter 6

Conclusion

This work studies recently developed local ranking methods. The rankings
have been compared on several datasets and the influence of the forest’s param-
eters are discussed in the fourth chapter. The methods are shown to be very
correlated on non-fully randomized ensembles of trees (K > 1).

The methods have also been compared with ground-truth rankings through
a linear regression problem and through the regulatory networks of single-cells.
The latter application surely is the biggest contribution of the thesis as the stud-
ied methods outperform results previously obtained by state of the art methods.

The expressivity of the rankings derived on the classification task shows that
MDA is particularly affected by K.

Throughout all experiments, SHAP and SAABAS have always been very cor-
related and they have been shown to provide good rankings on fully-randomized
trees. MDA and MDI are shown to be much more dependent on the forest pa-
rameters. This find sense in the definition of the method that heavily rely on the
structure of the tree. Additionally, increasing the value of K and the number of
trees in the forest always increases the correlation between rankings. This leads
to the conclusion that rankings tend to unify and therefore provide the same
interpretation of a forest’s predictions.

As local methods performed well on the Gene Network Inference task, it
would be interesting to use the local methods on other inference tasks and see
whether the good results obtained on the genes’ networks can be reproduced in
other fields of study.

60



Appendix A

Expressivity plots -
Regression task

Figure A.1: Expressivity of all methods: K = 1 and max depth = 3.
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Figure A.2: Expressivity of all methods: K = 3 and max depth = 3.

Figure A.3: Expressivity of all methods: K = 1 and no depth limit.
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Figure A.4: Expressivity of all methods: K = 3 and no depth limit.
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