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2. Introduction 

 

The dial a ride problem (DARP) is a specific transportation problem. The objective is to optimise the 

planning of a collection of trips made by a fleet of vehicles. Those trips aim to satisfy requests from 

users while meeting various constraints.  

DARP has received increasing attention since the end of the 1980s. This is due to the fact that they 

answer a growing need of the population. Indeed, public transportation has shown their limits and an 

intermediary solution between personal transport services and them is required. 

However, from an optimisation point of view, DARP is hard to solve as they must handle a lot of 

constraints that can be different from a case to the next. That is why good algorithms are needed in 

order to guide companies and states in their logistics. 

In this section, I will present the problem through his more famous example before going into his 

technical characteristics. Once this is done, we will take a look on the different algorithms used to solve 

it. This will be done thanks to a literature review focusing on the contributions of various papers 

concerning the method to solve DARP rather than on contributions regarding improvement of 

objective functions and constraints. 

 

2.1.Problem description 

 

The more common example of dial a ride problem is the transport of the elderly or disabled people. 

Due to their conditions, they might not be able to travel thought classic public transports, which are 

not equipped to handle their needs. Those needs can go from special accommodations to the necessity 

to have qualified drivers with medical knowledge. That is why several companies specialised 

themselves in the transport of people with specific needs. Moreover, several countries have developed 

dial-a-ride services.  

For extreme cases, transport can be done with a single vehicle per person. However, dial-a-ride 

problems focus on vehicles that have the possibility to accommodate more than one person at the 

same time. That can be a minibus that has been arranged to accommodate wheelchairs or bed. Indeed, 

it is both cheaper and better for the environment to transport several people at the same time. 

Due to the aging of the population, those kinds of services will be needed even more in the future. 

Furthermore, there is a trend for public transportation to fight global warming. It is then important to 

have specialised public transport.  

Both of those problems are solved thanks to dial a ride transportation. Moreover, new ambulatory 

health care services are being developed every year. 

All of those factors lead to an increase of the demand. Nowadays, the market has trouble absorbing it 

while maintaining reasonable costs. That is why good optimisation tools to solve DARP are 

indispensable. Otherwise, the price of those services will rise even though people needing those 

services already have a lot of costs related to their conditions. 
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As we can see through this example, one of the main differences between DARP and other classic 

transportation problems is the human factor. The aim is to minimise not only the cost of the 

transportation but also the inconveniences to the users. Those inconveniences include the desired 

hour to arrive at a specific medical appointment, but also the ride time. The well-being of the user is a 

key aspect of the service and an augmentation of cost can be justified if it increases the quality of the 

service. A balance between the two must be found. 

 

On a more technical aspect, each user or request is represented by two nodes: an inbound and an 

outbound. The first correspond to the origin location where they want to be picked and the second 

one is the destination location where they want to be dropped off. Both have time windows during 

which they need to be processed in order to meet the demands of the user. Furthermore, users have 

a maximum ride time duration in order to maintain a certain quality of services. 

The difficulty of the problem lies in how these requests can be assigned in the most efficient way. Each 

user must be allocated to a vehicle, and each vehicle must follow the best sequence in order to satisfy 

the different requests assigned to it. For that, a vehicle can transport more than one user at the same 

time, as long as it does not violate the maximum time duration of each user.  

DARP can be represented by a graph of nodes which represent the pickup and deposit locations of 

each user. The journey of a vehicle is then represented by a series of arc linking those nodes together 

in a specific order. For example, in Fig 1, we have 6 requests with 6 corresponding pickups P and 

deliveries D. In the depot, we have two vehicles. 

 

 

Fig 1. Empty example of DARP 
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A possible solution is presented in Fig 2 with the blue arrows representing the journey of the first 

vehicle and the black ones the journey of the second. 

 

 

Fig 2. Completed example of DARP 

The constraints and objective function can be different from paper to paper. This is due to the fact that 

the problem is complex. Furthermore, there is more than one aspect to this problem. The main 

purpose remains the minimisation of the cost, but several managerial aspects can be added such as 

the drivers’ well-being or vehicle maintenance. Finally, the quality of service must be ensured by 

minimising the users’ inconveniences. 

 The main variation of the objective function concerns the number of vehicles used. Some papers 

consider the number of vehicles to be only a constraint, while others take it as a variable to minimise. 

In practice the first guaranty the fulfilment of services while the latter follows more the point of view 

of a company that would need to control the cost of additional vehicles. 

 The constraints can be very different depending on the resemblance to reality sought. That could 

include constraints such as specific accommodations like wheelchairs, vehicles starting from multiple 

depots, maximum total ride time of a vehicle and so on.  

DARP can be divided into two cases: static and dynamic. The static case assumes that every request is 

known prior to the beginning of the day. This allows to a simple planning early in the morning. The 

dynamic case, on the other hand, describes situations where requests keep coming as the day goes. 

The planning must be adapted for every new request. The first one is, of course, simpler but might be 

less realistic. 

Another division can be made between the multiple vehicles DARP and the single vehicle DARP. The 

latter being a particular case of the first.  

For the remainder of this paper, we will focus on static multiple vehicles DARP 
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2.2.Literature review 

 

The aim of this thesis being the creation of an algorithm solving static cases, I will focus on literature 

talking about those. However, a summary of the algorithm developed for dynamic case made by 

Cordeau and Laporte (2007) can be found at Appendix I. Furthermore, the aim of this literature review 

is to identify which types of algorithms are commonly used to solved DARP rather than the objective 

function and constraints usually employed. For that reason, I will focus on the evolution of the type of 

algorithm used. A detail review of the addition of new constraints or the modification of the objective’s 

functions can be found in Cordeau and Laporte (2003a,2007) and in Parragh et al. (2008) 

 

The first kind of algorithm that got developed was algorithms for single vehicle DARP which is a simplify 

version of the multi-vehicle DARP. The aim of those algorithms was to build a step into the solving of 

multi-vehicle DARP. To only mention a few, Psaraftis (1980 and 1983) developed two exact algorithms 

and Sexton (1979 and 1985a, b) two heuristics. 

 

With the bases developed for the single vehicle DARP, Jaw (1984) developed one of the first heuristics 

for multiple vehicle DARP. He created an insertion heuristic which aims to insert requests initially 

classed based on their earliest possible pickup times into the best feasible place into a vehicle route. 

This was further discussed in Jaw et al. (1986). 

Several similar algorithms were proposed in the following years improving it with a new technique 

called clustering. This technique groups requests to be served by the same vehicle prior to insertion. 

This includes the algorithms proposed by Dumas et al. (1989a), Desrosiers et al. (1991) and Ioachim et 

al. (1995).  

Since then, several other insertion algorithms were proposed. I won’t describe each contribution since 

they mainly concern the objective function and the constraints. However, it is interesting to mention 

that some papers tried successfully to use metaheuristics to improve the clustering process. For 

example, Rekiek et al. (2006) proposed the utilisation of Genetic Algorithm for clustering. 

 

Even if insertion heuristics used to be the reference to solve DARP, it was quickly replaced by 

metaheuristics. The difference between heuristic and metaheuristic is that a heuristic only applies to 

one specific problem while a metaheuristic is a resolution method that can be applied to several 

problems with adaptations. The reason behind this trend change is that most metaheuristics have been 

developed during the second half of the 1980s and the 1990s. Ever since, they have been used with 

success to solve various optimisation problems. They manage to find good solutions within acceptable 

computational time. They work especially well for medium to large instances where exact algorithms 

have difficulties. 

For all those reasons, most of the papers published since proposed to use metaheuristics. Insertion 

heuristics are, however, not forgotten. Various algorithm integrates insertion heuristics in 

metaheuristic in order to find optimal results. 
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For example, Parragh et al. (2010) used Variable Neighbourhoods Search with three types of 

neighbourhoods, Jain and Van Hentenryck (2011) a Large Neighbourhood Search with constraints 

programming, Braekers et al. (2014) a Deterministic Annealing algorithm and Gschwind and Gschwind 

and Drexl (2019) an Adaptative Large Neighbourhood Search. 

However, the metaheuristic more frequently used are the following: 

• Simulated Annealing with Colorni et al. (1996), Baugh et al. (1998) and Zidi et al. (2012), 

• Genetic Algorithm with Uchimura et al. (1999), Jørgensen (2007) and Atahran et al. 2014), 

• Tabu Search with Cordeau and Laporte (2003a), Aldaihani and Dessouky (2003) and 

Melachrinoudis et al. (2007). 

 

Furthermore, several hybrid metaheuristics combining two different heuristics have been developed. 

Those hybrid versions have been proven to yield better results than the classic metaheuristics. Ho and 

Haughland (2004), Guerriero et al. (2013) proposed a hybrid of Tabu Search with Greedy Randomised 

Adaptative Search, Parragh and Schmid (2013) a hybrid of Large Neighbourhood Search and Variable 

Neighbourhoods Search and finally Masmoudi et al. (2016) a hybrid Bee algorithm with Simulated 

Annealing and Deterministic Annealing. 

 

In parallel with the use of heuristics and metaheuristics, several exact algorithms with Branch and Cut 

have been proposed. Branch and cut algorithms solve problems by relaxing the constraints. It means 

that the problems are solved by ignoring constraints. Those constraints are then reinserted one by 

one. The main drawback is the computational time that can be high. 

There are two types of Branch and Cut algorithms that had been used. Three-index formulation such 

as the algorithm presented by Cordeau (2006) and two-index formulation like the one proposed by 

Ropke et al. (2007) or more recently by Braekers et al. (2014). 

 

It is also worth mentioning the Hyperheuristic developed by Urra et al. (2014). Their Hyperheuristic 

search among several low-level heuristics for good solutions rather than searching in the problem 

space. 

A table to summarise this section can be seen at Table 1. 
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Number 
of 

vehicles 
Type Algorithm Reference 

Single 
 

Exact Dynamic programming 
Psaraftis (1980 and 
1983) 

Heuristic 
Iterates between routing and scheduling 
phases 

Sexton (1979 and 
1985 a, b) 

Multi 

Exact 
Branch and cut with two-index formulation 

Ropke et al. (2007) 

Braekers et al. 
(2014). 

Branch and cut with three-index formulation Cordeau (2006) 

Heuristic 

Insertion 
Jaw (1984)  

Jaw et al. (1986) 

Insertion with clustering 

Dumas et al. (1989a) 

Desrosiers et al. 
(1991) 

Ioachim et al. (1995) 

Insertion with clustering through Genetic 
Algorithm 

Rekiek et al. (2006) 

Metaheuristic 

Variable Neighbourhoods Search with three 
types of neighbourhoods 

Parragh et al. (2010) 

Large Neighbourhood Search with constraints 
programming 

Jain and Van 
Hentenryck (2011) 

Deterministic Annealing Braekers et al. (2014) 

Adaptative Large Neighbourhood Search 

 
Gschwind and Drexl 
(2019)  

Simulated Annealing 

Colorni et al. (1996) 

Baugh et al. (1998) 

Zidi et al. (2012) 

Genetic Algorithm 

Uchimura et al. 
(1999) 

Jørgensen (2007) 

Atahran et al. (2014) 

Tabu Search 

Cordeau and Laporte 
(2003a) 

Aldaihani and 
Dessouky (2003) 

Melachrinoudis et al. 
(2007) 

Hybrid 
metaheuristic 

Tabu Search with Greedy Randomised 
Adaptative Search 

Ho and Haughland 
(2004) 

Guerriero et al. 
(2013) 

Large Neighbourhood Search and Variable 
Neighbourhoods Search 

Parragh and Schmid 
(2013) 

Bees algorithm with Simulated Annealing and 
Deterministic Annealing 

Masmoudi et al. 
(2016) 

Bees algorithm with Deterministic Annealing 

Hyperheuristic Search among several low-level heuristic Urra et al. (2014) 

Table 1: Summary of literature review 
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The primary objective of this paper will be to develop a heuristic to solve homogenous static case of 

DARP with multi-vehicles and single depot. In order to do that, I first created an initial algorithm based 

on specific objective functions and constraints. On the basis of this algorithm, several possible 

improvements will be tested. Depending on their effects over the performance of the algorithm or his 

realistic aspect, they will be kept in the final version of the algorithm. 

This thesis is organised as follows. Section 2 methodology will include 3 parts. The first one will be a 

problem formulation based on the objective function and constraints I chose to tackle. The second one 

will be a description of the algorithm implemented. This will also include the decision-making for 

choosing this algorithm. Finally, the different steps of the implementation will be presented in the third 

part. Results and improvement will be discussed in Section 3. For that, I will begin by presenting the 

results of the initial algorithm. Then several possible improvements will be proposed and their impacts 

will be compared to the results mention above. This thesis will be concluded in Section 4.  
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3. Methodology 

 

This section will present the methodology I followed in order to develop the initial version of my 

algorithm. It is composed of three subsections. The first one explains my problem formulation. The 

second one the choice of the type of algorithm I chose to design. Finally, the last one present the 

implementation of this algorithm. 

 

3.1.Problem formulation 

  

Dial a ride problem can have several formulations depending on the situation the algorithm wants to 
solve. The exact name of the problem I chose to tackle is the homogenous static DARP for multiple 
vehicles with one depot. As seen in Section 1.1, the terminology static implies that every request is 
known prior to optimisation and multiple implies that I work with more than one vehicle. The only new 
aspect is the homogenous, which refers to a homogenous fleet of vehicles. That means that every 
vehicle is considered to be exactly the same.  

The other particularities of this formulation are: 

• How the time windows are handled 

• Different maximum ride time for every request 

• Number of vehicles is a cost to minimise 

• Possibility to have more than one customer per request 

 

This problem formulation is based on the one presented by Roepke during the CAOS1 Seminar Series 
of 2005. It has been adapted to fit my objective function and constraints.  

DARP is modelled on a graph with a set of nodes and arcs G = (N, A). The nodes N corresponds to the 
pickup locations P = {1, …, n}: the deposit locations D = {n + 1, …, 2n} based on n requests to be fulfilled 
and the depot. The possible journeys of the set vehicles K of capacity Q are then represented by arcs 
linking those nodes to each other’s. Each arc between nodes has a specified cost 𝑐𝑖𝑗  and a travel time 

𝑡𝑖𝑗. Each node has three components. A desired time 𝑑𝑖, a number of customers to be served 𝑞𝑖 and a 

maximum ride time 𝐿𝑀𝑎𝑥𝑖. The last two are the same for corresponding pickup and deposit nodes. 

In addition to that, there is a constant cost per vehicle used and it is assumed that it takes 1 min to 
load or unload a customer. 
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All of the above give the following mathematical model: 

Parameters: 

• n: requests to be fulfilled composed of a pickup location and a deposit location 

• P = {1, …, n}: pickup locations 

• D = {n + 1, …, 2n}: deposit locations 

• N= P ∪ D ∪ {0, 2n + 1}  : all the nodes with 0 being the departure and 2n+1 the arrival point. 
They both correspond to the same depot. 

• K: Set of vehicles 

• Q: Capacity of a vehicle 

• 𝑞𝑖 : Amount loaded onto a vehicle at node i. For the pickups, this value is positive and for the 
deposits negative 

• 𝐿𝑀𝑎𝑥𝑖 : Maximum time for node i which is the same for i+n 

• 𝑑𝑖  : Desired time for node i 

• 𝑐𝑖𝑗  : Cost of travelling from node i to j 

• 𝑐𝛼 : Cost per vehicle used 

• 𝑡𝑖𝑗  : Travel time between node i and j 

 

Variables:  

• 𝑋𝑖𝑗𝑘  : Binary variable equal to 1 if vehicle k travels directly between location i and j 

• 𝑌𝑘: Binary variable equal to 1 if vehicle k is used 

• 𝐴𝑖𝑘  : Time at which vehicle k arrives at node i  

• 𝑄𝑖𝑘  : The load of vehicle k after visiting node i 

• 𝐿𝑖𝑘 : Ride time of node i in vehicle k 

• 𝐷𝑒𝑙𝑖𝑘 : Delay from desired time for node i in vehicle k 
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Objective function:  

 

 

Minimise:  ∑ ∑ ∑ 𝑋𝑖𝑗𝑘𝑐𝑖𝑗𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁 + 𝑌𝑘𝑐𝛼 +
1

2
∑ ∑ 𝐷𝑒𝑙𝑖𝑘𝑘∈𝐾𝑖∈𝑃 + 2 ∑ ∑ 𝐷𝑒𝑙𝑖𝑘𝑘∈𝐾𝑖∈𝐷   

 

Contraints : 

∑ ∑ 𝑋𝑖𝑗𝐾𝑘∈𝐾𝑗∈𝑁 = 1     ∀ 𝑖 ∈ 𝑃    

∑ 𝑋𝑖𝑗𝑘𝑗∈𝑁 − ∑ 𝑋𝑛+𝑖,𝑗𝑘𝑗∈𝑁 = 0     ∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾  

∑ 𝑋0𝑗𝑘𝑗∈𝑁 − 𝑌𝑘 = 0     ∀𝑘 ∈ 𝐾      

∑ 𝑋𝑖,2𝑛+1,𝑘𝑖∈𝑁 − 𝑌𝑘 = 0     ∀𝑘 ∈ 𝐾  

∑ 𝑋𝑗𝑖𝑘𝑗∈𝑁 − ∑ 𝑋𝑖𝑗𝑘𝑗∈𝑁 = 0     ∀𝑖 ∈ 𝑃 ∪ 𝐷, 𝑘 ∈ 𝐾  

𝐴𝑗𝑘 ≥ 𝐴𝑖𝑘 + 𝑞𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑋𝑖𝑗𝑘)     ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾   

𝐷𝑒𝑙𝑖𝑘 = 𝐴𝑖𝑘 − 𝑑𝑖     ∀𝑖 ∈ 𝑃 ∪ 𝐷, 𝑘 ∈ 𝐾  

𝐿𝑖𝑘 = 𝐴𝑛+𝑖,𝑘 − (𝐴𝑖𝑘 + 𝑞𝑖)     ∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾     

𝐿𝑖𝑘 ≤ 𝐿𝑀𝑎𝑥𝑖     ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾  

𝑄𝑗𝑘 ≥ (𝑄𝑖𝑘 + 𝑞𝑗)𝑋𝑖𝑗𝑘      ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾  

𝑄𝑖𝑘 ≤ 𝑄     ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 

𝑀𝑌𝑘 ≥  ∑ ∑ 𝑋𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁      ∀𝑘 ∈ 𝐾   

𝑋𝑖𝑗𝑘 ∈ {0,1}     ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾  

𝑌𝑘 ∈ {0,1}     ∀𝑘 ∈ 𝐾 

(1) 

 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

 

 

 

The main difference between my formulation and those usually presented in papers is the time 

windows. Usually, time windows are considered as a constraint to be respected. Instead of that, I work 

with relaxed time constraints through desired times. This allowed me to construct an algorithm which 

is less restrictive. However, time windows being a key component of the DARP, I did not drop them 

completely. I have just handled them indirectly through the delays. Several papers allow for the 

violation of time windows through a violation cost. I have done the same but on a broader scale. 

The objective function (1) has 3 components: the distance travelled, the number of vehicles and the 

delays. The first one is a classic of any transporter problem, but the two others are specific to my 

formulation. 

 I chose to add the number of vehicles as a variable to minimise to add a managerial perspective. For 

company that offer services corresponding to DARP, each vehicle has an additional cost. Indeed, a 

driver is needed for each vehicle. Furthermore, it is safer for companies to avoid using the entirety of 

their fleet. This way, they can parry unexpected events such as cars breaking down. The cost 𝑐𝛼 must 

be adapted depending on the situation. A tuning of this cost must be conducted to fit reality. This 
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tuning must be done in comparison with the cost of the distance and the delays. Indeed, the cost must 

set according to the delays and travelled distances a company accepts to pay in order to use one less 

vehicle. 

The delays represent an inconvenience cost for the users. They are particularly important in my 

formulation because it is this cost which controls the respect of the time windows. I have divided this 

cost into two. The first one corresponds to the delays from departures while the ladder to delays from 

arrivals. The impact of the first one is minimised by dividing it by two while the other is amplified by 

multiplying it by 2. The aim of those modifications is to reflect a more realistic attitude toward delays. 

Indeed, customers are more eager to arrive at their appointments in time even though they might 

need to wait longer before departure than the other way around. 

 

There are several groups of constraint depending on their purpose.  

The first group define the structure of the routes. For that, the constraint (2) ensures that a request is 

served exactly once and the (3) that the pickup and delivery of this request is fulfilled by the same 

vehicle. The constrains (4) and (5) respectively guarantee that if a vehicle is used, he will start and finish 

at the depot. Finally, the constraint (6) imposes the flow conservation, which means if a vehicle enters 

a node, he must leave it. 

The next group concern the calculation of the delays. Constraint (7) set the visit time of each node. 

This then use in (8) for calculating the delays by comparing it with the desired times. 

The third group forbid violations of capacity and maximum ride times. For that, (9) and (11) set 

respectively the ride time of each request and the load at each node. Those are then controlled by (10) 

and (12). In literature, the maximum ride time is usually fixed for every request. I chose to have 

different maximum ride time to reflect a more realistic approach to the service quality asked by users. 

Indeed, a user desiring to travel 1 km will accept to spend less extra time travelling than a user 

travelling 50 km. 

The last interesting constraint is the (13) which set 𝑌𝑘= 1 if any request has been assigned to the vehicle 

k.  
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3.2.Algorithm description 

 

As presented in Section 1.2, there is a new trend in literature toward hybrid metaheuristic. They are 

proven to yield better results than classic ones. That is why I chose to implement such algorithm. I 

chose to create an algorithm similar to the one presented by Masmoudi et al. (2016) with some 

differences. The algorithm is a hybrid Bee Algorithm (BA) with Deterministic Annealing (DA). 

For that, I will start by presenting each of the two algorithms separately before describing their hybrid 

version. It is in this description that I will present the differences between the version I designed and 

the one proposed by Masmoudi et al. (2016). This section will, however, remain theoretical. The actual 

structure of my algorithm will be discussed in the next section. Once the different components of my 

algorithm are presented, I will explain the decision process I had to choose this algorithm. 

 

3.2.1. Bee Algorithm 
 

They are several versions of The Bee Algorithm presented in literature. We will focus our description 

on the method developed by Pham et al. (2005) and discussed in more detail in Pham et al. (2015). 

Bee Algorithm is a swarm based evolutionary algorithm inspired by the behaviour of scout bees. Swarm 

based algorithms mimic natural phenomena in order to search for optimal solutions. In opposition of 

other direct search algorithms, swarm algorithms explore a population of solutions rather than to focus 

on only one solution to improve. There are several other swarm algorithms the more famous being the 

Ant Colony Optimisation (ACO) and the Genetic Algorithm (GA). The main difference between ACO and 

BA is that AOC tries to avoid moving too far from their initial solutions while BA does not have such 

limits. We have seen in section 1.1.2 that GA has been used by several authors to solve DARP. However, 

it has been proven that Bees Algorithm tends to yield better result than the GA.  

 

The BA is inspired by the behaviours of bees’ colonies looking for good food sources. A beehive is 

organised in a complex structure where bees are assigned to specific tasks. The task we are focusing 

on for the BA is the scouting for good food sources to dispatch harvesting bees. Due to the fact that 

the harvesting of pollen only occurs during a certain period, it is important that the harvesting be as 

proficient as possible.  

When searching for good locations to harvest pollen, scout bees begin by searching in random areas. 

Locations are evaluated according to several factors such as the sugar percentage of possible flower 

patches. Once they found a good one, they come back to the hive and communicate the quality of the 

location found by a dance called ‘waggle dance’. This dance communicates information such as 

direction, distance and quality of the possible food source. Based on the dances of the initial scouts, 

harvesting bees are dispatched to the possible food sources depending on the fitness of the source. 

The fitness being a combination of the quality compared to the distance of the source. 

However, the work of the scout’s bees is not over yet. The scout’s bee will lead the harvesting bees to 

the areas previously found and then search around this area for possible new food sources. 
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Furthermore, new scout’s bee will be sent to areas that were not explored yet. This process is then 

repeated.  

 

The Bee Algorithm follows the same process. A population of initial solutions are evaluated according 

to their quality. Based on those, an extensive search is conducted in the neighbourhood of the best 

initial solutions. Furthermore, solutions with average qualities are also considered, but fewer efforts 

are put into them. This can be seen as central processing unit2 (CPU) allocation based on the quality of 

the solutions. The allocation is done according to three groups: a group of good possible solutions on 

which a lot of CPU is allowed, a group of decent solutions which receives a bit of CPU and the other 

solutions with poor quality which receive no CPU. This is the theoretical principle, however, in practice, 

adding some randomness in the making of the three groups yields better results. 

After the different searches, a new population is created containing the new solutions found along 

with newly generated ones. The process is then repeated. The search for possible improving solutions 

made during the algorithm is done through local searches in the neighbourhood of the solution. 

 

BA is actually combination of iterative local search and random global search. The first being the search 

in the neighbourhood and the second refers to the use of populations. This allowed easy hybridisation 

as the iterative local search can be done with other metaheuristics. 

 

3.2.2. Deterministic Annealing 
 

The Deterministic Algorithm (DA) or Threshold accepting was first introduced by Dueck and Scheuer 

(1990). It is a variant of the Simulated Annealing which is inspired by the annealing process used in 

metallurgy to obtain good metal quality. In this process, warm metal is cooled before being heated 

again in order to improve its overall quality. Adapted to an optimisation process, it means that a 

solution is worsened in order to find a better one at the end.  

The DA is actually a simplification of the classic Simulated Annealing (SA) which has the advantage to 

be faster while keeping relatively good precision. However, DA does not guarantee to find the global 

optimum. Another advantage of the DA is that it is relatively easy to understand and implement. 

Furthermore, fewer parameters are needed.  

DA is a meta-heuristic based iterative local search. At each iteration, local search operators are applied 

to a solution. Each time, the solution is improved thought the local search, it is accepted as the new 

current solution. Otherwise, it is accepted as long as it does not deteriorate too much the solution. For 

that, an acceptance threshold is defined. However, this threshold will evolve as the iterations go. Each 

time, a worse solution is accepted, the threshold is lowered until only improving solutions are 

accepted. 

 

 
 

2 computational time  
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3.2.3. Hybrid Bee Algorithm with Deterministic Annealing 
 

A hybrid Bee Algorithm with Deterministic Annealing has several advantages. The BA hybridised well 

with DA because the DA can easily replace the iterative local search of the BA. Furthermore, DA has 

the inconvenience to not guarantee global optimum. This is solved through the random global search 

of the BA. Finally, the speed of the algorithm remains reasonable thanks to the fact that DA is quite 

fast. 

As mentioned before, the hybrid BA with DA I have chosen to implement is derived from the one 

proposed by Masmoudi et al. (2016). In this paper, three metaheuristics are presented to solve DARP. 

An Adaptative Large Neighbourhood Search, Hybrid Bee Algorithm with Deterministic Annealing and 

Hybrid Bee Algorithm with Simulated Annealing. Their study shows that the two hybrid algorithms 

outperform the classic Adaptative Large Neighbourhood Search or even simple BA, DA or SA. 

Furthermore, BA with DA works faster the BA with SA while keeping the same precision. 

 

There are several differences between the BA with DA presented by Masmoudi et al. (2016) and the 

one I made. They once again concerned the objective function and the constraints, but also technical 

elements of the algorithm structure.  

Masmoudi et al. (2016) worked on multi-depot multi-trip heterogeneous dial a ride problem while I 

work on single depot single trip homogenous dial a ride problem. This means that I work with only one 

depot with one trip instead of multiple depots with multiple trips due to lunch and coffee break. 

Furthermore, my fleet of vehicles is homogenous instead of heterogenous meaning all my vehicles are 

the same while they deal with vehicles with different accommodations and capacities.  

The next difference is the control of the time windows. Indeed, I chose to tackle this constraint as 

desired time and delays while they kept it as a classic constraint.  

Next, I added the number of vehicles as a variable to minimise. I also specified different maximum ride 

times for each request depending on the distance they wish to travel instead of a constant maximum 

ride time for every user. 

 

Algorithm by Masmoudi et al. (2016) My algorithm 
Objective function 

Multiple trips to multiple depots  Single depot with one trip 

No delay minimisation Minimisation of delays 

No vehicle minimisation Minimisation of vehicle 

Constraints 

Lunch and coffee breaks No breaks 

Multiple type of vehicles One type of vehicle 

Multiple trips per vehicle One trip per vehicle 

Time windows Desired times 

Constant maximum ride times Adapted maximum ride times 

Table 2: Algorithm comparison 
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On a more structural level, I have implemented different local operators than them and my solution 

creation process differs for the one they proposed. I also adapted the parameters and stopping 

criterion while remaining in the same ideas. 

Finally, the last big difference is that I have added several iterations of a large search operator in order 

to improve my solution even more at the end of the classic hybrid BA with DA. 

 

3.2.4. Decision-making 
 

After my literature review, it was clear that hybrid metaheuristics perform better than classical ones. 

I just had to choose which hybrid version I would implement. I initially wanted to create a hybrid 

version of the Genetic Algorithm but after some research I realised that the BA is proven to yield better 

results while keeping the same logic.  

Once I had decided to use a BA, I still needed to choose which other meta-heuristic to hybridise it with. 

The paper of Masmoudi et al. (2016) gave me a good comparison between two algorithms I was already 

considering which are DA and SA. I initially wanted to develop a hybrid with SA but their paper showed 

me that DA was not only faster but also simpler to understand and implement. The speed of the 

algorithm was a decisive factor because my computer is not very performant. That is why the balance 

between computational time and precision was particularly important in my decision-making process. 

Furthermore, DA has fewer parameters than SA which means fewer to tune. 

For all those reasons, the hybrid BA with DA was the perfect compromise as it was fast while having 

the same level of precision of the hybrid BA with DA.  

However, I still wanted to improve the precision. That is why I added the Large Neighbourhood search 

to my algorithm. 
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3.3.Algorithm implementation 

 

In this section, I will describe how I implemented my algorithm. For that, I will start by an overlook of 

the algorithm before describing its components. 

 

3.3.1. Algorithm structure 
 

The structure of the algorithm can be seen in the Algorithm 1 and the flowchart of Fig3. However, 

some explanations are needed. In this explanation, I will use the term current best solution and global 

best solution. The current best solution refers to the best solution in a specific iteration. On the other 

hand, the best global solution refers to the best solution found so far. In addition to that, the notation 

N, be, es will be used several times. Those notation both refer to groups and the sizes of those groups. 

 

Algorithm 1: Pseudo-code of the proposed hybrid Bee Algorithm with Deterministic Annealing 

START 

    Creation of initial Population N 

        REPEAT 

Step 1: Evaluate the quality of each solution of population N and memorise the best current 

one 

         Step 2: Select (be) solutions from N and sort them in ascending order 

         Step 3: Select the best (es) solutions from the (be) solutions 

         Step 4: Apply Deterministic Annealing on each of the (es) solutions 

         Step 5: Apply few iterations of local search operators on the (be-es) solutions 

         Step 6: Evaluate the quality of the new solutions and select the best one 

         IF the current is the better than the best global  

                THEN Replace the global best with the current one 

        END IF 

        Step 7: Insert the (be) new solutions in the population N 

       Step 8: Create (N-be) new solutions 

        UNTIL Stopping criterion reached 

        REPEAT 

         Step 9: Apply Large local search operator on the best solution 

        UNTIL No improvement after 5 consecutive applications  

    OUTPUT Best solution 

STOP 

 

The algorithm starts with a constructive insertion heuristic to create the initial population N. After that 

Step 1 to 8 are repeated until the stopping criterion is reached.  
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The Step 1 evaluates the solution of the population N. At the first iteration, the best solution will be 

memorised as the best global solution. For other iterations, it will only be memorised as the best 

current one. 

A selection is made among the population N. The selected (be)3 solutions from N are then sorted in 

ascending order. Those two processes constitute the Step 2.  

The best (es)4 solutions from (be) solutions are selected in Step 3 and Deterministic Annealing is 

applied to them in Step 4.  

The other (be-es)5 solutions go through a local search for few iterations in Step 5.  

The Step 6 is similar to the Step 1 except on the newly found solutions of (be). 

 Step 7 insert the (be) new solutions in the population N and finally the rest of the population is 

replaced with new solutions in Step 8. 

To finish the algorithm, iterations of large neighbourhood search is applied in Step 9 until there is no 

new improvement for 5 consecutive iterations. The result gives us our best solution. 

The sizes of the groups N, (be), (es) and (be-es) depend on parameters of the same names. 

This algorithm6 will be implemented in Julia Programming Language7 and the tests are performed on 

a laptop Lenovo Y700 with Intel® Core ™ i5-6300HQ CPU @ 2.30 GHz and 8 GB of RAM. The laptop is, 

however, old thus his performances are weakened.  

 

 

 

 

 
 

3 Group of solutions to be explored 
4 Group of solutions to be explored in depth. 
5 Group of solutions to be explored succinctly 
6 The complete code can be found at: 

https://drive.google.com/drive/folders/1yxdy5vMW6WKlGJRBcO4SW4clfQa8ywsb?usp=sharing 
7 https://julialang.org/ 
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Fig 3. Flowchart of the hybrid Bee Algorithm with Deterministic Annealing 
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3.3.2. Components 
 

3.3.2.1. Instances 
 

Due to the versatility of the problem regarding his objective function and his constraints, there are a 

lot of different instances proposed in literature. Papers usually agree on the instances proposed by 

Cordeau and Laporte (2003b) as a basis to build instances adapted to one’s problem formulation. 

Nevertheless, I have decided not to use those and instead chose the one proposed by Chassaing et alt 

(s.d). Their instances followed the structure of the ones proposed by Cordeau and Laporte (2003b) but 

are more realistic. Indeed, it is possible to have more than one customer per request and the distances 

are calculated based on the real distances that a vehicle would have to make rather than on the 

Euclidian distances between the two points. This means that triangular inequality is not respected. 

Those instances only take into account one type of customer. Furthermore, each request has a 

maximum ride time assigned based on the distances he wants to cross rather than a constant 

maximum ride time for every request.  

They also have the following specificities: 

• The points refer to cities in France. 

• The vehicles are believed to travel at a constant speed of 80 km/h. 

• The requests of each instance are dispatched on territory corresponding to a French 

department. This means areas vary between 100 km² and more than 8500 km². 

• Distances are given in metres. 

• Time windows are given in minutes. 

• The n requests are divided into pickup and delivery. 

• A number from 1 to n is attributed to the pickup. 

• The deliveries are given the number corresponding to their pickup +n. 

 

I still had to adapt those instances to my constraints. For that, I have transformed the time windows 

into desired delivery and pickup times by taking the median of the time windows. For example, a node 

with a time window of [480,650] will have a desired time of 5658.  

Finally, the speed was given in kilometres per minute, so a basic conversion was made to transform it 

in metre per minute. In the rest of the algorithm, everything will be handled either in minutes or 

metres. 

The size of the instances can be very different. In order to have a better understanding during the tests, 

I have divided them into 3 subgroups depending on their sizes. Instances with under 50 requests are 

considered to be small, instances with 50 to 75 to be medium and the one with over 70 requests to be 

large. The range for the medium instance seems small, but in practice the majority of the instances are 

medium. 

 

 
 

8 (480 + 650) /2 = 565 
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3.3.2.2. Solution structure 
 

The solution structure is a key element of the algorithm since every other component will be 

constructed to work with this structure. That is why, a simple combination of numbers representing 

the request is not enough. This structure must contain more than that. Key variables must be kept in 

my solution structure and evolve as the solution evolves in order to avoid calculating them again at 

every step they are needed.  

Among the six variables I have presented in section 5.1, I have chosen 3 of them who will be a part of 

my solution structure: 

• The time at which a vehicle arrives at a node 

• The load of the vehicle after visiting a node  

• The delay between desired time and actual time of arrival 

 

The two binary variables are, of course, indirectly represented as they define the journey of a vehicle 

and the allocation of requests to those vehicles. Finally, the ride time of a node will not be a part of 

the solution. This will only be used in the feasibility check of my solution thus will be calculated when 

needed. 

In addition to that, I have decided to keep the desired departure times of each node as this data will 

be used at different steps of the algorithm. 

The actual structure is a vector of vectors of vectors. The first level has as much vector as they are 

vehicles used in the solution. This level represents the solution as an all. The second one has as much 

as there are nodes in a vehicle trip. It represents the sequence a specific vehicle follows. Finally, the 

last level represents each node with the data associated to it. For this level, the data are presented in 

the following order are [Node number, Desired Time, Actual Time, Delay, Number of users inside the 

vehicle]. The desired time, the actual time and the delays are all in minutes. 

This gives us solutions like the one presented in Fig.4.  

[13 360 360 0 3; 14 360 380 20 6; 18 360 378 18 7; 28 390 390 0 8; 42 409 415 6 5; 46 415 443 28 4; 25 

420 480 60 8; 41 456 456 0 5; 53 489 489 0 1; 56 491 491 0 0; 11 570 570 0 2; 39 626 626 0 0; 4 630 

636 6 4; 32 672 672 0 0; 15 810 810 0 1; 43 851 851 0 0; 1 1080 1080 0 4; 29 1103 1103 0 0] 

[23 390 390 5 3; 51 444 444 0 0] 

[9 360 360 7 4; 3 360 421 61 7; 31 411 411 0 4; 37 439 439 0 0; 8 600 600 0 3; 36 663 663 0 0; 10 840 

840 0 2; 27 840 935 95 6; 38 947 947 0 4; 55 985 985 0 0] 

[22 330 330 0 1; 5 360 360 0 2; 7 360 384 24 6; 50 397 398 1 5; 33 416 416 0 4; 35 421 448 27 0; 26 

600 600 0 2; 54 658 658 0 0; 2 660 676 16 1; 30 800 800 0 0; 20 840 842 2 1; 21 870 870 0 2; 48 969 

969 0 1; 49 975 997 22 0] 

[19 330 330 0 4; 17 360 364 4 5; 24 360 399 39 8; 52 420 420 0 5; 47 428 447 19 1; 45 464 470 6 0; 12 

570 570 0 4; 40 619 619 0 0; 6 660 670 10 3; 34 758 758 0 0; 16 870 870 0 4; 44 932 932 0 0] 

Fig 4. Solution example 



 

29 
 

This solution has 5 vehicles within []. Nodes inside a vehicle are separated by ; .If we take a closer look 

at the fifth vehicle, we can see that the vehicle will begin by going to the node 19 at the desired 

time 330 to pick 4 customers. After that he will go to the 17 at 364 with 4 min of delay from desired 

time to pick 1 customer and so on. If we focus on the node 19, we can see that the delivery of this 

node will be the fifth stop as there are 28 requests9. 

A clearer representation of the journey of vehicle 5 can be seen in the Fig. 5 with the numbers over 

the cases being the number of customers entering or leaving the vehicle at this node and the numbers 

under being the time of arrival at a node. 

 

 

Fig. 5: Example solution representation 

 

 

3.3.2.3. Feasibility check 
 

The feasibility check controls the constraints 9 to 12 of my problem formulation. It makes sure that the 

capacity of a vehicle is never passed and that the maximum ride time of each request is respected. 

This feasibility check is done at several points of the algorithm. The first one being, of course, as a 

solution is created and the other points are at each local search, since each local search operator will 

create new solutions.  

However, it will not be the same at every point. Indeed, enforcing the respect to these two constraints 

at every point of the algorithm restrict the diversity of the solutions explored. The solutions created 

are too similar if they have to respect both constraints. This can lead to the algorithm sticking itself 

into local minima. 

That is why a relaxed feasibility check is performed during the hybrid DA with BA and a restrictive on 

the final solution. This relaxed version only force the respect of the vehicle’s capacities and allows for 

violation of maximum ride times. This is designed this way as it is more realistic to let users ride longer 

than planned rather than allowing having more people than places in a vehicle. 

Nonetheless, the maximum ride times are not removed completely from the algorithm. Instead, each 

violation is penalised by a huge fee. This way, several solutions with cost violations are created during 

the different stages of the algorithm. However, the final solution never has any violations.  

 

 
 

9 19 + 28 = 47 



 

30 
 

3.3.2.4. Calculation cost 
 

The cost calculation will, of course, be as describe in the objective function presented in 2.1. However, 

two points need to be explored in detail.  

The first one concerns the cost per vehicle used. A possibility would have been to have hierarchical 

objective function. Which would have meant that the algorithm would prioritise the minimisation of 

an element of the objective function before looking to minimise the other ones. In my case, I would 

have looked to minimise the distances then the delays and finally the number of vehicles. 

Instead of doing that, I chose to convert each element of my objective function into the same unit: an 

amount of time. This allows me to have a single cost to minimise without having to hierarchies them. 

For that, the distances are converted into travel times thanks to the speed of the vehicle. The delays 

already are represented by amounts of time and finally, the cost per vehicle is a constant amount of 

time. This constant amount of time would need a lot of tuning in order to represent the actual cost of 

a vehicle to a company. However, this will not be explored in more detail here as it is not the aim of 

this thesis. In this algorithm, it will be equal to twice the travel time between the depot and the farthest 

node. 

The second point concern the maximum ride times. As we have seen in the previous section, the 

feasibility check allows the violation of this constraint at the cost of a huge fee for intermediary 

solutions. This fee is similar to the cost per vehicle with the exception that it is also multiplied by the 

number of vehicles available. This way maximum ride time violation will only occur if no empty vehicles 

are available.  

 

3.3.2.5. Solution creation 
 

To create my solutions, I used the insertion heuristic presented by Jaw (1984) and further discussed in 

Jaw et al. (1986) with some modifications. The idea behind it is to insert requests one by one inside 

the solution at the best feasible places.  

Jaw (1984) presents this insertion heuristic on two DARP. The first has relaxed time constraints with 

desired times and the second stick time constraints with time windows. The first case corresponding 

to my problem formulation, I will focus on it. 

I still made two important changes from the version of Jaw (1984). The first one concerns the order in 

which requests are inserted into the solutions. Jaw develops several techniques such as sorting in order 

to improve the final solution of his heuristic. However, the quality of the solution is not really the aim 

of this process. I want to have a diversified population of solutions with decent quality not optimal 

quality. That is why, the requests are inserted in random order into my solutions. This way, I obtain a 

new solution each time the process is used. 

The second change concern the actual insertion of a request inside a vehicle. Jaw explores each feasible 

way a request can be inserted inside a vehicle and then select the one with the lowest cost. Instead of 

doing that, each time I insert a request into a vehicle, she is put in the first place. Following that, the 

nodes of the vehicle are sorted according to their desired time. With this method, the sequence of a 

vehicle might be suboptimal. That is why a local search will be developed later to rearrange the 

sequence of a vehicle in order to find a better one. 
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This second change was made in order to accelerate the solution creation process which will occur at 

each iteration of my algorithm. 

Each time a population is created, they will be evaluated according to their cost. 

 

3.3.2.6. Selection phase 
 

The selection phase is done to form the groups of solutions (be) and (es).  

From the initial population, a predefined number of solutions are selected to compose the group (be). 

Those selected solutions are then separated into two groups based on their qualities. For that, the 

group (be) is sorted in ascending order. The first group correspond to the (es) solutions. Those solutions 

will be explored in depth in the following section. On the other hand, the second group of (be-es) 

solutions will be explored succinctly. 

It could be reasonable to believe that the tournament process should always select the best solutions 

of the current population. However, that would not lead to the best result because it limits the 

diversification of the algorithm. 

The selection process is a key element of all the metaheuristics based on population. For that reason, 

several techniques exist. Those techniques can be divided into two types: proportionate-based and 

ordinal-based. The first select solution based on calculated probabilities while the latter select based 

on an order. An extensive list of techniques has been presented by Miller and Goldberg (1995).  

Two techniques have been explored, one of each type. In both the quality of a solution refer to his 

cost. 

The first technique is proportionate-based. The principle is that each solution has a probability to be 

selected according to the relative difference between the worst solution of the population and them. 

What this mean is that the proportion of a solution is higher if his relative quality is better. 

The formula used is the following:  

𝑃𝑟𝑜𝑏𝑖 =  
𝐶𝑜𝑠𝑡𝑀𝐴𝑋−𝐶𝑜𝑠𝑡𝑖

∑ 𝐶𝑜𝑠𝑡𝑀𝐴𝑋−𝐶𝑜𝑠𝑡𝑗)𝑗∈𝑁(
     ∀𝑖 ∈ 𝑁     

𝐶𝑜𝑠𝑡𝑀𝐴𝑋 being the cost of the worst solution of the population. 

This selection is repeated (be) times. 

 

The second technique is called tournament selection. It was proposed by Miller and Goldberg (1995). 

It has been tested for several transportation problems by Freitas (2013) with good results.  

This technique works by randomly selecting a subgroup of the population of size (s). Then the solution 

of the subgroup with the best quality is selected. The process is then repeated (be) times. 

After some experimentation, I have realised that the first method led to the same solution being 

selected over and over. This led to a fast convergence of my population. That is why, the second 

technique is the one that I have used in this algorithm. 
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It is theoretically possible that the current best solution of the algorithm is lost during this phase. This 

is due to the random factor of this selection process. This is attended as this current best might be a 

local minimum. That is why exploring other solutions might yield better result than exploring this global 

best solution at each iteration. 

 

3.3.2.7. Improvement phase  
 

The improvement phase is where the algorithm search for better solutions. While it is possible to find 

good new solutions during the solution creation process, the chances are low. That is why this phase 

is the key of this algorithm. 

This section will include both the Deterministic algorithm and the local search. They are applied in 

parallel on the (es) solutions and on the (be-es). I will start by the DA as it is the more important one. 

These two techniques will be followed by a check for a new global best solution. 

 

a) Deterministic Annealing on the (be) Solutions 
 

Where classical Bee Algorithm would only make a local search on this level, I have chosen to implement 

a Deterministic Annealing as it worked well as an improvement metaheuristic. This DA will be applied 

on each of the (es) solutions.  

The main component of the DA is the threshold 𝑇, which will determine if a solution found after the 

application of a local operator will be accepted or not. It will be accepted if the solution is feasible and 

the worsening of the solution after the application of the local operator does not exceed the current 

threshold. Of course, if a solution is improved, she will be accepted directly. Each time an iteration is 

concluded without improvement of the best solution, the threshold 𝑇 is reduced by predefined 

amount ∆𝑇. 𝑇 decrease until no worse solutions are accepted.  

Furthermore, if the threshold become negative, it is reset to a certain value.  

 

This DA will be based on the one presented by Braekers et al. (2014). The main difference will be the 

stopping criterion I used. Braekers et al. (2014) stopped their algorithm after 25000 iterations. 

However, this DA being applied to several solutions at each iteration of my algorithm this number must 

be tuned down. Masmoudi et al. (2016) tune this number iteration down to 5000. This remains too 

high for my algorithm as each iteration would go on for at least 15 minutes.  

Several numbers of iterations were tested but finding a number of iterations which keep acceptable 

time for each instance is not an easy task. Indeed, large instances may take 15 minutes to perform an 

iteration while a small instance takes 15 seconds.  

For that reason, I completely change the stopping criterion. Instead of it being a defined number of 

iterations, it is a defined amount of time. As long as the amount of time defined is not passed, the DA 

will start a new loop. This way, I maintain an acceptable run time for every instance. This, however, led 

to a drop in precision as the size of the instance increase. The stopping time chosen is 15 seconds. 
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A pseudo-code of my DA can be seen in Algorithm 2. His functioning will, however, be discussed here.  

Before starting, the threshold 𝑇 is set to his maximum 𝑇𝑚𝑎𝑥, 𝑖𝑖𝑚𝑝 to 0, 𝑋𝐵𝑒𝑠𝑡  and  𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to be the 

initial solution 𝑋𝑖𝑛𝑖. The following steps are going to be repeated for a predefined amount of time. At 

each iteration, 1 is added 𝑖𝑖𝑚𝑝. This 𝑖𝑖𝑚𝑝 will monitor the number of iterations since an improvement 

of the global solution is found. Each time a better global solution is found, it is set back to 0.  

At this point, each local operator is applied to 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in random order. Each time an operator is 

applied, we checked if the new solution 𝑋𝑚𝑜𝑑 is accepted. This requires two things. First, the solution 

must be feasible. Second, the solution must either be an improvement of the  𝑋𝐵𝑒𝑠𝑡   at which point 

𝑋𝑚𝑜𝑑  become the new 𝑋𝐵𝑒𝑠𝑡   and 𝑖𝑖𝑚𝑝  set to 0 or be accepted through the threshold T.  

Once each operator is applied, the second part of the algorithm begins. This part will have two 

purposes. Adapt the threshold and avoid that the algorithm goes too far from the 𝑋𝐵𝑒𝑠𝑡  without any 

success. Each time an iteration is done without any improvement of 𝑋𝐵𝑒𝑠𝑡, ∆𝑇  is subtract from  𝑇. 

After a certain number of iterations, T will become negative. When it arrives, it is reset to proportion 

of 𝑇𝑚𝑎𝑥 calculate by multiplying 𝑇𝑚𝑎𝑥 by a random number between 0 and 1. Each time this is done, 

we check the number of iterations since an improvement has been found thanks to 𝑖𝑖𝑚𝑝. If the number 

of iterations is bigger than the predefined number 𝑛𝑖𝑚𝑝, we reset 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the value of the best 

solution found so far 𝑋𝐵𝑒𝑠𝑡. 

 

Algorithm 2: Pseudo-code of the proposed Deterministic Annealing 

START 

    Initialise Threshold 𝑇 = 𝑇𝑚𝑎𝑥, 𝑖𝑖𝑚𝑝 = 0 and 𝑋𝐵𝑒𝑠𝑡 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑋𝑖𝑛𝑖 

        REPEAT 1 

 Add 1 to 𝑖𝑖𝑚𝑝 

 REPEAT 2 for each operator 

  Apply a local search operator L on 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to obtain = 𝑋𝑚𝑜𝑑 

  IF 1  𝑋𝑚𝑜𝑑 is accepted  

   THEN  𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑋𝑚𝑜𝑑  

IF 2 the cost of 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡<cost of 𝑋𝐵𝑒𝑠𝑡  

    THEN  𝑋𝐵𝑒𝑠𝑡 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and  𝑖𝑖𝑚𝑝 = 0 

   END IF 2 

  END IF 1 

 END REPEAT 2 

 IF 3  𝑖𝑖𝑚𝑝>0 

  THEN subtract ∆𝑇  from 𝑇   

  IF 4 𝑇  <0  

   THEN Set 𝑇 = 𝑇𝑚𝑎𝑥  × 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1 

   IF 5 𝑖𝑖𝑚𝑝> 𝑛𝑖𝑚𝑝 

    THEN 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑋𝐵𝑒𝑠𝑡 and  𝑖𝑖𝑚𝑝 = 0 

   END IF 5 

  END IF 4 

 END IF 3 

UNTIL 1 The maximum amount of time is passed 

    OUTPUT 𝑋𝐵𝑒𝑠𝑡  

STOP 
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This process is time consuming but yield good results. That is why it is only applied to the (es) solutions 

and not on the entirety of the population (be). 

 

b) Local search on the (be-es) solutions 
 

The solutions (be-es) having worst qualities than the (es) solutions, the local search applied on them 

will be more succinct. To each of them, four local search operators are applied in random order for a 

predefined number of times 𝑛𝑚𝑎𝑥. Each time a local search operator is applied to a current solution, 

the newly constructed solution is kept only if it is feasible and its cost is better than the current 

solution.  

This method is simpler and solutions are more likely to be stuck into local minima. However, applying 

this local search improve the global performance of the algorithm since global best solutions can be 

found in this process.  

 

c) Check for new global best 
 

Now that the selected solutions (be) have been improved. I can check if the improvement phase has 

found a new global best solution. For that, a comparison is made between the current best solution of 

(be) and the global best.  

 

3.3.2.8. Population adaptation 
 

Once the improvement phase is over, i need to diversify our population in order to avoid a 

convergence. For that, a new population must be created.  

To create this population, i first keep all the (be) solutions that i have improved during the 

improvement phase. To fill the rest of the population there are two possibilities. Either I keep the other 

solutions of the initial population and modify them or create new solutions completely. I have chosen 

the latter.  

 

3.3.2.9. Stopping criterion and large operator 
 

The processes describe the three previous sections are then repeated until our stopping criterion is 

reached. The stopping criterion I chose is to monitor the number of iterations since my hybrid BA with 

DA has found a new global best solution. If no better solution has been found for five consecutive 

iterations, the BA is stopped. 

On this global best, I will conduct an additional large neighbourhood search. For that, I use a specific 

large search operator different from the ones used during the BA.  

This large neighbourhood search is conducted as long as better solutions are found. The solution 

obtained is the final solution. 
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3.3.2.10. Parameters 
 

One of the drawbacks of the utilisation of a hybrid algorithm is that it increases considerably the 

number of parameters to tune. Indeed, each meta-heuristic has several parameters that need to be 

adapted to each problem but also to the set of instances used. In addition to that, I also have an 

additional parameter (s) which comes from the tournament selection. The parameters I chose to apply 

were based on recommendations of literature mixed with some intuitions. I will present them in  the 

following order: the parameters of the BA, the parameter from tournament selection and finally the 

parameters of the DA. The parameters of the BA having direct influences over the others, they will be 

presented first. 

 

a) Bee algorithm 
 

There are four parameters for the BA. They determine the size of the different groups used during the 

algorithm. In order to set them, I used the computational result of the parameters setting of the 

algorithm of Masmoudi et al. (2016) (Appendix II). 

The first one is the size of population N, the second the size of the test population (be) and the last the 

size of the group for deep investigation (es). Their results show that they obtain a good compromise 

between precision and computation time by setting N = 20, be = 15 and es = 5. However, in order to 

save computation time, I chose to set them to N = 10, be = 5 and es = 3. Indeed, with those parameters, 

the computation time drops significantly without degrading to much the precision. They need 2/3 of 

the time for a slight drop in precision. 

A fifth parameter can be considered, the number of iterations of local search done on the (be-es) 

solution. For this one, I used the same as Masmoudi et al. (2016) which is 10. 

 

b) Tournament selection parameter 
 

The parameter (s) of the tournament selection is the parameter that decides how many solutions are 

taken to form a subgroup from which the best solution is selected to be a part of (be). The bigger this 

number is, the higher chance there is that the same solutions are selected more than once. This 

parameter directly depends on the size of the population N decided above.  

Tests have been conducted with the value 2,3,4 and 5. During these tests, I monitored the evolution 

of the population and realised that the value 3 allowed for a good level of diversification without losing 

too many good solutions. 

 

c) Deterministic Annealing parameters 
 

DA has, by far, the hardest parameters to set. Indeed, the different parameters directly interact and 

the impact of the modification of one of them has consequences to all the others. Furthermore, the 

stopping criterion directly impacts the setting of the parameters. In order to set them, I took elements 



 

36 
 

from Masmoudi et al. (2016) and Braekers et al. (2014). However, the stopping criterion of both their 

algorithms being considerably bigger than mine. That is why I had to tune them down following my 

intuition. 

The three parameters to set are the maximum threshold value 𝑇𝑚𝑎𝑥 , the threshold reduction ∆𝑇 and 

finally the restart parameter 𝑛𝑖𝑚𝑝. The first two are directly related as ∆𝑇 can be seen as the 

proportion of 𝑇𝑚𝑎𝑥 to withdraw each time no improvement has been found. In addition to that, the 

last two are related to the number of iterations the algorithm performs.  

The threshold must be reduced fast enough that at several iterations, only improving solutions are 

accepted but not too fast that not enough worst solutions are accepted. The cycle of acceptance and 

restriction of the threshold must happen a correct amount of time during the number of iterations the 

algorithm performs. Furthermore, as 𝑛𝑖𝑚𝑝 decides the number of iterations before resetting the 

solution to the best found so far, it must also be set according to the number of iterations. This reset 

must happen but not too often. 

 

The problem is that, I have chosen to use an amount of time as a stopping criterion. Because of that, I 

cannot directly influence the number of iterations. That is why in order to set the different parameters 

I monitored the number of iterations that could be performed in my specified amount of time. As one 

can suppose, this number varies a lot depending on the size of the instances. I still needed to find a 

good compromise that would be decent for every instance. After some testing over several instances, 

I decided to assume an average number of iterations of 150. 

For 𝑇𝑚𝑎𝑥, I used a technique presented by Braekers et al. (2014). This technique is to use a relative 

𝑇𝑚𝑎𝑥, which is defined as the average distance between two locations multiplied by a new parameter 

𝑡𝑚𝑎𝑥 to be set. This 𝑡𝑚𝑎𝑥 is set to 1.2 as recommended by Braekers et al. (2014). 

For 𝑛𝑖𝑚𝑝I used the exact same  𝑛𝑖𝑚𝑝 as Masmoudi et al. (2016). It is equal to five times the number of 

vehicles currently used in the solution. 

 It is for ∆𝑇 that I had the most problem setting. Braekers et al. (2014) used 300 and Masmoudi et al. 

(2016) a proportion of 𝑇𝑚𝑎𝑥 which is 1/2500 of 𝑇𝑚𝑎𝑥. I followed the second method as the first seemed 

to be dependent on the instances and problem formulation. I still had to adapt it to my algorithm as 

this proportion was appropriate for them because Masmoudi et al. (2016) had a number of iterations 

of 5000. Their proportion being one over half their number of iterations, I decided to take ∆𝑇= 1/75. 

 

3.3.2.11. Local operators 
 

The local search operators might be the most important part of my algorithm. They are used in three 

different points: in the Deterministic Annealing, in the local search and in the large neighbourhood 

search. Furthermore, they are the parts which takes the most time to develop as they modify solutions 

directly.  

Seven operators have been implemented and tested. However, only five of them are kept in the 

algorithm. Furthermore, three of them are similar. For that reason, I will begin by presenting those 

three. After that, I will present the two other used ones and finish with the two I decided to drop.  
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For each of them, a pseudo-code will be given and a feasibility check is performed on each new 

solution. 

 

a) Relocate 
 

This operator is the basis from which the next three are inspired. The idea is to search for which request 

will benefit by being relocated into a different place of the solution. For every request, we remove 

them from the solution and replace them as the best feasible place. We then memorise this new 

solution. Once this is done for every request, we look among all the newly generated solutions which 

is the best, which will be the output of the operator.  

Algorithm 3: Pseudo-code of operator relocate 

START 

REPEAT 1 for each request 

  Remove the request for the solution 

  REPEAT 2 for each vehicle 

   Insert the request at best place inside the vehicle 

  END REPEAT 2 

 END REPEAT 1 

 Check the costs of the solutions created above and keep the best 

    OUTPUT Best relocation 

STOP 

 

Despite working quite well, this operator has a huge drawback. He is really time consuming. He is too 

wide to be used inside the DA. Another version of this operator that keeps the same idea but works 

differently have been tested. This version memorises only the best relocation found so far to avoid the 

final check. However, this change does not improve the speed of the algorithm enough. 

For that reason, two similar operators have been designed to replace him. For each of those derived 

operators, a component will be removed from the search. 

On the other hand, this operator will be used in the large neighbourhood search. 

 

b) Relocate 1 to 1 
 

This is the first operator created to replace the initial relocate. The component that has been removed 

is the selection of the vehicle. Indeed, it focuses on 2 vehicles rather than all of them. Instead of looking 

each request, the operator select randomly 2 vehicles. It moved a request from the first vehicle to the 

other. The request to be moved is the one for which the relocation has the best impact on the cost of 

the solution. 
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Algorithm 4: Pseudo-code of operators relocate 1 to 1 

START 

Select 2 vehicles randomly 

 REPEAT for each request of the first vehicle 

  Move the request to the best possible place of the second vehicle 

 END REPEAT 

 Check the costs of the solutions created above and keep the best 

    OUTPUT Best relocation 

STOP 

 

This operator is currently used both in the DA and the local search on the (be-es) solutions. 

 

c) Relocate 2 to any 
 

This is the second operator derived from the initial relocate. This one focus on 2 requests rather than 

all of them. For that, 2 requests are randomly selected. They are then removed from the solution and 

replace at the best possible place in each vehicle. This, of course, excluding the vehicle they were 

initially. The relocation with the best impact over the global solution is kept. 

 

Algorithm 5: Pseudo-code of operators relocate 2 to any 

START 

Select 2 requests randomly 

 REPEAT 1 for each of the two requests 

  Remove it from the solutions. 

  REPEAT 2 for each vehicle 

   Insert the request at best place inside the vehicle  

END REPEAT 2 

 END REPEAT 1 

 Check the costs of the solutions created above and keep the best 

    OUTPUT Best relocation 

STOP 

 

This operator is currently used both in the DA and the local search on the (be-es) solutions. 

 

d) Swap 
 

The idea of this operator is to exchange two requests from two different vehicles. In order to do that, 

two vehicles are selected randomly. Then for each request of the first vehicle, we search for the 

request from the second vehicle with the most similar desired times and exchange the two. The 

exchange with the best impact over the global solution is kept. 
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Algorithm 6: Pseudo-code of operator swap 

START 

Select 2 vehicles randomly 

 REPEAT for each request of the first vehicle 

Check all the requests from the second vehicle to see which one has the more similar 

desired times 

  Exchange those 2 requests 

 END REPEAT  

 Check the cost of the solutions created above and keep the best 

    OUTPUT Best swap 

STOP 

 

This operator is currently used both in the DA and the local search on the (be-es) solutions. 

 

e) Cut and reform 
 

This operator is the most complex. What it does is cut the sequences of two vehicles. The beginning 

sequence of the first vehicle is then reattached to the end sequence of the second vehicle and vice 

versa. The cuts cannot be done at any places or the pickup and delivery of a request might find 

themselves into separate vehicles. This would not make any sense. That is why cut can only be made 

at moments when the vehicle is completely empty. 

In order to do that, a vehicle is selected randomly. Each possible cut in the sequence of the vehicle is 

identified by looking the evolving capacity of the nodes. If a node has an evolving capacity of 0, a cut 

is possible as it means the vehicle is empty until he takes new users. Once this is done, we have a list 

of possible cuts for our vehicle. The next step is looking for cuts in the other vehicles. Each vehicle is 

considered. Each one is scanned for possible cuts. The local operator will now take each vehicle one 

by one. He searches between the cuts of the initial vehicle and those of other vehicles to find pairs of 

cuts with the highest resemblance. The resemblance is based on the actual time the node is processed. 

Those pairs of cuts will be used to form the new solution.  

For example, if a solution has 6 vehicles, the operator finds 5 pairs.  

The sequences of the two vehicles are cut according to the pair finds above. Then, the beginning 

sequence of the first vehicle is attached to the ending sequences of the second vehicle. Finally, he does 

again with the two remaining parts.  

The operator keeps the solution which has the best impact on the cost. 
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Algorithm 7: Pseudo-code of operator cut and reform 

START 

Select 1 vehicle randomly 

Search for possible cuts 

 REPEAT 1 for each other vehicle 

  Check for possible cuts 

  Check the pair of cut with highest similarity actual time 

  Cut the sequences of the two vehicles at the cut find above 

  Reform the sequences after switching the two ending sequences  

 END REPEAT 1 

 Check the cost of each of the solution created above and keep the best 

    OUTPUT Best Cut and reform 

STOP 

 

A schema of an example with two vehicles each having three requests can be seen in Fig 6. 

 

Fig 6: Example cut and reform 
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This operator is the last one currently used in my algorithm. 

Two other local search operators have been designed and drop due to their performance. I will now 

present them and explain the reasons why they are not included in the algorithm. 

 

f) Swap intra vehicle 
 

This operator was created in order to explore new sequences within a vehicle. This exploration was 

needed because, during my solution creation process, the nodes are sorted according to their desired 

times. However, depending on the distances and the maximum ride times, it might cost less to follow 

another order than simply a chronological one.  

In order to do that, a vehicle is selected randomly. For each node of this vehicle, the operator checks 

if the neighbour node is not the other part of the request10. This check is necessary to avoid having a 

delivery after a pickup. If it is not the case, a swap of the two nodes is done. The swap which has the 

better impact on the global cost of the solution is kept. 

Algorithm 8: Pseudo-code of operator swap intra vehicles 

START 

Select 1 vehicle randomly 

 REPEAT 1 for each node 

  Verify if it is feasible to swap this node with either of his neighbour 

   REPEAT 2 for each feasible neighbour 

   Swap the two nodes. 

  END REPEAT 2 

 END REPEAT 1 

 Check the costs of the solutions created above and keep the best 

    OUTPUT Best new sequence 

STOP 

 

Even if theoretically, this local operator seemed indispensable in order to tackle the sorting done is the 

solution creation process, it turned out to be useless. Over several tests done on various instances of 

different sizes, ameliorations were hardly ever found after the utilisation of this local operator. His 

performance was disappointing.  

That is why I chose to drop it from the algorithm. It only added computational time without improving 

the performance of the algorithm. 

 

g) Remove 
 

This last operator goal is to remove a vehicle completely from a solution. Due to the fact that the 

number of vehicles is a constraint to minimise, it seems reasonable to think that reducing the number 

of vehicles might improve the overall cost of the solution. 

 
 

10 If the node is a pickup, the neighbour can’t be his deposit and vice versa 
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Each vehicle is considered to be removed. This implies that this local operator explores as many new 

solutions as there are vehicles currently used in the solution. To remove a vehicle, all of the requests 

of the vehicle are stored in a waiting list. An insertion heuristic is then applied to those requests. The 

insertion heuristic is the same as the one used in the creation process. An insertion is obviously 

considered only to vehicles which are already used since the aim is to reduce the number of vehicles. 

In opposition to the creation process, the order in which the requests are inserted in the other vehicle 

is not random. Instead, requests are initially ordered by the desired pickup times. Once this is done 

the solution with the best cost is kept.  

Algorithm 9: Pseudo-code of operators remove 

START 

 REPEAT 1 for each vehicle 

Remove all the requests from the vehicle in sort them in chronological order based on 

their desired pickup time in a waiting list 

   REPEAT 2 for each request in the waiting list 

   Insert the request at the best feasible place inside the other vehicles 

  END REPEAT 2 

 END REPEAT 1 

 Check the costs of the solutions created above and keep the best 

    OUTPUT Best new solution 

STOP 

 

This operator was not kept because he is too situational. The solutions that would see their cost 

decrease thanks to this operator are very rare. Indeed, due to the cost of each additional vehicle, the 

solution creation process often proposed solution with the minimum amount of vehicle. Furthermore, 

the operators b and c can reduce the number of vehicles. In addition to that, reducing the number of 

vehicles will only worsen solutions most of the time it is used during the Deterministic Annealing. 

For those reasons, I chose not to use this operator in my algorithm. However, I believe that this 

algorithm should not be giving up on completely. From a pure managerial point of view, it has a lot of 

value. For example, a company could consider always keeping a vehicle unused in order to tackle 

unpredicted events as long as the cost not using this vehicle does not exceed a certain limit. Another 

possibility is that they aim to use one less vehicle as long as it does not violate any maximum ride time 

duration to fulfil each request without this vehicle.  

Depending on the case, this operator could be added to the algorithm under predefined conditions. 

For example, if a solution does not have a spare vehicle the operator is used and the new solution is 

evaluated to see if keeping this spare vehicle is worth in comparison with the cost difference. 
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4. Results and improvements 

 

This section will be divided into three. In the first one, I will present the computational results obtain 

with the algorithm as presented it the methodology. Those results will then be used to see the 

relevancy of possible improvements that I will develop in the second section. Finally, I will present the 

results of a final version of the algorithm containing the improvements I deemed complete. 

The complete results of the various tests performed are available in the Appendix. IV 

 

4.1.Initial results 

 

The results presented here will be the basis to evaluate the possible improvements that will be 

discussed in the following section.  

Those results correspond to the application of my algorithm on five different instances11. Each instance 

is tested five times to minimise the random factor of the algorithm. Indeed, the best solution can be 

found as soon as the population is created, which could lead to believe the algorithm has performed 

perfectly in a record among of time. The opposite is also possible. A test could take very long because 

improving solutions are found each fifth iteration of the algorithm. In those cases, four full iterations 

of the algorithm are performed for nothing. That leads to a huge time computation for no direct result. 

In order to avoid the random factor completely, each instance should be tested an enormous amount 

of time. This is, however, not possible if I want to test several improvements as each test takes times. 

Among those instances, two are considered small (2812 and 4613 requests), two mediums (5314 and 5615 

requests) and one large (9016 requests). The number of instances is purposefully quite low. Once again 

this is done to allow testing more improvements. Indeed, each improvement must be tested several 

times on several instances.  

In order to simplify the comprehension of the results, the instances will be referred by their sizes such 

as I28 for the instance with 28 requests. Those instances were chosen among all the one proposed by 

Chassaing et al. (s.d) for no specific reason other than their sizes. 

Results will be presented into two sections. The first will focus on the balance between the quality of 

the solution, and the computational time needed to find them. This section will be used to evaluate 

possible improvement to the performance of the algorithm. Those results will be presented through 

the best solutions found (Best), the average solution found (Avg), the average deviation between the 

 
 

11 The modified instances used can be found at 
https://drive.google.com/drive/folders/1wx_AEqRCrkUJOiPrXUOpoJ27avGGXNbZ?usp=sharing 
12 Instance RL_d55 
13 Instance RL_d01 
14 Instance RL_d96 
15 Instance RL_d30 
16 Instance RL_d02 
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first two (Dev) in percent and finally the CPU presented in minutes. The average deviation allows 

monitoring the random factor of the algorithm. The smaller this deviation is, the more consistent the 

algorithm is. 

The second will focus on the distribution of the total cost among his different components. The 

components being the cost of the distances, the cost of the number of vehicles used and finally the 

cost of the delays. This section will be used to see the impact of the addition of new constraints to the 

distribution between those three costs. For that, I will present the average percentage of each cost. 

The actual cost value will not be presented in this part as they are not interesting to see the impact of 

new constraints. Indeed, it is reasonable to assume that adding constraints will modify the global cost, 

but it is not what we are interested in. Indeed, adding constraints is done in order to correspond more 

to reality. On the other hand, the impact of a constraint on the cost distribution is interesting as it 

shows how getting closer to reality impact the DARP. In addition to that, I will monitor the utilisation 

of the fleet of vehicles. 

Finally, I will monitor the number of times the large search operator is used successfully at the end of 

the hybrid BA with DA. This is a good indicator of the overall precision of the algorithm. Indeed, if the 

LNS find a better answer, it is an answer that the hybrid could have found. This reasoning, of course, 

has his limits as the fact that the LNS find a solution also depend on randomness. A really bad solution 

could have no better one in his neighbourhood meaning he is a local minimum. On the other hand, a 

really good solution could have one simply due to the fact that the operator used here is different from 

the other. Those cases are, however, less likely. That is why it remains a good indicator of the overall 

precision. 

 

4.1.1. Performance of the algorithm  
 

 

 Best Avg Dev (in %) CPU (In min) 

I28 3037 3301.2 8 5.92 

I46 6709 6945.2 3.4 9.47 

I53 7404 7838.4 5.54 10.39 

I56 5545 6170.2 10.13 10.67 

I90 10273 10852.6 5.34 19.19 

Table 3: Initial algorithm’s performance 

 

The deviations are quite high, and the best solutions are never found more than once. This is due to 

the fact that I have the number of iterations of the Deterministic Algorithm allowed is low. My 

algorithm only does around 150 iterations of the DA each time it is used. If this algorithm was to be 

used in real situations, the stopping criterion must be adapted. However, for the purpose of this thesis, 

this stopping criterion remains interesting as it allows testing a lot of different scenarios, constraints 

or parameters. 
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4.1.2. Cost distribution 
 

 

 Cost of 
distances 

Cost of delays 
Cost of vehicle 

utilisation 

I28 59% 12% 29% 

I46 60% 13% 27% 

I53 58% 11% 31% 

I56 59% 12% 29% 

I90 57% 11% 32% 

Table 4: Initial algorithm costs’ distribution 

 

The distribution between the three costs is influenced by a variety of factors such as the area of service, 

the fleet available, the cost attributed per vehicle and so on. It is, however, interesting to see that the 

cost distributions are similar from instances to instances. 

 

 
Fleet of 
vehicles 

Number of 
vehicles used 

in my 
algorithm 

Number of 
vehicles used 
by Chassaing 

et al. (s.d) 

I28 5 5 4 

I46 7 6 7 

I53 11 8 10 

I56 8 8 8 

I90 13 12 13 

Table 5: Utilisation of vehicles in the best solution for algorithm initial 

Except for the smallest instance, my algorithm tends to use fewer vehicles than Chassaing et al. (s.d). 

Unfortunately, the objective function, constraints and method they used to find those results are not 

specified. However, hypotheses can be made to explain those differences. For example, it is possible 

that the number of vehicles used is not a value to minimise in their formulation. Another justification 

could be that they minimise the number of vehicles but the cost per vehicle they used in smaller than 

mine. 

4.1.3. Performance of the LNS 
 

Improvement was found using the large search operator in 68% of the tests. As the size of the instance 

rise, this number of times the LNS is used is higher. This is due to the fact that the LNS find solutions 

more frequently if the solution is not already precise. The algorithm cannot explore as much as it 

should during the DA for the large instance. This is due to the fact that they take longer to do an 

iteration but have the same amount of time as the other instance. This is the drawback of having an 

amount of time for stopping criterion instead of a number of iterations. However, this choice was made 

in order to save time which it does. 
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4.2.Improvements 

 

An algorithm is never completely finished. There is always a possibility to improve it. For that, there 

are two types of improvements. 

The first are improvements to the performance of the heuristic. In order to do that, it is not enough to 

improve only the precision or the computational time of the algorithm alone if it deteriorates the 

other. Those two elements must be considered together. A heuristic can find better solutions given 

more time but it is not the direct purpose of the heuristic. It should find good solutions in acceptable 

amount of time. That is why heuristic are evaluated according to their balance between precision and 

computational time. An improvement is considered beneficial if it improves this balance. 

The second type is the realistic aspect of the algorithm. DARP are modelled in order to solver real life 

situations. However, life is unpredictable. Unexpected events are doomed to happen. The job of the 

algorithm is to give a good solution to guide a decision maker but it cannot predict the future. It is, 

however, possible to take into account real live constraints in order to reduce the effect of unexpected 

events. Another balance must be taken into account here. It is always possible to add real life 

constraints to the problem. However, each additional constraint risks to augments the computational 

time needed to solve the algorithm. At the end, the algorithm remains a way of solving a modelling of 

reality which could never be perfect. That is why one must decide if it is worth trying to predict 

unexpected events at the cost of computational time. 

 

Improvement of the first kind includes improving the structure, the local operators, the parameters 

and so on. Those can be easily tested through the balance between time and computational cost. In 

this section, two improvements of this type will be tested: improving the parameters and the LNS. 

On the other hand, improvements of the second type stay at the appreciation of the situation in which 

they are implemented. One must decide if he deemed this improvement worth or not. I will explore 

two possible improvements of this kind: adding a maximum ride time for the vehicles and having a 

time dependent speed. 

 

4.2.1. Parameters tuning 
 

One of the main methods to improve the performance of an algorithm is to improve his parameters. 

This is called parameters tuning. For that, a search for better parameters is conducted. 

The search for the best parameters is an endless task as some parameters might be perfect for a certain 

set of instances and not for others. Furthermore, as the number of parameters augment, the 

combinations of them rise exponentially. Knowing that for each parameter there are an infinite 

number of possibilities, finding the best combination of a group of parameters is a near-impossible 

task. 

The task is then to find a good combination of parameter fitting acceptably any set of instances. For 

that, one must use recommendations of literature, follows his intuition and finally test several 
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possibilities. In addition to that, Hyperparameter Optimisation Tools have been developed in order to 

explore various combinations of parameters.  

 

Due to the difficulty of tuning parameters, I will only focus on the parameters of the Deterministic 

Algorithm. I have made this decision for two reasons.  

The first reason is that, as we have seen in the section 2.3.2.10, the parameters of the Bee algorithm 

do not have a big influence on the global performance of the algorithm. In addition to that, they have 

been chosen to minimise the computational time. For the parameter of the tournament selection, he 

has already been explored during the implementation of the initial algorithm.  

The second reason is the stopping criterion I used in my Deterministic Algorithm. As much as it is useful 

in order to test every size of instances while keeping reasonable computational times, it makes the 

tuning of the parameter harder. Indeed, several of the parameters of the Deterministic Annealing are 

directly related to the number of iterations performed. This is the case of the threshold reduction ∆𝑇 

and the reset parameter 𝑛𝑖𝑚𝑝. That is why finding good parameters which perform well on instances 

of various sizes is critical. 

 

As we have seen in the section 2.3.2.10, Deterministic Annealing has three parameters  𝑇𝑚𝑎𝑥, ∆𝑇 and 

𝑛𝑖𝑚𝑝.  

For 𝑇𝑚𝑎𝑥, I will keep the same logic which is to set 𝑇𝑚𝑎𝑥 to the average distance between two locations 

of the instances multiplied by a new parameter 𝑡𝑚𝑎𝑥. However, I will try to find a better value for 𝑡𝑚𝑎𝑥.  

For ∆𝑇, I will also keep the same logic but I will go a bit further. I decided to set ∆𝑇 to be a proportion 

of 𝑇𝑚𝑎𝑥. Following my intuition, I chose to take 1/75 of 𝑇𝑚𝑎𝑥. Here, instead of basing the setting to my 

intuition, I will define a new parameter called ∆𝑡. This parameter is the number by which 𝑇𝑚𝑎𝑥 is 

divided. This gives ∆𝑇 =
𝑇𝑚𝑎𝑥

∆𝑡
. The next step is to find the best value for ∆𝑡. 

Finally, for 𝑛𝑖𝑚𝑝, I will not use five times the number of vehicles currently used. I will explore 𝑛𝑖𝑚𝑝 

independently. 

 

This gives me three parameters to tune: 𝑡𝑚𝑎𝑥, ∆𝑡 and 𝑛𝑖𝑚𝑝. Even though, there are used inside the 

hybrid BA with DA, I will explore them as the DA was used out of the hybrid. This will reduce 

considerably the time needed to explore a combination. Furthermore, the hybrid BA with DA does not 

influence the performance of the DA. It only determines when and how many times it is used. It has 

no influence on the parameters. 

In order to do that, I will use Hyperparameter Optimisation available on Julia called Hyperopt. This tool 

explores several combinations of parameters on a function and returns the best combination. 

However, to the extent of my knowledge, it does not allow testing several sets of data. I was only able 

to test one instance at a time. For that reason, I did a Hyperparameter Optimisation on three different 
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instances; a small one (3417 requests), a medium one (5518 requests) and a large one (7619 requests). 

Those instances are not the same as the ones as I usually use for the computational results. This has 

been done in order to avoid having overfitting parameters. Overfitting being a phenomenon where 

parameters work perfectly for some instances but yield poor results if tested over a large group of 

different instances. I don’t want parameters that will be perfect for my five testing instances. This is 

not the goal of this parameter tuning. I want to find parameters that will work well for any instance. 

 

In order to work, Hyperopt needs a function to test the parameters, a range and spacing size for each 

parameter and the number of tests he will perform. The function is obviously the Deterministic 

Annealing but the other components disserve more explanations. 

For 𝑡𝑚𝑎𝑥, I followed the tests done by Braekers et al. (2014) which tests value for between 0.3 and 3. 

The size of the spacing determines how many values in the defined range can be selected to be tested. 

For example, for a range from 1 to 5, if we choose the spacing of 5, the possible values are 1,2,3,4 and 

5. In the case of 𝑡𝑚𝑎𝑥 I chose the spacing of 10. 

For ∆𝑡, I selected the range according to tests I made to identify the number of iterations done by the 

DA before the stopping criterion is reached. I set it to be 50 to 250 with the spacing of 200. 

Finally, for 𝑛𝑖𝑚𝑝, I only followed my intuition and set it to have a range of 10 to 50 with the spacing of 

40. 

Since the Hyperparameter Optimisation will be conducted three times, I cannot allow Hyperopt to 

conduct too many tests. That is why I decided to set the number of tests to be performed to 200. Each 

test tries a combination of parameters. This led to a run time of Hyperopt of 1.5 hours. This number of 

tests obviously only explores a minuscule fraction of possible combinations since, with those ranges, 

there are 8000020 possible combinations. However, exploring all those combinations would take 15 

days for each instance. 

 

Hyperopt found me the following combinations of parameters for the three instances. 

 

 𝒕𝒎𝒂𝒙 ∆𝒕 𝒏𝒊𝒎𝒑 

Small instance (I34) 0.9 150 25 

Medium instance (I55) 3 95 34 

Large instance (I76) 2.1 86 23 

Table 6: Parameter found with Hyperopt 

 

 
 

17Instance RL_d10 
18 Instance RL_d47 
19 Instance RL_d76 
20 10 ×  200 ×  40 =  80000 
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To facilitate further explanation, the parameter of the small instance will be called Set 1, those of the 

medium instance Set 2 and finally, those of the large instances Set 3. 

 

Now that I have three combinations of parameters, I need to see which one works better among 

different sizes of instances. In order to do that, I will test them not on the same instances used to find 

them but rather on the instances used to test the performance of the algorithm.  

The new parameters will be tested three times on a small, a medium and a large instance. The results 

will then be compared to identify which combination of parameters seems to be the best. The result 

for the different sets can be seen in the tables, 7, 8 and 9. 

 

 Best Avg Dev (in %) CPU (In min) 

I46 6692 6722,33333 0.45 10.6 

I56 5964 6023 0.97 9.7 

I90 10577 10696 1.11 8.96 

Table 7: Performance with Set 1 

 

 Best Avg Dev (in %) CPU (In min) 

I46 6409 6552,66667 2.19 11.16 

I56 6120 6276,66667 2.49 8.2 

I90 10193 10455 2.5 16.95 

Table 8: Performance with Set 2 

 

 Best Avg Dev (in %) CPU (In min) 

I46 6570 6713,66667 2.13 7.92 

I56 5738 5899,33333 2.73 15.67 

I90 10180 10265 0.82 20.71 

Table 9: Performance with Set 3 

 

Despite the fact that the first set of parameters gives the results with least deviation, the general 

quality of the solutions is worse than with the other two set. Even their general low computational 

time can’t justify choosing this set. 

The choice between the set two and three is more difficult. The Set 3 gives better results but at the 

cost of a higher computational time. However, several compromises have already been done to reduce 

the computational time. That is why, I chose to keep the Set 3 as the best improving parameter 

combination among the three sets. 

 

Another comparison must be made before accepting those new parameters. The performance of those 

parameters must be confronted with the performance of the parameters of the initial algorithm. For 
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that, I have conducted two more tests on each of the three instances above and five tests over the 

other two instances of the comparison pool. In the Table 10, the first 6 lines correspond to the initial 

result and the last 5 the results with the new parameters. 

 

Algorithm 
initial 

Instance Best Avg Dev (in %) CPU (In min) 

I28 3037 3301.2 8 5.92 

I46 6709 6945.2 3.4 9.47 

I53 7404 7838.4 5.54 10.39 

I56 5545 6170.2 10.13 10.67 

I90 10273 10852.6 5.34 19.19 

Algorithm 
with new 

parameters 

I28 3118 3208,2 2.81 6.27 

I46 6492 6633,4 2.13 8.35 

I53 7269 7607,4 4.44 9.29 

I56 5738 5911,2 2.93 13.91 

I90 10180 10320 1.35 18.03 

Table 10: Performance comparison between initial parameters and new ones 

 

There is no debate that the new parameters are better than the one I used initially. The average is 

improved for every instance. The deviation is smaller which implies less randomness while testing. 

Furthermore, the computational time is smaller for 3 of the 5 instances. 

However, it is worth mentioning that the best solutions found for the instances 28 and 56 have been 

found with the initial parameter. This is due to the randomness of the algorithm. If more test is 

conducted, that might not be the case anymore. 

Another indicator of the performance of the algorithm is the fact that the LNS has only been used in 

44% of the test instead of the previous 68%. 

 

The new parameters should be used instead of the initial ones as they are a clear improvement of the 

balance between precision and computational time. They might, however, not be the best parameters 

possible but they are reasonably good. 

 

4.2.2. Larger operator for Large Neighbourhood Search 
 

Even if the operator relocate was too wide to be used inside the DA, it is, however, too small to be 

really considered an operator for LNS. That is why I have developed another operator derived from the 

operator relocate. I have called him expanded relocation.  

What it does is applying a relocation on every request. Then in each of the solutions found thanks to 

those relocations, we apply the current operator relocation. It explores solutions two relocations away. 

A pseudo-code of this operator can be seen in the Algorithm 10. 

In order to do that, the current operator relocation is used twice. It is used a first time but return all 

the solutions created by relocating requests. Then for every of those solutions, we apply again the 
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operator relocate. If the second relocation improves the cost of the solution, the operator keeps this 

new solution. Otherwise, the operator keeps the solution prior to the second relocation. 

 

Algorithm 10: Pseudo-code of operator expanded relocate 

START 

 Apply operator relocate with all the solutions as OUTPUT 

REPEAT for each solution 

  Apply operator relocate to the solution 

  KEEP the best of the solution after first relocation or the second one 

 END REPEAT  

 Check the costs of the solutions created above and keep the best 

    OUTPUT Best extended relocation 

STOP 

 

In order to test this possible improvement, I will not only monitor the usual factor but also the time 

needed to perform the LNS. Indeed, the expanding the LNS could lead to finding a better solution, but 

it must remain an extra step after the hybrid BA with DA. Otherwise, it becomes a new algorithm 

completely. 

 

The test on the smallest instance went well with time under 2 seconds to perform the LNS. However, 

as I tested larger instances the time needed to perform it rises considerably. It took 30 seconds for the 

instance of size 46 but rose already to 161 for the one of size 53. It was already a third of the total time 

of the algorithm. I tested it also on the larger instance and the time needed to perform the LNS rose 

to 2112 for a total time of 2800. This is obviously not ideal as this LNS must remain an extra step to 

search further and not the main part of the algorithm. 

Those results can be explained through 2 factors.  

The first one is that the operator takes longer for larger instances as he must explore more relocation. 

This one was expected as all operators follow this logic.  

The second one, on the other hand, was not. The overall precision of the algorithm drops as the 

instance grow larger. This is due to the fact that the stopping criterion of the DA is based on an amount 

of time. For small instances, the DA can perform considerably more iterations than on a larger one. 

This leads to a drop of precision for the larger one. If the hybrid is less precise, the solution on which 

the LNS is applied is less precise. This leads to more solutions found by the LNS. All of that gives us a 

LNS that takes longer for large instances and is used for more iterations. 

 

For those reasons, this larger operator is not fitted for the current algorithm. Nevertheless, if we 

improve the precision of the hybrid DA with SA by allowing more time for the DA, this operator can be 

kept as a last search for possible improvement. The time needed to perform the LNS would remain the 

same per iteration but fewer iterations would be needed as the algorithm has already found a good 

solution. Furthermore, the computational time of the rest of the algorithm would be higher thus the 

time needed to perform the LNS would seem more acceptable. 
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4.2.3. Maximum ride time for vehicle 
 

 

In real life, maximum ride time for a vehicle is mandatory to respect drivers working hours. That is why 

I chose to add this constraint to the algorithm.  

For the same reason as I have allowed violation of the maximum rides times of customers to diversify 

my population, I will do the same for the maximum ride’s times of the vehicles. However, the violation 

fee must be much higher as it is more expensive to pay for a driver overtime rather than letting some 

customers wait longer. I chose a violation fee 10 times the violations for customers. 

Several tests were conducted and it appeared that it is nearly impossible to find solutions which 

respect both customers ride times and vehicles ride times. In order to tackle that issue, there are 

several possibilities.  

 

The first is to organise two shifts. The requests have desired times varying between 4h30 and 21h. This 

gives us a time window of 16.5 hours. With this in mind, it is possible to have a shift that goes from 

4h30 to 13h and the next to 13h to 21h. However, this would mean that the company would need 

twice the staff. From the algorithm perspective, that means forcing a return to the depot around 13h 

which will correspond to the shifts change. The cost per vehicle could be transformed into cost per 

shift in order to minimise the staff. 

The second would be to refuse some requests in order to respect the maximum ride times of the 

vehicles and the other requests. For the algorithm, a waiting list could be created. This waiting list will 

contain the requests that are not included in the current solution. Furthermore, an operator can be 

created in order to withdraw a request from the solution to replace it with one from the waiting list. 

Another possibility is to take into account the benefit a company has to serve a customer. Indeed, 

longer distance might bring more benefit than short one due to the pricing system. With that in mind, 

it is more efficient to serve customers who will make the company gains more money. The other will 

be sent to the waiting list and ultimately refused. 

Finally, it is also possible to increase the number of vehicles or simply to allow maximum ride time 

violation for customers even if it decreases the service quality. 

 

All of those possibilities depend of managerial decision which will be different from a situation to the 

next. That is why, the addition of this constraint will not be further explored. 
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4.2.4. Time-dependent speed 
 

The last possible improvement that will be discussed in this thesis is a time-dependent speed. The idea 

behind it is to take into account the traffic in the algorithm. Indeed, a constant speed of 60 km/h like 

supposed in the algorithm is an oversimplification. In practice, the time needed to travel from a point 

to another depends on a variety of factors such as the moment of the day, the type of road use and so 

on. 

Here we will focus on the evolution of the average speed depending on the time of the day. The traffic 

evolves during the day. Very early in the morning, the traffic will be very fluid as people are still asleep. 

Then between 7 and 9h, it will be considerably slower as it is the time of the day where people go to 

work. After that and until 16h, the traffic is fluid again. Between 16 and 19h, we have the same effect 

as between 7 and 9h as people return home from work. The traffic is calm again after. 

 

This gives us two-time windows during which the traffic is slower. This leads to the average speed of 

vehicle travelling within those time windows being smaller than during the rest of the day. However, 

representing perfectly the traffic is impossible. To implement time dependent speed in this algorithm, 

I will assume five time windows: [4h-7h], [7h-9h], [9h-16h] [16h-19h] [19h-21h]. Furthermore, I will 

work with two speeds. For peak traffic time windows, I will assume a speed of 40 km/h and for the 

rest 90 km/h.  

In order to implement the dependent speed into the algorithm, it is not enough to check the time 

window corresponding to the departure time to set the speed accordingly. Indeed, travel might begin 

within a time window and end in another. In this case, the vehicle is assumed to travel at the speed of 

the first time window until he reaches the end of it then switches to the speed of the next. This is, of 

course, not how it would happen in reality but modelling has its limits. 

 

To implement this concept, I have used the model described by Ichoua et al. (2001). The procedure 

they propose is the following: 

 

 

Fig 4 – Travel time calculation procedure. Reproduce from 

“Vehicle dispatching with time-dependent travel times”, by 

Ichoua, S., Gendreau, M., Potvin, J-Y. (2003). Vehicle Dispatching 

with time – dependent travel times. European Journal of 

Operational Research. 144. 379-396. 10.1016/S0377-2217 

(02)00147-9. 
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With 𝑡0 being the departure time, 𝑑𝑖𝑗  the distance between the two points, 𝑡𝑘 the limit of the time 

windows before changing the speed and 𝑣𝑐𝑇𝑘
 the speed of the time windows k. The c is not used in my 

algorithm but allow specifying specific speed for a node type c. 

What the procedure does is checking if the initial arrival time 𝑡′ calculated in the setting passed 

through a time window limit. Each time it does the travel time is recalculated to fit the speed of this 

time window. 

 

This procedure has been added to the algorithm and tests were conducted three times on the same 5 

instances. Even though, this is considered to be an additional constraint, I will also present the total 

cost. The reason behind that is that it is not guarantee that the costs will rise because the speed of 

some time windows is bigger than the initial average one. 

  

Algorithm 
initial 

Instance Best Avg 
Cost of 

distances 
Cost of 
delays 

Cost of 
vehicle 

utilisation 

I28 3037 3301.2 59% 12% 29% 

I46 6709 6945.2 60% 13% 27% 

I53 7404 7838.4 58% 11% 31% 

I56 5545 6170.2 59% 12% 29% 

I90 10273 10852.6 57% 11% 32% 

Algorithm 
with time-
dependent 

speed 

I28 3002 3047,33333 59% 10% 32% 

I46 6187 6313,33333 61% 7% 31% 

I53 7272 7542,33333 59% 6% 35% 

I56 6035 6428 63% 14% 23% 

I90 10698 10941,6667 59% 9% 32% 

Table 11: Performance comparison with and without time-dependent speed 

 

The version with time-dependent speed tends to use more vehicles than the initial one. On the other 

hand, the costs are in general not higher. This is due to the fact that the time windows with traffic 

represent a smaller portion of the service time than the rest. This leads to vehicles generally driving 

faster than with the average speed of 60 km/h. It also brings the cost of delays down. This is due to the 

fact that as a vehicle drive faster, it reduces travel times. However, this reduction is probably not 

enough to allow the insertion of new nodes between two points. This leads to sequences remaining 

the same but with fewer delays. 

 

It would be possible to go even further in this logic. The speed could be time and zone-dependent. The 

zone could represent the urbanisation level of the area. Indeed, highly urbanised areas tend to have 

more traffic than rural ones. Each node would have an additional data based on their urbanisation 

level. In opposition with the processing of time, it is unknown when a vehicle will leave this zone. For 

this factor, it must only depend on the zones of the departure and destination points. 

However, in order to do that a good knowledge of the locations is needed. That is why it will not be 

explored further here.  
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4.3.Final version 

 

This final version will include both the time-dependent speed and the new parameters as those 

improvements have a good effect on either the performance of the algorithm for the first or the 

realistic aspect for the second.  

The best solution for each instance is available in the Appendix III 

 

 Best Avg Dev (in %) CPU (In min) 

I28 2841 2959,6 4 6,02666667 

I46 6292 6418,2 1.96 12,03 

I53 7204 7378,8 2.36 12,4466667 

I56 5653 5766 1.95 17,86 

I90 9575 10216 6.2 22,18 

Table 12: Final algorithm’s performance 

Since both the new parameters and the time-dependent speed was reducing the costs of the solutions, 

the results above have the best average of all the tests I conducted. Furthermore, four of the best 

overall solutions were found was found with this version. Only for the instance 56, a better solution 

was found with the initial algorithm. However, the speed was not the same. 

 

 Cost of 
distances 

Cost of delays 
Cost of vehicle 

utilisation 

I28 60% 7% 33% 

I46 61% 7% 32% 

I53 57% 7% 36% 

I56 62% 10% 28% 

I90 57% 7% 36% 

Table 13: Final algorithm costs’ distribution 

The cost distribution remains similar except for the instance 56.  

 

 
Fleet of 
vehicles 

Number of 
vehicles used 
in my 
algorithm 

Number of 
vehicles used 
by Chassaing 
et al. (s.d) 

I28 5 5 4 

I46 7 7 7 

I53 11 9 10 

I56 8 7 8 

I90 13 12 13 

Table 14: Utilisation of vehicles in the best solution for algorithm final 
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The number of vehicles changes due to the effect of the time-dependent speed. They remain overall 

smaller than the one of Chassaing et al. (s.d). 

The instance 56 has the most out of the norm results. Their cost was not smaller, their cost distribution 

not similar and they use fewer vehicles. The last part is particularly interesting because in all the tests 

I have conducted, the instance 56 had the less variance in the number of vehicles used from solutions 

to solutions. The solutions used constantly 8 vehicles. This might due to the fact that this instance 

benefits a lot of the time-dependent speed. Without it, it was not possible to find feasible solutions 

without using all the vehicle. The benefice might not seem obvious due to the fact that the best 

solution was not found here but this is probably due to randomness. 

 

The LNS was used in 40% of the case. This is very similar to the test with the new parameters alone. 

This is expected as even if the time-dependent speed reduced the cost, they have no influence on the 

performance of the algorithm. 
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5. Conclusions 

 

Dial a ride problem is used to represent several real-life door-to-door transportation. The clearer 

example being the transportation of the elderly or disabled people. With the aging of the population, 

the demand for those services will rise. That is why good optimisation tools are needed in order to 

help companies or states that want to offer those services.  

However, in opposition with most transportation problems, DARP must focus not only on the cost 

minimisation but also the human factor. Indeed, people that require those kinds of services have a lot 

of requirements. That can go from maximum ride time for health reasons to specific accommodations. 

A balance between minimisation cost and inconvenience for the user must be found.  

 

In this paper, I have presented a possible algorithm to solve Dial a ride problem. In order to do that, I 

had to choose which constraints I would tackle and which cost I would minimise. I made those choices 

based on my intuition and recommendation from literature but they must be adapted to fit the reality 

of the situation one must solve. Furthermore, it exists several possible algorithms. I have chosen to 

present a hybrid Bee Algorithm with Deterministic Annealing as it was proven to yield good results but 

there is no perfect algorithm that would be the best for all the different situations. Several other 

options have been presented in the literature review and reader are referred to various papers 

depending of the algorithm of their choice. 

 

In order to use my algorithm in a real-life situation, the first step once must make to use this algorithm 

is to augment the stopping criterion of the DA. It was purposefully tuned down in order to allow fast 

testing. That is why I would recommend keeping those tuned down parameters to adapt the algorithm 

to the situation one must solve. After that, the stopping criterion can be increased. Once this is done, 

one must tune the parameters accordingly following either the method I used a similar one such as 

irace21 which is not specific to Julia. The constraints and objective function must also be adapted to the 

specific situation.  

 

Several situations have been discussed in this paper. To cite only a few: using an operator removes to 

leave a vehicle available, areas dependent speed, sequence with two shifts corresponding to two 

drivers and so on. The reality is such that it is always required to adapt the algorithm as new factors 

presents themselves. Real-life situations are not usually described in literature. That is why more 

research could be conducted with this logic to answer real-life problems. 

 

 

 

 
 

21 For more information: https://doi.org/10.1016/j.orp.2016.09.002 
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The version presented here remains unfinished as it is always possible to improve it. Some 

improvements were explored in this paper but it is always possible to go further. Ideas that were not 

explored in this paper includes multiple depots, heterogenous vehicles, operators with roulette 

selection or lunch and coffee break for drivers. The biggest improvement remains the utilisation of 

strict time constrains like time windows instead of relaxed such as desired times. Several of those 

improvements have been developed in literature in paper such as Masmoudi et al. (2016) or Braekers 

et al. (2014). Finally, operators being the key part of most algorithms, it is always possible to explore 

new operators in order to keep the operators that yield the best results. 

 

To conclude, dial a ride problem is a wide topic as each situation is different. It means that it is always 

possible to search further. However, the goal must remain to help companies and states that are 

searching to provide those services. Studies must be conducted according to their needs. 
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9. Appendices 

 

I. Summary of several algorithms for the dynamic multi-vehicle DARP 
 

Reference  Objective  Time 
windows  

Other 
constraints  

Algorithm  Size of 
instances 
solved 

Madsen et al. 
(1995) 

Multi-criteria 
objective 

On pickup or 
delivery 

Several 
vehicle types. 
Vehicle 
capacity. 
Maximum 
route 
duration. 
Maximum 
deviation 
between 
actual 
and shortest 
possible rid 

Heuristic. 
Vertex 
insertions 

n = 300 

Teodorovic 
and 
Radivojevic 
(2000) 

Minimise a 
function 
incorporating 
route 
lengths, ride 
times and 
time window 
violations 

On pickup 
and delivery 

Vehicle 
capacity 

Sequential 
insertion of 
users in vehicle 
routes. 
Nine rules are 
used to give 
more or less 
weight to the 
various 
elements of the 
objective 

n = 900 

Colorni and 
Righini 
(2001) 

Maximise the 
number of 
serviced 
requests or 
maximise the 
perceived 
level of 
service, or 
minimise the 
total 
travelled 
distance 

On pickup 
and delivery 

Vehicle 
capacity. 
Maximum 
route 
duration 

Alternation 
between 
clustering and 
routing 
algorithms. 
Branch-and-
bound 
algorithm is 
applied to 
sequence a 
subset of users 
with time 
windows not 
too far in the 
future 

None 

Coslovich et 
al. (2006) 

Minimise user 
dissatisfaction 

On pickup 
and delivery 

Deviation 
from desired 

Insertions in 
current 

25 ≤ n ≤ 50 
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service time. 
Upper bound 
on ‘excess 
ride time’ 

routes. Route 
reoptimizations 
with 
modified 2-opt 

Table 3 – I. Summary of several algorithms for the dynamic multi-vehicle DARP. Reproduce from ‘The 

dial-a-ride problem: models and algorithms’, by Cordeau, J.-F., Laporte, G., Ann. Oper. Res. 153 (1), 29–

46. 
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II. Identification for the best parameters setting for the hybrid BA-DA (BA-SA). 
 

 

Table 3. Identification for the best parameters setting for the hybrid BA-DA (BA-SA). Reproduce from 

‘Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem’, 

by Masmoudi, MA. Hosny, M. Braekers, K. Dammak, A. Transportation Research: Part E. 2016; 96:60-

80. 
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III. Best solutions with final algorithm 
 

Instance 28 

[19 330 330 0 4; 7 360 406 46 8; 35 421 421 0 4; 47 428 440 12 0; 8 600 600 0 3; 36 663 663 0 0; 20 

840 840 0 1; 21 870 870 0 2; 48 969 969 0 1; 49 975 997 22 0] 

[23 390 390 0 3; 51 444 444 0 0; 11 570 570 0 2; 39 626 626 0 0; 1 1080 1080 0 4; 29 1103 1103 0 0] 

[22 330 330 0 1; 24 360 360 0 4; 18 360 361 1 5; 28 390 390 0 6; 50 397 397 0 5; 46 415 415 0 4; 25 

420 420 0 8; 52 420 423 3 5; 53 489 489 0 1; 56 491 521 30 0; 4 630 630 0 4; 2 660 660 0 5; 32 672 675 

3 1; 30 800 800 0 0; 10 840 862 22 2; 38 947 947 0 0] 

[3 360 360 0 3; 9 360 422 62 7; 31 411 411 0 4; 37 439 439 0 0; 12 570 570 0 4; 40 619 619 0 0; 15 810 

810 0 1; 43 851 851 0 0] 

[13 360 360 0 3; 5 360 361 1 4; 17 360 362 2 5; 14 360 365 5 8; 42 409 409 0 5; 33 416 416 0 4; 41 456 

456 0 1; 45 464 464 0 0; 26 600 600 0 2; 54 658 658 0 0; 6 660 736 76 3; 34 758 763 5 0; 27 840 840 0 

4; 16 870 870 0 8; 44 932 932 0 4; 55 985 985 0 0] 

 

Instance 46 

[45 360 360 0 1; 27 360 425 65 5; 25 360 400 40 6; 20 390 390 0 8; 71 433 433 0 7; 66 462 495 33 5; 91 

464 464 0 4; 73 480 512 32 0; 34 840 840 0 1; 80 933 933 0 0] 

[22 300 300 0 2; 41 360 360 0 3; 68 362 362 0 1; 5 390 390 0 2; 40 420 420 0 6; 87 439 439 0 5; 51 453 

453 0 4; 86 484 484 0 0; 3 600 600 0 1; 49 653 653 0 0; 28 810 810 0 2; 38 840 848 8 5; 74 869 869 0 3; 

84 926 926 0 0; 12 930 937 7 1; 58 951 951 0 0; 39 1080 1080 0 1; 85 1177 1177 0 0] 

[7 360 360 0 3; 8 360 362 2 5; 33 390 390 0 7; 53 431 431 0 4; 54 431 455 24 2; 79 518 518 0 0; 13 600 

600 0 3; 32 630 630 0 4; 78 683 683 0 3; 59 774 774 0 0; 30 840 840 0 2; 21 870 870 0 4; 76 946 946 0 

2; 67 972 974 2 0; 4 1080 1080 0 1; 50 1179 1179 0 0] 

[17 330 330 0 1; 6 360 360 0 2; 43 390 390 0 4; 46 390 394 4 8; 63 412 412 0 7; 52 439 439 0 6; 89 458 

458 0 4; 92 547 547 0 0; 18 600 600 0 1; 19 630 630 0 2; 64 661 661 0 1; 65 682 682 0 0; 24 810 810 0 

1; 70 912 912 0 0] 

[9 330 330 0 1; 16 360 360 0 2; 42 360 380 20 3; 11 360 399 39 6; 55 398 398 0 5; 62 434 434 0 4; 88 

439 457 18 3; 57 461 516 55 0; 2 600 600 0 1; 48 646 646 0 0; 31 780 780 0 1; 23 810 904 94 2; 77 879 

890 11 1; 69 926 926 0 0; 26 1080 1080 0 3; 35 1110 1114 4 4; 72 1134 1134 0 1; 81 1139 1141 2 0] 

[; 37 330 330 0 1; 15 360 360 0 5; 29 360 361 1 6; 36 390 390 0 7; 83 406 406 0 6; 61 460 460 0 2; 75 

532 532 0 1; 82 534 534 0 0; 44 570 570 0 2; 1 600 608 8 5; 90 637 637 0 3; 47 695 695 0 0; 10 840 840 

0 4; 56 910 910 0 0; 14 1050 1050 0 1; 60 1111 1111 0 0] 

[]22 

 

 
 

22 Empty vehicle 
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Instance 53 

[45 360 360 0 1; 15 390 390 0 2; 98 442 442 0 1; 68 494 494 0 0; 12 600 600 0 1; 20 600 601 1 2; 73 

677 677 0 1; 65 714 714 0 0; 36 840 840 0 1; 14 870 870 0 3; 89 935 935 0 2; 67 971 971 0 0; 19 1050 

1050 0 4; 72 1153 1153 0 0] 

[32 270 270 0 1; 85 343 343 0 0; 24 360 381 21 4; 77 398 400 2 0; 25 420 465 45 2; 78 549 549 0 0; 38 

600 600 0 3; 18 600 603 3 6; 91 666 666 0 3; 71 696 696 0 0; 47 840 840 0 2; 43 870 870 0 5; 100 919 

920 1 3; 96 973 973 0 0] 

[16 330 330 0 2; 11 360 360 0 5; 48 360 361 1 6; 101 415 415 0 5; 69 444 444 0 3; 64 599 599 0 0; 39 

660 660 0 1; 92 769 769 0 0; 7 840 840 0 1; 17 840 844 4 5; 60 940 940 0 4; 70 940 944 4 0; 23 1080 

1080 0 1; 76 1128 1128 0 0] 

[5 330 330 0 2; 31 360 380 20 4; 58 405 413 8 2; 84 436 461 25 0; 22 600 600 0 1; 75 742 742 0 0; 50 

810 810 0 1; 103 837 837 0 0; 29 840 868 28 1; 82 887 889 2 0] 

[51 360 360 0 1; 104 429 429 0 0; 27 600 600 0 3; 80 624 624 0 0; 4 810 810 0 4; 10 810 866 56 8; 63 

847 847 0 4; 44 870 870 0 5; 57 915 915 0 1; 97 966 990 24 0] 

[21 330 330 0 4; 37 360 364 4 5; 28 390 420 30 8; 90 421 421 0 7; 81 450 450 0 4; 74 499 499 0 0; 6 

600 600 0 1; 59 731 731 0 0; 35 840 840 0 1; 30 840 855 15 2; 83 909 909 0 1; 88 939 939 0 0] 

[9 270 270 0 4; 53 330 353 23 6; 26 360 360 0 8; 62 390 420 30 4; 106 431 438 7 2; 79 460 460 0 0; 8 

570 570 0 2; 41 840 840 0 4; 2 840 872 32 5; 55 870 870 0 4; 61 873 875 2 2; 94 935 935 0 0] 

[34 360 360 0 1; 13 360 402 42 2; 40 360 427 67 6; 87 415 415 0 5; 93 444 444 0 1; 66 585 585 0 0; 52 

840 840 0 2; 105 941 941 0 0; 46 1080 1080 0 3; 99 1159 1159 0 0] 

[ 33 360 360 0 2; 3 360 426 66 5; 86 440 440 0 3; 56 469 471 2 0; 49 840 840 0 2; 42 900 900 0 6; 102 

919 935 16 4; 95 1000 1000 0 0; 1 1080 1080 0 1; 54 1219 1219 0 0] 

[] 

[] 

 

Instance 56 

[45 360 360 0 2; 101 445 445 0 0; 29 630 630 0 4; 34 630 648 18 8; 85 750 750 0 4; 90 797 797 0 0; 5 

810 828 18 3; 15 840 862 22 6; 23 840 884 44 7; 55 840 841 1 8; 61 865 878 13 5; 11 870 890 20 7; 79 

893 893 0 6; 111 905 917 12 5; 67 922 933 11 3; 71 951 951 0 0; 20 1080 1080 0 1; 76 1132 1132 0 0] 

[] 

[ 9 330 330 0 4; 8 360 360 0 6; 39 360 361 1 7; 65 418 418 0 3; 64 429 429 0 1; 95 455 455 0 0; 38 570 

570 0 3; 52 600 600 0 4; 42 630 630 0 5; 94 633 633 0 2; 108 658 658 0 1; 98 688 688 0 0; 51 810 810 

0 1; 10 840 840 0 4; 107 869 869 0 3; 35 870 870 0 4; 66 935 935 0 1; 91 937 967 30 0; 28 1050 1050 0 

4; 84 1112 1112 0 0] 

[19 360 360 0 4; 43 360 374 14 8; 99 409 409 0 4; 75 462 462 0 0; 37 810 810 0 4; 54 840 863 23 6; 41 

840 864 24 7; 4 840 898 58 8; 93 878 878 0 4; 60 919 919 0 3; 110 936 950 14 1; 97 1083 1083 0 0] 
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[27 330 330 0 4; 22 360 382 22 7; 83 424 424 0 3; 78 462 464 2 0; 26 780 780 0 1; 25 810 846 36 4; 3 

840 888 48 6; 46 870 888 18 8; 81 897 897 0 5; 82 913 928 15 4; 102 971 977 6 2; 59 1035 1035 0 0; 6 

1050 1121 71 2; 33 1080 1102 22 3; 89 1155 1155 0 2; 62 1182 1191 9 0] 

[21 360 360 0 2; 77 422 422 0 0; 30 630 630 0 3; 86 766 766 0 0; 40 840 840 0 2; 13 840 841 1 3; 2 840 

842 2 4; 56 870 870 0 5; 14 870 872 2 7; 69 914 914 0 6; 96 931 931 0 4; 70 932 933 1 2; 58 944 944 0 

1; 112 956 956 0 0; 17 1050 1050 0 4; 7 1110 1110 0 5; 73 1133 1133 0 1; 63 1300 1300 0 0] 

[50 360 360 0 4; 18 420 420 0 7; 106 452 452 0 3; 74 493 493 0 0; 12 810 810 0 1; 36 840 840 0 2; 49 

840 843 3 5; 47 840 846 6 8; 68 874 874 0 7; 105 892 892 0 4; 103 912 912 0 1; 92 952 952 0 0; 31 1080 

1080 0 4; 87 1167 1167 0 0] 

[ 1 360 360 0 1; 16 360 390 30 2; 48 390 390 0 3; 72 425 425 0 2; 104 444 444 0 1; 57 464 464 0 0; 53 

540 540 0 4; 109 625 625 0 0; 32 810 810 0 1; 44 840 863 23 2; 100 913 913 0 1; 88 925 931 6 0; 24 

1020 1020 0 4; 80 1069 1069 0 0] 

 

Instance 90 

[54 330 330 0 2; 65 360 360 0 4; 83 360 362 2 6; 144 406 406 0 4; 155 434 434 0 2; 173 448 448 0 0; 43 

600 600 0 4; 61 690 690 0 8; 133 758 758 0 4; 151 786 786 0 0; 10 810 810 0 3; 90 840 840 0 6; 35 840 

842 2 7; 100 865 873 8 4; 125 925 925 0 3; 180 961 961 0 0; 87 1080 1080 0 1; 79 1140 1140 0 2; 177 

1181 1181 0 1; 169 1216 1216 0 0] 

[30 360 360 0 3; 18 360 394 34 6; 40 390 438 48 7; 108 444 444 0 4; 120 462 476 14 1; 130 491 524 33 

0; 23 690 690 0 2; 113 747 747 0 0; 70 840 840 0 4; 67 840 872 32 8; 160 890 895 5 4; 157 936 936 0 

0] 

[27 330 330 0 2; 33 360 360 0 5; 9 360 362 2 7; 22 360 363 3 8; 117 381 381 0 6; 112 388 388 0 5; 44 

390 390 0 6; 99 435 435 0 4; 123 445 445 0 1; 134 447 447 0 0; 88 570 570 0 1; 26 600 600 0 2; 178 

629 638 9 1; 116 673 683 10 0; 1 870 870 0 1; 51 900 900 0 5; 91 939 939 0 4; 141 959 964 5 0] 

[85 330 330 0 1; 13 360 360 0 3; 34 360 363 3 6; 124 406 406 0 3; 86 420 420 0 5; 103 443 443 0 3; 175 

497 497 0 2; 176 500 500 0 0; 20 540 540 0 1; 110 589 589 0 0; 82 600 600 0 2; 19 630 630 0 5; 109 

708 708 0 2; 172 794 794 0 0; 50 810 810 0 2; 58 840 840 0 5; 42 840 841 1 6; 148 884 884 0 3; 140 

914 914 0 1; 132 964 964 0 0; 32 1080 1080 0 4; 122 1199 1199 0 0] 

[41 360 360 0 2; 73 360 366 6 5; 131 433 433 0 3; 163 531 531 0 0; 49 600 600 0 1; 62 630 653 23 2; 

152 698 698 0 1; 139 755 755 0 0; 66 780 780 0 3; 25 810 817 7 4; 7 810 837 27 7; 156 854 854 0 4; 

115 878 878 0 3; 97 930 930 0 0; 72 930 946 16 4; 162 1012 1012 0 0; 31 1110 1110 0 4; 121 1184 1184 

0 0] 

[28 360 360 0 3; 47 360 370 10 7; 137 428 428 0 3; 118 447 447 0 0; 71 600 600 0 4; 56 630 654 24 5; 

161 694 694 0 1; 146 710 720 10 0; 39 840 840 0 2; 129 943 943 0 0; 75 1080 1080 0 1; 165 1126 1127 

1 0] 

[17 360 360 0 3; 29 360 375 15 4; 4 390 395 5 7; 107 414 414 0 4; 94 438 438 0 1; 80 450 450 0 4; 119 

476 476 0 3; 170 544 544 0 0; 48 600 600 0 3; 37 630 630 0 6; 138 660 660 0 3; 127 678 678 0 0; 81 

780 780 0 1; 14 810 810 0 5; 171 849 849 0 4; 68 900 900 0 5; 104 937 937 0 1; 158 949 959 10 0; 53 

1050 1050 0 1; 45 1080 1105 25 3; 135 1148 1148 0 1; 143 1186 1186 0 0] 
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[52 300 300 0 4; 46 330 330 0 8; 142 406 406 0 4; 63 420 460 40 6; 136 429 435 6 2; 153 489 489 0 0; 

2 600 600 0 3; 74 630 630 0 5; 92 687 687 0 2; 164 701 703 2 0; 64 810 810 0 4; 12 840 856 16 6; 3 870 

887 17 8; 93 903 903 0 6; 102 914 942 28 4; 154 949 949 0 0; 38 1050 1050 0 1; 128 1093 1093 0 0] 

[84 330 330 0 1; 174 430 430 0 0; 77 600 600 0 1; 167 652 654 2 0; 76 870 870 0 2; 166 975 975 0 0] 

[8 360 360 0 1; 60 390 390 0 5; 55 390 418 28 6; 145 421 435 14 5; 150 453 453 0 1; 98 456 456 0 0; 16 

660 660 0 2; 106 794 794 0 0; 36 840 859 19 3; 78 840 863 23 4; 126 904 904 0 1; 168 917 919 2 0; 11 

930 932 2 1; 101 1001 1001 0 0] 

[15 330 330 0 4; 57 360 360 0 5; 105 380 380 0 1; 147 438 438 0 0; 6 600 600 0 2; 96 665 665 0 0; 24 

780 780 0 3; 5 840 840 0 7; 69 870 883 13 8; 95 907 907 0 4; 114 935 937 2 1; 159 962 962 0 0; 89 1050 

1050 0 1; 179 1099 1099 0 0] 

[21 360 360 0 4; 111 398 398 0 0; 59 840 840 0 3; 149 891 891 0 0] 

[] 
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IV. Complete Results 

 

size

Total Cost Distance CostDelays Cost Nbr V Cost Time Number  vehiculeLNS Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

Inial version RL_d55 28 3356 1964 429,5 962 273 yes 3037 1842 233 962 501 yes 3454 2060 432 962 228 no

RL_d01 46 6709 4032 801 1875 626 no 7002 4011 803 2187 482 yes 7079 4337 514 2187 576 no

RL_d96 53 8035 4684 1019 2331 510 yes 7404 4302 771 2331 500 yes 8007 4552 1122 2331 852 no

RL_d30 56 6501 3900 908 1693 452 yes 6305 4192 637,5 1693 307 yes 6481 3863 1136 1482 912 yes

RL_d2 90 11125 6336 1042 3746 1029 yes 10618 5967 1480 3170 1112 yes 11293 6424 1410 3458 1111 yes

Improved parameters

Set3 Total Cost Distance CostDelays Cost Nbr V Cost Time N vehiculeLNS Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

RL_d55 28 3171 1901 308 962 459 5 no 3162 1931 269 962 413 5 no 3223 2004 257 5 322 no 5

RL_d01 46 6768 3841 739 2187 344 7 no 6570 3918 776 1875 739 6 yes 6803 4014 914 1875 343 no 6

RL_d96 53 7720 4500 596 2623 475 9 yes 7269 4080 565 2623 824 9 yes 7590 4099 868 2623 461 yes 9

RL_d30 56 5738 3773 482 1482 1041 7 no 5960 3437 1041 1482 782 7 yes 6000 3603 704 1693 998 no 8

RL_d2 90 10406 5898 1337 11 954 11 yes 10180 5739 982 3458 1526 12 yes 10209 5655 807 3746 1249 yes 13

Improved parameters

Set 1 Total Cost Distance CostDelays Cost Nbr V Cost Time LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS

RL_d01 46 6692 4002 502 2188 697 yes 6757 3996 573 2187 581 no 6718 3819 1024 175 630 no

RL_d30 56 6085 3744 647 1693 479 yes 6020 3657 669 1693 635 yes 5964 3517 753 1693 632

RL_d2 90 10577 6213 1194 3170 889 yes 10644 6148 1037 3458 725 yes 10867 6360 1337 3170

Improved parameters

Set2

RL_d01 46 6530 3948 706 1875 879 6 no 6719 3984 859 1875 590 6 no 6409 3824 709 1875 540 yes 6

3 RL_d30 56 6120 3726 911 1482 584 7 no 6264 3891 679 1693 475 8 no 6446 3919 833 1693 417 yes 8

34 RL_d2 90 10288 5676 1153 3458 1013 12 yes 10193 5864 1159 3170 856 11 yes 10884 6336 1377 3170 1182 no 11

Total Cost Distance CostDelays Cost Nbr V Cost Time N vehiculeLNS Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

Time dependentRL_d55 28 3046 1626 458 962 414 5 no 3002 1840 200 962 415 5 no 3094 1903 229 962 369 no 5

RL_d01 46 6380 3837 668 1875 946 6 yes 6187 3741 258 2187 746 7 no 6373 4028 469 1875 494 no 6

RL_d96 53 7430 4195 612 2623 690 9 no 7272 4499 149 2623 644 9 no 7925 4618 514 2623 530 yes 9

RL_d30 56 6714 4216 1016 1482 379 7 yes 6535 4137 915 1482 327 7 yes 6035 3879 674 1482 892 no 7

RL_d2 90 10698 6154 1085 3458 1238 12 yes 11157 6355 1056 3746 467 13 yes 10970 6713 798 3458 763 yes 12

Total Cost Distance CostDelays Cost Nbr V Cost Time time lns LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time time lns LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS time lns

Larger operatorRL_d55 28 3201 2005 234 962 228 0,39 yes 3271 1878 431 962 411 0,36 no 2907 1766 178 962 593 no 0,2

RL_d01 46 6949 4662 811 1875 530 28 no 7089 3921 980 2187 727 2,49 yes 6398 3640 570 2187 789 yes 30

RL_d96 53 7118 3937 558 2623 421 161 yes 7246 4363 277 2626 627 242 yes

RL_d30 56

RL_d2 90 10783 5949 1375 3458 1117 1080 yes 10547 5736 1064 3746 2890 2112 yes

31 2

31 2

1 2 3

1 2 3
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size

Total Cost Distance CostDelays Cost Nbr V Cost Time LNS N vehiculeTotal Cost Distance Cost Delays Cost Nbr V Cost Time LNS

Inial version RL_d55 28 3370 2054 355 962 319 no 3289 1798 528,5 962 456 no

RL_d01 46 7071 4040 1468 1562 530 yes 6865 3989 688 2187 623 yes

RL_d96 53 7915 4566 726 2623 603 no 7831 4438 769 2623 652 no

RL_d30 56 6019 3634 692 1693 358 yes 5545 3287 564 1693 1174 no

RL_d2 90 10954 6195 1300 3458 1223 yes 10273 5830 984,5 3458 1283 yes

Improved parameters

Set3 Total Cost Distance CostDelays Cost Nbr V Cost Time LNS N vehiculeTotal Cost Distance Cost Delays Cost Nbr V Cost Time LNS

RL_d55 28 3367 1949 456 962 367 no 5 3118 1819 337 962 322 no

RL_d01 46 6534 3873 785 1875 343 yes 6 6492 3819 797 1875 738 yes

RL_d96 53 7987 4587 1067 2331 463 yes 8 7471 4330 809 2331 565 yes

RL_d30 56 5908 3581 633 1693 680 no 8 5950 3570 686 1693 672 no

RL_d2 90 10318 5766 1093 3458 888 yes 12 10487 5855 885 3746 794 yes

Improved parameters

Set 1 Total Cost Distance CostDelays Cost Nbr V Cost Time LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS

RL_d01 46 6844 4096 561 2187 628 no

RL_d30 56

RL_d2 90

Improved parameters

Set2

RL_d01 46

3 RL_d30 56

34 RL_d2 90

Total Cost Distance CostDelays Cost Nbr V Cost Time LNS N vehiculeTotal Cost Distance Cost Delays Cost Nbr V Cost Time LNS

Time dependentRL_d55 28

RL_d01 46

RL_d96 53

RL_d30 56

RL_d2 90

Total Cost Distance CostDelays Cost Nbr V Cost Time LNS time lnsTotal Cost Distance Cost Delays Cost Nbr V Cost Time LNS

Larger operatorRL_d55 28 3165 1880 332 962 502 yes 0,4 3255 2062 231 962 320 no

RL_d01 46 6353 3710 768 1875 294 yes 169 6245 3741 628 6245 540 yes

RL_d96 53

RL_d30 56

RL_d2 90

4 5

4 5

4 5

4 5
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size Totaux

N vehicule Best AVG dev AVG time in min Total Cost Distance Cost Delays Cost Nbr V Cost % Distance %Delay % Vehicule

Inial version RL_d55 28 3037 3301,2 0,0800315 355,4 5,92333333 16506 9718 1978 4810 59% 12% 29%

RL_d01 46 6709 6945,2 0,0340091 567,4 9,45666667 34726 20409 4274 9998 59% 12% 29%

RL_d96 53 7404 7838,4 0,05541947 623,4 10,39 39192 18876 3937,5 8254 61% 13% 27%

RL_d30 56 5545 6170,2 0,10132573 640,6 10,6766667 30851 22542 4407 12239 58% 11% 31%

RL_d2 90 10273 10852,6 0,05340656 1151,6 19,1933333 54263 30752 6216,5 17290 57% 11% 32%

Improved parameters

Set3

RL_d55 28 3118 3208,2 0,02811545 376,6 6,27666667 16041 9604 1627 3853 60% 10% 24%

RL_d01 46 6492 6633,4 0,02131637 501,4 8,35666667 33167 19465 4011 9687 59% 12% 29%

RL_d96 53 7269 7607,4 0,044483 557,6 9,29333333 38037 21596 3905 12531 57% 10% 33%

RL_d30 56 5738 5911,2 0,02930031 834,6 13,91 29556 17964 3546 8043 61% 12% 27%

RL_d2 90 10180 10320 0,01356589 1082,2 18,0366667 51600 28913 5104 14419 56% 10% 28%

Improved parameters

Set 1

RL_d01 46 6409 6552,66667 0,02192492 669,666667 11,1611111

RL_d30 56 6120 6276,66667 0,02496017 492 8,2

RL_d2 90 10193 10455 0,02505978 1017 16,95

Improved parameters

Set2

RL_d01 46

3 RL_d30 56

34 RL_d2 90

N vehicule

Time dependentRL_d55 28 3002 3047,33333 0,01487639 399,333333 6,65555556 9142 5369 887 2886 59% 10% 32%

RL_d01 46 6187 6313,33333 0,02001056 728,666667 12,1444444 18940 11606 1395 5937 61% 7% 31%

RL_d96 53 7272 7542,33333 0,03584214 621,333333 10,3555556 22627 13312 1275 7869 59% 6% 35%

RL_d30 56 6035 6428 0,06113877 532,666667 8,87777778 19284 12232 2605 4446 63% 14% 23%

RL_d2 90 10698 10941,6667 0,02226961 822,666667 13,7111111 32825 19222 2939 10662 59% 9% 32%

0

time lns

Larger operatorRL_d55 28

RL_d01 46

RL_d96 53

RL_d30 56

RL_d2 90
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run size

Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS

Final version RL_d55 28 2964 1875 127 962 293 5 no 2929 1906 61 962 388 5 no

RL_d01 46 6430 4054 500 1875 559 6 no 6437 3968 594 1875 903 6 no

RL_d96 53 7512 4429 460 2623 670 9 yes 7576 4140 813 2623 617 9 yes

RL_d30 56 5715 3492 740 1482 1295 7 yes 5653 3670 501 1482 1170 7 no

RL_d2 90 10222 5694 781 3746 990 13 yes 9575 5573 543 3458 1813 12 no

1 2

run size

Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

Final version RL_d55 28 3070 1804 304 962 389 yes 5 2841 1622 257 962 387 yes 5

RL_d01 46 6436 4001 247 2187 917 no 7 6292 3483 621 2187 417 no 7

RL_d96 53 7204 4105 475 2623 1155 no 9 7307 4202 482 2623 599 no 9

RL_d30 56 5671 3430 547 1693 732 yes 8 5982 3582 616 1693 1278 no 8

RL_d2 90 10523 6197 868 3458 1222 yes 12 10153 5893 513 3746 1690 yes 13

3 4

run size

Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

Final version RL_d55 28 2994 1695 337 962 351 no 5

RL_d01 46 6496 3914 394 2187 813 no 7

RL_d96 53 7295 3990 390 2914 693 yes 10

RL_d30 56 5809 3755 360 1693 883 no 8

RL_d2 90 10607 5984 876 3746 939 yes 13

5

run size Totaux

Best AVG dev AVG time Total Cost Distance Cost Delays Cost Nbr V Cost

Final version RL_d55 28 2841 2959,6 0,04007298 361,6 6,02666667 14798 8902 1086 4810 60% 7% 33%

RL_d01 46 6292 6418,2 0,01966283 721,8 12,03 32091 19420 2356 10311 61% 7% 32%

RL_d96 53 7204 7378,8 0,02368949 746,8 12,4466667 36894 20866 2620 13406 57% 7% 36%

RL_d30 56 5653 5766 0,01959764 1071,6 17,86 28830 17929 2764 8043 62% 10% 28%

RL_d2 90 9575 10216 0,06274471 1330,8 22,18 51080 29341 3581 18154 57% 7% 36%
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Executive summary 

 
The dial a ride problem (DARP) is a specific transportation problem. The objective is to optimise the 

planning of a collection of trips made by a fleet of vehicles. Those trips aim to satisfy requests from 

users while meeting various constraints. The cleared example is the transportation of the elderly or 

disabled people. The problem has received increase interest in recent years as the demand for services 

that can be solved through DARP is rising. Due to the aging of the population, this demand will be even 

bigger in the future. Good optimisation tools are needed to respond to it. 

 In this thesis, I review the different heuristics to solve DARP before implementing a hybrid Bee 

Algorithm with Deterministic Annealing. The different creation steps are described before the 

algorithm is tested on several instances. The results are then used to explore possible improvements 

to the algorithm. Several real-life problems are discussed along the way. 

 

Keyword: Vehicle routing problem, Dial a ride problem, Optimisation, Hybrid metaheuristic, Bee 

algorithm, Deterministic Annealing 
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