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Abstract

Synaptic plasticity, defined as the modification of synaptic strength, plays a very important role in
many mechanisms such as memory or learning. There are several types of synaptic plasticity, the best
known and most studied being homosynaptic plasticity where a synapse strength is modified by its own
activity. However, this type of plasticity cannot explain all phenomena and other types of plasticity
are needed. Heterosynaptic plasticity is defined as changes in the synaptic strength induced by the
activity of adjacent synapses. Until now, only scarce data, either experimental or computational, have
been generated to study heterosynaptic plasticity. Yet, this type of plasticity is necessary, especially
to study pain-related phenomena.

Pain may be triggered by various causes. Moreover, following an injury, one can notice an increase
in sensitivity to touch on and around the wound. Thus, a caress, no matter how gentle, will cause a
sensation of pain. This phenomenon is known as allodynia. Studies have shown that central sensitiza-
tion, an increase in the excitation of synapses in the spinal cord, has a role to play in the induction of
allodynia. Both homosynaptic and heterosynaptic plasticities are involved.

The aim of this thesis is to establish a new model of heterosynaptic plasticity with the subsidiary
goal of modeling allodynia. To do so, we started with two homosynaptic plasticity models (calcium-
based and pair-based spike-timing dependent plasticity (STDP)) to which we added a heterosynaptic
dimension by modeling two presynaptic neurons and one postsynaptic neuron. In the calcium-based
model, this has been done through the integration of a new parameter α, intervening when presynaptic
neurons spike, which could represent the distance between two presynaptic neurons or the amount
of calcium diffusing (or being released) through the postsynaptic neuron. In the pair-based model,
this has been done through the integration of two new parameters α, governing the potentiation, and
Ahet governing the depression of synaptic weights. Both parameters intervene when the presynaptic
neurons spike. We studied the dependency between α and Ahet which shows that when they are inde-
pendent of each other, a phenomenon of pruning, the mechanism by which some neuronal connections
are eliminated after some time, can be inferred with the right set of parameters. Our new calcium-
based heterosynaptic models were evaluated in the same experimental conditions previously reported
by Chistiakova et al. and we were able to reproduce a Mexican hat pattern where the induction of
homosynaptic long-term potentiation (LTP) provokes weaker LTP at the closest neighbor synapses,
long-term depression (LTD) at further neighbor synapses and no modification at the furthest neighbor
synapses. Finally, we were able to customize our new models to reproduce a mechanism of heterosy-
naptic central sensitization causing allodynia. However, our models have shown a certain fragility that
may be related to suboptimal physiological modeling.

In conclusion, our new models introduce for the first time two new parameters namely α and Ahet

which, in our view, could contribute to better model heterosynaptic plasticity. However, further work
will be needed to flesh out our models in the future.
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Chapter 1

Introduction

1.1 Motivation: finding a new way to model heterosynaptic plasticity

Synaptic plasticity is the phenomenon governing the modification of neuronal connection strength.
This phenomenon governs all the interactions between the neurons and thus, is the basis of many
mechanisms such as memory or learning. Although several types of plasticity have been described,
this thesis will introduce two of them, homosynaptic plasticity and heterosynaptic plasticity. While
the homosynaptic plasticity has been largely studied and modeled, heterosynaptic plasticity, because
of a lack of understanding that still surrounds it, is a subject deserving to be further developed.

On the other hand, pain is a sensation well known for most people. It can be caused by a fall,
tissue damage or even nothing particular. Complex mechanisms are involved in pain and some of them
could be caused by heterosynaptic plasticity.

The aim of this thesis is to construct two new heterosynaptic plasticity models. For this, we will
start from established homosynaptic plasticity models on which we will graft heterosynaptic plasticity
laws. These laws will be constructed based on the reported experimental observations that define
heterosynaptic plasticity such as calcium propagation. The goal of our new models is to represent the
interactions between two presynaptic neurons and one postsynaptic neuron, all three excitatory. After
the analysis of the results obtained with these new models, we will customize them in order to illustrate
a concrete case related to the context of pain: the central sensitization causing the phenomenon of
allodynia.

In the context of this study, the following questions will be answered:

– What is pain? In particular, what is central sensitization and allodynia? (Chapter 2)

– What is synaptic plasticity, in particular homosynaptic plasticity and heterosynaptic plasticity?
(Chapter 3)

– How can we model homosynaptic plasticity and heterosynaptic plasticity? (Chapter 4 and 5)

– How to adapt existing homosynaptic models into heterosynaptic models? (Chapter 6, 7 and
8)

– How to model central sensitization in the context of allodynia? (Chapter 9)

1



1.2 Structure

To answer those questions, this thesis is divided into three main parts:

Part I first explains what is pain and how it happens. A description of the neural circuits and of
the mechanisms happening in the spinal cord such as central sensitization will be presented in Chap-
ter 2. Then, Chapter 3 will investigate the different types of plasticity from a biological point of
view. This chapter describes the biological mechanisms happening during the communication between
two neurons. Homosynaptic, homeostatic and heterosynaptic plasticity will be introduced. Chapters
4 and 5 focus on the modeling of those types of plasticity. Thus Chapter 4 discusses the homosy-
naptic plasticity models useful in the next part of the thesis while Chapter 5 reviews known existing
heterosynaptic models.

Part II consists in a computational study and thus in the presentation of our new models. At
first, we lay the foundations with a description of the used protocols in Chapter 6. Then, our new
heterosynaptic models are introduced and the obtained results presented in Chapter 7. Those results
are then discussed and interpreted in Chapter 8. Finally, an adaptation of our new models will be
performed in order to illustrate the phenomenon of allodynia in Chapter 9.

Part III draws the conclusion of this thesis. The limitations observed during our work linked to
the models are enumerated and a list of future perspectives to improve the new models is drawn.

2



PART II: 
Computational study

1. Integration of heterosynaptic rules 
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Chapter 2

What is pain?

Almost everyone has experienced pain at some point in their lives. This pain may have been caused
by exposure to high heat, a sharp blade, or even a piece of furniture that was too hard. But what is
pain and what happens when we feel it?

First of all, pain is defined by the International Association for the Study of Pain (IASP) as "an
unpleasant sensory and emotional experience associated with, or resembling that associated with, actual
or potential tissue damage." [IASP, 2020] In addition, pain is considered a personal experience. It is
influenced by many factors that may be social, psychological or biological. Therefore, when a person
says she/he is in pain, her/his feelings cannot be denied and must be respected. It is important to
differentiate between nociception and pain. Indeed, where nociception depends on the activity of sen-
sory neurons, pain, because of its psychological and individual dimension, cannot be reduced to the
activity or not of nociceptors.

2.1 Types of pain

Three types of pain are recognized. First one is the nociceptive pain which is the pain we feel when
touching something too hot, cold, or sharp. It is a high-threshold pain only activated in the presence
of intense noxious stimuli. This type of pain has an immediate protective role. It cries out to us to
immediately move away from the source of our pain so as not to be hurt further. It is then a protective
system (see Figure 2.1(A)). People who cannot feel pain are in a dangerous situation because they
cannot protect themselves from the hurtful things around them. They could get a third degree burn
without realising it and be hurt very badly. This type of pain is therefore necessary.

Second type is the inflammatory pain. It is the pain we feel after being injured. When we are
injured, a simple caress on or around a wound hurts us. That pain assists in the healing of the injured
body part by discouraging physical contact or movement. This pain has a protective and adaptive
role since it prevents an injury from getting worse by discouraging contact with it. This type of pain
is created by the nociceptive system when it detects inflammation factors that are produced by the
immune system after tissues have been injured. The nociceptive system therefore supports the immune
system (see Figure 2.1(B)). Despite its protective role, this pain can be uncomfortable, sometimes very
intense and requires temporary medication, for example after surgery.

Finally the third type of pain is called the pathological pain which is not protective but mal-
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adaptive resulting from abnormal functioning of the nervous system. That pain can be of two types:
neuropathic pain and dysfunctional pain. Neuropathic pain appears when the nervous system is
damaged. A part of our brain then believes that we are injured although we are not and we feel pain.
On the other hand, dysfunctionnal pain appears even when the nervous system is not injured. This
can be observed in conditions such as fibromyalgia, irritable bowel syndrome, tension type headache,
temporomandibular joint disease or interstitial cystitis (see Figure 2.1(C)). Those types of pain are
more difficult to understand than the nociceptive or the inflammatory pain because there is no real
cause to the pain the patient feels. However, they exist and are real for the patient. It is therefore
important to understand these types of pain correctly in order to find a suitable treatment for these
patients [Woolf, 2010].

2.2 Pain neural circuit

Now that we know the different types of pain, we can look at what happens in our body when the
sensation of pain is experienced. First of all, when we feel pain, it is the somato-sensory system that is
involved. This system can be divided into two sub-systems which have different functions and different
paths.

• First the mechano-sensory system detects mechanical stimuli (light touch, vibration, pressure,
skin tension). The touch receptors are called mechanoreceptors and their axons are the Aα and
Aβ fibers.

• Second the nociceptive system detects pain and temperature. The role of the nociceptive system
is to alert the brain about danger. This system is composed of receptors called nociceptors and
thermoceptors. As their names suggest, they are used to detect noxious stimuli and temperatures.
Nociceptors can be categorized by the properties of their associated axons. A distinction is made
between Aδ fibers and C fibers:

- Aδ fibers are myelinated and wide, which makes them fast channels for transmitting infor-
mation (about 20 m/s).

- C fibers are non-myelinated and rather narrow, which makes them rather slow channels for
transmitting information (less than 2m/s). Those fibers have their cell bodies in segmental
dorsal root ganglia and enter the dorsal horn of the spinal cord. Then, after the fibers
branch, they travel a short distance on both sides of the spinal cord in the zone of Lissauer
and finally synapse on cells in the outer part of the dorsal horn in the substantia gelatinosa
[Purves, 2004]. This path can be seen on Figure 2.2.

The difference in the speed of information is expressed by two categories of pain sensation. When
we stub our toe against a piece of furniture, we feel the pain in two phases. The first sensation of pain
is sharp and sudden and is conducted by the Aδ fibers. The second sensation of pain arrives rather like
a wave. It is longer and less intense and is driven by the C fibers [Purves, 2004]. This is observable on
Figure 2.3(A). When Aδ fibers are inactivated, only the weak and long sensation of pain is perceived
(Figure 2.3(B)). On the other hand, when the C fibers are inactivated, only the sharp and sudden
sensation of pain is experimented (Figure 2.3(C)).

As said before, the mechanosensitive system and the nociceptor system have different pathways.
There are three main differences. First, where the touch pathway ends with specialized structures in

8



A. Nociceptive pain

B. Inflammatory pain

C. Pathological pain

Noxious stimuli

Pain 
Autonomic response
Withdrawal reflex

Spontaneous pain 
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Inflammation

Tissue damage
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Protective
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Neuropathic pain

Figure 2.1 – Three types of pain. (A) Nociceptive pain has a protective function. It is the response to a
noxious stimuli. (B) Inflammatory pain has a protective function. It is the response of the nociceptive
system to a tissue damage or to an inflammation. (C) Pathological pain is maladaptive. It can be
divided into neuropathic pain where the nervous system is damaged and in dysfunctionnal pain where
no damage are known. It is a disease state. Adapted from [Woolf, 2010]

the skin, the pain pathway ends with free endings in the skin. Secondly, the Aβ fibers of the touch
pathway are fast and myelinated unlike the Aδ and C fibers which are only weakly myelinated or not
at all and therefore slower. Finally, where Aβ axons end in the deep dorsal horn, as explained before
Aδ and C fibers end in the substantia gelatinosa.

9



Figure 2.2 – Path of C fibers in the spinal cord. C fibers enter the dorsal horn of the spinal cord via the
dorsal root ganglia. Then they branch, travel a short distance on both sides of the spinal cord in the
zone of Lissauer and synapse on cells in the outer part of the dorsal horn in the substantia gelatinosa.
From [Bear et al., 2007]

Figure 2.3 – Fast versus slow pain. (A) First pain which is sharp and fast is conducted by Aδ fibers
which are thicker and myelinated. Second pain which is smoother but longer is conducted by C fibers
which are thinner and non myelinated. (B) The inhibition of Aδ fibers shows the apparition of the
second pain only. (C) The inhibition of C fibers shows the apparition of the first pain only. From
[Purves, 2004]

2.2.1 Dorsal horn neurons (DHNs)

The neurons of the dorsal horn constitute the first relay of nociceptive information. They are the
first site of processing of nociceptive signals such as action potential which are then transmitted to
the supra-spinal centers. However, they do not communicate only with nociceptors, since they also
receive signals from mechanoreceptors such as Aβ fibers. The role of dorsal horn neurons is to integrate
and modulate the inputs received from nociceptors [De Worm, 2021, Bear et al., 2007]. Thus, a dorsal
horn projection neuron receives signals from several mechanoreceptor and nociceptor fibers. Under
normal circumstances, this projection neuron only reacts to nociceptive stimuli. This signal is then
sent through the spinothalamic pathway. However, it can happen in case of allodynia for example that
the projection neuron also reacts to mechanoreceptor stimuli, which results in pain. This phenomenon
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is described in more detail in section 2.3.

Aβ fiber

Aδ fiber

C fiber

Dorsal horn 
projection 

neuron

Dorsal 
horn

Periphery
Primary afferent 

neurons

Dorsal root 
ganglion

Spinal cord

To higher 
center

Figure 2.4 – Representation of the dorsal horn of the spinal cord. Primary afferent neurons enter the
dorsal horn of the spinal cord via the dorsal root ganglion. The fibers meet there some projection
neuron of the dorsal horn with which they communicate. Dorsal horn projection neuron send the
information to higher center while the fibers continue their path to the spinal cord. Adapted from
[Chr, 2017]

2.3 Central sensitization

The dorsal horn being an important relay in the pain pathway, it undergoes numerous plasticity mecha-
nisms in order to best regulate pain responses. The most important mechanism is central sensitization
which "represents an enhancement in the function of neurons and circuits in nociceptive pathways
caused by increases in membrane excitability and synaptic efficacy as well as to reduced inhibition
and is a manifestation of the remarkable plasticity of the somatosensory nervous system in response to
activity, inflammation, and neural injury" [Latremoliere and Woolf, 2009]. Heterosynaptic plasticity
is seen as an important plasticity phenomenon in the spinal cord because it can be initiated by low
frequency nociceptive inputs [Tsagareli, 2013].

2.3.1 What is central sensitization?

Central sensitization is characterized by an enhancement of excitability in somatosensory neurons in
the dorsal horn of the spinal cord after an intense nociceptive stimulus or nerve injury. This is a good
illustration of the plasticity of the somatosensory system in response to inflammation or nerve injury.
Central sensitization results in increased sensitivity to pain, particularly dynamic tactile allodynia and
secondary or pressure hyperalgesia. It is characterized by a reduction in the pain threshold (allody-
nia), prolonged effects and intensification of response to noxious stimuli (hyperalgesia) and finally a
propagation of the painful area that allows stimuli on uninjured tissues to trigger a painful response
(secondary hyperalgesia). In other words neurons of the dorsal horn of the spinal cord subjected to
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central sensitization show specific properties such as the development or increase of spontaneous ac-
tivity, a decrease in the threshold of activation by peripheral stimuli, an increase in the response to
supra-threshold stimuli and a widening of their reception field. These properties may be fully or only
partially expressed. Central sensitization is involved in inflammatory and neuropathic pain. Thus, it is
found in diseases such as migraine or irritable bowel syndrome. An important plasticity phenomenon
in central sensitization is the heterosynaptic facilitation. In this type of plasticity, by sensitizing the
whole neuron, a group of stimulated synapses can increase or even produce activity in another group
of non-activated neighboring synapses. This type of phenomenon never occurs in cortical Long Term
Potentiation (LTP, see section 3.2). Central sensitization represents a state where an input to noci-
ceptive fibers (conditioning input) induces an enhancement of the response to noxious or non-noxious,
unstimulated fibers (test input) (see Figure 2.5(b)). The conditioning input triggers the C nociceptive
fibers while the test input will involve the Aδ and Aβ fibers at medium and low threshold for the apper-
ance of punctate mechanical hyperalgesia and dynamic mechanical allodynia respectively. The central
sensitization stems from a homosynaptic dimension to potentiate the C fibers and make them condi-
tioned fibers as well as a heterosynaptic dimension to facilitate the unconditioned fibers. The discovery
of central sensitization permitted to admit that the induction of pain wasn’t always due to a noxious
stimuli [Ji et al., 2003, Latremoliere and Woolf, 2009, Woolf, 2011, Tsagareli, 2013, Klein et al., 2008].

Distinct from central sensitization is the peripheral sensitization, which is an increase in the sensi-
tivity and excitability of nociceptor terminals and which is thus restricted to the site of inflammation.
Peripheral sensitization allows weak stimuli to cause pain via the Aδ and C fibers while central sensi-
tization allows low threshold Aβ fibers to produce pain as a result of a change in sensory management
in the spinal cord [Tsagareli, 2013]. After a wound, the peripheral terminals of the nociceptors affected
by the wound may become more sensitive to the heat stimulus especially by decreasing their threshold.
This phenomenon is confined to the wounded area only, making primary hyperalgesia [Woolf, 2011].

As said earlier, central sensitization and peripheral sensitization play an important role in the
establishment of two mechanisms observable during an injury: allodynia and hyperalgesia.

• Allodynia is defined by the fact that a normally non-painful stimulus causes pain in an injured
individual. This painful reaction is evoked by Aβ fibers, from the touch pathway, which normally
don’t activate pain. There is thus a crosstalk between the paths of the pain fibers and the touch
fibers [Sandkühler, 2009, Bear et al., 2007].

• Hyperalgesia has a somewhat broader definition, defining the induction of higher than normal
pain in response to a painful or non-painful stimulus after injury. Thus, there is an increased pain
response to a normally painful stimulus. An injury generally results in two types of hyperalgesia:

– Primary hyperalgesia is targeted to the precise location of the injury. This can be called
homotopic hyperalgesia. It is characterized by hypersensitivity to heat and mechanical
stimuli.

– Secondary hyperalgesia is a hypersensitivity targeting the non-injured skin around the
wound. We can then speak of heterotopic hyperalgesia. It is characterized by hypersensi-
tivity to mechanical stimuli. This second type depends on the central sensitization of spinal
excitatory nociceptive neurons.

Primary hyperalgesia is caused by homosynaptic plasticity and peripheral sensitization while
secondary hyperalgesia and allodynia are caused by heterosynaptic facilitation only [Woolf, 2011].
However although the exact mechanism of primary and secondary hyperalgesia is not yet fully
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understood, Klein and his colleagues found a high correlation between the phenomena observed
homotopically and heterotopically, which leads them to believe that heterosynaptic plasticity
also has a role to play in primary hyperalgesia [Klein et al., 2008].

2.3.2 Other plasticity phenomena participating in central sensitization

Central sensitization is a general name for hyper-excitability in the dorsal horn. However, there is not
only one type of central sensitization. Other mechanisms which can be early onset or late onset have
been identified. Here, we’ll only focus on the early onset phenomena. Two early onset homosynaptic
phenomena have been identified playing a role in the synaptic facilitation in the dorsal horn and thus
in the central sensitization: wind up and dorsal horn LTP.

Wind-up

The first phenomenon is the wind up. When C fibers are stimulated with noxious stimuli of similar
intensity at low frequency, a progressive increase in response is observed throughout the stimulation.
Wind up is a phenomenon of homosynaptic plasticity occurring in the dorsal horn of the spinal cord.
In the context of pain, this could be illustrated when a heat or pain stimulus is applied several times in
a row without changing intensity with the pain felt in response to these stimuli increasing over time.
This phenomenon is observed during the stimulation and lasts few tens of seconds afterwards until
the membrane returns to its initial potential. This is different from the activity-dependent central
sensitization which is translated by a brief, low frequency burst of action potential applied into the
central nervous system (CNS) increasing the synaptic efficacy in nociceptive neurons in the dorsal
horn. Unlike wind up this phenomenon has been observed lasting for tens of minutes after the end of
the stimulation. Central sensitization only needs low level of active nociceptor or not at all to maintain
its effect [Woolf, 2011, Li et al., 1999, Mendell, 2022, Woolf, 1996, Thompson et al., 1993].

Dorsal horn LTP

The second mechanism is dorsal horn LTP. As in the hippocampus, a phenomenon of LTP can be
observed in the dorsal horn. There is a facilitation of post-synaptic potentials in the dorsal horn in
response to a brief train of nociceptive inputs repeated at high frequency. The exact duration of this
phenomenon is not known [Ji et al., 2003, Woolf, 2011, Latremoliere and Woolf, 2009].

Figure 2.5, adapted from [Ji et al., 2003] shows the three early onset types of central sensitiza-
tion. These authors consider the activity-dependent central sensitization as being the heterosynaptic
phenomenon governing the general central sensitization. This type of central sensitization is the phe-
nomenon described in subsection 2.3.1 when a strong noxious input activating C fibers has the impact
of conditioning the Aβ fibers which can now elicit a response [Ji et al., 2003].
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Figure 2.5 – Three early onset mechanisms of central sensitization. (a) Wind up is a homosynaptic
facilitation phenomenon. Application of the same slightly noxious stimulus repetitively will trigger
an enhancement of the reaction of the neuron. Thus the pain experienced will be higher while the
intensity of the input stimulus stays constant. It can last for hundreds of milliseconds after the
simulation. (b) Activity-dependent central sensitization is a heterosynaptic facilitation phenomenon.
Application of a strong noxious stimulus at 10 Hz will have the impact of conditioning non-noxious
fibers through noxious fibers. Thus the activation of C fibers will trigger the activation of Aβ fibers
which couldn’t elicit any response before. It can last for tens of minutes after the stimulation. (c) LTP
is a homosynaptic facilitation phenomenon. The application of a strong noxious stimulus at 100 Hz
has the impact of facilitating the Aδ/C fibers for several minutes after the stimulation. Adapted from
[Ji et al., 2003]
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2.4 Summary
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Chapter 3

Synaptic plasticity from a biological point
of view

3.1 Neuronal communication

Synapses (and synaptic connections) allow communication between different neurons. Synapses connect
two neurons: a presynaptic neuron and a postsynaptic neuron. This communication is done by chemical
means using neurotransmitters and different ions. The classical communication scheme is as follows
(see Figure 3.1):

- First, an action potential reaches the presynaptic neuron, which opens the voltage-dependent ion
channels.

- Through these ion channels, an influx of calcium can enter the cell and bind to presynaptic
proteins.

- These activated proteins allow the fusion with the neuron membrane of presynaptic vesicles
containing neurotransmitters.

- These neurotransmitters are then released into the intersynaptic space and can bind to postsy-
naptic receptors sensitive to these specific neurotransmitters.

- This binding then induces a postsynaptic cascade that will result in what is called an EPSP
(or IPSP) which stands for Excitatory Post Synaptic Potential (or Inhibitory Post Synaptic
Potential) [Meriney and Fanselow, 2019].

Synaptic connections are not static means of communication. They are constantly undergoing re-
modeling. This remodeling is called synaptic plasticity. This means that a synaptic connection uses
its own experience to strengthen or weaken itself. Thus the impact of a presynaptic neuron on a post-
synaptic neuron is not always the same. There are several types of synaptic plasticity. In this chapter,
we will focus on homosynaptic plasticity by describing short-term synaptic plasticity and long-term
plasticity [Heidelberger et al., 2014]. Then, we will introduce homeostatic plasticity as well as het-
erosynaptic plasticity and its particularities. Finally, we will analyze the case of Aplysia Californica
to illustrate a homosynaptic phenomenon and a heterosynaptic phenomenon.
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Figure 3.1 – Synaptic plasticity (A) Presynaptic and postsynaptic neurons are both inactive. (B)
Presynaptic neuron receives an action potential which triggers a cascade leading to the release of neu-
rotransmitters in the intersynaptic space. These neurotransmitters bind to postsynaptic membrane
receptors which trigger a postsynaptic cascade leading to the emission of an EPSP or an action poten-
tial. Adapted from [Jacquerie et al., 2022a]

3.2 Homosynaptic plasticity

3.2.1 Short-term plasticity

Short-term synaptic plasticity is plasticity whose effects last from seconds to minutes. This type of
plasticity can cause an increase or a decrease in synaptic transmissions. As explained above, synaptic
communication occurs via an action potential at the presynaptic level causing an EPSP (or IPSP) at
the postsynaptic level. When two presynaptic action potentials occur within a short period of time (a
few milliseconds), the postsynaptic neuron responds to the first action potential in the usual way but
the response to the second action potential is different. The second EPSP (or IPSP) may be either
larger (referred to as facilitation) or smaller (referred to as depression). This is called synaptic plas-
ticity. More precisely, paired-pulse plasticity (because of the two action potentials in a short period of
time) [Heidelberger et al., 2014].

This facilitation or depression occurs because of the short time interval between the two action
potentials. In fact, when the second action potential appears, the events caused by the first action
potential are not completed yet. In particular, the calcium ions binding to proteins and the fusion and
docking of vesicles. These two events have different effects on the synaptic connection:

- In the case of calcium ions, when the second action potential occurs, the calcium ions related to
the first action potential had no time to detach from the proteins to which they were bound. In
this case, the flow of calcium ions induced by the second action potential increases the calcium
ions load. This results in an increase in the release of neurotransmitters and thus an increase
in the postsynaptic response.

- Concerning the vesicles, when the second action potential occurs, the vesicles that fused in re-
sponse to the first action potential are no longer there and it takes some time to renew these vesi-
cles. This is called the vesicle depletion. If the second action potential arrives too quickly, fewer
vesicles are available and then less neurotransmitters released, which leads to reduced synaptic
communication and a decrease in the post-synaptic response [Meriney and Fanselow, 2019].
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These two events having opposite effects and appearing at the same time, the final effect on the
synaptic connection is determined by the number of calcium ions remaining and the number of vesicles
available. In particular, it will depend on the synaptic strength. Indeed, if the synapse is weak, few
vesicles will be mobilized during the first action potential. Thus, more vesicles will be available during
the second action potential and the synapse will be facilitated. On the other hand, if the synapse is
stronger, a lot of calcium will enter the presynaptic neuron during the first action potential, which
will cause the fusion of many vesicles and therefore the release of many neurotransmitters. During the
second action potential, few vesicles will then be available and the synapse will undergo depression
[Meriney and Fanselow, 2019, Minne, 2021]. Then a strong synapse will tend to be depressed while a
weak synapse will tend to be facilitated. This can be seen in Figure 3.2.

Low probability 
of release

High probability 
of release

Ca2+
Ca2+Ca2+Ca2+Ca2+

Ca2+

Ca2+

Weak vesicle depletion Strong vesicle depletion

Ca2+Ca2+

Ca2+ Ca2+

Ca2+Ca2+ Ca2+

Paired-pulse facilitation Paired-pulse depression

1st action potential

2nd action potential

Figure 3.2 – Mechanisms of short-term plasticity. A synapse with a low probability of release will
release only few vesicles after the 1st action potential. When a second action potential is induced,
lots of vesicles are ready to be released. This synapse undergoes facilitation. A synapse with a high
probability of release will release lots of vesicles after the 1st action potential. When the second action
potential arises, only a few vesicles are ready to be released. This synapse undergoes depression.
Adapted from [Meriney and Fanselow, 2019]

3.2.2 Long-term plasticity

Long-term plasticity can last for minutes, hours, weeks or even years [Purves, 2004]. The most studied
mechanism is long term potentiation (LTP). It consists of a persistent increase in synaptic strength
measured by the amplitude of the EPSP in the post-synaptic neuron [Leprince, 2019]. This poten-
tiation is induced by a train of high frequency stimulations. It has been particularly well studied
experimentally in hippocampal synapses since the 1960s by Bliss and Lomo [Bliss and Lomo, 1973].
More particularly, it has been studied at the level of the synaptic connection between Schaffer col-
laterals (CA3), playing the pre-synaptic role, and the dendrites of pyramidal cells (CA1), playing the
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post-synaptic role. In this experimental protocol, it was observed that when the Scaffer collaterals
were stimulated at a rate of 2-3 stimuli per minute, EPSPs of constant amplitudes were expressed by
the pyramidal cells. On the other hand, when a high frequency stimulation train is applied, an increase
in the amplitude of the EPSPs is observed over the long term. This is called long-term potentiation
(LTP) [Purves, 2004].

Synaptic plasticity has been described by Donald Hebb in 1949 with the sentence "When an axon
of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased" or "neurons that fire together wire together" [Hebb, 1949]. This
means that the induction of LTP at a synapse requires the simultaneous activity of the presynaptic
and postsynaptic neuron. However, LTP alone cannot be physiologically possible. Indeed, if only LTP
was possible, synapses would quickly reach a maximum weight and a general saturation phenomenon
would be observed. Therefore another phenomenon called long-term depression (LTD) comes into
play to counteract LTP. LTD is the opposite phenomenon of LTP. It consists of a persistent decrease
in synaptic strength measured by the amplitude of the EPSP in the post-synaptic neuron. It can be
induced by a train of low frequency stimulation (1 Hz) during a period of 10-15 minutes [Purves, 2004].

Properties

LTP and LTD compensate each other. This makes explicit the bidirectional property of long-term
plasticity. Moreover, long-term plasticity also called Hebbian plasticity is defined by three properties:
cooperativity, associativity and input specificity.

- Cooperativity expresses the fact that the probability of inducing LTP increases with the number
of stimulated afferents. Several axons stimulated at the same time thus cooperate to induce LTP.

- Associativity expresses the fact that a weak stimulus is able to induce LTP when a strong
stimulation is applied to an afference innervating the same target at the same time. There is
therefore an association between the different synapses. Those two first properties define the
heterosynaptic plasticity.

- Finally, input specificity indicates that when stimulation of one synapse induces LTP, this
LTP is not induced in other inactive synapses. This means that LTP is only induced at active
synapses [Purves, 2004] [Kandel, 2013]. This is called homosynaptic plasticity.

How does it work?

LTP can be explained by several phenomena. These phenomena can be applied at the presynaptic and
postsynaptic level. There are therefore postsynaptic plasticity, presynaptic plasticity and structural
plasticity, involving both pre- and postsynaptic phenomena.

Post-synaptic plasticity

From a molecular point of view, the main players in the induction of postsynaptic LTP are the N-
methyl-d-aspartic acid receptor (NMDAr) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPAr) located on the postsynaptic membrane. These receptors are both receptive to
glutamate but have some very important differences.
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Figure 3.3 – Hebbian-type plasticity properties. Long term plasticity is defined by three main properties:
cooperativity, associativity and input specificity. Adapted from [Kandel, 2013]

- NMDAr have the particularity of being permeable to Ca2+ ions when activated by glutamate.
At rest, this receptor is blocked by a Mg2+ ion acting as a plug. This plug is ejectable when the
membrane is depolarized which will permit a Ca2+ influx in the cell. It is then said that NMDAr
are voltage-dependent.

- AMPAr are only slightly permeable to Ca2+. Moreover, they do not have Mg2+ caps and are
voltage independent. When they are activated by glutamate, these receptors will let through
ions that will have a depolarizing effect on the cell. It is this depolarization that will allow the
activation of NMDAr [Purves, 2004].

Then the binding of glutamate induces the activation of AMPAr and the depolarization of the cell.
This depolarization linked with the glutamate activate the NMDAr which can let Ca2+ entering the
cell and triggering the LTP by acting on different proteins (such as caMKII and PKC) and trigerring
a cascade of events. Ca2+ can also have the effect of maintaining LTP by modifying gene expression
and promoting new proteins synthesis [Nicoll, 2017].

Now that LTP is induced, the question is to know how it is expressed. LTP is expressed by a change
in the sensitivity of the postsynaptic membrane to glutamate. This is achieved by the insertion of novel
AMPAr on the postsynaptic membrane. These new receptors will allow an increase of the reactivity to
glutamate and thus a more important LTP. As for the maintenance of LTD, on the other hand, there
is a decrease in AMPAr which are sucked up by endocytosis by the post-synaptic membrane.

Pre-synaptic plasticity

In addition to postsynaptic plasticity, there is also presynaptic plasticity. This plasticity is also carried
out thanks to the action of calcium which will allow the increase or the decrease of the number of
neurotransmitter released by the presynaptic neuron.

Structural plasticity

During LTP establishment, an increase in the number and stability of dendritic spines is observed.
Indeed, the volume of dendritic spines may increase with synaptic strengthening or decrease with
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Figure 3.4 – Post synaptic LTP. Liberation of neurotransmitters by presynaptic neuron activate AMPAr
which depolarize the post synaptic membrane which in turns unlock the NMDAr by removing its
Mg2+ cap. Neurotransmitter in addition with the depolarization activate the NMDAr through which
Ca2+ can enter the cell. By a molecular cascade, this triggers the liberation of new AMPAr in the
postsynaptic membrane. Adapted from [Minne, 2021]

synaptic weakening. When their volume is increased, these spines have a greater number of AMPAr
and are said to be more stable. They participate in high synaptic connection. On the other hand, when
they are smaller, the spines are more mobile and less stable. They participate in a weaker synaptic
connection. This change in volume is again caused by a calcium cascade. Indeed, it is known that the
Ca2+ entering through NMDA receptors activates CaMKII which has an effect on the actin cytoskele-
ton and thus participates in the enlargement or not of spines [Nicoll, 2017]. In addition to the increase
or decrease in the volume of dendritic spines, we can also observe an increase in the number of spines
or a pruning of spines that are no longer needed [Leprince, 2019].

3.2.3 Spike-Timing Dependent Plasticity

Spike-Timing Dependent Plasticity (STDP) is a type of homosynaptic plasticity in which the strength
of a synapse is modified as a function of the time delay between the activity of the presynaptic and the
postsynaptic neurons constituting the synapse. This was first shown by Bi and Poo in the hippocampus
[Bi and Poo, 1998]. They discovered that when the presynaptic neuron spikes within a few milliseconds
before the postsynaptic neuron, the synapse formed by those two neurons will be potentiated. Inversely,
when the presynaptic neuron spikes within few milliseconds after the postsynaptic neuron, their synapse
will be depressed. The shorter the interval between the two spikes, the higher the potentiation or the
depression experienced by the synapse will be [Fröhlich, 2016]. Other papers showed later that different
results could be obtained for different parts of the brain [Abbott and Nelson, 2000].

Experimental protocol

This phenomenon can be observed through the induction of a pairing protocol in which both presy-
naptic and postsynaptic neurons are stimulated by the injection of a short current pulse one after
the other with a short negative or positive time delay between them. The strength of the synapse is
then measured and can be plotted as a function of the time delay between the spikes of the presy-
naptic and the postsynaptic neurons. This plot is what is called the time window of the synapse
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Figure 3.5 – Summary of the different types of induction of LTP/LTD. Different types of long term
plasticity through presynaptic modifications (orange) and postsynaptic modifications (blue). Those
modification can induce LTP or LTD. Adapted from [Minne, 2021]

[Sjöström and Gerstner, 2010].
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Figure 3.6 – STDP experimental protocol. Presynaptic and postsynaptic neurons are stimulated through
the injection of short current pulses. The modification of their synaptic strength can then be measured
and plotted as a function of the time delay between the time of pre and post applied current pulses.
Adapted from [Jacquerie et al., 2022a]
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3.2.4 Homosynaptic plasticity drawbacks

If STDP can be a good way to explain interaction between neurons and the evolution of the synaptic
strength, it happens sometimes that it is not enough. For example, at high frequencies, LTP is favored
regardless of the spike timing between the neurons. This lead to two undesirable phenomena: a
runaway dynamics and a lack of synaptic competition. Indeed, when a presynaptic and a postsynaptic
neuron fire in a correlated manner at a high frequency, this leads to the LTP of their synapse. This
increase in the strength of the synapse favor the possibility that those two neurons will spike again in
the future in a correlated manner, which would lead to a higher potentiation of their synapse. Thus
their synaptic weight will tend to increase continuously until it reaches its maximum value. As a
consequence, the firing rate of the postsynaptic neuron would slowly increase, having the impact of
being correlated with other presynaptic neurons, uncorrelated until then. Finally, this would lead to a
generalization of this synaptic saturation to all the presynaptic neurons. This is what is called "runaway
potentiation" [Watt, 2010]. Since all the presynaptic neurons will have the same maximal strength, this
lead to another phenomenon: the lack of competition between synapses [Meriney and Fanselow, 2019,
Chistiakova et al., 2015, Bannon et al., 2015, Chen et al., 2013]. To avoid these phenomena, other
type of plasticity need to be found to support homosynaptic plasticity. In the following sections, we
will introduce homeostatic plasticity as well as heterosynaptic plasticity.

3.3 Homeostatic plasticity

A solution to prevent runaway dynamics is homeostatic plasticity or synaptic scaling. This form of
plasticity has the particularity to scale synaptic weights by increasing or decreasing the strength of all
the synaptic inputs of a neuron as a function of activity [Turrigiano et al., 1998]. Thus, the synaptic
weight scales up after a long period of inhibition and scales down after a long period of excitation. This
implies that synaptic scaling is bidirectional, as homosynaptic plasticity. This scaling appears by taking
the form of higher currents to respond to spontaneous and/or evoked vesicle release [Watt, 2010] which
has the effect of maintaining a synaptic weight balance. This phenomenon is considered as global,
it takes into account all the mechanisms governing synaptic weights. This has the particularity to
prevent the runaway mechanisms, to stabilize the synaptic strengths during Hebbian modification and
to enhance the synaptic competition [Turrigiano et al., 1998]. However, this form of plasticity presents
two major problems which are a very long time scale (of the order of several hours at least) as well as a
prolonged (in)activity necessary for the synapses to undergo scaling [Watt, 2010, Bannon et al., 2015].

3.4 Heterosynaptic plasticity

This section introduces heterosynaptic plasticity. In particular, a comparison between homosynaptic
and heterosynaptic plasticity is shown and finally, experimental observations of heterosynaptic plas-
ticity phenomena are presented.

3.4.1 Homosynaptic plasticity versus heterosynaptic plasticity

What is the difference between homosynaptic and heterosynaptic plasticity? In Figure 3.7, several
synaptic connections are drawn. In particular, we can see a large neuron, the postsynaptic neuron,
which is connected to several other neurons, the presynaptic neurons. Now if we focus on the homosy-
naptic modifications in the middle, we can see that the post-synaptic neuron has interactions with two
presynaptic neurons (in orange). Those synapses are active while the two others are inactive since we
can see there is no exchange. Thus, the two orange presynaptic neurons are both interacting with the

24



same postsynaptic neuron. However, those two interactions have no impact on each other and have
no impact on the inactive connections either. Then we can see that the homosynaptic rule considers
each connection separately. This illustrates the input specificity property explained in subsection 3.2.2.

Now if we focus on the hererosynaptic plasticity on the right, we have the same connections but, this
time, we can observe that the interaction between the orange presynaptic neurons and the postsynaptic
neuron have an impact on each other. Indeed, if we consider the blue dots as calcium, the calcium
exchanged at a synapse propagates into the postsynaptic neuron and impacts other neighbor synapses.
Moreover, the presynaptic neurons previously inactive (in grey) interact now with the postsynaptic
neuron because of the propagation of the calcium caused by the activity in neighbor synapses. Thus
an inactive synapse can become active being influenced by the activity of other synapses. Indeed,
heterosynaptic plasticity considers all the connections in a set.

Baseline 
synaptic strength

Homosynaptic
plasticity

Heterosynaptic
plasticity

Figure 3.7 – Comparaison between homosynaptic plasticity and heterosynaptic plasticity. In homosy-
naptic plasticity, the communication between a presynaptic neuron and a postsynaptic neuron is local.
Thus, all synapses are independent from each other. Inactive synapses stay inactive, no matter the ac-
tivity of other neighboring synapses. In heterosynaptic plasticity, there is a diffusion of the substances.
Thus, presynaptic neurons connected to a same postsynaptic neuron have an impact on each other.
Moreover, inactive synapses can become activated because of the activity of other synapses connected
to the same postsynaptic neuron. Adapted from [Field et al., 2020]

3.4.2 Characteristics

Definition

Heterosynaptic plasticity is defined as changes in the synaptic strength induced by activity of adjacent
synapses [Meriney and Fanselow, 2019]. It is therefore no longer necessary for the synapse to be active
to be modified [Bannon et al., 2015].

Experimental evidences

Experimentally, heterosynaptic plasticity has been discovered in hippocampal cells shortly after the
discovery of LTP. Researchers were able to observe that the induction of LTP in apical dendrites
provoked the appearance of LTD in basal dendrites, previously inactive. Conversely, the induction of
LTP in basal dendrites caused the appearance of LTD in apical dendrites, which were then inactive
[Lynch et al., 1977]. These findings went against the theory of input specificity. Indeed, this showed
that inactive neighbors of an active synapse can undergo LTP due to the activity of the active synapse
[Bannon et al., 2015]. Since then, other experimental results showed that LTD could also induce LTP
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at inactive synapses. Moreover, heterosynaptic plasticity does not only induce change in opposite
direction. It has been observed that LTP (resp. LTD) could provoke the apparition of lower LTP
(resp. LTD) at inactive synapses [Chater and Goda, 2021, Jenks et al., 2021].

Properties

Heterosynaptic plasticity can be classified in three observed types [Jenks et al., 2021]:

– Compensation: The type of plasticity discovered by Lynch et al. is a type of compensa-
tion mechanism since the depression induced at the inactive synapse could have an homeostatic
role to compensate the potentiation of the stimulated synapse [Lynch et al., 1977]. However,
it is different from homeostatic plasticity since the depression occurs because of the induction
of the LTP. Moreover, it occurs specifically at an inactive synapse and finally, this occurs on
a similar timescale as homosynaptic potentiation. By having a compensatory role, heterosy-
naptic plasticity can counter the runaway mechanism and increase the synaptic competition
[Chen et al., 2013, Chistiakova et al., 2014, Bannon et al., 2015].

– Facilitation: Heterosynaptic plasticity doesn’t act only on inactive synapses. Indeed, it has
been shown that induction of LTP by three high frequency stimulus trains could induce longer
LTP than the application of a single train [Jenks et al., 2021].

– Cooperation: When a synapse receives a stimulus which is not strong enough to induce LTP,
a cooperation with other synapses receiving a similar subthreshold stimulus can induce LTP
at those synapses. This principle is one of the properties of long term plasticity described in
subsection 3.2.2.

In additions of those phenomena, what has been observed is that distance between the synapses
plays a big role in the effects of heterosynaptic plasticity. Several experimental results were able to put a
pattern of influence on the neighboring synapses of the active synapse. What is called a "Mexican hat"
profile could indeed be observed around the active synapse. Thus, induction of LTP at one synapse
causes lower LTP at its close neighbors, LTD at its farther neighbors and no change at all at the
farthest synapses. Similarly, induction of LTD at a synapse causes weaker LTD at its near neighbors,
LTP at its farther neighbors, and no change at all at the farthest synapses [Chistiakova et al., 2014,
Meriney and Fanselow, 2019, Chater and Goda, 2021]. Thus, this suggests that a diffusion factor or
an electrical conductance could mediate heterosynaptic plasticity [Jenks et al., 2021].

3.5 The case of Aplysia Californica

Aplysia (or sea slug) is a sea mollusk that has the particularity to have a rather simple nervous sys-
tem. Indeed, the latter is composed of a few tens of thousands of neurons up to one millimeter in
diameter which makes it easy to record and observe. Several very interesting phenomena of synaptic
plasticity are observable. In particular habituation (an homosynaptic plasticity phenomenon) and sen-
sitization (an heterosynaptic plasticity phenomenon) have been observed by Kandel and his colleagues
[Carew and Kandel, 1973].
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Figure 3.8 – Mexican hat pattern. The induction of LTP at an active synapse causes weak LTP at
the closest neighbor synapses, LTD at further neighbor synapses and no modification at the furthest
neighbor synapses. This pattern can be explained by the diffusion of calcium in the postsynaptic
neuron.
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Before Stimulus After Stimulus

Non-noxious stimulus

Figure 3.9 – Description of Aplysia Californica. Aplysia is composed of a head, a tail, a siphon and
a respiratory organ. The application of a non-noxious stimulus on the siphon induces a refractory
movement of the gill. Adapted from [Meriney and Fanselow, 2019]

3.5.1 Habituation

The first interesting phenomenon is habituation. This phenomenon shows that if a stimulus is ap-
plied repeatedly at low frequency (one per second), the response to that stimulus becomes weaker and
weaker [Groves and Thompson, 1970, Kandel, 2013, Purves, 2004]. This phenomenon is also observed
in several species including humans with, for example, the rubbing of our clothes on our skin which
makes us no longer react after putting them on. But how is this phenomenon observed in Aplysia? We
can take into account four parts in Aplysia: the head, the tail, the siphon and the gill (see Figure 3.9).
When a tactile stimulus is applied to the mollusk siphon, a retraction reflex is observed at the gill (see
Figure 3.9 on the right). Now if this stimulus is applied repeatedly over a short period of time, we
notice that the gill reflex decreases over time. Thus, the retraction movement is less and less strong.
This phenomenon is homosynaptic. A sensory presynaptic neuron connected to the siphon acts on a
motor post-neuron connected to the gill (visible on Figure 3.10). With each stimulus, the same action
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potential is observed at the level of the sensory neuron but the EPSP at the level of the motor neu-
ron progressively decreases and thus causes a less marked retraction. We can differentiate short term
habituation whose effects last from second to several hours after the stimulation and long term habitu-
ation whose duration of the effects can go up to several weeks [Kandel, 2013, Carew and Kandel, 1973].

3.5.2 Sensitization

The second type of plasticity phenomenon that can be observed in Aplysia is sensitization. This
phenomenon can be observed when a noxious stimulus is applied to the tail of the mollusk and a
tactile stimulus on the siphon (the same was applied in the habituation process). This will have the
effect of canceling the habituation observed until then and provoke a strong reaction of the gill
in response to the noxious stimulus and to the next non noxious stimuli. This time this
phenomenon involves heterosynaptic plasticity. Indeed, the sensory neuron connected to the tail
of the mollusk makes its entry via a facilitating neuron. This facilitating neuron acts on the sensory
neuron of the siphon, which will have for effect an increase of the exchanges between the sensory neuron
of the siphon and the motor neuron of the gill (Figure 3.10).

Motor 
neuron

Sensory 
neuron

Facilitating 
interneuron

Sensory 
neuron

Siphon

Gill 

Tail

Sensitizing 
stimulus

Tactile stimulus

Initial Sensitized

Sensory 
neuron 
AP

Motor 
neuron 
EPSP

Gill 
withdrawal 
reflex

Figure 3.10 – Neuronal pathway for the induction of habituation and sensitization in Aplysia In the
case of habituation, a tactile stimulus on the siphon activates its sensory neuron connected to the
motor neuron of the gill. This is a homosynaptic plasticity phenomenon. In the case of sensitization,
a noxious stimulus is applied to the tail which has the effect of activating its sensory neuron. This
neuron is connected to the sensory neuron of the siphon via a facilitating interneuron. This connection
has the effect to enhance the communication between the sensory neuron of the siphon and the motor
neuron of the gill. Thus, the action potential emitted by the sensory neuron of the siphon will induce a
larger EPSP from the motor neuron and thus a bigger gill withdrawal reflex. This is an heterosynaptic
plasticity phenomenon. Adapted from [Kandel, 2013]

This can be explained by a biological process involving neuromodulators (in Figure 3.11):

1. When the tail is stimulated, the facilitatory neuron releases serotonin which binds to G-protein
receptors on the surface of the sensory siphon neuron.
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2. Activation of these receptors causes the production of cAMP.

3. cAMP binds to protein kinase A (PKA) subunits, resulting in the release of PKA which can then
phosphorylate several proteins.

4. In particular, K+ channels are phosphorylated by PKA. This increases the likelihood that the
channels will be closed and thus prolongs the presynaptic action potential.

5. More Ca2+ can then enter the neuron.

6. Finally, this influx of calcium increases the number of transmitters released by the sensory presy-
naptic neuron towards the motor postsynaptic neuron of the gill [Meriney and Fanselow, 2019,
Kandel, 2013, Heidelberger et al., 2014].
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kinase A Regulatory 
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Figure 3.11 – Molecular cascade happening during the induction of sensitization in Aplysia. Facilitating
neuron releases serotonin which activates G-protein receptor, causing the production of cAMP by
adenylyl cyclase. cAMP, by binding to PKA subunits, induces the release of PKA catalytic subunits
which can phosphorylate K+ channels. This has the effect of prolonging the action potential which
allows more Ca2+ to enter the cell, resulting in the release of more neurotransmitters. Adapted from
[Purves, 2004]

Sensitization observed in Aplysia Californica is a neuromodulatory type of heterosynaptic plas-
ticity. Here, we consider an homosynaptic interaction between one presynaptic neuron (the sensory
neuron of the siphon) and one postsynaptic neuron (the motor neuron of the gill) on which the het-
erosynaptic phenomenon intervenes by the action of a second presynaptic neuron (the sensory neuron
of the tail) on the first presynaptic neuron. This action, as explained in details before, is performed
through the intervention of neuromodulators (here serotonin) which induces a molecular cascade in
the first presynaptic neuron. Thus, the neurotransmitters release of the first presynaptic neuron will
be increased through the action of the second presynaptic neuron. This is different from the heterosy-
naptic plasticity we will focus on in this thesis. In the following, we will consider two presynaptic
neurons both connected to the same postsynaptic neuron. Heterosynaptic plasticity will be expressed
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through the propagation of calcium into the postsynaptic neuron. Figure 3.7 illustrates this type of
heterosynaptic plasticity.

3.6 Summary

SUMMARY: SYNAPTIC PLASTICITY
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Chapter 4

Homosynaptic plasticity from a modeling
point of view

There are several ways to model homosynaptic plasticity. In particular, two main categories of models
exist:

- Biological models which will focus on biological phenomena such as the amount of calcium in
neurons.

- Phenomenological models which will focus on more phenomenological events such as the
timing between the spikes of the presnaptic and the postsynaptic neurons.

In this thesis, we have chosen to focus on two homosynaptic models, one of each category. For the
biological model, we have chosen a calcium-based model of a synapse in which potentiation and de-
pression are activated above calcium thresholds established by Graupner et al. [Graupner et al., 2016]
as implemented in [Jacquerie et al., 2022b]. For the phenomenological model, we have chosen a pair-
based model fitted on experimental results obtained with the spike-timing dependent plasticity (STDP)
protocol [Morrison et al., 2008]. Those models represent the homosynaptic activity of neurons. Here,
we will consider one presynaptic neuron and one postsynaptic neuron. A summary of those models
can be seen on Figure 4.1.

4.1 Homosynatic plasticity with calcium rules

The implementation of the calcium rules is done according to the [Graupner et al., 2016] model imple-
mented in [Jacquerie et al., 2022b]. Those rules model a synapse in which potentiation and depression
are activated above calcium thresholds. Thus they take into account the amount of calcium in the
neurons constituting the synapse to modify the strength of this synapse. Here, the strength of a
synapse is called the weight. To represent the amount of calcium in each neuron and its evolution
over time, calcium traces are introduced. This model provides three calcium traces: a trace for the
presynaptic neuron, a trace for the post synaptic neuron and finally, a trace for the synapse between
the two neurons will be obtained, adding up all the calcium traces of the concerned neurons.

To vary the level of calcium in the different neurons, the following calcium rules are used:

τCa
dCpre

dt
= −Cpre + Cpre

max δ(t− tpre −D) , (4.1)

τCa
dCpost

dt
= −Cpost + Cpost

max δ(t− tpost) , (4.2)
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Figure 4.1 – Two categories of synaptic plasticity model. Biological models are based on biological
mechanisms such as the amount of calcium in a neuron. This calcium-based model uses calcium
thresholds to determine the evolution of the synaptic weight. Phenomenological model are based on
observation. The pair-based STDP model uses the spike times of presynaptic and postsynaptic neurons
to govern the change of the synaptic weight. This model is fitted on experimental results. Adapted
from [Jacquerie et al., 2022a]

where τCa is the rate constant by which a calcium trace decreases, Cpre is the calcium concentration
of the presynaptic neuron, Cpre

max is the maximum calcium concentration of the presynaptic neuron,
Cpost is the calcium concentration of the postsynaptic neuron, Cpost

max is the maximum calcium concen-
tration of the postsynaptic neuron, tpre and tpost are the spike timings of presynaptic and postsynaptic
neuron respectively and D = 9.53709 ms is a time delay between the presynaptic spike and its im-
pact on the postsynaptic neuron. It explains the slow time rise of the NMDAr-mediated calcium influx.

These equations express the fact that the calcium level in a cell decreases over time governed by
a constant τCa. However, as soon as the neuron spikes, the calcium level is set to its maximum value
again.

The calcium concentration that drives the change of weight of the synaptic connection is obtained
by summing the calcium levels of each neuron constituting this synaptic connection. Thus we have

Ctot = Cpre + Cpost . (4.3)

The weight of a synaptic connection w evolves according to the calcium concentration of the
synaptic connection. In particular, two thresholds are introduced: θp, the potentiation threshold and
θd, the depression threshold. If the amount of calcium in the synapse is above θp, the synapse will be
potentiated. Thus its weight w will evolve following the equation:

τpw
dw

dt
= Ωp − w , if Ctot > θp. (4.4)
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If the amount of calcium is between θd and θp, the synapse will be depressed and its weight w will
evolve following the equation:

τdw
dw

dt
= Ωd − w , if θd < Ctot < θp. (4.5)

Finally, if the amount of calcium is below θd, the weight of the synapse will remain stable. In other
words, nothing happens and we have

dw

dt
= 0 , if Ctot < θd. (4.6)

We simulated the model using a train of four spikes for each neuron for 100 ms. The presynaptic
train is generated in such a way that the presynaptic neuron spikes 10 ms before the postsynaptic
neuron. The final traces obtained with this implementation can be seen in Figure 4.2.
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Figure 4.2 – Simulation of the Graupner’s calcium-based model for one synapse formed by one presy-
naptic neuron and one postsynaptic neuron. Spike times of each neuron are represented on the top-right
(pre in orange, post in blue). The weight of the synapse evolves as a function of the total amount of
calcium in each neuron constituting the synapse.

4.2 Homosynaptic plasticity with STDP rules

The phenomenological model chosen in this thesis is a so-called pair-based Spike Timing-Dependent
Plasticity (pair-based STDP) model. As its name indicates, this model is based on the timing between
the spikes of the presynaptic neuron and the spikes of the postsynaptic neuron. This model has
the particularity to be based on experimental data [Bi and Poo, 1998]. Thus, based on the data
obtained via an STDP experimental protocol on specific areas of the brain (see subsection 3.2.3), the
researchers fitted the experimental data by precisely tuning the parameters of the following equations
[Bi and Poo, 2001, van Rossum et al., 2000].

∆w(∆t) =

{
A+e

−∆t/τ+ , for ∆t ≥ 0

−A−e
∆t/τ− , for ∆t ≤ 0

(4.7)

where A+ and A− are the constants governing the potentiation or the depression. A+ is the maximum
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amount of potentiation while A− is the maximum of depression. ∆t is the delay between the postsy-
naptic and the presynaptic spikes. ∆t > 0 means that we are in a pre-post configuration and ∆t < 0

means that we are in a post-pre configuration. Thus STDP rules are designed in such a way that if
the presynaptic spike occurs before the postsynaptic spike (∆t > 0) within the proper time window,
the weight of the synapse is increased while if the presynaptic spike occurs after the postsynaptic spike
(∆t < 0) within the proper time window, the weight of the synapse is depressed.

To know the timing of each spikes of the pre and the postsynaptic neurons, we introduce one
internal trace for each neuron. Those traces decrease exponentially and are incremented by 1 each
time the concerned neuron spikes. Those traces could be seen as the amount of neurotransmitters in
the synapse or the amount of calcium in the post synaptic neuron as in a biological model. However,
in this model, only the timing of the spikes is necessary. Thus there is no direct need for a biological
interpretation. The functions x represent the internal trace of the presynaptic neuron or a low-pass
filtered version of the presynaptic spike train and y represents the internal trace of the postsynaptic
neuron [Morrison et al., 2008]. The evolution of those functions follows the rules:

τ+
dx

dt
= −x+ δ(t− tpre) , (4.8)

τ−
dy

dt
= −y + δ(t− tpost) , (4.9)

where τ+ and τ− are the time constants governing the decrease of x and y respectively, dx and dy are
the changes of the traces x and y over time, and tpre and tpost are the spike timing of the presynaptic
and postsynaptic neurons respectively.

Thanks to those traces, we can know when the neuron has spiked by looking at the value of the
corresponding trace function. This way of retaining internal traces is called the all to all method. This
means that we consider all previous spikes in the trace of the neuron. Thus, each time a neuron spikes,
its trace is increased by 1. This method is different from the nearest-neighbor method which only
considers the single previous spike of the neuron. Thus, each time a neuron spikes, its trace is set to
1 and can never go beyond [Minne, 2021].

Each time a neuron spikes, the weight will tend to a new value. To know the new weight value
wnew, two pieces of information are needed. The first is to know if we are in a pre-post or post-pre
configuration in order to know if a potentiation or a depression will be applied. Once this information
is known, it is necessary to look at the value of the x-function (if we are in a pre-post configuration)
or the y-function (if we are in a post-pre configuration). Then, for a pre-post configuration, we have

wnew = (1− w) ∗A+ ∗ x+ w , (4.10)

while for a post-pre configuration we have

wnew = −w ∗A− ∗ y + w . (4.11)

Finally, if no neuron spikes, wnew keeps its previous value:

wnew = wnew . (4.12)

Here, we use what we call soft bounds, in contrast with hard bounds. Soft bounds, thanks to a
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Figure 4.3 – Evolution of traces over time. The spikings of the presynaptic and the postsynaptic
neurons leave two traces x (in orange) and y (in blue) which decrease exponentially over time and
are increased by one at each spike. The weight of the synapse w evolves at each spike. When the
presynaptic neuron spikes at a time t, w decreases as a function of the value of the postsynaptic
trace y at the same time t. When the postsynaptic neuron spikes at a time t, the synaptic weight
w increases as a function of the value of the presynaptic trace x at the same time t. Adapted from
[Morrison et al., 2008]

multiplication by the terms 1 − w and w allow to keep the weight of the synapses between 0 and 1.
Thus, the evolution of the weight of a synapse depends on its current weight. On the other hand, the
hard bounds let the weight evolve until it reaches the maximum or minimum limit. Thus, in this case,
the evolution of the weight of a synapse does not depend on its current weight but is stopped as soon
as the limits are reached.
Establishing maximum and minimum weight limits is important in order to be as faithful as possible
to biological rules. Indeed, a minimum limit of 0 is necessary so that the weight of a synapse is never
negative which would not make sense. Similarly, a maximum limit allows to express that the resources
of the neurons are not infinite. When a neuron spikes, it requires the mobilization of calcium for
example. Thus, the weight of a synapse cannot continuously increase without a limit, here equal to 1.

A+(w) A-(w)

wmaxwmax w w0 0

Figure 4.4 – Soft bounds and hard bounds. Illustration of soft bounds (yellow) and hard bounds
(purple). The potentiation (resp. depression) parameter A+ (resp. A−) decreases (resp. increases)
with the value of w in order to stay between the minimum and the maximal bounds. Adapted from
[Sjöström and Gerstner, 2010, Minne, 2021]

Finally, the weight of a synaptic connection evolves as
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τw
dw

dt
= (wnew − w) (4.13)

where τw is the time constant governing the convergence of w towards wnew, dw is the change of the
weight of the synaptic connection, w is the weight of the synaptic connection, and wnew is the value
to which w converges. τw is not really necessary since it only slightly softens the weight change curve.
Thus, it is also possible to consider that the weight change is immediate by directly considering

w = wnew . (4.14)

4.3 Summary

In this section, we described two homosynaptic platicity models that will be our basis for estab-
lishing our two new heterosynaptic models. The first model is the calcium-based model illustrating
a synapse in which potentiation and depression are activated above calcium thresholds established
by [Graupner et al., 2016] and implemented in [Jacquerie et al., 2022b]. This model is based on the
amount of calcium Ctot in the neurons composing a synapse. They also introduce two threshold θd
and θp. Based on this information, the synaptic weight can be:

– increased if Ctot > θp ,

– decreased if θd < Ctot < θp,

– unchanged if Ctot < θd.

The second model is the pair-based model fitted on experimental data obtained with an STDP
protocol described in [Morrison et al., 2008]. This model is based on the timing ∆t between the spikes
of the presynaptic neuron and the spikes of the postsynaptic neuron. Based on this time delay, the
synaptic weight can be:

– increased if ∆t > 0,

– decreased if ∆t < 0.

The intensity of the modification experienced by the synaptic weight is governed by internal traces
(one for each neuron) which are incremented by 1 each time the neuron in question spikes and decrease
exponentially otherwise.
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Chapter 5

Heterosynaptic plasticity from a modeling
point of view

Modeling heterosynaptic plasticity is not yet very common. Thus, for the moment, few models have
been established. In this review, three models illustrating heterosynaptic plasticity rules are presented.
The first model, established by Chen and colleagues [Chen et al., 2013], uses a combination of a pair-
based and a calcium-based models. The primary goal of this model is to avoid the runaway phenomenon
often observed when using homosynaptic STDP models. The second model, established by Field and
colleagues [Field et al., 2020], focuses on the cortical excitatory-inhibitory balance which can be con-
trolled by heterosynaptic plasticity. This model focuses on the pairing between presynaptic and post-
synaptic inputs. Third, Hiratani and Fukai have established a model of the excitatory-inhibitory bal-
ance of a dendrite using spike-timing dependent heterosynaptic plasticity [Hiratani and Fukai, 2017].
Finally, we introduce two heterosynaptic models whose goal is to maintain stability by combining ho-
mosynaptic plasticity with other types of plasticity, including heterosynaptic plasticity. First model
is established by Chen and Xie [Chen and Xie, 2021]. Second model is established by Zenke et al.
[Zenke et al., 2015].

5.1 Runaway phenomenon prevention

Chen et al. developed a model combining homosynaptic pair-based rules and heterosynaptic rules with
properties based on the experimental data obtained previously to prevent the runaway mechanism
[Chen et al., 2013] [Bannon et al., 2015] [Chistiakova et al., 2015]. Chen and colleagues, with their
model, decided to tackle the runaway problem related to STDP rules and other conventional Hebbian
plasticity. Indeed, with these types of rules, when a synapse is potentiated, it will have a higher
probability of spiking and therefore of being further potentiated in the future. On the other hand,
when a synapse is depressed, its probability of spiking will be lower and it will tend to be more and more
depressed. This leads to the runaway phenomenon where the synapses have all reached their maximum
potentiation or depression value described in subsection 3.2.4. This phenomenon can be circumvented
by modulating the rules of synaptic plasticity that dictate the potentiation and depression that synapses
undergo.

5.1.1 Computational Model

The computational model is made up of several parts. First part is the model of pyramidal neuron.
The authors chose to use an established reduced model of a cortical pyramidal cell which consists of
two electrically coupled compartments, dendritic and axosomatic.
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For the synaptic currents modeling, one hundred synapses with AMPA-type channels were located
at the dendritic compartment. The synaptic current at each synapse was simulated by a first-order
activation kinetics.
About the input spike trains: The model neuron received 100 synaptic inputs from 100 presynaptic
neurons. Each synaptic input is in the form of spike train with Poisson distributed interspike intervals.

Figure 5.1 – Illustration of the model neuron Neuron receives 100 synaptic inputs as current pulses
injected in the dendrites. From [Chen et al., 2013]

Pair-based STDP model is designed as already described in section 4.2.
Heterosynaptic plasticity is implemented based on their in vitro experiments. First, a calcium
threshold is set to 0.4µM to express the fact that heterosynaptic plasticity was induced in the presence
of a rise of intracellular [Ca2+] in the postsynaptic neuron. Since no experimental data provided an
estimation of the threshold of calcium rise, they choose to set this threshold to 0.4µM in the standard
model but tested other values ranging between 0.2 and 0.8 µM. During the in vitro experiments, it has
been noticed that "synapses with initially low release probability have a tendency to be potentiated
while synapses with initially high release probability tended to be depressed or did not change after
intracellular tetanization. Furthermore, the probability of change was higher for the strong or weak
synapses but lower for synapses of intermediate strength". Thus when a spike arrives, the algorithm
checks if the [Ca2+] at the postsynaptic level is above the threshold. If so, a probability P is computed
such as

P = 3000× (Wsyn −Wmax/2)
2 + 0.1 , if [Ca2+] > threshold (5.1)

where P is the probability of the synaptic change resulting from heterosynaptic plasticity and the
magnitude of synaptic weight change. P = 0.1 for synapses with intermediate strength and P = 0.775

for synapses with maximal/minimal strength. This probability is then compared to a random variable
X generated from a uniform distribution from 0 to 1. If P > X, the synaptic weight Wsyn is changed
by dWsyn which evolves as

dWsyn = ([(1/[1 + exp([Wsyn − (0.5× wmax)]× 100)])− 0.5] + σ × 0.02)× 0.0001 , ifP > X (5.2)

where Wsyn is the current synaptic strength, and Wmax = 0.03 mS/cm2 is the maximal synaptic
strength. dWsyn indicates the change of synaptic strength and σ is a random variables drawn from
Gaussian distribution with mean equaling to zero and SD equal to 3. Thus, plastic changes can only
take place when a postsynaptic action potential is generated.
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5.1.2 Results

In a first time, Chen studied the effect of intracellular tetanization, consisting of three trains (one
per minute) of 10 bursts (1 Hz), each burst containing five pulses (5ms, 100 Hz, 0.4-1.1 nA), on
synaptic transmission to layer 2/3 pyramidal neurons in slices of visual and auditory cortex of rats.
Since there is no presynaptic stimulation, plastic changes resulting from intracellular tetanization can
be considered equivalent to heterosynaptic changes. The results demonstrated experimentally in the
paper are consistent with those demonstrated during their previous in vitro experiments. Thus when
the synaptic plasticity is induced by intracellular postsynaptic tetanization:

- It is induced by an intracellular increase in calcium concentration.

- Heterosynaptic changes can occur at synapses not active during tetanization.

- The direction and amount of synaptic weight change depends on the initial conditions of the
synapses: weaker synapses have a greater tendency to be potentiated while stronger synapses
have a greater tendency to be depressed.

- The probability of synaptic weight change is higher for strong or weak synapses than for so-called
intermediate synapses.

While applying the model, postsynaptic action potentials were first evoked at 1 Hz but frequency
weren’t high enough to allow the [Ca2+] to be higher than the threshold. This was possible with
a frequency of 50 Hz. This allowed the observation of heterosynaptic rules and the confirmation of
previous observations.

Computationally, the paper compared STDP rules and STDP rules + heterosynaptic rules. When
the model was simulated with STDP rules only (with symmetrical potentiation and depression window)
a runaway phenomenom of potentiation and an increase of the firing rate (initially at 1 Hz) were
observed. Thus after 100 seconds, all the synapses were at maximum weight (see Figure 5.2(B,C)).
On the other hand, when the model was stimulated with STDP rules + heterosynaptic rules, runaway
phenomenom and increase of the firing rate were prevented. Thus after 100 seconds, synaptic weights
were distributed approximately evenly ((see Figure 5.2(D,E)). Same results could be observed with
depression by setting the depression window wider then the potentiation window in the STDP rules.
Thus, after 150 seconds, synaptic weights followed a runaway dynamic toward zero and a decreasing
of the firing rate (put at 1 Hz for the first 50s, then 2 Hz for the next 50s and 3 Hz for the last 50s)
(see Figure 5.2(F,G)). Once again, the add of the heterosynaptic rules to the STDP rules prevented
those phenomena and the synaptic weights were distributed approximately evenly after 150 seconds
(see Figure 5.2(H,I)). Similar results were obtain by changing the rate of firing, the time scale or even
the calcium threshold.
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Figure 5.2 – Heterosynaptic model established by Chen can effectively prevent the synaptic weigths from
the runaway dynamics (A) Spike count as a function of time with different frequencies. (B)(C) STDP
model with a symmetrical time window induces a potentiation runaway dynamic. (D)(C) Adding the
heterosynaptic rules to the STDP model prevents the runaway dynamic and leads to a distribution of
the weights. (F)(G) STDP model with an asymmetrical time window favoring depression leads to a
depression runaway mechanism. (H)(I) Adding the heterosynaptic rules to the STDP model prevents
the runaway mechanism and leads to a distribution of the weights. From [Chen et al., 2013]

5.2 Heterosynaptic excitatory-inhibitory balance

As explained in chapter 1, this thesis only focuses on excitatory-excitatory interactions. However,
since very few heterosynaptic models are available, it is interesting to see the functioning of models
focusing in heterosynaptic excitatory-inhibitory interactions. Two models have been found analyzing
this excitatory-inhibitory balance with heterosynaptic plasticity rules.

5.2.1 Effect of pairing presynaptic and postsynaptic activity

Field and colleagues were interested in the balance that takes place between inhibitory and excitatory
neurons [Field et al., 2020]. Indeed, when excitatory neurons undergo potentiation, the inhibitory
neurons must also undergo potentiation in order to maintain an excitatory-inhibitory (E/I) balance.
This balance has no fixed definition but the authors define it as "the correlation between excitation and
inhibition over a stimulus dimension". This balance is very important because several experimental
and computational studies have reported that a bad balance between inhibition and excitation could
cause epileptic or seizure type problems. It is therefore important that this balance is respected
and that the mechanisms in place to regulate it are fast and efficient. The known mechanisms are
homeostatic adjustments but it has not been proven that it can act in the short term as mentioned in
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section 3.3. In this paper, the authors show that pairing presynaptic and postsynaptic activity induces
LTP at the paired input and heterosynaptic plasticity at the strongest unpaired input. Thus a study
of heterosynaptic plasticity is performed to see its impact on the inhibitory-excitatory balance.

Computational model

The biophysical model is based on 12 input channels, each consisting of 10 excitatory and 10 inhibitory
neurons onto a single postsynaptic neuron. The postsynaptic neuron is modeled as a conductance-based
leaky integrate-and-fire model where when the membrane potential reachs a certain threshold, a spike
is fired and the membrane potential is put back to its reset value.

Homosynaptic plasticity model is based on a pair-based STDP plasticity rule. Those rules govern
the weight change of excitatory and inhibitory synaptic inputs. The rules are a little different between
excitatory and inhibitory neurons. For an excitatory neuron, if we have a pre-post spike pairing
(∆t = tpost − tpre ≥ 0), excitatory LTP is observed. If we a have post-pre spike pairing (∆t ≤ 0),
excitatory LTD is observed.

WE(∆t) =

{
AEe−∆t/τE , for ∆t ≥ 0

−AEe∆t/τE , for ∆t ≤ 0
(5.3)

On the other hand, for an inhibitory neuron, no matter if we are in pre-post or in post-pre spike
pairing, inhibitory LTP is always observed.

W I(∆t) =

{
AIe−∆t/τI , for ∆t ≥ 0

AIe∆t/τI , for ∆t ≤ 0
(5.4)

The synaptic weight evolves as

w
E/I
j → w

E/I
j + ηE/I

w WE/I(∆t) (5.5)

where ηEw and ηIw are the learning rates for excitatory and inhibitory synaptic plasticity respectively.

About the heterosynaptic plasticity, the heterosynaptic decrease of the synaptic weights is
modeled based on an internal trace. The trace of each synapse increases with an incoming spike:
T
E/I
j → T

E/I
j + w

E/I
j and otherwise decreases: τ

E/I
T (dT

E/I
j /dt) = −T

E/I
j . Based on the mean trace

per input channel TE/I
c where the channel index c ranges from 1 to 12, the synaptic weights corre-

sponding to the maximum trace per channel are decreased by: w
E/I
c,max → w

E/I
c,max − η

E/I
het [T

E/I
c ]max.

Sometimes, if the synaptic weights for several channels are similar, heterosynaptic plasticity is in-
duced by this mechanism at the channel which was not the best-tuned channel. This is a result of the
fact that the internal trace is not a perfectly good measurement of the strength of the synaptic weight.

Owing to the distinction between excitatory and inhibitory plasticity in the STDP rules (i.e. an
excitatory cell can be in LTP or LTD while an inhibitory cell can only be in LTP), heterosynap-
tic inhibitory plasticity is faster than homosynaptic inhibitory plasticity, ηEhet < ηIhet. To enable the
induction of heterosynaptic plasticity only after homosynaptic plasticity, they introduce a learning
dependent trace TeLTP , which can switch the heterosynaptic plasticity "on" or "off" based on accumu-
lated excitatory LTP. Following the induction of LTP, TeLTP → TeLTP + ∆wE

j and otherwise decays
exponentially according to τTeLTP (dTeLTP /dt) = −TeLTP . Whenever TeLTP reaches the threshold θon,
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heterosynaptic plasticity is switched "on" and implemented as described above. Following the drop
of the learning-dependent trace TeLTP below the threshold θoff , heterosynaptic plasticity is switched
"off" again.

Finally, the inputs are modeled as Poisson spike trains (75 Hz for each activated input in the
paired-phase, 0.5 Hz for all the other channels during the unpaired-phase).

Results

Using an in vivo experimental protocol, a probabilistic model and their biophysical model, the authors
were able to demonstrate several things including that spike pairing induces STDP and excitatory
and inhibitory heterosynaptic plasticity and that heterosynaptic plasticity normalizes the excitatory-
inhibitory correlation.

In their experimental model made of 8 channels, they pair a channel with postsynaptic spiking.
The other unpaired channels are inactive. They then observe the inhibitory or excitatory synaptic
strength of the paired channel, the best unpaired channel and finally another unpaired channel. This
allows them to observe the activity of the unpaired channel, which highlights the heterosynaptic plas-
ticity. They are able to observe several scenarii. For a pre-post pairing, LTP is induced at the paired
input while LTD is induced at the inhibitory and excitatory unpaired inputs (see Figure 5.3(A)). For
a post-pre pairing, excitatory LTD and inhibitory LTP are induced for the paired channel while LTP
is induced for the inhibitory and excitatory unpaired channels (see Figure 5.3(B)).

Figure 5.3 – Illustration of the results obtained with heterosynaptic plasticity model established by Field.
(A) In a pre-post configuration, the inhibitory and excitatory paired channels experience potentiation.
The strongest inhibitory and excitatory unpaired channels experience depression. Other channels
don’t undergo significant modification. (B) In a post-pre configuration, the inhibitory paired channel
experiences potentiation while the excitatory paired channel experiences depression. The strongest
inhibitory and excitatory unpaired channels both experience potentiation. The other channels don’t
undergo significant modificiations. (C) A positive increase of the excitatory-inhibitory correlation rei
between the inputs is observed when rei < 0.4 while a negative increase of the correlation between the
inputs is observed when rei > 0.4. From [Field et al., 2020]
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From a probabilistic side, they spotlight a rising in the inhibitory-excitatory correlation provoked by
the spike-pairing. Initially, the EPSCs and the IPSCs were mostly independent from each other. Then,
after the pairing, the correlation between the EPSCs and IPSCs amplitudes increases and thus the
similarities between the synaptic strength of inhibitory and excitatory neuron increases. Moreover, they
also observe that when the excitatory-inhibitory correlation rei was smaller than 0.4 before the pairing,
∆rei > 0 is observed. On the other hand, when rei > 0.4, ∆rei < 0 is observed (see Figure 5.3(C)).
This observation was highlighted for only unpaired channels compared with only paired channels (not
seen here).

5.2.2 Introduction of heterosynaptic rules in calcium-based homosynaptic models

It has been showed in experimental studies that the difference in spike times in neighboring synapses
of a dendritic branch have a significant influence on the efficiency of synapses. This expresses a form of
heterosynaptic spike-timing dependent plasticity (h-STDP) which could be important in the synaptic
organisation on the dendritic tree. Hiratani and Fukai are interested in the inhibitory/excitatory bal-
ance specifically localized in dendritic branches where it is arguably preserved. Thus, to demonstrate
the role of heterosynaptic plasticity in the robust achievement of the excitatory-inhibitory balance in
dendritic branches, they developed a computational model of h-STDP. This model could reproduce
some aspect of the h-STDP observed experimentally in roden. Moreover, it reveals that a temporally
precise balance between excitatory and inhibitory inputs timings could be caused by h-STDP because
of inhibitory inputs that shunt the LTD to nearby correlated excitatory synapses.

This model can be divided in two parts: the introduction of heterosynaptic rules in calcium-based
model and, by extension of the model, a study of the h-STDP in the E/I balance. In the following, we
will only describe the first part since the E/I balance is beyond the scope of this thesis and has already
been presented in the previous model.

Computational model

The biophysical model reproduces a dendritic spine and, based on this model, a dendritic branch and
a dendritic tree.

First, they consider the dynamics of a dendritic spine membrane. The membrane potential of a
spine depends mainly on the activation of AMPA and NMDA receptors by presynaptic inputs, the
backpropagation of postsynaptic spikes, the leakage currents, and current influx/outflux caused by
inhibitory or excitatory synaptic inputs. This is expressed by the equation

dui(t)

dt
= −ui(t)

τm
+γAx

A
i (t)+γNgN (ui)x

N
i (t)+γBPx

BP
i (t)−γI

∑
j∈ΩI

i

xIj (t−dI)+γE
∑
j∈ΩE

i

xEj (t−dE) , (5.6)

where ui is the membrane potential of the spine, τm is the membrane time constant, xAi and xNi are the
glutamate concentration at AMPAr and NMDAr respectively, and xBP

i is the effect of backpropagation
from the soma. gN (ui) = αNui+βN is the voltage dependence of current influx through NMDAr, with
αN and βN being constant coefficients. This positive feedback is enhanced when additional current
is provided through backpropagation. Thus the model reproduces a large depolarization caused by
coincident spikes between presynaptic and postsynaptic neurons. AMPA receptor voltage dependence
is neglected for more convenience. The last two terms represent heterosynaptic current which is given
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as the sum of the inhibitory (resp. excitatory) currents xIj (resp. xEj ) at nearby synapses ΩI
i and ΩE

i

with delays dI and dE . γA, γN , γBP , γI and γE are parameters. ΓE was approximated as a constant.
Each input xQi with Q = A, N, BP, I, E, is given by

dxQi (t)

dt
= −

xQi (t)

τQ
+
∑
sk

δ(t− sk), (5.7)

where sk is the spike timing of the kth spike.

To model the spine plasticity, they considered the calcium influx to a spine through NMDAr and
voltage-dependent calcium channels (VDCC). Following equation gives the calcium concentration at a
spine i.

dci
dt

= − ci
τC

+ gN (ui) x
N
i (t) + gV (ui), (5.8)

where gV (ui) = aV ui is the calcium influx through VDCC and gN (ui) xNi (t) is the influx through
NMDAr. In this configuration, Ca2+ influx in the spine is suppressed by the hyperpolarization of
the membrane potential through inhibitory inputs. An illustration of the model can be seen on Fig-
ure 5.4(A).

Calcium concentration in the spine is a key indicator of synaptic plasticity. Several studies have
shown that LTP is generally induced at spines with high Ca2+ concentration while LTD is generally
induced at spines with low Ca2+ concentration (see chapter 4). Also, the sign of the plasticity is influ-
enced by the speed of Ca2+. Since existing homosynaptic calcium-based models can efficiently repro-
duce homosynaptic STDP experimental time windows observed in vitro [Graupner and Brunel, 2012,
Shouval et al., 2002], they chose to use these models. Hiratani and Fukai’s model is then an extension of
Graupner and Brunel’s model [Graupner and Brunel, 2012]. However, instead of considering a binary
synaptic weight, they assumed that a synaptic weight is a continuous variable and they introduced an
interim weight variable to ensure that the learning dynamics of synaptic weight is robust. This interim
weight variable adds a threshold mechanism with the aim that minor synaptic modulation affecting the
synaptic weight is prevented. It represents the approximate concentration of plasticity-related enzymes
such as CaMKII or PP1. The interim weight yi and the synaptic weight wi are modeled as

dyi(t)

dt
= −yi(t)

τy
+ Cp[ci − θp]+ − Cd[ci − θd]+ , (5.9)

dwi(t)

dt
= Bp[yi − yth]+ −Bd[−(yi + yth)]+ , (5.10)

[X]+ being a sign function that returns 1 if X ≥ 0 or 0 otherwise. Neural dynamics is defined
such that the somatic potential caused by a presynaptic spike linearly depends on its synaptic weight
wi which reflects the amplitude of EPSP. The evolutions of those variables can be seen on Figure 5.4(B).

Results

In this model, presynaptic, postsynaptic and heterosynaptic activities control the calcium level in the
spine because of the voltage-dependency of NMDA and VDCC. Moreover, because of the heterosynap-
tic inhibitory input, a negative regulation is applied to the calcium level through the hyperpolarization
of the membrane potential. The model being an extension of the homosynaptic calcium-based model,
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Figure 5.4 – Representation of the heterosynaptic calcium-based model implemented by Hiratani and
Fukai. (A) Illustration of the dendritic spine model and the role of each parameters. (B) Dynam-
ics of the membrane potential u(t), amount of calcium c(t) and interim weight variable y(t). From
[Hiratani and Fukai, 2017]

it could reproduce various homosynaptic STDP experimental results despite the introduction of the
intermediary weight. For instance they could reproduce the dependency of the frequency of the pre-
post stimulation on the time window.

Expressing the interactions between excitatory and inhibitory neurons, the model could reproduce
several experimental observations:

– In the cortical excitatory neurons, the anti-Hebbian STDP normally observed during a pairwise
stimulation protocol switches to a Hebbian type STDP when the GABA-A receptor is blocked.

– Excitatory synaptic plasticity is also disrupted by GABA effects in CA1 pyramidal neurons.
Indeed, a post-pre configuration can only induce LTD if GABA uncaging is executed near the
excitatory spine immediately before the postsynaptic spike reaches the spine. In contrast, in a
pre-post configuration LTP can be induced without the intervention of GABA uncaging.

– An E-E effect can also be observed in CA1 pyramidal neurons. LTD can be observed in neigh-
boring excitatory spines if GABA release is performed just before postsynaptic input. In the
absence of GABA, however, this phenomenon is not observed.

A larger coefficient of the heterosynaptic inhibitory effect than the value required for fitting the
data from CA1 was required in order to fit the experimental data from the striatum. Thus the CA1
model depends on weaker inhibition than striatum model. Authors also found that the reproduction of
the CA1 experimental data is dependant from a high NMDA/AMPA ratio unlike the striatum model
which is more robust against this ratio.

In summary, by introducing terms representing heterosynaptic interactions, the authors were able
to show that a calcium-based model of plasticity can robustly reproduce several features of plasticity-
related interactions between neighboring synapses that occur on a time scale of milliseconds.
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5.3 Other models

The three models described above are not the only existing heterosynaptic models. Here we introduce
two other heterosynaptic models whose goals is to maintain a stability by combining homosynaptic
plasticity with other types of plasticity, including heterosynaptic plasticity.

Chen and Xie established a model a synaptic plasticity model using postsynaptic membrane po-
tential and current density. This model is interesting since it can be used to study both homosynaptic
and heterosynaptic plasticity. This is due to the fact that no information on the presynaptic spike
is required. This model offers a new way to solve problem of weight out of control such as runaway
dynamic in Hebbian learning [Chen and Xie, 2021].

Zenke et al. established a model showing that "the interaction of Hebbian homosynaptic plasticity
with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic
changes and consolidation, sufficient for assembly formation and memmory recall in a spiking recurrent
network model of excitatory and inhibitory neurons" [Zenke et al., 2015]. Thus in their model, they
consider that a combination between different type of synaptic plasticity was a good option in order
to maintain stability. Here, the variation of the synaptic weight is thus dependent from several types
of plasticity. Therefore, we have:

d

dt
wij(t) = Az+j (t)z

slow
i (t− ϵ)Si(t) triplet LTP (5.11)

−Bi(t)z
−
i (t)Sj(t) doublet LTD (5.12)

−β(wij − w̃ij(t))(z
−
i (t− ϵ))3Si(t) heterosynaptic (5.13)

+δSj(t) . transmitter - induced (5.14)

5.4 Summary

In summary, we described five models illustrating heterosynaptic phenomena. The goal of the model
established by [Chen et al., 2013] was to prevent the runaway mechanism and to enhance the synaptic
competition. This model is a combination of a pair-based model and a calcium-based model. It uses
a calcium threshold and the computation of a probability which is compared with a random variable
to govern the weight modification experienced by the synapse. [Chen and Xie, 2021] also wanted to
prevent the runaway mechanism. The particularity of this model is that it can model homosynaptic
and heterosynaptic plasticity since it doesn’t require any information on presynaptic spikes. The ob-
jective of [Zenke et al., 2015] by combining several types of plasticity was to maintain stability and
thus, prevent the apparition of undesirable dynamics appearing with homosynaptic rules alone. Fi-
nally, [Field et al., 2020] and [Hiratani and Fukai, 2017] both established models illustrating the E/I
balance which is a bit far from the scope of this thesis. However, the model established by Hiratani and
Fukai was particularly interesting since it is an extension of the homosynaptic calcium-based model
established by Graupner and Brunel [Graupner and Brunel, 2012].

Those models show different ways to model heterosynaptic plasticity. However, they are quite com-
plex and sometimes difficult to understand properly. In this context, the addition of new heterosynaptic
models is necessary to better understand the heterosynaptic phenomena.
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Part II

Computational study
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Chapter 6

Laying of the foundations

The objective of the computational study is to incorporate heterosynaptic plasticity rules into the two
homosynaptic models described in chapter 4. Thus the goal is to obtain two new models in order to
simulate heterosynaptic interactions between two synapses. Our new models will be extensions of the
calcium-based model and the pair-based STDP model presented earlier. However, the adaptation of
those models requires the establishment of some protocols and the creation of spike trains in order
to simulate the new models in established conditions. This chapter explains the creation of the spike
trains and the establishment of different protocols which will be used in our future experiments.

6.1 Choice of neurons

Homosynaptic plasticity models only need to simulate two neurons, one neuron postsynaptic and
one neuron presynaptic, those neurons constituting one synapse. In order to model heterosynaptic
plasticity phenomenon, we now are in need of more neurons. Indeed, as explained in section 3.4,
heterosynaptic plasticity is expressed as the fact that the activity of two presynaptic neurons connected
to the same postsynaptic neuron have an impact on each other. Thus, activity in one synapse will
impact the activity of another synapse and eventually modify its strength. Therefore, we need more
than one synapse to model heterosynaptic plasticity. In this thesis, we chose to model two presynaptic
neurons and one postsynaptic neuron. The presynaptic neurons are both connected to the same
postsynaptic neuron with which they form synapses as schematized in Figure 6.1.

post

pre

post

pre1

pre2

For the modeling
of homosynaptic rules 

For the modeling
of heterosynaptic rules 

Syn1

Syn2

Figure 6.1 – Neuron model. Illustration of the synapse used in homosynaptic model and synapses
which will be used in our heterosynaptic models.
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6.2 Spike train with a Poisson process

Experimental observations reveal that neurons do not spike in a perfectly regular way. Thus, in order
to reproduce reality as faithfully as possible, we have chosen to generate a spike train according to a
Poisson process. Poisson process is a counting process which is widely used to simulate events which
happen at a certain rate but randomly in a time interval [Pishro-Nik, 2014]. To do this, we generated
a vector of random variables X taken according to an exponential law adjustable with a parameter λ.
Thus we have

X ∼ Exp(λ) , (6.1)

such as
fX(x) = λe−λx , for x ∈ [0,∞] . (6.2)

Each of these random variables represents time of occurrence of a spike. Adding these variables one
by one allowed us to obtain a vector representing the spike times during a given time interval. Hence,
we have:

Tspikei = Tspikei−1
+X , (6.3)

where Tspikei is the spike timing of the ith spike and X is random variable distributed on an exponen-
tial law. In order to have a spike-frequency of about 20 spikes per second, parameter λ was set to 50.
Hence, in average, one spike every 50 ms is generated. This frequency has been chosen randomly but
can easily be changed if needed.

Since we have two presynaptic neurons (pre1 and pre2) and one postsynaptic neuron (post), we
need three trains of spikes. The Poisson train corresponds to the postsynaptic train. In order to have
a correspondance between the pre and the postsynaptic neurons, we choose to generate the presy-
naptic trains according to a Gaussian distribution related to the postsynaptic train. This Gaussian
distribution can be centered on the postsynaptic spike times themselves or with a delay. Centering this
distribution in (T post

spike−10) will favor a pre-post pattern, while centering the distribution in (T post
spike+10)

will favor a post-pre pattern. Centering this distribution in T post
spike would not favor any pattern and the

results would be more difficult to interpret. Indeed, in precedent homosynaptic models, it has been
proven that the time delay between the spike timing of pre and post can favor the potentiation or the
depression of the synapse. Making pre spike 10 ms before post would favor potentiation of the synapse
while making pre spike 10 ms after post would favor depression. Centering the Gaussian distribution
on the spike times of post would not favor any pattern.
In this thesis, with the aim of favoring the pre-post scheme, the Gaussian distribution has been centered
in (T post

spike − 10) for the two presynaptic neurons. A scheme of the three trains is visible in Figure 6.2.

Finally, in order to be able to compare our results from one simulation to another, we choose to
generate five times those three trains and to keep those trains exactly the same from one simulation
to another. Under those conditions, it will be feasible to compare results obtained after different sim-
ulations.
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post

pre1

pre2

Δt = 10 ms

Poisson process 
(tuned by choosing 
the mean rate)

Gaussian centered
10ms BEFORE post

Gaussian centered
10ms BEFORE post

Figure 6.2 – Spike trains of presynaptic and postsynaptic neurons. Spike train of postsynaptic neuron
is done via a Poisson process whose rate can be tuned thanks to a parameter λ defining the mean time
between two spikes. Spike trains of presynaptic neurons are done via a Gaussian distribution centered
10 ms before the postsynaptic spikes.

6.3 Protocols

In order to simulate our models in different situations, we had to establish different protocols by
choosing the frequency of the trains or the activity of each neuron. By having different protocols, we
will be able to reproduce some results observed in the literature. Five protocols are established here.

6.3.1 First two protocols: Homosynaptic protocols

The two first protocols are homosynaptic protocols. In those protocols, we only have one presynap-
tic neuron and one postsynaptic neuron. In the first protocol only the postsynaptic neuron is active
while the presynaptic neuron is kept silent. In the second protocol, the two neurons are active (see
Figure 6.3). In this configuration, we use the five Poisson trains described earlier at a frequency of 20
Hz. This frequency has been chosen to begin with the simulations. Moreover, it has been shown in
[Graupner et al., 2016] that synaptic weight undergoes potentiation at this frequency with a delay of
10 ms between the spike timing of pre and post. In those conditions, we know what we can expect
from the results.

post

pre

First protocol:

post

pre

Δt = 10 msSecond protocol:
Frequency = 20 Hz

Frequency = 20 Hz

Δt

Figure 6.3 – Homosynaptic protocols. Homosynaptic protocols involve one presynaptic neuron and one
postsynaptic neuron. First protocol keeps the presynaptic neuron silent. Both neurons are active in
the second protocol. Spike trains used are the Poisson trains described earlier.

Simulating the homosynaptic models will allow us to compare our future heterosynaptic results with
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homosynaptic results. This is important for the discussion and to see what are the changes brought in
by our new models.

6.3.2 Third protocol

The third protocol is a protocol where only one presynaptic neuron is active. In this configuration, the
post synaptic neuron and the second presynaptic neuron don’t spike on their own. Moreover, the train
is generated with a frequency of 100 Hz. This frequency is much higher than 20 Hz because in this case,
making this new protocol will allow us to try to reproduce results showed in [Chistiakova et al., 2014].
Moreover, we are not in the case of [Graupner et al., 2016] anymore since we don’t have pre-post or
post-pre pattern and thus no delay between them.

post

pre1

pre2

Third protocol: Frequency = 100 Hz

0 10 s

Figure 6.4 – Third protocol. Of the three neurons, only the first presynaptic neuron is active at a
frequency of 100 Hz. Simulation lasts for 10 seconds.

6.3.3 Fourth protocol

Fourth protocol shows two presynaptic neurons and one postsynaptic neuron but only one of the
presynaptic neuron is active, the other being maintained silent. The spike trains used here are the five
Poisson trains described earlier with a frequency of 20 Hz. This protocol can be compared with the
first homosynaptic protocol.

post

pre1

pre2

Δt

Fourth protocol:
Frequency = 20 Hz
Δt = 10 ms

0 10 s

Figure 6.5 – Fourth protocol. Of the two presynaptic neurons, only one is active and the is kept silent.
Post synaptic neuron is active. The spike trains have a frequency on 20 Hz and a delay of +10 ms.
Simulation lasts for 10 seconds.
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6.3.4 Fifth protocol

Fifth protocol shows two presynaptic neurons and one postsynaptic neuron, all active. Once again the
spike trains used are the five Poisson trains described earlier with a frequency of 20 Hz. This protocol
can be compared with the second homosynaptic protocol.

post

pre1

pre2

Δt

Fifth protocol:
Frequency = 20 Hz
Δt = 10 ms

0 10 s

Figure 6.6 – Fifth protocol. The three neurons are active with Poisson spike trains with a frequency of
20 Hz and a delay of +10 ms. Simulation lasts for 10 seconds.

6.3.5 Sixth protocol

Finally, the sixth protocol is the simulation of the STDP experimental protocol. This model will
present two presynaptic neurons and one postsynaptic neuron. Only one of the presynaptic neurons
will be stimulated while the second will be kept silent. In this protocol, our neurons will be stimulated
with a constant spike train of 1 Hz for 60 pulses. Several simulations will be performed for different
delays going from -80 to 80 ms between the two spike trains. This will provide results in the form
of kernels (i.e. time windows). This protocol being simulated with our model, it has not yet been
performed experimentally. The goal of those type of kernels is to be confirmed by real experimental
STDP protocol. Therefore, real experimental STDP protocols should be latter applied to validate
these kernels.
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Sixth protocol:
Frequency = 1 Hz
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0 60 s

Figure 6.7 – Sixth protocol. Postsynaptic neuron and first presynaptic neuron are active. Second
presynaptic neuron is maintained silent. The spike trains are composed of 60 pulses at 1 Hz for 60
seconds. The time delay between pre1 and post varies from -80 ms to +80 ms.
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Chapter 7

Integration of heterosynaptic rules in the
different models

We have chosen to add heterosynaptic plasticity rules to the two homosynaptic models described in
section 4.1. Thus, the models presented here are extensions of the calcium-based model developed
by Graupner [Graupner et al., 2016] and implemented in [Jacquerie et al., 2022b] and the pair-based
STDP model presented in [Morrison et al., 2008]. This chapter is dedicated to the implementation
of the new heterosynaptic rules and the exploration of the results obtained when simulating the new
models with the protocols established in chapter 6.

7.1 Modelisation of postsynaptic membrane

In both models, we chose to model a network of three neurons composed of two presynaptic neurons
and one postsynaptic neuron. The evolution of the membrane potential of the postsynaptic neuron
is governed by a Hodgkin and Huxley type conductance-based model in which the two presynaptic
neurons are modeled as current pulses Isyn1 and Isyn2:

C
dV

dt
= −

∑
n

gion(V − Vion) + Iapp + Istep + (w1/ncell)Isyn1 + (w2/ncell)Isyn2 (7.1)

where C is the capacitance of the membrane, dV is the change of the potential of the membrane,
gion is the ion conductance, Vm−Vion is the difference between the potential of the membrane and the
equilibrium potential of each ion, Iapp is the applied current representing an external stimulus, Istep is
the postsynaptic stimulus, Isyn1 and Isyn2 are the presynaptic current pulses and w1 and w2 are the
weights of the two synapses and ncell is the number of presynaptic cells. In our case, this number is
equal to 2 since we have two presynaptic neuron as explained earlier.
When the postsynaptic neuron spikes, Istep = 50. When the first (resp. second) synaptic neuron spikes,
Isyn1 = 9.8 (resp. Isyn2 = 9.8). 9.8 is the limit value to obtain an EPSP from the postsynaptic neuron
and not a spike in response to the activity of the presynaptic neurons. Values of other parameters as
well as a detailed description of the Hodgkin and Huxley model are shown in Appendix B.

7.2 Heterosynaptic plasticity with calcium rules

Previously, homosynaptic plasticity was only considered with one synaptic connection at a time. Re-
gardless of the number of presynaptic neurons, only active neurons were involved and each pre-post
relationship was independent of the others. Heterosynaptic plasticity does not see things the same
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way. For heterosynaptic plasticity, if two presynaptic neurons communicate with the same postsy-
naptic neuron, these two relationships will have an impact on each other. If we look at the level of
calcium exchanges, the relationship between pre1 and post neurons causes an entry of calcium into the
postsynaptic neuron and a change in the weight of this synapse. As the postsynaptic neuron is also in
communication with pre2, the calcium concentration of post in contact with synapse 2 will be slightly
modified because of the exchange between pre1 and post. This change in calcium concentration will
induce a change of the synaptic weight. My work here is therefore to understand how and to what
extent this synaptic weight is modified. Here, we then have

dw1

dt
= f([Ca1], [Ca2])

dw2

dt
= f([Ca2], [Ca1])

(7.2)

7.2.1 Description of the model

We started with the homosynaptic calcium-based model of a synapse in which potentiation and de-
pression are activated above calcium thresholds established by [Graupner et al., 2016] as implemented
in [Jacquerie et al., 2022b] described in section 4.1. The addition of heterosynaptic rules to this model
will link the two presynaptic neurons (pre1 and pre2). Thus, when pre1 spikes, this spike will impact
not only the calcium trace of pre1 but also that of pre2. Then the evolution of calcium traces in the
model becomes

τCa
dCpre

i

dt
= −Cpre

i + Cpre
i,max δ(t− tprei −D) + α Cpre

j,max δ(t− tprej −D) (7.3)

τCa
dCpost

dt
= −Cpost + Cpost

max δ(t− tpost) (7.4)

with the modification in box, where τCa is the time constant governing the evolution of calcium
concentration, Cpre

i , Cpre
j and Cpost are the calcium concentration of presynaptic i, j and postsynaptic

neuron respectively, Cpre
i,max, C

pre
j,max and Cpost

max are the maximum calcium concentration of presynaptic
i, j and postsynaptic neuron respectively, D is a delay between the spike time of presynaptic neurons
i and j (tprei and tprej ) and the change in Cpre

i and Cpre
j . This expresses the fact that there is a de-

lay between the onset of the presynaptic spike and the calcium entry resulting from this spike (see
section 4.1). Finally, α is a new parameter governing heterosynaptic rules. This parameter will be
analysed later.

The equations governing the change in synaptic weights as well as the thresholds determined in the
homosynaptic model remain the same (see section 4.1).

The equations governing the evolution of the synaptic weights are not directly modified from the
original homosynaptic model. However, they are modified in an indirect way. Indeed, the evolution of
the synaptic weight depends on the calcium concentration of the synapse. Hence the modification of
the rules governing the neuronal calcium concentration has an impact on the weight evolution. Thus,
if the presynaptic neuron i spikes, the calcium concentration related to the synapse j will be increased
and the chances of potentiation will be increased.

56



7.2.2 Methodology

Figure 7.1 illustrates an example of the simulation of our new model. In this configuration, we used
the fourth protocol and put parameter α to 0.4. Poisson train 1 was used. We can see that, even if
pre2 is silenced, its calcium trace evolves thank to the spikes generated by pre1. Thus, the weight of
synapse 2 changes even if pre2 is inactive. However, since α = 0.4, the calcium in synapse 2 is lower
than it would be if pre2 was active in an homosynaptic configuration. Because of that, the calcium
threshold θp is less often crossed and the weight of synapse 2 is then less increased than the weight of
synapse 1. At the end of the simulation, synapse 1 has been more potentiated than synapse 2. But
would it be the case for all values of α? We have to analyze this parameter to understand what is its
functionality in our new model.
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Figure 7.1 – Example of calcium-based simulation with protocol 4 and α = 0.4 for the first Poisson
spike train. In blue, membrane potential and calcium concentration of postsynaptic neuron. In orange,
calcium concentration of pre1, sum of the calcium of synapse 1 and synaptic weight evolution of synapse
1. In green, calcium concentration of pre2, sum of calcium of synapse 2 and synaptic weight evolution
of synapse 2. A potentiation of the synaptic weight is observed for both synapses. Synapse 1 is more
potentiated than synapse 2. Because of the heterosynaptic dimension of the model, synapse 2 has been
potentiated even if it was inactive.

Analysis of parameter α

α is a parameter added to the equation in order to define the heterosynaptic plasticity. This parameter
governs the impact of pre1 on pre2 and vice-versa. To analyze the effect of α on the evolution of the
synaptic weight, we simulated our new calcium-based heterosynaptic model for α = 0, 0.4, 0.8, 1.2,
1.6 with each of the six protocols described in chapter 6. From these simulations, we extracted the
final weight (after 10 s) of each synapse which allowed us to establish a link between the final synaptic
weight wf and α.

7.2.3 Results

This section presents results obtained after the simulations of our heterosynaptic model with the six
protocols described in chapter 6.
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Homosynaptic protocols

Figure 7.2 represents the data obtained when simulating the calcium-based homosynaptic model with
the first two protocols. First protocol is equivalent to simulate our heterosynaptic model when keeping
the two presynaptic neurons silent. Second protocol is equivalent to simulate our heterosynaptic model
when keeping the presynaptic neuron 2 silent. In the two protocols, synaptic weight is independant
from α since we are in homosynaptic plasticity. With the first protocol, the synaptic weight is close to
the initial weight and a slight potentiation of the synapse can be observed. With the second protocol,
synapse has been highly potentiated. The results obtained with those two protocols will be compared
with the results of the fourth and the fifth protocols in the next sections.
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Figure 7.2 – Calcium-based model simulation with homosynaptic protocols. Representation of synaptic
weight after 10 s of simulation. With the first protocol, a slight potentiation of the synaptic weight
is observed. With the second protocol, a larger potentiation of the synapse is observed. With both
protocols, synaptic weight doesn’t depend of α.

Third protocol

Figure 7.3 represents the data obtained when the model is simulated with the third protocol. For
this protocol, since the goal is to reproduce results shown in [Chistiakova et al., 2014], we chose to
simulate our model with α = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. The two synaptic weights are
represented as a function of α after 10 seconds of simulation. Synaptic weight 1 doesn’t depend on
α since it is the only active synapse. It represents the homosynaptic LTP induction at an activated
synapse. Synaptic weight 2 strongly depends on α. For low α (α < 0.2), no modification of the weight
is observed. For middle values of α, depression is observed. The strongest depression being observed
at α = 0.5. Finally, for high values of α, synaptic potentiation can be observed. If we look at the
global curve, this forms what is called a Mexican hat, also observed in [Chistiakova et al., 2014] with
the same protocol.
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Figure 7.3 – Calcium-based model simulation with the third protocol. Representation of both final
synaptic weights after 10 s of simulation as a function of α. The weight of synapse 1 remains constant
no matter the value of α. The weight of synapse 2 follows a Mexican hat pattern. It shows no
modification for low α, depression for middle α and potentiation for high α.

Fourth protocol

Figure 7.4 represents the data obtained when the model is simulated with the fourth protocol. We
can see that the data for pre1 and pre2 are quite different. Orange (resp. green) curve represents the
mean value of synaptic weight 1 (resp. 2) for each value of α. The corresponding errorbars represent
the standard deviations of the mean values. Black lines represent the simulations obtained with the
homosynaptic protocols. Dotted grey line represents the initial weight value of the synapses (wi = 0.5).
Both synapses have been potentiated. However, if w2 increases with α, it is not the case for w1. Indeed,
w1 doesn’t vary at all, no matter the α value. Moreover, evolution of w1 is identical to the evolution of
the synaptic weight obtained with the homosynaptic second protocol. Due to the increase of w2 and
the stagnation of w1, the two curves cross each other when α = 1. Then, for α < 1, pre1 undergoes a
greater potentiation than pre2. For α > 1, pre1 is less potentiated than pre2 even if pre2 is inactive.
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Figure 7.4 – Calcium-based model simulation with fourth protocol (green and orange) compared with
homosynaptic results (black). Representation of both final synaptic weights after 10 seconds of simu-
lation. The weight of synapse 1 remains constant and equal to the homosynaptic case. The weight of
synapse 2 increases with α. When α < 1, w1 > w2. When α > 1, w1 < w2.
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Fifth protocol

Figure 7.5 represents the final weight of the two synapses when the model is simulated with the fifth
protocol. Orange (resp. green) curve represents the mean value of synaptic weight 1 (resp. 2) for each
value of α. The corresponding errorbars represent the standard deviations of the mean values. Black
dotted line represents the value of the synaptic weights in the case of homosynaptic plasticity (second
protocol). Finally, the grey dotted line represent the initial weight value of the synapses (wi = 0.5).
Thus, if the weight values are above this line, synapses have undergone potentiation while if they are
below this line, synapses have undergone depression. Now if we look at the data, we can see that the
synaptic weights 1 and 2 are quite identical and have both undergone potentiation regardless of the α

value. Moreover, we notice that as the value of α increases, the value of the final weights also increases.
There is thus a positive correlation between both synaptic weights and the value of α.
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Figure 7.5 – Calcium-based model simulation with the fifth protocol (green and orange) compared with
homosynaptic results (second protocol in dotted black). Representation of both final synaptic weights
after 10 seconds of simulation. Both synaptic weights are very similar and increase with α. Both
synaptic weights show potentiation above the homosynaptic data no matter the value of α.

Sixth protocol

For this protocol, note that we used the parameters corresponding to the hippocampus area while simu-
lations with the other protocols were performed with the parameters of the cortex.
Simulating our model with the sixth protocol, we obtained two kernels visible on Figure 7.6, one for
each synapse. This represents the synaptic weight of each synapse as a function of the time delay
imposed between the spikes of the presynaptic neuron 1 and the postsynaptic neuron. Pre2 being
silent, the kernel obtained for synapse 1 is the same as the homosynaptic kernel. The kernel obtained
for pre2 shows the plastic modification experienced by an inactive synapse depending on α and on
the delay between the spikes of pre1 and post. Looking at the homosynaptic kernel, it is clear that
the delay between the two spikes of the two neurons has an impact on the final weight of a synapse.
This is the trace we expected since this protocol aims to reproduce experimental results. Looking at
the heterosynaptic kernel, it is also clear that α has an impact too. In particular, the impact of α is
more pronounced for low delays. The lower is α, the flattened is the curve. Thus the greater is α, the
greater is the potentiation experienced by the synapse 2 and moreover, the longer is the ∆t zone of
potentiation.
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Figure 7.6 – Kernels representing the impact of the time delay on the synaptic weight. (a) Kernel
obtained for synaptic weight 1 is the same as the homosynaptic kernel since pre2 is inactive and
has then no impact on synapse 1. Depression of the synapse is observed for ∆t < 0 while synapse
potentiation is observed for ∆t > 0. (b) Kernel obtained for synaptic weight 2 shows an impact of α
on the depression or the potentiation experienced by synapse 2. The greater the α, the greater the
potentiation and the longer is the ∆t zone of potentiation.

7.3 Heterosynaptic plasticity with STDP rules

7.3.1 Description of the model

We start with the pair-based STDP model described in section 4.1. As a reminder, STDP rules govern
synaptic plasticity and thus synaptic weight based on the time interval between the presynaptic spike
and the postsynaptic spike. The time interval between the spikes is provided by the internal traces of
the neurons. The addition of heterosynaptic rules to this model will link the two presynaptic neuron
traces’ evolution which become

τ+i

dxi
dt

= −xi + δ(t− tprei ) + α δ(t− tprej ) (7.5)

τ−
dy

dt
= −y + δ(t− tpost) (7.6)

where xi and y are the internal traces of presynaptic neuron i and postsynaptic neuron respectively,
τ+i and τ− are the time constants governing the evolution of xi and y respectively, tprei , tprej and tpost

are the spike timing of presynaptic neuron i and j and postsynaptic neuron respectively. With the new
rules, a new parameter α makes its appearance. This parameter governs the impact of presynaptic neu-
ron j (resp. i) on presynaptic neuron i (resp. j). An analysis of this parameter will be performed later.

With homosynaptic rules, the trace of a neuron is incremented by 1 when it spikes and decreases
according to a constant τ otherwise. The introduction of heterosynaptic rules adds a modification of
this trace when a neighboring presynaptic neuron spikes. Indeed, the trace of a neuron is now equal
to 1 when the neuron itself spikes, α when a neighboring neuron spikes, and decreases exponentially
according to τ otherwise. Thus, when the presynaptic neuron 1 spikes, this spike will impact not only
the trace of pre1 itself but also that of the presynaptic neuron 2.

Unlike calcium rules, weight change rules are not governed by thresholds but by the time delay
between the presynaptic and the postsynaptic spikes (see section 4.2).
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– When we are in a prei-post configuration the equation governing the new weight is indirectly
modified by heterosynapic rules. Indeed, since wi,new depends on the presynaptic trace xi which
has been modified previously by heterosynaptic term, the weight change will be impacted by the
new heterosynaptic rules even if the equation is not modified.

– When we are in a post-prei configuration, with the homosynaptic rules, the synapse would
undergo a depression and the new weight would follow the law depending on the postsynaptic
trace:

wi,new = −A− wi yprev + wi (7.7)

where A− is a parameter governing the depression and yprev is the postsynaptic trace at the
previous time. However, intuitively, this equation can’t stay like that with heterosynaptic rules.
Indeed, it only modifies the weight of the synapse whose presynaptic neuron has spiked. However,
since this spike has also modified the trace of the other presynaptic neuron, logic would want
that this weight would have to change too. The modification of this equation is not so easy and
several cases need to be investigated.

Three cases can be considered to integrate heterosynaptic rules when we are in a post-prei con-
figuration:

- First case would change the weight of the two presynaptic neurons in the same way. Then if a
presynaptic neuron spikes (no matter which one), the two synaptic weights evolve following:

wi,new = −A− wi yprev + wi

wj,new = −A− wj yprev + wj
(7.8)

In this case, the two presynaptic neurons evolve in the exact same way no matter if they spiked
themselves or not. From a logical point of view, this does not seem right.

- Second case would only change the weight of the presynaptic neuron which spiked. It is the
homosynaptic rule case. We would then have

wi,new = −A− wi yprev + wi

((((((((((((((hhhhhhhhhhhhhh
wj,new = −A− wj yprev + wj

(7.9)

But as said earlier, from a logical point of view this does not seem right neither. Indeed, the
second synapse undergoing changes, we expect to observe some changes at the weight level.

- Third case would be to change the two presynaptic neurons but to introduce a new parameter
Ahet to govern the weight change of the inactive synapse. We would have then

wi,new = −A− wi yprev + wi

wj,new = −Ahet wj yprev + wj
(7.10)

From a logical point of view, this case seems to suit best our problematic. However, we need to
investigate the effect of the three cases before making a decision.
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Introduction of a parameter Ahet

In order to integrate heterosynaptic plasticity in the post-prei configuration, we chose to introduce
a new parameter Ahet which would govern the weight change of the second synape such as in Equa-
tion 7.10. We now need to assign a value to this parameter. First of all, in order to investigate each
case mentioned above, Ahet can be equal to 0.0053, which is the value of Am, to illustrate the first case
and to 0 to illustrate the second case. Since those values represents the extreme cases (nothing or all),
they will be our limits. Then, to explore what could happen between those extreme values, we chose
to simulate our model with Ahet = 0.001 and Ahet = 0.003. Finally, since α governs the potentiation
of the synapses and Ahet governs the depression of the synapse, we judged that it would be interest-
ing to link those two parameters. Thus we linked the two parameters linearly such as Ahet = 0 α,
Ahet = 0.001 α, Ahet = 0.003 α and finally Ahet = 0.0053 α. This way of linking the two parameters is
only one of the many ways which could be chosen. This model and those parameters being completely
new, we had to begin investigating one way at a time.

7.3.2 Methodology

Figure 7.7 illustrates an example of simulation of our new pair-based STDP model. In this configura-
tion, we used the fourth protocol, put parameter α = 0.4 and Ahet = 0.0053 α. Poisson train 1 was
used. We can see that, even if pre2 is silenced, its trace evolves thanks to the spikes generated by pre1.
Thus the weight of synapse 2 changes even if pre2 is inactive. However, since α = 0.4, the trace of
synapse 2 is lower than that of synapse 1. Because of that, the weight of synapse 2 is less increased
when we are in a pre-post configuration. On the other hand, the decrease in weight of pre2 is less
pronounced since Ahet = 0.0053 ∗ α = 0.00212, which is smaller than Am = 0.0053. At the end of the
simulation, w1 has been more potentiated than w2 but, would it be the case for all the values of α and
Ahet? An analysis is necessary to understand what are the roles of those parameters in our model.
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Figure 7.7 – Example of pair-based simulation with protocol 4, α = 0.4 and Ahet = 0.0053 ∗ α with
the first Poisson spike train. In blue, membrane potential and internal trace of postsynaptic neuron.
In orange, internal trace of pre1 and synaptic weight 1. In green, internal trace of pre2 and synaptic
weight 2. A potentiation of the synaptic weight is observed for both synapses. Synapse 1 is more
potentiated than synapse 2. Because of the heterosynaptic dimension of the model, synapse 2 has been
potentiated even if it was inactive.
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Analysis of parameters

Heterosynaptic rules added two new parameters that we need to analyze. Those two parameters have
both an impact on the evolution of the synaptic weight. Indeed, α has an impact on the synapse
potentiation while Ahet governs the depression of the inactive synapse. Those parameters are then
quite linked and it is then difficult to analyse them separatly. in the newt two paragraphs, the results
centered on each parameter separately despite the influence of the other will be presented.

Analysis of Ahet To analyze Ahet, we simulated our model with each of the six protocols described
in chapter 6 for Ahet = 0, 0.001, 0.003, 0.0053 and then for Ahet = 0 α, 0.001 α, 0.003 α, 0.0053 α for
each value of α. From these simulations, we extracted the final weight (after 10 s) of each synapse
which allowed us to establish a link between the synaptic weight, our α and Ahet parameters.

Analysis of parameter α To analyze α, we simulated our model with each of the six protocols
described in chapter 6 for α = 0, 0.4, 0.8, 1.2, 1.6 for each value of Ahet. From these simulations, we
extracted the final weight (after 10 s) of each synapse which allowed us to establish a link between the
synaptic weight and our α and Ahet parameters.

7.3.3 Results

This section presents the results obtained after the simulation of our new pair-based model with the
six protocols described in chapter 6.

Homosynaptic protocols

Figure 7.8 represents the data obtained for the simulation of the pair-based homosynaptic model with
the two first protocols. First protocol is equivalent to simulate our heterosynaptic model when keeping
the two presynaptic neurons silent. Second protocol is equivalent to simulate our heterosynaptic model
when keeping the presynaptic neuron 2 silent. In the two protocols, synaptic weight is independent
from α and from Ahet since we are in homosynaptic plasticity. With the first protocol, the synaptic
weight stays equal to winit since there is no pre-post or post-pre configuration. With the second
protocol, synapse has been potentiated. As with the calcium-based model, the results obtained with
those two protocols will be compared with the results of the fourth and the fifth protocols in the next
sections.

Third protocol

The third protocol was made in order to reproduce results described in [Chistiakova et al., 2014] with a
calcium-based model. In this protocol, only pre1 is active while pre2 and post are maintained silenced.
Since we need to be in a pre− post or post− pre configuration to modify the weight of a synapse, this
wouldn’t make sense to simulate our pair-based STDP model with this protocol. Indeed, without any
post spike, the weight can only remain constant.

Fourth protocol

Figure 7.9(A) represents the final weight of synapse 1 and synapse 2 simulated with the fourth protocol
when α and Ahet are independent from each other. The x axis represents the α values while the y axis
represents the final weight of the synapses. The different colored lines represent different Ahet values.
We have Ahet = 0 in blue, Ahet = 0.001 in orange, Ahet = 0.003 in yellow and finally Ahet = 0.0053
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Figure 7.8 – Pair-based model simulation with homosynaptic protocols. Representation of synaptic
weight after 10 s of simulation. With the first protocol, no modification of the synaptic weight is
observed. With the second protocol, a potentiation of the synapse is observed. With both protocols,
synaptic weight doesn’t depend of α.

in purple. Black line represents homosynaptic results obtained with protocol 1 while dotted black line
represents homosynaptic results obtained with protocol 2. Grey dotted line represents winit = 0.5. The
weight of pre1 is constant no matter the values of α and Ahet. This constant weight being above the
grey dotted line, synapse 1 always undergo potentiation in those conditions. Moreover, w1 evolves as it
was in homosynaptic conditions since it is identical to results of protocol 2. Concerning synapse 2, we
can see that depending on α and Ahet, the synapse undergoes potentiation or depression. Thus for all
values of Ahet and for α = 0, the synapse undergoes depression or doesn’t change. For Ahet = 0.0053

and α = 0.4, the synapse is depressed too. Otherwise, the synapse undergoes potentiation. All the
colored lines seem to follow the same scheme being parallel with each other. Figure 7.9(A.iii) shows
the superposition of the weight of the two synapses. Orange (resp. green) lines represent the synaptic
weight of synapse 1 (resp. synapse 2). It is here obvious that the two synapses evolve very differently
from each other. One can notice that synaptic weight 2 can be higher or lower than synaptic weight 1
depending on the α and Ahet values. In particular, w2 is higher than w1 no matter the value of Ahet

when α > 1. When α < 1, this depends on the value of Ahet.

Figure 7.9(B) represents the weight of synapse 1 and synapse 2 with the fourth protocol and when α

and Ahet are dependent from each other. Ahet depends linearly of α with different factors comprised
between 0 and 0.0053 included. The weight of synapse 1 is constant no matter the values of α and
Ahet. This synapse undergoes potentiation since its weight is above the grey dotted line representing
the initial weight of the synapse. Once again, w1 evolves as it was in homosynaptic conditions. The
weight of synapse 2 always undergoes potentiation except when α = 0 where the synapse stays at its
initial weight (wi = 0.5) no matter the value of Ahet. The higher is α the higher is the final synaptic
weight and the bigger is the gap between the lines representing each Ahet. Thus the blue line for
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Ahet = 0 α goes from 0.5 for α = 0 to almost 1 for α = 1.6 while the purple line for Ahet = 0.0053 α

goes from 0.5 for α = 0 to less than 0.7 for α = 1.6. The higher is the linear coefficient bewteen Ahet

and α, the lower is the slope of the curves. Finally, Figure 7.9(B.iii) shows the superposition between
synapse 1 and synapse 2 and homosynaptic results. When α > 1, the weight of synapse 2 is always
higher than that of synapse 1 no matter the value of Ahet. When α < 1, it depends on the value of Ahet.

Fifth protocol

Figure 7.10(A) represents the final weight of synapse 1 and synapse 2 simulated with the fifth protocol
and when α and Ahet are independent from each other. For the two synapses we can see that the
synaptic weight increases with α. Thus the synaptic weight and α are positively correlated. On the
other hand, the synaptic weight decreases with the increase of Ahet. It means that the synaptic weight
and Ahet are negatively correlated. Synapse 1 and synapse 2 always undergo potentiation regardless of
the value of α and Ahet. Comparing the different lines, one can notice that they all look quite parallel.
Both synapses cross the line representing results obtained with protocol 2. Figure 7.10(A.iii) shows
the superposition of the two previous graphs. When the two synapses are active, their weights are very
similar for each α and Ahet. Compared with homosynaptic rules, when Ahet = 0, heterosynaptic rules
result in higher potentiation than homosynaptic rules. This gap of potentiation becomes lower and
lower with the increase of Ahet and the decrease of α. When α > 1, synapses always experience a higher
potentiation with heterosynaptic rules than with homosynatic rules. When α < 1, this depends on Ahet.

Figure 7.10(B) represents the weight of synapse 1 and 2 simulated with the fifth protocol and when
α and Ahet are dependent from each other. As explained before, here, Ahet depends linearly of α
with different factor comprised between 0 and 0.0053 included. Looking at the weight of synapse 1 and
synapse 2, it appears that they always undergo potentiation no matter the values of α and Ahet. Once
again, the weights are positively correlated with α. Thus the higher α, the higher the synaptic weight.
On the other hand, the weight is also negatively correlated with Ahet. Thus the higher Ahet, the lower
the synaptic weight. The lines representing different Ahet are not parallel and cross each other at the
same point when α = 0. Figure 7.10(B.iii) shows the superposition of the two previous graphs. The
two synaptic weights are very similar. Compared with homosynaptic rules, heterosynaptic rules always
result in a greater potentiation no matter the values of α and Ahet. The higher the linear coefficient
linking Ahet and α, the closer are the homosynaptic and heterosynaptic weights.

Sixth protocol

Sixth protocol was simulated for the case where α and Ahet are independent from each other and for
the case where Ahet is linearly dependent from α such that Ahet = 0 α, 0.001 α, 0.003 α, 0.0053 α.
Thus, for each cases we obtained six kernels: one representing pre1 and five representing pre2 where
each one represent a value of α. The kernel of pre1 is the same as the kernel we would have obtained
with homosynaptic rules since pre2 is silent.

The kernels obtained when α and Ahet are independent from each other are visible in Figure 7.11.
In addition to the kernel representing the weight of synapse 1 and then the homosynaptic kernel, five
kernels, one for each α value, are visible. Those kernels show that α and Ahet have an impact on the
shape of the graph. In particular, α has an impact when the delay between pre1 and post is going
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from -80 to 10 ms while Ahet has an impact when the delay between pre1 and post is going from 10 to
80 ms.

The kernels obtained when α and Ahet are linearly dependent are visible in Figure 7.12. As
previously mentioned, in addition to the kernel representing the weight of synapse 1 and then the
homosynaptic kernel, five kernels, one for each α value, are visible. The kernels obtained are not very
different from those obtained when α and Ahet are independent. However, it seems now that the value
of α has an impact for all the values of the delay between pre1 and post. Thus the shape is "edgier".
The most different kernel is the one for α = 0 which is now completely flat.
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Figure 7.9 – Pair-based model simulation with fourth protocol. (A) α and Ahet are independent. (i)
Evolution of synaptic weight 1 after 10 s of simulation. It is similar to results obtained with protocol
2. (ii) Evolution of synaptic weight 2. It crosses the curve representing results obtained with protocol
1. (iii) Comparison between (i) (in orange), (ii) (in green) and the homosynaptic results (protocol 1
in black, protocol 2 in dotted black). (B) α and Ahet linearly dependent. (i) Evolution of synaptic
weight 1 after 10 s of simulation. (ii) Evolution of synaptic weight 2. (iii) Comparison between (i) (in
orange), (ii) (in green) and the homosynaptic results (protocol 1 in black, protocol 2 in dotted black).
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Figure 7.10 – Pair-based model simulation with fifth protocol. (A) α and Ahet independent. (i) Evolu-
tion of synaptic weight 1 after 10 s of simulation. (ii) Evolution of synaptic weight 2. (iii) Comparison
between (i) (in orange), (ii) ( in green) and the homosynaptic results (protocol 1 in black, protocol
2 in dotted black). (B) α and Ahet linearly dependent. (i) Evolution of synaptic weight 1 after 10 s
of simulation. (ii) Evolution of synaptic weight 2. (iii) Comparison between (i) (in orange), (ii) (in
green) and protocol 2 (in dotted black).
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Figure 7.11 – Kernels representing the impact of the time delay on the synaptic weight for pair-based
STDP model with α and Ahet independent. (a) Kernel obtained for synaptic weight 1 is the same as
the homosynaptic kernel since pre2 is inactive and has then no impact on synapse 1. Depression is
observed for ∆t < 0. Potentiation is observed for ∆t > 0. (b)(c)(d)(e)(f) Kernels representing synaptic
weight 2 for different α and different Ahet. α has an impact on the potentiation zone while Ahet has
an impact on depression zone.
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Figure 7.12 – Kernels representing the impact of the time delay on the synaptic weight for pair-based
STDP model with α and Ahet dependent. (a) Kernel obtained for synaptic weight 1 is the same as
the homosynaptic kernel since pre2 is inactive and has then no impact on synapse 1. Depression is
observed for ∆t < 0. Potentiation is observed for ∆t > 0. (b)(c)(d)(e)(f) Kernels representing synaptic
weight 2 for different α. Kernels are flattened with the decrease of α.
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Chapter 8

Heterosynaptic models: Discussion and
application

Looking at the results described previously (see chapter 7), some cases can be isolated and discussed
further. This chapter is dedicated to the interpretation of the results obtained and to the analysis of
the roles of the new parameters integrated in our new heterosynaptic model.

8.1 Calcium discussion

Results obtained need to be interpreted in order to find a biological signification of parameter α. In this
section, calcium-based results obtained with the different protocols will be discussed and interpreted
in order to find biological meaning to our observations.

8.1.1 Distance interpretation

As explained in section 3.4, a "mexican hat" pattern of the plasticity changes experienced by the
synapses has been observed in heterosynaptic experiments [Chistiakova et al., 2014]. This pattern
showed the influence of the distance between the synapses on which heterosynaptic rules was applied
on the nature and the strength of the plasticity phenomenon undergone by those synapses. Based on
these observations, α could be representative of the distance between the synapses. Thus, when α is
low, the synapses are far from each other and the effect of the induction of LTP in synapse 1 on synapse
2 would be a weak LTP or even LTD (see Figure 8.1). In that case, α should be maintained under 1.
Indeed, the mexican hat pattern only shows a diminution in intensity of plasticity phenomenon. Then,
an inactive synapse couldn’t be more potentiated then the active synapse from which it depends which
is precisely the case when α > 1. Results obtained with the third protocol illustrate that phenomenon
and reproduce the results obtained in [Chistiakova et al., 2014].

8.1.2 Calcium release

Another biological interpretation of α would be the level of calcium in the synapse. Indeed, the het-
erosynaptic plasticity can be due to the intervention of calcium. When pre1 communicates with post,
this triggers calcium entrance in the postsynaptic neuron. In the case of heterosynaptic rules, this
calcium could diffuse through the postsynaptic neuron toward the synapse 2 which would lead to a
Mexican hat pattern just as explained in the previous section. Thus, α could represent the amount
of calcium diffusing toward synapse 2. Moreover, it has been proven that calcium flux can come not
only through the cell membrane but also from internal stocks such as the endoplasmic reticulum or
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Figure 8.1 – Illustration of the Mexican hat with results obtained with our new calcium-based heterosy-
naptic model. (Above) Scheme of the Mexican hat pattern. (Below) Zoom on the results obtained
when simulating the calcium-based heterosynaptic model with protocol 3. This expresses that α is a
parameter representing the distance between two synapses.

the mitochondria [Kawamoto et al., 2012, Padamsey et al., 2019]. Moreover, studies have shown that
heterosynaptic LTD could be triggered by strong stimulation associated with IP3R-mediated Ca2+

waves. IP3R, standing for Inositol trisphosphate receptor, is a protein acting as a calcium channel. It
is a key factor in the release of calcium from intracellular store sites such as the endoplasmic reticulum
[wik, 2022]. It has been observed that genetic deletion or pharmacological inhibition of IP3R could
lead to the abolishment of heterosynaptic LTD [Nagase et al., 2003, Nishiyama et al., 2000]. Thus,
considering not only diffusion but also the release of calcium stock triggered by the diffused calcium,
we could consider some cases where α > 1. Considering diffusion of calcium, once again α could rep-
resent the distance between the synapses by considering that the larger the distance between synapses
the smaller the amount of calcium reaching the inactive synapse. On the other hand, if we consider
the release from intracellular calcium storage, the distance between the synapses could be of no im-
portance. Then, a high α (α = 1.6) would mean that some release of calcium from intracellular store
sites could happen whether the two synapses are close from each other or not.

In our results this case can be observed in Figure 7.4 and Figure 7.5. Indeed, the higher is α, the
higher is the synaptic weight. Thus α representing the amount of calcium in neurons could explain
those observations. Indeed, in our equations, α intervenes in the evolution of the calcium trace of the
presynaptic neurons. This totally makes sense. Moreover, when α > 1, the phenomenon of calcium
release can be observed too, in particular in Figure 7.4 when the model is simulated with the third
protocol. In this figure, we can clearly see that the weight of the inactive synapse is able to exceed
the weight of the active synapse. This can be due to a release of calcium from internal store sites,
increasing the amount of calcium in inactive synapses.
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8.1.3 Conditioning

Model tested with the third protocol and the fourth protocol shows a phenomenon of conditioning
which can be observed in the case of central sensitization in the spinal cord (see subsection 2.3.1).
Looking at Figure 7.4, the stimulation of a presynaptic neuron will have an impact on the weight of
an inactive synapse connected to the same postsynaptic neuron. Thus, by doing nothing, an inactive
synapse can see its weight increases. This increase in weight could have the effect of triggering some
response from the postsynatic neuron which can’t respond when the synaptic weight is too low.

8.1.4 Questionable results

Simulating our model with the fifth protocol when the two presynaptic neurons are active shows a
higher potentiation than what is obtained with the second homosynaptic protocol. This potentiation
increases with the value of α which seems logical since α will always have the effect of increasing the
calcium trace of the concerned neuron. However, the fact that both synapses undergo potentiation
is not really a phenomenon we are glad to see. Indeed, this can lead to a runaway phenomenon
which is what the heterosynaptic rules seek to avoid. However, this can also express the phenomenon
of heterosynaptic facilitation evoked in section 3.4. Moreover, our models have been tested for a
frequency of 20 Hz. Thus, further investigations need to be performed with different frequencies.

8.1.5 Discussion of protocol 6

Looking at the kernels in Figure 7.6, we can see that homosynaptic rules always result in synaptic
depression for ∆t < 0 and in synaptic potentiation for ∆t > 0. The synaptic potentiation is more
pronounced than the synaptic depression. The impact of α is a flattening of the shape of the kernel. In
particular, this flattening is centered on the initial weight winit = 0.5 when α = 0. It seems logical that
the weight of synapse 2 stays constant when pre1 has no impact on it. In this case, the weight of pre2
will only be influenced by the spikes of post which has always the same frequency no matter the delay
with pre1. The greater α, the greater the potentiation and the longer is the ∆t zone of potentiation.
Comparing the two kernels, one can observe four cases (visible in Figure 8.2):

1. Depression at the active synapse can induce depression at the inactive synapse.

2. Depression at the active synapse can provoke potentiation at the inactive synapse for large α

and low negative delay.

3. Potentiation at the active synapse can induce depression at the inactive synapse for low α and
low ∆t.

4. Finally, induction of potentiation at the active synapse can provoke a higher (for α > 1) or a
lower (for α < 1) potentiation at the inactive synapse.

This is very interesting since those results have been already observed in experimental protocols
gathered in [Chater and Goda, 2021]. Thus it shows that our new model is able to reproduce experi-
mental heterosynaptic plasticity results.
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Figure 8.2 – Zoom on the different cases observable with calcium-based model simulated with the sixth
protocol. Black line represents the homosynaptic kernel (α = 1). (1) Depression at the active synapse
leads to depression at the inactive synapse. (2) Depression at the active synapse leads to potentiation
at the inactive synapse. (3) Potentiation at the active synapse leads to depression at the inactive
synapse. (4) Potentiation at the active synapse leads to potentiation at the inactive synapse.

8.2 Pair-based STDP discussion

Results obtained need to be interpreted in order to show the impact of parameters α and Ahet. In this
section, pair-based STDP results obtained with the different protocols will be discussed and interpreted
in order to find an explanation to our observations. Since we are in a phenomenological model, the
biological interpretation of the new parameters is more complicated and not really necessary. Indeed,
the internal traces x and y described in the pair-based homosynaptic STDP model do not have a real
biological signification.

8.2.1 Dependency between α and Ahet

This work experiencing a very new heterosynaptic model, the parameters α and Ahet are completely
new and they need to be investigated and their impact evaluated. For those reasons, we chose to
consider those parameters independently from each other and linearly dependent from each other.
The results obtained show that when α and Ahet are independent from each other, synapses can be
potentiated or depressed depending on parameters. Moreover, the obtained curves aren’t really similar
with curves obtained with homosynaptic rules. In particular, when pre2 is silent. Indeed, the slope of
the curves is very important in those conditions. On the other hand, when α and Ahet are dependent
from each other, heterosynaptic rules always results in potentiation. Moreover, the obtained curves
are quite similar with curve obtained with homosynaptic rules. In particular, when both synapses are
active with Ahet = 0.0053 α.

When α and Ahet are independent from each other, a case in particular is very interesting. When
α = 0 and Ahet ̸= 0, is it right that Ahet has an impact on the inactive synapse? If so, it would mean
that when two presynaptic neurons are connected to a same postsynaptic neuron, when pre1 spikes,
even if it doesn’t change the internal trace of pre2, pre2 will be depressed. In this configuration, an
inactive synapse will always be depressed when an active neuron connected to the same postsynatic
neuron spikes. This could be interpreted at the level of the memory. When a synapse is silent for a
long time, its weight falls to 0. This is the phenomenon of pruning. However, if α = 0, does pre1
should have an impact on pre2?
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8.2.2 Conditioning

As with the calcium-based model, a phenomenon of conditioning can be observed when our pair-based
STDP model is simulated with the fourth protocol. Indeed, as it can be seen in Figure 7.9 inactive
synapse sees its weight modified because of the activity of a synapse connected to the same postsynaptic
neuron. Thus in Figure 7.9(B), synape 2 goes from winit = 0.5 to potentiation values just because of
the activity of synapse 1. Here, the conditioning is influenced by α but also by Ahet.

8.2.3 Pruning

Looking at Figure 7.9(A), we can see that when α = 0, the inactive synapse is depressed. This is because
Ahet and α are independent from each other. Thus, when α = 0, Ahet can be equal to 0, 0.001, 0.003
or 0.0053. In those conditions, the internal trace of the inactive synapse stays at 0. The potentiation
experienced by the synapse depending on its own trace, no potentiation is possible in those conditions.
However, the depression of the inactive synapse depends on Ahet and the trace of the postsynaptic
neuron. Thus, every time pre1 spikes, the synaptic weight 2 is decreased as a function of Ahet and y, the
internal trace of the postsynaptic neuron. In this case, the inactive synapse can’t experience any poten-
tiation because of α = 0 but experienced depression because of Ahet ̸= 0. This phenomenon can be see
as "weird" but in fact, it can be associated with a phenomenon of pruning. Pruning is the mechanism
by which some neuronal connections are eliminated after some time. This phenomenon has the ad-
vantage of increasing the efficiency of neuronal transmissions [Santos and Noggle, 2011]. Some papers
talk about this phenomenon as being caused by heterosynaptic plasticity [Chater and Goda, 2021] but
it is still unclear if those two phenomena are linked [Jenks et al., 2021]. However, in our simulation
(see Figure 7.9(A)), we can see that an inactive synapse will be depressed because of the activity of
another synapse. This will only happen when α = 0 and if Ahet and α are independent from each
other. The intensity of the pruning is thus governed by the value of Ahet.

8.2.4 Prevention of saturation

In Figure 7.10(A), when α ≈ 0, the synaptic weights are below the homosynaptic curve. Once again
this is due to the fact that, here, heterosynaptic plasticity only brings depression via Ahet because
α = 0. This case could express the fact that heterosynaptic plasticity, with those parameters, can avoid
saturation. Indeed, when both synapses are active, both synapses undergo potentiation which, when
Ahet and α are dependent from each other, is higher than the homosynaptic values. A phenomenon
of runaway which we want to avoid could then be observed. By keeping Ahet and α independent from
each other, its a phenomenon we could avoid.

8.2.5 Questionable results

As said in previous section, simulating the model with fifth protocol when Ahet and α are dependent
from each other (Figure 7.10(B)), both synapses are more potentiated than they would be with ho-
mosynaptic rules. This phenomenon happens for each value of α except for α = 0 where the weight
remains equal to 0.5. As observed with the calcium-based model, this phenomenon could be associated
to a runaway mechanism which is what we would like to avoid. On the other hand, this also can
be seen as facilitation. This phenomenon also appears when Ahet and α are independent from each
other with the highest values of α and the lowest value of Ahet. Otherwise, as explained previously,
this phenomenon can be avoided with low values of α and high values of Ahet. This seems logical
since α governs the heterosynaptic potentiation and Ahet governs the heterosynaptic depression. Thus,
increasing Ahet when decreasing α can prevent the synapse from overpotentiating.
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8.2.6 Discussion of the protocol 6

The shape of the pair-based kernels are all similar. The homosynaptic kernel shows a symmetrical
repartition of potentiation and depression around ∆t = 0. Thus, when ∆t > 0, the synapse experiences
potentiation while when ∆t < 0, the synapse undergoes depression. This is the principle of the pair-
based model explained in section 4.2. Indeed, when ∆t > 0, we are in a pre-post configuration and the
synapse will be potentiated. On the other hand, when ∆t < 0, we are in a post-pre configuration and
the synapse will be depressed. This is for those reasons that Ahet only has an impact when ∆t < 0

since it governs the depression experienced by the synapse while α only has an impact when ∆t > 0

since it governs the potentiation experienced by the synapse.
As for the calcium-based model, if we zoom on the different time windows, we can see the four different
cases described in [Chater and Goda, 2021] (listed in subsection 8.1.5) . However, the case (3) where
homosynaptic potentiation induces heterosynaptic depression can’t be observed when α and Ahet are
dependent from each other. This case expresses the pruning described earlier and can only be observed
for α = 0 and Ahet ̸= 0 when α and Ahet are independent. Moreover, one can notice that the cases (3)
and (4) have only been observed when 0 < ∆t < 10 which is between two tested time delays. Thus
those cases have not been observed with the tested values but the graphs make us guess that they
could happen in between Figure 8.3.

Ahet and α dependent

Syn 1 Syn 1

-40 -20 20 4040 -40 0 20-200
ΔtΔt

α = 0

α = 1.2α = 1.2

α = 0.4α = 0.4
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Figure 8.3 – Zoom on the different cases observable with pair-based model simulated with the sixth pro-
tocol. (1) Depression at the active synapse leads to depression at the inactive synapse. (2) Depression
at the active synapse leads to potentiation at the inactive synapse. (3) Potentiation at the active
synapse leads to depression at the inactive synapse. (4) Potentiation at the active synapse leads to
potentiation at the inactive synapse
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8.3 Summary
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Chapter 9

Toy model: implementation of
heterosynaptic rules in the context of
allodynia

Now that we have two heterosynaptic models, it is time to apply them to a practical case. In the case
of pain, the phenomenon of central sensitization has an important heterosynaptic plasticity dimension.
In the case of allodynia, a heterosynaptic phenomenon could appear between the C fibers and the Aβ

fibers through a conditionning input and a test input (see section 2.3). Although several mechanisms
could be involved in this phenomenon, we chose here to try to model allodynia with our heterosynaptic
model, making it a purely heterosynaptic phenomenon.

The principle of allodynia is that non-nociceptive fibers provoke a sensation of pain after the
induction of pain by nociceptive fibers. At first, if Aβ spikes alone, nothing happens and the projection
neuron does not react. This is just a sensation of touch which doesn’t produce any pain. Then, the
activation of C fibers will have the impact of activating the projection neuron. In response to C fibers,
this neuron spikes which will induce the sensation of pain by sending the signal via the spinothalamic
pathway. We are now in pain. The phenomenon of allodynia can take place. Now, if Aβ fiber spikes
again, this will cause a reaction from the projection neuron which, once activated will induce the
sensation of pain. After some time without any spike, the reactivation of Aβ won’t produce any
reaction from the projection neuron anymore. This is the scenario that we want to reproduce with our
heterosynaptic models.

9.1 Adaptation of the models

Before adapting the model, it is important to note that our heterosynaptic models are not adapted
to the neurons of the spinal cord. Indeed, our calcium model is simulated with the parameters of the
cortex while the pair-based model is simulated with the parameters of the hippocampus. However, we
are still trying to adapt those to spinal cord since we didn’t find any heterosynaptic model adapted
to the spinal cord. It is then important to keep in mind that lots of alterations can be needed to best
adapt our models to the phenomenon of allodynia.
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9.1.1 Choice of the neurons

To link our models to the phenomenon of allodynia, we first had to chose the neurons to model. As
explained before, the fibers concerned by the central sensitization in allodynia are the nociceptive
C fibers and the non nociceptive Aβ fibers. Those fibers are linked to a projection neuron which,
once activated, produces pain through the pain pathway. Thus, our postsynaptic neuron will be the
projection neuron and the two presynaptic neurons will be a C fiber and an Aβ fiber.

9.1.2 New Poisson train

To simulate allodynia, we needed a new spike train. We chose to keep a Poisson train but we needed
a longer duration and to "clip" the train during the simulation. At first, in order to test the model,
we simulated a train with a frequency of either 20 Hz for 60 000 ms. Since each fiber spikes in turn
we simulated four Poisson trains. A first train was simulated from 0 to 1000 ms for Aβ, then another
train from 1000 to 45 000 ms for C, a third train from 45 000 ms to 46 000 ms and finally, the last
train from 59 000 to 60 000 ms was attributed to Aβ. Note that all Poisson trains are newly created
at each stimulation.
In a second time, since central sensitization is a phenomenon which can be induced by a stimulation at
a frequency ∼ 10 Hz for 10 to 20 seconds [Ji et al., 2003, Woolf, 2011], we generated a new train with
those parameters. Thus, a first train was simulated from 0 to 1000 ms for Aβ, then another train from
1000 to 15 000 ms for C, a third train from 15 000 ms to 16 000 ms and finally, the last train from 59
000 to 60 000 ms was attributed to Aβ. This allowed us to simulate a stimulation of 14 sec. Moreover,
the period when nobody spikes is longer to express the fact that central sensitization can last in time.
Ideally, this period should be longer than 43 sec. Figure 9.1 shows a general pattern of the different
spike trains. Aβ and C have both Poisson train each in turn. The projection neuron doesn’t spike by
itself as in previous models. It will be triggered by the activity of Aβ and C.

proj

Aβ

Cα

Ahet

Figure 9.1 – Adapted Poisson train in order to simulate an allodynia toy model. In this configuration,
postsynaptic neuron doesn’t spike on its own. Aβ spikes alone in a first time. Then C spikes alone for
some time. Aβ spikes alone again. Then neither Aβ nor C spikes for a while. Finally, Aβ spikes on
its own again.

9.1.3 Tuning of parameters α, Ahet and Cpre2

We then had to adapt our parameter α for the calcium model and α and Ahet for the pair-based model.

Parameter α having the same function in the two models, we can tune it only once. To explain
the fact that Aβ is capable of inducing a sensation of pain after C fibers have been activated for a
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while, we have to tune our parameter α so that the activation of the C fiber potentiates the Aβ fiber.
However, we need to do a distinction between the impact of C on Aβ and the impact of Aβ on C.
Indeed, if we want Aβ to be potentiated thanks to the activity of C, we don’t want the activity of
Aβ to have an impact on the weight of C. Thus we now have two parameters: α1 which governs the
impact of C on Aβ and α2 which governs the impact of Aβ on C. As previous α, α1 can take several
values from 0.4 to 1.6 modeling the distance between the two fibers or the calcium release. However,
since we don’t want any impact of Aβ on C, α2 = 0 for all the simulation. For more convenience, we
will consider the value of α1 when talking about α in the following.

Parameter Ahet also needs to be duplicated for the same reason. Thus Ahet1 governs the depression
of Aβ linked to the spikes produced by C while Ahet2 governs the depression of C linked to the spikes
produced by Aβ. Ahet1 can keep all the values previously tested while Ahet2 = 0. Indeed, touching a
zone doesn’t have the impact of increasing the pain threshold for a future pain. For more convenience,
we will consider the value of Ahet1 when talking about Ahet in the following.

About the parameter Cpre2, when simulating the calcium-based model with a frequency of 10 Hz,
we had to set Cpre2 from 0.84410 to 1.5 in order to obtain a high enough potentiation. In these
conditions and with α = 1.6, we could obtain the expected results. When simulating the model with
a frequency of 20 Hz, this tuning was not necessary.

9.1.4 Tuning of current intensity

The simulation of that model is different from the previous models since we don’t chose the time of
spike of the post synaptic neuron anymore. Here, it’s the intensity of the current generated by the
presynaptic neuron multiplied by the weight of the synapse which will determine if the post synaptic
neuron will spike or not. This is governed by the Hodgkin-Huxley conductance model such that

C
dV

dt
= −

∑
n

gion(V − Vion) + Iapp + Istep + w1Isyn1 + w2Isyn2 (9.1)

Previously, we had Iapp = 0, Istep = 50 when post spiked and Isyn1 = Isyn2 = 9.8 which was the
limit to induce an EPSP and not an action potential when pre1 or pre2 spiked. Now the goal is that
the projection neuron spikes with C = pre2. To do so, we set Isyn2 = 50 when C spikes. On the other
hand, the projection neuron can’t react to Aβ’s activity in a first time but then, it has to react for
some time before not reacting again. To do so, we have to find the limit value of Isyn1 which, when w1

is low enough produces an EPSP but when w1 is potentiated, produces an action potential. In order
to have more margin to tune Isyn1, we decided to remove the term dividing w1Isyn1 and w2Isyn2 by
the number of cells (see section 7.1).

9.1.5 Tuning of the weight evolution

In order to cancel the effect of central sensitization after some time, we had to add an equation gov-
erning the weight in order that the weight of an inactive synapse decreases slightly over time. Thus, if
no spike occurs for some time, the weight of the synapse will decrease slowly toward 0.5.

For the calcium model, this was done by making the weight converge toward 0.5 with a very high
time constant each time the calcium trace was below the depression threshold θd. Thus we have:
If [Ca]i,tot ranges below θd, synaptic weight is decreased such that
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τ sloww

dwi

dt
= winit − wi , (9.2)

where τ sloww = 30000. Thus it means that wi will reach winit after 30 000 ms.

The same method was used for the STDP model. Indeed we made the weight converge to winit = 0.5

with a very high time constant each time there was no spike. Thus we have:
If no one spikes, synaptic weight is decreased such that

τ sloww

dwi

dt
= winit − wi (9.3)

with τ sloww = 20000. Thus, it means that wi will reach winit after approximately 20 000 ms. As
anyone can notice, the time variable of the pair-based model is lower than the one of the calcium-based
model. Indeed, we noticed during the simulations that when τ sloww = 30000, the weight had not enough
time to correctly decrease toward winit. Thus, we took the decision to set τ sloww = 20000.
We can note that the time constant τ sloww in those two models is not very important and can be tunable
as we want since its role is to represent the elapsed time. Here, as we wanted to show that the effect
of central sensitization can last longer than the time of stimulation, we chose those values. But if the
model is simulated on longer periods, the two variables will need to be increased.

9.2 Methodology

The two models have been simulated with several values of α. Results shown here were simulated for
α = 1.6 and α = 1.2. For the pair-based model, we chose Ahet = 0.003. The choice of those values
is not very important here since the goal is to see the impact of pre2 on pre1 to show a phenomenon
comparable to allodynia. However, by choosing those values, we are sure that the effect will be big
enough so that pre2 (C fiber) will have an impact on pre1 (Aβ fiber). As observed in previous chapters,
the bigger α and the smaller Ahet, the bigger effect of pre1 on pre2 will be observed.
When simulating the models, we realized that they were very fragile. Indeed, the results weren’t the
same with different Poisson trains. The tuning of Isyn was very complicated since its value could
trigger a reaction from the projection neuron or not depending on the Poisson train followed.
Concerning the frequency, central sensitization is a phenomenon where the conditioning input has a
low frequency (10 Hz in [Ji et al., 2003]). Since our model has been tested at 20 Hz in previous chapters
(those results are shown in Appendix C), we kept this frequency in a first time and then simulated the
model at a frequency of 10 Hz as explained previously.

9.2.1 Calcium-based model

Model was simulated for several Poisson trains to check whether the obtained results were reliable.
Unfortunately, we realized that our model was very fragile and very sensible to the used Poisson train.
We first tested the model with a frequency of 20 Hz then with a frequency of 10 Hz. We used the value
α = 1.6.

9.2.2 Pair-based model

For the pair-based model, we tested several values of Isyn1 until obtaining satisfying results. Eventually,
we chose Isyn1 = 14 with which we could obtain results presented in Figure 9.3. As said earlier, the
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model was very fragile and it was really difficult to evaluate the right Isyn1 since the model was very
dependent on the Poisson train used.

9.3 Results

This section presents the results obtained with the calcium-based model and with the pair-based model.

9.3.1 Calcium-based model

Results obtained with calcium-based model are shown in Figure 9.2. This shows exactly what we
expected from the simulation. Indeed, at the beginning, Aβ fiber spikes alone activated by a light
touch (represented by the feather) but this doesn’t trigger any action potential from the projection
neuron. Then, C fiber spikes during 14 seconds alone activated by a noxious stimulus (represented by a
punch). This has the effect of activating the projection neuron and increasing the synaptic weight wAβ

of Aβ. After that, Aβ fiber spikes again alone for 1 second activated by a light touch stimulus. This
time, this has the effect of triggering the projection neuron which emits action potentials in response
to Aβ. The three neurons are then left inactivated for 43 seconds which has the effect of decreasing
wAβ . Finally, the activation of Aβ fiber doesn’t trigger the projection neuron anymore.
Those are the results for one set of parameter but we could also observe some good results for α = 0.8

and a frequency of 20 Hz despite an observed fragility of the model triggering unwanted action potential
depending on the generated Poisson train, and for α = 1.6 and a frequency of 20 Hz (visible in
Appendix C).

9.3.2 Pair-based model

Results obtained with pair-based model are shown in Figure 9.3. In Figure 9.3, we can see "perfect"
results. Indeed, the simulation shows us exactly what we expected. At the beginning, Aβ fiber
spikes alone activated by a light touch stimulus but this doesn’t trigger any action potential from the
projection neuron. Then, C fiber spikes during 14 seconds alone, activated by a noxious stimulus. This
has the effect of activating the projection neuron and of increasing the synaptic weight wAβ of Aβ.
After that, Aβ fiber spikes again alone for 1 second activated by a light touch stimulus. This time,
this has the effect of triggering the projection neuron which emits action potentials in response to Aβ.
The three neurons are then inactivated for 43 seconds which has the effect of decreasing wAβ . Finally,
the activation of Aβ fiber doesn’t trigger the projection neuron anymore.

9.3.3 Fragility of the model

Even if the results showed here present exactly what we expected, the fragility of the models need
to be kept in mind. Indeed, some simulations, even when done with exactly the same parameters
as in Figure 9.2 or Figure 9.3 show some undesirable spikes at the beginning. Besides those, the
simulations showed the same behavior as observed in previous figures. Same observations could be
done for different set of parameters. Indeed, while some simulations could show good results, other
simulations with the same set of parameters showed unexpected action potentials at the end of the
simulation or not enough action potentials between the 15th and the 16th seconds. This have been
observed for different combination of α, Ahet and Isyn1.
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Figure 9.2 – Results obtained when simulating calcium-based allodynia toy model for α = 1.6, Cpre2 =
1.5 and Isyn = 15 with a frequency of 10 Hz. 1st row = spike train of Aβ, 2nd row = spike train of C,
3rd row = membrane potential of projection neuron and 4th row = synaptic weight between Aβ and the
projection neuron. Light touch stimulus (feather) activates Aβ fiber which can’t trigger the projection
neuron. Noxious stimulus (punch) activate C fiber which triggers the projection neuron emitting action
potential as a response. This has the effect of increasing the wAβ . Light touch stimulus activates Aβ
again which has now the power of triggering the projection neuron. After some time without any
stimulus, light touch stimulus activates Aβ fiber but this can’t trigger the projection neuron anymore.

9.4 Discussion

The results obtained show that our model is capable of reproducing a heterosynaptic mechanism
of central sensitization which could be responsible for the induction of allodynia. However, some
limitations have been encountered during the simulations. For both models, satisfying results could be
obtained for different values of α and Ahet and for frequency of 10 Hz and 20 Hz. However, the model
was very sensitive to the generated Poisson train. Thus, for the same parameters, undesirable action
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Figure 9.3 – Results obtained when simulating the pair-based allodynia toy model for α = 1.2, Ahet =
0.003, Isyn = 14 with a frequency of 10 Hz. 1st row = spike train of Aβ, 2nd row = spike train of C, 3rd
row = membrane potential of projection neuron and 4th row = synaptic weight between Aβ and the
projection neuron. Light touch stimulus activate Aβ fiber which can’t trigger the projection neuron.
Noxious stimulus activate C fiber which triggers the projection neuron emitting action potential as a
response. This has the effect of increasing the wAβ . Light touch stimulus activates Aβ again which
has now the power of triggering the projection neuron. After some time without any stimulus, light
touch stimulus activates Aβ fiber but this can’t trigger the projection neuron anymore.

potentials could be observed. Moreover, in the calcium-based model, with a frequency of 10 Hz, we
had to increase the variable Cpre2 in order to obtain satisfying results while for the pair-based model
a wise combination of α and Ahet could be found to obtain the expected results with this particular
frequency. The fragility could be due to several things.

– Membrane potential of the projection neuron is modeled with the Hodgkin and Huxley conductance-
based model which is a very simple model. Those undesirable spikes could be due to the limita-
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tions imposed by this model.

– The value of Isyn1 could be inadapted to the simulations despite multiple test in order to find
the best frequency. This would be due to the change of Poisson train at each simulation. Since
a Poisson train doesn’t show a constant time interval between each spike, it could happen that
multiple spikes happen in a short time period which could have the impact of triggering the
projection neuron.

– Finally, our heterosynaptic models are based on homosynaptic models configured in the cortex for
the calcium-based model and in the hippocampus for the pair-based model. Central sensitization
being a phenomenon happening in the dorsal horn of the spinal cord, it is clear that a lot of
parameters need to be tuned and tested before obtaining the perfect simulation model of central
sensitization.

9.5 Summary

In this section we were able to reproduce a phenomenon assimilable to central sensitization inducing
allodynia thanks to our new heterosynaptic models. To do so, we had to tune a bunch of parameters.
The models have been simulated with a frequency of 10 Hz and 20 Hz. In the calcium-based model,
in order to make it work for a frequency of 10 Hz, Cpre2, the parameter governing the value of the
calcium trace of the C fiber had to be increased. In those conditions we could obtain satisfying results
with α = 1.6. For a frequency of 20 Hz, this tuning was not necessary. In the pair-based model, for
the two tested frequencies, a right combination of α and Ahet could be found in order to obtain the
expected results. Both models showed a certain fragility which can be linked to the modeling of the
postynaptic membrane for example.
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Conclusion and perspectives
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Chapter 10

Conclusion and perspectives

10.1 Thesis summary

The goal of this thesis was first to model the heterosynaptic plasticity in neurons through a new model
and second to apply this model to a case study to show its efficacy. To achieve this, the following
questions have been answered:

– What is pain? In particular what is central sensitization? (Chapter 2)
The most important relay in the pain neural circuit is the dorsal horn of the spinal cord. It
is there that the nociceptive and non nociceptive fibers can cross each other and interact with
dorsal horn projection neurons. A type of plasticity taking place in the dorsal horn is the central
sensitization. Central sensitization is characterized by an enhancement of the excitability in
somatosensory neurons in the dorsal horn following the induction of a noxious stimulus. This
plasticity mechanism is responsible for the phenomenon of allodynia in which, after an injury, a
non-noxious stimuli applied on the wound induces pain.

– What is synaptic plasticity? (Chapter 3)
Homosynaptic plasticity can be a short-term or a long-term phenomenon. The introduction of
homeostatic and heterosynaptic plasticity is sometimes necessary to prevent some undesirable
phenomena from happening with homosynaptic plasticity alone. Heterosynaptic plasticity con-
siders all the synaptic connections in a set and thus, an inactive synapse can experience strength
modifications influenced by active neighbor synapses.

– How synaptic plasticity can be modeled? (Chapter 4 and 5)
Homosynaptic plasticity can be modeled with biological or phenomenological models. In this the-
sis, we focused on the calcium-based homosynaptic model described in [Graupner et al., 2016]
and the pair-based homosynaptic model described in [Morrison et al., 2008]. They form the basis
on which we could graft heterosynaptic rules.
Heterosynaptic plasticity has not been widely modeled. Chen et al. established a model to pre-
vent the runaway mechanism and to enhance the synaptic competition [Chen et al., 2013]. Field
et al. established a model in order to set the E/I balance experimentally observed [Field et al., 2020].
Finally, Hiratani and Fukai established a model of the E/I balance in the cortical dendritic
branches. This model started from homosynaptic calcium-based model to implement heterosy-
naptic rules [Hiratani and Fukai, 2017]. Others models such as the ones established by Chen
and Xie or Zenke et al. were established in order to maintain stability [Chen and Xie, 2021,
Zenke et al., 2015].
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– How to adapt existing homosynaptic models into heterosynaptic models? (Chapter 6, 7, 8)
Starting from homosynaptic models described above, we could establish two new heterosy-
naptic models which are extensions of the calcium-based model and of the pair-based model.
Those models could reproduce heterosynaptic phenomena such as the potentiation or the de-
pression of an inactive synapse. We could reproduce experimental results reported in literature
[Chistiakova et al., 2015, Chater and Goda, 2021] such as the Mexican hat pattern.

– How to model allodynia? (Chapter 9)
The two heterosynaptic plasticity models could be adapted in order to model the crosstalk be-
tween nociceptive and non nociceptive fibers involved in the phenomenon of allodynia. Results
obtained were satisfying despite some limitations encountered.

10.2 Perspectives

Heterosynaptic models established in this thesis being totally new, many perspectives are to be con-
sidered for the future in order to improve those models. A few ideas are listed here:

– All the simulations have been performed with four heterosynaptic protocols: one protocol was at
100 Hz, two at 20 Hz and the last one at 1 Hz. However, new information could be obtained by
simulating our models at other frequencies.

– The use of the conductance-based model of Hodgkin-Huxley to model the membrane potential of
the postsynaptic neuron has some limitations. Indeed, this model is a very simple one which was
suitable for the beginning of this work. However, in the future, maybe a more complex model
would improve the performance of our heterosynaptic models. In particular to model allodynia
where we met some difficulties to tune the conductance-based model in order to have the right
action potentials.

– The models as they are at the moment are not the most physiological. This could be improved
by adding a more detailed modeling of the calcium dynamic. For instance, parameters α and
Ahet could be redesigned in a more physiological way.

– Heterosynaptic experimental data are quite few at the moment. The realization of new ex-
perimental protocols could help to validate computational results. For example, time windows
obtained with the protocol 6 could be reproduced experimentally in order to validate our results.

– Those experimental protocols could also be helpful to improve the toymodel established in Chap-
ter 9. Indeed, our heterosynaptic models are set in the hippocampus and in the cortex while
central sensitization, responsible for allodynia, happens in the dorsal horn of the spinal cord.

– Allodynia model is very simple and need to be complexified in order to better mimic real-life
allodynia. Moreover, the simulations were done on very short timescale compared to the timescale
of allodynia phenomenon. Thus, new simulations should be performed on longer time intervals.

To conclude, even if good results could be obtained with our new heterosynaptic models, more
precision and complexity should be added in the future in order for these models to become more
faithful to the physiological phenomena.
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Appendix A

Computational details

A.1 Pyramidal neuron model [Chen et al., 2013]

Full model of the pyramidal neuron can be written:

Cm(dVS/dt) = −g(VS − VD)− IintS , (A.1)

Cm(dVD/dt) = −gleak(VD − Eleak)− g(VD − VS)− IintD − Isyn . (A.2)

where Cm is the membrane capacitance, VS and VD are the membrane potentials in the axosomatic
and dendritic compartments, g is conductance coupling between the compartments, IintS and IintD are
the sums of all active currents in the axosomatix and dendritic compartments, respectively, and Isyn
is the sum of synaptic currents. Equation A.1 can be replaced by

g(VS − VD) = −IintS , (A.3)

since Na+ and K+ conductances in the axosomatic compartment were much stronger than in the
dendrite. This new reduced model match closely spiking patterns of different classes of cells.

Isyn = Wsyn[O](V − Esyn) , (A.4)

d[O]/dt = α(1− [O])[T ]− β[O] , (A.5)

[T ] = AH(t0 + tmax − t)H(t− t0) , (A.6)

where Wsyn is the strength (weight) of a synapse, [O] is the fraction of open channels, Esyn is the
reversal potential (Esyn = 0mV for excitatory synapses), H(x) is the step function, t0 is the time
instant of receptor activation, A = 0.5, and tmax = 0.3 ms. α = 1.1 ms−1 and β = 0.19 ms−1 are
the rate constants. The synaptic weight was defined in the range between 0 mS/cm2 and maximum
of 0.03 mS/cm2. The initial weights were randomly assigned to the 100 synapses from a Gaussian
distribution with the mean 0.015 mS/cm2 and SD 0.003 mS/cm2. Short-term dynamics of synaptic
transmission at each synapse were simulated using a simple phenomenological model. This model
specifies the postsynaptic current as a product of a maximal synaptic conductance Wsyn and the
depression variable D which obeys to the law

D = 1− [1−Di(1− U)]exp[−(t− ti)/τ ] ,
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where U = 0.07 is the fraction of resources used per action potential, τ = 700 ms is the time constant
of recovery of the synaptic resources, Di is the value of D immediately before the ith event, and (t− ti)
is the time after the ith event.

STDP rules are described such as if the presynaptic spike occurs before the postsynaptic spike
within the proper time window, the weight of the synapse is increased. If the presynaptic spike occurs
after the postsynaptic spike within the proper time window, the weight of the synapse is depressed.
This is resumed by the equations

dW+
syn = a+(exp[−(tpost − tpre)/τ+]) , (A.7)

dW−
syn = −a−(exp[(tpost − tpre)/τ−]) , (A.8)

where dWsyn is the change of synaptic strength, a+ and a− are the maximal amplitude of potentiation
and depression that could be induced by a single postsynaptic spike, tpost and tpre are the timing
of postsynaptic and presysnaptic spikes, and τ+ and τ− are the time constants of potentiation and
depression windows.
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Appendix B

Hodgkin and Huxley model

In order to implement the homosynaptic plasticity models, we chose to start from the conductance
model established by Hodgkin and Huxley in 1952 [Hodgkin and Huxley, 1952]. As a reminder, a con-
ductance model allows us to draw a parallel between a neuron and an electrical circuit, our neuron
being only an excitable cell in which a current flows through the membrane. This circuit is illustrated
in Figure B.1.

gion

Vion

Iapp
Vout

Vin

C Vm

Figure B.1 – Electrical circuit representing a neuron with the conductance-based model of Hodgkin and
Huxley.

From this figure, we can write

Cm
dVm

dt
= −INa − IK − Ileak + Iapp , (B.1)

where Cm is the capacitance of the membrane, dVm is the variation of the potential of the membrane,
Iapp is the applied current representing an external stimulus, and

INa + IK + Ileak = Iion = gion(Vm − Vion) , (B.2)

where (Vm − Vion) is the driving force i.e. a measure of how far the membrane potential is from the
equilibrium potential of each ion species. gion is the ion conductance.

In order to introduce the notion of closure and opening of the different ion channels of the plasma
membrane, we can introduce the variables mNa, hNa and mK with mNa and hNa the variables of
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activation and inactivation of sodium and mK the variable of activation of potassium as well as ḡion,
the maximum conductance reachable by each ion when all channels are open. We have

gNa(Vm, t) = ḡNamNa(Vm, t)3hNa(Vm, t) ,

gK(Vm, t) = ḡKmK(Vm, t) .
(B.3)

Finally,

Cm
dVm

dt
= −ḡNa ∗m3

Na ∗ hNa ∗ (V − VNa)− ḡK ∗m4
K ∗ (V − VK)− ḡleak ∗ (V − Vleak) + Iapp ,

τmNa(Vm) ˙mNa(Vm, t) = mNa,∞(Vm)−mNa(Vm, t) ,

τhNa
(Vm) ˙hNa(Vm, t) = hNa,∞(Vm)− hNa(Vm, t) ,

τmK (Vm)ṁk(Vm, t) = mK,∞(Vm)−mK(Vm, t) ,

(B.4)

where τ(Vm) is an activation time constant, mNa,∞ is the fraction of channels open at equilibrium for
a particular voltage, hNa,∞ is the fraction of channels open at equilibrium for a particular voltage, and
mK,∞ is the fraction of channels open at equilibrium for a particular voltage.
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Appendix C

Additional results from the Toy model
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Calcium-based model: α = 1.6, Isyn1 = 15, frequency = 20 Hz

Figure C.1 – Results obtained when simulating calcium-based allodynia toy model for α = 1.6 and
Isyn = 15 with a frequency of 20 Hz. Light touch stimulus activate Aβ fiber which can’t trigger the
projection neuron. Noxious stimulus activate C fiber which triggers the projection neuron emitting
action potential as a response. This has the effect of increasing the wAβ . Light touch stimulus activates
Aβ again which has now the power of triggering the projection neuron. After some time without any
stimulus, light touch stimulus activates Aβ fiber but this can’t trigger the projection neuron anymore.
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Pair-based model: α = 0.8, Ahet = 0.0053 α, Isyn1 = 14, frequency = 20 Hz

Figure C.2 – Results obtained when simulating the pair-based allodynia toy model for α = 0.8, Ahet =
0.0053 α, Isyn = 13 with a frequency of 20 Hz. Light touch stimulus activate Aβ fiber which can’t
trigger the projection neuron. Noxious stimulus activate C fiber which triggers the projection neuron
emitting action potential as a response. This has the effect of increasing the wAβ . Light touch
stimulus activates Aβ again which has now the power of triggering the projection neuron. After some
time without any stimulus, light touch stimulus activates Aβ fiber but this can’t trigger the projection
neuron anymore.
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