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Summary

Running complete non linear analysis in concrete structure requires still some
thinking. Which properties of the concrete and the reinforcement steel should be used
for the analysis ? This question is more likely problematic for the concrete for which
the uncertainties on the material strength are higher than for the reinforcement
steel. Several approaches using di�erent material properties exist in the literature
and are here investigated and compared. The approaches of the partial safety factor
(using design properties) and of the global resistance factor (using modi�ed mean
properties) appear to be correlated and nearly similar. In contrast, real bene�ts that
can reach 20 % of extra load margin compared to the two �rst, can be done using
the estimation of the coe�cient of variation approach.

In addition, where do we have to put the uncertainties safety factors on the mo-
del of actions and resistances in the veri�cation process ? Depending of the type of
structure, the position of these safety factors can be argued and discussed. Indeed,
for a non linear analysis, the relation between the force and the displacement is
by de�nition non linear. The position of the safety factors (on the load or on the
displacement) has then an importance and depends on the behaviour of the struc-
ture (under or over-proportional). For each approach, di�erent relations are then
proposed in function of the position of these factors of uncertainties.

The di�erent relations of each approaches are here studied thanks to di�erent
numerical models. Models on cubes, columns, frames and beams with the catenary
e�ect are made in this work using the non linear analysis software Finelg.
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Résumé

Utiliser une analyse non linéaire complète pour une structure en béton requiert
encore quelques interrogations. Quelles propriétés pour le béton et l'acier de renfor-
cement doivent être utilisées pour l'analyse ? Cette question est plus problématique
pour le béton pour lequel les incertitudes sur la résistance sont plus grandes que
pour l'acier de renforcement. Plusieurs approches, utilisant di�érentes propriétés du
matériau, présentes dans la littérature sont ici étudiées et comparées. Les approches
de coe�cient partiel de sécurité (utilisant des propriétés de dimensionnement) et
d'un coe�cient global de sécurité (utilisant des propriétés moyennes modi�ées) ap-
paraissent comme étant fort corrélées et similaires. Par contre, de réels avantages,
qui peuvent atteindre 20 % de charges en plus comparé aux deux premières, peuvent
être fait en utilisant l'approche de l'estimation du coe�cient de variation.

De plus, où est-il nécessaire de placer les coe�cients de sécurité sur les incerti-
tudes du modèle des actions et de la résistance dans le processus de véri�cation ?
Dépendant du type de structure, la position de ces coe�cients peut être discutée. De
fait, pour une analyse non linéaire, la relation entre la charge et le déplacement est
par dé�nition non linéaire. La position de ces coe�cients de sécurité (sur la charge
ou sur le déplacement) a donc une importance et dépend du comportement de la
structure (sous ou sur-proportionnel). Pour chaque approche, di�érentes relations
sont donc proposées en fonction de la position de ces coe�cients d'incertitudes.

Les di�érentes relations de chaque approche sont donc ici étudiées grâce à di�é-
rents modèles numériques. Des modèles de cubes, colonnes, portiques ainsi que de
poutres avec l'e�et chainette sont réalisés dans ce travail en utilisant le programme
d'analyse non linéaire Finelg.
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1 Symbols

The following symbols are valid for the present work and are mostly taking from
the Eurocode.

Latin letters :

Ecm Secant/Mean value of the modulus of elasticity for the concrete.

Es Modulus of elasticity for the reinforcement steel.

Ecd Design value of modulus of elasticity for the concrete.

Lfl Buckling length of one element.

fc Compressive strength of the concrete.

fcd Design value of the concrete compressive strength.

fck Characteristic compressive cylinder strength of the concrete at 28
days.

fcm̃ Modi�ed mean value of the concrete cylinder compressive strength.

fcm Mean value of the concrete cylinder compressive strength.

fy Yield strength of the steel reinforcement.

fyd Design yield strength of the steel reinforcement.

fyk Characteristic yield strength of the steel reinforcement.

fym Mean yield strength of the steel reinforcement.

qud Design ultimate load limit.

qum̃ Modi�ed mean ultimate load limit.

quk Characteristic ultimate load limit.

qum Mean ultimate load limit.

qdemand Demand value of the load (without partial safety factor).

VR Coe�cient of variation of the resistance.

Vm Coe�cient of variation of the model uncertainty.

Vg Coe�cient of variation of the geometrical uncertainty.

Vf Coe�cient of variation of the material strength.

4



Greek symbols :

αcc Coe�cient taken into account the long term e�ects on the compressive
strength and the unfavourable e�ects resulting from the way the load
is applied.

αR Sensitivity factor on the resistance.

αh Coe�cient of reduction related to the length/high - Geometrical im-
perfections.

αm Coe�cient of reduction related to the number of elements - Geome-
trical imperfections.

β Reliability index.

γc Partial safety factor forthe concrete material.

γg Partial safety factor for the permanent actions without the model
uncertainties.

γG Partial safety factor for the permanent actions G.

γM Partial safety factor on the material properties.

γq Partial safety factor for the variable actions without the model uncer-
tainties.

γQ Partial safety factor for the variable actions Q.

γRd Partial safety factor associated to the uncertainties of the model re-
sistance.

γsd Partial safety factor associated to the uncertainties of the model action
and/or the e�ect.

γO Global safety coe�cient on the resistance.

γO′ Global safety coe�cient on the resistance when γRd and γsd are unit
values.

γOm Global safety coe�cient on the resistance for the ECOV approach.

γs Partial safety factor for the reinforcement steel material.

λ Slenderness coe�cient.

χ Factor representing the demand load over the resistance load.

ε Deformation of the material (steel and concrete).

ρs Reinforcement steel ratio.

θ0 Basic inclination.

θi Calculated inclination.
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2 Introduction

Non linear analysis of concrete structure has still some uncertainties and issues
to be solved. Di�erent types of approaches are here detailed and compare using the
non linear �nite element software Finelg.

The procedure of designing a structure can be usually separated into two major
steps. First the analysis of the structure has to be done in order to obtain the internal
forces in each elements for di�erent load cases. Secondly and �nally, the veri�cation
of the sections of each elements for the obtained internal forces is computed. A com-
plete non linear analysis advantage is to gather these two separated steps into one
by introducing the material laws, and the geometrical non linearity into the analysis.

Complete non linear analysis are frequently used for steel structures especially
thanks to the simple stress-strain relationship of the steel material. For concrete
structures, such analysis are rare. Indeed, the stress-strain relationship of the concrete
is not unique and dependent of the strength. Concerning the steel, the Young modu-
lus is constant for all types of quality where the concrete presents di�erent modulus.
Even for the same quality of concrete, the modulus of elasticity changes if the mean
or the design strength is used. The variability of the concrete gives also some issues
and questions on the material law to be used (mean, characteristic or design curve).

Several approaches are provided by the codes and the literature to compute a
complete non linear analysis for a concrete structure. A focus on the approaches
from the Eurocode 1992 [1][2] and the concrete model code [3] is done in this work.
Approaches of partial safety factor and global resistance factor are explained in the
Eurocode 1992 [1][2]. The estimation of the coe�cient of variation approach is in-
troduced in the concrete model code [3].

An other aspect to turn to is concerning the position of the di�erent safety factor
in the veri�cation process. In fact, the safety factor that represents the uncertainties
on the model of actions and resistances can be placed on di�erent position (on the
load or on the e�ect of the load) depending on the structure.

In this rapport, �rst a brief summary of the important input parameters as the
material properties and the geometrical imperfections is done. Then, the next section
focuses on the di�erent approaches available in the code and in the literature in a
static approach. Also a section on the code rules on the dynamic analysis issues are
brie�y introduced. The main part of this work consists on the modelling test. Models
of cubes, columns, frames and a beam with the catenary e�ect are investigated in
order to compare the di�erent approaches and the relations available. Finally a brief
conclusion is done.
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3 Problematic

As explained in the introduction, computing an complete non linear analysis on
concrete structure has still some issues. The major questions are the material laws
to be used in such analysis. Indeed, it has an importance especially concerning the
modulus of elasticity. If the modulus is decreased in order to take into account the
uncertainties on it, the structure becomes more �exible that leads to an increase of
the second order e�ect. This fact is observe when design value for the material law
are used. Indeed, the modulus of elasticity Ecm has to be divided by 1,2.

The same idea can be extrapolated to a dynamic analysis for concrete structure.
Indeed, if the young modulus changes and decreases, it increases the period of the
structures. In the case of seismic analysis, the increase of the period of the structure
leads to a decrease of the seismic loads. So for a design, reducing the loads is not
really a conservative method. Concerning now the wind analysis, the gust have a
period of more or less 4 seconds. By increasing the period of the structure, the
structure can become highly sensitive to the wind.

These issues are solved by choosing one approach over an other. In fact, each
approach proposed and detailed in the following sections are based on di�erent as-
sumption concerning the material properties (design properties, mean properties,...).

The next issue concerns now the position of the di�erent safety factors in the
veri�cation process. Indeed, di�erent relations with a di�erence in the position for
the safety factors are formulated in the codes. Sometimes, the safety factor are placed
on the load, and sometimes on the e�ect of the load. Because non linear analysis
are studied in this work, the position of the safety factor in�uences the veri�cation
of the structure. For each approaches, a clear de�nition of these di�erent relations
are done with then in the modelling part a comparison and an explanation of the
results obtained.
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4 Input parameters

The report begins with an introduction to the di�erent input parameters needed
for one nonlinear analysis. Indeed, the further discussions will refer to these para-
meters. The input parameters concern the stress-strain relationships (material laws)
and the geometrical imperfections required for a complete non linear analysis. Some
rules are provided in the Eurocode 1992-1-1 [1] for the concrete and the reinforce-
ment steel relationships. The Eurocode 1992-1-1 [1] gives also the rules concerning
the introduction of the imperfections into the model.

4.1 Concrete material law

The stress-strain relationship for the concrete in compression proposed in the
Eurocode 1992-1-1 [1] in the case of a non linear analysis has for general expression :

σc
fc

=
kη − η2

1 + (k − 2)η
(1)

with
� η = εc/εc1.
� εc1 is the deformation at the peak stress.
� fc is the compressive strength of the concrete.
� k = 1,05 Ec|εc1|/fc with Ec is the young modulus. Values of the young modulus

can be obtained in the Eurocode 1992-1-1 [1] or directly in the table 68 in
the annex.

The representation of this relation can be observed in �gure 1 below :

Figure 1 � Stress-strain relationship used in the non linear analysis for the concrete material.

This relation is only valid for deformation from 0 to εcu1. Indeed, when the
deformation increases too much, tension appears in the relationship which is not
possible. An other relation can be used if this relation represents well the behaviour
of the considered concrete, however in our case, a change of the material law has not
been studied. The possible tension in the concrete is not investigate in this work.
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4.2 Reinforcement steel material law

Concerning the reinforcement steel, two stress-strain relationships can be chosen.
Some di�erent hypothesis can be made according to the Eurocode 1992-1-1 [1] :

� Hardening after yielding with a limit on the deformation equal to εuk and a
maximal stress of k fyk for εuk with k and εuk that can be found in the annex
C of the Eurocode 1992-1-1 [1] and in the table 1 below.

� No hardening and no limitation on the deformation limit. The non-necessity
of limitation can be discussed and for example in the national annex for Bel-
gium [4], a limitation as in the �rst case has to be taken.

In a design analysis, the limitation corresponds to εud. The recommended value
of εud is equal to 0,9 εuk, however, the national annex for Belgium [4] recommends to
use a value of εud = 0,8 εuk. The young modulus of the reinforcement steel is always
equal to 200 GPa.

The representation of this relationship can be seen in �gure 2 below :

Figure 2 � Stress-strain relationship for the reinforcement steel material [1].

The table 1 below summarizes the properties of the reinforcement steel based on
the type of the steel.

Product form Bars and de-coiled rods or Wire Fabrics

Class A B C

Characteristic yield strength 400 to 600

fyk or f0,2k [MPa]

Minimum Value of k = ft1
fy

≥ 1,05 ≥ 1,08 1,15 ≤ k ≤ 1,35

Table 1 � Properties of the steel reinforcement [1].
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4.3 Geometrical imperfections

The analysis has to take into account the unfavourable e�ect of the geometrical
imperfections on the structure. Concerning the uncertainties of the dimension of the
sections, they are directly embedded into the material safety factor γM . But the
imperfection of the construction has to be taken into account into the analysis. The
Eurocode 1992-1-1 [1] provides the rules and the guidelines for these imperfections :

The imperfections can be represented thanks to an inclination θi of the element :

θi = θ0αhαm (2)

with
� θ0 is the basic inclination. The value to use can also vary for the di�erent

countries. The recommended value in the Eurocode 1992 [1] is θ0 = 1/200.
� αh is the coe�cient of reduction related to the length/high : αh = 2/

√
l with

2/3 ≤ αh ≤ 1.
� αm is the coe�cient of reduction related to the number of elements : αm =√

0, 5(1 + 1/m).
� l is the length/high of the element.
� m is the number of vertical elements contributing to the global e�ect.

In the case of isolated members and here more especially for a cantilever column,
the e�ect of the geometrical imperfections can be taken in two manners :

1) with an eccentricities ei = θil0/2 where l0 is the e�ective length of the mem-
bers. In the case of a cantilever column, l0 is equal to 2l.

2) with a lateral load Hi resulting in the same �rst order moment. Hi l = N ei
→ Hi = N θil0/2

l0/2
= Nθi.

Figure 3 � E�ect of the geometrical imperfections on isolated members [1].
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5 Codes and rules available (static approach)

In this part, the di�erent codes available (Eurocode 1992 [1], [2] and the Concrete
model code [3]) are investigated for the non linear analysis rules. Moreover, some
approaches on the non linear analysis for concrete structure provided in the literature
are also studied. First, some general remarks on the safety format are introduced.
Then, the di�erent approaches are explained and detailed. Finally, a comparison
between these approaches and an illustration are done.

5.1 Safety format

First of all, some general remarks about the design process and the di�erent
safety coe�cient is done. The general design condition that has to be ful�lled is :

Fd ≤ Rd (3)

where Fd corresponds to the design value of the actions and Rd the design resis-
tance. This relation imposed a condition on the load whatever the safety factors. An
other way of thinking would be to compare the e�ect of these loads (displacements
or also stresses). For a non linear analysis, the relation between the load and the
e�ect of it is by de�nition not linear. This non linearity brings an other question
on the position of the safety factors hidden behind Fd and Rd. Several approaches
exist to obtain the design resistance Rd and are explained in the following parts.
The di�erent condition relation are also mentioned for each approaches.

5.2 Global resistance factor approach

The global resistance factor (GRF) approach's principle is to compute a non
linear analysis with modi�ed mean values of the stress-strain relationship. This ap-
proach's principle is similar to the method proposed in the Eurocode 1992-2 [2].

� Mean stress-strain relationship is used for the reinforcement steel (fym = 1,1
fyk).

� For the concrete properties, Ecm is used for the Young modulus and modi�ed
mean strength is used for the compressive limit (fcm̃ = 1,1 αcc γs/γc fck).

� The favourable e�ect of the tensile resistance of the concrete cannot be used.

The coe�cient αcc takes into account the long term e�ect and the unfavourable
position of the loads. The recommended value in the Eurocode 1992-1-1 [1] is 1, but
it can be furnished by the national annex. Concerning the Belgium [4], αcc is taken
as 0,85. For record, the United-Kingdom [5] and the France [6] recommend a value
of 0,85 and 1 respectively.

The reason behind this modi�ed value used for the concrete material comes from
the global safety factor obtained when considering separately both material and
their respective safety factor. Indeed, when αcc = 1, we obtain as the ratio between
the mean and the design strength :

11



fym
fyd

=
1, 1fyk
fyk/γs

= 1, 1× 1, 15 = 1, 265− (4)

fcm
fcd

=
1, 1fck
fck/γc

= 1, 1× 1, 5 = 1, 65− (5)

Where γs and γc are the partial safety factor on the material properties. 1,1 is the
factor to convert characteristic to mean strength. Noted that this 1,1 factor is valid
for the steel but not really for the concrete where fcm = fck + 8 [MPa]. The global
factor is di�erent in case of steel failure or concrete failure. Or the partial factor
used in equations 4 and 5 formulated the same failure probability. In order to obtain
an unique global factor, a modi�ed formulation for the mean value is computed :

fcm̃
fcd

=
1, 1γs/γcfck
fck/1, 5

=
1, 1× 1, 15× 1, 5

1, 5
= 1, 265− (6)

Then, an unique safety factor is obtained and equals 1,265.

The output of the non linear analysis is the ultimate load limit, called qum̃. The
Eurocode 1992-2 [2] provides these following inequalities, on the e�ects of the loads
(E) or on the loads (q), that have to be veri�ed :

E(γsdqdemand) ≤ E

(
qum̃
γOγRd

)
or γsdqdemand ≤

qum̃
γOγRd

(7)

γRdE(γsdqdemand) ≤ E

(
qum̃
γO

)
or q [γRdE(γsdqdemand)] ≤

qum̃
γO

(8)

γRdγsdE(qdemand) ≤ E

(
qum̃
γO

)
or q [γRdγsdE(qdemand)] ≤

qum̃
γO

(9)

E(qdemand) ≤ E

(
qum̃
γO′

)
or qdemand ≤

qum̃
γO′

(10)

with
� γRd is the partial coe�cient represented the uncertainties of the resistance

model, the recommended value is γRd = 1,06 [2]. Note that the value of
γRd can vary with the uncertainties of the model. Indeed, the model code of
concrete [3] proposes 1,0 for no uncertainties, 1,06 for low and 1,1 for high
uncertainties. However the concrete model code [3] also recommends to use
1,06 in the case of a non linear �nite element analysis.

� γsd is the partial coe�cient represented the uncertainties of the actions model
and/or their e�ects. The value should be taken from 1,05 to 1,15. The recom-
mended value in the Eurocode 1992-2 [2] is γsd = 1,15. In the national annex
of Belgium [4], additional remarks are provided :γsd = 1,05 for the model with
few uncertainties, as for example the actions applied on isostatic structures,
γsd = 1,15 is applied then to the model of structures highly hyperstatic, γsd
= 1,10 is applied �nally for the intermediary structures.
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� γO is the global resistance factor, its value is taken as 1,20 [2]. Note that
γOγRd = 1, 272 and equals more or less the global factor obtained in the
equation 5 and 6. γ′O is also the global resistance factor but when γRd and γsd
are not directly taken into account, γ′O = 1,27. We see that this coe�cient
γ′O covers γRd but not γsd. Indeed, γ

′
O = 1,27 ≈ γOγRd.

� qdemand is de�ned as the load value, qdemand = γgG + γqQ = Fd/γsd. Fd =
γGG + γQQ or γg = γG/γsd ; γq = γQ/γsd, in fact, it is γG and γQ that are
provided in the Eurocode 1990 [7].

� qum̃ corresponds to the ultimate limit load in the non linear analysis using
modi�ed mean value for the concrete material and mean properties for the
reinforcement steel.

The di�erence between these relations is simply the position of the safety coe�-
cients. Sometimes they multiply or divide the actions, and sometimes their e�ects.
But for a non linear analysis, the relation between the action and their e�ects is not
especially linear so dividing the actions or the e�ects has not especially the same
impact. Three types of curves depending on the behaviour can be extracted and
are illustrated in �gure 4(a) : linear behaviour, underproportional behaviour and
overproportional behaviour. The Eurocode 1990 [7] discuss that problematic :

a) When the action e�ect (E,R) increases more than the action (q) (overpro-
portional behaviour), the partial safety factor should be applied to the value of the
action.

b) When the action e�ect (E,R) increases less than the action (q) (underpro-
portional behaviour), the partial safety factor should be applied to the value of the
action e�ect.

(a) Di�erent behaviour illustration (b) Strategy impact for the veri�cation

Figure 4 � Non linear curve illustration - Behaviour illustration and strategy of the veri�cation.

Most of the common structures present a behaviour as a) except for cable or
membrane. The �gure 4(b), shows the di�erence between both strategy.

13



As explained, for an overproportional behaviour, the partial safety factor should
be applied to the value of the action in order to obtain to most unfavourable e�ect.
Indeed, we see in �gure 4(b) that the point 4 (dividing the action value) appears
earlier than the point 4' (dividing the action e�ect value) on the non linear curve
which means that the e�ect is highly impacted. This observation can also be done
for the underproportional behaviour where the conclusion are reversed. It is also
obvious that for a linear behaviour, dividing the action or the action e�ect leads to
the same result (point 5 in �gure 4(b)).

The �gure 5 below illustrates in a theoretical manner the procedure of the dif-
ferent relation presented. The relation are illustrated thanks to the path (in dashed
line and with numbers) needed to make the veri�cation. The points without prime
represent the right member path (resistance) and the points with prime the left
member path (demand). The veri�cation can be done with the load but also with
the e�ect of the load. The veri�cation of one leads obviously to the other but not
with the same safety margin.

(a) Equation 7 (b) Equation 8

(c) Equation 9 (d) Equation 10

Figure 5 � Illustration of the di�erent relations of veri�cation for the GRF approach.
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5.3 Estimation of the coe�cient of variation of resistance
(ECOV)

This approach (ECOV) [3] uses mean value for the concrete material properties
to calculate the ultimate resistance qum. Then, to obtain the value of the global re-
sistance coe�cient γOm = Rm

Rd
, it proposes to estimate the coe�cient of variation of

resistance. To do that, an estimate of the mean and characteristic values of the resis-
tance has to be calculated using the corresponding material properties. Concerning
the characteristic properties of the concrete, also mean Young modulus is used.

Rm = (fcm, fym, Ecm) & Rk = (fck, fyk, Ecm) (11)

The coe�cient of variation of the resistance (σR/µR) is then obtained thanks to :

VR =
1

1, 65
ln

(
Rm

Rk

)
or also Rk = Rm exp(−1, 65VR) (12)

The coe�cient 1,65 assumes the probability of the characteristic load limit as
0,05 and a lognormal distribution of the resistance of the structure. Finally the
global resistance coe�cient γOm is determined by the following expression :

γOm =
Rm

Rd

= exp(αRβVR) (13)

with αR is the sensitivity factor for the reliability of resistance and β the relia-
bility index. These coe�cients can be obtained from the Eurocode 1990 [7].

� The reliability index β : We can adapt the reliability index in function of
the reference period and of the consequences of a failure. Three consequences
classes are de�ned in the Eurocode 1990 [7]. The table 2 de�nes these classes :

Consequences
class

Description
Examples of buildings and
civil engineering works

CC3

High consequence for loss of
human life, or economic, so-
cial or environmental conse-
quences very great.

Grandstands, public buil-
dings where consequences
of failure are high (e.g. a
concert hall).

CC2

Medium consequence for loss
of human life, economic, so-
cial or environmental conse-
quences considerable.

Residential and o�ce buil-
dings, public buildings
where consequences of
failure are medium (e.g. an
o�ce building).

CC1

Low consequence for loss of
human life, and economic, so-
cial or environmental conse-
quences small or negligible.

Agricultural building where
people do not normally en-
ter (e.g. storage buildings),
greenhouses.

Table 2 � De�nition of the consequences classes [7].
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Three classes of reliability RC1, RC2 and RC3 that de�ne the β reliability
index concept can be associated with the three classes of consequences CC1,
CC2 and CC3. The table 3 gives the recommended minimum values for that
reliability index β in function of the class of reliability.

Reliability class 1 year reference period 50 years reference period

RC3 5,2 4,3

RC2 4,7 3,8

RC1 4,2 3,3

Table 3 � Recommended minimum values for reliability index β (ultimate limit states) [7].

The reliability index is also related to the probability of failure of the struc-
ture by Pf = Φ (-β) where Φ is the cumulative distribution function of the
standardised normal distribution. The relation is given in the table 4.

Pf 10−1 10−2 10−3 10−4 10−5 10−6 10−7

β 1,28 2,32 3,09 3,72 4,27 4,75 5,2

Table 4 � Relation between β and Pf [7].

� The sensitivity factor αR : The index R means that this factor is applied on
the resistance side. There is also a sensitivity factor αE that a�ect the actions.
The value α is positive for the resistance and negative for the unfavourable ac-
tions (convention). αR and αE equals 0,8 and -0,7 respectively if 0,16 < σE

σR
<

7,6. σE and σR are respectively the standard deviation of the actions and the
resistance. When this condition is not satis�ed, it should use α = ± 1 for the
part that have the higher standard deviation and α = ± 0,4 for the other one.

Finally the relations that has to be ful�lled are :

E(γsdqdemand) ≤ R

(
qum

γOmγRd

)
or γsdqdemand ≤

qum
γOmγRd

(14)

γRdE(γsdqdemand) ≤ R

(
qum
γOm

)
or q [γRdE(γsdqdemand)] ≤

qum
γOm

(15)

γRdγsdE(qdemand) ≤ R

(
qum
γOm

)
or q [γRdγsdE(qdemand)] ≤

qum
γOm

(16)

where qum is here equivalent to Rm and represents the mean capacity or mean
ultimate load limit obtained thanks to a complete non linear analysis with mean
properties.

The �gure 6 illustrates these three relations in a theoretical manner as for the
previous approach.
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(a) Equation 14 (b) Equation 15

(c) Equation 16

Figure 6 � Illustration of the di�erent relations of veri�cation for the ECOV approach.

5.4 Partial safety factor approach

The approach of partial safety factor (PSF) corresponds to the method proposed
by the Eurocode 1992-1-1 [1]. In summary, this approach consists of using design
values for the stress-strain relationships :

� Design stress-strain relationships are used : fcd = αccfck/γc and fyd = fyk/γs.
γc and γs are the partial safety factor on the material strength. The Eurocode
1992-1-1 [1] provides recommended value for both factor. γc = 1,5 and γs =
1,15 for a common project. Ecd = Ecm/γCE with γCE = 1,2.

� The favourable e�ect of the tensile resistance of the concrete can be used. In
this work, the tensile resistance has not been taken into account.

� The creep e�ect has to be taking into account either by a precise model either
by multiplying all relative deformation values of the concrete stress-strain re-
lationship by a factor (1 + φef ), where φef is called the e�ective coe�cient
of creep. Again, this e�ect has not been studied in this work.

The value of the safety factor γc and γs can be explained thanks to the European
Concrete Platform (2008)[8]. The coe�cient of variation in the table 5 can be used
to determine the partial safety factor.
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Type of uncertainties Steel Concrete

Modelling Vm = 2,5 % Vm = 5 %

Geometry Vg = 5 % Vg = 5 %

Material Vf = 4 % Vf = 15 %

Table 5 � Coe�cient of variation needed to determine the partial safety factor for the steel and
concrete material [8].

The partial safety factor on the material strength γM can be then determined
with :

fk
fd

= γM = exp(3, 04VR − 1, 64Vf ) (17)

with

VR =
√
V 2
m + V 2

G + V 2
f (18)

where
� VR is the coe�cient of variation of resistance.
� Vm is the coe�cient of variation of the model uncertainty.
� Vg is the coe�cient of variation of the geometrical uncertainty.
� Vf is the coe�cient of variation of the material strength.

The equation 17 gives then the determination of the partial safety factor on the
material. Using the value from the table 5, we obtain γM = γc = 1,30. By using
an additional factor of 1,15 in order to take into account the uncertainties from the
concrete test made and cured especially for test and not from the �nished structure.
Then γc = 1,15 × 1,30 = 1,50. For the steel material, the equations give γM = γs
= 1,154.

A brief explanation of the equation 17 is done here.

fk
fd

= γM = exp(3, 04VR − 1, 64Vf ) (19)

Knowing that :
fk = fm exp(−1, 64Vf ) (20)

The value of 1,64 assumes the probability of the characteristic resistance as 0,05.
Noted that on the relation 12, this value is equal to 1,65 and has the same de�nition.
By replacing the equation 20 into the equation 19, we obtain :

fm exp(−1, 64Vf )

fd
= exp(3, 04VR) exp(−1, 64Vf ) (21)

fm
fd

= exp(3, 04VR) (22)

Where 3,04 corresponds to αRβ that are the sensitivity factor for the reliability
of resistance times the reliability index. αR = 0,8 and β is here taken as 3,8 which
corresponds to a reliability class RC2 for 50 years of reference period (see table 3).
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The equation 22 gives the relation between the mean and the design resistance. This
equation is similar and on the same assumption to the equation 13 proposed in the
ECOV approach but concerns the resistance of the concrete and not the structure.

The output of this method is a non linear curve until the failure of the structure
(qud). If the failure of the structure appears for a load lower than the applied load,
the structure is not well designed. In contrast, if the structure fails after that applied
load, the structure presents a good design. The following two relations have to be
ful�lled to assure a good design :

E(γsdqdemand) ≤ R (qud) or γsdqdemand ≤ qud (23)

γsdE(qdemand) ≤ R (qud) or q [γsdE(qdemand)] ≤ qud (24)

The �gure 7 illustrates these two relations in a theoretical manner as previously.

(a) Equation 23 (b) Equation 24

Figure 7 � Illustration of the di�erent relations of veri�cation for the PSF approach.

5.5 Probabilistic approach

The last approach proposed by the concrete model code [3] is a full probabilistic
analysis. The safety can also be evaluated thanks to the reliability index β linked to
the failure probability Pf .

Rd =
1

γRd
R(αβ) (25)

The probabilistic approach can be summarized as follows [3] :
1) Randomization of input variables : The properties are obtained thanks to

random distribution with mean and standard deviation value.
2) Probabilistic analysis of the resistance : Series of analysis with the method of

Monte Carlo. The results of this analysis are the random parameters of the
resistance (mean, standard deviation, type of distribution function,...).

3) Evaluation of the design resistance : Once we have the random distribution of
the resistance, we can obtain thanks to the probability of failure, the design
resistance.
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5.6 Other methods

In this section, a brief introduction of some alternatives and approaches coming
from the literature is done.

An approach is proposed by Six M. in 2001 [9] in order to calculate a global re-
sistance factor γO for slender columns. His approach requires one non linear analysis
with as properties for the materials : fy = 1,1 fyk and fc = 1,1 αccfck (≈ mean value).

A second approach is proposed by Henriques et al. in 2002 [10] and calculates
also a global resistance factor γO but here for beam structures. The approach is quite
simple to implement and requires only one non linear analysis using mean value for
the material properties.

A third more complete approach is proposed by Schlune et al. in 2011 [11]. The
goal of his approach is to obtain also a global resistance factor γO here based on the
coe�cient of variation. This global resistance factor divides the result of one non
linear analysis using mean properties for the steel and in situ compressive strength
for the concrete. This approach is more or less similar to the ECOV approach except
that in Schlune's approach, the calcul of the coe�cient of variation is more com-
plex. Indeed, it requires three more non linear analysis and depends on the type of
structure. This method has then the disadvantages to be not systematic.

5.7 Summary and comparison

A brief summary and a comparison between the di�erent approaches investigated
is done here. A focus on the three major approaches (GRF, ECOV and PSF) is pre-
sented. The partial safety factor approach is the simplest approach studied, indeed,
it requires only one analysis without any further computation in order to obtain
the resistance of the structure. The global resistance factor approach requires also
one analysis but additional computation. Finally, the estimation of the coe�cient of
variation needs two non linear analysis also with computation.

Concerning the assumption of the di�erent approaches, the �gure 8 illustrates
and summarizes the material properties needed and the resistance of the structure
obtained for each approaches. The GRF and ECOV approaches are global and re-
quires a global resistance factor γO or γOm. For the GRF, γO is a constant and
independent of the structure. That is the reason modi�ed properties are needed. In
contrast, γOm changes in function of the resistance of the structure. If the failure is
more guided by the concrete, γOm will have a higher value than if the failure appears
more in the reinforcement steel.

An other comparison can be made between the PSF and the GRF approaches.
The basis of the GRF approach is the design value of the material properties. These
design properties are multiplied by the same factor for the steel and the concrete in
order to obtain modi�ed mean properties.

The last comment concerns the PSF approach for which the partial safety factor
on the material are independent of the structure. Indeed, γc and γs have constant
values and are calculated based on constant coe�cient of variation. This is the main
di�erence between the PSF and the ECOV approaches for which the coe�cient of
variation is calculated in order to obtain the global resistance factor γOm.
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Figure 8 � Comparison between the di�erent assumptions made for the three approaches studied
and summary.
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6 Codes and rules available (dynamic approach)

This section introduces the literature review concerning the dynamic analysis for
a concrete structure and its possible issues in the case of seismic and wind analysis.

6.1 Basics

The basics of a dynamic analysis regroups the determination of the mass and
the sti�ness of the structure. The mass of the structure is taken as constant and
is composed of the dead load and sometimes some variable loads. It has however a
high uncertainties. Concerning the sti�ness, the uncertainties comes from the Young
modulus of the concrete itself and also of the inertia of the section (cracked section
or not).

In the previous section, we discussed the possible reduction of the modulus of
elasticity in the case of a design non linear analysis (Ecd = Ecm/γCE). The �gure 9
illustrates the e�ect of a decrease of the Young modulus of the concrete on a struc-
ture. The structure becomes more �exible which leads to an higher natural period
of the structure (T) or a smaller frequency (f).

Figure 9 � Illustration of the Young modulus decrease's e�ect on a structure.

Thanks to the experience or also thanks to the Eurocode 1998-1 [12], some sim-
pli�ed formulas provide the period of one building structure based on the high or on
the stage number. The Eurocode 1998 [12] provides a formula (equation 26) based
on the high for a structure until 40 meters high :

T = CtH
3/4 (26)

where Ct corresponds to a coe�cient depending on the type of structure. For a
concrete frame structure, the coe�cient Ct is equal to 0,075. For the other type of
concrete structure, Ct = 0,05. H corresponds naturally to the high of the structure.
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An other relation more simpli�ed and based on the experience corresponds to :

T = CN (27)

where N corresponds to the number of stage of the structure and C corresponds
to a coe�cient depending on the type of structure. C = 0,1 for a concrete frame
structure and C = 0,05 for a concrete wall structure that is more rigid.

6.2 Seismic

For the seismic analysis, if the period of the structure increases, the load on
the structure can become smaller depending on the period. The �gure 10 below
illustrates the type of building situated in the di�erent part of one typical response
spectrum.

Figure 10 � Response spectrum illustrating the building type periods.

The key point of the two types of response spectra are summarized in the table 6
below depending on the subsoil classes :

/ Type 1 Type 2

Soil Classes S TB [s] TC [s] TD [s] S TB [s] TC [s] TD [s]

A 1,0 0,15 0,4 2,0 1,0 0,05 0,25 1,2

B 1,2 0,15 0,5 2,0 1,35 0,05 0,25 1,2

C 1,15 0,20 0,6 2,0 1,5 0,10 0,25 1,2

D 1,35 0,20 0,8 2,0 1,8 0,10 0,30 1,2

E 1,4 0,15 0,5 2,0 1,6 0,05 0,25 1,2

Table 6 � Parameters describing the response spectrum of type 1 and 2 regarding the subsoil
classes [12].
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If the increased period of the structure T2 appears to be less than TC , the increase
of the period has no in�uence on the seismic load. Indeed, the period is situated on
the plateau, see �gure 11. But concerning the more �exible structure, a diminution
of the rigidity of the structure leads to a diminution of the seismic force acting on
the structure.

Figure 11 � Response spectrum illustrating the e�ect of a period increasing.

These observations are against the logic of the design. Indeed, decrease the Young
modulus appears to be not conservative because the loads decreases as well.

In the codes [12], no clear answers to this issue are provided. However, it is
speci�ed that mean properties should be used in the case of non liner analysis
without any further precision.

6.3 Wind

In the case of a wind analysis, the reduction of the Young modulus increases the
likelihood of the possible vibration of the structure. The reduction of Young modulus
increases then the period of the concrete structure and get closer to the period of
the gust that is approximately equal to 4 seconds. In this case then, decreasing the
rigidity of the structure appears to be conservative in the analysis. Moreover, no
rules founded as [13] provide guidelines or comments on this process of analysis.
However, using mean properties for the material seems to be a good approach.

6.4 Conclusion

Concerning a dynamic analysis, a careful attention has to be done for the use
of material properties. Moreover, the conclusion is not unequivocal because the
decreasing of the Young modulus does not give the same safety in the analysis
for a seismic or a wind analysis.
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7 Numerical modelling

In this section, the numerical simulations are presented and explained. First the
software used, Finelg is brie�y introduced and the input parameters are detailed.
Then, several tests are done from the simple cube where the second order e�ect has
no in�uence to a frame structure where the second order e�ect can be important
and hyperstaticity plays a role. Finally a simple beam is studied where a chain or
catenary e�ect appears. Several analysis are performed on the same model in order
to calculate the di�erent approaches and to compare the results.

7.1 Finelg and Cinelu

Finelg [14] is a software of �nite element analysis developed in collaboration
between the University of Liège and the Engineering O�ce Greisch. Finelg is able
to perform non linear analysis with the geometrical and material non linearity. Finelg
has also the ability to solve dynamic problems and stability analysis.

The non linear analysis is performed step by step. The incrementation from step
to step can be done by several methods [15]. First the load can be imposed but this
approach becomes problematic for the convergence when the load reaches a maxi-
mum. The second approach concerns the imposed displacement which solves the
previous issue but has also problem when the displacement reaches a maximum. A
combination of these two methods can be one solution. One better method concerns
the arc length method that consist to a spherical step. Whatever the increment,
the sphere will always intercept the equilibrium curve. In this work, the arc length
method is used for all the models except for the beam with the catenary e�ect for
which imposed displacement is used. In our work, beam elements are used for the
models investigated but Finelg gives also the possibility to model shell elements.

Cinelu [16] is a software of veri�cation at ultimate limit state (ULS) for section
in reinforced concrete. The main advantage of Cinelu is its ability to verify sec-
tions on unsymmetrical bending. It allows also the possibility of de�ning the section
properties and geometry for later an exportation in Finelg.

7.2 Material laws

For the material laws, Finelg has already several relations directly available for
the users.

Concerning the concrete material, one relation availabe (equation 28) is more or
less similar to the relation provided in the Eurocode 2 [1] (de�ned in the equation 1).

σc
fc

=
kη + (k′ − 1)η2

1 + (k − 2)η + k′η2
(28)

if k′ = 0 (k′ is a parameter of the law), we obtain the same relation as in the equa-
tion 1. The coe�cient k de�nes in Finelg has also one slight di�erence, k = Ec|εc1|/fc
for which it misses one factor of 1,05. For the further tests, C25/30 concrete class is
used in the numerical model.
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The following table 7 summarizes the di�erent properties of material that has to
be modelled. Indeed, in order to compute the several approaches studied, di�erent
material properties have to be studied. A di�erence is also made for the design and
the modi�ed mean properties regarding on the value of αcc (the Eurocode 1992-1-1
[1] and the Belgium annex [4] recommend a value of 1 and 0,85 respectively).

/ fc [MPa] k [-] Ec [MPa]

Design (αcc = 0,85) 14,67 3,83 25833

Design (αcc = 1) 16,67 3,255 25833

Modi�ed Mean (αcc = 0,85) 17,92 3,633 31000

Modi�ed Mean (αcc = 1) 21,08 3,088 31000

Characteristic 25 2,604 31000

Mean 33 1,973 31000

Table 7 � Concrete properties required for computing the di�erent approaches.

The �gure 12 represents the di�erent stress-strain curves for the di�erent material
properties de�ned in the table 7 for a C25/30 concrete :

Figure 12 � Stress-strain relationship for the concrete C25/30 for the di�erent concrete proper-
ties.

For the reinforcement steel, a classical elastic-perfectly plastic or a bilinear re-
lationship are used. Steel of quality B500S is used in the further numerical models.
For the class B of steel, the characteristic ultimate deformation and the coe�cient
k can be larger than 5 % and 1,08 respectively (see table 1). For our case, εuk = 5
% and k = 1,08.
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The table 8 summarizes the reinforcement steel properties for the di�erent cases.
We observe only 4 di�erent properties. Indeed, the in�uence of αcc has no more
e�ect and there is no modi�ed mean properties of the steel. Moreover, there are two
possibilities to represent the reinforcement steel behaviour with the design value
(with or without hardening).

/ fy [MPa] Es [MPa] Et [MPa]

Design 434,8 200000 727,27

Design bis 434,8 200000 0

Characteristic 500 200000 842,10

Mean 550 200000 931,22

Table 8 � Reinforcement steel properties for the di�erent properties.

The �gure 13 illustrates the four di�erent stress-strain relationships studied.
Concerning the design analysis, two possibilities are available (with and without
hardening) both with a limitation of the deformation to εud = 0,8 εuk as recommen-
ded in the national annex of Belgium [4].

Figure 13 � Stress-strain relationships for the di�erent reinforcement steel properties.

For every test performed in the following report, hardening of the steel is repre-
sented. Only the reinforced cube in tension is investigated with both possibilities in
order to see its in�uence.
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7.3 Cube models

The �rst models studied in this work is small cubes. This simple model is perfor-
med in order to investigate the di�erence between the di�erent approaches available
when the second order e�ect has no in�uence. The results obtained from the software
Finelg can also be compared to analytical solution and so validate the non linear
analysis computed by the Finelg. A cube of 50 cm with an illustration of that cube
with the reinforcement in �gure 14 is chosen to make that model.

Figure 14 � Illustration of the section of the reinforced concrete cube.

In the following, three subsections are separated. First the cube without any
reinforcement is modelled for which the di�erent approaches studied are detailed.
Then a reinforced concrete cube is investigated �rst in compression then in tension.

7.3.1 Concrete cube

The �rst model represents then a concrete cube (without any reinforcement).
Non linear analysis are performed with di�erent material properties as discussed
previously in order to compute the di�erent approaches investigated. Then, a com-
parison between the non linear analysis obtained analytically (Equilibrium equation)
and numerically (Finelg) is done to verify the model in �gure 15.

The comparison between the numerical and analytical solution is done for the
mean, characteristic, design and the modi�ed mean analysis. The design and the
modi�ed mean analysis comparison is performed only with a unit value for αcc. We
observe that the numerical results are matching the analytical results. This assures
good results obtained numerically for the further analysis.

αcc = 0,85 αcc = 1 /

qud [kN] qum̃[kN] qud [kN] qum̃ [kN] quk [kN] qum [kN]

3542 4480 4167 5271 6250 8250

Table 9 � Ultimate load limits for the concrete cube test for each material properties.

The next step consists of the evaluation of the di�erent approaches investigated.
The �gure 16 illustrates the di�erent non linear curves with their respective load
limit. The maximal value of the force gives the ultimate load limit for the di�erent

28



Figure 15 � Numerical and analytical force-displacement curves for the di�erent material pro-
perties (concrete cube).

curves (qud(αcc), qum̃(αcc), quk and qum). The table 9 summarizes these ultimate load
limits obtained numerically for each material properties. The table 10 contains the
veri�cation results obtained with the di�erent approaches available using a factor
χ = Fd

Rd
here for the concrete cube test. Moreover, the value of γRd and γsd are �xed

to 1,06 and 1,15 respectively as recommended in the Eurocode 1992 [2].

Concerning the ECOV approach, the global resistance coe�cient γOm has to be
calculated using the characteristic and mean analysis :

VR =
1

1, 65
ln
qum
quk

=
1

1, 65
ln

8250

6250
= 0, 16826− (29)

γOm = exp(αRβVR) = exp(3, 04× 0, 16826) = 1, 668 (30)

The value of αRβ are taken as 0,8 and 3,8 respectively in order to be situated
in the reliability classes RC2 for a reference period of 50 years. In our case, γOm =
1,668 is much higher than the γO = 1,2 of the GRF approach. But concerning the
ECOV approach, γOm takes directly into account which material has an in�uence,
and here obviously there is only the concrete. We observe that the global factor has
the same order of magnitude as the factor obtained in the equation 5.

The value of qdemand is �xed at 3062 kN in order to �x the χ factor to 1 for the
�rst relation of the global resistance factor (GRF) approach in the table 10. This
relation has all the safety coe�cient placed on the action. This type of relation is
chosen because in theory, it is the one with the less safety margin (see �gure 4).
We see in comparison with the other relations that this assumption is right for each
approaches. The partial safety factor approach has also a more or less similar result
when the safety factor are placed on the action. A major di�erence of 15 % appears
between the results of the GRF and the PSF approaches regarding the value of αcc.
Indeed, this coe�cient varies from 0,85 to 1 that explains the di�erence of 15 %.
Concerning the ECOV approach, we observe a larger safety margin in the result
(around 25 %).
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Figure 16 � Force-displacement curves for the concrete cube model for each material properties.

Concrete cube model

Approach LM RM χ [-]

γsdqdemand ≤ qum̃
γOγRd

3522 3522 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

3622 3733 0,9703

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

3401 3733 0,9112

qdemand ≤ qum̃
γO′

3062 3527 0,8682

PSF γsdqdemand ≤ qud 3522 3541 0,9945

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 3212 3541 0,9069

γsdqdemand ≤ qum̃
γOγRd

3522 4144 0,8499

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

3660 4392 0,8332

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

3485 4392 0,7935

qdemand ≤ qum̃
γO′

3062 4150 0,7379

PSF γsdqdemand ≤ qud 3522 4167 0,8452

αcc = 1 q [γsdE(qdemand)] ≤ qud 3295 4167 0,7907

γsdqdemand ≤ qum
γOγRd

3522 4670 0,7541

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

3708 4950 0,7490

q [γRdγsdE(qdemand)] ≤ qum
γO

3641 4950 0,7354

Table 10 � χ factor for the di�erent approaches for the concrete cube model (LM ≡ Left Member
and RM ≡ Right Member).
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A detail of the di�erent relations is done here for the concrete cube test in order
to �x the procedure once. Each relation of the di�erent approaches is explained
and detailed. Concerning the global resistance factor and the partial safety factor
approaches, only the relations with αcc = 0,85 are detailed (the principle is the same
for αcc = 1). The e�ect of the load E(q) is here the displacement in centimetres.

1) Global resistance factor (GRF) approach :

� Relation 1 : E(γsdqdemand) ≤ E
(

qum̃
γOγRd

)
or γsdqdemand ≤ qum̃

γOγRd
.

For the relation 1, the di�erent safety coe�cients are placed on the load and
not on the e�ect of the load. This format gives an easy veri�cation, see the
table 11 and �gure 17 :

/ q [kN] E(q) [cm]

qdemand 3062 (1) /

γsdqdemand 3522 (2) -0,4264 (3)

≤ ≤ ≤

qum̃
γOγRd

3522 (2') -0,4264 (3')

qum̃ 4480 (1') /

Table 11 � Global Resistance Factor approach : Relation 1 - Table

The shape has no in�uence on the factor χ. Indeed, only the ultimate load
limit qum̃ and the demand load qdemand are used and not the displacement.
The χ coe�cient is equal and imposed to 1 for this relation.

� Relation 2 : γRdE(γsdqdemand) ≤ E
(
qum̃
γO

)
or q [γRdE(γsdqdemand)] ≤ qum̃

γO
.

For the relation 2, the safety coe�cients are placed as well on the load and
on the e�ect of the load. This format gives a more complicated veri�cation,
see the table 12 and �gure 18.

/ q [kN] E(q) [cm]

qdemand 3062 (1) /

γsdqdemand 3522 (2) -0,4264 (3)

γRdE(γsdqdemand) 3622 (5) -0,4520 (4)

≤ ≤ ≤

qum̃
γO

3733 (2') -0,4856 (3')

qum̃ 4480 (1') /

Table 12 � Global Resistance Factor approach : Relation 2 - Table.

In this case, the shape of the curve has an in�uence on the results. Indeed,
the safety coe�cients γRd and γsd are placed on the displacement and on the
load respectively. The χ coe�cient is here equal to 0,9703.
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Figure 17 � Global Resistance Factor approach : Relation 1 - Procedure.

Figure 18 � Global Resistance Factor approach : Relation 2 - Procedure.
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Figure 19 � Global Resistance Factor approach : Relation 3 - Procedure.

Figure 20 � Global Resistance Factor approach : Relation 4 - Procedure.
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� Relation 3 : γRdγsdE(qdemand) ≤ E
(
qum̃
γO

)
or q [γRdγsdE(qdemand)] ≤ qum̃

γO

For the relation 3, the safety coe�cients γRd and γsd are both placed on the
e�ect of the load (the displacement here), see the table 13 and �gure 19. The
χ coe�cient is here equal to 0,9112.

/ q [kN] E(q) [cm]

qdemand 3062 (1) -0,3247 (2)

γRdγsdE(qdemand) 3401 (4) -0,3958 (3)

≤ ≤ ≤

qum̃
γO

3733 (2') -0,4856 (3')

qum̃ 4480 (1') /

Table 13 � Global Resistance Factor approach : Relation 3 - Table.

� Relation 4 : E(qdemand) ≤ E
(
qum̃
γO′

)
or qdemand ≤ qum̃

γO′

For the relation 4, the safety coe�cients γsd and γRd are unit values but
γO′ = 1, 27. This simpli�es the veri�cation, see the table 14 and �gure 20 :

/ q [kN] E(q) [cm]

qdemand 3062 (1) -0,3247 (2)

≤ ≤ ≤

qum̃
γ′O

3527 (2') -0,4278 (3')

qum̃ 4480 (1') /

Table 14 � Global Resistance Factor approach : Relation 4 - Table.

The shape of the curve has no in�uence on the factor χ. Indeed, the same
procedure as for the relation 1 is done except for the unit value of the safety
coe�cients. The χ coe�cient is then equal to 0,8682.

2) Partial safety factor (PSF) approach :
� Relation 1 : E(γsdqdemand) ≤ R (qud) or γsdqdemand ≤ qud

/ q [kN] E(q) [cm]

qdemand 3062 (1) /

γsdqdemand 3522 (2) -0,9238 (3)

≤ ≤ ≤

qud 3541(1') -1,0723 (2')

Table 15 � Partial Safety Factor approach : Relation 1 - Table.

For the �rst relation, the safety coe�cient γsd is imposed on the action di-
rectly, see the table 15 and �gure 21 for the procedure.
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Figure 21 � Partial Safety Factor approach : Relation 1 - Procedure.

Figure 22 � Partial Safety Factor approach : Relation 2 - Procedure.
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For this relation, the shape of the curve has also no importance, only the de-
mand load is multiplied by the safety coe�cient. The χ factor equals 0,9945.

� Relation 2 : γsdE(qdemand) ≤ R (qud) or q [γsdE(qdemand)] ≤ qud
For the second relation, the safety coe�cient γsd is imposed on the displace-
ment, see the table 16 and �gure 21 for the procedure :

/ q [kN] E(q) [cm]

qdemand 3062 (1) -0,5197 (2)

γsdE(qdemand) 3212 (4) -0,5977 (3)

≤ ≤ ≤

qud 3541(1') -1,0723 (2')

Table 16 � Partial Safety Factor approach : Relation 2 - Table.

For this relation, the shape of the curve has an importance, indeed the dis-
placement is here multiplied by γsd. The χ factor equals then 0,9069 which
is more or less 10% lower than the previous relation.

3) Estimation of the coe�cient of variation (ECOV) approach :

� Relation 1 : E(γsdqdemand) ≤ R
(

qum
γOmγRd

)
or γsdqdemand ≤ qum

γOmγRd

For the relation 1, the di�erent safety coe�cients are placed on the load and
not on the e�ect of the load. This format gives an easy veri�cation, see the
table 17 and �gure 23 :

/ q [kN] E(q) [cm]

qdemand 3062 (1) /

γsdqdemand 3522 (2) -0,2580 (3)

≤ ≤ ≤

qum
γOγRd

4670 (2') -0,3617 (3')

qum 8242 (1') /

Table 17 � Estimation of Coe�cient of Variation approach : Relation 1 - Table

The shape has no in�uence on the factor χ. Indeed, only the ultimate load
limit qum and the demand load qdemand are used and not the displacement.
The χ coe�cient is equal to 0,7541 for this relation.

� Relation 2 : γRdE(γsdqdemand) ≤ R
(
qum
γOm

)
or q [γRdE(γsdqdemand)] ≤ qum

γOm

For the relation 2, the safety coe�cients are placed as well on the load and
on the e�ect of the load. This format gives a more complicated veri�cation,
see the table 18 and �gure 24.
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Figure 23 � Estimation of Coe�cient of Variation approach : Relation 1 - Procedure.

Figure 24 � Estimation of Coe�cient of Variation approach : Relation 2 - Procedure.

Figure 25 � Estimation of Coe�cient of Variation approach : Relation 3 - Procedure.
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/ q [kN] E(q) [cm]

qdemand 3062 (1) /

γsdqdemand 3522 (2) -0,2580 (3)

γRdE(γsdqdemand) 3708 (5) -0,2735 (4)

≤ ≤ ≤

qum
γO

4950 (2') -0,3894(3')

qum 8242 (1') /

Table 18 � Estimation of Coe�cient of Variation approach : Relation 2 - Table.

In this case, the shape of the curve has an in�uence on the results. Indeed,
the safety coe�cients γRd and γsd are placed on the displacement and on the
load respectively. The χ coe�cient is here equal to 0,7490.

� Relation 3 : γRdγsdE(qdemand) ≤ R
(
qum
γOm

)
or q [γRdγsdE(qdemand)] ≤ qum

γOm

For the relation 3, the safety coe�cients γRd and γsd are both placed on the
e�ect of the load (the displacement here), see the table 19 and �gure 25.

/ q [kN] E(q) [cm]

qdemand 3062 (1) -0,2198 (2)

γRdγsdE(qdemand) 3641 (4) -0,2679 (3)

≤ ≤ ≤

qum
γO

4950 (2') -0,3894(3')

qum 8242 (1') /

Table 19 � Estimation of Coe�cient of Variation approach : Relation 3 - Table.

The shape of the curve has then also an importance. The χ factor is here
equal to 0,7354.

7.3.2 Reinforced concrete cube

The second model consists of a reinforced concrete cube (as illustrate in �-
gure 14). The percentage of reinforcement in the cube is equal to 1,3%. Again a
comparison between the numerical and analytical curves is done. The comparison
between the analytical and numerical curve in �gure 26 shows a nice �tting of both
numerical and analytical analysis.

The next step consists of the evaluation of the di�erent approaches investigated.
The �gure 27 illustrates the di�erent non linear curves with their respective load
limits. The maximal values of the force give the ultimate load limit for the di�erent
curves (qud(αcc), qum̃(αcc), quk and qum) and are summarized in the table 20.
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Figure 26 � Numerical and analytical force-displacement curves for the di�erent material pro-
perties (reinforced concrete cube in compression).

αcc = 0,85 αcc = 1 /

qud [kN] qum̃[kN] qud [kN] qum̃ [kN] quk [kN] qum [kN]

4888 6022 5483 6745 7638 9548

Table 20 � Ultimate load limit for the reinforced concrete cube test for each material properties.

The table 21 summarizes the results of the veri�cation obtained with the di�erent
approaches available using the factor χ = Fd

Rd
and the �gure 27 illustrates the force-

displacement curves.
The value of qdemand is �xed at 4117 kN in order to �x the χ coe�cient to 1

for the �rst relation of the GRF approach in table 21. For this relation, the safety
coe�cients are placed on the action and not on the displacement.

Concerning the ECOV approach, the global resistance coe�cient γOm has to be
calculated using the characteristic and mean analysis as explained previously :

VR =
1

1, 65
ln
qum
quk

=
1

1, 65
ln

9548

7638
= 0, 1352− (31)

γOm = exp(αβVR) = exp(3, 04× 0, 1352) = 1, 508 (32)

We observe that the global factor γOm decreases when reinforcement steel is
added in the section. For a concrete cube, γOm is equal to 1,668 where here γOm
is only equal to 1,508 which shows the in�uence of the steel. The GRF approach
has always a higher value of χ especially compared to the ECOV approach. The
partial safety factor approach has also a more or less similar result when the safety
factor are placed on the action (only 3% of di�erence). The last remark concerns
the smaller di�erence between the GRF and PSF regarding of the αcc value (10% of
di�erence compared to 15% for the concrete cube model).
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Figure 27 � Force-displacement curves for the reinforced concrete cube model in compression.

Reinforce concrete cube model - Compression

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

4735 4735 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

4868 5019 0,9699

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

4547 5019 0,9060

qdemand ≤ qum̃
γO′

4117 4742 0,8682

PSF γsdqdemand ≤ qud 4735 4889 0,9686

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 4354 4889 0,8906

γsdqdemand ≤ qum̃
γOγRd

4735 5303 0,8929

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

4892 5621 0,8704

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

4643 5621 0,8261

qdemand ≤ qum̃
γO′

4117 5311 0,7752

PSF γsdqdemand ≤ qud 4735 5483 0,8635

αcc = 1 q [γsdE(qdemand)] ≤ qud 4419 5483 0,8060

γsdqdemand ≤ qum
γOmγRd

4735 5972 0,7929

ECOV q [γRdE(γsdqdemand)] ≤ qum
γOm

4973 6330 0,7856

q [γRdγsdE(qdemand)] ≤ qum
γOm

4869 6330 0,7692

Table 21 � χ factor for the di�erent approaches for the reinforced concrete cube test in compres-
sion.
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7.3.3 Rupture by tension

The second test on the reinforced concrete cube consists of changing the force
from compression to tension. The assumption that no tensile strength is present in
the concrete is also made so only the reinforcement takes the forces acting on the
cube. The number of analysis decreases then to 4 and no more 6 when concrete are
acting. Indeed, the coe�cient αcc does not a�ect the ultimate load anymore. Mo-
reover, there is not modi�ed mean properties for the steel reinforcement. However
concerning the design analysis, two options can be activated. Indeed, hardening can
be neglected by modelling an yielding plateau. The required analysis are then with
design (hardening), design bis (no hardening), characteristic and mean values.

The maximal value of the force gives the ultimate load limit for the di�erent
curves (qud, qud (bis), quk and qum see table 22).

qud [kN] qud (bis) [kN] quk [kN] qum [kN]

1487 1399 1737 1911

Table 22 � Ultimate load limits for the reinforced concrete cube test in tension.

Again a comparison between the analytical and numerical analysis is done here
(see the �gure 28). We observe a good match between them except concerning the
ability of Finelg to reach the ultimate possible strain in a certain step.

The global resistance factor (GRF) and the estimation of the coe�cient of varia-
tion (ECOV) approach have then the same load limit. The only di�erence between
these two approaches is the global resistance coe�cient γO or γOm. For the GRF
approach, γO is �xed at 1,2. Concerning the ECOV approach, the global resistance
coe�cient γOm has to be calculated based on the characteristic and the mean ana-
lysis. It equals here :

VR =
1

1, 65
ln
qum
quk

=
1

1, 65
ln

1911

1737
= 0, 05776− (33)

γOm = exp(αβVR) = exp(3, 04× 0, 05776) = 1, 192. (34)

γOm is more or less equal to γO. This fact is quite logical because only the rein-
forcement steel is acting. This results in a quasi equality between the GRF and the
ECOV approach for this test. In that case, just the GRF approach is investigated.

The table 23 summarizes the results obtained with the di�erent approaches avai-
lable using the factor χ and the �gure 28 illustrates the force-displacement curves
for the model in tension. The value of qdemand is �xed at 1306 kN in order again
to �x the χ coe�cient to 1 for the �rst relation of the GRF approach in the table 23.

A really important remark concerning the design model corresponds to the re-
duced limit of the deformation available (see in �gure 28). Indeed, a limit of 0,8 εuk
has to be done for a design calculation. Because of that reduced value of the defor-
mation, we observed that the χ coe�cient for the partial safety factor approach is
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Figure 28 � Force-displacement curves for the reinforced concrete cube test in tension.

Reinforce concrete cube model - Tension

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

1502 1502 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

1582 1592 0,9933

q [γRdγsdE(qdemand)] ≤ qum̃
γO

1579 1592 0,9913

qdemand ≤ qum̃
γO′

1306 1505 0,8682

PSF γsdqdemand ≤ qud 1502 1487 1,0101

Design q [γsdE(qdemand)] ≤ qud 1397 1487 0,9392

PSF γsdqdemand ≤ qud(bis) 1502 1399 1,0736

Design bis q [γsdE(qdemand)] ≤ qud(bis) 1399 1399 1,0000

Table 23 � χ factor for the di�erent approaches for the reinforced concrete cube test in tension.
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larger than 1 for the �rst relation (safety factor on the load). Indeed, if the deforma-
tion was not limited, the maximum load in the design analysis would be 1399 × 1,08
= 1511 kN > 1502 kN. The value 1,08 is the k factor that multiplies the yielding
stress (see table 2). An other important remark is concerning the second relation for
the design analysis without hardening. Indeed, the χ factor equals 1 because of the
yielding plateau. The value of qdemand is equal to 1306 kN which is lower than the
yielding force 1399 kN. But when the displacement for q = 1306 kN is multiplied by
the safety factor γsd, the point reached the yielding plateau naturally and q is then
equal to 1399 kN that is also equal to qud(bis).

7.3.4 Discussion of the results and comparison

We observed from these previous test on cubes that the safety factor should be
applied on the load and not on the load e�ect which corresponds to the most res-
trictive method.

Also a good correlation between the GRF and PSF approaches is seen. Indeed,
the di�erence between these approaches is not higher than 3 % (always when com-
pare the same kind of relations - with the safety factor on the load or the others).
This correlation comes from the theory behind these approaches. In fact the GRF
approach's principle is the design value of the material multiplied by a certain factor
(the same for the steel and the concrete). Then a global resistance factor divides
the resistance of the structure using the material properties de�ned. So the GRF
approach begins with as basis the design value of the material properties.

Concerning now the ECOV approach, the basis are no more the design value but
the mean value of the material properties. Moreover the global resistance factor is
calculated depending on the resistance of the structure (dependant of the structure).
This explains the di�erence with the GRF and PSF approaches for which the partial
safety factor of the material are independent of the structure.

For the structure in pure compression, we clearly see the advantage to use the
ECOV approach over the PSF and the GRF approaches. Indeed, a gain of 20 to 25
% is obtained in comparison with the GRF (αcc = 0,85) and of 10 % with the GRF
(αcc = 1). A small attention has to be done concerning the ECOV approach that
does not include that αcc coe�cient in the veri�cation.
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7.4 Column models

The next test consists of the analysis of several type of cantilever columns with
the geometry based on a real example (the 4th European school situated in Brussels
and design by the engineering o�ce Greisch). For this building, circular columns
with a diameter of 1,6 meters are used and an high of around 7 to 9 meters. The
�gure 29 shows the column model and the details of the section studied :

Figure 29 � Model of the column and geometry of the section studied.

A set of columns with two type of sections is then investigated. One section is
composed of 20 bars of diameter 16 mm that corresponds to 0,2 % for the ratio of
reinforcement and the other section with 32 bars of 28 mm of diameter that makes
1 %. These ratio of reinforcement can be discussed a bit longer. Indeed, the codes
provides some rules about the minimum amount of reinforcement needed in a sec-
tion [12]. This minimum ratio can be linked to the seismic class of the structure.
For a high or medium class(DCH or DCM), the minimum amount of reinforcement
ρmin is equal to 1 %. In the case of low seismicity (class DCL), the minimum ratio
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can decrease and depends on the axial load on the column. The ratio is the mi-
nimum value between 0,2 % and 0,1 NEd/Acfyd. On this last formula, we clearly
observe that the minimum reinforcement is proportional to the normal force on the
column. If the normal force does not exceed in our case 17500 kN, the minimum of
reinforcement is still 0,2%. More the normal force increases, more ρmin increases too.

The high, the initial eccentricities and the loads are variables. High of 5, 10 and
30 meters are studied and compared. The �rst step is to calculate the geometrical
imperfections of the column. The basic inclination θ0 varies from 1/100, 1/200 to
1/300. The following equation gives the geometrical imperfection based on that basic
inclination and the table 24 summarizes the inclination obtained for each height of
column :

θi = θ0αhαm (35)

High [m] θ0 [rad] αh [-] αm [-] θi [10
−3 rad]

5 1/100 2/
√

5 = 0, 8944
√

0, 5(1 + 1/1) = 1 8,944

5 1/200 0,8944 1 4,472

5 1/300 0,8944 1 2,981

10 1/100 2/
√

10 = 0, 6324
√

0, 5(1 + 1/1) = 1 6,324

10 1/200 0,6324 1 3,162

10 1/300 0,6324 1 2,108

30 1/200 2/
√

30 = 0, 365
√

0, 5(1 + 1/1) = 1 1,826

Table 24 � Summary of the eccentricities values obtained for each height of columns.

The eccentricities are taking into account thanks to an equivalent lateral force.
In the case of a cantilever column, this equivalent lateral force is equal to the vertical
force times the inclination (Hi = FV × θi).

The next step is to de�ne the variation of the lateral loads. This variation is
modelled with the ratio of the lateral loads over the vertical loads, ratio = FH

FV
. The

table 25 summarizes the di�erent cases investigated for the study of columns. For
the columns of 5 and 10 meters, �rst mostly vertical load are acting with a change
of the geometrical imperfections and then columns with higher horizontal loads
(with the recommended basic inclination of 1/200) are modelled. For all these load
con�gurations, two tests are performed regarding on di�erent ratio of reinforcement.
For each cases, simpli�ed names are given and are summarized in the table 25.

An other test is also investigated by imposing only horizontal load at the top
of the column. The high of the column has no real in�uence on the curve obtained
because the failure is caused only by bending. Indeed, the load limit decreases with
the high, but the capacity of the section stays similar. For these tests, columns of 5
meters are then modelled with also both type of section. 5F1 corresponds to the 5
meters column subjected to horizontal load at the top for the section with 0,2% of
steel reinforcement and 5F2 with 1%.
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H [m] 5
FH

FV
[-] 2,9813 10−3 4,4721 10−3 8,944 10−3 0,1044721 0,2044721

ρs [%] 0,2 1 0,2 1 0,2 1 0,2 1 0,2 1

Cases 5A1 5A2 5B1 5B2 5C1 5C2 5D1 5D2 5E1 5E2

H [m] 10
FH

FV
[-] 2,1082 10−3 3,162 10−3 6,324 10−3 0,103162 0,203162

ρs [%] 0,2 1 0,2 1 0,2 1 0,2 1 0,2 1

Cases 10A1 10A2 10B1 10B2 10C1 10C2 10D1 10D2 10E1 10E2

Table 25 � Summary of the set cases for the columns of 5 and 10 meters.

Finally, a column of 30 meters high is modelled with again the recommended
basic inclination of 1/200. The goal of this column is to obtain a failure by buckling
and not of the section. Again, both types of section are studied.

An interesting parameters to study for columns is the slenderness factor (λ).
Indeed, the Eurocode 1992-1-1 [1] provides the limit value of the slenderness (λlim)
above what the second order e�ects are not negligible.

λlim = 20.A.B.C/
√
n = 10, 78/

√
n (36)

with A, B and C can be taken as 0,7, 1,1 and 0,7 respectively. n is equal to the
ratio between the normal force NEd and Acfcd that corresponds to the capacity of
the concrete section in compression, n is called the relative normal e�ort. Knowing
the slenderness (λ) of the di�erent columns tested here, the coe�cient n can be
obtained.

λ =
l0
i

=
2× l√
I/A

=
2× l
0, 4

(37)

The slenderness equals 25, 50 and 150 for the 5, 10 and 30 meters columns
respectively. The coe�cient n equals then for the 5 and 10 meters columns, when
the limit is just reached :

n =

(
10, 78

25

)2

= 0, 186[−] & n =

(
10, 78

50

)2

= 0, 0465[−] (38)

This means that after 1/5 of the total the normal force capacity, the second order
e�ect has to be taken into account for the 5 meters columns. This also answers the
non necessity of changing the inclination for the column with high horizontal loads
for which the normal forces are small at the failure.

Subsections in the following treat �rst the set of case de�ned in the table 25 for
the columns of 5 and 10 meters. The last test operated concerns a column of 30
meters high that fail by buckling. Finally a discussion of the results obtained for the
di�erent cases and a comparison are done.
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7.4.1 Columns of 5 meters

The �rst set of columns consists of the 5 meters columns. Concerning the safety
coe�cient γRd and γsd, the recommended value provided in the Eurocode 1992-1-2
[2] are chosen (γRd = 1,06 and γsd = 1,15). The table 26 summarizes the load limits,
the demand value of the load and γOm for each set of test and for the several analysis.

/ αcc = 0,85 αcc = 1 /

q [kN] qud qum̃ qud qum̃ quk qum qdemand γOm

5A1 28700 36000 33480 42020 49480 64750 24610 1,641

5A2 35330 43600 40055 49470 56410 71470 29810 1,546

5B1 28230 35430 32910 41325 48620 63550 24220 1,638

5B2 34670 42840 39310 48580 55400 70160 29290 1,545

5C1 26980 33890 31400 39460 462990 60300 23170 1,627

5C2 33135 41055 37540 46535 52920 66950 28070 1,542

5D1 9560 11860 10800 13420 15080 18700 8110 1,486

5D2 14910 18090 15620 18915 21240 25480 12360 1,398

5E1 2825 3535 2960 3700 3640 4155 2420 1,275

5E2 7540 9300 8100 9790 10120 11680 6360 1,303

5F1 270 341 273 345 320 356 233 1,214

5F2 1123 1406 1142 1427 1344 1494 960 1,214

Table 26 � Ultimate load limits, qdemand and γOm for the 5 meters column set of test.

We observe on the table 26 the decreasing of the capacity with the increasing
of the horizontal loads. Also, the columns with higher percentage of reinforcement
have naturally a higher capacity and especially more for the columns subjected to
higher moment. This last comment is especially marked for the column 5F1 and 5F2
that are essentially subjected to moment. Indeed, increasing the steel reinforcement
from 0,2 to 1% increases the capacity of the section by a factor around 4 for the
columns 5F and only by a factor 1,2 for the columns 5A.

Concerning the ECOV approach, the global safety factor γOm has to be calcula-
ted. The table 26 summarizes also the γOm factor for each set of test. We observe in
the table 26 that the safety coe�cient γOm is less important for the column 5D, 5E
and 5F that are more subjected to bending moment. Indeed, in a �exural behaviour,
the concrete properties are less important than in a more or less pure compression
behaviour. It is especially true for the column 5F with only bending moment where
the di�erence between the modi�ed mean and the mean load limit is barely visible.
Moreover the global factor γOm is equal to 1,214 where for the GRF approach γO
equals 1,2.

The last comment concerns the value of the demand load qdemand that is still
obtained by imposing 1 to the �rst relation of the GRF approach.
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Figure 30 � Force-displacement curves for the columns 5A1.

Column 5A1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

28300 28300 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

28800 30000 0,9600

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

26350 30000 0,8784

qdemand ≤ qum̃
γO′

24610 28350 0,8682

PSF γsdqdemand ≤ qud 28300 28700 0,9860

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 25270 28700 0,8804

γsdqdemand ≤ qum̃
γOγRd

28300 33030 0,8568

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

28970 35015 0,8273

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

27015 35015 0,7715

qdemand ≤ qum̃
γO′

24610 33085 0,7439

PSF γsdqdemand ≤ qud 28300 33480 0,8454

αcc = 1 q [γsdE(qdemand)] ≤ qud 25740 33480 0,7688

γsdqdemand ≤ qum
γOγRd

28300 37215 0,7605

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

29430 39450 0,7460

q [γRdγsdE(qdemand)] ≤ qum
γO

28510 39450 0,7228

Table 27 � χ factor for the di�erent approaches for the column 5A1.
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Figure 31 � Force-displacement curves for the columns 5A2.

Column 5A2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

34280 34280 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

34800 36340 0,9576

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

31930 36340 0,8788

qdemand ≤ qum̃
γO′

29810 34330 0,8682

PSF γsdqdemand ≤ qud 34280 35330 0,9703

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 30870 35330 0,8738

γsdqdemand ≤ qum̃
γOγRd

34280 38890 0,8814

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

35120 41230 0,8518

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

32540 41230 0,7893

qdemand ≤ qum̃
γO′

29810 38950 0,7652

PSF γsdqdemand ≤ qud 34280 40060 0,8558

αcc = 1 q [γsdE(qdemand)] ≤ qud 31230 40060 0,7798

γsdqdemand ≤ qum
γOγRd

34280 43600 0,7862

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

35590 46220 0,7700

q [γRdγsdE(qdemand)] ≤ qum
γO

34360 46220 0,7435

Table 28 � χ factor for the di�erent approaches for the column 5A2.
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Figure 32 � Force-displacement curves for the columns 5B1.

Column 5B1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

27850 27850 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

28340 29520 0,9598

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

25980 29520 0,8799

qdemand ≤ qum̃
γO′

24220 27900 0,8682

PSF γsdqdemand ≤ qud 27850 28230 0,9867

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 24910 28230 0,8825

γsdqdemand ≤ qum̃
γOγRd

27850 32490 0,8573

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

28500 34440 0,8276

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

26690 34440 0,7751

qdemand ≤ qum̃
γO′

24220 32540 0,7443

PSF γsdqdemand ≤ qud 27850 32910 0,8463

αcc = 1 q [γsdE(qdemand)] ≤ qud 25380 32910 0,7712

γsdqdemand ≤ qum
γOγRd

27850 36600 0,7609

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

28950 38800 0,7462

q [γRdγsdE(qdemand)] ≤ qum
γO

28100 38800 0,7243

Table 29 � χ factor for the di�erent approaches for the column 5B1.
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Figure 33 � Force-displacement curves for the columns 5B2.

Column 5B2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

33680 33680 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

34180 35700 0,9574

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

31410 35700 0,8798

qdemand ≤ qum̃
γO′

29290 33730 0,8682

PSF γsdqdemand ≤ qud 33680 34670 0,9715

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 30360 34670 0,8756

γsdqdemand ≤ qum̃
γOγRd

33680 38190 0,8819

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

34490 40480 0,8519

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

32030 40480 0,7911

qdemand ≤ qum̃
γO′

29290 38250 0,7656

PSF γsdqdemand ≤ qud 33680 39310 0,8568

αcc = 1 q [γsdE(qdemand)] ≤ qud 30730 39310 0,7818

γsdqdemand ≤ qum
γOγRd

33680 42830 0,7864

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

35180 45400 0,7750

q [γRdγsdE(qdemand)] ≤ qum
γO

33800 45400 0,7446

Table 30 � χ factor for the di�erent approaches for the column 5B2.
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Figure 34 � Force-displacement curves for the columns 5C1.

Column 5C1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

26640 26640 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

27100 28240 0,9596

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

24980 28240 0,8844

qdemand ≤ qum̃
γO′

23170 26685 0,8682

PSF γsdqdemand ≤ qud 26640 26980 0,9876

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 23930 26980 0,8871

γsdqdemand ≤ qum̃
γOγRd

26640 31030 0,8587

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

27410 32890 0,8335

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

25510 32890 0,7757

qdemand ≤ qum̃
γO′

23170 31070 0,7456

PSF γsdqdemand ≤ qud 26640 31400 0,8485

αcc = 1 q [γsdE(qdemand)] ≤ qud 24360 31400 0,7757

γsdqdemand ≤ qum
γOγRd

26640 34950 0,7622

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

27850 37050 0,7518

q [γRdγsdE(qdemand)] ≤ qum
γO

26830 37050 0,7241

Table 31 � χ factor for the di�erent approaches for the column 5C1.
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Figure 35 � Force-displacement curves for the columns 5C2.

Column 5C2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

32280 32280 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

32870 34210 0,9608

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

30240 34210 0,8838

qdemand ≤ qum̃
γO′

28070 32330 0,8682

PSF γsdqdemand ≤ qud 32280 33130 0,9741

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 29200 33130 0,8813

γsdqdemand ≤ qum̃
γOγRd

32280 36580 0,8822

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

33030 38780 0,8518

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

31000 38780 0,7995

qdemand ≤ qum̃
γO′

28070 36640 0,7660

PSF γsdqdemand ≤ qud 32280 37540 0,8598

αcc = 1 q [γsdE(qdemand)] ≤ qud 29560 37540 0,7874

γsdqdemand ≤ qum
γOγRd

32280 40950 0,7882

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

33690 43410 0,7762

q [γRdγsdE(qdemand)] ≤ qum
γO

32400 43410 0,7463

Table 32 � χ factor for the di�erent approaches for the column 5C2.
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The �gures 30, 31, 32, 33, 34 and 35 and the tables 27, 28, 29, 30, 31 and 32
summarize the force-displacement curves (vertical force and horizontal displacement
at the top of the column) and the results for the column subjected essentially to
normal forces and with di�erent eccentricities. We observe the same behaviour inde-
pendently of the reinforcement steel and the eccentricities. Di�erences are however
noticed on the load limit and on the displacement capacity. The shape of the curves
presents some kind of ductility, but the reason of this displacement increase is the
second order moment resulting of the analysis.

Concerning the results for theses tests on the column essentially under compres-
sion, the same order of magnitude is observed for each con�gurations. Indeed, each
con�gurations and each approaches present a higher χ value for the relation with
the safety factor placed on the load. Moreover, the more restrictive approach is the
GRF then the PSF with a small margin and �nally the ECOV.

As said, there is a small di�erence between the GRF and the PSF approaches.
The di�erence is about 1,3% for the column with only 0,2% of steel reinforcement
and reaches 3 % when the steel accounts for 1% whatever the initial eccentricities.

Additionally, we notice a di�erence of around 12 to 15 % between the approaches
(GRF and PSF) with αcc = 0,85 and with αcc = 1 which is logical because the failure
occurs by compression of the concrete.

Finally, a major di�erence between the GRF and the ECOV approach is noticed.
21 to 24% of additional margin on the load can be account for the resistance of the
columns with the ECOV approach.

The �gures 36, 37, 38, 39, 40 and 41 and the tables 33, 34, 35, 36, 37 and 38
summarize the force-displacement curves and results for the columns subjected to
both bending moment and normal forces or only bending moment. In the �gures,
the force corresponds to the vertical forces except for the column 5F1 and 5F2 for
which it is the horizontal loads. The displacement is for all the model the horizontal
top displacement of the column. We do not observe the same behaviour on each
con�gurations. Some of them presents a high ductility and some not.

Still the relation with the safety factor on the loads presents the less safety
margin on the veri�cation. The GRF approach has also an higher value of the χ
factor compared to the other approaches, but this decreases with the increase of the
horizontal loads.

For small horizontal loads (5D1 and 5D2), the same remarks as the columns
essentially in compression can be done with less percentage of di�erence.

For moderate horizontal loads (5E1 and 5E2), di�erent behaviours are noticed.
The column 5E1 presents a high ductility and the column 5E2 not. This di�erence
is only due to the di�erent section properties.

Concerning the columns 5F1 and 5F2 that are only subjected to horizontal loads,
the structure presents a high ductility. The di�erence between the di�erent ap-
proaches becomes less important. Indeed, the di�erence between the GRF and the
PSF approaches is only around 1%. There is also no more major di�erence between
the GRF and the PSF approaches regarding on the αcc value. Moreover, the ECOV
approach presents less than 5% of di�erence with the GRF approach.
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Figure 36 � Force-displacement curves for the columns 5D1.

Column 5D1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

9325 9325 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

9615 9890 0,9728

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

8830 9890 0,8933

qdemand ≤ qum̃
γO′

8110 9340 0,8682

PSF γsdqdemand ≤ qud 9325 9560 0,9752

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 8630 9560 0,9026

γsdqdemand ≤ qum̃
γOγRd

9325 10550 0,8837

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

9680 11185 0,8655

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

9205 11185 0,8229

qdemand ≤ qum̃
γO′

8110 10570 0,7672

PSF γsdqdemand ≤ qud 9325 10800 0,8637

αcc = 1 q [γsdE(qdemand)] ≤ qud 8745 10800 0,8101

γsdqdemand ≤ qum
γOγRd

9325 11870 0,7856

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

9770 12580 0,7767

q [γRdγsdE(qdemand)] ≤ qum
γO

9570 12580 0,7606

Table 33 � χ factor for the di�erent approaches for the column 5D1.
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Figure 37 � Force-displacement curves for the columns 5D2.

Column 5D2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

14220 14220 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

14650 15070 0,9720

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

13860 15070 0,9195

qdemand ≤ qum̃
γO′

12360 14240 0,8682

PSF γsdqdemand ≤ qud 14220 14910 0,9536

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 13290 14910 0,8911

γsdqdemand ≤ qum̃
γOγRd

14220 14870 0,9562

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

14720 15760 0,9341

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

14060 15760 0,8917

qdemand ≤ qum̃
γO′

12360 14890 0,8302

PSF γsdqdemand ≤ qud 14220 15620 0,9105

αcc = 1 q [γsdE(qdemand)] ≤ qud 13400 15620 0,8583

γsdqdemand ≤ qum
γOγRd

14220 17190 0,8273

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

14880 18220 0,8168

q [γRdγsdE(qdemand)] ≤ qum
γO

14570 18220 0,7995

Table 34 � χ factor for the di�erent approaches for the column 5D2.
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Figure 38 � Force-displacement curves for the columns 5E1.

Column 5E1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

2780 2780 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

2870 2950 0,9739

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

2810 2950 0,9548

qdemand ≤ qum̃
γO′

2420 2780 0,8682

PSF γsdqdemand ≤ qud 2780 2825 0,9836

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 2555 2825 0,9046

γsdqdemand ≤ qum̃
γOγRd

2780 2910 0,9554

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

2920 3080 0,9460

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

2840 3080 0,9212

qdemand ≤ qum̃
γO′

2420 2910 0,8295

PSF γsdqdemand ≤ qud 2780 2960 0,9392

αcc = 1 q [γsdE(qdemand)] ≤ qud 2590 2960 0,8744

γsdqdemand ≤ qum
γOγRd

2780 3070 0,9041

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

2930 3260 0,8989

q [γRdγsdE(qdemand)] ≤ qum
γO

2890 3260 0,8867

Table 35 � χ factor for the di�erent approaches for the column 5E1.
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Figure 39 � Force-displacement curves for the columns 5E2.

Column 5E2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

7310 7310 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

7620 7750 0,9839

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

7340 7750 0,9467

qdemand ≤ qum̃
γO′

6360 7320 0,8682

PSF γsdqdemand ≤ qud 7310 7540 0,9695

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 6900 7540 0,9145

γsdqdemand ≤ qum̃
γOγRd

7310 7690 0,9501

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

7640 8160 0,9362

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

7400 8160 0,9075

qdemand ≤ qum̃
γO′

6360 7710 0,8249

PSF γsdqdemand ≤ qud 7310 8100 0,9024

αcc = 1 q [γsdE(qdemand)] ≤ qud 6990 8100 0,8624

γsdqdemand ≤ qum
γOγRd

7310 8460 0,8645

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

7710 8960 0,8596

q [γRdγsdE(qdemand)] ≤ qum
γO

7590 8960 0,8464

Table 36 � χ factor for the di�erent approaches for the column 5E2.
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Figure 40 � Force-displacement curves for the column of 5F1.

Column 5F1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

268 268 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

281 284 0,9891

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

273 284 0,9601

qdemand ≤ qum̃
γO′

233 269 0,8682

PSF γsdqdemand ≤ qud 268 270 0,9944

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 242 270 0,8987

γsdqdemand ≤ qum̃
γOγRd

268 271 0,9896

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

281 287 0,9791

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

273 287 0,9515

qdemand ≤ qum̃
γO′

233 272 0,8591

PSF γsdqdemand ≤ qud 268 273 0,9810

αcc = 1 q [γsdE(qdemand)] ≤ qud 243 273 0,8887

γsdqdemand ≤ qum
γOγRd

268 276 0,9706

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

278 293 0,9477

q [γRdγsdE(qdemand)] ≤ qum
γO

271 293 0,9262

Table 37 � χ factor for the di�erent approaches for the column of 5F1.
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Figure 41 � Force-displacement curves for the column of 5F2.

Column 5F2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

1110 1110 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

1160 1170 0,9898

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

1130 1170 0,9629

qdemand ≤ qum̃
γO′

960 1110 0,8682

PSF γsdqdemand ≤ qud 1110 1120 0,9847

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 1020 1120 0,9073

γsdqdemand ≤ qum̃
γOγRd

1110 1120 0,9855

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

1160 1190 0,9765

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

1130 1190 0,9525

qdemand ≤ qum̃
γO′

960 1120 0,8556

PSF γsdqdemand ≤ qud 1110 1140 0,9682

αcc = 1 q [γsdE(qdemand)] ≤ qud 1020 1140 0,8957

γsdqdemand ≤ qum
γOγRd

1110 1160 0,9531

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

1160 1230 0,9466

q [γRdγsdE(qdemand)] ≤ qum
γO

1140 1230 0,9293

Table 38 � χ factor for the di�erent approaches for the column of 5F2.
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The reason of the di�erent behaviour obtained in the analysis comes from the
failure types and can be observed on the MN interaction plan. The �gure 42 illus-
trates than MN plan for both types of section with all tests performed. A comparison
between the envelope obtained from Cinelu and manually is also done.

(a) Column with 0,2 % of steel reinforcement.

(b) Column with 1 % of steel reinforcement.

Figure 42 � Comparison of the MN interaction from Cinelu and manually with MN curves from
tests on the 5 meters columns.

The di�erence on the behaviour comes on the failure zones that the columns
reach in �gure 42. Indeed, the column 5A, 5B and 5C fails by compression in the
concrete (εc1 = 0, 0021) where 5D, 5E and 5F by failure of the concrete in bending
(εcu2 = 0, 0035). Still in the column 5D, 5E and 5F, di�erent behaviours are observed.
To understand these di�erences, a deeper comprehension of the MN interaction curve
has to be done. The peak of the moment on the envelope corresponds to the failure
of the concrete in one side and the beginning of the plasticity in the other side. This
means that the columns that failed around the peak of moment cannot account
for high ductility because the plasticity begins. Moreover in a circular column, the
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reinforcement bars are not all situated at the bottom. This explains the more brittle
behaviour for the column 5D1, 5D2 and 5E2. More we decrease the compression,
higher strain in the steel reinforcement can be possible and so ductility (column
5E1, 5F1 and 5F2).

A di�erence between the two envelopes for the column with 0,2% of steel is
observed for quite small normal forces and moderate moments. The error, on the
envelope provided by Cinelu, is simply due to the lack of point computed by the
program and then miss that part by interpolation. This part is important because
the result obtained for the column 5E1 reaches the failure around there. For the
other type of section (with 1% of steel), the envelopes obtained manually and from
Cinelu match well. A small di�erence is however obtained in the tensile zone due
to the bilinear approximation for the steel reinforcement material law. The program
Cinelu has some di�culties to reach that point and seems to use a steel material
law without hardening.

Some di�erences are observed in the results regarding on the value of αcc (0,85
or 1). Indeed, depending on the case, the di�erence is not constant. The di�erence is
higher when no lateral loads are applied on the structure (so few bending moment
in the column). In contrary, when the bending moment increases in the column,
the di�erence becomes less important by reaching nearly no in�uence when only
moment are present.

Figure 43 � Comparison of the MN envelop for the di�erent material properties ρs = 1%(Cinelu).

In �gure 43, the di�erent interaction curves for the di�erent material properties
are illustrated for the column with 1% of steel. We clearly see that for small com-
pression forces, the in�uence of the concrete properties are quite small. In contrast,
the in�uence of the steel reinforcement properties is in that zone quite marked.
This explains the decrease of the di�erence between the GRF and PSF approaches
regarding on the αcc value (concrete) with the increase of moment in the columns.
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7.4.2 Columns of 10 meters

The second set of tests involve columns of 10 meters high. As for the 5 meters
columns, the safety factor γRd and γsd are taken as 1,06 and 1,15 respectively. The
table 39 summarizes the load limits, the demand value of the load and γOm for each
set of test and for the several analysis made.

/ αcc = 0,85 αcc = 1 /

q [kN] qud qum̃ qud qum̃ quk qum qdemand γOm

10A1 25880 32470 30300 379450 44880 59080 22200 1,659

10A2 32140 38972 36500 44510 51280 65300 26640 1,561

10B1 25390 31730 29670 37020 43790 57330 21690 1,643

10B2 31290 38250 35520 43510 49890 63430 26150 1,556

10C1 23930 29970 27810 34860 40850 52990 20490 1,615

10C2 29280 35920 33170 40770 46540 58780 24560 1,539

10D1 2310 2850 2400 2960 2880 3220 1950 1,230

10D2 6690 8230 7110 8590 8750 9930 5620 1,264

10E1 833 1039 846 1056 990 1096 710 1,206

10E2 3110 3835 3210 3970 3830 4280 2620 1,220

Table 39 � Ultimate load limits, qdemand and γOm for the 10 meters column set of test.

We observe on the table 39 the decreasing of the capacity with the increasing of
the horizontal loads as for the 5 meters columns. We can also notice by comparing
the load limit for the 5 and 10 meters columns (table 26 and 39) that obviously the
capacity decreases with the high because of the moment generated. This remark is
especially more true for the column with more horizontal loads.

Concerning the ECOV approach, the global safety factor γOm has to be also
calculated. The table 39 summarizes the γOm factor for each con�gurations. Again,
the safety factor γOm decreases with the increase of the horizontal loads as for the
5 meters columns.

As previously, the value of qdemand is obtained by imposing a unit value for the
�rst relation of the GRF approach.
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Figure 44 � Force-displacement curves for the columns 10A1.

Column 10A1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

25530 25530 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

25960 27060 0,9594

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

23710 27060 0,8764

qdemand ≤ qum̃
γO′

22200 25570 0,8682

PSF γsdqdemand ≤ qud 25530 25880 0,9864

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 22770 25880 0,8800

γsdqdemand ≤ qum̃
γOγRd

25530 29830 0,8558

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

26080 31620 0,8247

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

24420 31620 0,7723

qdemand ≤ qum̃
γO′

22200 29880 0,7430

PSF γsdqdemand ≤ qud 25530 30300 0,8424

αcc = 1 q [γsdE(qdemand)] ≤ qud 23180 30300 0,7648

γsdqdemand ≤ qum
γOγRd

25530 33590 0,7600

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

26600 35600 0,7471

q [γRdγsdE(qdemand)] ≤ qum
γO

25450 35600 0,7149

Table 40 � χ factor for the di�erent approaches for the column 10A1.
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Figure 45 � Force-displacement curves for the columns 10A2.

Column 10A2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

30640 30640 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

31030 32480 0,9555

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

28410 32480 0,8747

qdemand ≤ qum̃
γO′

26640 30690 0,8682

PSF γsdqdemand ≤ qud 30640 32140 0,9532

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 27440 32140 0,8536

γsdqdemand ≤ qum̃
γOγRd

30640 34990 0,8757

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

31280 37090 0,8434

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

29130 37090 0,7854

qdemand ≤ qum̃
γO′

26640 35040 0,7602

PSF γsdqdemand ≤ qud 30640 36500 0,8394

αcc = 1 q [γsdE(qdemand)] ≤ qud 27840 36500 0,7626

γsdqdemand ≤ qum
γOγRd

30640 39470 0,7763

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

31910 41830 0,7628

q [γRdγsdE(qdemand)] ≤ qum
γO

30410 41830 0,7270

Table 41 � χ factor for the di�erent approaches for the column 10A2.

65



Figure 46 � Force-displacement curves for the columns 10B1.

Column 10B1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

24950 24950 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

25380 26450 0,9598

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

23230 26450 0,8785

qdemand ≤ qum̃
γO′

21690 24990 0,8682

PSF γsdqdemand ≤ qud 24950 25390 0,9826

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 22300 25390 0,8784

γsdqdemand ≤ qum̃
γOγRd

24950 29100 0,8572

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

25500 30850 0,8264

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

23940 30850 0,7759

qdemand ≤ qum̃
γO′

21690 29150 0,7442

PSF γsdqdemand ≤ qud 24950 29670 0,8409

αcc = 1 q [γsdE(qdemand)] ≤ qud 22700 29670 0,7651

γsdqdemand ≤ qum
γOγRd

24950 32930 0,7577

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

25990 34900 0,7446

q [γRdγsdE(qdemand)] ≤ qum
γO

24920 34900 0,7141

Table 42 � χ factor for the di�erent approaches for the column 10B1.
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Figure 47 � Force-displacement curves for the columns 10B2.

Column 10B2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

30070 30070 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

30580 31880 0,9594

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

27930 31880 0,8761

qdemand ≤ qum̃
γO′

26150 30120 0,8682

PSF γsdqdemand ≤ qud 30070 31290 0,9611

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 26970 31290 0,8620

γsdqdemand ≤ qum̃
γOγRd

30070 34210 0,8792

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

30700 36260 0,8466

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

28720 36260 0,7921

qdemand ≤ qum̃
γO′

26150 34260 0,7633

PSF γsdqdemand ≤ qud 30070 35520 0,8467

αcc = 1 q [γsdE(qdemand)] ≤ qud 27360 35520 0,7704

γsdqdemand ≤ qum
γOγRd

30070 38450 0,7821

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

31240 40760 0,7664

q [γRdγsdE(qdemand)] ≤ qum
γO

29890 40760 0,7334

Table 43 � χ factor for the di�erent approaches for the column 10B2.
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Figure 48 � Force-displacement curves for the columns 10C1.

Column 10C1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

23560 23560 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

23960 24970 0,9596

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

22100 24970 0,8848

qdemand ≤ qum̃
γO′

20490 23600 0,8682

PSF γsdqdemand ≤ qud 23560 23930 0,9844

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 21170 23930 0,8845

γsdqdemand ≤ qum̃
γOγRd

23560 27410 0,8597

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

24210 29050 0,8332

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

22530 29050 0,7756

qdemand ≤ qum̃
γO′

20490 27450 0,7463

PSF γsdqdemand ≤ qud 23560 27810 0,8471

αcc = 1 q [γsdE(qdemand)] ≤ qud 21530 27810 0,7740

γsdqdemand ≤ qum
γOγRd

23560 30950 0,7612

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

24530 32810 0,7476

q [γRdγsdE(qdemand)] ≤ qum
γO

23640 32810 0,7207

Table 44 � χ factor for the di�erent approaches for the column 10C1.
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Figure 49 � Force-displacement curves for the columns 10C2.

Column 10C2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

28240 28240 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

28750 29940 0,9604

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

26400 29940 0,8818

qdemand ≤ qum̃
γO′

24560 28290 0,8682

PSF γsdqdemand ≤ qud 28240 29280 0,9646

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 25460 29280 0,8698

γsdqdemand ≤ qum̃
γOγRd

28240 32050 0,8810

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

28870 33980 0,8496

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

27130 33980 0,7986

qdemand ≤ qum̃
γO′

24560 32100 0,7649

PSF γsdqdemand ≤ qud 28240 33170 0,8515

αcc = 1 q [γsdE(qdemand)] ≤ qud 25810 33170 0,7782

γsdqdemand ≤ qum
γOγRd

28240 36060 0,7832

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

29350 38220 0,7678

q [γRdγsdE(qdemand)] ≤ qum
γO

28210 38220 0,7380

Table 45 � χ factor for the di�erent approaches for the column 10C2.
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The �gures 44, 45, 46, 47, 48 and 49 and the tables 40, 41, 42, 43, 44 and 45
illustrate and summarize the force-displacement curves (vertical force and horizontal
displacement at the top of the column) and the results for the 10 meters columns
subjected essentially to compression. As for the 5 meters columns, the 10 meters
columns essentially subjected to normal forces present the same behaviour. Kind of
ductility is present and is due to the second order e�ect of the high columns.

On the results for these con�gurations, the same order of magnitude is observed.
For each approaches, the relation with the safety factor placed on the load presents
the higher value of the coe�cient χ. Again, the GRF approach seems to be the most
restrictive approach followed closely by the PSF and �nally the ECOV approach.

Here again, the di�erence between the GRF and the PSF approach is quite small
independently of the eccentricities. Indeed, for the column with 0,2% of reinforce-
ment steel, the di�erence is only of 1 to 2% and reaches 4 to 5% for the column with
1% of reinforcement.

The same remark as for the 5 meters columns can be done here concerning the
in�uence of the αcc value. There is a di�erence of about 13 to 15% between the
approaches with αcc = 0,85 and 1.

Again, a major di�erence is present between the ECOV and the GRF approach.
The di�erence is about 21 to 24%. It means that the ECOV approach allows the
structure to carry more loads.

The �gures 50, 51, 52 and 53 and the tables 46, 47, 48 and 49 illustrate and
summarize the force-displacement curves (vertical force and horizontal displacement
at the top of the column) and the results for the 10 meters columns subjected
to normal forces and horizontal loads. The behaviour is quite di�erent for each
con�gurations. The column 10D1 and 10E1 present a good ductility, in contrast the
column 10D2 do not. In the middle, the column 10E2 presents a small ductility
before a brittle failure.

The relations with the safety factor on the loads present the less safety margin
on the veri�cation. The GRF is still the most restrictive approach, followed closely
by the PSF and the ECOV especially with the increase of the horizontal loads.

The di�erence between the GRF and the PSF approach is constant and varies
around 2 to 3%.

As for the 5 meters columns, the di�erence between the GRF and the PSF ap-
proaches regarding on the value of αcc becomes less important with the increase of
the horizontal loads. Also this increase of horizontal loads leads to a decrease of the
gap between the GRF and the ECOV approach.
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Figure 50 � Force-displacement curves for the columns 10D1.

Column 10D1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

2240 2240 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

2330 2370 0,9802

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

2250 2370 0,9500

qdemand ≤ qum̃
γO′

1950 2240 0,8682

PSF γsdqdemand ≤ qud 2240 2310 0,9681

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 2100 2310 0,9065

γsdqdemand ≤ qum̃
γOγRd

2240 2320 0,9635

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

2330 2460 0,9452

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

2280 2460 0,9266

qdemand ≤ qum̃
γO′

1950 2330 0,8365

PSF γsdqdemand ≤ qud 2240 2400 0,9335

αcc = 1 q [γsdE(qdemand)] ≤ qud 2120 2400 0,8848

γsdqdemand ≤ qum
γOγRd

2240 2470 0,9065

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

2350 2620 0,8989

q [γRdγsdE(qdemand)] ≤ qum
γO

2300 2620 0,8788

Table 46 � χ factor for the di�erent approaches for the column 10D1.
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Figure 51 � Force-displacement curves for the columns 10D2.

Column 10D2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

6470 6470 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

6720 6860 0,9804

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

6430 6860 0,9383

qdemand ≤ qum̃
γO′

5620 6480 0,8682

PSF γsdqdemand ≤ qud 6470 6690 0,9666

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 6080 6690 0,9082

γsdqdemand ≤ qum̃
γOγRd

6470 6750 0,9578

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

6730 7160 0,9398

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

6490 7160 0,9070

qdemand ≤ qum̃
γO′

5620 6760 0,8316

PSF γsdqdemand ≤ qud 6470 7110 0,9102

αcc = 1 q [γsdE(qdemand)] ≤ qud 6170 7110 0,8677

γsdqdemand ≤ qum
γOγRd

6470 7420 0,8720

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

6790 7860 0,8638

q [γRdγsdE(qdemand)] ≤ qum
γO

6620 7860 0,8420

Table 47 � χ factor for the di�erent approaches for the column 10D2.
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Figure 52 � Force-displacement curves for the columns 10E1.

Column 10E1

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

817 817 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

851 866 0,9830

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

837 866 0,9666

qdemand ≤ qum̃
γO′

710 818 0,8682

PSF γsdqdemand ≤ qud 817 833 0,9806

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 758 833 0,9098

γsdqdemand ≤ qum̃
γOγRd

817 831 0,9836

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

853 880 0,9684

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

837 880 0,9513

qdemand ≤ qum̃
γO′

710 832 0,8540

PSF γsdqdemand ≤ qud 817 846 0,9655

αcc = 1 q [γsdE(qdemand)] ≤ qud 763 846 0,9022

γsdqdemand ≤ qum
γOγRd

817 858 0,9527

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

861 909 0,9471

q [γRdγsdE(qdemand)] ≤ qum
γO

850 909 0,9347

Table 48 � χ factor for the di�erent approaches for the column 10E1.
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Figure 53 � Force-displacement curves for the columns 10E2.

Column 10E2

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

3010 3010 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

3160 3200 0,9882

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

3060 3200 0,9589

qdemand ≤ qum̃
γO′

2620 3020 0,8682

PSF γsdqdemand ≤ qud 3010 3110 0,9693

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 2820 3110 0,9079

γsdqdemand ≤ qum̃
γOγRd

3010 3120 0,9660

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

3160 3310 0,9558

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

3080 3310 0,9321

qdemand ≤ qum̃
γO′

2620 3130 0,8387

PSF γsdqdemand ≤ qud 3010 3210 0,9383

αcc = 1 q [γsdE(qdemand)] ≤ qud 2840 3210 0,8853

γsdqdemand ≤ qum
γOγRd

3010 3290 0,9154

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

3170 3490 0,9092

q [γRdγsdE(qdemand)] ≤ qum
γO

3130 3490 0,8961

Table 49 � χ factor for the di�erent approaches for the column 10E2.
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The reason of the di�erent behaviour obtained in the analysis comes from the
failure types and can be observed on the MN interaction plan. The �gure 54 illus-
trates than MN plan for both types of section with all con�gurations performed with
again both envelopes calculated manually and thanks to Cinelu.

(a) Column with 0,2 % of steel reinforcement.

(b) Column with 1 % of steel reinforcement.

Figure 54 � Comparison of the MN interaction from Cinelu and manually with MN curves from
tests on the 10 meters columns.

The di�erence of the behaviour comes again from the failure types and the zone
that the structure reaches in �gure 54. The con�gurations 10A, 10B and 10C as for
the 5 meters columns fail by compression in the concrete. In contrast, the columns
10D and 10E fail by concrete failure (εc = 0,0035). Depending on the zones reached
in �gure 54, some ductility are observed. The columns 10D1 and 10E1 closed to
a simple bending state present high ductility. As the peak of moment is reached,
the ductility disappears slowly. This explains why the column 10E2 presents a few
ductility and the column 10D2 almost not.
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7.4.3 Columns of 30 meters

The last step in the column section is the modelling of one slender column. Co-
lumns of 30 meters are then modelled. A slender column is investigated in order to
obtain a failure by buckling and not a failure of the section obtained in the previous
con�gurations. Two columns are investigated, one column with 0,2% of steel rein-
forcement and the second with 1%. Only one load con�guration is studied, vertical
load and the horizontal load for the initial imperfections with a basic inclination θ0
of 1/200.

As said, we want to obtain a failure by buckling and no more of the section. The
buckling load can be then calculated. Indeed, theoretically the buckling load for a
column is simply :

Pcr =
π2EI

L2
fl

(39)

where EI corresponds to the total rigidity of the section where I accounts for the
inertia of the section and E for the Young modulus. These parameters depends on
the reference material chosen (steel or concrete). Lfl is the buckling length of the
element. A cantilever column is here modelled, so Lfl is equal to 2 times the length
of the element.

Two sections are studied here, so two inertias have to be obtained. For the de-
sign analysis, the young modulus of the concrete changes (Ecm/1,2) and the young
modulus of the steel reinforcement stays constant. In �nal four rigidities are then
necessary and obtained with the concrete as the reference material. The table 50
below summarizes the procedure and the results of the critical loads obtained :

/ Ecd = Ecm/1,2 Ecm

E [kN/m2] 25,83 × 106 31 × 106

Section 1 Iy [m
4] 0,327 0,326

Pcr−1 [kN] 23160 27710

E [kN/m2] 25,83 × 106 31 × 106

Section 2 Iy [m
4] 0,356 0,349

Pcr−2 [kN] 25210 29660

Table 50 � Critical load procedure and results.

The di�erent load limits, the value of qdemand and γOm for the analysis proceeded
are contained in the table 51. We clearly see an increase of the capacity for the
section with more reinforcement. We also observe that the load capacity are quite
lower than the buckling load calculated previously for each cases.
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/ αcc = 0,85 αcc = 1 /

q [kN] qud qum̃ qud qum̃ quk qum qdemand γOm

ρs = 0,2% 11300 13900 12430 15250 16740 19090 9500 1,274

ρs = 1% 12890 15470 14050 16870 18380 20800 10580 1,256

Table 51 � Ultimate load limits, qdemand and γOm for the 30 meters columns con�gurations.

The table 52 contains the ratio between the load limit obtained in the table 51
and the critical load calculated previously. We observed on that table that the ratio
varies from 0,4 to 0,7. The di�erence between these loads comes from the theory
behind the buckling load which is an elastic critical load. So the cracking, the plas-
ticity are not included in that load. In the de�nition of the load, the length and
the Young modulus are constant all along the non linear loading. In contrast, the
inertia of the section changes. Indeed, the cracks induced by a rotation of the section
decrease the inertia of the section during the loading of the structure. So an other
view to the ratio calculated on the table 52 can be the percentage of the remaining
inertia of the section at the failure.

/ αcc = 0,85 αcc = 1 /

/ qud/Pcr−i qum̃/Pcr−i qud/Pcr−i qum̃/Pcr−i quk/Pcr−i qum/Pcr−i

ρs = 0,2% 0,488 0,502 0,537 0,550 0,604 0,689

ρs = 1% 0,511 0,522 0,557 0,569 0,620 0,701

Table 52 � Ratio between the load limit obtained numerically and the critical load Pcr.

The �gures 55 and 56 and the tables 53 and 54 illustrate and contain the forces-
displacement curves (vertical force and horizontal displacement at the top of the
column) and the results of the 30 meters columns tests for both reinforcement ratio.

Concerning the results, more or less the same remarks as for previous columns
(5 and 10 meters) can be done here. The safety coe�cients have to be placed on the
load to obtain the most restrictive veri�cation. 3 to 5% of di�erence exists between
the GRF and the PSF approach. Around 9% of di�erence separates the results from
the GRF and the PSF regarding of the value of αcc. Finally, the ECOV approach
have about 22% of additional margin compared to the GRF approach.
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Figure 55 � Force-displacement curves for the 30 meters column investigated (ρs = 0, 2%).

Column of 30 meters - ρs = 0, 2%

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

10920 10920 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

11110 11580 0,9591

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

10190 11580 0,8797

qdemand ≤ qum̃
γO′

9500 10940 0,8682

PSF γsdqdemand ≤ qud 10920 11300 0,9667

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 9830 11300 0,8700

γsdqdemand ≤ qum̃
γOγRd

10920 11990 0,9114

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

11190 12710 0,8806

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

10380 12710 0,8169

qdemand ≤ qum̃
γO′

9500 12010 0,7913

PSF γsdqdemand ≤ qud 10920 12440 0,8785

αcc = 1 q [γsdE(qdemand)] ≤ qud 9960 12440 0,8014

γsdqdemand ≤ qum
γOγRd

10920 14130 0,7729

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

11320 14980 0,7555

q [γRdγsdE(qdemand)] ≤ qum
γO

10630 14980 0,7093

Table 53 � χ factor for the di�erent approaches for the 30 meters column analysis (ρs = 0, 2%).
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Figure 56 � Force-displacement curves for the 30 meters column investigated (ρs = 1%).

Column of 30 meters - ρs = 1%

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

12160 12160 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

12410 12890 0,9623

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

11400 12890 0,8838

qdemand ≤ qum̃
γO′

10580 12180 0,8682

PSF γsdqdemand ≤ qud 12160 12890 0,9440

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 10980 12890 0,8524

γsdqdemand ≤ qum̃
γOγRd

12160 13260 0,9170

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

12450 14060 0,8852

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

11540 14060 0,8205

qdemand ≤ qum̃
γO′

10580 13290 0,7961

PSF γsdqdemand ≤ qud 12160 14050 0,8660

αcc = 1 q [γsdE(qdemand)] ≤ qud 11080 14050 0,7889

γsdqdemand ≤ qum
γOγRd

12160 15620 0,7788

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

12500 16560 0,7551

q [γRdγsdE(qdemand)] ≤ qum
γO

11850 16560 0,7157

Table 54 � χ factor for the di�erent approaches for the 30 meters column analysis (ρs = 1%).
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The �gure 57 (a) and (b) illustrates the MN interaction envelope and the MN
path for both section respectively.

(a) Column with 0,2 % of steel reinforcement.

(b) Column with 1 % of steel reinforcement.

Figure 57 � Comparison of the MN interaction from Cinelu and manually with MN curves from
tests on the 30 meters columns.

We observe again the importance of the part neglected by the program Cinelu
for moderate normal force (section with 0,2% of steel). We also clearly see the high
importance of the second order e�ect. This importance is marked by the fact that
the bending moment increases much higher than the normal forces. The load limit
is reached before the failure of the section that happen when the curve reaches the
MN envelope.
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7.4.4 Discussion of the results and comparison

In the introduction of the column models, a brief part concerning the slenderness
factor is mentioned. In that part, we said that for the column of 5 meters, after
1/5 of the normal force capacity of the section, the second order e�ect has to be
calculated. For the 10 meters columns, this is 4,6 % of the normal force capacity
which is barely nothing and appears directly. We can compare these facts with the
MN path obtained in �gure 42 and 54. On these �gures, we clearly observe non
linearity for the column subjected essentially to normal forces for which the second
order e�ect matters. In contrast, for the columns subjected to horizontal loads, this
e�ect seems to be less important. This explains why the initial inclination does not
vary for these columns with high bending moment.

For this kind of structure (column), the safety factor should be applied on the
load and not on the displacement. Indeed, this leads to a more restrictive veri�cation
because the structure's behaviour is overproportional (as seen in �gure 4).

Again a good correlation between the GRF and the PSF approaches is seen for
the di�erent columns modelled. The higher di�erence accounts for 5 %.

When the structure is more subjected to moment than normal forces, the in-
�uence of the αcc value is barely visible. Indeed, this fact can be seen on the results
obtained for the previous model or also in �gure 43.

We observe also that the height does not give a clear di�erence between the
relation or the approach. Indeed, the same conclusion can be made for each case.
However, on the structure behaviour, we clearly observe a increase of the second
order e�ect with the high.

No major di�erence in the relations or in the approaches are noticed between the
column of 10 m and 30 meters for which the failure di�er. The 10 meters column
fails in the section where the 30 meters column by buckling and then in the section.

Finally, as said separately for the di�erent columns height, we observe a tendency
of decrease of the di�erence between the di�erent approaches when the bending
moment increases in the structure. This is explained amongst other by the higher
importance of the steel in the failure of the structure. With the same idea, the gain
of the ECOV approach decreases with the increase of the bending moment. Indeed,
when normal forces are the main internal forces in the structure, the gain can reach
20 - 25 % and 10 % compared to the GRF approach with αcc = 0,85 and 1 respecti-
vely. In contrast, when bending moments are introduced in the structure, this gain
drops to 5 - 10 % and 3 - 5 % compared to the GRF approach with αcc = 0,85 and
1 respectively.

To conclude, the importance of the approach is higher when the normal forces
is high. In that case, using the ECOV approach seems to be the more clever way to
design the structure. However, a remark and an attention has to be done on the fact
that the ECOV approach does not include the αcc value into the analysis. So when
αcc is not equal to 1, a criticism of this approach has to be done. Then concerning
the structure more subjected to bending moments, the choice of the approach has no
more an huge importance. So using a simple approach like the PSF is according to
me the right choice because no further computation on the resistance are necessary
and the veri�cation is less restrictive than the GRF approach.
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7.5 Frame models

The next model consists of one 2D reinforced concrete frame for what the com-
plexity of the structure increases a bit. A more or less usual type of frame is modelled
with quite common section dimensions for a normal building.

First, the global geometry of the frame is presented, then the results for a beam
and a column failure are given. Finally a brief discussion and comparison of the
results are done.

7.5.1 Geometry

The �rst important step is to de�ne the geometry of the frame used for the test.
A 2D frame is here investigated with the assumption of an e�ective bracing in the
other direction that stabilises the frame in that direction. In the 2D frame modelled
here, the horizontal load are carried by the frame itself (no bracing in his plan). An
illustration of that frame is presented in �gure 58.

Figure 58 � Illustration of the frame structure model investigated.

The frame is composed of two stages and two bays. The high of one stage is equal
to 3,5 meters and the columns are placed each 5 meters. The value of the vertical
and horizontal loads (V and H) are variables in order to obtain di�erent types of fai-
lure. Additional to these loads, the dead load of each elements is taken into account.
The geometrical imperfections are here not taken into account for simplicity. The
�gure 59 shows the section properties for the columns and the beams of the frame
structure. Beams of 250x400 mm of section are used with 8 reinforcement bars of
16 mm of diameter. For the columns, section of 250x250 mm is used with 4 bars of
16 mm of diameter.
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Figure 59 � Illustration of the section properties for the beams and columns of the frame structure
model.

The value of the loads determines the failure obtained in the analysis. The
table 55 summarizes the combination of the vertical and the horizontal loads used.
In order to obtain a failure of the column �rst, the horizontal loads have to be hi-
gher. The same idea is done for the beam failure but with an higher value for the
vertical loads at the midspan of the beam.

/ V [kN] H [kN]

Beam failure 1 0,5

Column failure 0,5 1

Table 55 � Summary of the vertical and horizontal loads used for both failure types.

7.5.2 Beam failure

The �rst type of frame modelled presents a failure �rst in the beam. The table 56
contains the load limits for the di�erent analysis and γOm for the ECOV approach.
The load limits represent here the vertical force V on the frame.

αcc = 0,85 αcc = 1 /

qud [kN] qum̃[kN] qud [kN] qum̃ [kN] quk [kN] qum [kN] γOm

53,3 62,3 57,8 66,3 68,8 80,2 1,326

Table 56 � Ultimate load limits for the frame model - Beam failure.

The �gure 60 and the table 57 illustrates and summarizes the results of the
several analysis made. The displacement corresponds here to the horizontal displa-
cement of the top �oor. The behaviour of the structure is almost elastic until the
failure. The failure appears �rst in the top beam at the mid support. Cause of the
hyperstaticity of the frame, the convergence of the numerical model is a big issue
and the discretisation of the element has to be re�ned at the connections zones.
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Figure 60 � Force-displacement curves for the frame - Beam failure.

Frame - Beam failure

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

49,0 49,0 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

51,0 51,9 0,9832

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

49,0 51,9 0,9433

qdemand ≤ qum̃
γO′

42,6 49,0 0,8682

PSF γsdqdemand ≤ qud 49,0 53,3 0,9190

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 46,8 53,3 0,8784

γsdqdemand ≤ qum̃
γOγRd

49,0 52,1 0,9396

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

51,1 55,2 0,9255

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

49,4 55,2 0,8941

qdemand ≤ qum̃
γO′

42,6 52,2 0,8158

PSF γsdqdemand ≤ qud 49,0 57,8 0,8474

αcc = 1 q [γsdE(qdemand)] ≤ qud 46,8 57,8 0,8107

γsdqdemand ≤ qum
γOγRd

49,0 57,0 0,8589

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

51,4 60,4 0,8508

q [γRdγsdE(qdemand)] ≤ qum
γO

50,4 60,4 0,8339

Table 57 � χ factor for the di�erent approaches for the frame model with failure on the beam.
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Figure 61 � Force-displacement curves for the frame - Column failure.

Frame - Column failure

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

26,0 26,0 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

27,3 27,6 0,9883

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

26,6 27,6 0,9621

qdemand ≤ qum̃
γO′

22,6 26,1 0,8682

PSF γsdqdemand ≤ qud 26,0 27,9 0,9344

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 24,2 27,9 0,8676

γsdqdemand ≤ qum̃
γOγRd

26,0 28,1 0,9281

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

27,3 29,7 0,9186

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

26,7 29,7 0,8982

qdemand ≤ qum̃
γO′

22,6 28,1 0,8057

PSF γsdqdemand ≤ qud 26,0 29,3 0,8880

αcc = 1 q [γsdE(qdemand)] ≤ qud 25,1 29,3 0,8572

γsdqdemand ≤ qum
γOγRd

26,0 31,3 0,8316

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

27,4 33,2 0,8267

q [γRdγsdE(qdemand)] ≤ qum
γO

27,1 33,2 0,8162

Table 58 � χ factor for the di�erent approaches for the frame model with failure on the column.
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7.5.3 Column failure

The second type of frame modelled presents a failure �rst in the column. The
table 59 contains the load limit for the di�erent analysis and γOm for the ECOV
approach. The load limits represent here the horizontal force H on the frame.

αcc = 0,85 αcc = 1 /

qud [kN] qum̃[kN] qud [kN] qum̃ [kN] quk [kN] qum [kN] γOm

27,9 33,1 29,3 35,7 36,1 39,9 1,204

Table 59 � Ultimate load limits for the frame model - Column failure.

The �gure 61 and the table 58 illustrates and summarizes the results of the
several analysis made. The displacement corresponds here again to the horizontal
displacement of the top �oor. The behaviour of the structure is here again almost
elastic until the failure. The failure appears �rst in the middle column.

7.5.4 Discussion of the results and comparison

First of all, an attention on the convergence issue of the non linear analysis is
made. Indeed, the structure is hyperstatic and contains a lot of integration point in
one section (almost 500 points).

The results obtained on the table 57 and 58 are here discussed and analysed. Still
in the frame model, the more restrictive approach seems to be the GRF and again
when the safety factor are placed on the load. Then the PSF and the ECOV follow
with 6-8 % and 14-16 % of extra margin respectively. The GRF and PSF approaches
are no more well correlated in this case (6-8 % of di�erence). As previously, there
is a di�erence for the GRF and PSF approaches with the value of αcc (around 6-7 %).

The choice of the approach seems here complicated. Indeed, the less restrictive
approach is the ECOV approach but this approach requires two non linear analysis
and the convergence for more complicated structure can be an issue. The right choice
according to me is the PSF approach that is simple to implement, less restrictive
than the GRF approach and without any further computation on the resistance
load.

86



7.6 Beam models with catenary e�ect

An other types of structure is modelled in order to obtain a di�erent behaviour.
Indeed, all previous structures present an overproportional behaviour, and the case
of an underproportional behaviour has not been yet investigated. This type of be-
haviour can be obtained when the catenary e�ect plays a role. This caterany e�ect
is activated when for example a column is removed accidentally or intentionally in
a frame structure. Tension in the beam elements are then introduced and activate
that catenary e�ect for then transmitting the load to the neighboured frames or
elements.

This principle is here investigated with a simpli�ed structure. Indeed, one simple
supported beam with a force at mid-span is modelled. The support condition are
similar in both side. Indeed, in order to be able to activate the tension in the beam,
the lateral displacement has to be blocked. The section's dimensions of the beam is
the same as for the frame structure. An illustration of the model and the di�erent
reinforced section is presented in �gure 62.

Figure 62 � Illustration of the model studied with the di�erent case investigated.

The force-displacement curve studied for this case corresponds to the vertical
force and the vertical displacement at mid-span. The failure of the structure is
imposed by a �xed displacement. Otherwise the failure would be controlled by the
ability of the software to reach the ultimate strain of the steel in a certain iteration
step. Moreover, the mid-span can reach a vertical displacement above 0,4 meter
which represents a ratio of L/25. This displacement capacity is higher to the natural
design of beams that corresponds to L/200 or even L/300 that corresponds to the
serviceability limit states. In contrast, the ratio L/25 can be related to a case of
extreme failure. Indeed, the design of common element is not made thanks to this
bene�t, but when the concept of robustness is addressed, the catenary e�ect can help.
The displacement limit is taken as 0,4 meter in order to �x a failure characteristic
with only this catenary e�ect acting.
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Three types of beams with di�erent reinforcement amount are modelled (1,2%,
1,6% and 2%). In fact, that is the reinforcement that provides the increasing of the
capacity of the beam and also the concave curve shape. The next sections treat
separately each type of beams modelled. An additional point for the beam with 1,6
% of reinforcement is done with a change of the failure criteria. The last section
discusses the results and compare the three types of beams investigated here.

7.6.1 Beam with ρs = 1,2 %

The �rst beam investigated is with 1,2 % of reinforcement ratio (this corresponds
to 6 bars of 16 mm of diameter). The table 60 contains the load limits for the case
with 1,2 % and the global resistance factor γOm.

αcc = 0,85 αcc = 1 /

qud [kN] qum̃[kN] qud [kN] qum̃ [kN] quk [kN] qum [kN] γOm

65,2 78,1 65,3 78,1 72,4 78,2 1,154

Table 60 � Ultimate load limits for the catenary test analysis (ρs = 1,2%).

We observe that the value of αcc has no in�uence on the load limit. Moreover
because at the imposed failure, only the reinforcement governs, the mean and the
modi�ed mean analysis give similar load limit. We see this observation on the �-
gure 63 that illustrates the di�erent analysis. The table 62 shows the results for
the di�erent approaches. The value of qdemand equals 53,4 kN and is obtained as
previously by imposing the �rst relation of the GRF approach to 1.

7.6.2 Beam with ρs = 1,6 %

The second beam modelled presents 1,6 % of reinforcement which corresponds to
8 bars of 16 mm of diameter. For this type of beam two veri�cations are done with
a change in the failure criteria. Indeed, the position of the criteria guides the results
and the tendency of the relations. For example, the �rst part of the behaviour shows
a failure by �exure studied in the previous model. With the failure criteria at 0,4
meter, the �rst part does not directly in�uence the results obtained. That's why an
additional failure criteria at 0,34 meter is introduced.

Failure criteria at 0,4 meters The table 61 contains the load limits for the
di�erent analysis and the global resistance factor γOm at 0,4 m for the failure criteria.

αcc = 0,85 αcc = 1 /

qud [kN] qum̃[kN] qud [kN] qum̃ [kN] quk [kN] qum [kN] γOm

91,4 109,3 91,1 109,3 101,4 109,4 1,150

Table 61 � Ultimate load limits for the catenary test (ρs = 1,6% and failure criteria = 0,4 m).
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Figure 63 � Force-displacement curves for the catenary test investigated (ρs = 1,2%).

Beam - Catenary e�ect (ρs = 1,2%)

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

61,4 61,4 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

66,2 65,1 1,0170

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

69,1 65,1 1,0620

qdemand ≤ qum̃
γO′

53,4 61,5 0,8682

PSF γsdqdemand ≤ qud 61,4 65,2 0,9414

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 68,0 65,2 1,0425

γsdqdemand ≤ qum̃
γOγRd

61,4 61,4 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

66,6 65,1 1,0229

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

70,2 65,1 1,0785

qdemand ≤ qum̃
γO′

53,4 61,5 0,8682

PSF γsdqdemand ≤ qud 61,4 65,3 0,9407

αcc = 1 q [γsdE(qdemand)] ≤ qud 67,9 65,3 1,0404

γsdqdemand ≤ qum
γOγRd

61,4 63,9 0,9606

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

67,5 67,8 0,9963

q [γRdγsdE(qdemand)] ≤ qum
γO

73,2 67,8 1,0805

Table 62 � χ factor for the di�erent approaches for the catenary test analysis (ρs = 1,2%).
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Figure 64 � Force-displacement curves for the catenary test investigated (ρs = 1,6%) and a
failure criteria of 0,4 meter.

Beam - Catenary e�ect (ρs = 1,6%) - Failure criteria = 0,4m

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

85,9 85,9 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

92,5 91,1 1,0153

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

94,8 91,1 1,0404

qdemand ≤ qum̃
γO′

74,7 86,1 0,8682

PSF γsdqdemand ≤ qud 85,9 91,4 0,9403

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 93,8 91,4 1,0264

γsdqdemand ≤ qum̃
γOγRd

85,9 85,9 1,0003

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

92,7 91,0 1,0177

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

95,9 91,0 1,0531

qdemand ≤ qum̃
γO′

74,7 86,0 0,8685

PSF γsdqdemand ≤ qud 85,9 91,1 0,9433

αcc = 1 q [γsdE(qdemand)] ≤ qud 93,5 91,1 1,0263

γsdqdemand ≤ qum
γOγRd

85,9 89,8 0,9570

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

93,3 95,2 0,9806

q [γRdγsdE(qdemand)] ≤ qum
γO

99,3 95,2 1,0433

Table 63 � χ factor for the di�erent approaches for the catenary test analysis (ρs = 1,6%) and
a failure criteria of 0,4 meter.
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Figure 65 � Force-displacement curves for the catenary test investigated (ρs = 1,6%) and a
failure criteria of 0,34 meter.

Beam - Catenary e�ect (ρs = 1,6%) - Failure criteria = 0,34m

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

68,5 68,5 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

72,7 72,6 1,0017

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

70,7 72,6 0,9741

qdemand ≤ qum̃
γO′

59,6 68,6 0,8682

PSF γsdqdemand ≤ qud 68,5 71,1 0,9633

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 69,9 71,1 0,9833

γsdqdemand ≤ qum̃
γOγRd

68,5 68,3 1,0034

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

73,0 72,4 1,0089

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

71,5 72,4 0,9888

qdemand ≤ qum̃
γO′

59,6 68,4 0,8712

PSF γsdqdemand ≤ qud 68,5 71,1 0,9636

αcc = 1 q [γsdE(qdemand)] ≤ qud 70,5 71,1 0,9917

γsdqdemand ≤ qum
γOγRd

68,5 70,6 0,9697

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

73,6 74,9 0,9837

q [γRdγsdE(qdemand)] ≤ qum
γO

74,3 74,9 0,9925

Table 64 � χ factor for the di�erent approaches for the catenary test analysis (ρs = 1,6%) and
a failure criteria of 0,34 meter.
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Figure 66 � Force-displacement curves for the catenary test investigated (beam with 2%).

Beam - Catenary e�ect (ρs = 2%)

Approach LM RM χ

γsdqdemand ≤ qum̃
γOγRd

111,7 111,7 1,0000

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

119,9 118,4 1,0125

αcc = 0, 85 q [γRdγsdE(qdemand)] ≤ qum̃
γO

122,6 118,4 1,0354

qdemand ≤ qum̃
γO′

97,2 111,9 0,8682

PSF γsdqdemand ≤ qud 111,7 119,2 0,9374

αcc = 0, 85 q [γsdE(qdemand)] ≤ qud 120,6 119,2 1,0116

γsdqdemand ≤ qum̃
γOγRd

111,7 111,8 0,9993

GRF q [γRdE(γsdqdemand)] ≤ qum̃
γO

120,1 118,5 1,0133

αcc = 1 q [γRdγsdE(qdemand)] ≤ qum̃
γO

123,6 118,5 1,0431

qdemand ≤ qum̃
γO′

97,2 112,0 0,8676

PSF γsdqdemand ≤ qud 111,7 119,3 0,9368

αcc = 1 q [γsdE(qdemand)] ≤ qud 120,6 119,3 1,0115

γsdqdemand ≤ qum
γOγRd

111,7 117,0 0,9545

ECOV q [γRdE(γsdqdemand)] ≤ qum
γO

120,7 124,1 0,9725

q [γRdγsdE(qdemand)] ≤ qum
γO

126,7 124,1 1,0213

Table 65 � χ factor for the di�erent approaches for the catenary test analysis (ρs = 2%).
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The same remarks can be done here, indeed, the αcc has no in�uence on the
load limit and the modi�ed mean and the mean analysis are similar. The �gure 64
illustrates the di�erent analysis and the table 63 the results. The value of qdemand is
here equal to 74,7 kN.

Failure criteria at 0,34 meters The table 66 contains the load limits for the
di�erent analysis and the global resistance factor γOm at 0,34 m for the failure
criteria.

αcc = 0,85 αcc = 1 /

qud [kN] qum̃[kN] qud [kN] qum̃ [kN] quk [kN] qum [kN] γOm

71,1 87,1 71,1 86,8 79,6 85,6 1,143

Table 66 � Ultimate load limits for the catenary test (ρs = 1,6% and failure criteria = 0,34 m).

The �gure 65 illustrates the di�erent analysis and the table 64 the results. The
value of qdemand is here equal to 59,6 kN.

7.6.3 Beam with ρs = 2 %

The third type of beam modelled present 2 % of reinforcement which corresponds
to 10 bars of 16 mm of diameter. The table 67 contains the load limits for the di�erent
analysis and the global resistance factor γOm.

αcc = 0,85 αcc = 1 /

qud [kN] qum̃[kN] qud [kN] qum̃ [kN] quk [kN] qum [kN] γOm

119,2 142,1 119,3 142,2 132,2 142,6 1,150

Table 67 � Ultimate load limits for the catenary test analysis (ρs = 2%).

The same remarks can be also done here. The �gure 66 illustrates the di�erent
analysis and the table 65 the results. The value of qdemand is equal to 97,2 kN.

7.6.4 Discussion of the results and comparison

The di�erence between the three beams can be observed in �gure 67 with the
design force-displacement curve for each types. We clearly see the di�erence of capa-
city of the di�erent types of beams. Moreover we observe a di�erence in the shape of
the curves. Indeed, the beam with 1,2 % of reinforcement presents a negative slope
after the �exural failure. We also notice some trouble for the other curve (1,6 and 2
% of reinforcement) but this is less marked.

In this section, a discussion on the results obtained and a comparison for the
three types beams are done and �rst for the same failure criteria. The �rst remark
concerns the change in the results for the di�erent relation's approaches. Indeed,
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Figure 67 � Comparison between the di�erent types of beam modelled (design analysis with αcc

= 1).

when the safety factor are imposed on the displacement instead of on the load,
the veri�cation becomes now more restrictive. In fact, this observation is explained
by the underproportional behaviour observed for the catenary e�ect (as seen in �-
gure 4). Depending on the percentage of the reinforcement, can vary from 4 to 7%
and is more important for the beam with the less amount of reinforcement. The
second remark concerns the independence of the αcc value on the results for the
GRF and the PSF approaches caused by the not in�uenced of the concrete in the
failure. The third point concerns the nearly correlation between the GRF and the
PSF approaches that have around 3 to 4% of di�erence for the χ factor. The fourth
remark concerns the ECOV approach that presents a χ factor around 0,9600 when
the safety factor are placed on the load (so 4% lower than the GRF approach), and
is more or less equal to the GRF approach when the safety factor are placed on the
displacement. As a conclusion for these results, we can say that it is more restrictive
to use the GRF or the ECOV approaches compared to the PSF approach. We can
gain 2 to 4 % of capacity if the PSF approach is chosen.

After this �rst comparison when the failure criteria remains constant, the dis-
cussion can be done on the position of the failure criteria. Indeed, the results are
dependent of this criteria and for example if the criteria is placed on the �exural
limit, the results will be similar as the previous model (cubes, columns and frames)
for which the safety factor have to be placed on the load. In contrast, as explained
for these beams, if the failure criteria is placed in the catenary e�ect range, then the
situation is reversed and the safety coe�cient are rather placed on the displacement.
These facts are both either all the safety coe�cient on the load either on the dis-
placement and a mixed relation is always no e�ective. In fact, if the failure criteria
is placed more close to the transition range (from �exural to catenary), then the
mix relation can be e�ective. This is exactly what happened for the failure criteria
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that is equal to 0,34 meter. Indeed, for this case, the relations with a mix in the
position of the safety factor is the more restrictive relation for the GRF approach
(see table 64). This e�ect is however with a small margin compare to the other
relations. Also, we notice that this observation is not valid for the ECOV approach
that present the more restrictive veri�cation when the safety factor are both placed
on the displacement.

The �gure 68 illustrates the path in the MN plan of the beam with 1,6 % of
reinforcement for the design analysis with αcc = 1.

Figure 68 � MN-Interaction for the beam with 1,6 % of reinforcement and design analysis.

We observe that the MN path begins in the compression zone until the failure
by �exure. The failure of the section at mid-span leads the structure to the catenary
e�ect (both inclined members in tension). The beam then failed by excessive tension
in the reinforcement. In �gure 68, we can notice two points : First, the failure by
�exure appears out of the MN-interaction envelope. Secondly, the catenary e�ect
in �gure 68 is represented by the inclined line that follows and diverge from the
MN-interaction envelope. These problems are mostly due to the precision of the non
linear analysis with the discretisation made.
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8 Conclusion

Running a complete non linear analysis of concrete structure has some di�culties
especially on the material properties choice and the position of the safety factor in
the veri�cation process.

Di�erent approaches are investigated in this work and a focus on three coming
from the main codes available is done (Eurocode 1992 [1][2] and the concrete model
code [3]). A di�erence regarding the value of the coe�cient αcc is also done. There
is not a clear answer on which approach should be used whatever the structure.
Indeed, it depends on the type of structure and the investment the engineer is able
to provide. Of course, each approach are not done with the same investment, some
require only one analysis where others two analysis with an additional computation
of the resistance value. The simplest approach is the partial safety factor (PSF) that
requires one analysis with the design value for the material properties. Then the glo-
bal resistance factor (GRF) appears to be similar but with some extra computation
on the resistance load and uses other material properties. Finally, the estimation of
the coe�cient of variation (ECOV) requires two analysis with also a computation
on the load resistance. Beside the investment, the notion of hyperstaticity has also
an importance. In fact, more the structure becomes complex, more it is di�cult to
obtain a convergence and a good precision for the analysis.

However, a brief guideline can be expressed. For isostatic and simple hypersta-
tic structure, the ECOV approach is the best choice. It requires more work, but
in return, the capacity of the structure is larger compared to the other approach.
This fact is also more important for the structure with essentially normal forces.
When the structure is more subjected to bending moment, the di�erence between
the approaches becomes less important and so the advantage of the ECOV approach
cannot justify the use of it. In this case, the PSF approach can be chosen especially
because of its simple investment.

The second important point concerns the position of the safety coe�cient in
the di�erent approaches relation studied. Thanks to the models on cubes, columns
and frames the safety factor related to the uncertainties on the model of action
γsd and resistance γRd should be placed on the load. This conclusion is right for
the structure presenting an overproportional behaviour as the cubes, columns and
frames. Concerning the structure presenting an underproportional behaviour as for
the catenary e�ect, this conclusion is reversed. The safety factor should be placed
rather on the displacement. This becomes more complex when the veri�cation is
done near a transition of these both behaviour as it is done for the catenary e�ect
with a failure criteria at 0,34 meter. In that case, a mix relation should be used. It
means that the safety factors are placed on the load and on the displacement. This
last point shows however a small impact on the results in our case.
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9 Perspective

In this section, one perspective is introduced and brie�y explained. This idea
concerns the safety approach of the partial safety factor (PSF) for high strength
concrete. This approach is based on partial safety factor that are calculated with
constant value of the coe�cient of variation for the concrete material (see the table 5
and equation 17). The coe�cient of variation of a density of probability is the stan-
dard deviation over the mean value. Or the increase of the concrete strength increases
by the fact the mean value without a big change in the standard deviation. Moreo-
ver, the di�erence between the mean and the characteristic strength of the concrete
is constant and equals 8 MPa (fcm = fck + 8) as seen in the table 68. In that case, the
coe�cient of variation of the concrete material should decrease with the increase of
the strength. The evolution of that coe�cient of variation is illustrated in �gure 69
assuming a lognormal and a normal distribution of the concrete strength.

Figure 69 � Evolution of the coe�cient of variation of the material with the concrete strength.

The decrease of the coe�cient of variation leads to a decrease of the partial
safety factor. The evolution of the partial safety factor γc using the equation 40
and 41 when the coe�cient of variation varies with the strength is illustrated in the
following �gure 70.

fck
fcd

= γc = 1, 15 exp(3, 04VR − 1, 64Vf ) (40)

with

VR =
√
V 2
m + V 2

G + V 2
f (41)

In this case, the coe�cient of variation on the model and on the geometry is kept
constant and equal both to 5 %.

97



Figure 70 � Evolution of the partial safety factor γc with the concrete strength.

The question and remarks about this observation can be done for both low and
high strength concrete. Indeed, for low strength concrete, the partial safety factor
γc calculated thanks to the both probability law are higher than the recommended
value from the Eurocode 1992 [1]. Note that, the coe�cient 1,15 is also used in our
study. The second remark concerns the high strength concrete for which it would
be tempting to use a lower value of the partial safety factor. For example, from the
class C50/60 a value of 1,4 for γc could be used if the we follow that logic.
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10 Annex

In the annex, an typical example of the input .dat �les used for running the
software Finelg is presented. Also the table of the di�erent concrete class properties
from the Eurocode 1992-1-1 [1] is placed.

10.1 Concrete class properties
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Table 68 � Resistance and deformation properties of the di�erent concrete classes [1].
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10.2 Typical example of the input �le for Finelg

This example concerns the 5 meters column with 1% of reinforcement subjected
to axial force and a basic inclination of 1/100 (5C2).

FINELG 102 4

Valeur de calcul

CTRL

kN M

0 0 0 -1 123456 0 0 0 0 0 28.0

NONL

SEQP 1

1 19999 1 5 0 0

0 0 0

CTRL_END

SEQP 1

COMB

1 1.0 1.0 0.0 0.0 0.0 0.0 0.0

INCR

101 -4 115 -4 125 -4

CREM

1.0 1.0 1.5

MOPA

1 10 -4

MOPS

900 3 0.5 1.2 1 0.5

999 4 0.5 1.2 1 0.5

NODC

11

2

SEQP_END 1

MECA

1 0 2.10E+08 0.3000 255.00 acier

2 0 1.95E+08 0.3000 cable acier

3 0 3.50E+07 0.2000 beton CT

4 0 1.170E+07 0.20 Beton LT

5 0 2.100E+11 Raide

6 0 2.100E+05 mou

7 0 1.160E+07 wood glulam GL24H Court terme

-7 0 7.500E+05

8 0 6.444E+06 wood glulam GL24H Long terme

-8 0 4.000E+05

9 27 2.583E+07 0.20 16666.667 0.0021 0.0001

0.0035 Loi béton Compression

-9 0 0.000E+00 0.00 0.000 0.000 0.000

0.000 Loi Béton traction
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10 2 2.000E+08 0.30 434000.000 727273.000

Loi acier Armatures

MECA_END

GEOM

1 0 0.0000 0.00 0.00 0.00 0.00

0.00 Column

-1 0.000000 0.000000 0.000000 0.000000 0.000000

0.00

FICG

1 1colonnebrux1%.gci

GEOM_END

COOR nb n÷uds: 11n max: 11

1 0 0.000 0.000 0.000 Colonne 1

2 0 0.000 0.000 0.500

3 0 0.000 0.000 1.000

4 0 0.000 0.000 1.500

5 0 0.000 0.000 2.000

6 0 0.000 0.000 2.500

7 0 0.000 0.000 3.000

8 0 0.000 0.000 3.500

9 0 0.000 0.000 4.000

10 0 0.000 0.000 4.500

11 0 0.000 0.000 5.000

APPU

1111110 0 0 1

1000000 0 0 11

COOR_END

ELEM nb elem: 10

1 87 9 1 1 2 0 A Colone 1

2 0 0 0 2 3 0 A

3 0 0 0 3 4 0 A

4 0 0 0 4 5 0 A

5 0 0 0 5 6 0 A

6 0 0 0 6 7 0 A

7 0 0 0 7 8 0 A

8 0 0 0 8 9 0 A

9 0 0 0 9 10 0 A

10 0 0 0 10 11 0 A

ELEM_END

CHAR

1 0.000 8.94400 -1000.000 PP + imperfections geom

CAS

1 1 1 11 PP

CHAR_END

END
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