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Abstract 
 
In this research work, I will try to see if it is possible and advantageous to use artificial neural networks 
to predict American options, which are more difficult to predict than European options because of the 
possibility of early exercise. As there are only numerical or approximation methods available, the 
neural network is a perfect fit, as it is non-parametric and able to capture some extremely complex 
non-linear functional relations. Once the neural network is set up with an efficient structure, it will 
also be possible to vary the input features to gain information on the real contribution of the latter on 
the efficiency of the model.  
 
This research includes definitions and demonstrations of key concepts in the field, a literature review 
of current knowledge, practices and trends on the subject, a construction of an efficient neural 
network structure to address the pricing problem and various feature tests on this network, each 
network being compared with its predecessors but also with the chosen benchmarks: the Black-
Scholes model and the Cox Ross Rubinstein binomial tree model. 
 
The main conclusions of this research work are that, once the right neural network structure was 
found, the use of the ANN to predict American options consistently outperformed its benchmarks. 
What this means for managers is that machine learning, and neural networks in particular, may be 
worth investigating for implementation, especially in a context where there is access to sufficient data 
to train the network properly. My research also shows that if one is in a context where one has to 
predict in real time many American option prices, then neural networks are advantageous. Indeed, 
once the learning phase is over, the prediction is instantaneous, contrary to the iterative method of 
the CRR binomial tree. This advantage can be massive in attempts to leverage the pricing algorithms. 
 
In terms of conclusions for the academic side, this work shows that there is a need to continue to 
develop techniques for pricing American equity options using neural networks, and that one should 
not focus solely on European options in the belief that the latter are easier to tackle. I also 
demonstrate in this work that including the dividend yield in the neural network inputs increases the 
predictive power of the neural network. This parameter, too often omitted, can make a big difference 
by itself. My research also shows that taking the interest rate into account increases the predictive 
power, although a little less than the dividend yield, and confirms that volatility (in my case implied 
volatility) is very important in the input features. 
 
However, I also find that some features do not add value. This is the case for the volume, which once 
added to the network does not increase its predictive power (and also makes the training phase more 
complex), and the open interest, who deteriorates the results.  
 
So there are indeed advantages to using neural networks to predict American options. These 
advantages are the accuracy (by outperforming benchmarks such as the Black-Scholes or the binomial 
tree model), the taking into account of parameters that are sometimes difficult to integrate, the fact 
that a Put and a Call can be priced with the same algorithm, the fact that in the money, at the money 
or out of the money options can be priced efficiently with a single algorithm, and the instantaneous 
computational speed once the network has been trained However, there are also disadvantages, 
namely the learning phase can be long, the fact that one sometimes has to perform trial and error 
techniques to see what changes improve the network or not, the fact that one needs a lot of good 
quality data to train the network and the fact that a neural network is a black box that is difficult to 
analyse. It is up to each person to weigh up the pros and cons of each argument. 
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Introduction 
 

Context 
 
My thesis is set in a context where two elements meet: the fact that American options pricing has no 
closed-form solution and the fact that machine learning and more particularly artificial neural 
networks are increasingly developed, advanced and efficient for a multitude of tasks. 
 
As far as the pricing of American options is concerned, it is done either by approximation or by 
numerical methods.  For example, one approximation method is the method proposed by Barone-
Adesi and Whaley in The Journal Of Finance (1987). The problem with such methods is that they tend 
to be effective only in certain cases. The method mentioned above has accuracy problems when the 
dividends of the underlying stock have to be taken into account.  
 
To be more accurate, numerical methods derived from one of these three categories are used: the 
Cox Ross and Rubinstein binomial tree method, the partial differential equation method and the 
Monte Carlo method. For example, the mainstream data provider I chose uses a proprietary algorithm 
based on the Cox Ross Rubinstein binomial tree model. 
 
As far as machine learning is concerned, there have been huge advances in recent years. This field of 
research had been on standby since the publication of the book "Perceptrons: an introduction to 
computational geometry” (Minsky & Papert, 1969), which sought to demonstrate that artificial neural 
networks are fundamentally limited. This is the "AI Winter". In 1970, the concept of Backpropagation 
was presented by Seppo Linnainmaa under the name Automatic Differentiation in his master thesis, 
and later in a research paper (Linnainmaa, 1976). However, the research remained at a standstill.  
 
It was in the 1980's that research resumed in full swing when Kunihiko Fukushima discovered the 
Neocognitron (Fukushima, 1980) (which later inspired Convolutional Neural Networks), John Hopfield 
discovered Recurrent Neural Networks (Hopfield et al., 1983), and several researchers (notably David 
Rumelhart, Geoff Hinton and Ronald J. Williams) managed to apply the concept of Backpropagation 
to neural networks (Rumelhart et al., 1986). At the same time, computers were becoming more and 
more powerful, which inevitably helped the development of machine learning, a discipline that could 
require a lot of computing power.  
 
After that, neural network research and applications began to flourish, until the use of deep neural 
networks in everyday applications in the 2000s. 
 
Obviously, finance, like other disciplines, has not escaped the arrival of machine learning, whether it 
be for robot advisory, pricing, risk hedging, fraud detection or algorithmic trading. With regard to 
option pricing, research began in 1993. But why is it that the subject is still relevant today, even though 
many papers have been published so far? Well, for several reasons. Firstly, as mentioned above, the 
available computing power is increasing every year, and we know that neural networks need a lot of 
resources. Secondly, and related to the above reason, neural network techniques are improving every 
year, with new backpropagation algorithms, new ways of encouraging a network to generalise well, 
and new more efficient structures. Indeed, the more computing power available, the further one can 
go in neural network research. Thirdly, the volume of traded option contracts in the world has started 
to increase drastically again since 2016, from 9.33 billion contracts to 21.22 billion contracts in 2020 
according to Statista (2021). This adds an incentive to do more research and to use all the current 
knowledge to better price these contracts. 
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Figure 1 - Annual option volume traded worldwide – data from Statista 

 
As for the continuous increase in the computing power of computers, this is best illustrated by Moore's 
Law. This law, formulated by Gordon Moore in 1965, states that the number of transistors in electronic 
circuits doubles every two years. This has been true more or less ever since. However, several 
researchers predict that this law will no longer hold, and some, such as the Royal Society, claim that it 
will end in 2021, all other things being equal (for example, without the intervention of new 
innovations) (Shalf, 2020).   
 
 

 
Figure 2 - Moore's law illustration from medium.com (2021) 
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Figure 3 - Royal Society prediction – end of Moore’s law (Shalf, 2020).   

 
The fact that the increase in computing power may diminish in the near future is also a reason to 
explore more efficient numerical methods or approximations, in order to make the most of the 
computing power we have at our disposal, and not to rely indefinitely on the fact that tomorrow's 
computers will be more powerful than today's. 
 
On top of that, we are in a context where we have access to more and more data on everything, and 
this is exactly what is needed to train neural networks. 
 
This is why I think that the current context strongly invites to continue the research in the search of 
new algorithms of American option pricing, in particular by the use of more or less advanced artificial 
neural networks. 
 

Main objective 
 
Therefore, the main objective of this thesis would be to investigate the feasibility of using artificial 
neural networks (ANNs) in order to treat American option pricing problems and to determines the 
pros and the cons of using them instead of classical methods. Indeed, ANNs are non-parametric 
models able to capture some extremely complex non-linear functional relations. Since then, the 
objective of this research would be to design, feed, train and implement (in python) an ANN capable 
of pricing efficiently American option given all the necessary inputs. Those inputs will not be generated 
from scratch but will be real data collected from a generic data provider. Then, the performance and 
the results of the ANN will be assessed alone and by comparison to the most common - used and 
classical, i.e. The Black-Scholes and the Cox Ross Rubinstein binomial tree model. 
 
The main problem is that in research work, the options treated are more often European options, 
which are less difficult to price because they can only be executed at expiration. The American options 
on the other hand are often considered as more exotic options because they have the characteristic 
of being able to be executed at any time between the purchase of the contract and the expiration date 
of the contract, which makes them more complex to price. It is therefore necessary to investigate the 
possibility of correctly pricing American options with a neural network, and to see if this method brings 
various advantages, either in accuracy or in calculation time.  
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Moreover, when the performance of a neural network is evaluated, it is done against the Black-Scholes 
model or some of its variants, which is not the most appropriate for American options. Here, we will 
try to compare our results to the Cox Ross Rubinstein binomial tree model, which allows to take into 
account the possibility of executing one's option before expiration. Therefore, it will be useful to 
compare the results proposed by our neural networks with the results provided by the binomial tree 
model. 
 

Research motivations 
 
In terms of managerial motivations, it is important to address this topic because machine learning in 
general is a source of debate and differing opinions. Some uninformed managers find these methods 
too approximate and do not want to take the trouble to dig deeper into the subject, preferring to stick 
to methods coming from classical mathematics. This is understandable given that this field of research 
is relatively new. Other people, convinced by machine learning (which is a part of statistics), try to 
apply it and advance the research with promising results. Some algorithmic trading or market making 
firms use it on a daily basis and do not pale in comparison to traditional investment firms.  
 
Therefore, I think managers need more insights on the subject, if only to explore the possibilities that 
machine learning and neural networks offer. This technology is becoming so important in everyday 
life that it is impossible to pass by without even considering it. I think that managers could take this 
research work as a way of discovering the possibilities offered by neural networks in terms of 
American option pricing, which would allow them to take a closer look at this subject and why not dig 
deeper. 
 
From an academic point of view, the gap lies in the fact that most of the research focuses on European 
options or index options, which are in the minority on the market. Indeed, the majority of stock and 
equity options traded in the market are American, while European options are more traded over-the-
counter and on indexes. Therefore, it would be nice to have more research focusing on the pricing of 
American options. In addition to this, option pricing research does not often take into account the 
dividend yield. Indeed, many models omit it for ease of calculation, but in a neural network, we can 
very well try to add it as an input. This is something I will take into account in this master thesis, as it 
can be important in obtaining an accurate price. 
 
My research questions are therefore consistent with the managerial and academic motivations. It 
would provide insights into the pricing of more complex options than European options, it would give 
managers more incentive to look at neural networks by exposing their pros and cons, and it would 
open some doors to future academic improvements in the accuracy of results. 
 

Contributions 
 
I hope that this research work will contribute to the managers as well as to the academic world, and 
that its added value will be the demonstration of the efficiency of neural networks for American option 
pricing, both in accuracy and in computation time, which could be an interesting indication for a real 
world application. I think that the added value of this work can also be the systematic comparison of 
several combinations of parameters in the structure of the neural networks and of several 
combinations in the features proposed as input to the network, which would allow to direct the 
research towards a more and more successful path. 
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For a manager, I think that my work could lead to the investigation of the use of neural networks (or 
machine learning in general) in financial mathematics projects, both in derivatives pricing and in other 
areas. If I can prove that a neural network can be as efficient or even more efficient than classical 
models, it could be very convincing. So I think managers should take a closer look at the technological 
and algorithmic advances in this area, and I hope that my work in this master thesis can contribute to 
this. 
 
On the academic side, my research work would be of added value as it would provide new evidence 
of the effectiveness of the use of neural networks for American option pricing, but also new comments 
on the use of this or that feature, this or that activation function in the network, or other parameters. 
This would allow for a broader view of what can and cannot be done with American stock options, 
instead of continuing to focus on European index options. I also hope to provide a justification for the 
use (or not) of dividend yield in this pricing problem. 
 

Structure of the thesis and general methodology 
 
In terms of the main steps of this work and the methodology in summary, I will begin this dissertation 
with a literature review, from the earliest research to what is currently being done, including the 
important findings that have advanced the research on American options pricing using artificial neural 
networks. I will relate the divergent or non-conforming opinions of some authors and identify research 
trends, which will provide me with an informed starting point for my own work. Finally, I will position 
the objectives of my work in the current state of knowledge.  
 
Secondly, I will explain and define the main concepts that are useful for the proper understanding of 
this work, namely options, their features and functioning, the Black-Scholes option pricing model, the 
Cox Ross Rubinstein binomial tree pricing model (as these two models will be used as a benchmark 
during this work), as well as what a neural network is and how it works.  
 
Thirdly, I will define more precisely the methodology used in this work, both for the qualitative and 
quantitative part, and then I will justify my choice by explaining why I think this methodology is 
efficient, while looking at whether it has any flaws, partly based on some of the findings of the 
literature review. 
 
Fourthly, I will go deeper into the quantitative part, explaining why I chose this or that data, explaining 
how I was able to extract them and how I analysed them to pre-process them. With this, I will go into 
detail about the structure of the starting neural network I chose, and why and how I chose it. I will 
show and explain each parameter of the network, so that everything is clear and the starting point of 
my analyses is solidly defined. 
 
Fifthly, I will talk about the different variants I have made to the basic neural network and show and 
explain the results obtained by these. This will allow me to compare them with each other, to see the 
advantages and disadvantages of certain modifications. Then, I will also compare these results to the 
results obtained by my benchmarks, to be able to know finally if these networks are as efficient, more 
efficient or less efficient than the classical models.  
 
Finally, these results will be put into perspective with my hypotheses and the whole of my work but 
also with the works analysed during the literature review, and will be discussed, before I can bring my 
very own conclusions. 
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Literature review 
 

Historical and contemporary literature review 
 
For what we are interested in, namely option pricing by artificial neural network, research began in 
1993 with the works of M. Malliaris and L. Salchenberger "Beating the best: a neural network 
challenges the Black-Scholes formula" and "A neural network model for estimating option prices" 
(Malliaris & Salchenberger, 1993a and b). Their work focuses on European options, which can only be 
exercised at expiration, and uses extremely simple neural networks ("shallow neural networks"), 
including the features chosen by the authors as input (spot, strike, time to maturity, implied volatility, 
interest rate, lagged option price and lagged spot price), a single hidden layer containing 3 to 5 neurons 
and the output layer containing the price predicted by the network. In these papers, the two authors 
find that their neural network gives an option price closer to the market closing price than that 
calculated by the Black-Scholes model 50% of the time. This is just the beginning and it looks 
promising. 
 
The Journal of Finance first published a research paper on the subject written by Hutchinson et al. 
(1994). They worked on European options and use only two inputs, namely moneyness (ratio between 
spot price and strike price) and time to maturity, and had as output the ratio between the option price 
and the strike price. This is the first time that moneyness is used as an input, which will become 
recurrent much later. This work concludes that neural networks are not preferable to parametric 
derivative pricing formulas, but can be a good substitute when parametric methods fail. This research 
is promising but limited because it uses only Black-Scholes as a comparison, too few inputs and too 
limited data (a single instrument on a four-year period). 
 
The first paper on American option pricing came later with "Valuing and Hedging American Put 
Options Using Neural Networks" by Kelly and Shorish (1994). Although his work focuses only on put 
options and mainly on their hedging possibilities, it too seems promising, concluding that the neural 
network is faster and more accurate than approximation methods. However, little precise information 
on its results and methodology is available, except that it uses strike price, spot price, time to maturity 
and historical volatility as inputs, which may seem little compared to more recent work. 
 
Time goes by and research continues to progress at a rather slow pace, mainly on European index 
options, on futures options, but little or not on American equity options. 
 
Some papers propose some innovations as the years go by, like Lajbcygier and Connor (1997) who 
proposed to use a neural network designed to predict the difference between the price predicted by 
a classical parametric model and the real market price in the paper "Improved option pricing using 
artificial neural networks and bootstrap methods", or Anders et al. (1998) who look at the impact of 
certain neural network input features in "Improving the pricing of options: a neural network 
approach", concluding that the use of implied volatility provided a good prediction improvement, and 
that too large networks (more than 3 hidden layers) could negatively impact the results. 
 
Other research is also being done on the use of neural networks to perform another task than pricing 
directly, such as the calculation of implied volatility. Another study from Zapart (2003) named "Beyond 
Black-Scholes: a neural networks-based approach to options pricing" uses a neural network in his 
stochastic volatility model, then uses this volatility in a binomial model to price the option. He also 
proposes to use an ANN to reverse engineer the Black-Scholes formula. This shows the evolution in 
the use of neural networks in pricing research, which can be used in many different ways. Again, the 
conclusion is that his model performs as well as and sometimes better than the Black-Scholes model. 
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For research on American option pricing, one can find a paper by Pires and Marwala (2005) where 
they try to price American options using neural networks and support vector machines. A support 
vector machine is a type of machine learning model capable of performing linear and non-linear 
regressions and classifications that are particularly useful and efficient for classification problems on 
small and medium sized complex datasets. The authors conclude that support vector machines (SVMs) 
are more efficient than neural networks, the average prediction error being lower, even if the training 
time of SVMs is much longer than that of neural networks. However, their results are still encouraging 
for the use of neural networks. 
 
After that, research on American option pricing using neural networks is more or less on standby. In 
the next attempts we can for example a study which uses very efficiently a neural network to predict 
the implied volatility as well as another neural network to predict the price difference between the 
classical model used with the so-called implied volatility and the market price (Amornwattana et al., 
2007). Their model outperforms the Black-Scholes model, both with the historical volatility and the 
implied volatility predicted by the neural network. 
 
Finally, two papers concerning American options are coming out: "Pricing of high-dimensional 
American options by neural networks" by Kohler et al. (2010) and "Deep optimal stopping." by Becker 
et al. (2019). These papers explain that ANNs can be used differently to price American options, by 
learning the value function or optimal stopping rules in a dynamic programming environment. In this 
case, the optimal stopping concerns the time at which we will want to execute our American option, 
which is useful for option pricing.  
 
Throughout this period, most papers discuss the pricing of European options, and often simplify the 
issue by omitting certain inputs such as dividend yield. My research work is therefore quite adapted 
to the current stage of research. I will try to see if neural networks can be used to efficiently price 
American options, taking into account the dividend yield, and if one can find advantages in using these 
methods over some more classical ones. I will also take the opportunity to compare the results 
predicted by the neural network with those predicted by the Black-Scholes but also the binomial tree 
model of Cox Ross Rubinstein, which allows to predict numerically the American options. The objective 
of the comparison will be multiple: to know if a model created with a neural network can outperform 
a classical model in terms of accuracy, but also to know if the prediction speed is really much higher 
with neural networks after training. The speed of prediction can be very important, especially when 
implementing a pricing tool that needs to generate several prices simultaneously and continuously 
over a long period of time. Indeed, a too slow algorithm would prevent real-time pricing. 
 

Theoretical foundations 
 
In this section, I will define the theoretical concepts that are important for this master thesis. Firstly, I 
will recall what an option is and explain the different features it comprises. Secondly, I will define the 
different classical models used in comparison with the neural network, namely the Black-Scholes 
model and the Cox Ross Rubinstein binomial tree model. Thirdly, I will define what an artificial neural 
network is and the basis of its operation.  
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Options 
 
To begin with, an option is a financial derivative, which means that its value is derived from the value 
of another asset, called the underlying. This underlying can be many things, such as a stock (which is 
of interest to us in this work), but also indexes or other derivatives such as futures or swaps (this list 
is not exhaustive). An option contract gives the buyer the right (not the obligation) to buy or sell the 
underlying asset at a certain date in the future and at a certain price, both fixed at the time the 
contract is created. The right to buy is called a Call option and the right to sell is called a Put option. 
To buy an option contract, one pays what is called the "premium". This is what we will try to 
determine. 
 
There are several types of options. European options (also called vanilla options) are options where 
you can only execute your right to buy or sell the underlying asset on the expiry date of the contract. 
These are the least difficult options to understand. Secondly, American options are options where you 
can exercise your right to buy or sell during the entire term of the contract, until it expires. These 
options are sometimes more difficult to understand and to price, due to the fact that they can be 
executed whenever you want. This is the exercise we will be tackling in this work. We also have other 
types of options that are even more exotic, such as Asian options with a floating strike price or Barrier 
options for which the payoff depends on whether or not the price of the underlying asset has 
exceeded a certain threshold.  
 
An American equity option contract has several features that I will present below: 
 

- Its type: this specifies whether we are dealing with a call or put option. 
- Its price (noted C or P): this is the premium that the buyer of the option pays the seller when 

he contracts the right to buy or sell.  
- The spot price (noted S): this is the price of the underlying asset. In our case, it is the price of 

a share.  
- The strike price (noted K): it is the price defined at the time of the purchase of the option at 

which one will be able to buy or sell the underlying share at the time of the execution of this 
right.  

- Time to Maturity (noted τ): it is the number of years remaining before the expiration of the 
contract. For an American option, it is during this period that we have the right to execute our 
option.  

- The rate (noted r): the continuously-compounded interest rate associated with the option. In 
our case, this interest rate is calculated from a collection of continuously-compounded zero-
coupon interest rates at various maturities, collectively referred to as the zero curve. 

- Volatility (noted σ): this is the volatility of the underlying stock. We will use here implied 
volatility, which is the volatility implied by option prices observed in the market (it is thus a 
non-observable factor). It is used to monitor the market's opinion about the volatility of a 
particular stock. Whereas historical volatilities are backward looking, implied volatilities are 
forward looking. It represents the expected fluctuations of the underlying stock over a specific 
time frame. 

- The dividend yield (noted q): this is the projected annualised dividend yield. 
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These were the main characteristics of the options, and the ones that will be used mainly in this work. 
However, they also have other very important characteristics, such as the volume, the open interest 
and the “Greeks” risk metrics (which are partial derivatives of the Black-Scholes formula): 
 

- The volume: this is the quantity of option contract that is traded over a certain period of time, 
usually one day. 

- The open interest: this is used to get an idea of how much money is coming into or going out 
of the market. Indeed, it measures the number of "open" option contracts on the market, i.e. 
the number of contracts that have not yet expired (having a buyer and a seller). Therefore, if 
the buyer sells his option contract to another market player, the open interest does not 
change. However, if the buyer decides to execute his right to buy (for a Call option) or sell (for 
a Put option), then the contract ends and the open interest decreases. If a buyer and a seller 
meet and agree to establish an option contract between them, then the open interest 
increases. 

- Delta (Δ): it represents the sensitivity of the option price to a change in the price of the 
underlying. Specifically, the variation of the option price relative to a one dollar change in the 
underlying price. This value is used to "delta hedge" a portfolio. If you own an option on a 
specific share, you can delta hedge your position by shorting a quantity Δ of this specific share. 

- Gamma (Γ) : it represents the sensitivity of the delta to a change in the price of the underlying. 
Specifically, the variation of the delta relative to a one dollar change in the underlying price. 
This can help to determine whether our delta hedged portfolio is likely to remain so for a long 
time or not. The more sensitive the delta is to a price change in the underlying, the more often 
you will have to rebalance your position to stay delta hedged. 

- Theta (Θ) : it represents the sensitivity of the option price to a change in time to maturity. 
Specifically, the variation of the option price relative to a one day change in the time to 
maturity. It express the time decay of the option.  

- Vega (V) : it represents the sensitivity of the option price to a change in the volatility of the 
underlying. Specifically, the variation of the option price relative to a one percent change in 
the implied volatility. 

- Rho (𝜌) : it represents the sensitivity of the option price to a change in the interest rate. 
Specifically, the variation of the option price relative to a one percent change in the interest 
rate. 

- There are other more specific Greeks which we will not discuss here, as Lambda and Vomma 
for example. 

 

Δ =
𝜕𝐶

𝜕𝑆
 

 

Γ =
𝜕Δ

𝜕𝑆
=
𝜕2𝐶

𝜕𝑆2
 

 

Θ =
𝜕𝐶

𝜕𝑡
 

 

𝑉 =
𝜕𝐶

𝜕𝜎
 

 

𝜌 =
𝜕𝐶

𝜕𝑟
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When you decide to exercise your option, you receive the payoff. This is calculated differently 
depending on the type of option.  
 

- For a Call : 𝑃𝑎𝑦𝑜𝑓𝑓 = max(0, 𝑆𝑇 − 𝐾) 
- For a Put : 𝑃𝑎𝑦𝑜𝑓𝑓 = max(0,𝐾 − 𝑆𝑇) 

 
Here is a quick illustration of how the payoff and profit of an option behaves, whether you are long on 
a Call, long on a Put, short on a Call and short on a Put. For this simplistic illustration, I have chosen a 
strike price of 110 and an option price of 10. 
 
 

 
Figure 4 - Option payoff and profit behaviour 

 
It is easy to see that the potential loss is limited when you buy an option, whereas it can be infinite if 
you sell it. This is due to the fact that the option is an asymmetric contract. Indeed, the buyer pays a 
premium to acquire the right to exercise his option while the seller receives the premium against the 
obligation to comply with the buyer's choice. 
 
In addition to this, we can say that the value of an option is intuitively defined by two factors. These 
two factors are the intrinsic value of the option (the payoff of the option if it were to mature 
immediately) and the time value of the option (the additional premium due to the time remaining 
before the option matures). However, calculating the precise price of an option is a complicated 
challenge depending on the type of option you are dealing with, such as American options. 
 
Finally, an option can be said to be Out of The Money (OTM), At The Money (ATM) or In The Money 
(ITM). This is important because it expresses three possible states of the option. When we say that an 
option is OTM, it means for a call that the spot price is lower than the strike price. An OTM option has 
no intrinsic value, its price only comes from the possibility of gain due to the time remaining before 
expiration, i.e. its time value. Therefore, the price of such an option is low, and the possibility of big 
profit is high, but so is the risk of not being able to execute it. For a put, this happens when the spot 
price is higher than the strike price. 
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The opposite of an OTM option is an ITM option. In effect, this means for a call that the spot price is 
higher than the strike price, and for a put that the spot price is lower than the strike price. These 
options generally cost more because they have an intrinsic value in addition to their time value. For 
an American option, it can be interesting to execute it before the expiration date of the contract when 
you are ITM.  
 
Ultimately, an ATM option is one for which the spot price and strike price are equal. This means that 
the option has a time value but is also close to maybe having an intrinsic value. 
 
 

Black-Scholes model 
 
The Black Scholes model was proposed in 1973 and is still widely used in the financial industry. It is a 
partial differential equation used to price European options contracts, as it does not take into account 
the possibility of exercising the option before maturity. This model is based on two basic principles, 
namely the risk neutral (or delta hedging) principle and the absence of arbitrage possibilities. This 
means that stocks are purchased at any moment to hedge the risk of the derivative position and that 
we cannot use arbitrage to gain money as a portfolio composed of an asset and its hedge will return 
the risk-free interest rate (Black & Scholes, 1973).  
 
This model is based on several important assumptions: 
 

- The underlying stock price is modelled by a Geometric Brownian Motion with St a random 
variable lognormally distributed, the log-return of the stock normally distributed and Wt a 
Wiener process (also known as standard Brownian Motion). 

 
𝑑𝑆𝑡 = 𝜇𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑊𝑡 

 
- The volatility σ is constant  
- The underlying stock pays no dividend 
- The risk-free interest rate is constant 
- There are no transaction costs  
- Short-selling is allowed 

 
This lead to the following partial differential equation (PDE) : 
 

𝜕𝑉

𝜕𝑡
+ 𝑟𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− 𝑟𝑉 = 0 

 
In this equation, V = V(S,t) is the value of the option, S is the spot price (the price of the underlying 
asset), t is the time, r is the risk-free rate and σ is the volatility of the underlying. 
 
Conveniently, when talking about European options (that we exercise in t = T), and when respecting 
all the assumptions above, we can solve this PDE arithmetically to obtain a close form analytical 
formula.  
The formula which gives us the price of a European Call option at time t and which matures in T is the 
following: 
 

𝐶(𝑆, 𝑡) = 𝑁(𝑑1)𝑆𝑡 −𝑁(𝑑2)𝐾𝑒
−𝑟(𝑇−𝑡) 
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And the formula that gives us the price of a Put European option at time t is the following :  
 

𝑃(𝑆, 𝑡) = 𝑁(−𝑑2)𝐾𝑒
−𝑟(𝑇−𝑡) −𝑁(−𝑑1)𝑆𝑡 

 
With N the standard normal cumulative distribution function : 
 

𝑁(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑧2

2 𝑑𝑧

𝑥

−∞

 

 
And with d1 and d2 being : 
 

𝑑1 =
1

𝜎√(𝑇 − 𝑡)
(ln (

𝑆𝑡
𝐾
) + (𝑟 +

𝜎2

2
)(𝑇 − 𝑡)) 

 

𝑑2 = 𝑑1 − 𝜎√(𝑇 − 𝑡) 

 
Since I take into account the dividend yield in my neural network, I will use a version of the Black-
Scholes that no longer takes into account the assumption of "no dividend". The partial differential 
equation can therefore be rewritten as follows, with q the constant dividend yield : 
 

𝜕𝑉

𝜕𝑡
+ (𝑟 − 𝑞)𝑆

𝜕𝑉

𝜕𝑆
+
1

2
𝜎2𝑆2

𝜕2𝑉

𝜕𝑆2
− 𝑟𝑉 = 0 

 
This partial differential equation can be further solved to give an analytical formula for European 
options, now taking into account the dividend yield. These formulas are presented below, and use the 
same notation as for the previous formulas. 
 
The price of a Call option: 
 

𝐶(𝑆, 𝑡) = 𝑁(𝑑1)𝑆𝑡𝑒
−𝑞(𝑇−𝑡) − 𝑁(𝑑2)𝐾𝑒

−𝑟(𝑇−𝑡) 
 
The price of a Put option: 
 

𝑃(𝑆, 𝑡) = 𝑁(−𝑑2)𝐾𝑒
−𝑟(𝑇−𝑡) − 𝑁(−𝑑1)𝑆𝑡𝑒

−𝑞(𝑇−𝑡) 
 
With d1 and d2 being : 
 

𝑑1 =
1

𝜎√(𝑇 − 𝑡)
(ln (

𝑆𝑡
𝐾
) + (𝑟 − 𝑞 +

𝜎2

2
)(𝑇 − 𝑡)) 

 

𝑑2 = 𝑑1 − 𝜎√(𝑇 − 𝑡) 
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Cox Ross Rubinstein binomial tree model 
 
The other model to tackle is the Cox Ross Rubinstein binomial tree model. The binomial model is a 
model introduced by Cox et al. (1979) in "Option pricing: A simplified approach" where a diagram is 
used to represent the paths that can be followed by the underlying price over the life of the option, 
time step by time step. This model is more general than the Black-Scholes, and when we decrease the 
duration of the time steps to infinitesimal, we can converge to the solution proposed by the Black-
Scholes (what will not be demonstrated in this work).  
 
This binomial tree model uses the no-arbitrage and risk neutral valuation conditions, and has several 
assumptions : 
 

- The underlying price S follows a random walk; 
- The risk-free interest rate r is constant; 
- There are no transaction costs; 
- Short selling is allowed; 

 
As it is assumed that the underlying price follows a random walk, we have a probability q that, after 
one time step, the underlying price have a rate of return u-1, and a probability 1-q that the underlying 
price have a rate of return d-1. Therefore, after a single time step, the price of the underlying S become 
uS or dS, with u standing for “up” dans d standing for “down”. 
 

 
 
Under the no-arbitrage condition, 1+r (with r expressing the risk-free interest rate over one period) 
must be between u and d.  
 
To value a call option, we will start with a simple situation where we have only one time step between 
now and the expiration of the option. We can express the value of the call option as its payoff, i.e. the 
price of the underlying stock at expiration minus the strike price, but only when this value is positive, 
otherwise the value is 0 as it means that we do not exercise our right to buy the underlying stock (its 
price being below the strike price). Therefore, with C representing the value of the call option, we 
have : 
 

 
 

With  
 

𝐶𝑢 = max [0, 𝑢𝑆 − 𝐾] 
 

𝐶𝑑 = max [0, 𝑑𝑆 − 𝐾] 
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It is now possible to create a delta hedged (risk neutral) portfolio in several ways. The way to 
construct the risk-neutral portfolio here is the way presented by J.C. Hull (2017) in his book 
"Options, Futures and other derivatives", which I find more telling. Other ways of constructing this 
portfolio (leading to the same result) are used, notably in the paper by Cox Ross and Rubinstein. For 
this example, one can be long a Δ quantity of the underlying stock and short a call option on this 
underlying, with Δ chosen so that the portfolio is riskless. The current price of the underlying is S0 
and the price of the call option is C. We remain in a binomial tree with only one time step, which 
means that at maturity (in T), the underlying stock will either have a value of uS0 or a value of dS0, 
with u>1 and d<1. As above, let us assume that the option will have a value of Cu in the scenario 
where the underlying stock is at uS0, and a value of Cd in the scenario where the underlying stock is 
at dS0.  
 
Therefore, the value of this portfolio can be illustrated as follows: 
 

 
 

Since we choose to have a Δ number of stocks in the portfolio so that it is riskless, this means that 
our portfolios at T have the same value in the “up” and “down” scenario, so we can create this 
equality: 
 

Δ𝑢𝑆0 − 𝐶𝑢 = Δ𝑑𝑆0 − 𝐶𝑑  
 
What allows us to find the delta that makes this equality possible: 
 

Δ =  
𝐶𝑢 − 𝐶𝑑
𝑆0(𝑢 − 𝑑)

 

 
In this way, our portfolio is risk free, and for there to be no possibility of arbitrage, it must have a 
return equal to the risk free rate. We can then write the present value of the portfolio as follows: 
 

𝑃𝑉𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = (Δ𝑢𝑆0 − 𝐶𝑢)𝑒
−𝑟𝑇  

 
Given that the value of the portfolio at t0 is equal to : 
 

Δ𝑆0 − 𝐶 
 
We can write : 
 

Δ𝑆0 − 𝐶 = (Δ𝑢𝑆0 − 𝐶𝑢)𝑒
−𝑟𝑇  

 
This gives us, after development and substituting Δ: 
 

𝐶 = 𝑒−𝑟𝑇 [(
𝑒𝑟𝑇 − 𝑑

𝑢 − 𝑑
)𝐶𝑢 + (

𝑢 − 𝑒𝑟𝑇

𝑢 − 𝑑
)𝐶𝑑] 
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Which can be rewritten in this way: 
 

𝐶 = 𝑒−𝑟𝑇[𝑝𝐶𝑢 + (1 − 𝑝)𝐶𝑑] 
 
By defining : 
 

𝑝 ≡
𝑒𝑟𝑇 − 𝑑

𝑢 − 𝑑
 

 
With these last two equations, it is now possible to price an option when the underlying stock price is 
modelled by a one-step binomial tree, when we assume a market with no arbitrage opportunities.  
 
It can be noted that the probability of the underlying share price going up or down, namely q and (1-
q), does not appear in the equation. This is because the option value is calculated in terms of the 
underlying share price (the latter being the only random variable on which the option price depends), 
and the probability of up or down movement is already included in the underlying share price. Next, 
it can also be noted that the valuation of the option does not depend on the investors' relationship to 
risk. This is because we are in a risk neutral valuation perspective. Indeed, in this world, taking more 
risk does not mean that you are expecting a bigger return. It is in the risk neutral world that p (having 
a value always between zero and one) can be interpreted as the probability of an up movement of the 
underlying share (with u > ert). This is easily proven by expressing the expected stock price like so : 
 

𝐸(𝑆𝑇) = 𝑝𝑢𝑆0 + (1 − 𝑝)𝑑𝑆0 
 
By replacing p by the expression above, we obtain : 
 

𝐸(𝑆𝑇) = 𝑆0𝑒
𝑟𝑇  

 
This shows that when we take p as the probability of up movement, the price of the underlying grows 
on average by the risk free rate, and this is what we expect from a risk neutral world. 
 
Now that all the "basics" are in place, very few modifications are needed to take into account several 
time steps as well as the dividend yield.  
 
Firstly, instead of using T in the formulas as before, we will use Δt, i.e. the duration of a time step. 
Indeed, before our unique time step was the duration of the option until maturity. Now, Δt is the 
duration of the option's maturity divided by the number of steps in our binomial tree. It is easy to see 
that it is sufficient to repeat the situation of a one-step binomial tree (with Δt instead of T in the 
formula) for each step starting from the end of the tree and calculating in each node of the tree by 
moving backward. This will not be demonstrated here.  
 
Second, we need to know how we define u and d. This is where a parameter comes into play that we 
have not yet mentioned, namely the volatility of the underlying σ. Indeed, one can intuitively realise 
that the extent to which the underlying stock price moves up or down is related to the volatility. The 
greater the volatility, the greater the size of the price movement. Since the variance of returns during 
Δt is defined by σ2Δt and the variance of a variable X is defined by 𝐸(𝑋2) − [𝐸(𝑋)]2, with E the 
expected value, and since during Δt we have a probability p that the underlying stock has a return of 
u-1 and a probability 1-p that it has a return of d-1, we can write : 
 

𝑝(𝑢 − 1)2 + (1 − 𝑝)(𝑑 − 1)2 − [𝑝(𝑢 − 1) + (1 − 𝑝)(𝑑 − 1)]2 = 𝜎2Δ𝑡 
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Replacing p, we get : 
 

𝑒rΔ𝑡(𝑢 + 𝑑) − 𝑢𝑑 − 𝑒2𝑟Δ𝑡 = 𝜎2Δ𝑡 
 
By using the series expansion of ex, we obtain the binomial tree formulas :  
 

𝑢 = 𝑒𝜎√Δ𝑡 
 

𝑑 = 𝑒−𝜎√Δ𝑡  
 

𝑝 =
𝑒𝑟Δ𝑡 − 𝑑

𝑢 − 𝑑
 

 
These expressions are valid in the risk-neutral world and in the real world.  
 
Finally, to take into account the continuous dividend yield q, we have to think that: the full return 
received in a risk-neutral world is r, but the dividends offer a return q, so the capital gain returns r-q. 
Therefore, the expected value of a stock after a Δt, which is S0e(r-q)Δt can also be written : 
 

𝑆0𝑒
(𝑟−𝑞)Δ𝑡 = 𝑝𝑢𝑆0 + (1 − 𝑝)𝑑𝑆0 

 
So that  
 

𝑝 =
𝑒(𝑟−𝑞)Δ𝑡 − 𝑑

𝑢 − 𝑑
 

 
But since we are dealing with American and not European options, we have to check at each node of 
the binomial tree if exercising the option is an optimal choice or not. To do this, as we progress 
backwards from the end of the tree, we must compare at each node the value given by the formula 
of the binomial tree with the value of the payoff obtained if we exercise our option at this node, and 
take the larger value. If the payoff value is higher than the value given by the binomial model equation, 
it means that the exercise of the option is optimal at this node. 
 
We have now presented all the tools available to create a numerical method capable of using the Cox 
Ross Rubinstein binomial model to predict an American option.  
 
All that is required is to define a number of steps to be used (generally, the literature, whether it is 
the Cox et al. (1979) paper or Hull's book (2017) recommends the use of a number of steps greater 
than 30). Then we calculate our Δt by dividing the time to maturity T by the number of steps. After 
that, we simply calculate u, d and p using these three formulas: 
 

𝑢 = 𝑒𝜎√Δ𝑡 
 

𝑑 = 𝑒−𝜎√Δ𝑡  
 

𝑝 =
𝑒(𝑟−𝑞)Δ𝑡 − 𝑑

𝑢 − 𝑑
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This allows us to construct the "price tree", tracing the evolution of the underlying stock price from t0 
to T as illustrated below: 
 
 

 
Figure 5 - illustration of the underlying’s price tree 

 
Once this price tree is obtained, it is sufficient to create an option price tree, to calculate the final 
values of this tree by taking the payoff of each final node and to start calculating backward "layer by 
layer" each node up to the first one by using the formula of the one step binomial tree, i.e. : 
 

𝑉 = 𝑒−𝑟∆𝑡[𝑝𝑉𝑢 + (1 − 𝑝)𝑉𝑑] 
 
With V the value of the option, as the formula is valid for a Call or a Put option. And this is how the 
Cox Ross Rubinstein binomial model is defined and works. 
 

 

Artificial neural networks 
 
Finally I will explain what an artificial neural network is and how it works. Artificial neural networks 
(more often simply called neural networks), are a sub class of machine learning algorithms. The 
difference with “deep” neural network is that the latter has more than one hidden layer of neurons. 
But what is a neural network ? It is a mathematical structure loosely inspired by the human neurons. 
As in our brain, a single neuron is useless; the power of this structure comes from interconnectivity 
between the neurons, organised in layers. 
 
 

 
Figure 6 - Deep neural network representation, (Kinsley & Kukieła, 2020) 
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On figure 5, you can see a representation of a neural network with one input layer of 10 neurons on 
the left, followed by 3 hidden layers of 16 neurons each, and finally the output layer of 2 neurons on 
the right, with all the connections in orange. 
 
Before going further, I will define some terms that are useful to understand what we are talking about: 
 

- A feature is a variable that we will give as input to the neural network, for example the price 
of the underlying stock of the option (the spot price). But we do not give the feature directly, 
we give some realisations of it.  

- A realisation of the feature is a value that it has taken or that it could take, for example 10 
dollars for the spot price. In general, we will build our data tables with each column 
representing the realisations of a single feature.  

- A sample is a row of this data table. It contains one realisation case for each feature.  
- The batch size is a hyperparameter defining the number of samples we will pass to the neural 

network before we update its internal parameters with the optimiser. 
- The number of iterations is the number of batches that must be passed through the network 

to have entered the whole training set.  
- An epoch designates the passage of the whole training set in the neural network.  

 
So to better understand those terms, here is an example. We can use the whole training sample as a 
batch, or use batches which are fractions of the training sample. If we have a training sample of 1000 
realisations of each features and we define a batch size of 10, then in an epoch it will take 100 
iterations to pass the whole training sample, and the parameters of the network will be updated 100 
times (at each iteration). 
 
Now let’s dive in the details of the artificial neural network structure. Think about each neuron as a 
container, with one number inside of it, typically (but not always, as it depends on the activation 
function) between 0 and 1. For the input layer, each neuron will contain a realisation of a feature. 
Then, each neuron of this layer is linked to each neuron of the next layer. We can think of these links 
as the path that a number encapsulated in a neuron of a certain layer will take to the other neurons 
of the next layer. As it moves from one neuron to the next one, the number is multiplied by a weight 
w specific to that link. 
 
Therefore, to compute the values contained in one neuron of the second layer (which is the first 
hidden layer), we have to take the values of each neuron of previous layer it is connected to, multiply 
all of those values by the associated weight, and sum them all together. But that is not it, as each 
“destination” neuron also contains a bias term b that have to be added to this sum. Finally, we input 
this value into an activation function (either a sigmoid function like the logistic function, a more 
convenient and efficient function like the ReLU function, which stands for Rectified Linear Units 
function, or one of its variants) to “compress” the value (between 0 and 1 for the logistic, between 0 
and + infinity for the ReLU), to obtain the value of one neuron. Those steps need to be repeated for 
each neuron of each layer until reaching the output neurons. This whole process is the “feed-forward” 
part, as you feed the model with inputs, that propagates forward till reaching the output. But how are 
these weights and biases determined? If they are not correctly set, how can the neural network give 
the expected value in output? Well, to determine these parameters, they have to be tuned. And of 
course, we will not do this by hand because we quickly realize that there are a lot of parameters to 
train even for not very developed networks. Therefore, we will start by initialising these parameters 
in a random way. There are several ways to do this, and it often depends on the activation function 
that we are going to use on the neuron. For example, we will prefer to use the initialisation of He et 
al. (2015) to go with an activation function of the ReLU family. 
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After this initialisation, we will be able to tune these parameters. To do this, we will define a cost 
function, which will measure the error between the prediction of the neural network and the expected 
value in output (in this work I will use the Mean Squared Error (MSE), that measure the average 
squared deviation of our predicted value from our real value), and the whole objective will be to 
minimise this cost function by tuning our parameters by the use of an optimisation function. 
 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑛

𝑖=1

 

 
Basically, the optimisation function compute the gradient of the cost function, which gives the 
direction of the steepest ascent on the cost function (i.e. of how much we need to modify the weighs 
and biases to increase the most the function). Therefore, to minimize our cost function step by step, 
we simply have to subtract from our weights and biases vector the opposite of the gradient of the cost 
function. As the parameters are changed, the cost function too, and the gradient too! So we have to 
repeat the process until finding the global minimum. Different optimisation functions have different 
techniques to converge more or less quickly to the global minimum of the cost function and to avoid 
getting stuck in a local minimum for example. Finally, all these modifications need to be propagated 
back to the network, what is done by a backpropagation algorithm.  
 
When we use neural networks, we can distinguish two distinct phases: the learning phase and the 
prediction phase. It is during the learning phase that we give the neural network the realisations of 
our features composing the training sample as well as the corresponding output, so that the network 
can tweak the parameters in order to match the combination of inputs with the desired output. This 
is the optimisation part of the network, which is done with the help of the optimiser. If this learning 
phase has gone well and the network has learned from our data, we move on to the prediction phase, 
where we will give new realisations of our features as inputs to the network but not the corresponding 
outputs. Indeed, we let the network give us its predictions, which we can then compare with the data 
we expected. This allows us to see if our network has been able to generalise what it has learned from 
our data and if it has not overfitted the training sample. If our network has predictive power, we can 
measure it with the same cost function we used for training, and compare the values between the 
learning phase and the prediction phase. If the error is higher during the prediction phase, it means 
that the neural network has some problems generalising and may have overfitted during the training 
phase.  
 
But what is overfitting? Overfitting is when the network takes "too much" from the training set, and 
becomes good at only calculating values from the training set. This prevents it from generalising to 
data it has never seen. The network becomes too specific to the training set. The opposite of 
overfitting is underfitting. This happens when the neural network has not learned enough from the 
training set data. To have a good predictive power, we will try to place ourselves between the two, so 
that our algorithm has learned enough to have a predictive power, but not too much to be able to 
generalise to other realisations of inputs. Here is an illustration of this phenomenon (from 
medium.com). 
 

 
Figure 7 - illustration of different fittings – from medium.com 
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Overfitting can be strongly reduced with the help of several regularisation techniques, such as early 
stopping, technique that I will use in my neural networks. To practice early stopping, we will need a 
third data sample, namely a validation sample, composed of data that are neither in the training 
sample nor in the test sample. We will give this validation sample to the network during the learning 
phase by telling it to calculate its performance after each epoch on the validation sample. We can then 
put a condition saying that if the network does not improve its performance on the validation sample 
during x epochs, then we stop the learning phase. This prevents the network from overfitting the 
training sample.  
 
Finally, I would like to add that the two phases of use of the neural network, i.e. the training phase 
and the prediction phase, can be well separated but also intertwined. Indeed, one can train a neural 
network entirely and then use it to make predictions, but one can also continue to train it each time 
one uses it to make a prediction! This is called online learning. With each prediction, we will modify 
the parameters of the network to take into account the latest inputs received in the network. This can 
be very useful to ensure that the network continues to train over time, and to ensure that it continues 
to be effective in applications where the context is important (for example during a crisis in the 
financial markets). 
 

Similarities, oppositions and trends in the literature 
 
In the problem of pricing American options using artificial neural networks, we can observe several 
trends, agreements and disagreements between authors, notably concerning the features used as 
input to the neural network. We can also observe practices that strongly diverge, such as the aim of 
the network, the choice of the benchmark used to evaluate the performance of the network, or the 
type of asset underlying the option. I will elaborate on this in this section.  
 
One of the most important points in terms of agreement and disagreement concerns the features that 
we will input to our network. Indeed, authors choose the features they use, and these vary greatly.  
 
First of all, in terms of agreement, all authors are unanimous on the fact that we must use the strike 
price and the spot price. However, the way of inputting them differs according to the works. Some 
input them as two distinct features, such as Malliaris and Salchenberger (1993b) or Kelly and Shorish 
(1994). However, this seems to be an older practice, as the trend seems to be towards the use of 
moneyness (S/K) for some years now. This is what Palmer (2019) in "Evolutionary Algorithms and 
Computational Methods for Derivatives Pricing", Zheng et al. (2019) in "Gated deep neural networks 
for implied volatility surfaces" and many others do. The use of moneyness reduces the number of 
input features in the neural network, making the learning phase less complex (HUTCHINSON et al., 
1994). Moreover, moneyness is a stationary feature, unlike strike and spot price, which helps the 
generalisation of the network and reduces overfitting (Garcia & Gençay, 2000). 
 
Next comes a feature for which there is both agreement and disagreement. Indeed, everyone agrees 
on the fact that volatility is an important feature to use as a neural network input. Where opinions 
diverge is in the choice of the volatility. Indeed, some choose historical volatility, others implied 
volatility, others the VIX index and others a volatility calculated with various models such as the 
GARCH. Since the results of a neural network do not always depend only on the features offered as 
input, but also on how these features are processed upstream, whether and how they are scaled, the 
structure of the network, the optimisation functions and many other factors, it is not always easy to 
decide on this issue. For example, Blynski and Faseruk (2006) show that a neural network performs 
better than the Black-Scholes model when using historical volatility as input, but not when using 
implied volatility, while Andreou (2008) show that replacing historical volatility with implied volatility 
as input to a neural network improves its performance. It is therefore not always easy to choose.  
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On my side, since the option prices calculated by my data provider used the implied volatility as an 
input, I will also use it as an input feature of my neural networks.  
 
Among the other features, there has been a very recurrent use of time to maturity in recent years, 
and a possible loss of interest in the use of the interest rate, although this has been used in a number 
of papers that I have read. As for the other features, many authors try to use other features, without 
it really being the norm in the research. For example, Montesdeoca and Niranjan (2016), with 
"Extending the feature set of a data-driven artificial neural network model of pricing financial options", 
tried to add the open interest, the volume of the underlying and other features. They concluded that 
the volatility is indeed beneficial, as well as the interest rate and even the volume (which can bring 
more precision in the calculation of the option price).  
 
Finally, a feature that is never used in neural networks or benchmarks is the dividend yield. Indeed, it 
would seem that it is more difficult to take it into account in the option pricing process and it is 
therefore generally discarded from the start. Another reason is that many models are based on pricing 
options with other underlying assets than stocks, or stocks without dividends. Since I will be dealing 
with dividend stocks, I will take this feature into account. 
 
In terms of divergent practices, we can see that the use of neural networks in the context of option 
pricing is not always done in the same way. Some researchers use them to directly price an option, 
some use them to predict the difference between the result of a parametric model and the market 
price, others to calculate implied volatility that is later given as an input in different models. 
Nevertheless, the dominant practice is to use neural networks to directly predict the option price.  
 
Next, I will talk about the choice of benchmarks used to compare the performance of neural networks 
in research work. Not surprisingly, the Black-Scholes model wins hands down. Indeed, this model is 
one of the most influential models in the world when we talk about derivatives pricing, and is still 
widely used today, whether as a calculation tool, for calculating risk indicators (such as the Greeks) or 
as a communication tool. Moreover, it should be recalled that most of the research is done on 
European options pricing. As for the research on the pricing of American options, the Black-Scholes is 
used, sometimes with the Cox Ross Rubinstein binomial tree model or the Barone-Adesi and Whaley 
model (1987) which allow to take into account the early exercise of the option. On my side, since my 
data used a method derived from the binomial tree model, I will take this model as my main 
benchmark, alongside the Black-Scholes model. And as for the choice of the cost function, it varies 
between the mean absolute error (MAE) and the mean squared error (MSE). In order to penalise larger 
deviations more strongly, I simply choose the MSE. It is this measure that will allow us to compare the 
performance of our neural network predictions with those of classical models. 
 
As for the underlying assets and the period of data used, this necessarily depends on the context in 
which the researchers worked. In older works, the authors have little data, whereas in newer works a 
greater amount of data is available. While some authors simulate data by various methods like Monte-
Carlo simulations (as Hirsa et al. (2019) did in “Supervised deep neural networks (DNNs) for 
pricing/calibration of vanilla/exotic options under various different processes”), many work on real 
data, the majority on S&P500 options. Thus, much of the research is working on the pricing of 
European index options. The small part of the research working on American options (having been 
cited during this work) uses stocks as underlying. This is what I will also do in this work. 
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Literature review summary 
At the end of the literature review you should summarize the main key concepts and elements 
developed in relation to your research questions.  
 
According to your topic this summary can take the form of a table, a diagram, a model,...  
It is also important to remember the common thread of your work and to make the link with the 
emprirical part.  
 
For the key concepts and elements on this subject, we can say that American option pricing is a subject 
that can be quite complex because it does not have a closed form solution due to the possibility of 
exercising one's right to buy or sell before the expiration date.  
 
As a result, several models attempt to approximate the value of these options by various means. These 
models have been developed for several decades, such as the binomial tree model of Cox Ross 
Rubinstein from 1979. In parallel, we are witnessing the rise of successive discoveries in the field of 
machine learning and more particularly that of neural networks, as well as the gradual increase in the 
computing power of computers. This allows researchers to think more and more about using these 
promising technologies in various fields, notably options pricing.  
 
Several attempts have been made over the years, but they are mainly focused on European option 
pricing on indexes, which is less complex to approach. As for American options, there have been a few 
promising attempts but no ground breaking. More recently, we have also seen the indirect use of 
neural networks in pricing problems, such as calculating or predicting implied volatility, learning and 
predicting the difference between the price calculated by a classical model and the market price, or 
learning to find the optimal time to execute an American option.  
 
Although the research has progressed a long way, it is clear that the results are more focused on 
European options and not on the direct pricing of American options by neural networks. However, 
thanks to the research on European option pricing, we were able to identify some practices, trends 
and key points that may be useful for American option pricing, such as : 
 
- The increasingly recurrent use of the moneyness (S/K) as an input feature in neural networks instead 
of inputting the Strike (K) and Spot (S) price separately; 
- The importance of other input features of the neural network to improve its results, such as time to 
maturity (T), volatility (σ) and interest rate (r); 
- The possible usefulness of volume as a feature; 
- The lack of consideration for dividend yield; 
- the selection of the Black-Scholes and the binomial tree model as benchmarks; 
 
Based on these starting points, we will try to create an optimal artificial neural network structure that 
allows us to start predicting American options. From there, we will sometimes move away from the 
literature to make gradual changes in structure and inputs to try to improve the network. 
 
What the literature has also taught us is that there are many different ways of doing things with neural 
networks, and that it is up to us to test the ones that seem most promising and then draw our own 
conclusions. 
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Methodology 
 

Methodology choice 
 
In this section, I will discuss the methodology used in my research about the development of the 
structure of the neural networks, the training phase, the prediction/test phase, the implementation 
of benchmarks and the comparison with these. 
 
To tackle the American option pricing challenge, I obviously chose to use the quantitative approach. 
But how did I build the methodology I was going to use? Well, regarding the neural network, I have 
chosen to use a method that mixes trial and error with the use of findings from previous research, 
what means that I also adopt a qualitative approach upstream of my quantitative work. Indeed, given 
that there is no rule to define the structure of the neural network that we are going to use, it is 
sometimes necessary to try several combinations regarding the number of hidden layers and the 
number of neurons. However, some findings have emerged over the years, whether in research on 
the use of neural networks for pricing or not. Once I have defined a starting network structure using 
the literature and my knowledge, it will be possible for me to modify it to see if this improves the 
results, whether it is through the change in the number of hidden layers, the number of neurons per 
layers or the features given as input to the network. This is the trial and error part.  
 
Regarding the methodology used for the training of neural networks, it is based on best practices in 
the field. For example, implementing regularisation techniques, such as early stopping, allows me to 
prevent my neural network from overfitting the training sample and to avoid generalisation problems. 
Another good practice consists in using a random initialisation of the parameters corresponding to the 
activation function that is used. This (combined with the choice of certain activation functions) avoids 
the problem of "vanishing / exploding" gradients, which is a problem that occurs as the learning phase 
progresses. Indeed, during the backpropagation step, further we advance in the lower layers, the more 
the gradient decreases. This ensures that the connections in these lower layers no longer updates, 
and that the network can no longer converge towards an optimal solution. This is the problem of the 
vanishing gradient. In some cases the gradient may increase instead of decreasing causing the 
exploding gradient problem, that cause the model to quicky diverge from an optimal solution. It was 
proven in "Understanding the difficulty of training deep feedforward neural networks" that it is 
possible to reduce the problem of unstable gradients, by associating certain technical initialisations 
with certain activation functions (Glorot & Bengio, 2010). This study defines the “Glorot” method to 
associate with the logistic activation function (and others), which was one of the functions mainly used 
during these years. From our side, given that we will be using activation functions of the Rectified 
Linear Unit activation function family, the optimal initialisation strategy is that of "He" (He et al., 2015). 
 
Then, once the neural network was successfully trained, it was necessary to determine a methodology 
for the interpretation of the results. First, I start by measuring the performance of my network on a 
“test sample” of my dataset, which obviously was not used during the network learning phase (this is 
out of sample prediction). I therefore run the trained network on the test sample, to obtain a vector 
of American option price predictions, which I will compare to the real prices in my data. To do this, I 
calculate once again the Mean Squared Error (MSE), which I can compare to the MSE obtained during 
the training of the network. If the MSE obtained on the predictions is much higher than that obtained 
during the learning phase, it means that my neural network does not generalise well what it is 
supposed to have learned, and that it has in fact probably overfitted the training sample. If this is the 
case, it is necessary to investigate a possible implementation of new regularisation techniques. If the 
MSE of my test sample is in the same range as that of the training sample, and seems to be correct, 
we then need a point of comparison. This is where the benchmarks come in. 
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So as far as the benchmarks are concerned, they had to be implemented first. The two benchmarks 
chosen are the Black-Scholes and the Cox Ross Rubinstein binomial tree model (CRR). To implement 
the Black-Scholes it is quite straightforward as I coded a python function that takes the type of option 
(Call or Put), the spot price S, the strike price K, the time to maturity T, the volatility σ, the interest 
rate r and the dividend yield q as inputs, calculates d1 and d2 and then applies the Call or Put formula 
according to the type of option proposed as input. Finally, the function returns the value of the option. 
For the CRR binomial tree model, I followed the algorithmic method described at the end of the model 
presentation in the literature review section. I also implemented it in a python function that takes as 
inputs the spot price S, the strike price K, the volatility σ, the interest rate r, the time to maturity T, 
the number of steps, the interest rate q and the type of option (Call or Put) and outputs the option 
price.  
 
Once these two functions have been implemented, I simply pass the sample test to them as input, 
collect the results and calculate the MSEs in relation to the expected results I have in my initial data. 
Indeed, this does not only allow me to check if the predictions of my ANN are good, but if they are at 
least at the same level, if not better than those of classical models whose value we already know. 
Indeed, it is good to have a neural network that works, but it is even better if it can outperform classical 
methods. It also allows me to compare the performance of various variations of the neural network 
with each other and with the benchmarks. 
 
Finally, I can also compare the R2 and Adjusted R2 of the artificial neural network models with each 
other and with the classical models, what can give an additional idea of the importance and 
contribution of certain features for example. If necessary, graphs can be added to visualise regressions 
between predictions and target values. 
 

Methodology justification 
 
I think that this choice of methodology, combining qualitative and quantitative, is the right one and 
can allow me to start with a clear advantage. Indeed, especially concerning the design of the neural 
network, if I had started with a construction from scratch, I could have lost a lot of time and especially 
maybe not conclude with an optimal conclusion. 
 
A purely quantitative methodology would have been to start with a certain neural network structure 
and test all the possible feature combinations to be given as input to the network, before reiterating 
with other network designs, to finally find the solution that seems optimal. The problem with this 
methodology is that it is difficult to take all the combinations into account, as there may be too many, 
and we may miss some elements when drawing our conclusions, such as the way inputs are processed 
for example, which may strongly influence the results of our networks. Another problem with this 
methodology is the time it can take to set up. It would probably be impossible to realistically test all 
of the possible combinations.  
 
This is why a qualitative research and a reflection upstream of the quantitative work can be useful in 
my work. It saves me time and prevents me from testing possible unnecessary combinations, by being 
informed about which structures and combinations of features are most likely to work best.  
 
However, it must be admitted that this methodology can be fragile under certain conditions. Indeed, 
just because I find a result and an assertion in a piece of research work does not mean that it should 
be taken as truth. As explained in the section on trends, agreements and disagreements between 
researchers, some assertions are not shared, such as the choice of the type of volatility used in the 
neural network. And even if a researcher's assertion is not contradicted, this does not necessarily 
mean that it should be taken as truth.  
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Therefore, I try to treat the information I find with care, to cross-check it if possible, but above all to 
make up my own mind, using my common sense and trying by myself to see if I come up with the 
same conclusions. This is why there is still a part of trial and error in this work, what has to be done to 
make sure that one does not take certain network structures or input features with closed eyes. Also, 
if I see too bad or abnormal results, I will not jump to conclusions and will try to go deep to find out 
the cause of the problem in a rational way. 
 

About the data 
 

Data selection 
 
As regards the choice of data, I chose to work on real data rather than on simulated data. While 
remaining in the field of research, this will allow me to obtain more concrete and real results, but 
perhaps a little less precise as real data has often more noise. This also allows me to avoid that the 
results obtained depend on too many theoretical assumptions on the data generation, which could 
distort the results by giving very convincing results on the theoretical tests but less good results on 
the tests on real data. 
 
I was able to select all the features that seemed to be of interest from a large database of a generic 
supplier. Before starting this work, I therefore made a large pre-selection of data. Firstly, the features 
I decided to extract from this database were : 
 
- The underlying security id, allowing me to identify the underlying stock to link several options 
together if necessary; 
- The date (t0) at which the data is calculated and collected; 
- The type of option (Call or Put); 
- The option price in t0; 
- The spot price (the price of the underlying stock) at t0; 
- The strike price; 
- The expiry date of the option (which allowed me to calculate the time to maturity, by calculating the 
duration between the date t0 and the maturity date T in years); 
- The continuously-compounded interest rate associated with the option. This interest rate is 
calculated from a collection of continuously-compounded zero-coupon interest rates at various 
maturities, collectively referred to as the zero curve; 
- The implied volatility; 
- The volume; 
- The open interest; 
- The Delta of the option; 
- The Gamma of the option; 
- The Theta of the option; 
- The Vega of the option; 
- The forward price associated with the underlying stock and the expiration date of the option; 
- The projected annual dividend yield; 
 
Then, in this database, there was data available for the years 1996 up to and including 2015. So I 
decided to take my data for all the years. The first problem that appeared to me was that, for American 
stock options, there were several hundred million data available. So I did a first sampling, as it would 
have taken me at least one 500 gigabytes to store all this data. I decided to take an array of data 30,000 
long and 17 wide (the number of features I selected) by random draw for each month of each year, 
figuring that would be plenty.  
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This gave me an average of 1000 observations per day in a raw dataset that counted 7,200,000 
realisations of my 17 features over 20 years. Of course, this is a raw and unprocessed dataset, and I 
will not use all of this data in this work.  
 
 

Data collection 
 
In order to collect this data, I had to access a database provided by HEC Liège - School of Management 
of the University of Liège. To do this, I created a Python script that connects to the database, and 
sends several SQL queries to fetch the features I am interested in from several tables. These features 
are then imported in a Python object of type “Pandas.DataFrame” (it is a structure coming from a data 

science package called "Pandas" similar to a table, but allowing to perform many more actions in an 
optimised way). 
 
Then this script was responsible for creating a large general table with my 7,200,000 rows of data by 
combining all the features I asked it to fetch. To do this, I had to combine each data correctly, like 
assigning the interest rate to the right options based on the continuously-compounded interest rate 
table, or changing the maturity date to time to maturity (expressed in years). Once some basic actions 
are done, and I have my big general table, the script saves it in CSV, which I can use for my work as 
much as I want. 
 
Although this step does not seem complicated, it took me a long time. Indeed, the organisation of the 
data in the tables on the server was rather "chaotic". It was not easy to find all the features I was 
interested in, and even less easy to combine these features into a single, orderly table. It took me a 
lot of trial and error to get the result I was looking for. 
 
 

Data pre-processing 
 
For the analysis and pre-processing of the data, there are several steps to be taken.  
 
Firstly, the data must be expressed in the right format, for example the interest rate must be expressed 
as a proportion of the unit (i.e. between 0 and 1) instead of as a percentage, or the time to maturity 
must be expressed in years and not in days. Something obvious but very important to remember when 
dealing with neural networks is that you cannot input anything other than numbers! So you have to 
express the type of option, Call or Put, by a number. I have chosen to express the Call option by -1 and 
the Put option by 1.  
 
Secondly, we can remove the missing values. Indeed, the implied volatility and the dividend yield are 
missing for many options. This is because the data provider did not have enough data to calculate 
them accurately. Therefore, it marks the data as missing by indicating "-99" instead of the value. 
 
Once this is done, I focus on certain features, namely the type of option, its price, spot price, strike 
price, time to maturity, interest rate, implied volatility and dividend yield. I am left with a table of 
2,763,968 realisations of 8 features. 
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Figure 8 - Overview of my main data table 

 
To better visualise the characteristics of these features, one can build a table with some statistics on 
them, such as the mean, the standard deviation, the correlation with the option price, the minimum, 
the maximum and the 25th, 50th and 75th percentiles. Before doing so, I also add a “Moneyness” 
column by simply taking the ratio “spot price over strike price”, S/K. 
 
 

 
Figure 9 - Descriptive statistics table 

 
 

To complement this table, histograms and boxplots are available in the  appendix 1 and 2. We can see 
that the distributions are clearly not normal and highly positively skewed (the right tail of the 
distributions is way longer than the left tail). This means that the median comes early and that after 
it, the realisations extends quite far from it, as the mean is greater than the median. The first half of 
the realisations of a feature are compressed “in a tiny interval”. This can happen, for example, because 
you have a lot of "classic" options a little bit out of the money, at the money or in the money, and 
some extremely out of the money and extremely in the money options that influence the statistics. In 
a first step, I will try to process all these options at the same time in a single neural network, to see if 
it can learn to correctly predict options more or less at the money and options deeply out of the 
money. These “non normal” distributions are not problematic, as a neural network is a non-parametric 
model (and as we will scale the data before feeding the network, what will be developed later). The 
boxplots are showing the same conclusions.  
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Figure 10 - Histogram of the distribution of the implied volatility and the associated box plot 

 
Another point of interest is the correlation of each feature with the price of the option. At first sight, 
they seems quite low. But this is where we will be able to evaluate the performance of our model and 
to add and remove inputs to see the real impact of an input into the model calculations. So we do not 
have to worry if we see some “light” correlations, as the complex combinations of the inputs will be 
highly correlated with the output.  
 
 

 
Figure 11 - Correlation matrix of the features 

 
Looking at this table, we can see that the spot price and the strike price are the two most important 
components in the option pricing process, which is indicated by the strong correlation with the 
option price. The next important feature is the time to maturity. Together, these are the three most 
used features in research, and this table seems to confirm that this is not done wrong. Interest rate, 
implied vol and dividend yield seem to contribute more or less equally to the option price, so it is 
interesting to consider them and see the impact they will have in the neural network. As for the 
moneyness, we will have to test replacing the spot and the strike by the latter to get a better idea of 
the impact it can have. This quick analysis allows us to confirm certain results noted during the 
qualitative analysis of previous work and research.  
 
To finish the pre-processing of the data, we are going to scale them down, which is a good practice for 
the use of neural networks. On the one hand, if the input values are not scaled down, we risk having 
a model that learns with very large w weights. This poses a problem because it makes the model 
unstable, much less precise and too sensitive to the input values, which can cause generalisation 
problems. On the other hand, if the output values are not scaled, there is a risk of having very large 
error gradients, modifying the weights too much and preventing the network from learning in an 
optimal way. 
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Normalising your data means transforming it so that it is between 0 and 1. This is very useful since 
neural networks are sensitive to large values. 
 

𝑋𝑛𝑒𝑤 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

 
Standardising your data means scaling it so that it follows a standard normal distribution. This is also 
useful, as neural networks sometimes tend to work better with inputs following a normal distribution. 
 

𝑧𝑖 =
𝑥𝑖 − 𝜇

𝜎
 

 
Again, there is no absolute truth in terms of neural networks. Therefore, I chose to standardise my 
data with the Fit and Transform methods of the StandardScaler() machine learning packages 
Tensorflow and Keras. These two packages are toolboxes that can be used to do a lot of things related 
to machine learning in python. This is what I am going to use to create, train and use my neural 
networks. 
 
The dataset is now almost ready to be entered into a neural network. We just need to partition it to 
create a training sample, a validation sample (allowing me to practice early stopping during the 
learning phase), and a test sample, to evaluate the performance of the network once the learning 
phase is over.  
 
In research, two methods are used in equal measure. Some researchers do not pay attention to the 
temporal dimension of their data and create their samples by randomly drawing from the whole of 
their data (whether these data are simulated or real, although this type of method is more often found 
on simulated data). This can be useful, but it can also artificially lower the MSE made by the network 
in its testing phase. Indeed, with this method it happens for example that we try to predict the price 
of an option in time t with a network that has been trained on options between t-x and t+x. Since the 
network has “seen” options "from the future" relatively to time t, it contains information that it should 
not have when trying to predict an option in time t. 
 
Others respect the time dimension, and take a training and validation sample from their data between 
time t and t+x, then take the test sample on options starting from t+x. This allows to see whether the 
network would be useful in real life or not. However, taking a test sample that goes too far into the 
future reduces its effectiveness, as the network starts to run out of information on the period during 
which it is trying to price the option. 
 
In this work, I will of course respect the temporal dimension of the data, in order not to decrease 
artificially my MSE. 
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Neural Network structure 
 
In this section, we will explain in more detail the starting structure of the neural network we will use, 
based on the methodology explained above, mixing qualitative and quantitative analysis. I specify 
starting structure, because variations will be made later. 
 
To begin with, a study from Anders et al. (1998) concluded that more than 3 hidden layers could 
degrade the network performance. So I chose to start with this number of hidden layers. Regarding 
the number of neurons per layer, it used to be customary to decrease the number of neurons as the 
hidden layers progress. This can be intuitively justified by thinking that the network combines a lot of 
low-level features into fewer high-level features when going from a hidden layer to the next one. 
However, this practice was abandoned because it seems that using the same number of neurons in 
each hidden layers gives equivalent results in most cases, and sometimes even better results. 
Moreover, as Vincent Vanhoucke explains in his "Stretch pants approach": it is more efficient to use a 
larger network than necessary and to include methods of early stopping and regularisation. Therefore, 
I choose to put 100 neurons per hidden layers as the starting quantity, and to set up an early stopping 
strategy. To do this, I tell my network to stop the learning phase when the error measurement on the 
sample validation does not improve during 20 epochs, and to recover the parameters (weights and 
bias) at the time when the sample loss validation was most optimal (i.e. 20 epochs before the learning 
phase was stopped). Early stopping is already a regularisation method, so we will just start with this 
one. Since I am implementing an early stopping method, I can set an arbitrarily high number of epochs, 
knowing that the learning phase will stop before the end. So I choose 1000 epochs. As for the cost 
function, I choose the Mean Squared Error, which is the standard cost function used in regression 
problems and which penalises big mistakes more than small ones. 
 
As for the activation function, I choose to use functions from the ReLU family, starting with the ReLU 
function itself. ReLU stands for Rectified Linear Unit function. This function is defined as follows: 
 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) 
 

 
Figure 12 - ReLU activation function 

 
It is one of the most used activation functions because it does not saturate for positive values and it is 
fast to calculate, unlike the sigmoid activation function, which we will not discuss further here as it is 
becoming increasingly obsolete.  
 
However, the ReLU activation function has a problem: during the learning phase, neurons die, which 
means that they only return 0's. This is because the function returns 0 for any negative value. If the 
weights w are such that the weighted sum of the values sent by the neurons of the previous layer is 
negative for each realisation of the features in the training set, then the neuron dies.  
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This then prevents the network from training because the gradient no longer passes the dead neurons 
during backpropagation. To avoid this, there are several functions derived from the ReLU function. 
This is why I was talking about the activation functions of the ReLU family. One of these functions is 
the LeakyReLU. It introduces a "leak" parameter ⍺, which represents the slope of the function when 
the input is negative. It is defined as :  
 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈𝛼(𝑥) = max(𝛼𝑥, 𝑥) 
 
 

 
Figure 13 - Leaky ReLU activation function 

 
A study from Xu et al. (2015) named "Empirical Evaluation of Rectified Activations in Convolutional 
Network” compares this function with ReLU and concludes that Leaky ReLU is always more efficient, 
even if it can sometimes lead to overfitting on small datasets if we are not careful. An ⍺ between 0.01 
and 0.2 is typically chosen, the latter being preferred by the authors. 
 
Other variants of the ReLU activation function exist, such as the ELU (exponential linear unit) function, 
proposed by Clevert et al. (2015), which according to its author decreases the training time of the 
neural network and increases its efficiency in the prediction phase, or even the SELU, which is a variant 
of the ELU (but we will not talk about this last one). The ELU activation function is defined as follows: 
 

𝐸𝐿𝑈𝛼(𝑥) =  {
𝛼(𝑒𝑥 − 1)

𝑥
              

𝑓𝑜𝑟 𝑥 < 0
𝑓𝑜𝑟 𝑥 ≥ 0

 

 
 

 
Figure 14  - ELU activation function 
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In this case I set ⍺ equal to 1, which is common with this function. One of the advantages of this 
function is that it is smooth around 0 unlike the LeakyReLU. This advantage allows to speed up the 
gradient descent, because it does not "bounce" when we have an x close to 0. 
 
Therefore, I will start by using the ReLU function as the activation function in all my hidden layers, and 
I will explore the differences in performance with the LeakyReLU and ELU functions. Reminder: you 
also need an activation function on the output neuron. However, as my output data is standardised, 
there are negative data. So we should not put a ReLU function that would return 0 for all negative 
values and prevent the network from learning, except if we do not standardise the output. For this 
output neuron, I am using either the ReLU activation function or a linear activation function depending 
on the situation. 
 
As for the random parameter initialisation method, which is done before launching the learning phase 
of the neural network, I will use He's method, according to its authors He et al. (2015) who concluded 
that it is the best method to use with the ReLU family of activation functions in order to reduce 
unstable gradient problems. I will not go into further detail about this initialisation technique. 
 
Finally, another element is the selection of which optimiser to use. Many of them are available, such 
as the classic gradient descent, which we have already discussed as it is the most basic one. To explain 
a little better what the gradient descent is, we must define the gradient vector of the cost function: 
 

∇Θ𝑀𝑆𝐸(Θ) =

(

 
 
 
 
 

𝜕𝑀𝑆𝐸(Θ)

𝜕Θ0
𝜕𝑀𝑆𝐸(Θ)

𝜕Θ1
⋮

𝜕𝑀𝑆𝐸(Θ)

𝜕Θ𝑛 )

 
 
 
 
 

=
2

𝑚
𝑋𝑇(𝑋Θ − 𝑦)  

 
With Θ the vector of model parameters, X the whole input training matrix, y the output training vector, 
m the number of realisations of our features and n the number of parameters. This gradient vector is 
a vector where we store the variation of the cost function associated with a small change of each 
parameter one by one. Therefore, this allows us to perform the "gradient descent", taking the vector 
of the model parameters and subtracting the gradient vector from it like this : 
 

Θ ← Θ− 𝜂∇Θ𝑀𝑆𝐸(Θ) 
 
With 𝜂 the “learning rate”, which determines the size of the "step" that we will take along the cost 
function to “go down” to the minimum. It allows to influence the speed at which we converge towards 
this minimum, but it can be dangerous to set it to a too large or too small value, under penalty of 
deviating from the minimum, converging too slowly or being trapped into a local minima. 
 
Now that we know the principle of the gradient descent, we can say that much more optimisation 
techniques start from the latter, such as the stochastic gradient descent (SGD), which takes at each 
iteration a random realisation of the training set to calculate the gradient. This technique is faster and 
requires less computer memory, but it is also less regular by nature. It allows not to get stuck in local 
minimum but prevents approaching infinitely close to global minima, except if the learning rate is 
gradually reduced. 
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We also have the mini-batch gradient descent, which does the same but by taking a random set (called 
mini -batch) of realisation of our features to calculate the vector gradient. It also does not require a 
lot of memory and is more stable than the stochastic gradient descent. 
 
We can therefore see that it is possible to use several ideas to improve the gradient descent. But some 
more interesting ideas exist. For example, Polyak (1964) introduced in "Some methods of speeding up 
the convergence of iteration methods” the momentum optimisation. With this technique, a "speed" 
factor and a "friction" factor are introduced. This makes it possible not to go down towards the global 
minimum of the cost function by taking small regular steps, but rather by taking larger and larger steps 
when the slope is steep and smaller and smaller when approaching the minimum. It is intuitively like 
letting a ball descend in a large curve: it will pick up speed on the slope and slow down once the slope 
is less steep. For this, we introduce the momentum vector m and the hyperparameter β representing 
a “friction” parameter (usually set on 0.9, a low friction), preventing the momentum of growing too 
much. We have :  
 

𝑚 ← 𝛽𝑚 − 𝜂∇Θ𝑀𝑆𝐸(Θ) 
 

Θ ← Θ+m 
 
With momentum, it is possible that the optimiser exceeds the global minimum by going further, then 
comes back towards it and exceeds it again, until it reaches the minimum, like a marble in a bowl. This 
is why it is useful to have frictions.  
 
Now imagine that the cost function is not a bowl but a much more exotic form. Then it could be that 
the gradient descent goes down rapidly towards the steepest slope, but that this slope does not point 
directly to the global minimum. The gradient descent would then make a "diversion" before arriving 
at the minimum, increasing the time of the training phase. This can be avoided by using an optimiser 
that corrects the trajectory of the gradient descent as it progresses, reducing the gradient vector along 
the steepest slopes. This method allows the shape of the cost function to be adapted to converge even 
faster to the global minimum. This method is provided by the AdaGrad algorithm, developed by Duchi 
et al. (2011). The problem with this algorithm is that it often stops before the global minimum because 
the learning rate is too scaled down. Another algorithm called RMSProp solves this problem by only 
taking into account the last gradient in this method, and not the accumulation of all previous 
gradients. I will not develop this optimiser further.  
 
Finally, there is an optimiser called Adam (for adaptive moment estimation), which combines 
momentum optimisation and learning rate adaptation (from the RMSProp method). It was presented 
by Kingma and Ba (2014) in a famous paper named "Adam: a method for stochastic optimization". The 
authors show that this optimiser is highly efficient compared to others. Moreover, I have seen it used 
in practice in many works. Here is a quick presentation of the equation of the Adam algorithm : 
 

𝑚 ← 𝛽1𝑚− (1 − 𝛽1)∇Θ𝑀𝑆𝐸(Θ) 
 

𝑠 ← 𝛽2𝑠 + (1 − 𝛽2)∇Θ𝑀𝑆𝐸(Θ) ∗ ∇Θ𝑀𝑆𝐸(Θ) 
 

𝑚̂ ←
𝑚

1 − 𝛽1
𝑡  

 

𝑠̂ ←
𝑠

1 − 𝛽2
𝑡  

 

Θ ← Θ + 𝜂𝑚̂/√𝑠̂ + 𝜀 
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With t the iteration number, m the momentum vector, β1 the momentum decay parameter (friction), 
s the vector of the squared gradients, β2 the scaling decay parameter and ε the smoothing term. In 
this work, I will use this optimiser. 
 
All the characteristics of my neural network are now decided. What I will vary during my research are 
the number of hidden layers, the number of neurons per layer, the activation functions and the inputs. 
Here is a table summarizing the structure of my starting neural network: 
 
 

 
Figure 15 - Starting ANN structure 

 
Finally, here is another table highlighting the number of trainable and non-trainable parameters on 
the structure. The trainable parameters are the weights w and the biases b. Thus, between the input 
layer and the first hidden layer, each neuron in one layer is connected to each neuron in the other, 
which means 700 connections (and thus 700 weights w), and each neuron in the hidden layer has a 
bias term b, which means 100 biases. So, on the first hidden layer, there are in total 800 parameters 
that the network must optimise. On the entire structure, we have 21,101 trainable parameters. The 
appendix 3 show the code used to create this starting ANN structure.  
 

 
Figure 16 – Visualisation of the ANN model parameters 
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Development and results 
 
It is finally time to start the training phase of our first neural network. For this first version, I choose 
to normalise only the inputs and not the price of the options I am looking for in the output. Indeed, I 
would like the network to directly predict the variable of interest as it is. I also choose to respect the 
pricing chronology of the options. That is to say that I will train my network thanks to 600,000 
realisations of my features taken between t and t+x. I draw 100,000 of them randomly to be part of 
my validation sample, and the 500,000 others will constitute the training sample. This way I train and 
validate with data from the same period. As for the test sample, I take the 10,000 realisations of my 
features starting from t+x. This will allow me to evaluate the capacity of the neural network to 
generalise on data that arrive further in time than the data used for the training phase. 
 
This neural network took 64 epochs to train on the input sample, with one epoch taking an average of 
40 seconds. This gives us a training time of 42 minutes and 40 seconds. The network stopped with an 
MSE on the validation sample of 0.0649. When tested on the test sample of 10,000 realisations, we 
get an MSE of 0.07672. This seems to be a good result which already proves one thing: the network 
seems to lose a little bit of accuracy in predicting events that have not yet happened. I think this is a 
trend that will be found for every network respecting the data timeline. 
 
As for the time taken to make the 10,000 predictions, it is less than one second. In other words, it is 
almost instantaneous.  
 
To get an idea, I also decided to calculate the R2 and adjusted R2 of the model. The first is equal to 
0.9994809 and the second to 0.99948055. This is very good news, showing us that our neural network 
regression is very good. It expresses that almost all of the variance in option prices is explained by 
input features. 
 
Here is a summary table of these first promising results: 
 

 
Figure 17 - Results of the starting ANN structure 
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After this first test, I decided to test variates for the network structure. I started by varying the number 
of neurons per hidden layer. For model 2, I used 50 neurons, and for model 3 I used 150 neurons. This 
will allow me to see the impact, in this particular case, of increasing or decreasing the number of 
neurons, all other things remaining equal. In both cases, the results are good but a little less good than 
for 100 neurons per layer. 
 
 

 
Figure 18 - ANN results : model 2 and 3 

 
The MSE on the validation set varies very much between each epoch, so it is not very representative. 
I include it in the results to keep an idea of what is going on, in case we want to find something 
interesting. It can be seen that a model with more neurons requires more epochs to complete its 
training phase, and that the average time per epoch is longer. 
 
Following these results, we can guess that adding a new hidden layer will not be positive for the 
network, since the model with fewer neurons (model 2) performs better than the model with more 

neurons (model 3), and since the model that gives the best results at the moment is in between (model 
1). I still decided to explore smaller structures. Therefore, I choose to explore the reduction of the 
total number of neurons in the network, by first removing one hidden layer and keeping only two, 
each with 100 neurons. This will be model 4. For model 5, I choose to go further and use a neural 
network with two hidden layers of 50 neurons each.  
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Figure 19 - ANN results : model 4 and 5 

 
Surprisingly, deleting one hidden layer gives better results than keeping 3 hidden layers with 50 
neurons per layer, and also give better results than model 1 with three hidden layers of 100 neurons 
each. As for model 5, the performance is worse than all of the other models. It seems that a limit has 
been reached, and that a certain complexity in the network is still necessary to capture the 
relationships between input features and option prices. 
 
After these attempts to modify the structure, I decided to stay with a neural network with 2 hidden 
layers and 100 neurons per layer and a neural network with 3 hidden layers and 100 neurons per layer, 
in order to compare the two once more. The next modification I would like to test is a modification of 
the activation function. Indeed, I will select here the LeakyReLU function, by assigning to the ⍺ 
parameter the value of 0.2, as advised in the work of Xu et al. (2015). Model 6 will be a 2-layer model 
with the LeakyReLU activation function and Model 7 will be the 3-layer model with the same activation 
function. 
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Figure 20 - ANN results : model 6 and 7 

 
 
Surprisingly, I find no improvement over the models with the ReLU function, but a slightly worse 
performance. I will now take the opportunity to point out something that does not often appear in 
papers on the subject, and which is one of the reasons why some researchers may find contradictory 
results: running the same neural network twice will not necessarily give the same results, and some 
conclusions may come within a specific framework, depending on the exact structure of the network, 
the features' characteristics or even the pre-processing of the data. I will develop this part in more 
depth in the next chapter. For now, let's continue testing the variations to see if we can get a major 
improvement in the performance of the neural network predictions. In these variations, we will test 
other activation functions of the ReLU family. 
 

 
Figure 21 - ANN results : model 8 and 9 
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From this table it can be seen that using PReLU or ELU as an activation function does not increase the 
performance of my network. I will therefore stick with the classic ReLU activation function.  
 
Now that the structure variations have shown that the neural networks with 2 hidden layers and 100 
neurons per layer are the ones that work best in my case, I wanted to be able to block this structure 
and tackle the feature variation. 
 
Then, I decide to start from the optimal model (2 hidden layers of 100 neurons each) and to create 3 
other models, the first where I remove the dividend yield, the second where I remove the interest rate 
and the third where I remove the implied volatility. This will allow me to see if these features had an 
impact or not in the current optimal model. Here is the table of results: 
 
 

 
Figure 22 - ANN results when removing one feature 

 
It can be seen that all three models are less efficient than the current optimal model, the worst being 
the model without implied volatility. We see that the latter is very important. These results will be 
analysed in the following section. 
 
Finally, I also tried adding volume and open interest, but none of these additions improved the results 
on the sample test compared to the optimal model. Adding the volume did not change anything and 
adding the open interest even degraded the network performance a bit. The result table can be found 
in appendix 4. 
 
But what about replacing S and K by a single input, the moneyness, calculated as S/K? Well, in my case, 
I get strange results that I cannot explain. These go against what most researchers are doing today. 
Indeed, in my case, it leads me to an MSE on the test set of 84.669, which is simply colossal compared 
to previous results. I tried to investigate this result further but could not find the cause. Furthermore, 
the adjusted R2 I get with this model is 0.426. This is the only value I got that is below 0.99. This 
frustrates me but I have not been able to find the cause of this problem. This is also something that is 
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not obvious with neural networks, they are a bit like black boxes, it is difficult to always understand 
what is going on inside when a problem occurs. On this graph, we can see a scatter plot representing 
a pair between a value predicted by the neural network and the target value, with the red line 
representing the linear regression between these points. It is clear that there is a problem. 
 

 
Figure 23 - Regression between prediction and target values 

 
Anyway, now that we have all these results, we know that our optimal structure is almost the one we 
deduced at the beginning! It is the structure with 2 hidden layers with 100 neurons each, which uses 
a standardisation of the input data, which uses the ReLU activation function and the Adam optimiser, 
and which takes as input the type of option, the spot price, the strike price, the time to maturity, the 
implied volatility, the interest rate and the dividend yield in order to output the option price. It is 
therefore time to compare its results with those of the benchmarks, namely the Black Scholes and the 
Cox Ross Rubinstein binomial tree model (the python code implementation for these models can be 
found in Appendix 5 and 6). 
 
 

 
Figure 24 - Benchmarks performance on the ANN test sample compared to our model 

 
And here is the result that confirms the hypothesis: the neural network outperforms the benchmarks. 
Several tests were performed on different portions of the available data, and the neural network 
consistently outperforms the benchmarks. Indeed, the neural network has smaller average errors, it 
has a higher R2 adjustment, which means that the model explains the output better, and it has a much 
lower prediction time, which can be really useful for practical application.  
 
Between the benchmarks, we also see a logical difference: the Black-Scholes performs worse than the 
Cox Ross Rubinstein. Indeed, the former does not take into account the possibility of exercising the 
option before maturity while the latter does, so it is more adapted to American option pricing. 
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Discussion 
Meanings of the findings 
 
What these results mean is that it is possible to outperform classical models such as the Black-Scholes 
and especially the Cox Ross Rubinstein binomial tree model for pricing American options. Even better: 
it is possible to beat these benchmarks consistently to price Call and Put options whether they are in 
the money, at the money or out of the money with a single neural network! I had made the hypothesis 
that it was indeed advantageous to use such structures for derivatives pricing, both from an accuracy 
and speed point of view, but the results exceed my expectations. 
 
As far as the theoretical framework is concerned, it can be seen that it was a good idea to make an 
initial qualitative analysis before embarking on solving the problem. Indeed, confronting the ideas and 
practices of different authors to draw a trend was more than beneficial, even if these trends were 
implemented in other contexts, such as European option pricing and implied volatility calculation. This 
allowed me to have enough information at hand to form an opinion and even informed guesses on 
certain parameters of the network. 
 
For the second part of my framework, namely the quantitative part, the fact of trying several 
combinations of parameters and features allowed me to get a better idea of the impact of certain 
elements in the pricing problem. For example, I find that including the implied volatility in the network 
greatly increases its predictive power, which is in line with what I found in my literature review. When 
you think about it, it seems logical: an option whose underlying price varies very much will not be 
priced in the same way as the same option with an underlying price that varies little. The risks 
associated with these two options are different.  
 
In the same way, I confirm that the interest rate has its place in the inputs. The fact of adding it 
increases the predictive power of the neural network on the option price. Indeed, when interest rates 
increase, the impact on a Call and Put option is not the same. It is beneficial for the Call option and 
penalising for the Put option. Therefore, it is useful to take into account this interest rate to take into 
account its effect on the value of the options. But this is not its single added value. I will come to it in 
two paragraphs.  
 
Finally, I demonstrate by facts that the dividend yield is also an important feature to input into the 
network. Indeed, as soon as I remove it from the network, the latter loses some of its predictive power. 
However, one could say that when dividends fall, the price of the underlying is directly impacted, and 
that the simple spot price therefore allows the neural network to be given enough information relating 
to dividends. However, since we are dealing with American options, an interesting scenario may occur.  
 
For this, I will have to introduce the "cost of carry". The cost of carry represents an intermediate cash 
flow that is the result of holding an asset. Dividends are a positive cash flow for the owner of the stock, 
so the cost of carry is positive for him. For the owner of the option on the underlying stock, the cost 
of carry is represented by the interest earned from holding cash minus the dividends that are paid to 
the owner of the underlying stock. Since an option has a certain extrinsic value that would be given 
up by exercising its right before the maturity of the contract, the choice to exercise depends on the 
difference between the extrinsic value of the option and the interest earned by having cash against 
the benefit of owning the underlying stock (cost of carry). Therefore, we can say that it is thanks to 
the interest rate and the dividend yield that the neural network can more or less take into account 
the impact of the cost of carry in the calculation of the option value. I was also able to demonstrate 
that adding the open interest and volume did not improve the performance of my network, as MSE 
and R2 are worse when taken into account. About the moneyness, I cannot draw a conclusion 
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Answer to the research question 
 
Yes, it is possible to trade US stock options with neural networks. But there are advantages and 
disadvantages. These advantages are :  
 
- Accuracy: indeed, the neural network has been able to outperform benchmarks such as the Black-
Scholes model or the binomial tree model consistently and to a greater or lesser extent; 
- The inclusion of parameters that are sometimes difficult to integrate: in a neural network it can 
sometimes be enough to add an input parameter to make a difference, whereas in a complex equation 
it can be difficult; 
- The fact that a Put and a Call can be evaluated with the same algorithm; 
- The fact that in the money, at the money or out of the money options can be evaluated efficiently 
with a single algorithm; 
- The instantaneous calculation speed once the network has been trained.  
 
However, there are also drawbacks that need to be noted: 
 
- The learning phase which can be long depending on the type of neural network used and the 
structure given to it 
- The fact that it is sometimes necessary to proceed by trial and error to see if the changes improve 
the network or not, which, combined with the sometimes low learning speed, can take a long time 
- The fact that a lot of good quality data is needed to train the network, as too little data would make 
learning more complicated and overfitting more likely; 
- The fact that a neural network is a black box that is difficult to analyse: as I noticed with my attempt 
to use moneyness as input, it is sometimes very complex to understand the reason for an error or an 
unexpected result. 
 
This is in line with what we have found in the literature review, showing that we do not yet have a 
miracle solution, but that the results obtained from various sources are very encouraging for further 
research on the subject. 
 
 

Obstacles and difficulties encountered 
 
As far as obstacles and difficulties are concerned, I will say that the design itself is very complicated, 
because it is enough to make a small mistake or to change a single hyperparameter of the model for 
nothing to work. Machine learning is a field of research in which you always have to be very careful 
about what you do. On top of that, the fact that a neural network is like a black box that is difficult to 
inspect can be quite frustrating. Sometimes you just don't understand why you get this error or that 
result. This is one of the disadvantages of the advantage of machine learning: the machine learns, and 
we can't inspect everything. 
 
Another difficulty I encountered was that the learning phase of a neural network can take a long time, 
especially if you do not have a very powerful computer. As my computer is more than 5 years old now, 
I had to face memory problems, crashes and interruptions of my code because the RAM was 
overloaded, and even programs that I had to leave running all night. Sometimes I even had to use 
cloud services to do some calculations. This is one of the reasons why I chose to train my network only 
on 500,000 realisations of my features and no more, because it was virtually impossible for me to do 
otherwise with the hardware at my disposal. Still, it was interesting to try to meet the challenge! 
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Conclusion 
 

Executive summary 
 
During this dissertation, I learned how to use neural networks and how to understand how they work 
so I could try to apply them to the problem of pricing derivatives. It seemed very complicated at first, 
but as I tried many different things and learned, I realised that it was possible to get satisfactory 
results.  
 
I then proceeded to modify the structure and the inputs until I found a more or less optimal network, 
which I compared to my own implementations of the Black-Scholes and Cox Ross Rubinstein binomial 
tree model. This allowed me to start with a first conclusion: it is possible to predict American equity 
options at least as efficiently (if not more) with non-parametric neural network models.  
 
Then, by digging a little deeper into the problem and by looking at my own newly acquired experience, 
I was able to establish a non-exhaustive list of the advantages and disadvantages of pricing with ANNs. 

 

Managerial implications  
 
The managerial consequences of my results are clear: managers involved in the pricing of derivatives 
such as American options or other more complex derivatives should be interested in machine learning 
techniques and neural networks. Indeed, they are able to learn the complex relationships between 
inputs and outputs in a way that can outperforms even classical models (used as benchmarks here). It 
can sometimes be more practical to “ask” a neural network to find these relationships than to create 
complex mathematical models from scratch.  
 
On top of that, once the model is trained (which can take some time), the time needed to price the 
product is extremely low; pricing is almost instantaneous, which can be a huge advantage when you 
need to price a large number of products in real time.  
 
I would therefore encourage managers to consider the benefits of this technique (as well as its 
drawbacks) objectively, so that they can decide whether or not to explore this area. But if I were to 
give advice purely on the basis of my findings, I would say that yes, it is worth looking into it. 

 

Theoretical implications  
 
In terms of the theoretical implications of my research, I was able to prove that the use of dividend 
yield in a pricing neural network was beneficial and I was able to confirm that the use of interest rate 
was useful.  
 
I was able to verify other statements such as the fact that the spot and strike price are the most 
important elements in option pricing, along with the time to maturity.  
 
I was also able to explore different activation functions and different optimisation algorithms, to 
confirm that the ReLU family of functions were indeed the most efficient (despite the fact that I had 
some counter-intuitive results with the Leaky ReLU and ELU functions) than for example the sigmoid 
function, or other functions that I tested during my experimental phases. I was able to confirm that 
the Adam optimizer was very efficient unlike others that had more trouble like the Stochastic 
Gradient Descent.  

20448 words 
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I was able to verify an assertion made in the literature review that beyond 3 hidden layers, the 
neural network lost performance for a pricing exercise. 
 
Where a lot of research separated Put and Call options in different networks, and even in the money, 
out of the money and at the money options, I was able to prove that a single network could learn 
enough to distinguish between them and deal with all kinds of options at once. 
 
In the end, it even goes beyond what I hoped to prove at the beginning of my research. 

 

Limitations and suggestions for future research 
 
My methodology faces several limitations: 
 

- The optimal structure found for my neural network may depend heavily on the data I input to 
it. If I had had other implementations or data from another generic provider, the results might 
have been different.  

- I only used fairly simple neural networks. More complex neural networks such as Recurrent 
Neural Networks (RNN), which would seem to be particularly suited to the problem of pricing 
a path dependent financial product, or Long Short Term Memory (LSTM) algorithms which 
keep certain data in memory longer could be more efficient. Indeed, these more complicated 
networks, often referred to as deep ANNs, require much more effort and knowledge.  

- The choice of benchmarks could be wrong in the sense that some approximation techniques 
much more complex and efficient than Black-Scholes and CRR already exist. It is possible that 
these outperform my neural network. 

- The way I selected my data over time: although I tested several possibilities and the neural 
network was always the best performing, I did not test everything. For example, I didn't look 
at whether the neural network was still performing better than the benchmarks in times of 
economic crisis.  

- Not separating ITM ATM and OTM options is an advantage in one sense as it allowed me to 
prove that we could afford to take everything together, but it is perhaps also a disadvantage 
in the sense that several separate networks adapted to each type of option might be more 
efficient.  

 
My recommendations for future research would be to continue in the same vein, taking these 
limitations into account and testing, for example, the capacity of the networks in times of crisis, testing 
the use of different networks for each type of option or trying to use RNN or LSTM type networks. 
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Appendix 
 
Appendix 1 – Histograms of the input features 
 

 
Figure 25 - Histograms of the input features 
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Appendix 2 – Box plots of the input features 
 
 

 
Figure 26 - Box plots of the input features 
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Appendix 3 – code snippet : ANN with Functional API 
 

 
Figure 27 - ANN structure design 

 

 
Figure 28 - model compilation and call-backs definition 

 

 
Figure 29 - learning phase 

 
Appendix 4 – ANN result table for volume and open interest in the optimal structure 

 

 
Figure 30 - ANN with Volume and OpenInterest as extra input feature 
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Appendix 5 – code snippet : Black Scholes model definition 

 

 
 
Appendix 6 – code snippet : CRR binomial tree model definition 

 

 

 


