
https://lib.uliege.be https://matheo.uliege.be

A constructive and improvement heuristic for the dial a ride problem

Auteur : Thomas, Frédérick

Promoteur(s) : Paquay, Célia

Faculté : HEC-Ecole de gestion de l'Université de Liège

Diplôme : Master en ingénieur de gestion, à finalité spécialisée en Supply Chain Management and

Business Analytics

Année académique : 2021-2022

URI/URL : http://hdl.handle.net/2268.2/13737

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

A CONSTRUCTIVE AND IMPROVEMENT

HEURISTIC FOR THE DIAL A RIDE

PROBLEM

Master thesis by

Frédérick THOMAS

For a Master in business

engineering with a specialized

focus in Supply Chain

Management and Business

Analytics

Jury:

Supervisor:
Célia PAQUAY

Reader:

Anisha MAHARANI

1

2

Acknowledgements

First, I would like to thank Ms Célia Paquay my supervisor. She trusted me with his proposal of thesis

and was always available to help me at all the stages of the process.

I would also like to thank the company Dufrais for allowing me to balance working for them and on my

thesis. They allowed me to arrange my work schedule in order to have the time needed to finish my

thesis.

Next, I want to thank Vincent Thomas and Orian Lambin for reading my thesis before it was summited.

His remarks were very helpful.

Finally, I want to thank all my friend and family which support me during the making of my thesis.

3

4

Table of contents

1. List of abbreviations ___ 6

2. Introduction __ 8

2.1. Problem description __ 8

2.2. Literature review ___ 11

3. Methodology __ 16

3.1. Problem formulation __ 16

3.2. Algorithm description __ 20
3.2.1. Bee Algorithm __ 20
3.2.2. Deterministic Annealing __ 21
3.2.3. Hybrid Bee Algorithm with Deterministic Annealing _____________________________________ 22
3.2.4. Decision-making __ 23

3.3. Algorithm implementation __ 24
3.3.1. Algorithm structure ___ 24
3.3.2. Components ___ 27

3.3.2.1. Instances __ 27
3.3.2.2. Solution structure ___ 28
3.3.2.3. Feasibility check __ 29
3.3.2.4. Calculation cost ___ 30
3.3.2.5. Solution creation __ 30
3.3.2.6. Selection phase ___ 31
3.3.2.7. Improvement phase ___ 32
3.3.2.8. Population adaptation ___ 34
3.3.2.9. Stopping criterion and large operator ___ 34
3.3.2.10. Parameters ___ 35
3.3.2.11. Local operators __ 36

4. Results and improvements ___ 44

4.1. Initial results ___ 44
4.1.1. Performance of the algorithm ___ 45
4.1.2. Cost distribution __ 46
4.1.3. Performance of the LNS __ 46

4.2. Improvements ___ 47
4.2.1. Parameters tuning __ 47
4.2.2. Larger operator for Large Neighbourhood Search _______________________________________ 51
4.2.3. Maximum ride time for vehicle __ 53
4.2.4. Time-dependent speed __ 54

4.3. Final version ___ 56

5. Conclusions ___ 58

6. List of Figures __ 60

7. List of Tables __ 62

8. List of Algorithms ___ 64

5

9. Appendices ___ 66

10. List of Appendix ___ 78

11. Bibliography and References ___ 80

6

1. List of abbreviations

DARP: Dial a ride problem

BA: Bees Algorithm

DA: Deterministic Annealing

ACO: Ant colony optimisation

GA: Genetic algorithm

SA: Simulated Annealing

LNS: Large Neighbourhood Search

Avg: Average

Dev: Deviation

CPU: central processing unit

7

8

2. Introduction

The dial a ride problem (DARP) is a specific transportation problem. The objective is to optimise the

planning of a collection of trips made by a fleet of vehicles. Those trips aim to satisfy requests from

users while meeting various constraints.

DARP has received increasing attention since the end of the 1980s. This is due to the fact that they

answer a growing need of the population. Indeed, public transportation has shown their limits and an

intermediary solution between personal transport services and them is required.

However, from an optimisation point of view, DARP is hard to solve as they must handle a lot of

constraints that can be different from a case to the next. That is why good algorithms are needed in

order to guide companies and states in their logistics.

In this section, I will present the problem through his more famous example before going into his

technical characteristics. Once this is done, we will take a look on the different algorithms used to solve

it. This will be done thanks to a literature review focusing on the contributions of various papers

concerning the method to solve DARP rather than on contributions regarding improvement of

objective functions and constraints.

2.1.Problem description

The more common example of dial a ride problem is the transport of the elderly or disabled people.

Due to their conditions, they might not be able to travel thought classic public transports, which are

not equipped to handle their needs. Those needs can go from special accommodations to the necessity

to have qualified drivers with medical knowledge. That is why several companies specialised

themselves in the transport of people with specific needs. Moreover, several countries have developed

dial-a-ride services.

For extreme cases, transport can be done with a single vehicle per person. However, dial-a-ride

problems focus on vehicles that have the possibility to accommodate more than one person at the

same time. That can be a minibus that has been arranged to accommodate wheelchairs or bed. Indeed,

it is both cheaper and better for the environment to transport several people at the same time.

Due to the aging of the population, those kinds of services will be needed even more in the future.

Furthermore, there is a trend for public transportation to fight global warming. It is then important to

have specialised public transport.

Both of those problems are solved thanks to dial a ride transportation. Moreover, new ambulatory

health care services are being developed every year.

All of those factors lead to an increase of the demand. Nowadays, the market has trouble absorbing it

while maintaining reasonable costs. That is why good optimisation tools to solve DARP are

indispensable. Otherwise, the price of those services will rise even though people needing those

services already have a lot of costs related to their conditions.

9

As we can see through this example, one of the main differences between DARP and other classic

transportation problems is the human factor. The aim is to minimise not only the cost of the

transportation but also the inconveniences to the users. Those inconveniences include the desired

hour to arrive at a specific medical appointment, but also the ride time. The well-being of the user is a

key aspect of the service and an augmentation of cost can be justified if it increases the quality of the

service. A balance between the two must be found.

On a more technical aspect, each user or request is represented by two nodes: an inbound and an

outbound. The first correspond to the origin location where they want to be picked and the second

one is the destination location where they want to be dropped off. Both have time windows during

which they need to be processed in order to meet the demands of the user. Furthermore, users have

a maximum ride time duration in order to maintain a certain quality of services.

The difficulty of the problem lies in how these requests can be assigned in the most efficient way. Each

user must be allocated to a vehicle, and each vehicle must follow the best sequence in order to satisfy

the different requests assigned to it. For that, a vehicle can transport more than one user at the same

time, as long as it does not violate the maximum time duration of each user.

DARP can be represented by a graph of nodes which represent the pickup and deposit locations of

each user. The journey of a vehicle is then represented by a series of arc linking those nodes together

in a specific order. For example, in Fig 1, we have 6 requests with 6 corresponding pickups P and

deliveries D. In the depot, we have two vehicles.

Fig 1. Empty example of DARP

10

A possible solution is presented in Fig 2 with the blue arrows representing the journey of the first

vehicle and the black ones the journey of the second.

Fig 2. Completed example of DARP

The constraints and objective function can be different from paper to paper. This is due to the fact that

the problem is complex. Furthermore, there is more than one aspect to this problem. The main

purpose remains the minimisation of the cost, but several managerial aspects can be added such as

the drivers’ well-being or vehicle maintenance. Finally, the quality of service must be ensured by

minimising the users’ inconveniences.

 The main variation of the objective function concerns the number of vehicles used. Some papers

consider the number of vehicles to be only a constraint, while others take it as a variable to minimise.

In practice the first guaranty the fulfilment of services while the latter follows more the point of view

of a company that would need to control the cost of additional vehicles.

 The constraints can be very different depending on the resemblance to reality sought. That could

include constraints such as specific accommodations like wheelchairs, vehicles starting from multiple

depots, maximum total ride time of a vehicle and so on.

DARP can be divided into two cases: static and dynamic. The static case assumes that every request is

known prior to the beginning of the day. This allows to a simple planning early in the morning. The

dynamic case, on the other hand, describes situations where requests keep coming as the day goes.

The planning must be adapted for every new request. The first one is, of course, simpler but might be

less realistic.

Another division can be made between the multiple vehicles DARP and the single vehicle DARP. The

latter being a particular case of the first.

For the remainder of this paper, we will focus on static multiple vehicles DARP

11

2.2.Literature review

The aim of this thesis being the creation of an algorithm solving static cases, I will focus on literature

talking about those. However, a summary of the algorithm developed for dynamic case made by

Cordeau and Laporte (2007) can be found at Appendix I. Furthermore, the aim of this literature review

is to identify which types of algorithms are commonly used to solved DARP rather than the objective

function and constraints usually employed. For that reason, I will focus on the evolution of the type of

algorithm used. A detail review of the addition of new constraints or the modification of the objective’s

functions can be found in Cordeau and Laporte (2003a,2007) and in Parragh et al. (2008)

The first kind of algorithm that got developed was algorithms for single vehicle DARP which is a simplify

version of the multi-vehicle DARP. The aim of those algorithms was to build a step into the solving of

multi-vehicle DARP. To only mention a few, Psaraftis (1980 and 1983) developed two exact algorithms

and Sexton (1979 and 1985a, b) two heuristics.

With the bases developed for the single vehicle DARP, Jaw (1984) developed one of the first heuristics

for multiple vehicle DARP. He created an insertion heuristic which aims to insert requests initially

classed based on their earliest possible pickup times into the best feasible place into a vehicle route.

This was further discussed in Jaw et al. (1986).

Several similar algorithms were proposed in the following years improving it with a new technique

called clustering. This technique groups requests to be served by the same vehicle prior to insertion.

This includes the algorithms proposed by Dumas et al. (1989a), Desrosiers et al. (1991) and Ioachim et

al. (1995).

Since then, several other insertion algorithms were proposed. I won’t describe each contribution since

they mainly concern the objective function and the constraints. However, it is interesting to mention

that some papers tried successfully to use metaheuristics to improve the clustering process. For

example, Rekiek et al. (2006) proposed the utilisation of Genetic Algorithm for clustering.

Even if insertion heuristics used to be the reference to solve DARP, it was quickly replaced by

metaheuristics. The difference between heuristic and metaheuristic is that a heuristic only applies to

one specific problem while a metaheuristic is a resolution method that can be applied to several

problems with adaptations. The reason behind this trend change is that most metaheuristics have been

developed during the second half of the 1980s and the 1990s. Ever since, they have been used with

success to solve various optimisation problems. They manage to find good solutions within acceptable

computational time. They work especially well for medium to large instances where exact algorithms

have difficulties.

For all those reasons, most of the papers published since proposed to use metaheuristics. Insertion

heuristics are, however, not forgotten. Various algorithm integrates insertion heuristics in

metaheuristic in order to find optimal results.

12

For example, Parragh et al. (2010) used Variable Neighbourhoods Search with three types of

neighbourhoods, Jain and Van Hentenryck (2011) a Large Neighbourhood Search with constraints

programming, Braekers et al. (2014) a Deterministic Annealing algorithm and Gschwind and Gschwind

and Drexl (2019) an Adaptative Large Neighbourhood Search.

However, the metaheuristic more frequently used are the following:

• Simulated Annealing with Colorni et al. (1996), Baugh et al. (1998) and Zidi et al. (2012),

• Genetic Algorithm with Uchimura et al. (1999), Jørgensen (2007) and Atahran et al. 2014),

• Tabu Search with Cordeau and Laporte (2003a), Aldaihani and Dessouky (2003) and

Melachrinoudis et al. (2007).

Furthermore, several hybrid metaheuristics combining two different heuristics have been developed.

Those hybrid versions have been proven to yield better results than the classic metaheuristics. Ho and

Haughland (2004), Guerriero et al. (2013) proposed a hybrid of Tabu Search with Greedy Randomised

Adaptative Search, Parragh and Schmid (2013) a hybrid of Large Neighbourhood Search and Variable

Neighbourhoods Search and finally Masmoudi et al. (2016) a hybrid Bee algorithm with Simulated

Annealing and Deterministic Annealing.

In parallel with the use of heuristics and metaheuristics, several exact algorithms with Branch and Cut

have been proposed. Branch and cut algorithms solve problems by relaxing the constraints. It means

that the problems are solved by ignoring constraints. Those constraints are then reinserted one by

one. The main drawback is the computational time that can be high.

There are two types of Branch and Cut algorithms that had been used. Three-index formulation such

as the algorithm presented by Cordeau (2006) and two-index formulation like the one proposed by

Ropke et al. (2007) or more recently by Braekers et al. (2014).

It is also worth mentioning the Hyperheuristic developed by Urra et al. (2014). Their Hyperheuristic

search among several low-level heuristics for good solutions rather than searching in the problem

space.

A table to summarise this section can be seen at Table 1.

13

Number
of

vehicles
Type Algorithm Reference

Single

Exact Dynamic programming
Psaraftis (1980 and
1983)

Heuristic
Iterates between routing and scheduling
phases

Sexton (1979 and
1985 a, b)

Multi

Exact
Branch and cut with two-index formulation

Ropke et al. (2007)

Braekers et al.
(2014).

Branch and cut with three-index formulation Cordeau (2006)

Heuristic

Insertion
Jaw (1984)

Jaw et al. (1986)

Insertion with clustering

Dumas et al. (1989a)

Desrosiers et al.
(1991)

Ioachim et al. (1995)

Insertion with clustering through Genetic
Algorithm

Rekiek et al. (2006)

Metaheuristic

Variable Neighbourhoods Search with three
types of neighbourhoods

Parragh et al. (2010)

Large Neighbourhood Search with constraints
programming

Jain and Van
Hentenryck (2011)

Deterministic Annealing Braekers et al. (2014)

Adaptative Large Neighbourhood Search

Gschwind and Drexl
(2019)

Simulated Annealing

Colorni et al. (1996)

Baugh et al. (1998)

Zidi et al. (2012)

Genetic Algorithm

Uchimura et al.
(1999)

Jørgensen (2007)

Atahran et al. (2014)

Tabu Search

Cordeau and Laporte
(2003a)

Aldaihani and
Dessouky (2003)

Melachrinoudis et al.
(2007)

Hybrid
metaheuristic

Tabu Search with Greedy Randomised
Adaptative Search

Ho and Haughland
(2004)

Guerriero et al.
(2013)

Large Neighbourhood Search and Variable
Neighbourhoods Search

Parragh and Schmid
(2013)

Bees algorithm with Simulated Annealing and
Deterministic Annealing

Masmoudi et al.
(2016)

Bees algorithm with Deterministic Annealing

Hyperheuristic Search among several low-level heuristic Urra et al. (2014)

Table 1: Summary of literature review

14

The primary objective of this paper will be to develop a heuristic to solve homogenous static case of

DARP with multi-vehicles and single depot. In order to do that, I first created an initial algorithm based

on specific objective functions and constraints. On the basis of this algorithm, several possible

improvements will be tested. Depending on their effects over the performance of the algorithm or his

realistic aspect, they will be kept in the final version of the algorithm.

This thesis is organised as follows. Section 2 methodology will include 3 parts. The first one will be a

problem formulation based on the objective function and constraints I chose to tackle. The second one

will be a description of the algorithm implemented. This will also include the decision-making for

choosing this algorithm. Finally, the different steps of the implementation will be presented in the third

part. Results and improvement will be discussed in Section 3. For that, I will begin by presenting the

results of the initial algorithm. Then several possible improvements will be proposed and their impacts

will be compared to the results mention above. This thesis will be concluded in Section 4.

15

16

3. Methodology

This section will present the methodology I followed in order to develop the initial version of my

algorithm. It is composed of three subsections. The first one explains my problem formulation. The

second one the choice of the type of algorithm I chose to design. Finally, the last one present the

implementation of this algorithm.

3.1.Problem formulation

Dial a ride problem can have several formulations depending on the situation the algorithm wants to
solve. The exact name of the problem I chose to tackle is the homogenous static DARP for multiple
vehicles with one depot. As seen in Section 1.1, the terminology static implies that every request is
known prior to optimisation and multiple implies that I work with more than one vehicle. The only new
aspect is the homogenous, which refers to a homogenous fleet of vehicles. That means that every
vehicle is considered to be exactly the same.

The other particularities of this formulation are:

• How the time windows are handled

• Different maximum ride time for every request

• Number of vehicles is a cost to minimise

• Possibility to have more than one customer per request

This problem formulation is based on the one presented by Roepke during the CAOS1 Seminar Series
of 2005. It has been adapted to fit my objective function and constraints.

DARP is modelled on a graph with a set of nodes and arcs G = (N, A). The nodes N corresponds to the
pickup locations P = {1, …, n}: the deposit locations D = {n + 1, …, 2n} based on n requests to be fulfilled
and the depot. The possible journeys of the set vehicles K of capacity Q are then represented by arcs
linking those nodes to each other’s. Each arc between nodes has a specified cost 𝑐𝑖𝑗 and a travel time

𝑡𝑖𝑗. Each node has three components. A desired time 𝑑𝑖, a number of customers to be served 𝑞𝑖 and a

maximum ride time 𝐿𝑀𝑎𝑥𝑖. The last two are the same for corresponding pickup and deposit nodes.

In addition to that, there is a constant cost per vehicle used and it is assumed that it takes 1 min to
load or unload a customer.

1 Copenhagen Algorithms and Optimization Seminars

17

All of the above give the following mathematical model:

Parameters:

• n: requests to be fulfilled composed of a pickup location and a deposit location

• P = {1, …, n}: pickup locations

• D = {n + 1, …, 2n}: deposit locations

• N= P ∪ D ∪ {0, 2n + 1} : all the nodes with 0 being the departure and 2n+1 the arrival point.
They both correspond to the same depot.

• K: Set of vehicles

• Q: Capacity of a vehicle

• 𝑞𝑖 : Amount loaded onto a vehicle at node i. For the pickups, this value is positive and for the
deposits negative

• 𝐿𝑀𝑎𝑥𝑖 : Maximum time for node i which is the same for i+n

• 𝑑𝑖 : Desired time for node i

• 𝑐𝑖𝑗 : Cost of travelling from node i to j

• 𝑐𝛼 : Cost per vehicle used

• 𝑡𝑖𝑗 : Travel time between node i and j

Variables:

• 𝑋𝑖𝑗𝑘 : Binary variable equal to 1 if vehicle k travels directly between location i and j

• 𝑌𝑘: Binary variable equal to 1 if vehicle k is used

• 𝐴𝑖𝑘 : Time at which vehicle k arrives at node i

• 𝑄𝑖𝑘 : The load of vehicle k after visiting node i

• 𝐿𝑖𝑘 : Ride time of node i in vehicle k

• 𝐷𝑒𝑙𝑖𝑘 : Delay from desired time for node i in vehicle k

18

Objective function:

Minimise: ∑ ∑ ∑ 𝑋𝑖𝑗𝑘𝑐𝑖𝑗𝑘∈𝐾𝑗∈𝑁𝑖∈𝑁 + 𝑌𝑘𝑐𝛼 +
1

2
∑ ∑ 𝐷𝑒𝑙𝑖𝑘𝑘∈𝐾𝑖∈𝑃 + 2 ∑ ∑ 𝐷𝑒𝑙𝑖𝑘𝑘∈𝐾𝑖∈𝐷

Contraints :

∑ ∑ 𝑋𝑖𝑗𝐾𝑘∈𝐾𝑗∈𝑁 = 1 ∀ 𝑖 ∈ 𝑃

∑ 𝑋𝑖𝑗𝑘𝑗∈𝑁 − ∑ 𝑋𝑛+𝑖,𝑗𝑘𝑗∈𝑁 = 0 ∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾

∑ 𝑋0𝑗𝑘𝑗∈𝑁 − 𝑌𝑘 = 0 ∀𝑘 ∈ 𝐾

∑ 𝑋𝑖,2𝑛+1,𝑘𝑖∈𝑁 − 𝑌𝑘 = 0 ∀𝑘 ∈ 𝐾

∑ 𝑋𝑗𝑖𝑘𝑗∈𝑁 − ∑ 𝑋𝑖𝑗𝑘𝑗∈𝑁 = 0 ∀𝑖 ∈ 𝑃 ∪ 𝐷, 𝑘 ∈ 𝐾

𝐴𝑗𝑘 ≥ 𝐴𝑖𝑘 + 𝑞𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑋𝑖𝑗𝑘) ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾

𝐷𝑒𝑙𝑖𝑘 = 𝐴𝑖𝑘 − 𝑑𝑖 ∀𝑖 ∈ 𝑃 ∪ 𝐷, 𝑘 ∈ 𝐾

𝐿𝑖𝑘 = 𝐴𝑛+𝑖,𝑘 − (𝐴𝑖𝑘 + 𝑞𝑖) ∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝐾

𝐿𝑖𝑘 ≤ 𝐿𝑀𝑎𝑥𝑖 ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾

𝑄𝑗𝑘 ≥ (𝑄𝑖𝑘 + 𝑞𝑗)𝑋𝑖𝑗𝑘 ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾

𝑄𝑖𝑘 ≤ 𝑄 ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾

𝑀𝑌𝑘 ≥ ∑ ∑ 𝑋𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁 ∀𝑘 ∈ 𝐾

𝑋𝑖𝑗𝑘 ∈ {0,1} ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾

𝑌𝑘 ∈ {0,1} ∀𝑘 ∈ 𝐾

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

The main difference between my formulation and those usually presented in papers is the time

windows. Usually, time windows are considered as a constraint to be respected. Instead of that, I work

with relaxed time constraints through desired times. This allowed me to construct an algorithm which

is less restrictive. However, time windows being a key component of the DARP, I did not drop them

completely. I have just handled them indirectly through the delays. Several papers allow for the

violation of time windows through a violation cost. I have done the same but on a broader scale.

The objective function (1) has 3 components: the distance travelled, the number of vehicles and the

delays. The first one is a classic of any transporter problem, but the two others are specific to my

formulation.

 I chose to add the number of vehicles as a variable to minimise to add a managerial perspective. For

company that offer services corresponding to DARP, each vehicle has an additional cost. Indeed, a

driver is needed for each vehicle. Furthermore, it is safer for companies to avoid using the entirety of

their fleet. This way, they can parry unexpected events such as cars breaking down. The cost 𝑐𝛼 must

be adapted depending on the situation. A tuning of this cost must be conducted to fit reality. This

19

tuning must be done in comparison with the cost of the distance and the delays. Indeed, the cost must

set according to the delays and travelled distances a company accepts to pay in order to use one less

vehicle.

The delays represent an inconvenience cost for the users. They are particularly important in my

formulation because it is this cost which controls the respect of the time windows. I have divided this

cost into two. The first one corresponds to the delays from departures while the ladder to delays from

arrivals. The impact of the first one is minimised by dividing it by two while the other is amplified by

multiplying it by 2. The aim of those modifications is to reflect a more realistic attitude toward delays.

Indeed, customers are more eager to arrive at their appointments in time even though they might

need to wait longer before departure than the other way around.

There are several groups of constraint depending on their purpose.

The first group define the structure of the routes. For that, the constraint (2) ensures that a request is

served exactly once and the (3) that the pickup and delivery of this request is fulfilled by the same

vehicle. The constrains (4) and (5) respectively guarantee that if a vehicle is used, he will start and finish

at the depot. Finally, the constraint (6) imposes the flow conservation, which means if a vehicle enters

a node, he must leave it.

The next group concern the calculation of the delays. Constraint (7) set the visit time of each node.

This then use in (8) for calculating the delays by comparing it with the desired times.

The third group forbid violations of capacity and maximum ride times. For that, (9) and (11) set

respectively the ride time of each request and the load at each node. Those are then controlled by (10)

and (12). In literature, the maximum ride time is usually fixed for every request. I chose to have

different maximum ride time to reflect a more realistic approach to the service quality asked by users.

Indeed, a user desiring to travel 1 km will accept to spend less extra time travelling than a user

travelling 50 km.

The last interesting constraint is the (13) which set 𝑌𝑘= 1 if any request has been assigned to the vehicle

k.

20

3.2.Algorithm description

As presented in Section 1.2, there is a new trend in literature toward hybrid metaheuristic. They are

proven to yield better results than classic ones. That is why I chose to implement such algorithm. I

chose to create an algorithm similar to the one presented by Masmoudi et al. (2016) with some

differences. The algorithm is a hybrid Bee Algorithm (BA) with Deterministic Annealing (DA).

For that, I will start by presenting each of the two algorithms separately before describing their hybrid

version. It is in this description that I will present the differences between the version I designed and

the one proposed by Masmoudi et al. (2016). This section will, however, remain theoretical. The actual

structure of my algorithm will be discussed in the next section. Once the different components of my

algorithm are presented, I will explain the decision process I had to choose this algorithm.

3.2.1. Bee Algorithm

They are several versions of The Bee Algorithm presented in literature. We will focus our description

on the method developed by Pham et al. (2005) and discussed in more detail in Pham et al. (2015).

Bee Algorithm is a swarm based evolutionary algorithm inspired by the behaviour of scout bees. Swarm

based algorithms mimic natural phenomena in order to search for optimal solutions. In opposition of

other direct search algorithms, swarm algorithms explore a population of solutions rather than to focus

on only one solution to improve. There are several other swarm algorithms the more famous being the

Ant Colony Optimisation (ACO) and the Genetic Algorithm (GA). The main difference between ACO and

BA is that AOC tries to avoid moving too far from their initial solutions while BA does not have such

limits. We have seen in section 1.1.2 that GA has been used by several authors to solve DARP. However,

it has been proven that Bees Algorithm tends to yield better result than the GA.

The BA is inspired by the behaviours of bees’ colonies looking for good food sources. A beehive is

organised in a complex structure where bees are assigned to specific tasks. The task we are focusing

on for the BA is the scouting for good food sources to dispatch harvesting bees. Due to the fact that

the harvesting of pollen only occurs during a certain period, it is important that the harvesting be as

proficient as possible.

When searching for good locations to harvest pollen, scout bees begin by searching in random areas.

Locations are evaluated according to several factors such as the sugar percentage of possible flower

patches. Once they found a good one, they come back to the hive and communicate the quality of the

location found by a dance called ‘waggle dance’. This dance communicates information such as

direction, distance and quality of the possible food source. Based on the dances of the initial scouts,

harvesting bees are dispatched to the possible food sources depending on the fitness of the source.

The fitness being a combination of the quality compared to the distance of the source.

However, the work of the scout’s bees is not over yet. The scout’s bee will lead the harvesting bees to

the areas previously found and then search around this area for possible new food sources.

21

Furthermore, new scout’s bee will be sent to areas that were not explored yet. This process is then

repeated.

The Bee Algorithm follows the same process. A population of initial solutions are evaluated according

to their quality. Based on those, an extensive search is conducted in the neighbourhood of the best

initial solutions. Furthermore, solutions with average qualities are also considered, but fewer efforts

are put into them. This can be seen as central processing unit2 (CPU) allocation based on the quality of

the solutions. The allocation is done according to three groups: a group of good possible solutions on

which a lot of CPU is allowed, a group of decent solutions which receives a bit of CPU and the other

solutions with poor quality which receive no CPU. This is the theoretical principle, however, in practice,

adding some randomness in the making of the three groups yields better results.

After the different searches, a new population is created containing the new solutions found along

with newly generated ones. The process is then repeated. The search for possible improving solutions

made during the algorithm is done through local searches in the neighbourhood of the solution.

BA is actually combination of iterative local search and random global search. The first being the search

in the neighbourhood and the second refers to the use of populations. This allowed easy hybridisation

as the iterative local search can be done with other metaheuristics.

3.2.2. Deterministic Annealing

The Deterministic Algorithm (DA) or Threshold accepting was first introduced by Dueck and Scheuer

(1990). It is a variant of the Simulated Annealing which is inspired by the annealing process used in

metallurgy to obtain good metal quality. In this process, warm metal is cooled before being heated

again in order to improve its overall quality. Adapted to an optimisation process, it means that a

solution is worsened in order to find a better one at the end.

The DA is actually a simplification of the classic Simulated Annealing (SA) which has the advantage to

be faster while keeping relatively good precision. However, DA does not guarantee to find the global

optimum. Another advantage of the DA is that it is relatively easy to understand and implement.

Furthermore, fewer parameters are needed.

DA is a meta-heuristic based iterative local search. At each iteration, local search operators are applied

to a solution. Each time, the solution is improved thought the local search, it is accepted as the new

current solution. Otherwise, it is accepted as long as it does not deteriorate too much the solution. For

that, an acceptance threshold is defined. However, this threshold will evolve as the iterations go. Each

time, a worse solution is accepted, the threshold is lowered until only improving solutions are

accepted.

2 computational time

22

3.2.3. Hybrid Bee Algorithm with Deterministic Annealing

A hybrid Bee Algorithm with Deterministic Annealing has several advantages. The BA hybridised well

with DA because the DA can easily replace the iterative local search of the BA. Furthermore, DA has

the inconvenience to not guarantee global optimum. This is solved through the random global search

of the BA. Finally, the speed of the algorithm remains reasonable thanks to the fact that DA is quite

fast.

As mentioned before, the hybrid BA with DA I have chosen to implement is derived from the one

proposed by Masmoudi et al. (2016). In this paper, three metaheuristics are presented to solve DARP.

An Adaptative Large Neighbourhood Search, Hybrid Bee Algorithm with Deterministic Annealing and

Hybrid Bee Algorithm with Simulated Annealing. Their study shows that the two hybrid algorithms

outperform the classic Adaptative Large Neighbourhood Search or even simple BA, DA or SA.

Furthermore, BA with DA works faster the BA with SA while keeping the same precision.

There are several differences between the BA with DA presented by Masmoudi et al. (2016) and the

one I made. They once again concerned the objective function and the constraints, but also technical

elements of the algorithm structure.

Masmoudi et al. (2016) worked on multi-depot multi-trip heterogeneous dial a ride problem while I

work on single depot single trip homogenous dial a ride problem. This means that I work with only one

depot with one trip instead of multiple depots with multiple trips due to lunch and coffee break.

Furthermore, my fleet of vehicles is homogenous instead of heterogenous meaning all my vehicles are

the same while they deal with vehicles with different accommodations and capacities.

The next difference is the control of the time windows. Indeed, I chose to tackle this constraint as

desired time and delays while they kept it as a classic constraint.

Next, I added the number of vehicles as a variable to minimise. I also specified different maximum ride

times for each request depending on the distance they wish to travel instead of a constant maximum

ride time for every user.

Algorithm by Masmoudi et al. (2016) My algorithm
Objective function

Multiple trips to multiple depots Single depot with one trip

No delay minimisation Minimisation of delays

No vehicle minimisation Minimisation of vehicle

Constraints

Lunch and coffee breaks No breaks

Multiple type of vehicles One type of vehicle

Multiple trips per vehicle One trip per vehicle

Time windows Desired times

Constant maximum ride times Adapted maximum ride times

Table 2: Algorithm comparison

23

On a more structural level, I have implemented different local operators than them and my solution

creation process differs for the one they proposed. I also adapted the parameters and stopping

criterion while remaining in the same ideas.

Finally, the last big difference is that I have added several iterations of a large search operator in order

to improve my solution even more at the end of the classic hybrid BA with DA.

3.2.4. Decision-making

After my literature review, it was clear that hybrid metaheuristics perform better than classical ones.

I just had to choose which hybrid version I would implement. I initially wanted to create a hybrid

version of the Genetic Algorithm but after some research I realised that the BA is proven to yield better

results while keeping the same logic.

Once I had decided to use a BA, I still needed to choose which other meta-heuristic to hybridise it with.

The paper of Masmoudi et al. (2016) gave me a good comparison between two algorithms I was already

considering which are DA and SA. I initially wanted to develop a hybrid with SA but their paper showed

me that DA was not only faster but also simpler to understand and implement. The speed of the

algorithm was a decisive factor because my computer is not very performant. That is why the balance

between computational time and precision was particularly important in my decision-making process.

Furthermore, DA has fewer parameters than SA which means fewer to tune.

For all those reasons, the hybrid BA with DA was the perfect compromise as it was fast while having

the same level of precision of the hybrid BA with DA.

However, I still wanted to improve the precision. That is why I added the Large Neighbourhood search

to my algorithm.

24

3.3.Algorithm implementation

In this section, I will describe how I implemented my algorithm. For that, I will start by an overlook of

the algorithm before describing its components.

3.3.1. Algorithm structure

The structure of the algorithm can be seen in the Algorithm 1 and the flowchart of Fig3. However,

some explanations are needed. In this explanation, I will use the term current best solution and global

best solution. The current best solution refers to the best solution in a specific iteration. On the other

hand, the best global solution refers to the best solution found so far. In addition to that, the notation

N, be, es will be used several times. Those notation both refer to groups and the sizes of those groups.

Algorithm 1: Pseudo-code of the proposed hybrid Bee Algorithm with Deterministic Annealing

START

 Creation of initial Population N

 REPEAT

Step 1: Evaluate the quality of each solution of population N and memorise the best current

one

 Step 2: Select (be) solutions from N and sort them in ascending order

 Step 3: Select the best (es) solutions from the (be) solutions

 Step 4: Apply Deterministic Annealing on each of the (es) solutions

 Step 5: Apply few iterations of local search operators on the (be-es) solutions

 Step 6: Evaluate the quality of the new solutions and select the best one

 IF the current is the better than the best global

 THEN Replace the global best with the current one

 END IF

 Step 7: Insert the (be) new solutions in the population N

 Step 8: Create (N-be) new solutions

 UNTIL Stopping criterion reached

 REPEAT

 Step 9: Apply Large local search operator on the best solution

 UNTIL No improvement after 5 consecutive applications

 OUTPUT Best solution

STOP

The algorithm starts with a constructive insertion heuristic to create the initial population N. After that

Step 1 to 8 are repeated until the stopping criterion is reached.

25

The Step 1 evaluates the solution of the population N. At the first iteration, the best solution will be

memorised as the best global solution. For other iterations, it will only be memorised as the best

current one.

A selection is made among the population N. The selected (be)3 solutions from N are then sorted in

ascending order. Those two processes constitute the Step 2.

The best (es)4 solutions from (be) solutions are selected in Step 3 and Deterministic Annealing is

applied to them in Step 4.

The other (be-es)5 solutions go through a local search for few iterations in Step 5.

The Step 6 is similar to the Step 1 except on the newly found solutions of (be).

 Step 7 insert the (be) new solutions in the population N and finally the rest of the population is

replaced with new solutions in Step 8.

To finish the algorithm, iterations of large neighbourhood search is applied in Step 9 until there is no

new improvement for 5 consecutive iterations. The result gives us our best solution.

The sizes of the groups N, (be), (es) and (be-es) depend on parameters of the same names.

This algorithm6 will be implemented in Julia Programming Language7 and the tests are performed on

a laptop Lenovo Y700 with Intel® Core ™ i5-6300HQ CPU @ 2.30 GHz and 8 GB of RAM. The laptop is,

however, old thus his performances are weakened.

3 Group of solutions to be explored
4 Group of solutions to be explored in depth.
5 Group of solutions to be explored succinctly
6 The complete code can be found at:

https://drive.google.com/drive/folders/1yxdy5vMW6WKlGJRBcO4SW4clfQa8ywsb?usp=sharing
7 https://julialang.org/

26

Fig 3. Flowchart of the hybrid Bee Algorithm with Deterministic Annealing

27

3.3.2. Components

3.3.2.1. Instances

Due to the versatility of the problem regarding his objective function and his constraints, there are a

lot of different instances proposed in literature. Papers usually agree on the instances proposed by

Cordeau and Laporte (2003b) as a basis to build instances adapted to one’s problem formulation.

Nevertheless, I have decided not to use those and instead chose the one proposed by Chassaing et alt

(s.d). Their instances followed the structure of the ones proposed by Cordeau and Laporte (2003b) but

are more realistic. Indeed, it is possible to have more than one customer per request and the distances

are calculated based on the real distances that a vehicle would have to make rather than on the

Euclidian distances between the two points. This means that triangular inequality is not respected.

Those instances only take into account one type of customer. Furthermore, each request has a

maximum ride time assigned based on the distances he wants to cross rather than a constant

maximum ride time for every request.

They also have the following specificities:

• The points refer to cities in France.

• The vehicles are believed to travel at a constant speed of 80 km/h.

• The requests of each instance are dispatched on territory corresponding to a French

department. This means areas vary between 100 km² and more than 8500 km².

• Distances are given in metres.

• Time windows are given in minutes.

• The n requests are divided into pickup and delivery.

• A number from 1 to n is attributed to the pickup.

• The deliveries are given the number corresponding to their pickup +n.

I still had to adapt those instances to my constraints. For that, I have transformed the time windows

into desired delivery and pickup times by taking the median of the time windows. For example, a node

with a time window of [480,650] will have a desired time of 5658.

Finally, the speed was given in kilometres per minute, so a basic conversion was made to transform it

in metre per minute. In the rest of the algorithm, everything will be handled either in minutes or

metres.

The size of the instances can be very different. In order to have a better understanding during the tests,

I have divided them into 3 subgroups depending on their sizes. Instances with under 50 requests are

considered to be small, instances with 50 to 75 to be medium and the one with over 70 requests to be

large. The range for the medium instance seems small, but in practice the majority of the instances are

medium.

8 (480 + 650) /2 = 565

28

3.3.2.2. Solution structure

The solution structure is a key element of the algorithm since every other component will be

constructed to work with this structure. That is why, a simple combination of numbers representing

the request is not enough. This structure must contain more than that. Key variables must be kept in

my solution structure and evolve as the solution evolves in order to avoid calculating them again at

every step they are needed.

Among the six variables I have presented in section 5.1, I have chosen 3 of them who will be a part of

my solution structure:

• The time at which a vehicle arrives at a node

• The load of the vehicle after visiting a node

• The delay between desired time and actual time of arrival

The two binary variables are, of course, indirectly represented as they define the journey of a vehicle

and the allocation of requests to those vehicles. Finally, the ride time of a node will not be a part of

the solution. This will only be used in the feasibility check of my solution thus will be calculated when

needed.

In addition to that, I have decided to keep the desired departure times of each node as this data will

be used at different steps of the algorithm.

The actual structure is a vector of vectors of vectors. The first level has as much vector as they are

vehicles used in the solution. This level represents the solution as an all. The second one has as much

as there are nodes in a vehicle trip. It represents the sequence a specific vehicle follows. Finally, the

last level represents each node with the data associated to it. For this level, the data are presented in

the following order are [Node number, Desired Time, Actual Time, Delay, Number of users inside the

vehicle]. The desired time, the actual time and the delays are all in minutes.

This gives us solutions like the one presented in Fig.4.

[13 360 360 0 3; 14 360 380 20 6; 18 360 378 18 7; 28 390 390 0 8; 42 409 415 6 5; 46 415 443 28 4; 25

420 480 60 8; 41 456 456 0 5; 53 489 489 0 1; 56 491 491 0 0; 11 570 570 0 2; 39 626 626 0 0; 4 630

636 6 4; 32 672 672 0 0; 15 810 810 0 1; 43 851 851 0 0; 1 1080 1080 0 4; 29 1103 1103 0 0]

[23 390 390 5 3; 51 444 444 0 0]

[9 360 360 7 4; 3 360 421 61 7; 31 411 411 0 4; 37 439 439 0 0; 8 600 600 0 3; 36 663 663 0 0; 10 840

840 0 2; 27 840 935 95 6; 38 947 947 0 4; 55 985 985 0 0]

[22 330 330 0 1; 5 360 360 0 2; 7 360 384 24 6; 50 397 398 1 5; 33 416 416 0 4; 35 421 448 27 0; 26

600 600 0 2; 54 658 658 0 0; 2 660 676 16 1; 30 800 800 0 0; 20 840 842 2 1; 21 870 870 0 2; 48 969

969 0 1; 49 975 997 22 0]

[19 330 330 0 4; 17 360 364 4 5; 24 360 399 39 8; 52 420 420 0 5; 47 428 447 19 1; 45 464 470 6 0; 12

570 570 0 4; 40 619 619 0 0; 6 660 670 10 3; 34 758 758 0 0; 16 870 870 0 4; 44 932 932 0 0]

Fig 4. Solution example

29

This solution has 5 vehicles within []. Nodes inside a vehicle are separated by ; .If we take a closer look

at the fifth vehicle, we can see that the vehicle will begin by going to the node 19 at the desired

time 330 to pick 4 customers. After that he will go to the 17 at 364 with 4 min of delay from desired

time to pick 1 customer and so on. If we focus on the node 19, we can see that the delivery of this

node will be the fifth stop as there are 28 requests9.

A clearer representation of the journey of vehicle 5 can be seen in the Fig. 5 with the numbers over

the cases being the number of customers entering or leaving the vehicle at this node and the numbers

under being the time of arrival at a node.

Fig. 5: Example solution representation

3.3.2.3. Feasibility check

The feasibility check controls the constraints 9 to 12 of my problem formulation. It makes sure that the

capacity of a vehicle is never passed and that the maximum ride time of each request is respected.

This feasibility check is done at several points of the algorithm. The first one being, of course, as a

solution is created and the other points are at each local search, since each local search operator will

create new solutions.

However, it will not be the same at every point. Indeed, enforcing the respect to these two constraints

at every point of the algorithm restrict the diversity of the solutions explored. The solutions created

are too similar if they have to respect both constraints. This can lead to the algorithm sticking itself

into local minima.

That is why a relaxed feasibility check is performed during the hybrid DA with BA and a restrictive on

the final solution. This relaxed version only force the respect of the vehicle’s capacities and allows for

violation of maximum ride times. This is designed this way as it is more realistic to let users ride longer

than planned rather than allowing having more people than places in a vehicle.

Nonetheless, the maximum ride times are not removed completely from the algorithm. Instead, each

violation is penalised by a huge fee. This way, several solutions with cost violations are created during

the different stages of the algorithm. However, the final solution never has any violations.

9 19 + 28 = 47

30

3.3.2.4. Calculation cost

The cost calculation will, of course, be as describe in the objective function presented in 2.1. However,

two points need to be explored in detail.

The first one concerns the cost per vehicle used. A possibility would have been to have hierarchical

objective function. Which would have meant that the algorithm would prioritise the minimisation of

an element of the objective function before looking to minimise the other ones. In my case, I would

have looked to minimise the distances then the delays and finally the number of vehicles.

Instead of doing that, I chose to convert each element of my objective function into the same unit: an

amount of time. This allows me to have a single cost to minimise without having to hierarchies them.

For that, the distances are converted into travel times thanks to the speed of the vehicle. The delays

already are represented by amounts of time and finally, the cost per vehicle is a constant amount of

time. This constant amount of time would need a lot of tuning in order to represent the actual cost of

a vehicle to a company. However, this will not be explored in more detail here as it is not the aim of

this thesis. In this algorithm, it will be equal to twice the travel time between the depot and the farthest

node.

The second point concern the maximum ride times. As we have seen in the previous section, the

feasibility check allows the violation of this constraint at the cost of a huge fee for intermediary

solutions. This fee is similar to the cost per vehicle with the exception that it is also multiplied by the

number of vehicles available. This way maximum ride time violation will only occur if no empty vehicles

are available.

3.3.2.5. Solution creation

To create my solutions, I used the insertion heuristic presented by Jaw (1984) and further discussed in

Jaw et al. (1986) with some modifications. The idea behind it is to insert requests one by one inside

the solution at the best feasible places.

Jaw (1984) presents this insertion heuristic on two DARP. The first has relaxed time constraints with

desired times and the second stick time constraints with time windows. The first case corresponding

to my problem formulation, I will focus on it.

I still made two important changes from the version of Jaw (1984). The first one concerns the order in

which requests are inserted into the solutions. Jaw develops several techniques such as sorting in order

to improve the final solution of his heuristic. However, the quality of the solution is not really the aim

of this process. I want to have a diversified population of solutions with decent quality not optimal

quality. That is why, the requests are inserted in random order into my solutions. This way, I obtain a

new solution each time the process is used.

The second change concern the actual insertion of a request inside a vehicle. Jaw explores each feasible

way a request can be inserted inside a vehicle and then select the one with the lowest cost. Instead of

doing that, each time I insert a request into a vehicle, she is put in the first place. Following that, the

nodes of the vehicle are sorted according to their desired time. With this method, the sequence of a

vehicle might be suboptimal. That is why a local search will be developed later to rearrange the

sequence of a vehicle in order to find a better one.

31

This second change was made in order to accelerate the solution creation process which will occur at

each iteration of my algorithm.

Each time a population is created, they will be evaluated according to their cost.

3.3.2.6. Selection phase

The selection phase is done to form the groups of solutions (be) and (es).

From the initial population, a predefined number of solutions are selected to compose the group (be).

Those selected solutions are then separated into two groups based on their qualities. For that, the

group (be) is sorted in ascending order. The first group correspond to the (es) solutions. Those solutions

will be explored in depth in the following section. On the other hand, the second group of (be-es)

solutions will be explored succinctly.

It could be reasonable to believe that the tournament process should always select the best solutions

of the current population. However, that would not lead to the best result because it limits the

diversification of the algorithm.

The selection process is a key element of all the metaheuristics based on population. For that reason,

several techniques exist. Those techniques can be divided into two types: proportionate-based and

ordinal-based. The first select solution based on calculated probabilities while the latter select based

on an order. An extensive list of techniques has been presented by Miller and Goldberg (1995).

Two techniques have been explored, one of each type. In both the quality of a solution refer to his

cost.

The first technique is proportionate-based. The principle is that each solution has a probability to be

selected according to the relative difference between the worst solution of the population and them.

What this mean is that the proportion of a solution is higher if his relative quality is better.

The formula used is the following:

𝑃𝑟𝑜𝑏𝑖 =
𝐶𝑜𝑠𝑡𝑀𝐴𝑋−𝐶𝑜𝑠𝑡𝑖

∑ 𝐶𝑜𝑠𝑡𝑀𝐴𝑋−𝐶𝑜𝑠𝑡𝑗)𝑗∈𝑁(
 ∀𝑖 ∈ 𝑁

𝐶𝑜𝑠𝑡𝑀𝐴𝑋 being the cost of the worst solution of the population.

This selection is repeated (be) times.

The second technique is called tournament selection. It was proposed by Miller and Goldberg (1995).

It has been tested for several transportation problems by Freitas (2013) with good results.

This technique works by randomly selecting a subgroup of the population of size (s). Then the solution

of the subgroup with the best quality is selected. The process is then repeated (be) times.

After some experimentation, I have realised that the first method led to the same solution being

selected over and over. This led to a fast convergence of my population. That is why, the second

technique is the one that I have used in this algorithm.

32

It is theoretically possible that the current best solution of the algorithm is lost during this phase. This

is due to the random factor of this selection process. This is attended as this current best might be a

local minimum. That is why exploring other solutions might yield better result than exploring this global

best solution at each iteration.

3.3.2.7. Improvement phase

The improvement phase is where the algorithm search for better solutions. While it is possible to find

good new solutions during the solution creation process, the chances are low. That is why this phase

is the key of this algorithm.

This section will include both the Deterministic algorithm and the local search. They are applied in

parallel on the (es) solutions and on the (be-es). I will start by the DA as it is the more important one.

These two techniques will be followed by a check for a new global best solution.

a) Deterministic Annealing on the (be) Solutions

Where classical Bee Algorithm would only make a local search on this level, I have chosen to implement

a Deterministic Annealing as it worked well as an improvement metaheuristic. This DA will be applied

on each of the (es) solutions.

The main component of the DA is the threshold 𝑇, which will determine if a solution found after the

application of a local operator will be accepted or not. It will be accepted if the solution is feasible and

the worsening of the solution after the application of the local operator does not exceed the current

threshold. Of course, if a solution is improved, she will be accepted directly. Each time an iteration is

concluded without improvement of the best solution, the threshold 𝑇 is reduced by predefined

amount ∆𝑇. 𝑇 decrease until no worse solutions are accepted.

Furthermore, if the threshold become negative, it is reset to a certain value.

This DA will be based on the one presented by Braekers et al. (2014). The main difference will be the

stopping criterion I used. Braekers et al. (2014) stopped their algorithm after 25000 iterations.

However, this DA being applied to several solutions at each iteration of my algorithm this number must

be tuned down. Masmoudi et al. (2016) tune this number iteration down to 5000. This remains too

high for my algorithm as each iteration would go on for at least 15 minutes.

Several numbers of iterations were tested but finding a number of iterations which keep acceptable

time for each instance is not an easy task. Indeed, large instances may take 15 minutes to perform an

iteration while a small instance takes 15 seconds.

For that reason, I completely change the stopping criterion. Instead of it being a defined number of

iterations, it is a defined amount of time. As long as the amount of time defined is not passed, the DA

will start a new loop. This way, I maintain an acceptable run time for every instance. This, however, led

to a drop in precision as the size of the instance increase. The stopping time chosen is 15 seconds.

33

A pseudo-code of my DA can be seen in Algorithm 2. His functioning will, however, be discussed here.

Before starting, the threshold 𝑇 is set to his maximum 𝑇𝑚𝑎𝑥, 𝑖𝑖𝑚𝑝 to 0, 𝑋𝐵𝑒𝑠𝑡 and 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to be the

initial solution 𝑋𝑖𝑛𝑖. The following steps are going to be repeated for a predefined amount of time. At

each iteration, 1 is added 𝑖𝑖𝑚𝑝. This 𝑖𝑖𝑚𝑝 will monitor the number of iterations since an improvement

of the global solution is found. Each time a better global solution is found, it is set back to 0.

At this point, each local operator is applied to 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in random order. Each time an operator is

applied, we checked if the new solution 𝑋𝑚𝑜𝑑 is accepted. This requires two things. First, the solution

must be feasible. Second, the solution must either be an improvement of the 𝑋𝐵𝑒𝑠𝑡 at which point

𝑋𝑚𝑜𝑑 become the new 𝑋𝐵𝑒𝑠𝑡 and 𝑖𝑖𝑚𝑝 set to 0 or be accepted through the threshold T.

Once each operator is applied, the second part of the algorithm begins. This part will have two

purposes. Adapt the threshold and avoid that the algorithm goes too far from the 𝑋𝐵𝑒𝑠𝑡 without any

success. Each time an iteration is done without any improvement of 𝑋𝐵𝑒𝑠𝑡, ∆𝑇 is subtract from 𝑇.

After a certain number of iterations, T will become negative. When it arrives, it is reset to proportion

of 𝑇𝑚𝑎𝑥 calculate by multiplying 𝑇𝑚𝑎𝑥 by a random number between 0 and 1. Each time this is done,

we check the number of iterations since an improvement has been found thanks to 𝑖𝑖𝑚𝑝. If the number

of iterations is bigger than the predefined number 𝑛𝑖𝑚𝑝, we reset 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the value of the best

solution found so far 𝑋𝐵𝑒𝑠𝑡.

Algorithm 2: Pseudo-code of the proposed Deterministic Annealing

START

 Initialise Threshold 𝑇 = 𝑇𝑚𝑎𝑥, 𝑖𝑖𝑚𝑝 = 0 and 𝑋𝐵𝑒𝑠𝑡 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑋𝑖𝑛𝑖

 REPEAT 1

 Add 1 to 𝑖𝑖𝑚𝑝

 REPEAT 2 for each operator

 Apply a local search operator L on 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to obtain = 𝑋𝑚𝑜𝑑

 IF 1 𝑋𝑚𝑜𝑑 is accepted

 THEN 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑋𝑚𝑜𝑑

IF 2 the cost of 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡<cost of 𝑋𝐵𝑒𝑠𝑡

 THEN 𝑋𝐵𝑒𝑠𝑡 = 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑖𝑖𝑚𝑝 = 0

 END IF 2

 END IF 1

 END REPEAT 2

 IF 3 𝑖𝑖𝑚𝑝>0

 THEN subtract ∆𝑇 from 𝑇

 IF 4 𝑇 <0

 THEN Set 𝑇 = 𝑇𝑚𝑎𝑥 × 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1

 IF 5 𝑖𝑖𝑚𝑝> 𝑛𝑖𝑚𝑝

 THEN 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑋𝐵𝑒𝑠𝑡 and 𝑖𝑖𝑚𝑝 = 0

 END IF 5

 END IF 4

 END IF 3

UNTIL 1 The maximum amount of time is passed

 OUTPUT 𝑋𝐵𝑒𝑠𝑡

STOP

34

This process is time consuming but yield good results. That is why it is only applied to the (es) solutions

and not on the entirety of the population (be).

b) Local search on the (be-es) solutions

The solutions (be-es) having worst qualities than the (es) solutions, the local search applied on them

will be more succinct. To each of them, four local search operators are applied in random order for a

predefined number of times 𝑛𝑚𝑎𝑥. Each time a local search operator is applied to a current solution,

the newly constructed solution is kept only if it is feasible and its cost is better than the current

solution.

This method is simpler and solutions are more likely to be stuck into local minima. However, applying

this local search improve the global performance of the algorithm since global best solutions can be

found in this process.

c) Check for new global best

Now that the selected solutions (be) have been improved. I can check if the improvement phase has

found a new global best solution. For that, a comparison is made between the current best solution of

(be) and the global best.

3.3.2.8. Population adaptation

Once the improvement phase is over, i need to diversify our population in order to avoid a

convergence. For that, a new population must be created.

To create this population, i first keep all the (be) solutions that i have improved during the

improvement phase. To fill the rest of the population there are two possibilities. Either I keep the other

solutions of the initial population and modify them or create new solutions completely. I have chosen

the latter.

3.3.2.9. Stopping criterion and large operator

The processes describe the three previous sections are then repeated until our stopping criterion is

reached. The stopping criterion I chose is to monitor the number of iterations since my hybrid BA with

DA has found a new global best solution. If no better solution has been found for five consecutive

iterations, the BA is stopped.

On this global best, I will conduct an additional large neighbourhood search. For that, I use a specific

large search operator different from the ones used during the BA.

This large neighbourhood search is conducted as long as better solutions are found. The solution

obtained is the final solution.

35

3.3.2.10. Parameters

One of the drawbacks of the utilisation of a hybrid algorithm is that it increases considerably the

number of parameters to tune. Indeed, each meta-heuristic has several parameters that need to be

adapted to each problem but also to the set of instances used. In addition to that, I also have an

additional parameter (s) which comes from the tournament selection. The parameters I chose to apply

were based on recommendations of literature mixed with some intuitions. I will present them in the

following order: the parameters of the BA, the parameter from tournament selection and finally the

parameters of the DA. The parameters of the BA having direct influences over the others, they will be

presented first.

a) Bee algorithm

There are four parameters for the BA. They determine the size of the different groups used during the

algorithm. In order to set them, I used the computational result of the parameters setting of the

algorithm of Masmoudi et al. (2016) (Appendix II).

The first one is the size of population N, the second the size of the test population (be) and the last the

size of the group for deep investigation (es). Their results show that they obtain a good compromise

between precision and computation time by setting N = 20, be = 15 and es = 5. However, in order to

save computation time, I chose to set them to N = 10, be = 5 and es = 3. Indeed, with those parameters,

the computation time drops significantly without degrading to much the precision. They need 2/3 of

the time for a slight drop in precision.

A fifth parameter can be considered, the number of iterations of local search done on the (be-es)

solution. For this one, I used the same as Masmoudi et al. (2016) which is 10.

b) Tournament selection parameter

The parameter (s) of the tournament selection is the parameter that decides how many solutions are

taken to form a subgroup from which the best solution is selected to be a part of (be). The bigger this

number is, the higher chance there is that the same solutions are selected more than once. This

parameter directly depends on the size of the population N decided above.

Tests have been conducted with the value 2,3,4 and 5. During these tests, I monitored the evolution

of the population and realised that the value 3 allowed for a good level of diversification without losing

too many good solutions.

c) Deterministic Annealing parameters

DA has, by far, the hardest parameters to set. Indeed, the different parameters directly interact and

the impact of the modification of one of them has consequences to all the others. Furthermore, the

stopping criterion directly impacts the setting of the parameters. In order to set them, I took elements

36

from Masmoudi et al. (2016) and Braekers et al. (2014). However, the stopping criterion of both their

algorithms being considerably bigger than mine. That is why I had to tune them down following my

intuition.

The three parameters to set are the maximum threshold value 𝑇𝑚𝑎𝑥 , the threshold reduction ∆𝑇 and

finally the restart parameter 𝑛𝑖𝑚𝑝. The first two are directly related as ∆𝑇 can be seen as the

proportion of 𝑇𝑚𝑎𝑥 to withdraw each time no improvement has been found. In addition to that, the

last two are related to the number of iterations the algorithm performs.

The threshold must be reduced fast enough that at several iterations, only improving solutions are

accepted but not too fast that not enough worst solutions are accepted. The cycle of acceptance and

restriction of the threshold must happen a correct amount of time during the number of iterations the

algorithm performs. Furthermore, as 𝑛𝑖𝑚𝑝 decides the number of iterations before resetting the

solution to the best found so far, it must also be set according to the number of iterations. This reset

must happen but not too often.

The problem is that, I have chosen to use an amount of time as a stopping criterion. Because of that, I

cannot directly influence the number of iterations. That is why in order to set the different parameters

I monitored the number of iterations that could be performed in my specified amount of time. As one

can suppose, this number varies a lot depending on the size of the instances. I still needed to find a

good compromise that would be decent for every instance. After some testing over several instances,

I decided to assume an average number of iterations of 150.

For 𝑇𝑚𝑎𝑥, I used a technique presented by Braekers et al. (2014). This technique is to use a relative

𝑇𝑚𝑎𝑥, which is defined as the average distance between two locations multiplied by a new parameter

𝑡𝑚𝑎𝑥 to be set. This 𝑡𝑚𝑎𝑥 is set to 1.2 as recommended by Braekers et al. (2014).

For 𝑛𝑖𝑚𝑝I used the exact same 𝑛𝑖𝑚𝑝 as Masmoudi et al. (2016). It is equal to five times the number of

vehicles currently used in the solution.

 It is for ∆𝑇 that I had the most problem setting. Braekers et al. (2014) used 300 and Masmoudi et al.

(2016) a proportion of 𝑇𝑚𝑎𝑥 which is 1/2500 of 𝑇𝑚𝑎𝑥. I followed the second method as the first seemed

to be dependent on the instances and problem formulation. I still had to adapt it to my algorithm as

this proportion was appropriate for them because Masmoudi et al. (2016) had a number of iterations

of 5000. Their proportion being one over half their number of iterations, I decided to take ∆𝑇= 1/75.

3.3.2.11. Local operators

The local search operators might be the most important part of my algorithm. They are used in three

different points: in the Deterministic Annealing, in the local search and in the large neighbourhood

search. Furthermore, they are the parts which takes the most time to develop as they modify solutions

directly.

Seven operators have been implemented and tested. However, only five of them are kept in the

algorithm. Furthermore, three of them are similar. For that reason, I will begin by presenting those

three. After that, I will present the two other used ones and finish with the two I decided to drop.

37

For each of them, a pseudo-code will be given and a feasibility check is performed on each new

solution.

a) Relocate

This operator is the basis from which the next three are inspired. The idea is to search for which request

will benefit by being relocated into a different place of the solution. For every request, we remove

them from the solution and replace them as the best feasible place. We then memorise this new

solution. Once this is done for every request, we look among all the newly generated solutions which

is the best, which will be the output of the operator.

Algorithm 3: Pseudo-code of operator relocate

START

REPEAT 1 for each request

 Remove the request for the solution

 REPEAT 2 for each vehicle

 Insert the request at best place inside the vehicle

 END REPEAT 2

 END REPEAT 1

 Check the costs of the solutions created above and keep the best

 OUTPUT Best relocation

STOP

Despite working quite well, this operator has a huge drawback. He is really time consuming. He is too

wide to be used inside the DA. Another version of this operator that keeps the same idea but works

differently have been tested. This version memorises only the best relocation found so far to avoid the

final check. However, this change does not improve the speed of the algorithm enough.

For that reason, two similar operators have been designed to replace him. For each of those derived

operators, a component will be removed from the search.

On the other hand, this operator will be used in the large neighbourhood search.

b) Relocate 1 to 1

This is the first operator created to replace the initial relocate. The component that has been removed

is the selection of the vehicle. Indeed, it focuses on 2 vehicles rather than all of them. Instead of looking

each request, the operator select randomly 2 vehicles. It moved a request from the first vehicle to the

other. The request to be moved is the one for which the relocation has the best impact on the cost of

the solution.

38

Algorithm 4: Pseudo-code of operators relocate 1 to 1

START

Select 2 vehicles randomly

 REPEAT for each request of the first vehicle

 Move the request to the best possible place of the second vehicle

 END REPEAT

 Check the costs of the solutions created above and keep the best

 OUTPUT Best relocation

STOP

This operator is currently used both in the DA and the local search on the (be-es) solutions.

c) Relocate 2 to any

This is the second operator derived from the initial relocate. This one focus on 2 requests rather than

all of them. For that, 2 requests are randomly selected. They are then removed from the solution and

replace at the best possible place in each vehicle. This, of course, excluding the vehicle they were

initially. The relocation with the best impact over the global solution is kept.

Algorithm 5: Pseudo-code of operators relocate 2 to any

START

Select 2 requests randomly

 REPEAT 1 for each of the two requests

 Remove it from the solutions.

 REPEAT 2 for each vehicle

 Insert the request at best place inside the vehicle

END REPEAT 2

 END REPEAT 1

 Check the costs of the solutions created above and keep the best

 OUTPUT Best relocation

STOP

This operator is currently used both in the DA and the local search on the (be-es) solutions.

d) Swap

The idea of this operator is to exchange two requests from two different vehicles. In order to do that,

two vehicles are selected randomly. Then for each request of the first vehicle, we search for the

request from the second vehicle with the most similar desired times and exchange the two. The

exchange with the best impact over the global solution is kept.

39

Algorithm 6: Pseudo-code of operator swap

START

Select 2 vehicles randomly

 REPEAT for each request of the first vehicle

Check all the requests from the second vehicle to see which one has the more similar

desired times

 Exchange those 2 requests

 END REPEAT

 Check the cost of the solutions created above and keep the best

 OUTPUT Best swap

STOP

This operator is currently used both in the DA and the local search on the (be-es) solutions.

e) Cut and reform

This operator is the most complex. What it does is cut the sequences of two vehicles. The beginning

sequence of the first vehicle is then reattached to the end sequence of the second vehicle and vice

versa. The cuts cannot be done at any places or the pickup and delivery of a request might find

themselves into separate vehicles. This would not make any sense. That is why cut can only be made

at moments when the vehicle is completely empty.

In order to do that, a vehicle is selected randomly. Each possible cut in the sequence of the vehicle is

identified by looking the evolving capacity of the nodes. If a node has an evolving capacity of 0, a cut

is possible as it means the vehicle is empty until he takes new users. Once this is done, we have a list

of possible cuts for our vehicle. The next step is looking for cuts in the other vehicles. Each vehicle is

considered. Each one is scanned for possible cuts. The local operator will now take each vehicle one

by one. He searches between the cuts of the initial vehicle and those of other vehicles to find pairs of

cuts with the highest resemblance. The resemblance is based on the actual time the node is processed.

Those pairs of cuts will be used to form the new solution.

For example, if a solution has 6 vehicles, the operator finds 5 pairs.

The sequences of the two vehicles are cut according to the pair finds above. Then, the beginning

sequence of the first vehicle is attached to the ending sequences of the second vehicle. Finally, he does

again with the two remaining parts.

The operator keeps the solution which has the best impact on the cost.

40

Algorithm 7: Pseudo-code of operator cut and reform

START

Select 1 vehicle randomly

Search for possible cuts

 REPEAT 1 for each other vehicle

 Check for possible cuts

 Check the pair of cut with highest similarity actual time

 Cut the sequences of the two vehicles at the cut find above

 Reform the sequences after switching the two ending sequences

 END REPEAT 1

 Check the cost of each of the solution created above and keep the best

 OUTPUT Best Cut and reform

STOP

A schema of an example with two vehicles each having three requests can be seen in Fig 6.

Fig 6: Example cut and reform

41

This operator is the last one currently used in my algorithm.

Two other local search operators have been designed and drop due to their performance. I will now

present them and explain the reasons why they are not included in the algorithm.

f) Swap intra vehicle

This operator was created in order to explore new sequences within a vehicle. This exploration was

needed because, during my solution creation process, the nodes are sorted according to their desired

times. However, depending on the distances and the maximum ride times, it might cost less to follow

another order than simply a chronological one.

In order to do that, a vehicle is selected randomly. For each node of this vehicle, the operator checks

if the neighbour node is not the other part of the request10. This check is necessary to avoid having a

delivery after a pickup. If it is not the case, a swap of the two nodes is done. The swap which has the

better impact on the global cost of the solution is kept.

Algorithm 8: Pseudo-code of operator swap intra vehicles

START

Select 1 vehicle randomly

 REPEAT 1 for each node

 Verify if it is feasible to swap this node with either of his neighbour

 REPEAT 2 for each feasible neighbour

 Swap the two nodes.

 END REPEAT 2

 END REPEAT 1

 Check the costs of the solutions created above and keep the best

 OUTPUT Best new sequence

STOP

Even if theoretically, this local operator seemed indispensable in order to tackle the sorting done is the

solution creation process, it turned out to be useless. Over several tests done on various instances of

different sizes, ameliorations were hardly ever found after the utilisation of this local operator. His

performance was disappointing.

That is why I chose to drop it from the algorithm. It only added computational time without improving

the performance of the algorithm.

g) Remove

This last operator goal is to remove a vehicle completely from a solution. Due to the fact that the

number of vehicles is a constraint to minimise, it seems reasonable to think that reducing the number

of vehicles might improve the overall cost of the solution.

10 If the node is a pickup, the neighbour can’t be his deposit and vice versa

42

Each vehicle is considered to be removed. This implies that this local operator explores as many new

solutions as there are vehicles currently used in the solution. To remove a vehicle, all of the requests

of the vehicle are stored in a waiting list. An insertion heuristic is then applied to those requests. The

insertion heuristic is the same as the one used in the creation process. An insertion is obviously

considered only to vehicles which are already used since the aim is to reduce the number of vehicles.

In opposition to the creation process, the order in which the requests are inserted in the other vehicle

is not random. Instead, requests are initially ordered by the desired pickup times. Once this is done

the solution with the best cost is kept.

Algorithm 9: Pseudo-code of operators remove

START

 REPEAT 1 for each vehicle

Remove all the requests from the vehicle in sort them in chronological order based on

their desired pickup time in a waiting list

 REPEAT 2 for each request in the waiting list

 Insert the request at the best feasible place inside the other vehicles

 END REPEAT 2

 END REPEAT 1

 Check the costs of the solutions created above and keep the best

 OUTPUT Best new solution

STOP

This operator was not kept because he is too situational. The solutions that would see their cost

decrease thanks to this operator are very rare. Indeed, due to the cost of each additional vehicle, the

solution creation process often proposed solution with the minimum amount of vehicle. Furthermore,

the operators b and c can reduce the number of vehicles. In addition to that, reducing the number of

vehicles will only worsen solutions most of the time it is used during the Deterministic Annealing.

For those reasons, I chose not to use this operator in my algorithm. However, I believe that this

algorithm should not be giving up on completely. From a pure managerial point of view, it has a lot of

value. For example, a company could consider always keeping a vehicle unused in order to tackle

unpredicted events as long as the cost not using this vehicle does not exceed a certain limit. Another

possibility is that they aim to use one less vehicle as long as it does not violate any maximum ride time

duration to fulfil each request without this vehicle.

Depending on the case, this operator could be added to the algorithm under predefined conditions.

For example, if a solution does not have a spare vehicle the operator is used and the new solution is

evaluated to see if keeping this spare vehicle is worth in comparison with the cost difference.

43

44

4. Results and improvements

This section will be divided into three. In the first one, I will present the computational results obtain

with the algorithm as presented it the methodology. Those results will then be used to see the

relevancy of possible improvements that I will develop in the second section. Finally, I will present the

results of a final version of the algorithm containing the improvements I deemed complete.

The complete results of the various tests performed are available in the Appendix. IV

4.1.Initial results

The results presented here will be the basis to evaluate the possible improvements that will be

discussed in the following section.

Those results correspond to the application of my algorithm on five different instances11. Each instance

is tested five times to minimise the random factor of the algorithm. Indeed, the best solution can be

found as soon as the population is created, which could lead to believe the algorithm has performed

perfectly in a record among of time. The opposite is also possible. A test could take very long because

improving solutions are found each fifth iteration of the algorithm. In those cases, four full iterations

of the algorithm are performed for nothing. That leads to a huge time computation for no direct result.

In order to avoid the random factor completely, each instance should be tested an enormous amount

of time. This is, however, not possible if I want to test several improvements as each test takes times.

Among those instances, two are considered small (2812 and 4613 requests), two mediums (5314 and 5615

requests) and one large (9016 requests). The number of instances is purposefully quite low. Once again

this is done to allow testing more improvements. Indeed, each improvement must be tested several

times on several instances.

In order to simplify the comprehension of the results, the instances will be referred by their sizes such

as I28 for the instance with 28 requests. Those instances were chosen among all the one proposed by

Chassaing et al. (s.d) for no specific reason other than their sizes.

Results will be presented into two sections. The first will focus on the balance between the quality of

the solution, and the computational time needed to find them. This section will be used to evaluate

possible improvement to the performance of the algorithm. Those results will be presented through

the best solutions found (Best), the average solution found (Avg), the average deviation between the

11 The modified instances used can be found at
https://drive.google.com/drive/folders/1wx_AEqRCrkUJOiPrXUOpoJ27avGGXNbZ?usp=sharing
12 Instance RL_d55
13 Instance RL_d01
14 Instance RL_d96
15 Instance RL_d30
16 Instance RL_d02

45

first two (Dev) in percent and finally the CPU presented in minutes. The average deviation allows

monitoring the random factor of the algorithm. The smaller this deviation is, the more consistent the

algorithm is.

The second will focus on the distribution of the total cost among his different components. The

components being the cost of the distances, the cost of the number of vehicles used and finally the

cost of the delays. This section will be used to see the impact of the addition of new constraints to the

distribution between those three costs. For that, I will present the average percentage of each cost.

The actual cost value will not be presented in this part as they are not interesting to see the impact of

new constraints. Indeed, it is reasonable to assume that adding constraints will modify the global cost,

but it is not what we are interested in. Indeed, adding constraints is done in order to correspond more

to reality. On the other hand, the impact of a constraint on the cost distribution is interesting as it

shows how getting closer to reality impact the DARP. In addition to that, I will monitor the utilisation

of the fleet of vehicles.

Finally, I will monitor the number of times the large search operator is used successfully at the end of

the hybrid BA with DA. This is a good indicator of the overall precision of the algorithm. Indeed, if the

LNS find a better answer, it is an answer that the hybrid could have found. This reasoning, of course,

has his limits as the fact that the LNS find a solution also depend on randomness. A really bad solution

could have no better one in his neighbourhood meaning he is a local minimum. On the other hand, a

really good solution could have one simply due to the fact that the operator used here is different from

the other. Those cases are, however, less likely. That is why it remains a good indicator of the overall

precision.

4.1.1. Performance of the algorithm

 Best Avg Dev (in %) CPU (In min)

I28 3037 3301.2 8 5.92

I46 6709 6945.2 3.4 9.47

I53 7404 7838.4 5.54 10.39

I56 5545 6170.2 10.13 10.67

I90 10273 10852.6 5.34 19.19

Table 3: Initial algorithm’s performance

The deviations are quite high, and the best solutions are never found more than once. This is due to

the fact that I have the number of iterations of the Deterministic Algorithm allowed is low. My

algorithm only does around 150 iterations of the DA each time it is used. If this algorithm was to be

used in real situations, the stopping criterion must be adapted. However, for the purpose of this thesis,

this stopping criterion remains interesting as it allows testing a lot of different scenarios, constraints

or parameters.

46

4.1.2. Cost distribution

 Cost of
distances

Cost of delays
Cost of vehicle

utilisation

I28 59% 12% 29%

I46 60% 13% 27%

I53 58% 11% 31%

I56 59% 12% 29%

I90 57% 11% 32%

Table 4: Initial algorithm costs’ distribution

The distribution between the three costs is influenced by a variety of factors such as the area of service,

the fleet available, the cost attributed per vehicle and so on. It is, however, interesting to see that the

cost distributions are similar from instances to instances.

Fleet of
vehicles

Number of
vehicles used

in my
algorithm

Number of
vehicles used
by Chassaing

et al. (s.d)

I28 5 5 4

I46 7 6 7

I53 11 8 10

I56 8 8 8

I90 13 12 13

Table 5: Utilisation of vehicles in the best solution for algorithm initial

Except for the smallest instance, my algorithm tends to use fewer vehicles than Chassaing et al. (s.d).

Unfortunately, the objective function, constraints and method they used to find those results are not

specified. However, hypotheses can be made to explain those differences. For example, it is possible

that the number of vehicles used is not a value to minimise in their formulation. Another justification

could be that they minimise the number of vehicles but the cost per vehicle they used in smaller than

mine.

4.1.3. Performance of the LNS

Improvement was found using the large search operator in 68% of the tests. As the size of the instance

rise, this number of times the LNS is used is higher. This is due to the fact that the LNS find solutions

more frequently if the solution is not already precise. The algorithm cannot explore as much as it

should during the DA for the large instance. This is due to the fact that they take longer to do an

iteration but have the same amount of time as the other instance. This is the drawback of having an

amount of time for stopping criterion instead of a number of iterations. However, this choice was made

in order to save time which it does.

47

4.2.Improvements

An algorithm is never completely finished. There is always a possibility to improve it. For that, there

are two types of improvements.

The first are improvements to the performance of the heuristic. In order to do that, it is not enough to

improve only the precision or the computational time of the algorithm alone if it deteriorates the

other. Those two elements must be considered together. A heuristic can find better solutions given

more time but it is not the direct purpose of the heuristic. It should find good solutions in acceptable

amount of time. That is why heuristic are evaluated according to their balance between precision and

computational time. An improvement is considered beneficial if it improves this balance.

The second type is the realistic aspect of the algorithm. DARP are modelled in order to solver real life

situations. However, life is unpredictable. Unexpected events are doomed to happen. The job of the

algorithm is to give a good solution to guide a decision maker but it cannot predict the future. It is,

however, possible to take into account real live constraints in order to reduce the effect of unexpected

events. Another balance must be taken into account here. It is always possible to add real life

constraints to the problem. However, each additional constraint risks to augments the computational

time needed to solve the algorithm. At the end, the algorithm remains a way of solving a modelling of

reality which could never be perfect. That is why one must decide if it is worth trying to predict

unexpected events at the cost of computational time.

Improvement of the first kind includes improving the structure, the local operators, the parameters

and so on. Those can be easily tested through the balance between time and computational cost. In

this section, two improvements of this type will be tested: improving the parameters and the LNS.

On the other hand, improvements of the second type stay at the appreciation of the situation in which

they are implemented. One must decide if he deemed this improvement worth or not. I will explore

two possible improvements of this kind: adding a maximum ride time for the vehicles and having a

time dependent speed.

4.2.1. Parameters tuning

One of the main methods to improve the performance of an algorithm is to improve his parameters.

This is called parameters tuning. For that, a search for better parameters is conducted.

The search for the best parameters is an endless task as some parameters might be perfect for a certain

set of instances and not for others. Furthermore, as the number of parameters augment, the

combinations of them rise exponentially. Knowing that for each parameter there are an infinite

number of possibilities, finding the best combination of a group of parameters is a near-impossible

task.

The task is then to find a good combination of parameter fitting acceptably any set of instances. For

that, one must use recommendations of literature, follows his intuition and finally test several

48

possibilities. In addition to that, Hyperparameter Optimisation Tools have been developed in order to

explore various combinations of parameters.

Due to the difficulty of tuning parameters, I will only focus on the parameters of the Deterministic

Algorithm. I have made this decision for two reasons.

The first reason is that, as we have seen in the section 2.3.2.10, the parameters of the Bee algorithm

do not have a big influence on the global performance of the algorithm. In addition to that, they have

been chosen to minimise the computational time. For the parameter of the tournament selection, he

has already been explored during the implementation of the initial algorithm.

The second reason is the stopping criterion I used in my Deterministic Algorithm. As much as it is useful

in order to test every size of instances while keeping reasonable computational times, it makes the

tuning of the parameter harder. Indeed, several of the parameters of the Deterministic Annealing are

directly related to the number of iterations performed. This is the case of the threshold reduction ∆𝑇

and the reset parameter 𝑛𝑖𝑚𝑝. That is why finding good parameters which perform well on instances

of various sizes is critical.

As we have seen in the section 2.3.2.10, Deterministic Annealing has three parameters 𝑇𝑚𝑎𝑥, ∆𝑇 and

𝑛𝑖𝑚𝑝.

For 𝑇𝑚𝑎𝑥, I will keep the same logic which is to set 𝑇𝑚𝑎𝑥 to the average distance between two locations

of the instances multiplied by a new parameter 𝑡𝑚𝑎𝑥. However, I will try to find a better value for 𝑡𝑚𝑎𝑥.

For ∆𝑇, I will also keep the same logic but I will go a bit further. I decided to set ∆𝑇 to be a proportion

of 𝑇𝑚𝑎𝑥. Following my intuition, I chose to take 1/75 of 𝑇𝑚𝑎𝑥. Here, instead of basing the setting to my

intuition, I will define a new parameter called ∆𝑡. This parameter is the number by which 𝑇𝑚𝑎𝑥 is

divided. This gives ∆𝑇 =
𝑇𝑚𝑎𝑥

∆𝑡
. The next step is to find the best value for ∆𝑡.

Finally, for 𝑛𝑖𝑚𝑝, I will not use five times the number of vehicles currently used. I will explore 𝑛𝑖𝑚𝑝

independently.

This gives me three parameters to tune: 𝑡𝑚𝑎𝑥, ∆𝑡 and 𝑛𝑖𝑚𝑝. Even though, there are used inside the

hybrid BA with DA, I will explore them as the DA was used out of the hybrid. This will reduce

considerably the time needed to explore a combination. Furthermore, the hybrid BA with DA does not

influence the performance of the DA. It only determines when and how many times it is used. It has

no influence on the parameters.

In order to do that, I will use Hyperparameter Optimisation available on Julia called Hyperopt. This tool

explores several combinations of parameters on a function and returns the best combination.

However, to the extent of my knowledge, it does not allow testing several sets of data. I was only able

to test one instance at a time. For that reason, I did a Hyperparameter Optimisation on three different

49

instances; a small one (3417 requests), a medium one (5518 requests) and a large one (7619 requests).

Those instances are not the same as the ones as I usually use for the computational results. This has

been done in order to avoid having overfitting parameters. Overfitting being a phenomenon where

parameters work perfectly for some instances but yield poor results if tested over a large group of

different instances. I don’t want parameters that will be perfect for my five testing instances. This is

not the goal of this parameter tuning. I want to find parameters that will work well for any instance.

In order to work, Hyperopt needs a function to test the parameters, a range and spacing size for each

parameter and the number of tests he will perform. The function is obviously the Deterministic

Annealing but the other components disserve more explanations.

For 𝑡𝑚𝑎𝑥, I followed the tests done by Braekers et al. (2014) which tests value for between 0.3 and 3.

The size of the spacing determines how many values in the defined range can be selected to be tested.

For example, for a range from 1 to 5, if we choose the spacing of 5, the possible values are 1,2,3,4 and

5. In the case of 𝑡𝑚𝑎𝑥 I chose the spacing of 10.

For ∆𝑡, I selected the range according to tests I made to identify the number of iterations done by the

DA before the stopping criterion is reached. I set it to be 50 to 250 with the spacing of 200.

Finally, for 𝑛𝑖𝑚𝑝, I only followed my intuition and set it to have a range of 10 to 50 with the spacing of

40.

Since the Hyperparameter Optimisation will be conducted three times, I cannot allow Hyperopt to

conduct too many tests. That is why I decided to set the number of tests to be performed to 200. Each

test tries a combination of parameters. This led to a run time of Hyperopt of 1.5 hours. This number of

tests obviously only explores a minuscule fraction of possible combinations since, with those ranges,

there are 8000020 possible combinations. However, exploring all those combinations would take 15

days for each instance.

Hyperopt found me the following combinations of parameters for the three instances.

 𝒕𝒎𝒂𝒙 ∆𝒕 𝒏𝒊𝒎𝒑

Small instance (I34) 0.9 150 25

Medium instance (I55) 3 95 34

Large instance (I76) 2.1 86 23

Table 6: Parameter found with Hyperopt

17Instance RL_d10
18 Instance RL_d47
19 Instance RL_d76
20 10 × 200 × 40 = 80000

50

To facilitate further explanation, the parameter of the small instance will be called Set 1, those of the

medium instance Set 2 and finally, those of the large instances Set 3.

Now that I have three combinations of parameters, I need to see which one works better among

different sizes of instances. In order to do that, I will test them not on the same instances used to find

them but rather on the instances used to test the performance of the algorithm.

The new parameters will be tested three times on a small, a medium and a large instance. The results

will then be compared to identify which combination of parameters seems to be the best. The result

for the different sets can be seen in the tables, 7, 8 and 9.

 Best Avg Dev (in %) CPU (In min)

I46 6692 6722,33333 0.45 10.6

I56 5964 6023 0.97 9.7

I90 10577 10696 1.11 8.96

Table 7: Performance with Set 1

 Best Avg Dev (in %) CPU (In min)

I46 6409 6552,66667 2.19 11.16

I56 6120 6276,66667 2.49 8.2

I90 10193 10455 2.5 16.95

Table 8: Performance with Set 2

 Best Avg Dev (in %) CPU (In min)

I46 6570 6713,66667 2.13 7.92

I56 5738 5899,33333 2.73 15.67

I90 10180 10265 0.82 20.71

Table 9: Performance with Set 3

Despite the fact that the first set of parameters gives the results with least deviation, the general

quality of the solutions is worse than with the other two set. Even their general low computational

time can’t justify choosing this set.

The choice between the set two and three is more difficult. The Set 3 gives better results but at the

cost of a higher computational time. However, several compromises have already been done to reduce

the computational time. That is why, I chose to keep the Set 3 as the best improving parameter

combination among the three sets.

Another comparison must be made before accepting those new parameters. The performance of those

parameters must be confronted with the performance of the parameters of the initial algorithm. For

51

that, I have conducted two more tests on each of the three instances above and five tests over the

other two instances of the comparison pool. In the Table 10, the first 6 lines correspond to the initial

result and the last 5 the results with the new parameters.

Algorithm
initial

Instance Best Avg Dev (in %) CPU (In min)

I28 3037 3301.2 8 5.92

I46 6709 6945.2 3.4 9.47

I53 7404 7838.4 5.54 10.39

I56 5545 6170.2 10.13 10.67

I90 10273 10852.6 5.34 19.19

Algorithm
with new

parameters

I28 3118 3208,2 2.81 6.27

I46 6492 6633,4 2.13 8.35

I53 7269 7607,4 4.44 9.29

I56 5738 5911,2 2.93 13.91

I90 10180 10320 1.35 18.03

Table 10: Performance comparison between initial parameters and new ones

There is no debate that the new parameters are better than the one I used initially. The average is

improved for every instance. The deviation is smaller which implies less randomness while testing.

Furthermore, the computational time is smaller for 3 of the 5 instances.

However, it is worth mentioning that the best solutions found for the instances 28 and 56 have been

found with the initial parameter. This is due to the randomness of the algorithm. If more test is

conducted, that might not be the case anymore.

Another indicator of the performance of the algorithm is the fact that the LNS has only been used in

44% of the test instead of the previous 68%.

The new parameters should be used instead of the initial ones as they are a clear improvement of the

balance between precision and computational time. They might, however, not be the best parameters

possible but they are reasonably good.

4.2.2. Larger operator for Large Neighbourhood Search

Even if the operator relocate was too wide to be used inside the DA, it is, however, too small to be

really considered an operator for LNS. That is why I have developed another operator derived from the

operator relocate. I have called him expanded relocation.

What it does is applying a relocation on every request. Then in each of the solutions found thanks to

those relocations, we apply the current operator relocation. It explores solutions two relocations away.

A pseudo-code of this operator can be seen in the Algorithm 10.

In order to do that, the current operator relocation is used twice. It is used a first time but return all

the solutions created by relocating requests. Then for every of those solutions, we apply again the

52

operator relocate. If the second relocation improves the cost of the solution, the operator keeps this

new solution. Otherwise, the operator keeps the solution prior to the second relocation.

Algorithm 10: Pseudo-code of operator expanded relocate

START

 Apply operator relocate with all the solutions as OUTPUT

REPEAT for each solution

 Apply operator relocate to the solution

 KEEP the best of the solution after first relocation or the second one

 END REPEAT

 Check the costs of the solutions created above and keep the best

 OUTPUT Best extended relocation

STOP

In order to test this possible improvement, I will not only monitor the usual factor but also the time

needed to perform the LNS. Indeed, the expanding the LNS could lead to finding a better solution, but

it must remain an extra step after the hybrid BA with DA. Otherwise, it becomes a new algorithm

completely.

The test on the smallest instance went well with time under 2 seconds to perform the LNS. However,

as I tested larger instances the time needed to perform it rises considerably. It took 30 seconds for the

instance of size 46 but rose already to 161 for the one of size 53. It was already a third of the total time

of the algorithm. I tested it also on the larger instance and the time needed to perform the LNS rose

to 2112 for a total time of 2800. This is obviously not ideal as this LNS must remain an extra step to

search further and not the main part of the algorithm.

Those results can be explained through 2 factors.

The first one is that the operator takes longer for larger instances as he must explore more relocation.

This one was expected as all operators follow this logic.

The second one, on the other hand, was not. The overall precision of the algorithm drops as the

instance grow larger. This is due to the fact that the stopping criterion of the DA is based on an amount

of time. For small instances, the DA can perform considerably more iterations than on a larger one.

This leads to a drop of precision for the larger one. If the hybrid is less precise, the solution on which

the LNS is applied is less precise. This leads to more solutions found by the LNS. All of that gives us a

LNS that takes longer for large instances and is used for more iterations.

For those reasons, this larger operator is not fitted for the current algorithm. Nevertheless, if we

improve the precision of the hybrid DA with SA by allowing more time for the DA, this operator can be

kept as a last search for possible improvement. The time needed to perform the LNS would remain the

same per iteration but fewer iterations would be needed as the algorithm has already found a good

solution. Furthermore, the computational time of the rest of the algorithm would be higher thus the

time needed to perform the LNS would seem more acceptable.

53

4.2.3. Maximum ride time for vehicle

In real life, maximum ride time for a vehicle is mandatory to respect drivers working hours. That is why

I chose to add this constraint to the algorithm.

For the same reason as I have allowed violation of the maximum rides times of customers to diversify

my population, I will do the same for the maximum ride’s times of the vehicles. However, the violation

fee must be much higher as it is more expensive to pay for a driver overtime rather than letting some

customers wait longer. I chose a violation fee 10 times the violations for customers.

Several tests were conducted and it appeared that it is nearly impossible to find solutions which

respect both customers ride times and vehicles ride times. In order to tackle that issue, there are

several possibilities.

The first is to organise two shifts. The requests have desired times varying between 4h30 and 21h. This

gives us a time window of 16.5 hours. With this in mind, it is possible to have a shift that goes from

4h30 to 13h and the next to 13h to 21h. However, this would mean that the company would need

twice the staff. From the algorithm perspective, that means forcing a return to the depot around 13h

which will correspond to the shifts change. The cost per vehicle could be transformed into cost per

shift in order to minimise the staff.

The second would be to refuse some requests in order to respect the maximum ride times of the

vehicles and the other requests. For the algorithm, a waiting list could be created. This waiting list will

contain the requests that are not included in the current solution. Furthermore, an operator can be

created in order to withdraw a request from the solution to replace it with one from the waiting list.

Another possibility is to take into account the benefit a company has to serve a customer. Indeed,

longer distance might bring more benefit than short one due to the pricing system. With that in mind,

it is more efficient to serve customers who will make the company gains more money. The other will

be sent to the waiting list and ultimately refused.

Finally, it is also possible to increase the number of vehicles or simply to allow maximum ride time

violation for customers even if it decreases the service quality.

All of those possibilities depend of managerial decision which will be different from a situation to the

next. That is why, the addition of this constraint will not be further explored.

54

4.2.4. Time-dependent speed

The last possible improvement that will be discussed in this thesis is a time-dependent speed. The idea

behind it is to take into account the traffic in the algorithm. Indeed, a constant speed of 60 km/h like

supposed in the algorithm is an oversimplification. In practice, the time needed to travel from a point

to another depends on a variety of factors such as the moment of the day, the type of road use and so

on.

Here we will focus on the evolution of the average speed depending on the time of the day. The traffic

evolves during the day. Very early in the morning, the traffic will be very fluid as people are still asleep.

Then between 7 and 9h, it will be considerably slower as it is the time of the day where people go to

work. After that and until 16h, the traffic is fluid again. Between 16 and 19h, we have the same effect

as between 7 and 9h as people return home from work. The traffic is calm again after.

This gives us two-time windows during which the traffic is slower. This leads to the average speed of

vehicle travelling within those time windows being smaller than during the rest of the day. However,

representing perfectly the traffic is impossible. To implement time dependent speed in this algorithm,

I will assume five time windows: [4h-7h], [7h-9h], [9h-16h] [16h-19h] [19h-21h]. Furthermore, I will

work with two speeds. For peak traffic time windows, I will assume a speed of 40 km/h and for the

rest 90 km/h.

In order to implement the dependent speed into the algorithm, it is not enough to check the time

window corresponding to the departure time to set the speed accordingly. Indeed, travel might begin

within a time window and end in another. In this case, the vehicle is assumed to travel at the speed of

the first time window until he reaches the end of it then switches to the speed of the next. This is, of

course, not how it would happen in reality but modelling has its limits.

To implement this concept, I have used the model described by Ichoua et al. (2001). The procedure

they propose is the following:

Fig 4 – Travel time calculation procedure. Reproduce from

“Vehicle dispatching with time-dependent travel times”, by

Ichoua, S., Gendreau, M., Potvin, J-Y. (2003). Vehicle Dispatching

with time – dependent travel times. European Journal of

Operational Research. 144. 379-396. 10.1016/S0377-2217

(02)00147-9.

55

With 𝑡0 being the departure time, 𝑑𝑖𝑗 the distance between the two points, 𝑡𝑘 the limit of the time

windows before changing the speed and 𝑣𝑐𝑇𝑘
 the speed of the time windows k. The c is not used in my

algorithm but allow specifying specific speed for a node type c.

What the procedure does is checking if the initial arrival time 𝑡′ calculated in the setting passed

through a time window limit. Each time it does the travel time is recalculated to fit the speed of this

time window.

This procedure has been added to the algorithm and tests were conducted three times on the same 5

instances. Even though, this is considered to be an additional constraint, I will also present the total

cost. The reason behind that is that it is not guarantee that the costs will rise because the speed of

some time windows is bigger than the initial average one.

Algorithm
initial

Instance Best Avg
Cost of

distances
Cost of
delays

Cost of
vehicle

utilisation

I28 3037 3301.2 59% 12% 29%

I46 6709 6945.2 60% 13% 27%

I53 7404 7838.4 58% 11% 31%

I56 5545 6170.2 59% 12% 29%

I90 10273 10852.6 57% 11% 32%

Algorithm
with time-
dependent

speed

I28 3002 3047,33333 59% 10% 32%

I46 6187 6313,33333 61% 7% 31%

I53 7272 7542,33333 59% 6% 35%

I56 6035 6428 63% 14% 23%

I90 10698 10941,6667 59% 9% 32%

Table 11: Performance comparison with and without time-dependent speed

The version with time-dependent speed tends to use more vehicles than the initial one. On the other

hand, the costs are in general not higher. This is due to the fact that the time windows with traffic

represent a smaller portion of the service time than the rest. This leads to vehicles generally driving

faster than with the average speed of 60 km/h. It also brings the cost of delays down. This is due to the

fact that as a vehicle drive faster, it reduces travel times. However, this reduction is probably not

enough to allow the insertion of new nodes between two points. This leads to sequences remaining

the same but with fewer delays.

It would be possible to go even further in this logic. The speed could be time and zone-dependent. The

zone could represent the urbanisation level of the area. Indeed, highly urbanised areas tend to have

more traffic than rural ones. Each node would have an additional data based on their urbanisation

level. In opposition with the processing of time, it is unknown when a vehicle will leave this zone. For

this factor, it must only depend on the zones of the departure and destination points.

However, in order to do that a good knowledge of the locations is needed. That is why it will not be

explored further here.

56

4.3.Final version

This final version will include both the time-dependent speed and the new parameters as those

improvements have a good effect on either the performance of the algorithm for the first or the

realistic aspect for the second.

The best solution for each instance is available in the Appendix III

 Best Avg Dev (in %) CPU (In min)

I28 2841 2959,6 4 6,02666667

I46 6292 6418,2 1.96 12,03

I53 7204 7378,8 2.36 12,4466667

I56 5653 5766 1.95 17,86

I90 9575 10216 6.2 22,18

Table 12: Final algorithm’s performance

Since both the new parameters and the time-dependent speed was reducing the costs of the solutions,

the results above have the best average of all the tests I conducted. Furthermore, four of the best

overall solutions were found was found with this version. Only for the instance 56, a better solution

was found with the initial algorithm. However, the speed was not the same.

 Cost of
distances

Cost of delays
Cost of vehicle

utilisation

I28 60% 7% 33%

I46 61% 7% 32%

I53 57% 7% 36%

I56 62% 10% 28%

I90 57% 7% 36%

Table 13: Final algorithm costs’ distribution

The cost distribution remains similar except for the instance 56.

Fleet of
vehicles

Number of
vehicles used
in my
algorithm

Number of
vehicles used
by Chassaing
et al. (s.d)

I28 5 5 4

I46 7 7 7

I53 11 9 10

I56 8 7 8

I90 13 12 13

Table 14: Utilisation of vehicles in the best solution for algorithm final

57

The number of vehicles changes due to the effect of the time-dependent speed. They remain overall

smaller than the one of Chassaing et al. (s.d).

The instance 56 has the most out of the norm results. Their cost was not smaller, their cost distribution

not similar and they use fewer vehicles. The last part is particularly interesting because in all the tests

I have conducted, the instance 56 had the less variance in the number of vehicles used from solutions

to solutions. The solutions used constantly 8 vehicles. This might due to the fact that this instance

benefits a lot of the time-dependent speed. Without it, it was not possible to find feasible solutions

without using all the vehicle. The benefice might not seem obvious due to the fact that the best

solution was not found here but this is probably due to randomness.

The LNS was used in 40% of the case. This is very similar to the test with the new parameters alone.

This is expected as even if the time-dependent speed reduced the cost, they have no influence on the

performance of the algorithm.

58

5. Conclusions

Dial a ride problem is used to represent several real-life door-to-door transportation. The clearer

example being the transportation of the elderly or disabled people. With the aging of the population,

the demand for those services will rise. That is why good optimisation tools are needed in order to

help companies or states that want to offer those services.

However, in opposition with most transportation problems, DARP must focus not only on the cost

minimisation but also the human factor. Indeed, people that require those kinds of services have a lot

of requirements. That can go from maximum ride time for health reasons to specific accommodations.

A balance between minimisation cost and inconvenience for the user must be found.

In this paper, I have presented a possible algorithm to solve Dial a ride problem. In order to do that, I

had to choose which constraints I would tackle and which cost I would minimise. I made those choices

based on my intuition and recommendation from literature but they must be adapted to fit the reality

of the situation one must solve. Furthermore, it exists several possible algorithms. I have chosen to

present a hybrid Bee Algorithm with Deterministic Annealing as it was proven to yield good results but

there is no perfect algorithm that would be the best for all the different situations. Several other

options have been presented in the literature review and reader are referred to various papers

depending of the algorithm of their choice.

In order to use my algorithm in a real-life situation, the first step once must make to use this algorithm

is to augment the stopping criterion of the DA. It was purposefully tuned down in order to allow fast

testing. That is why I would recommend keeping those tuned down parameters to adapt the algorithm

to the situation one must solve. After that, the stopping criterion can be increased. Once this is done,

one must tune the parameters accordingly following either the method I used a similar one such as

irace21 which is not specific to Julia. The constraints and objective function must also be adapted to the

specific situation.

Several situations have been discussed in this paper. To cite only a few: using an operator removes to

leave a vehicle available, areas dependent speed, sequence with two shifts corresponding to two

drivers and so on. The reality is such that it is always required to adapt the algorithm as new factors

presents themselves. Real-life situations are not usually described in literature. That is why more

research could be conducted with this logic to answer real-life problems.

21 For more information: https://doi.org/10.1016/j.orp.2016.09.002

59

The version presented here remains unfinished as it is always possible to improve it. Some

improvements were explored in this paper but it is always possible to go further. Ideas that were not

explored in this paper includes multiple depots, heterogenous vehicles, operators with roulette

selection or lunch and coffee break for drivers. The biggest improvement remains the utilisation of

strict time constrains like time windows instead of relaxed such as desired times. Several of those

improvements have been developed in literature in paper such as Masmoudi et al. (2016) or Braekers

et al. (2014). Finally, operators being the key part of most algorithms, it is always possible to explore

new operators in order to keep the operators that yield the best results.

To conclude, dial a ride problem is a wide topic as each situation is different. It means that it is always

possible to search further. However, the goal must remain to help companies and states that are

searching to provide those services. Studies must be conducted according to their needs.

60

6. List of Figures

Figure 1: Empty example of dial a ride problem

Figure 2: Completed example of dial a ride problem

Figure 3: Flowchart of the hybrid Bee Algorithm with Deterministic Annealing

Figure 4: Solution example

Figure 5: Example solution representation

Figure 6: Example cut and reform

61

62

7. List of Tables

Table 1: Summary of literature review

Table 2: Algorithm comparison

Table 3: Initial algorithm’s performance

Table 4: Initial algorithm costs’ distribution

Table 5: Utilisation of vehicles in the best solution for algorithm initial

Table 6: Parameter found with Hyperopt

Table 7: Performance with Set 1

Table 8: Performance with Set 2

Table 9: Performance with Set 3

Table 10: Performance comparison between initial parameters and new ones

Table 11: Performance comparison with and without time-dependent speed

Table 12: Final algorithm’s performance

Table 13: Final algorithm costs’ distribution

Table 14: Utilisation of vehicles in the best solution for algorithm final

63

64

8. List of Algorithms

Algorithm 1: Pseudo-code of the proposed hybrid Bee Algorithm with Deterministic Annealing

Algorithm 2: Pseudo-code of the proposed Deterministic Annealing

Algorithm 3: Pseudo-code of operator relocate

Algorithm 4: Pseudo-code of operator relocate 1 to 1

Algorithm 5: Pseudo-code of operator relocate 2 to any

Algorithm 6: Pseudo-code of operator swap

Algorithm 7: Pseudo-code of operator cut and reform

Algorithm 8: Pseudo-code of operator swap intra vehicles

Algorithm 9: Pseudo-code of operator remove

Algorithm 10: Pseudo-code of operator expanded relocate

65

66

9. Appendices

I. Summary of several algorithms for the dynamic multi-vehicle DARP

Reference Objective Time
windows

Other
constraints

Algorithm Size of
instances
solved

Madsen et al.
(1995)

Multi-criteria
objective

On pickup or
delivery

Several
vehicle types.
Vehicle
capacity.
Maximum
route
duration.
Maximum
deviation
between
actual
and shortest
possible rid

Heuristic.
Vertex
insertions

n = 300

Teodorovic
and
Radivojevic
(2000)

Minimise a
function
incorporating
route
lengths, ride
times and
time window
violations

On pickup
and delivery

Vehicle
capacity

Sequential
insertion of
users in vehicle
routes.
Nine rules are
used to give
more or less
weight to the
various
elements of the
objective

n = 900

Colorni and
Righini
(2001)

Maximise the
number of
serviced
requests or
maximise the
perceived
level of
service, or
minimise the
total
travelled
distance

On pickup
and delivery

Vehicle
capacity.
Maximum
route
duration

Alternation
between
clustering and
routing
algorithms.
Branch-and-
bound
algorithm is
applied to
sequence a
subset of users
with time
windows not
too far in the
future

None

Coslovich et
al. (2006)

Minimise user
dissatisfaction

On pickup
and delivery

Deviation
from desired

Insertions in
current

25 ≤ n ≤ 50

67

service time.
Upper bound
on ‘excess
ride time’

routes. Route
reoptimizations
with
modified 2-opt

Table 3 – I. Summary of several algorithms for the dynamic multi-vehicle DARP. Reproduce from ‘The

dial-a-ride problem: models and algorithms’, by Cordeau, J.-F., Laporte, G., Ann. Oper. Res. 153 (1), 29–

46.

68

II. Identification for the best parameters setting for the hybrid BA-DA (BA-SA).

Table 3. Identification for the best parameters setting for the hybrid BA-DA (BA-SA). Reproduce from

‘Three effective metaheuristics to solve the multi-depot multi-trip heterogeneous dial-a-ride problem’,

by Masmoudi, MA. Hosny, M. Braekers, K. Dammak, A. Transportation Research: Part E. 2016; 96:60-

80.

69

70

III. Best solutions with final algorithm

Instance 28

[19 330 330 0 4; 7 360 406 46 8; 35 421 421 0 4; 47 428 440 12 0; 8 600 600 0 3; 36 663 663 0 0; 20

840 840 0 1; 21 870 870 0 2; 48 969 969 0 1; 49 975 997 22 0]

[23 390 390 0 3; 51 444 444 0 0; 11 570 570 0 2; 39 626 626 0 0; 1 1080 1080 0 4; 29 1103 1103 0 0]

[22 330 330 0 1; 24 360 360 0 4; 18 360 361 1 5; 28 390 390 0 6; 50 397 397 0 5; 46 415 415 0 4; 25

420 420 0 8; 52 420 423 3 5; 53 489 489 0 1; 56 491 521 30 0; 4 630 630 0 4; 2 660 660 0 5; 32 672 675

3 1; 30 800 800 0 0; 10 840 862 22 2; 38 947 947 0 0]

[3 360 360 0 3; 9 360 422 62 7; 31 411 411 0 4; 37 439 439 0 0; 12 570 570 0 4; 40 619 619 0 0; 15 810

810 0 1; 43 851 851 0 0]

[13 360 360 0 3; 5 360 361 1 4; 17 360 362 2 5; 14 360 365 5 8; 42 409 409 0 5; 33 416 416 0 4; 41 456

456 0 1; 45 464 464 0 0; 26 600 600 0 2; 54 658 658 0 0; 6 660 736 76 3; 34 758 763 5 0; 27 840 840 0

4; 16 870 870 0 8; 44 932 932 0 4; 55 985 985 0 0]

Instance 46

[45 360 360 0 1; 27 360 425 65 5; 25 360 400 40 6; 20 390 390 0 8; 71 433 433 0 7; 66 462 495 33 5; 91

464 464 0 4; 73 480 512 32 0; 34 840 840 0 1; 80 933 933 0 0]

[22 300 300 0 2; 41 360 360 0 3; 68 362 362 0 1; 5 390 390 0 2; 40 420 420 0 6; 87 439 439 0 5; 51 453

453 0 4; 86 484 484 0 0; 3 600 600 0 1; 49 653 653 0 0; 28 810 810 0 2; 38 840 848 8 5; 74 869 869 0 3;

84 926 926 0 0; 12 930 937 7 1; 58 951 951 0 0; 39 1080 1080 0 1; 85 1177 1177 0 0]

[7 360 360 0 3; 8 360 362 2 5; 33 390 390 0 7; 53 431 431 0 4; 54 431 455 24 2; 79 518 518 0 0; 13 600

600 0 3; 32 630 630 0 4; 78 683 683 0 3; 59 774 774 0 0; 30 840 840 0 2; 21 870 870 0 4; 76 946 946 0

2; 67 972 974 2 0; 4 1080 1080 0 1; 50 1179 1179 0 0]

[17 330 330 0 1; 6 360 360 0 2; 43 390 390 0 4; 46 390 394 4 8; 63 412 412 0 7; 52 439 439 0 6; 89 458

458 0 4; 92 547 547 0 0; 18 600 600 0 1; 19 630 630 0 2; 64 661 661 0 1; 65 682 682 0 0; 24 810 810 0

1; 70 912 912 0 0]

[9 330 330 0 1; 16 360 360 0 2; 42 360 380 20 3; 11 360 399 39 6; 55 398 398 0 5; 62 434 434 0 4; 88

439 457 18 3; 57 461 516 55 0; 2 600 600 0 1; 48 646 646 0 0; 31 780 780 0 1; 23 810 904 94 2; 77 879

890 11 1; 69 926 926 0 0; 26 1080 1080 0 3; 35 1110 1114 4 4; 72 1134 1134 0 1; 81 1139 1141 2 0]

[; 37 330 330 0 1; 15 360 360 0 5; 29 360 361 1 6; 36 390 390 0 7; 83 406 406 0 6; 61 460 460 0 2; 75

532 532 0 1; 82 534 534 0 0; 44 570 570 0 2; 1 600 608 8 5; 90 637 637 0 3; 47 695 695 0 0; 10 840 840

0 4; 56 910 910 0 0; 14 1050 1050 0 1; 60 1111 1111 0 0]

[]22

22 Empty vehicle

71

Instance 53

[45 360 360 0 1; 15 390 390 0 2; 98 442 442 0 1; 68 494 494 0 0; 12 600 600 0 1; 20 600 601 1 2; 73

677 677 0 1; 65 714 714 0 0; 36 840 840 0 1; 14 870 870 0 3; 89 935 935 0 2; 67 971 971 0 0; 19 1050

1050 0 4; 72 1153 1153 0 0]

[32 270 270 0 1; 85 343 343 0 0; 24 360 381 21 4; 77 398 400 2 0; 25 420 465 45 2; 78 549 549 0 0; 38

600 600 0 3; 18 600 603 3 6; 91 666 666 0 3; 71 696 696 0 0; 47 840 840 0 2; 43 870 870 0 5; 100 919

920 1 3; 96 973 973 0 0]

[16 330 330 0 2; 11 360 360 0 5; 48 360 361 1 6; 101 415 415 0 5; 69 444 444 0 3; 64 599 599 0 0; 39

660 660 0 1; 92 769 769 0 0; 7 840 840 0 1; 17 840 844 4 5; 60 940 940 0 4; 70 940 944 4 0; 23 1080

1080 0 1; 76 1128 1128 0 0]

[5 330 330 0 2; 31 360 380 20 4; 58 405 413 8 2; 84 436 461 25 0; 22 600 600 0 1; 75 742 742 0 0; 50

810 810 0 1; 103 837 837 0 0; 29 840 868 28 1; 82 887 889 2 0]

[51 360 360 0 1; 104 429 429 0 0; 27 600 600 0 3; 80 624 624 0 0; 4 810 810 0 4; 10 810 866 56 8; 63

847 847 0 4; 44 870 870 0 5; 57 915 915 0 1; 97 966 990 24 0]

[21 330 330 0 4; 37 360 364 4 5; 28 390 420 30 8; 90 421 421 0 7; 81 450 450 0 4; 74 499 499 0 0; 6

600 600 0 1; 59 731 731 0 0; 35 840 840 0 1; 30 840 855 15 2; 83 909 909 0 1; 88 939 939 0 0]

[9 270 270 0 4; 53 330 353 23 6; 26 360 360 0 8; 62 390 420 30 4; 106 431 438 7 2; 79 460 460 0 0; 8

570 570 0 2; 41 840 840 0 4; 2 840 872 32 5; 55 870 870 0 4; 61 873 875 2 2; 94 935 935 0 0]

[34 360 360 0 1; 13 360 402 42 2; 40 360 427 67 6; 87 415 415 0 5; 93 444 444 0 1; 66 585 585 0 0; 52

840 840 0 2; 105 941 941 0 0; 46 1080 1080 0 3; 99 1159 1159 0 0]

[33 360 360 0 2; 3 360 426 66 5; 86 440 440 0 3; 56 469 471 2 0; 49 840 840 0 2; 42 900 900 0 6; 102

919 935 16 4; 95 1000 1000 0 0; 1 1080 1080 0 1; 54 1219 1219 0 0]

[]

[]

Instance 56

[45 360 360 0 2; 101 445 445 0 0; 29 630 630 0 4; 34 630 648 18 8; 85 750 750 0 4; 90 797 797 0 0; 5

810 828 18 3; 15 840 862 22 6; 23 840 884 44 7; 55 840 841 1 8; 61 865 878 13 5; 11 870 890 20 7; 79

893 893 0 6; 111 905 917 12 5; 67 922 933 11 3; 71 951 951 0 0; 20 1080 1080 0 1; 76 1132 1132 0 0]

[]

[9 330 330 0 4; 8 360 360 0 6; 39 360 361 1 7; 65 418 418 0 3; 64 429 429 0 1; 95 455 455 0 0; 38 570

570 0 3; 52 600 600 0 4; 42 630 630 0 5; 94 633 633 0 2; 108 658 658 0 1; 98 688 688 0 0; 51 810 810

0 1; 10 840 840 0 4; 107 869 869 0 3; 35 870 870 0 4; 66 935 935 0 1; 91 937 967 30 0; 28 1050 1050 0

4; 84 1112 1112 0 0]

[19 360 360 0 4; 43 360 374 14 8; 99 409 409 0 4; 75 462 462 0 0; 37 810 810 0 4; 54 840 863 23 6; 41

840 864 24 7; 4 840 898 58 8; 93 878 878 0 4; 60 919 919 0 3; 110 936 950 14 1; 97 1083 1083 0 0]

72

[27 330 330 0 4; 22 360 382 22 7; 83 424 424 0 3; 78 462 464 2 0; 26 780 780 0 1; 25 810 846 36 4; 3

840 888 48 6; 46 870 888 18 8; 81 897 897 0 5; 82 913 928 15 4; 102 971 977 6 2; 59 1035 1035 0 0; 6

1050 1121 71 2; 33 1080 1102 22 3; 89 1155 1155 0 2; 62 1182 1191 9 0]

[21 360 360 0 2; 77 422 422 0 0; 30 630 630 0 3; 86 766 766 0 0; 40 840 840 0 2; 13 840 841 1 3; 2 840

842 2 4; 56 870 870 0 5; 14 870 872 2 7; 69 914 914 0 6; 96 931 931 0 4; 70 932 933 1 2; 58 944 944 0

1; 112 956 956 0 0; 17 1050 1050 0 4; 7 1110 1110 0 5; 73 1133 1133 0 1; 63 1300 1300 0 0]

[50 360 360 0 4; 18 420 420 0 7; 106 452 452 0 3; 74 493 493 0 0; 12 810 810 0 1; 36 840 840 0 2; 49

840 843 3 5; 47 840 846 6 8; 68 874 874 0 7; 105 892 892 0 4; 103 912 912 0 1; 92 952 952 0 0; 31 1080

1080 0 4; 87 1167 1167 0 0]

[1 360 360 0 1; 16 360 390 30 2; 48 390 390 0 3; 72 425 425 0 2; 104 444 444 0 1; 57 464 464 0 0; 53

540 540 0 4; 109 625 625 0 0; 32 810 810 0 1; 44 840 863 23 2; 100 913 913 0 1; 88 925 931 6 0; 24

1020 1020 0 4; 80 1069 1069 0 0]

Instance 90

[54 330 330 0 2; 65 360 360 0 4; 83 360 362 2 6; 144 406 406 0 4; 155 434 434 0 2; 173 448 448 0 0; 43

600 600 0 4; 61 690 690 0 8; 133 758 758 0 4; 151 786 786 0 0; 10 810 810 0 3; 90 840 840 0 6; 35 840

842 2 7; 100 865 873 8 4; 125 925 925 0 3; 180 961 961 0 0; 87 1080 1080 0 1; 79 1140 1140 0 2; 177

1181 1181 0 1; 169 1216 1216 0 0]

[30 360 360 0 3; 18 360 394 34 6; 40 390 438 48 7; 108 444 444 0 4; 120 462 476 14 1; 130 491 524 33

0; 23 690 690 0 2; 113 747 747 0 0; 70 840 840 0 4; 67 840 872 32 8; 160 890 895 5 4; 157 936 936 0

0]

[27 330 330 0 2; 33 360 360 0 5; 9 360 362 2 7; 22 360 363 3 8; 117 381 381 0 6; 112 388 388 0 5; 44

390 390 0 6; 99 435 435 0 4; 123 445 445 0 1; 134 447 447 0 0; 88 570 570 0 1; 26 600 600 0 2; 178

629 638 9 1; 116 673 683 10 0; 1 870 870 0 1; 51 900 900 0 5; 91 939 939 0 4; 141 959 964 5 0]

[85 330 330 0 1; 13 360 360 0 3; 34 360 363 3 6; 124 406 406 0 3; 86 420 420 0 5; 103 443 443 0 3; 175

497 497 0 2; 176 500 500 0 0; 20 540 540 0 1; 110 589 589 0 0; 82 600 600 0 2; 19 630 630 0 5; 109

708 708 0 2; 172 794 794 0 0; 50 810 810 0 2; 58 840 840 0 5; 42 840 841 1 6; 148 884 884 0 3; 140

914 914 0 1; 132 964 964 0 0; 32 1080 1080 0 4; 122 1199 1199 0 0]

[41 360 360 0 2; 73 360 366 6 5; 131 433 433 0 3; 163 531 531 0 0; 49 600 600 0 1; 62 630 653 23 2;

152 698 698 0 1; 139 755 755 0 0; 66 780 780 0 3; 25 810 817 7 4; 7 810 837 27 7; 156 854 854 0 4;

115 878 878 0 3; 97 930 930 0 0; 72 930 946 16 4; 162 1012 1012 0 0; 31 1110 1110 0 4; 121 1184 1184

0 0]

[28 360 360 0 3; 47 360 370 10 7; 137 428 428 0 3; 118 447 447 0 0; 71 600 600 0 4; 56 630 654 24 5;

161 694 694 0 1; 146 710 720 10 0; 39 840 840 0 2; 129 943 943 0 0; 75 1080 1080 0 1; 165 1126 1127

1 0]

[17 360 360 0 3; 29 360 375 15 4; 4 390 395 5 7; 107 414 414 0 4; 94 438 438 0 1; 80 450 450 0 4; 119

476 476 0 3; 170 544 544 0 0; 48 600 600 0 3; 37 630 630 0 6; 138 660 660 0 3; 127 678 678 0 0; 81

780 780 0 1; 14 810 810 0 5; 171 849 849 0 4; 68 900 900 0 5; 104 937 937 0 1; 158 949 959 10 0; 53

1050 1050 0 1; 45 1080 1105 25 3; 135 1148 1148 0 1; 143 1186 1186 0 0]

73

[52 300 300 0 4; 46 330 330 0 8; 142 406 406 0 4; 63 420 460 40 6; 136 429 435 6 2; 153 489 489 0 0;

2 600 600 0 3; 74 630 630 0 5; 92 687 687 0 2; 164 701 703 2 0; 64 810 810 0 4; 12 840 856 16 6; 3 870

887 17 8; 93 903 903 0 6; 102 914 942 28 4; 154 949 949 0 0; 38 1050 1050 0 1; 128 1093 1093 0 0]

[84 330 330 0 1; 174 430 430 0 0; 77 600 600 0 1; 167 652 654 2 0; 76 870 870 0 2; 166 975 975 0 0]

[8 360 360 0 1; 60 390 390 0 5; 55 390 418 28 6; 145 421 435 14 5; 150 453 453 0 1; 98 456 456 0 0; 16

660 660 0 2; 106 794 794 0 0; 36 840 859 19 3; 78 840 863 23 4; 126 904 904 0 1; 168 917 919 2 0; 11

930 932 2 1; 101 1001 1001 0 0]

[15 330 330 0 4; 57 360 360 0 5; 105 380 380 0 1; 147 438 438 0 0; 6 600 600 0 2; 96 665 665 0 0; 24

780 780 0 3; 5 840 840 0 7; 69 870 883 13 8; 95 907 907 0 4; 114 935 937 2 1; 159 962 962 0 0; 89 1050

1050 0 1; 179 1099 1099 0 0]

[21 360 360 0 4; 111 398 398 0 0; 59 840 840 0 3; 149 891 891 0 0]

[]

74

IV. Complete Results

size

Total Cost Distance CostDelays Cost Nbr V Cost Time Number vehiculeLNS Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

Inial version RL_d55 28 3356 1964 429,5 962 273 yes 3037 1842 233 962 501 yes 3454 2060 432 962 228 no

RL_d01 46 6709 4032 801 1875 626 no 7002 4011 803 2187 482 yes 7079 4337 514 2187 576 no

RL_d96 53 8035 4684 1019 2331 510 yes 7404 4302 771 2331 500 yes 8007 4552 1122 2331 852 no

RL_d30 56 6501 3900 908 1693 452 yes 6305 4192 637,5 1693 307 yes 6481 3863 1136 1482 912 yes

RL_d2 90 11125 6336 1042 3746 1029 yes 10618 5967 1480 3170 1112 yes 11293 6424 1410 3458 1111 yes

Improved parameters

Set3 Total Cost Distance CostDelays Cost Nbr V Cost Time N vehiculeLNS Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

RL_d55 28 3171 1901 308 962 459 5 no 3162 1931 269 962 413 5 no 3223 2004 257 5 322 no 5

RL_d01 46 6768 3841 739 2187 344 7 no 6570 3918 776 1875 739 6 yes 6803 4014 914 1875 343 no 6

RL_d96 53 7720 4500 596 2623 475 9 yes 7269 4080 565 2623 824 9 yes 7590 4099 868 2623 461 yes 9

RL_d30 56 5738 3773 482 1482 1041 7 no 5960 3437 1041 1482 782 7 yes 6000 3603 704 1693 998 no 8

RL_d2 90 10406 5898 1337 11 954 11 yes 10180 5739 982 3458 1526 12 yes 10209 5655 807 3746 1249 yes 13

Improved parameters

Set 1 Total Cost Distance CostDelays Cost Nbr V Cost Time LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS

RL_d01 46 6692 4002 502 2188 697 yes 6757 3996 573 2187 581 no 6718 3819 1024 175 630 no

RL_d30 56 6085 3744 647 1693 479 yes 6020 3657 669 1693 635 yes 5964 3517 753 1693 632

RL_d2 90 10577 6213 1194 3170 889 yes 10644 6148 1037 3458 725 yes 10867 6360 1337 3170

Improved parameters

Set2

RL_d01 46 6530 3948 706 1875 879 6 no 6719 3984 859 1875 590 6 no 6409 3824 709 1875 540 yes 6

3 RL_d30 56 6120 3726 911 1482 584 7 no 6264 3891 679 1693 475 8 no 6446 3919 833 1693 417 yes 8

34 RL_d2 90 10288 5676 1153 3458 1013 12 yes 10193 5864 1159 3170 856 11 yes 10884 6336 1377 3170 1182 no 11

Total Cost Distance CostDelays Cost Nbr V Cost Time N vehiculeLNS Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

Time dependentRL_d55 28 3046 1626 458 962 414 5 no 3002 1840 200 962 415 5 no 3094 1903 229 962 369 no 5

RL_d01 46 6380 3837 668 1875 946 6 yes 6187 3741 258 2187 746 7 no 6373 4028 469 1875 494 no 6

RL_d96 53 7430 4195 612 2623 690 9 no 7272 4499 149 2623 644 9 no 7925 4618 514 2623 530 yes 9

RL_d30 56 6714 4216 1016 1482 379 7 yes 6535 4137 915 1482 327 7 yes 6035 3879 674 1482 892 no 7

RL_d2 90 10698 6154 1085 3458 1238 12 yes 11157 6355 1056 3746 467 13 yes 10970 6713 798 3458 763 yes 12

Total Cost Distance CostDelays Cost Nbr V Cost Time time lns LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time time lns LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS time lns

Larger operatorRL_d55 28 3201 2005 234 962 228 0,39 yes 3271 1878 431 962 411 0,36 no 2907 1766 178 962 593 no 0,2

RL_d01 46 6949 4662 811 1875 530 28 no 7089 3921 980 2187 727 2,49 yes 6398 3640 570 2187 789 yes 30

RL_d96 53 7118 3937 558 2623 421 161 yes 7246 4363 277 2626 627 242 yes

RL_d30 56

RL_d2 90 10783 5949 1375 3458 1117 1080 yes 10547 5736 1064 3746 2890 2112 yes

31 2

31 2

1 2 3

1 2 3

75

size

Total Cost Distance CostDelays Cost Nbr V Cost Time LNS N vehiculeTotal Cost Distance Cost Delays Cost Nbr V Cost Time LNS

Inial version RL_d55 28 3370 2054 355 962 319 no 3289 1798 528,5 962 456 no

RL_d01 46 7071 4040 1468 1562 530 yes 6865 3989 688 2187 623 yes

RL_d96 53 7915 4566 726 2623 603 no 7831 4438 769 2623 652 no

RL_d30 56 6019 3634 692 1693 358 yes 5545 3287 564 1693 1174 no

RL_d2 90 10954 6195 1300 3458 1223 yes 10273 5830 984,5 3458 1283 yes

Improved parameters

Set3 Total Cost Distance CostDelays Cost Nbr V Cost Time LNS N vehiculeTotal Cost Distance Cost Delays Cost Nbr V Cost Time LNS

RL_d55 28 3367 1949 456 962 367 no 5 3118 1819 337 962 322 no

RL_d01 46 6534 3873 785 1875 343 yes 6 6492 3819 797 1875 738 yes

RL_d96 53 7987 4587 1067 2331 463 yes 8 7471 4330 809 2331 565 yes

RL_d30 56 5908 3581 633 1693 680 no 8 5950 3570 686 1693 672 no

RL_d2 90 10318 5766 1093 3458 888 yes 12 10487 5855 885 3746 794 yes

Improved parameters

Set 1 Total Cost Distance CostDelays Cost Nbr V Cost Time LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS

RL_d01 46 6844 4096 561 2187 628 no

RL_d30 56

RL_d2 90

Improved parameters

Set2

RL_d01 46

3 RL_d30 56

34 RL_d2 90

Total Cost Distance CostDelays Cost Nbr V Cost Time LNS N vehiculeTotal Cost Distance Cost Delays Cost Nbr V Cost Time LNS

Time dependentRL_d55 28

RL_d01 46

RL_d96 53

RL_d30 56

RL_d2 90

Total Cost Distance CostDelays Cost Nbr V Cost Time LNS time lnsTotal Cost Distance Cost Delays Cost Nbr V Cost Time LNS

Larger operatorRL_d55 28 3165 1880 332 962 502 yes 0,4 3255 2062 231 962 320 no

RL_d01 46 6353 3710 768 1875 294 yes 169 6245 3741 628 6245 540 yes

RL_d96 53

RL_d30 56

RL_d2 90

4 5

4 5

4 5

4 5

76

size Totaux

N vehicule Best AVG dev AVG time in min Total Cost Distance Cost Delays Cost Nbr V Cost % Distance %Delay % Vehicule

Inial version RL_d55 28 3037 3301,2 0,0800315 355,4 5,92333333 16506 9718 1978 4810 59% 12% 29%

RL_d01 46 6709 6945,2 0,0340091 567,4 9,45666667 34726 20409 4274 9998 59% 12% 29%

RL_d96 53 7404 7838,4 0,05541947 623,4 10,39 39192 18876 3937,5 8254 61% 13% 27%

RL_d30 56 5545 6170,2 0,10132573 640,6 10,6766667 30851 22542 4407 12239 58% 11% 31%

RL_d2 90 10273 10852,6 0,05340656 1151,6 19,1933333 54263 30752 6216,5 17290 57% 11% 32%

Improved parameters

Set3

RL_d55 28 3118 3208,2 0,02811545 376,6 6,27666667 16041 9604 1627 3853 60% 10% 24%

RL_d01 46 6492 6633,4 0,02131637 501,4 8,35666667 33167 19465 4011 9687 59% 12% 29%

RL_d96 53 7269 7607,4 0,044483 557,6 9,29333333 38037 21596 3905 12531 57% 10% 33%

RL_d30 56 5738 5911,2 0,02930031 834,6 13,91 29556 17964 3546 8043 61% 12% 27%

RL_d2 90 10180 10320 0,01356589 1082,2 18,0366667 51600 28913 5104 14419 56% 10% 28%

Improved parameters

Set 1

RL_d01 46 6409 6552,66667 0,02192492 669,666667 11,1611111

RL_d30 56 6120 6276,66667 0,02496017 492 8,2

RL_d2 90 10193 10455 0,02505978 1017 16,95

Improved parameters

Set2

RL_d01 46

3 RL_d30 56

34 RL_d2 90

N vehicule

Time dependentRL_d55 28 3002 3047,33333 0,01487639 399,333333 6,65555556 9142 5369 887 2886 59% 10% 32%

RL_d01 46 6187 6313,33333 0,02001056 728,666667 12,1444444 18940 11606 1395 5937 61% 7% 31%

RL_d96 53 7272 7542,33333 0,03584214 621,333333 10,3555556 22627 13312 1275 7869 59% 6% 35%

RL_d30 56 6035 6428 0,06113877 532,666667 8,87777778 19284 12232 2605 4446 63% 14% 23%

RL_d2 90 10698 10941,6667 0,02226961 822,666667 13,7111111 32825 19222 2939 10662 59% 9% 32%

0

time lns

Larger operatorRL_d55 28

RL_d01 46

RL_d96 53

RL_d30 56

RL_d2 90

77

run size

Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS Total Cost Distance Cost Delays Cost Nbr V Cost Time N vehicule LNS

Final version RL_d55 28 2964 1875 127 962 293 5 no 2929 1906 61 962 388 5 no

RL_d01 46 6430 4054 500 1875 559 6 no 6437 3968 594 1875 903 6 no

RL_d96 53 7512 4429 460 2623 670 9 yes 7576 4140 813 2623 617 9 yes

RL_d30 56 5715 3492 740 1482 1295 7 yes 5653 3670 501 1482 1170 7 no

RL_d2 90 10222 5694 781 3746 990 13 yes 9575 5573 543 3458 1813 12 no

1 2

run size

Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

Final version RL_d55 28 3070 1804 304 962 389 yes 5 2841 1622 257 962 387 yes 5

RL_d01 46 6436 4001 247 2187 917 no 7 6292 3483 621 2187 417 no 7

RL_d96 53 7204 4105 475 2623 1155 no 9 7307 4202 482 2623 599 no 9

RL_d30 56 5671 3430 547 1693 732 yes 8 5982 3582 616 1693 1278 no 8

RL_d2 90 10523 6197 868 3458 1222 yes 12 10153 5893 513 3746 1690 yes 13

3 4

run size

Total Cost Distance Cost Delays Cost Nbr V Cost Time LNS N vehicule

Final version RL_d55 28 2994 1695 337 962 351 no 5

RL_d01 46 6496 3914 394 2187 813 no 7

RL_d96 53 7295 3990 390 2914 693 yes 10

RL_d30 56 5809 3755 360 1693 883 no 8

RL_d2 90 10607 5984 876 3746 939 yes 13

5

run size Totaux

Best AVG dev AVG time Total Cost Distance Cost Delays Cost Nbr V Cost

Final version RL_d55 28 2841 2959,6 0,04007298 361,6 6,02666667 14798 8902 1086 4810 60% 7% 33%

RL_d01 46 6292 6418,2 0,01966283 721,8 12,03 32091 19420 2356 10311 61% 7% 32%

RL_d96 53 7204 7378,8 0,02368949 746,8 12,4466667 36894 20866 2620 13406 57% 7% 36%

RL_d30 56 5653 5766 0,01959764 1071,6 17,86 28830 17929 2764 8043 62% 10% 28%

RL_d2 90 9575 10216 0,06274471 1330,8 22,18 51080 29341 3581 18154 57% 7% 36%

78

10. List of Appendix

I. Summary of several algorithms for the dynamic multi-vehicle DARP

II. Identification for the best parameters setting for the hybrid BA-DA (BA-SA).

III. Best solutions with final algorithm

IV. Complete Results

66

68

70

74

79

80

11. Bibliography and References

Aldaihani, M., Dessouky, M. M. (2003). Hybrid scheduling methods for paratransit operations.
Computers & Industrial Engineering, 45, 75–96.

Atahran, A., Lenté, C., T’kindt, V., (2014). A multicriteria dial-a-ride problem with an ecological measure
and heterogeneous vehicles. J. Multi-Criteria Decis.Anal. (Forthcoming).
http://dx.doi.org/10.1002/mcda.1518.

Baugh JW, Krishna G, Kakivaya R, Stone JR (1998) Intractability of the dial a-ride problem and a
multiobjective solution using simulated annealing. Eng Optim 30:91 – 123.

Braekers, K., Caris, A., Janssens, G.K., (2013). Integrated planning of loaded and empty container
movements. OR Spectrum 35 (2), 457–478.

Braekers, K., Caris, A., Janssens, GK., (2014). Exact and meta-heuristic approach for a general
heterogeneous dial-a-ride problem with multiple depots. Transportation Research: Part B. 2014;
67:166-186. doi:10.1016/j.trb.

Chassaing, M., Duhamel C., Lacomme P., Laforest C. (s.d). DARP Instances Real Life. Limos. Part B:
Methodological, 20 (3), 243 {257.https://perso. isima.
fr/~lacomme/Maxime/Real_life_instances/Real_life_instances.php}

Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., Trubian, M. (1996) Heuristics from nature
for hard combinatorial optimisation problems. Int Trans Oper.Res 3,1–21

Cordeau, J.-F., (2006). A branch-and-cut algorithm for the dial-a-ride problem. Oper. Res. 54 (3), 573–
586.

Cordeau, J. -F., Laporte, G., (2003a). The Dial-a-Ride Problem (DARP): variants, modeling issues and
algorithms. 4OR: Quart. J. Oper. Res. 1 (2), 89–101.

Cordeau, J. -F., Laporte, G., (2003b). A tabu search heuristic for the static multi-vehicle dial-a-ride
problem. Transp. Res. Part B: Methodol. 37 (6), 579–594.

Cordeau, J. -F., Laporte, G., (2007). The dial-a-ride problem: models and algorithms. Ann. Oper. Res.
153 (1), 29–46.

Desrosiers, J., Dumas, Y., Soumis, F., Taillefer, S., & Villeneuve, D. (1991). An algorithm for mini-
clustering in handicapped transport. Les Cahiers du GERAD, G-91-02, HEC Montréal.

Dueck, G., Scheuer, T., (1990). Threshold accepting: A general purpose optimisation algorithm
appearing superior to simulated annealing. J. Computat. Phys. 90 (1), 161–175.

Dumas, Y., Desrosiers, J., & Soumis, F. (1989a). Large scale multi-vehicle dial-a-ride problems. Les
Cahiers du GERAD, G-89-30, HEC Montréal.

Freitas, A.A., (2013). Data Mining and Knowledge Discovery With Evolutionary Algorithms. Springer
Science & Business Media, Berlin.

Gschwind, T., Drexl, M.(2019). Adaptive Large Neighbourhood Search with a Constant-Time Feasibility
Test for the Dial-a-Ride Problem. Transportation science, vol.53, No.2,480-491.
https://doi.org/10.1287/trsc.2018.0837

81

Guerriero, F., Bruni, M.E., Greco, F., (2013). A hybrid greedy randomized adaptive search heuristic to
solve the dial-a-ride problem. Asia-Pac. J. Oper. Res. 30 (1), 1250046.

Ho, SC., Haugland, D. (2004) Local search heuristics for the probabilistic dial-a-ride problem. Tech. Rep.
286, University of Bergen.

Ichoua, S., Gendreau, M., Potvin, J-Y. (2003). Vehicle Dispatching with time – dependent travel times.
European Journal of Operational Research. 144. 379-396. 10.1016/S0377-2217 (02)00147-9.

Ioachim, I., Desrosiers, J., Dumas, Y., & Solomon, M. M. (1995). A request clustering algorithm for door-
to-door handicapped transportation. Transportation Science, 29, 63–78.

Jain, S., Van Hentenryck, P., (2011). Large neighbourhood search for dial-a-ride problems. In: Lee, J.
(Ed.), Principles and Practice of Constraint Programming CP 2011, Lecture Notes in Computer
Science, 6876. Springer, Berlin Heidelberg, 400–413.

Jaw, J. J. (1984) Heuristic Algorithms for Multi-Vehicle, Advance-Request Dial-A-Ride Problems. Ph.D.
Thesis, Dept. of Aeronautics and Astronautics, M.I.T., Cambridge, MA.

Jaw, J.-J., Odoni, A. R., Psaraftis, H. N., and Wilson, N. H. (1986). A heuristic algorithm for the multi-
vehicle advance request dial-a-ride problem with time windows. Trampn. Rcs:8 Vol. 2OB. No. 3.
pp. 243–257.

Jørgensen, R. M., Larsen, J., & Bergvinsdottir, K. B. (2007). Solving the dial-a-ride problem using genetic
algorithms. Journal of the Operational Research Society.

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M., (2011). The irace Package: Iterated
Racing for Automatic Algorithm Configuration. Operations Research Perspectives. 3.
10.1016/j.orp.2016.09.002.

Masmoudi, MA. Hosny, M. Braekers, K. Dammak, A.(2016). Three effective metaheuristics to solve the
multi-depot multi-trip heterogeneous dial-a-ride problem. Transportation Research: Part
E. 2016; 96:60-80. doi:10.1016/j.tre.

Melachrinoudis E., Ilhan A.B., Min H (2007) A dial-a-ride problem for client transportation in a health
care organization. Comput Oper Res 34,742–759.

Miller, B.L., Goldberg, D.E., (1995). Genetic algorithms, tournament selection, and the effects of noise.
Complex Syst. 9 (3), 193–212.

Parragh, S.N., Doerner, K. F., Hartl, R.F., (2008). A survey on pickup and delivery problems. Part II:
transportation between pickup and delivery locations. J.Betriebswirtschaft 58 (2), 81–117.

Parragh, S.N., Doerner, K.F., Hartl, R.F., (2010). Variable neighbourhood search for the dial-a-ride
problem. Comput. Oper. Res. 37 (6), 1129–1138.

Parragh, S.N., Schmid, V., (2013). Hybrid column generation and large neighbourhood search for the
dial-a-ride problem. Comput. Oper. Res. 40 (1), 490–497.

Psaraftis, H. N. (1980). A dynamic programming approach to the single-vehicle, many-to-many
immediate request dial-a-ride problem. Transportation Science, 14, 130–154.

Psaraftis, H. N. (1983). An exact algorithm for the single-vehicle many-to-many dial-a-ride problem
with time windows. Transportation Science, 17, 351–357.

Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M., (2005). The Bees Algorithm.
Technical Note. Manufacturing Engineering Centre, Cardiff

82

Pham, DT., Castellani, M., Chen, J. (2015). A comparative study of the Bees Algorithm as a tool for
function optimisation. Cogent Engineering. 2(1):1-N.PAG. doi:10.1080/23311916.2015.1091540

Rekiek, B., Delchambre, A., & Saleh, H. A. (2006). Handicapped person transportation: an application
of the grouping genetic algorithm. Engineering Application of Artificial Intelligence, 19, 511–520.

Ropke, S. (2005). The pickup and delivery problem: models and optimisation algorithms [presentation
from seminar guest]. Department of Computer Science, University of Copenhagen and IT
University of Copenhagen. https://rasmuspagh.net/courses/CAOS/DARP.pdf

Ropke, S., Cordeau, J.-F., Laporte, G., (2007). Models and branch-and-cut algorithms for pickup and
delivery problems with time windows. Networks 49 (4),258–272.

Sexton, T. (1979). The single vehicle many-to-many routing and scheduling problem. Ph.D. dissertation,
SUNY at Stony Brook.

Sexton, T., & Bodin, L. D. (1985a). Optimizing single vehicle many-to-many operations with desired
delivery times: I. Scheduling. Transportation Science, 19, 378–410.

Sexton, T., & Bodin, L. D. (1985b). Optimizing single vehicle many-to-many operations with desired
delivery times: II. Routing. Transportation Science, 19, 411–435.

Uchimura K, Saitoh T, Takahashi H (1999) The dial-a-ride problem in a public transit system. Electron
Commun Jpn 82, 30–38.

Urra,E. Cubillos, C. Cabrera-Paniagua,D.(2014).A hyperheuristic for the dial-a-ride problem with time
windows. Mathematical problems in engineering, volume 2015, Article ID 707056, 12 pages.
https://doi.org/10.1155/2015/707056

Zidi,I. ,Mesghouni,K., Zidi,K. Ghedira, K. , 2012 . A multi-objective simulated annealing for the multi-
criteria dial a ride problem. Engineering Applications of Artificial Intelligence, Volume 25, Issue 6,
1121–1131, https://doi.org/10.1016/j.engappai.2012.03.012.

https://doi.org/10.1155/2015/707056

83

Executive summary

The dial a ride problem (DARP) is a specific transportation problem. The objective is to optimise the

planning of a collection of trips made by a fleet of vehicles. Those trips aim to satisfy requests from

users while meeting various constraints. The cleared example is the transportation of the elderly or

disabled people. The problem has received increase interest in recent years as the demand for services

that can be solved through DARP is rising. Due to the aging of the population, this demand will be even

bigger in the future. Good optimisation tools are needed to respond to it.

 In this thesis, I review the different heuristics to solve DARP before implementing a hybrid Bee

Algorithm with Deterministic Annealing. The different creation steps are described before the

algorithm is tested on several instances. The results are then used to explore possible improvements

to the algorithm. Several real-life problems are discussed along the way.

Keyword: Vehicle routing problem, Dial a ride problem, Optimisation, Hybrid metaheuristic, Bee

algorithm, Deterministic Annealing

Word count = 18942

