
https://lib.uliege.be https://matheo.uliege.be

Master thesis : ATHLETin: Web module for the management of athletes' training

calendar and medical appointments

Auteur : Lodrini, Guillaume

Promoteur(s) : Mathy, Laurent

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en informatique, à finalité spécialisée en "computer systems security"

Année académique : 2021-2022

URI/URL : http://hdl.handle.net/2268.2/14451

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Master thesis

ATHLETin: Web module for the
management of athletes’ training calendar

and medical appointments

Thesis conducted for obtaining the Master’s degree in Computer
Science and Engineering by

Guillaume LODRINI

University of Liège
Faculty of Applied Sciences
Academic year 2021-2022

Promoter:
Prof. Laurent MATHY

Jury:
Prof. Bernard BOIGELOT
Prof. Guy LEDUC

Abstract

ATHLETin: Web module for the management of athletes’
training calendar and medical appointments

Guillaume LODRINI

Master in computer science and engineering
with specialised orientation in "computer systems security"

University of Liège - Academic year 2021-2022

Promoter: Prof. Laurent Mathy

As far as injuries are concerned, we commonly say that "prevention is better than cure".
However, prevention usually requires a lot of information. This is where the ATHLETin
solution wants to help. Its originator, Julien Paulus, is convinced that a better com-
munication between athletes, trainers, and health specialists would reduce the risk of
injuries. He notably believes that a better overview of the athletes’ training program will
prevent inadequate training load, and more interactions between doctors and managers
will diminish the risk of injury recurrence.

The ATHLETin solution proposes a set of modules, each targeting a particular prob-
lem. A training module to focus on providing adapted training sessions to each athlete,
a medical part to ease the communications with health specialists, and a shared calendar
will allow both managers and athletes to organize themselves. This thesis consisted in
the design, development, and deployment of solutions for the calendar and medical parts.
The solution proposed is composed of a REST server interacting with a database, and
two web modules. The REST server has been implemented in Go and communicates with
a PostgreSQL database. For the web modules, it has been decided to implement them
using the Dart language and the Flutter framework.

The main concern for this project was to provide great performances while keeping the
modules ergonomic. To achieve this for the backend, we added indexes on the database’s
tables to speed up queries. This reduces the average queries duration and ensures con-
stant performances when tables’ sizes increase. For the Flutter modules, efficiency has
been reached through a well-designed state management strategy. This strategy is based
on the Flutter provider mechanism and allows fine-grained control on an application re-
build to avoid unnecessary operations. This thesis also provides several testing strategies,
guidelines to improve them, and a docker solution for the deployment of the components.
As a conclusion, it reviews the work realized and proposes some features to enhance the
current system.

This thesis is part of a project started by the professor Laurent Mathy and his team.
It had induced some technical restrictions, notably on the technologies to use. However,
we still had the freedom of most design choices. The most important was to develop a
solution that complies with its current work to smooth as much as possible the future
integration.

i

Acknowledgements

First, I would like to express my gratitude to my supervisor, Prof Laurent Mathy
for giving me the opportunity to work on this project and for the continuous support
throughout this year.

I wish to extend my special thanks to Gaulthier Gain for always being accessible and
providing me with precious advice, and feedback on this thesis.

I want to use this opportunity to also express my deepest gratitude to the Professors
of the Faculty of Applied Sciences for sharing their expertise with me and contributing
to my academic success. This thesis, along with my five years at university, were a truly
rewarding experience. I have learned and seen things in many fields and it provides me
with lots of new skills.

Finally, I would also like to thank my family who surrounded me during my studies
and always encouraged me for achieving my goals.

ii

Contents

I Introduction 1

1 Introduction 2
1.1 Story of ATHLETin . 2
1.2 Project definition . 2

1.2.1 Calendar module . 3
1.2.2 Medical module . 3
1.2.3 Training module . 3

1.3 List of Constraints . 3
1.4 Proposed solution . 3

II State of the art 5

2 Backend technologies 6
2.1 Go . 6
2.2 GORM framework . 7

2.2.1 Object-Relational Mapping - ORM 7
2.2.2 GORM specifications . 7

2.2.2.1 GORM models . 7
2.2.2.2 Auto-migration . 7
2.2.2.3 Associations . 7
2.2.2.4 CRUD interface . 8

2.3 REST API . 8
2.4 Postman . 9

3 Frontend technologies 10
3.1 Dart . 10

3.1.1 Dart native . 11
3.1.2 Dart on web . 11
3.1.3 Dart runtime . 11
3.1.4 Asynchronous programming . 12

3.2 Flutter . 13
3.2.1 Flutter architecture . 13

3.2.1.1 The Embedder . 13
3.2.1.2 The Engine . 14
3.2.1.3 The Framework . 14

3.2.2 Flutter building blocks : Widgets 15
3.2.2.1 Stateless and Stateful widgets 17

3.2.3 Rendering model . 17

iii

3.2.3.1 Native application rendering model 17
3.2.3.2 Other cross-platform frameworks rendering model 17
3.2.3.3 Flutter rendering model 18

3.2.4 Rendering pipeline . 19
3.2.5 State management . 20

3.2.5.1 The setState method . 20
3.2.5.2 The provider method . 21
3.2.5.3 The GetIt method . 22

3.2.6 Hot reload functionality . 23
3.2.7 Packages and Plugins . 23

III Implementation 24

4 Requirements 25
4.1 Functional requirements . 25

4.1.1 Calendar module requirements . 25
4.1.2 Medical module requirements . 26
4.1.3 Summary diagrams . 28

4.2 Platform requirements . 29

5 High level architecture and Database design 31
5.1 Project architecture . 31
5.2 Database design . 32

6 REST server 37
6.1 Software architecture . 37

6.1.1 Controller-Model pattern . 37
6.1.2 Files organization . 37

6.2 Performances . 38
6.2.1 Indexes . 38
6.2.2 Analysis of indexes efficiency . 39

6.3 Authentication and Routing . 39
6.4 Swagger for documentation . 41
6.5 Postman as testing platform . 41

7 Flutter modules 42
7.1 MVVM Architectural Pattern . 42
7.2 Interaction with REST server . 43
7.3 Files organization . 45
7.4 Performance tools . 45

7.4.1 Flutter profile mode . 46
7.4.2 Dart DevTools . 46
7.4.3 Tracking widget rebuilds . 47
7.4.4 Performance overlay . 47

7.5 Calendar module . 48
7.5.1 Calendar page . 48
7.5.2 Event details view . 49

7.6 Medical module . 49
7.6.1 Injuries table . 50

iv

7.6.2 Injury details . 50
7.6.3 Statistics . 51

8 Testing 53
8.1 REST server testing . 53

8.1.1 Go testify package . 53
8.1.2 Unit tests . 54

8.1.2.1 Testing template . 54
8.1.2.2 Test coverage . 55

8.1.3 Performance tests . 56
8.2 Flutter Web modules testing . 57

8.2.1 Widget testing . 58
8.2.2 Integration testing . 58

9 Deployment 59
9.1 Docker to encapsulate the modules . 59
9.2 Nginx as a reverse proxy . 60
9.3 Starting scripts . 61

IV Conclusion 62

10 Conclusion 63

11 Future work 65
11.1 Add pagination . 65
11.2 Improve responsiveness . 65
11.3 Upgrade it to Flutter 3.0 . 65
11.4 Internationalizing the web modules . 65
11.5 Improve the current role system . 65
11.6 Instant messaging in medical module . 66

A Backend part 67
A.1 Database architecture . 68
A.2 Full Database overview . 69
A.3 Databases indexes . 70
A.4 Test coverage results . 71

B Flutter web modules 74
B.1 Calendar module screenshots . 74
B.2 Medical module screenshots . 78

v

List of Figures

2.1 ORM mapping . 7

3.1 Dart platform compilation [12] . 11
3.2 Asynchronous programming: callback method 12
3.3 Asynchronous programming: async/await method 13
3.4 Flutter layers [18] . 14
3.5 Widget lifecycles [19] . 16
3.6 JavaScript based application rendering model compared to Flutter appli-

cation rendering model [19] . 18
3.7 From initial widget tree to the render tree [18] 19
3.8 Flutter constraints and sizes propagation in the tree [19] 20

4.1 Calendar module use cases . 28
4.2 Medical module, statistics use cases . 28
4.3 Medical module, injuries use cases . 29

5.1 High level view of the interactions between the different components . . . 32
5.2 Internal structure of the database, Calendar part (Primary keys are colored

in yellow and Foreign keys in blue) . 33
5.3 Internal structure of the database, Medical part (Primary keys are colored

in yellow and Foreign keys in blue) . 33

6.1 MC pattern . 37
6.2 Result of the performance test on the update events route 40
6.3 Result of the performance test on the get event athletes route 40

7.1 MVVM pattern . 43
7.2 APIresponse object . 44
7.3 Loading indicator while waiting for a request to finish 44
7.4 Alert dialog because of a bad authentication token 45
7.5 Flutter widget rebuild tracking tool . 47
7.6 Flutter frames rendering time tracking tool 47
7.7 Calendar module agenda, overview (event day display) 48
7.8 Calendar module event details, overview 49
7.9 Medical module overview . 50
7.10 Medical module injury details, overview 51
7.11 Medical module statistics overview . 52

8.1 Coverage result for the event model . 55
8.2 Result of the performance test on the get member events route (Mr.Paulus

estimations) . 57

vi

8.3 Result of the performance test on the get member events route (Our esti-
mations) . 57

9.1 Organization of the project files . 60
9.2 High level overview of the deployment case. Nginx used as a reverse proxy

to handle different routes . 61

A.1 Internal structure of the database (Primary keys are colored in yellow and
Foreign keys in blue) . 68

A.2 Whole database overview . 69
A.3 Covering percentage for models . 72
A.4 Covering percentage for controllers . 73

B.1 Calendar module agenda, overview (event list display) 74
B.2 Calendar module agenda, overview (event month display) 75
B.3 Calendar module agenda, multi-select filter 75
B.4 Calendar module event details, data view 76
B.5 Calendar module event details, status view 76
B.6 Calendar module event details, modify event view 77
B.7 Calendar module add a new event 1 . 77
B.8 Calendar module add a new event 2 . 78
B.9 Medical module injury details, diagnostics 78
B.10 Medical module injury details, add a new diagnostic (wound) 79
B.11 Medical module injury details, add a new diagnostic (wound) 2 79
B.12 Medical module injury details, add a new diagnostic (disease) 80
B.13 Medical module modify a diagnostic . 80
B.14 Medical module injury details, circumstances 81
B.15 Medical module injury details, consultations 81
B.16 Medical module injury details, add a new consultation 82
B.17 Medical module injury details, modify a consultation 82
B.18 Medical module injury details, authorizations 83
B.19 Medical module injury details, add new authorizations 83
B.20 Medical module injury details, modify injury dates 84

vii

List of Tables

3.1 High-level feature comparison among Dart, Java, and JavaScript 10

5.1 Architecture of the database, tables of the Calendar module 34
5.2 Architecture of the database, tables of the Medical module 36

6.1 Files organization of the Go server . 38

7.1 Files organization of the Flutter modules 46

A.1 List of the indexes defined in the database 71

viii

List of Abbreviations

AOT Ahead Of Time.

API Application Programming Interface.

ARM Advanced RISC Machines.

CPU Central Processing Unit.

CRUD Create Read Update Delete.

DB DataBase.

GDPR General Data Protection Regulation.

HTML HyperText Markup Language.

HTTP HyperText Transfer Protocol.

ID IDentifier.

IDE Integrated Development Environment.

JIT Just In Time.

JS JavaScript.

JSON JavaScript Object Notation.

JWT JSON Web Token.

LBFR Ligue Belge Francophone de Rugby.

MVVM Model-View-View Model.

ORM Object-Relational Mapping.

OS Operating System.

REST REpresentational State Transfer.

RFC Request For Comments.

SDK Software Development Kit.

ix

Chapter 0. x

SQL Structured Query Language.

SSL Secure Sockets Layer.

UI User Interface.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

UUID Universally Unique Identifier.

VM Virtual Machine.

Part I

Introduction

1

Chapter 1

Introduction

This introductory chapter goes over the ATHLETin story, from the context where the
idea of ATHLETin was born up to the current state of the project. This introduction
also reviews the ATHLETin project definition and the few constraints on the project, to
finally expose the proposed solution.

1.1 Story of ATHLETin

The story of ATHLETin started about 10 years ago. At this time, Julien Paulus, the
originator of ATHLETin, is the strength and conditioning coach of athletes at the rugby
training center in the Sart-Tilman. As a physical trainer, Mr.Paulus has to prepare the
training sessions for different players. The problem is that players have multiple "train-
ing contexts". Indeed, most of the players train during the week at the training center,
and have a rugby match with their own team during the weekend, coupled with possible
training sessions or competitions with the national team. This makes the management
and the following of each athlete very difficult.

To solve this management issue, a co-worker of Mr.Paulus developed a web appli-
cation called MyLBFR. Initially designed for the Sart-Tilman training center, the appli-
cation grew and became more and more complete. However, sportive administrations in
Belgium refused to invest in the project. This lack of financial support ultimately led the
designer of the platform to stop managing it.

However, Mr.Paulus is convinced that bad training load management is the number
one cause of injuries, and he believes that a well-designed platform would tackle this
problem. Lacking the necessary skills to develop the solution himself, Mr.Paulus gets in
touch with Xavier Picard, asking him to become the head of the commercial part of the
project. The latter, contacted the professor Laurent Mathy to handle the development
part. This is where we are today, the project is currently being developed at the ULiège
university by both the professor Laurent Mathy, his team, and some students including
myself.

1.2 Project definition

As explained in the section 1.1, the application mainly targets the management of athlete
training sessions. On top of that, the application should handle the review and manage-

2

Chapter 1. Introduction 3

ment of athlete injuries. Finally, an agenda should also be available to allow managers to
see their athletes’ programs, and athletes to see their events.

1.2.1 Calendar module

The calendar module, or agenda module, must provide a way for both athletes and man-
agers to manage events. The athletes should be able to visualize the events they are
involved in and notify their eventual absence. From the managers’ perspective, they
should have the possibility to create events, attach athletes to them, and visualize all the
events related to the athletes they supervise.

1.2.2 Medical module

The medical part is intended to be used by health professionals (doctors, physiotherapists
...). Currently, doctors are using shuttle sheets to keep information about athlete injuries.
The medical module aims at the digitization of those sheets. In essence, this module
should allow doctors to create injuries when athletes get hurt, attach them diagnostics,
and define the authorized activities depending on the state of the injury. On top of that,
doctors must also have the possibility to create appointments with injured athletes from
this platform. Finally, some statistics should be computed from the injuries stored to
analyze recurrent problems and find solutions.

1.2.3 Training module

After each training session, athletes will be asked to fulfill a questionnaire linked with
the session completed. This module aims at displaying the results and analyzing them
through some automatic statistical computation. On top of that, it should also allow for
adding data from performance capacity tests to know the training zone of each athlete.

1.3 List of Constraints

Mr.Paulus had very few constraints concerning the development of the project. The
most important things for him were that the platforms should be ergonomic, and easy to
understand.

The professor Laurent Mathy already started the project when my thesis began. He
asked me to reuse the same technologies to ease the future integration. Thus, the web
platforms and the mobile application are implemented in Dart (see section 3.1) with the
Flutter (see section 3.2) framework. Concerning the REST server, it is implemented in Go
(see section 2.1) and the database management system is PostgreSQL.

1.4 Proposed solution

To implement all those different modules, the proposed solution is to develop

• A web platform for each module. Those platforms will be used by the managers to
fulfill their tasks.

• A mobile application for the athletes, from which they can see their agenda and
fulfill their questionnaires.

Chapter 1. Introduction 4

This thesis is about the calendar and medical modules. Therefore the implementation
part III will only cover those two modules.

After this small introduction about ATHLETin to set the context in
which this thesis fits, we will expose the two main parts of this thesis.
The first one will describe the tools used throughout the project while
the second will deal with the implementation details of the proposed
solution.

The following chapter provides a list of the backend technologies
before having a look at what has been used for the frontend part.

Part II

State of the art

5

Chapter 2

Backend technologies

In software engineering, the term backend refers to the data access layer of a piece of
software, the physical infrastructure, or the hardware. Said otherwise, we could consider
the backend as the server in a client-server architecture. In our case, this corresponds to
the database and the REST API. In this chapter, the different backend technologies used
throughout the development of the project are described, starting from the language used
up to the platform allowing to test requests.

2.1 Go

The Go[1] programming language has been described as “the C for the 21st century”[2].
It is a compiled and statically typed language with C-like structures that yet has the
convenience of garbage collection and feels like a dynamically typed, interpreted language
[3]. Go has been conceived fairly recently (in late 2007) by Google based on an idea from
Robert Griesemer, Rob Pike (former Bell Lab researcher), and Ken Thompson (one
of the Unix creators) as an answer to some of the problems seen by Google’s software
developers [4].

This language was not designed as a breakthrough research language but more as a
“software engineering” language [5]. It has been created with a willingness to make things
efficient and simple. This makes Go an easy to understand and learn language with as
key functionalities:

1. A strict error checking policy (it is an error to import unused packages or declare
unused variables)

2. Type inference

3. No implicit type conversion

4. Built-in currency mechanism through goroutine and channels

5. Simplified syntax with few keywords (semicolon removed, no parentheses for func-
tion arguments, possible to return multiple values at once, etc)

Moreover, some frameworks, such as GORM, exist to ease the use of Go as a language to
design databases. This is discussed in section 2.2.

6

Chapter 2. Backend technologies 7

2.2 GORM framework

2.2.1 Object-Relational Mapping - ORM

Object-Relational Mapping is a programming technique that allows communication and
interaction with a database using the Object-Oriented paradigm. In other words, an
ORM sets the mapping between objects written in any Object-Oriented language to the
corresponding SQL queries. This allows for better readability and understanding of code,
leading to easier maintenance. The only drawback is that the level of abstraction over the
way the data is being stored and the request are made can sometimes make the debugging
of the code slightly harder. However, using a logger, it is possible to visualize the requests
perform by the ORM and understand what is wrong.

Figure 2.1: ORM mapping

2.2.2 GORM specifications

GORM[6], as the name suggests, is a full-featured ORM designed for the Go programming
language. GORM provides official support for sqlite, mysql, postgres, and sqlserver
[6]. In the following, I will develop the features that I used during the project, but of
course, the framework allows many more than that.

2.2.2.1 GORM models

Models are normal structs with basic Go types, pointers/alias of them or custom types
[6]. GORM favors conventions over configurations and will convert Go struct names and
their variables to snake_cases respectively as tables and columns name.

2.2.2.2 Auto-migration

GORM auto-migration functionality handles the creation of tables, missing foreign keys,
constraints, columns, and indexes. Said otherwise, it is enough to create the database
tables, to declare the Go structs and use the auto-migration.

2.2.2.3 Associations

GORM allows defining associations between tables. This is especially useful in the many-to-
many case. Combined with the auto-migration functionality, this ease the creation of
relationships between tables. Indeed, to create a relation, one can simply define in one

Chapter 2. Backend technologies 8

of the two object structures a table of the other object. The framework will handle
all the details to create the corresponding mapping table. It also provides methods to
automatically loads associations when reading records.

2.2.2.4 CRUD interface

GORM allows for CRUD 1 operations.

To create a record, it lets the possibility to create it from an object, from an object
but inserting into the database only a subset of the object fields, or from a map[string]
interface{}2. The last case is especially useful to create records from data in JSON
format. In case the record created involves associations, the corresponding values are
upserted and the hook methods3, if any, are invoked.

To read, GORM provides a way to query the database for a particular record using any
of its field(s) as filtering condition. It also provides a way to recover all the records of a
table or all the records of a table matching a particular condition.

To update a record, GORM makes it possible to update all the fields of a record or
only specific columns. As for creation, this can be performed from either an object or a
map[string]interface{}.

To delete, it allows performing a delete operation using the primary key as the match-
ing condition or a batch delete where all the records matching a condition are deleted. As
for creation, GORM lets developers define hooks methods to perform operations just before
or just after deletion.

2.3 REST API

A REST API (also known as RESTful API) is an application programming interface (API)
that conforms to the constraints of REST architectural style and allows for interaction
with RESTful web services. REST stands for representational state transfer [7].

REST is a set of architectural constraints, not a protocol or a standard. This means
that when developing an API, one can implement REST in approximately the way he likes.
The main guidelines are the following:

• Requests have to be sent using http and response must follow the http status code.

• Data must be formatted in a specific format. Most of the time the JSON (Javascript
Object Notation) format is favored4.

• Authorization is contained in the header of requests.

• Stateless client-server communication, meaning that no info about the client is kept
from request to request. Each request is isolated from the others.

1Create, Read, Update, Delete
2interface{} means any type, including custom type
3Methods that implements operations to perform before/after creating/saving a record
4In the context of this thesis, we use JSON format.

Chapter 2. Backend technologies 9

2.4 Postman

Postman[8] is an API client that makes it easy for developers to create, share, test and
document APIs. This is done by allowing users to create, save, and send simple or com-
plex HTTP/s requests, as well as read their responses [9]. Postman is a very complex and
complete tool, but in the scope of this thesis, we used it as a testing platform to test that
my API routes and endpoints were working as expected.

This section presented the list of tools used for the implementation
and testing of the REST server which aims at being easily maintainable
but also at providing efficiency. Those are the main reasons why the Go
language has been selected.

The technologies used for the frontend will be listed in the next
chapter.

Chapter 3

Frontend technologies

The term frontend involves what is linked with the presentation layer. When speaking
about frontend we usually denote everything which is related to the client in a client-
server model. In the scope of this thesis, this corresponds to the Calendar and Medical
modules. This chapter describes the two technologies used to build the frontend part
of the project. First, it reviews the Dart programming language. Then it analyses the
Flutter framework in details.

3.1 Dart

Dart[10] is an open-source, structured programming language. It has been released by
Google in 2011 but is still in active development with regular updates. It is a purely
object-oriented, class-based language that supports dynamic typing (with both static and
dynamic checks), asynchronous operations, and multiple inheritance thanks to mixins
[11]. Dart also offers null safety, meaning that variables can’t be null unless this was ex-
plicitly stated. This allows for protection from null exceptions at runtime through static
code analysis. Finally, it also provides a garbage collector that reclaims unused memory
[12].

Dart language is syntactically very close to Java, and JavaScript languages, making
it very easy to pick up for developers used to one of those two languages [13].

Dart Java Javascript

Type system Optional, dynamic Strong, static Weak, dynamic

Classes Yes, single inheritance Yes, single inheritance Prototypical

Interfaces Yes, multiple interfaces(mixin) Yes, multiple interfaces No

Table 3.1: High-level feature comparison among Dart, Java, and JavaScript

As it can be read on the dart web page, "Dart is a client-optimized language for de-
veloping fast apps on any platform. Its goal is to offer the most productive programming
language for multi-platform development, paired with a flexible execution runtime plat-
form for app frameworks". Said otherwise, Dart is a language that has been thought and
made for multi-platform software development. In addition, it also comes with a large
set of core libraries providing most of the fundamentals for the development of web and

10

Chapter 3. Frontend technologies 11

mobile applications [12].

Finally, Dart’s compiler technology lets you run code in different ways.

Figure 3.1: Dart platform compilation [12]

3.1.1 Dart native

For apps targeting mobile and desktop devices, Dart includes both a Dart VM with just-
in-time (JIT) compilation and an ahead-of-time (AOT) compiler for producing machine
code [12]. During development phase, the JIT compilation together with incremental
compilation allows what we call hot-reloading (see section 3.2.6). Once the app has to be
released, the Dart AOT compiler enables ahead-of-time compilation to native ARM or x64
machine code. This has the advantage of providing better performances (code executed
instead of interpreted) with consistent and shorter startup time (frequently used code has
already been compiled and doesn’t have to be recompiled every time the app is launched).

3.1.2 Dart on web

For apps targeting the web, Dart includes both a development time compiler (dartdevc)
and a production time compiler (dart2js). Both compilers translate Dart into JavaScript
[12]. Then the JavaScript code needs to be run in a browser (e.g. V8 engine interprets
JavaScript for Chrome browser). The dartdevc compiler supports incremental compi-
lation and emits modular JavaScript [14] enabling a fast developer cycle. On the other
hand, dart2js compiler tries to compile Dart code into fast, compact, and deployable
JavaScript using techniques such as dead-code elimination [12].

3.1.3 Dart runtime

Note that, regardless of the platform (except web), or compilation method being used,
executing the dart code requires a Dart VM that provides the Dart runtime which is among
other things in charge of managing memory by applying the garbage collector policy.
On native platforms, the Dart runtime is automatically included inside self-contained
executables [12]. Note that the name "Dart VM" is historical. Dart VM is a virtual machine

Chapter 3. Frontend technologies 12

in the sense that it provides an execution environment for a high-level programming
language, however, it does not imply that Dart is always interpreted or JIT-compiled,
when executing on Dart VM [15].

3.1.4 Asynchronous programming

It is a common situation in software development to perform network calls or disk ac-
cesses and wait that those long tasks finish before going on. Dart, despite being a single-
threaded language, provides asynchronous operations to let your program complete work
while waiting for another operation to finish [16].

Asynchronous operations provide results as what we call Futures. A Future has two
states: uncompleted, or completed. In the first case, the asynchronous operation is still
going on, and the Future is waiting for the operation to finish in order to provide a result.
In the second case, the operation is finished and the Future completed with a value. Note
that Futures are typed variables, Future<T> denotes a Future that when completed will
return a value of type T.

Dart essentially provides two different ways to work with Futures. The first method
consists in using callbacks. This is what is shown on the figure 3.2. With this method,
the callback takes as argument a variable with the same type as the Future returned,
and the callback method is executed once the Future completes.

Figure 3.2: Asynchronous programming: callback method

The second solution is to use the await and async keywords.

• async: You can use the async keyword before a function’s body to mark it as
asynchronous[16].

• async function: An async function is a function labeled with the async keyword[16].

• await: You can use the await keyword to get the completed result of an asyn-
chronous expression. The await keyword only works within an async function[16].

An async function will run synchronously until the first await. Said otherwise, it executes
all the synchronous code before the await, then waits for the Future to complete, and

Chapter 3. Frontend technologies 13

will restart upon completion. This method provides the exact same functionality as the
previous one but has the advantage to be much more readable when multiple asynchronous
operations arise in the same method. The figure 3.3 shows the same code as the figure
3.2 rewritten with async/await method.

Figure 3.3: Asynchronous programming: async/await method

3.2 Flutter

Flutter[17] is an open source framework based on Dart released by Google in 2017 for
building natively compiled, multi-platform applications from a single codebase. Just as
Dart, Flutter is still under development and updates are published more or less regularly
[18]. Flutter is special in that it makes it truly possible to “write once, and deploy every-
where”. Initially, it was possible to deploy Flutter apps to Android, iOS, and ChromeOS.
On top of that, Flutter 2.0 (released in march 2021) and Flutter 3.0 (released in may
2022) made it possible to run Flutter apps as web apps and desktop apps on all major
operating systems [19][20].

From a UI development point of view, Flutter is a reactive, declarative, and compos-
able view-layer library that has some similarities with tools such as ReactJS or SwiftUI.
In short, developers create UI by assembling groups of smaller components, the widgets.

3.2.1 Flutter architecture

Flutter has been designed into three extensible layers. Those layers exist as independent
libraries and each rely upon the underlying one. No layer has privileged access to the
lower layer, and every part of the framework level is optional and can be replaced[18].

3.2.1.1 The Embedder

To the underlying operating system Flutter applications are managed in the same way as
any other native application. The Flutter platform-specific embedder provides a way to
coordinate with an OS for accessing specific services such as rendering surfaces, or input.
As it is a multi-platform framework, Flutter has to provide an appropriate embedder for

Chapter 3. Frontend technologies 14

Figure 3.4: Flutter layers [18]

each platform it supports. Currently, embedders are written in Java and C++ for Android,
Objective-C/Objective-C++ for iOS and macOS, and C++ for Windows and Linux. This
way, one can embed Flutter code as a module to another application or use its code as
a complete application[18].

3.2.1.2 The Engine

The engine layer is written in C/C++. In short, it takes care of file and network requests
and handles the task of (re)rendering whenever a frame needs to be painted. Flutter uses
Skia, an open-source 2D graphics library that abstracts platform-specific graphics API,
as its rendering engine. The engine is exposed to the framework via the dart:ui library
which wraps the corresponding C/C++ code in dart classes so that it can be accessed by
developers easily if needed[18].

3.2.1.3 The Framework

This is the classic way developers interact with Flutter. The framework is written in
Dart and provides modern and reactive interactions. This part is composed of a rich set
of platform, layout, and foundational libraries organized into different layers. This could
be described from bottom to top as

1. Primary fundamental classes and building blocks including animation, gesture de-

Chapter 3. Frontend technologies 15

tection, and painting.

2. A rendering layer that brings abstraction to build a tree of renderable objects.
The RenderObject class is the base class for every object that needs to be painted
on screen. It defines an abstract model for layout and painting. Every painted
element must necessarily inherit from the RenderObject class, and each type of
element (Text, Image, Structural element ...) has its Rendering class. Notes that
a RenderObject knows very few about its children other than how to visit them
and their constraints.

3. The widgets layer introduces the reactive programming model. Each class in the
widget layer corresponds to an object in the rendering layer and thus can be dis-
played on screen. On top of that, the layer allows, to define custom combinations
of classes. This is discussed in more detail in the section 3.2.2.

4. Finally, the Material and Cupertino libraries offer an all-inclusive set of Flutter
widgets that respectively implement the Material and iOS design languages. These
two libraries are the ones that developers usually import when designing applications
in Flutter.

Still, the Flutter framework is relatively small and many high level features that devel-
opers might need are implemented as packages (see section 3.2.7)[18][21].

3.2.2 Flutter building blocks : Widgets

In Flutter, "everything is a widget", said otherwise every element displayed on screen is
a widget. Behind the name, a widget is simply a Dart class that knows how to represent
itself. The structure of an element is defined with the widget, together with its style,
animations and anything that someone may think of that is being part of UI [19]. The
central idea is that widgets are the building blocks of the UI. Flutter provides a rich
catalog of built-in widgets [22] that developers can reuse to create their own widgets to
eventually describe a unique UI.

Concerning the built-in widgets provided by Flutter, most of them can be categorized
in two parts :

• Organizational widgets. Those widgets describe how elements should be organized
on screen or the style of elements, e.g: Row(), Column(), Stack(), Container(),
Padding() ...

• Data widgets. Those widgets represent some data, or object, that should be dis-
played on screen, e.g : Image(), Text(), ElevatedButton() ...

To create complex designs, developers organize widgets in a tree with parent-child rela-
tionships. The process of composing widgets together into a tree is done by telling widgets
that their child(ren) are more widgets [19]. Usually, the widget you find at the top of the
tree are organizational widgets and the leaves are data ones.

Concerning widgets methods and object members, they have only a few of both. The
main method is the build() method. "Every widget" should declare this method. This
method describes the view associated with the widget by returning a tree made of lower-
level widgets. The other life-cycle methods are only available to Stateful widgets. The

Chapter 3. Frontend technologies 16

State.initState method, is the method responsible to initialize all data needed by a
widget before Flutter tries to paint it on screen. The dispose method is the opposite
of the initState one, it is used to tell an object to stop using particular resources. This
method is being called when "State object will never build again" [23]. This is the final
method of the widget life-cycle. Finally, the setState() method should be called when-
ever a State object is modified. This method aims at signaling the framework to update
the UI by calling the State’s build method again [19] [18].

Figure 3.5: Widget lifecycles [19]

Pay attention, "everything is a widget" can be misleading. This doesn’t mean that a
Flutter program includes only widgets. It means that every element that appears on-
screen maps to a widget but developers might also use Dart objects to manage widgets’
state or program logic.

Chapter 3. Frontend technologies 17

3.2.2.1 Stateless and Stateful widgets

When creating a new application, developers commonly author new widgets that are sub-
classes of either StatelessWidget or StatefulWidget. The difference between the two
lies in the name. Stateful widgets keep information about their internal state whereas a
Stateless doesn’t have an internal state. One could say that a Stateful widget is dynamic
whereas a Stateless one is immutable. The first one can be modified over time whereas
the second is built once and for all.

In the 3.2.2 part we said that every widget should declare its build method. However,
for a Stateful widget, the way it works is a bit different than simply implementing the
method in the widget object. Every Stateful widget is associated with its corresponding
state object which does implement the build method. One could see the pair Stateful
widget/state object as a single component. Actually, a Stateful widget just like a State-
less one is immutable, and it is the state object that holds all the mutable information[19].

Note that it is faster to build a Stateless widget than a Stateful one since fewer
methods are invoked for the build. In addition, by using a constant Stateless widget
instead of Stateful we reduce the number of components to be analyzed when having to
rebuild (since it knows that Stateless are immutable) which ultimately fastens the rebuild.

We don’t insist further on the difference between those two types of widgets because,
as we will discuss in section 3.2.5, in practice it is possible to use Stateless widgets only
and just rebuild specific parts of widgets once mutable information is modified.

3.2.3 Rendering model

The rendering model is the way Flutter manages to transform a tree of widgets to their
actual representation on screen. This section, although it is not essential to understand
Flutter or to be a Flutter developer, is interesting to see and understand what is going
on behind the hood. Furthermore, this section also shows how a cross-platform framework
is optimized to provide efficient performances that are comparable to what we could get
from a native application.

3.2.3.1 Native application rendering model

Before looking at how Flutter deals with rendering it is useful to start by thinking
about how traditional native applications work. If we take the example of an Android
application, when rendering, it first calls the Java code of the Android framework. The
Android system libraries come up with components that allow them to draw themselves
to a Canvas object. Then, Android uses Skia which will handle the remaining work to
render elements on the device. We would like Flutter to be as close as possible to this
rendering scheme to get performances that are closed to one of native applications [18].

3.2.3.2 Other cross-platform frameworks rendering model

Concerning cross-platform frameworks, usually, they work by adding an abstraction layer
on top of the native application. This new layer tries to abstract the differences that
may exist between the different platforms supported. The application code is usually
written in an interpreted language such as JavaScript which must in turn deal with a
platform-specific language, Java/Kotlin for Android applications or Objective-C/Swift

Chapter 3. Frontend technologies 18

for iOS ones. All this creates overhead due to what we call "the JavaScript bridge" which
is the major bottleneck to mobile frameworks in JavaScript. Indeed since the application
is not compiled to machine code, to interact with a specific platform, JavaScript code
must be compiled on the fly while the app is running to the targeted platform language.
This creates additional work to perform before rendering objects on the device, which
can be significant, particularly when there is a lot of interaction between the UI and the
app logic (because the UI has to be re-rendered regularly) [18]. Furthermore, this might
also make debugging more difficult in case of runtime error since the error will have to be
traced back across the bridge up to the right JavaScript piece of code [19].

3.2.3.3 Flutter rendering model

Flutter tries to minimize abstractions to reduce as much as possible the overhead. To
achieve this, it bypasses the platform-specific UI widget libraries in favor of its own widget
set. In addition, the Dart code that paints Flutter’s visuals is compiled into native code
from the start. This is an example of AOT performed by Flutter which prevents from
having to compile on the fly some Dart code. Finally, Flutter also embeds its own copy
of the graphical engine Skia as part of its engine layer (see section 3.2.1, Engine layer).
This has the main advantage of allowing applications developers to upgrade their app to
keep up on the latest Skia performance updates event if the phone on which the app runs
hasn’t been updated to the latest version of its operating system [18].

Figure 3.6: JavaScript based application rendering model compared to Flutter
application rendering model [19]

Chapter 3. Frontend technologies 19

3.2.4 Rendering pipeline

Concerning the rendering pipeline, Flutter starts by building the widget tree of the wid-
get that has to be built. In this step, Flutter might introduce in the widget tree new
widgets, as necessary, based on the widgets’ state. For instance, if the widget tree includes
a Container() with a color, Flutter will introduce in the tree a ColoredBox representing
the color. This is why the widgets identified by Flutter inspector might have a structure
much deeper than what the original Flutter code has [18].

Once this task is done, Flutter translates the widget tree into its corresponding
element tree. This tree has the same structure as the tree built previously where each
widget has been mapped to one of the two following elements :

• ComponentElement, a host for other elements.

• RenderObjectElement, an element that participates in the layout or painting phases.

The RenderObjectElement are intermediaries with the RenderObject (see section 3.2.1,
Framework, rendering layer). During the build phase, Flutter creates or updates an ob-
ject that inherits from RenderObject for each RenderObjectElement in the element tree
[18].

Figure 3.7: From initial widget tree to the render tree [18]

Once the render tree has been established, Flutter starts thinking about how the
widgets should be organized. To establish the layout, Flutter explores the render tree
in a depth-first traversal. On the way down, constraints are passed from parent to child.
Then, according to the constraints received, a child can decide about its size and responds
by passing up a size within the constraints to the parent. Thus Flutter has a O(N) way
to decide about object layout [18]. However, this is not because Flutter has an efficient
rendering pipeline that it is not beneficial to take advantage of some mechanism in code
to reduce even more the time necessary to render the UI (see section 3.2.5).
Once all this has been performed, Flutter can finally paint objects on screen.

Chapter 3. Frontend technologies 20

Figure 3.8: Flutter constraints and sizes propagation in the tree [19]

3.2.5 State management

State management, with respect to Flutter, denotes the activity of taking care of the
state of widgets1. A widget can see its state being modified by many different actors such
as another widget, or network, and we would like to make sure that modifications are
handled correctly and visible on screen.

Concerning the states, we distinguish two types. On one hand, an ephemeral state is
a state that can neatly be contained in a single widget. On the other hand, a state that
is not ephemeral is a state that is going to be shared across many parts of your app, and
that might be needed to be saved across user sessions. We call this an application state[25].

In the following, we expose three state management techniques, The provider and
GetIt techniques that we use in this thesis and the setState technique which we don’t use
but which is the most basic technique. For each technique, we also argue why/when it is
a good or bad approach.

3.2.5.1 The setState method

This method consists in using a Stateful widget and saving the state as a/some variable(s)
inside the state object related to the widget. Then, upon modification of state variables,
one should use the setState() method to perform a rebuild. This approach is by far
better suited for ephemeral states rather than for application states. To use this method
to handle application states we have two main solutions. A first solution would be to share
the widget state objects as global variables so that they can be modified from anywhere
in the project. The other solution would be to declare the state variables in the closest
common widget ancestor between the widgets that must share a state. Then, we can pass
callback methods as arguments through the widget tree to be able to modify the state
variables from "outside". In summary,

+ Easy to use and implement for ephemeral state cases.

− With the global variable solution we might end up with a lot of dependencies and
tracking them manually can quickly become cumbersome and error-prone when the
number of actors increases.

1According to Flutter, State is information that (1) can be read synchronously when the widget
is built and (2) might change during the lifetime of the widget [24]. In other words, the state is any
information related to the UI that you might need to rebuild the app.

Chapter 3. Frontend technologies 21

− The common ancestor solution might require passing callbacks and values as argu-
ments through a very long list of widgets, which again is cumbersome and error-
prone.

− Mix logic and UI code.

− Difficult to have fine-grained control over what is rebuilt.

3.2.5.2 The provider method

The provider approach is a wrapper around InheritedWidget2. In a few words, an
InheritedWidget is a widget that makes a resource directly accessible to all its children
in the widget tree. Thus, all the children of this widget inherit the property it exposes.
The provider method provides InheritedWidget capabilities through four concepts,

• ChangeNotifier

• ChangeNotifierProvider

• Consumer

• Provider.of

The ChangeNotifier is a simple class3 included in the Flutter SDK which provides
change notification to its listeners. Said otherwise, if a class is a ChangeNotifier, any
other class can subscribe to it and listen to its changes. With the provider method,
ChangeNotifier is a way to encapsulate your application state. Compare to the setState
method this has the advantage of separating the state and the logic from the UI. For
very simple apps, you get by with a single ChangeNotifier. In complex ones, you’ll have
several models, and therefore several ChangeNotifiers [27].

The ChangeNotifierProvider is a widget that provides an instance of a ChangeNotifier
to its descendants. It means that it is possible to create multiple instances of the same
ChangeNotifier at different locations in your project, to manage multiple independent
ephemeral states. But it also allows sharing the same instance between several listeners,
to deal with an application state. This widget has been implemented in the provider
package. The ChangeNotifierProvider widget must be placed above the widgets that
need to access it but not higher than necessary to avoid polluting the scope [27].

The Consumer is a widget that listens to a particular instance of a ChangeNotifier
exposed by a ChangeNotifierProvider. A Consumer must specify the type of model it
wants to access. This way the provider package will go up the widget tree and find the
closest ChangeNotifierProvider that corresponds to the type requested. The Consumer
widget must provide a builder as argument for its constructor. The builder is a function
that returns a widget and is called whenever the related ChangeNotifier changes [27].

The Provider.of<T> is a method that allows obtaining the nearest Provider of type
<T> in the widget tree. Sometimes, you don’t need the data in the model to change the

2The implementation of this state management technique is a community achievement that has been
approved and adopted by the Flutter development team. This package is open source and can be found
on the pubdev website [26]

3Dart class, not widget.

Chapter 3. Frontend technologies 22

UI but you still need to access it [27]. For instance, in an E-commerce website removing
the content of the cart doesn’t require displaying it, it just requires calling a method (e.g
clear()) that reset the content in the cart state. This could be done with a Consumer
but this would lead to an unnecessary rebuild of the UI.

In summary, it is possible to maintain a state with the ChangeNotifier, expose it
with the ChangeNotifierProvider, and listen to its change with the Consumer.

+ Allows to manage both ephemeral and application states easily

+ Clear distinction between UI code and application logic

+ Fine grained control over what is rebuild through the Consumer builder

+ Approved and recommended by Flutter

+ Scale well

+ Allows to use Stateless widgets only

− Learning curve a bit steeper than setState method for Flutter beginners

3.2.5.3 The GetIt method

First, note that the GetIt package in itself is not a full state management solution as
the Provider solution is. GetIt is a locator solution that allows retrieving objects from
different locations in a program[28]. We decided to explain it in this section as it can
be used to build a state management solution but we simply didn’t use it for this purpose.

As we just discussed, GetIt is a service locator that has a central registry where it
is possible to register classes and then obtain instances of those classes. The first step
is to create the central registry. This central must be easily and quickly accessible from
everywhere. We achieve this by declaring a global GetIt variable. Then we must register
our classes. To do so GetIt offers several methods.

• registerFactory, every time the service is accessed the method returns a new
instance of the corresponding class.

• registerSingleton, creates a singleton4 of a class. Then returns always the same
instance on request. To use this method one must provide an instance of the class
to the registerSingleton method.

• registerLazySingleton, same behavior as the registerSingleton method except
that the instantiation of the class is delayed to the time the object is first time
requested. Here one can simply indicate the class of interest, it is not necessary to
provide an instance of it. This has the advantage to save resources in case a class
is never used or if a process takes time to create and it is preferable to not start it
at the launch of the application.

Once the classes have been registered, it is possible to access them in O(1) via the global
GetIt variable and the name of the class of interest. To sum up,

+ Easy and fast access to classes (O(1)).
4Design pattern that restricts the instantiation of a class to one "single" instance

Chapter 3. Frontend technologies 23

+ Easy to learn, understand and put in place.

− Requires additional material to be used as a complete state management solution.

3.2.6 Hot reload functionality

Flutter’s hot reload feature helps to quickly and easily experiment, build UIs, add fea-
tures, and fix bugs. Hot reload works by injecting updated source code files into the
running Dart Virtual Machine (VM). After the VM updates classes with the new versions
of fields and functions, the Flutter framework automatically rebuilds the widget tree,
allowing you to quickly view the effects of changes [29]. In other words, Flutter hot
reload functionality allows developers to modify their applications and see the changes
almost live. This functionality is one of the key functionalities of Flutter. This increases
the development speed since it is not required to recompile the application at every mod-
ification to see the resulting UI. The tools that allow this functionality are described in
the 3.1.1 and 3.1.2 sections.

3.2.7 Packages and Plugins

As previously said, Flutter still lacks some high-level features to support operations such
as HTTP requests, or interactions with hardware. To overcome this problem, Flutter
supports the use of shared packages written by other developers. More than making some
high-level features available to the community, this also allows building applications with-
out having to recreate everything from scratch which speeds up the development phase
[30]. Existing packages can be found on the pubdev website [26] which allows to search
for packages providing specific functionalities and gives each package a grade over 130
telling if the package follows Flutter conventions, provides documentation, passes static
tests and so on.

This chapter has reviewed in detail the most important concepts of
the Dart language and its associated framework Flutter. This concludes
the state-of-the-art part, and the reader should now be aware of all the
technologies used in the context of this thesis.

The next part will go through the implementation details of the dif-
ferent components constituting this project.

Part III

Implementation

24

Chapter 4

Requirements

This is the first chapter on the implementation of the solution. However, before truly
diving into implementation details, it is important to describe the requirements that will
guide the development phase. This is the purpose of this chapter. It will describe the
features required by each platform without concern for technical details, and provide
summary diagrams of the possible use cases for each module.

4.1 Functional requirements

4.1.1 Calendar module requirements

The calendar module aims to be used by managers. It has the following specifications:

• When accessing the calendar, a manager should be able to:

– Visualize all the events he is managing,

– Create new events,

– Delete existing events,

– Modify existing events,

– Access events’ details easily.

• An event should be composed of:

– a Date and hour: starts of the event,

– a Duration,

– a Title: name of the event,

– a Thematic: description of the event,

– a Location,

– a Message (optional): additional information for the athletes,

– a List of athletes registered for the event,

– a List of categories1,

– a Type (selected from a list): describes the purpose of the event (e.g. training,
medical appointment...).

1In the context of this application, a category is another word for a team. Said otherwise, a category
is simply a group of athletes.

25

Chapter 4. Requirements 26

• It should be possible to switch between different calendar styles: day, week,
month, list.

• It should be possible to filter the events displayed by, athletes, categories,
and types.

• The details of an event should be divided into 4 parts:

– An overview part should display a summary of the event,

– A data part should list the athletes registered in the event, and make it
possible to manage them. This includes adding and removing athletes,
modifying their status2, getting information about what each athlete did
during the event and visualizing athletes’ response to post training ques-
tionnaires3,

– A status part should display the present and missing athletes ergonomically,

– A modify part should allow to modify the event.

4.1.2 Medical module requirements

The medical module aims to be used by health specialists. It has the following specifica-
tions,

• When accessing the medical module the user should be able to:

– Visualize a table that lists all the injuries of the athletes he supervises,

– Create a new injury for a specific athlete and select if it is a recurrent
injury or not,

– Delete an injury,

– Access the details of an injury,

– Visualize some statistics about the injuries.

• The injury table should display for each injury,

– The injured athlete,

– Date when the injury started,

– Current authorizations,

– Next authorizations,

– Diagnostic of the injury.

• It should be possible to filter the injuries by, Status4, Athletes, Diagnostics,
and Authorizations.

• The details of an injury should be splitted in 7 different parts:

– An overview part should recap the injury details,
2Present or Missing
3The two last points are outside the scope of this thesis since they concern the mobile application and

the training module
4Injury closed or in progress

Chapter 4. Requirements 27

– A diagnostic part should allow to manage the diagnostic(s) of the injury.
This includes, creating, removing, and modifying diagnostics.

– A circumstances part should allow to fulfil the circumstances where the
injury occurred,

– A consultation part should allow to manage the consultations related to
the injury. This includes creating new consultations, or modifying existing
ones,

– An authorization part should allow to add, remove, and modify autho-
rizations,

– A discussion part should allow doctors and managers to exchange messages
in a instant messaging similar to Messenger or WhatsApp,

– A closing part should allow to modify the starting and ending date of the
injury.

• Concerning the diagnostics, they can either describe a wound or a disease and
they should be composed of:

– a Body part (selected from a list)

– a Side (selected from a list)

– a Pathology (selected from a list)

– a Diagnostic (selected from a list)

– a Sub-diagnostic (optional) (selected from a list)

– an Occurrence way

– the Consultation (event) where the diagnostic was made

– a Description

• A circumstance should be composed of the following fields,

– A Date

– A Circumstance (selected from a list)

– A Field type (selected from a list)

– A Description

• When adding a new authorization or modifying an existing one, the partici-
pation to events of the athlete concerned by the authorization should be updated
accordingly.

• Concerning the statistics part, it should display four circular charts which describe
percentage of injuries occurring per: body part, side, pathology, and circum-
stance. Then, for each circular chart, according to the value selected, it should be
possible to visualize the average and the median value of the number unavailable
days, the number of missed training sessions, and the number of consulta-
tions. Finally, it should be possible to select the athlete for which we would like to
see statistics.

Chapter 4. Requirements 28

4.1.3 Summary diagrams

The use cases regarding the calendar module and the medical module have been summa-
rized in diagrams, respectively the figure 4.1 for the calendar, and the figures 4.2 and 4.3
for the medical module.

Figure 4.1: Calendar module use cases

Figure 4.2: Medical module, statistics use cases

Chapter 4. Requirements 29

Figure 4.3: Medical module, injuries use cases

4.2 Platform requirements

As stated in the introduction, the modules developed will be integrated in the platform
created by the professor Laurent Mathy, and his team. Thus, they should be imple-
mented in Dart and Flutter. On top of that, some parts of the web modules might be
directly integrated into the mobile application. Hence, to ease the integration, all the
packages used should be compatible with mobile devices. Finally, the code must run on
the latest stable Dart and Flutter release. This implies that the code should comply
with the null safety mechanism.

Chapter 4. Requirements 30

Concerning the backend technologies, the professor Laurent Mathy and his team have
already designed a database. Therefore, the database developed in this thesis should fit
into the existing design and try to reuse as much as possible existing content to ease the
future interaction between new modules and existing functionalities.

In this chapter, we have seen the list of features that should be
implemented as well as the interactions between a user and a module
thanks to the use case diagrams.

Now that the specifications of the project have been clearly defined,
we will review its organization.

Chapter 5

High level architecture and
Database design

This chapter aims to provide the reader with a better understanding of how the project
is organized. It starts with a description of the different components of the project and
shows how they interact together. Then, it reviews the database design and describes the
purpose of the created tables.

5.1 Project architecture

The figure 5.1 represents the high-level architecture of the project. It depicts the different
components of the architecture and shows the interactions between them.

1. The REST Server in Go is the interface that allows interactions with the database.
This server exposes a REST API for other components to retrieve stored information.
It interacts with the database through SQL queries. Those SQL queries are generated
by the ORM (GORM) used to implement the REST server (see section 2.2). By allowing
only a single trusted entity to communicate with the database, we decrease the risk
of security issues. The chapter 6 covers in more detail the different sections of this
component.

2. The PostgreSQL database stores information for both the mobile application
and the web modules. The design of the database is depicted and explained in the
section 5.2

3. The Web server entity consists in the web modules describes in the section 1.2.
Those modules are implemented in Flutter and interact with the REST server
through HTTP requests. All the modules are independent in the sense that they are
hosted at different addresses. This has the benefit of distributing the users across
different platforms according to their needs, which reduces the risk of overload-
ing a platform. Still, the platforms can exchange information through the browser
LocalStorage. Information stored there is permanent unless it is manually re-
moved, information can be stored in a JSON format, and the number of stored
entries is unlimited.

4. The Mobile application, is also implemented in Flutter and interacts with the
REST server through HTTP requests. This component is outside the scope of this
thesis. It is managed by the professor Laurent Mathy, and his team. Nevertheless,

31

Chapter 5. High level architecture and Database design 32

the mobile application is intended to be used by athletes for viewing their agenda,
advertising their possible absence, and filling the post-training questionnaires. The
results from the questionnaires are not directly sent to the corresponding admin-
istration platform, but instead, results are stored in the DB and fetched by the
platform on request.

	�

	�

	�

	�

Figure 1: Interactions between the different components of the IT architecture

4 Components of the architecture

More specifically, the role as well as the behaviour of the different components are described in
the following sections:

4.1 Secure database

To store different information, a PostgreSQL database has been configured within a docker con-
tainer.

4.1.1 Description

The database allows to store, in a persistent and encrypted way, the patients’ personal data. In
addition, the different surveys and their questions are also stored there. For security reasons,
only the REST server can directly access the database (see Section 3).

4.1.2 Installation and Set-up

A Docker container containing the database environment can be downloaded and run with the
following commands:

1 docker pull postgres
2 docker run --name db-psychology -d -e POSTGRES_USER=psychology -e
3 POSTGRES_PASSWORD=psychology -p 5432:5432 --restart=always postgres

The PostgreSQL database will start automatically each time Docker is launched. Please refer
to the Docker official website [9] for the complete documentation.

4

Athletes

Managers

Doctors

Figure 5.1: High level view of the interactions between the different components

5.2 Database design

According to Microsoft, a correct design is essential for achieving your goals in working
with a database. A properly designed database provides you with access to up-to-date,
and accurate information [31]. However, designing an efficient database is far from being
trivial. The designing phase consists in deciding how to organize the data into tables,
what fields to use to represent data, and what kind of relationships should exist between
the tables. On top of that, as the database should be integrated into existing architec-
ture, the design should take current tables into account and try to reuse them as much
as possible to avoid storing twice the same information.

In the context of this thesis, the designing phase was done once for each module. The
calendar module database, as being a requirement of the medical module, was designed
first. The tables related to the medical part were added on top once the calendar part
was completed. This approach has eased the creation of highly modular datasets, and
each module can be seen as being "independent" from the other. The interest in bringing
modularity between the different sets of tables is to ease the understanding of modules
and the integration of the tables in a different context. As the interactions between the
two modules have been minimized, so is the amount of changes required to reuse a module
in a different environment. The figure 5.2, and 5.3 illustrate the final database design.
The global overview is in appendix A.2. On top of that, the tables 5.1 and 5.2 describe
in more details the database tables.

Chapter 5. High level architecture and Database design 33

Figure 5.2: Internal structure of the database, Calendar part (Primary keys are colored
in yellow and Foreign keys in blue)

Figure 5.3: Internal structure of the database, Medical part (Primary keys are colored in
yellow and Foreign keys in blue)

Table Name Description

events Models an appointment. The calendar module is organized
around this table. The records, once loaded on the corre-
sponding web module, are displayed inside a calendar.

Chapter 5. High level architecture and Database design 34

types Stores all the different event types (e.g competition,
(para)medical session, video analysis, or training session
with opposition). This table can be read from the modules
but not written.1

users Represents a user (e.g athlete) who is going to be involved in
events and will answer post-training questionnaires from the
mobile application. To respect the GDPR, personal fields
(e.g., name, first name, and email address) are ciphered in
the database. This table was part of the database design
before the start of my thesis.

categories Represents a team of users. The categories table is used to
store the list of possible teams just as the types table stores
the list of event types. This table can be read from the
modules but not written.

event_athletes Contains the mapping between event(s) and athletes(s).
The status field is used to store the athlete’s participa-
tion in the event. If the status is true, the athlete will be
present, otherwise, he will be missing. The message field
is supposed to be set only if the status is false and in-
forms about the reason why the athlete is missing. The
fields activity and sensation are meant to be used by the
training module to store details about training sessions and
questionnaires.

event_categories Contains the mapping between event(s) and cate-
gory/categories.

event_types Contains the mapping between event(s) and type(s).

category_athletes Contains the mapping between category/categories and ath-
letes(s).

Table 5.1: Architecture of the database, tables of the Calendar module

Table Name Description

injuries Represents an athlete injury. Each injury is related to ex-
actly one athlete, this is modeled by the field id_user inside
the table. The id_recurrence field tells if the injury is a
recurrence of a previous one. The injury referenced by this
field must necessary involve the same athlete as the current
injury. This allows to create links between injuries of the
same athlete.

1A general note for all the "read-only" table. One could decide to remove those tables and list all the
different possibilities directly on the web modules, but using a table allows for better readability, and
flexibility.

Chapter 5. High level architecture and Database design 35

diagnostics Models a diagnostic made by a health specialist. A diagnos-
tic is composed of several information modeled by the ta-
bles diagnostic_body_parts, diagnostic_pathologies,
diagnostic_types, and diagnostic_subtypes. The infor-
mation stored inside a diagnostic is organized in a particular
hierarchy which could be modeled as a tree. A body part is
associated with a set of pathologies, which in turn is associ-
ated with a set of types, which finally defines a list of possible
subtypes. The is_disease field distinguishes if the diag-
nostic describes a wound or a disease. This field is reused
in the diagnostic_body_parts, diagnostic_pathologies,
diagnostic_types, and diagnostic_subtypes with the
same purpose.

diagnostic_body_parts Represents a body part. This table stores a list of predefined
body parts and its content is meant to be read but not
written.

diagnostic_pathologies Represents a pathology. Each pathology is attached to a
specific body part, this is modeled by the id_part field.
This table stores a list of predefined pathologies and its con-
tent is meant to be read but not written.

diagnostic_types Represents a diagnostic. Each diagnostic is attached to a
specific pathology, this is modeled by the id_pathology
field. This table stores a list of predefined diagnostics and
its content is meant to be read but not written.

diagnostic_subtypes Represents a sub-diagnostic. Each sub-diagnostic is at-
tached to a specific diagnostic, this is modeled by the
id_type field. This table stores a list of predefined sub-
diagnostics and its content is meant to be read but not
written.

circumstances Models an injury circumstance. Each injury is attached to
one circumstance.

authorizations Represents a sporting activity authorization. The table lists
the set of possible authorizations for an injured athlete re-
garding training, e.g biking, running, upper body strength
training, or adapted technical-tactical training. Each autho-
rization is associated with a level and depending on this level
adding an authorization to an injured athlete may modify
his status for training sessions as being missing or present.
This table can be read from the modules but not written.

injury_events Contains the mapping between injury/injuries and event(s).
It is used to store the list of medical appointments real-
ized during an injury. The medical module could work with
any kind of event modelization as long as the events have
a unique id. One would simply have to use this id in the
current table instead of the currently defined id_injury.

Chapter 5. High level architecture and Database design 36

injury_diagnostics Contains the mapping between injury/injuries and diagnos-
tic(s).

injury_authorizations Contains the mapping between injury/injuries and autho-
rization(s).

Table 5.2: Architecture of the database, tables of the Medical module

In this chapter, we have seen how the different project components in-
teract together, and the organization of the database which was thought
to be highly modular. In the following, we will review the REST server
and Flutter modules individually to see their inner structures and how
they work.

Chapter 6

REST server

From the previous chapters, we have seen the project specifications and its global organi-
zation. In this chapter, we will review the technical details of the implementation of the
REST server.

6.1 Software architecture

6.1.1 Controller-Model pattern

The Controller-Model pattern is the architectural pattern used for the organization of the
REST server components. This is greatly inspired by the Model-View-Controller Pattern.
The figure 6.1 summarizes the logic behind this architecture.

• The model part represents the data. This is where the representation of the SQL
tables can be found. Tables are defined using Go structure with JSON annotations.
Along with the tables’ definition, this is where all the logic to interact with ta-
bles is implemented. As stated in the section 5.1 (REST Server paragraph), all the
interactions with the PostgreSQL database are performed by GORM.

• The controller part contains the high-level procedures to perform when a request
is received (in path parameter parsing, JSON decoding, UUID checking ...) before
dispatching the remaining tasks to the corresponding model.

Figure 6.1: MC pattern

6.1.2 Files organization

Besides the Controller-Model architectural pattern, files are organized in different folders.
This structure aims, as most of this thesis work, at providing modularity and flexibility.
The organizational system classifies services based on the similarities between the tasks
performed. The table 6.1 lists the folders that come with the controller and model ones.

37

Chapter 6. REST server 38

Package Name Description

auth Contains the authentication components of the REST server. See
section 6.3 for more details

docs The content of this folder is automatically generated by Swaggo.
It contains the documentation of the REST API. See section 6.4 for
further information.

res Contains sample data used to populated the DB in debug mode.
On top of that, they are some Python scripts used to translate
formatted excel files in the corresponding requests to populate the
database.

routes Contains the list of routes exposed by the server.

swaggo Contains additional structures used for the REST API documenta-
tion

tests Contains unit, integration, and performance tests.

utils Contains utility functions often used in the project (e.g UUID check-
ing).

Table 6.1: Files organization of the Go server

6.2 Performances

When someone asked Bruce Lindsay about the 3 most important things in the database
world his answer was: "performance, performance, and performance"[32]. This shows the
importance to attach to efficiency. Efficiency shouldn’t be considered a side task but has
to be actively taken into account when designing a database.

6.2.1 Indexes

An index is an auxiliary data structure that is intended to help to find rids1 of records
that meet a selection condition [33]. It usually consists of a B+tree with high fanout.
Indexes are used to improve the efficiency of the search algorithm used to find records
inside a table. But everything comes with a cost, and indexes are no exception to the
rule. Using indexes involves additional costs linked with the management of the indexes’
data structures. Thus to maximize efficiency, one should define indexes carefully2, try to
minimize the number of indexes per table and prefer defining indexes on tables that are
not frequently modified.

As stated in the last paragraph, indexes help to find records that match a given
condition. Said otherwise, an index target a specific field, or set of fields and is usually
designed to speed up one or a few queries. Some help for single record fetching, whereas
others, will ease range selections on a specific condition. The table A.1, in appendices,
describes the list of indexes defined in the database and their benefits. Note that all the
*_pkey indexes are defined by GORM. Those indexes target the primary keys of the tables

1Record IDs
2The more selective an index the more efficient.

Chapter 6. REST server 39

and enforce the uniqueness of the primary keys. Manually added indexes are in bold in
the table.

6.2.2 Analysis of indexes efficiency

According to theory, indexes improve performances by providing a logarithmic search al-
gorithm. The higher the fanout, the higher the logarithm base. But what do we have in
practice ?

The figure 6.2 illustrates the evolution of the execution time of a query that updates
a specific event in the event table according to the number of events stored. This query
uses the index events_pkey to find the record to update. The setup I established to
measure the execution time is simple. I started by filling my database with a predefined
number of randomized events. Then, I used a pseudo-random number generator to select
one event among all the ones created. Finally thanks to a timer provided by the Go test-
ing package, I measured the time elapsed between the moment the request is launched
up to the moment the response is received. I repeated the two last steps 100 times to
get a representative average value. The execution time was measured for tables of sizes
10, 100, 1000, and 10 000. I selected values increasing by a factor of 10 to illustrate the
fact that, thanks to the logarithmic algorithm provided by the index, the time to find
the record remains almost unaffected even if the table size greatly increases. The graph
confirms what the theory says. Indeed, the execution time seems to follow a logarithmic
curve with respect to the table size3. This comforts us with the idea that our queries will
still be efficient when the database will grow.

To illustrate more clearly the improvements bring by an index, the figure 6.3 compares
the execution time of a query that fetches all the athletes of a specific event with and
without an index. Again the time was measured for tables of 10, 100, 1000, and 10 000
records for the same reason as previously. The methodology used to perform the test is
also equivalent. The result here is even more explicit. With an index, the execution time,
as in the previous case, follows a logarithmic curve, whereas without an index the query
execution time increases at a much faster rate.

6.3 Authentication and Routing

The server uses JWT tokens as authentication mechanism. JSON Web Token (JWT) is an
open standard (RFC 7519) that defines a compact and self-contained way for securely
transmitting information between parties as a JSON object. This information can be
verified and trusted because it is digitally signed [34]. Once a user has successfully logged
in he receives a dedicated token. Subsequent user requests include the token allowing
him to access private routes, services, and resources according to the permission level of
the token. Currently, each request includes a "bearer authentication" in the header. The
token contains,

• An ID, which is the id of the user/member connected.

• An integer representing the role of the connected user/member. Roles allow for
a finer distinction among users and members. This could for instance allow to

3I could go on with larger tables than this but my computer already has some trouble in handling 10
000 tuples table so I decided to stop there

Chapter 6. REST server 40

Figure 6.2: Result of the performance test on the update events route

Figure 6.3: Result of the performance test on the get event athletes route

represent a hierarchy of users with different permissions at each level.

• A session ID representing the current user’s session. This is used by the mobile
application and goes outside the scope of this thesis.

To manage routing, the database relies on a Github package Gorilla/Mux[35]. It imple-
ments a request router and dispatcher for matching incoming requests to their respective
handler. Incoming requests are matched to a list of registered routes and the package is
responsible for calling a handler4 for the matched rule.

4The handler is the corresponding controller method.

Chapter 6. REST server 41

6.4 Swagger for documentation

As always in programming, documentation is essential to ease the understanding and
maintenance of software. The REST server uses swaggo[36], a package based on the
Swagger tool[37], to provide complete and consistent documentation. Swaggo allows to
convert Go annotations (following a specific and predefined scheme) to Swagger docu-
mentation. All the methods exposed in the API (methods in the controller folder) are
described using the swaggo syntax. This allows visualizing in a user-friendly way the
whole API documentation in a web browser. On top of that, it is possible to extract from
the swagger documentation a JSON collection that can be used in Postman (see section
6.5) to automatically build a collection that test every entry point of the API.

6.5 Postman as testing platform

Postman[8] offers a user-friendly way to interact with an API without having to write
some code. This functionality appears to be useful to test an API’s methods very quickly.
To do so Postman allows to define collections and environments. A collection is a set
of HTTP(S) requests, each targeting a specific URL, and having a particular header and
body. The environment is a list of variables (usually IDs) that can be reused by different
requests. The environment usually contains IDs of database resources that are accessed
by the methods of a specific collection.

In the scope of this thesis, on top of the Swagger documentation, we also build a
Postman collection and environment to test and understand the API.

In this chapter, we have seen how the backend part of the project
is organized, how indexes were used to improve the efficiency of the
requests, the routing and authentication mechanisms, how the API
documentation was generated, and we concluded with a technique to
easily test the API routes.

In the next chapter, we will review the other side of the project, the
frontend.

Chapter 7

Flutter modules

In the last chapter, we discussed the organization of the backend part of the ATHLETin
solution. This chapter describes how the frontend part of the project is designed. It
starts with its design pattern, the interactions with the REST API, and the file organi-
zation. Then it reviews the different techniques used to make sure that the application
performances are satisfactory. Finally, the chapter ends with two sections that describe
the functionalities of the modules.

7.1 MVVM Architectural Pattern

As applications are modified, and grow in size and scope, complex maintenance issues
can arise [38]. Most of the time, the issues exist due to a blurred distinction between the
UI display and the business logic that controls it. This simple organizational problem
often results in difficulties to understand the code, apply modifications, or unit test the
application logic.

The MVVM pattern is a well-known design pattern in software engineering. It helps
to cleanly separate the business and presentation logic of an application from its user
interface (UI) [38]. The figure 7.1 shows the interactions that exist between the three core
components of the MVVM pattern: the model, the view, and the view model. This section
will describe them.

First, note that this pattern has many variations and can be interpreted in different
ways. As far as this thesis is concerned here is the way each component interacts with
the others,

• The View, is the component that describes the structure, layout, and appearance
of what the user sees on screen [38]. For Flutter, a view is composed of widgets
only and the structure it defines can be easily modeled by a widget tree. Ideally, it
should be independent of the context and could be reused anywhere. This property
is not fully enforced in our implementation of the pattern. Rather, we defined one
view per page and built it from widgets that may be reusable.

• The View Model implements properties and commands to which the view can
bind, and react to view notification of any state change by updating its model
and notifying the view to rebuild. The properties and commands that the view
model provides define the functionality to be offered by the UI. However, the view
determines how that functionality is to be displayed [38]. In Flutter, this can be

42

Chapter 7. Flutter modules 43

Figure 7.1: MVVM pattern

achieved through ChangeNotifier (see section 3.2.5.2). Each view is attached to a
specific ChangeNotifier and listens to its notifications. But, if we look at a lower
level, most of the widgets inside a view have their own ChangeNotifier. This is
done for efficiency reasons. Using a Model View for each widget allows to have
fine-grained control of the elements displayed on screen, and to selectively rebuild
one element when it is modified instead of rebuilding the whole screen.

• The Model classes are non-visual classes that encapsulate the app’s data. In our
implementation, most of the models define database objects. Therefore, a View
Model usually encapsulates several Models plus some variables to control the view
behavior.

To conclude this section, I would like to highlight the importance of putting in place
such a pattern in a project. More than organizing files, using a pattern have some true
benefits. In the context of this thesis, this was especially helpful to settle a clean state
management technique as well as to deal with application optimization.

7.2 Interaction with REST server

More than providing an ergonomic UI, the different modules must also interact with
the database to save information across multiple users’ sessions. Interactions with the
database are implemented by a set of Services, which are Dart objects made available
everywhere in the project thanks to the GetIt method (see section 3.2.5.3).

The core service is the http_service. It uses the http package [39] to implement
the different types of requests that can be sent to the REST API (GET, POST, PUT, and
DELETE). Each method receives as argument a route (required parameter) and a body
(optional parameter). Then they use the http package methods to send requests with as
header the bearer token received at login (see section 6.3). Once the request has been sent,
we await for the response (see section 3.1.4), and upon reception, the body is decoded

Chapter 7. Flutter modules 44

into a JSON string and the method returns an APIresponse object (see figure 7.2). This
class is used to encapsulate every API response in a generic format that can be reused
whatever the content returned by the REST server is.

Figure 7.2: APIresponse object

On top of the http_service, I built several high-level services to interact with the
different "sections" of the REST server. This included an event_service to manage all the
requests targeting events, an athlete_service for the athletes, or an injury_service
to deal with requests fetching or updating injuries. Those services reuse the functions
implemented in the http_service and translate the JSON string stored in the data field
of the received APIresponse into the corresponding Model object.

During interactions with the database, while the request is in transit, either the whole
view or a part of it is replaced by a loading indicator. This allows to advertise the user
that something is in progress (see figure 7.3). Otherwise, he might believe that the ap-
plication is not responding. To notify that the request has ended, either the loading
indicator is replaced by the corresponding view or if something went wrong during the
request an alert dialog is displayed on screen (see figure 7.4).

Figure 7.3: Loading indicator while waiting for a request to finish

Chapter 7. Flutter modules 45

Figure 7.4: Alert dialog because of a bad authentication token

Finally, it is important to note that each module tries to minimize its amount of
interactions with the database. For the calendar module, this is done by fetching all the
events, and their details when the module is launched for the first time. In the following,
when some data needs to be updated in the database, a request is sent to the database and
the corresponding data is updated locally without re-fetching it. For the medical module,
the idea is identical except that it loads injuries instead of events. This methodology
increases the responsiveness of the module at the expense of a longer initial loading time,
which in our opinion is an acceptable trade-off.

7.3 Files organization

For better readability, files are organized in different folders. The established structure
follows the MVVM pattern plus some folders to store specific types of files. The files are first
classified based on the tasks they fulfill, then according to the module part they target.
As for the REST server, this aims at providing modularity and flexibility. The table 7.1
lists the folders used inside the two modules.

7.4 Performance tools

Every Flutter application uses at least 3 threads to run. The UI thread is the main one,
this is where the main.dart runs and the widgets are built. Along with the UI thread,
there is a raster thread that deals with rendering operations and an I/O thread. Those
two threads are used by Flutter to perform some specific actions but as a programmer
we don’t interact with them. Performance issues usually result from heavy work in the
UI thread. If the actions performed there take too long, or if the work is too large the
application will probably jank1. Depending on the issue many solutions could exist. It
goes from using ListView.builder which will only build visible items for very long lists,
to using Flutter compute() method to create a new isolate2 to perform multiple tasks
at once without overloading the main thread.

Note that Flutter does not recommend trying to over-optimize applications. Normal
applications should be efficient by default and Flutter already provides a good level of
optimization. As they said, optimization should only take place if performance issues can
be observed [42]. However, to ensure that the application is not doing more work than

1Jank refers to sluggishness in a user interface, usually caused by executing long tasks on the main
thread, blocking rendering, or expending too much processor power on background processes [40].

2Instead of threads, all Dart code runs inside of isolates. Each isolate has its own memory heap,
ensuring that none of the states in an isolate is accessible from any other isolate[41].

Chapter 7. Flutter modules 46

Package Name Description

fonts Contains the fonts used by the text displayed on screen.

images Contains the images used by the different views.

constants Contains immutable data the is reused across the project. This
includes specific colors, and REST server constants.

extensions Contains some widgets’ extensions. A widget extension, as the
name suggest, is something that may be added on top of a widget
to grant it with additional functionalities (e.g MoveUpOnHover, or
ShowCursorOnHover).

models Contains the models of the MVVM pattern.

routing This folder contains the routing part of the project. In this case
routing denotes the activity of switching from views to views inside
the module.

services Contains the services used to interact with the REST API.

utils Contains utility functions often used in the project (e.g JSON pars-
ing).

view_models Contains the view models of the MVVM pattern.

views Contains the views of the MVVM pattern.

widgets Contains the widgets composing the different views of the module.

test Contains the unit tests testing the services and utils methods.

Table 7.1: Files organization of the Flutter modules

necessary (e.g useless rebuild). Here are some tools that can be used to check applications’
performance.

7.4.1 Flutter profile mode

Flutter’s profile mode compiles and launches your application almost identically to re-
lease mode, but with just enough additional functionality to allow debugging perfor-
mance problems. For example, profile mode provides tracing information to the profiling
tools[43].

7.4.2 Dart DevTools

The Dart DevTools is a list of features that allows for profiling and debugging Dart and
Flutter applications. As far as performance is concerned, it allows to,

• Diagnose UI jank performance issues

• CPU profiling

• Network profiling

Chapter 7. Flutter modules 47

However, this feature is currently not available for web applications in profile mode. To
circumvent this problem, we decided to use tools available in debug mode. Those are
explained in the following sections.

7.4.3 Tracking widget rebuilds

Dart DevTools offers the possibility to track widget rebuilds. This tool is very useful
to know exactly which pieces on-screen are rebuilt when a specific action occurs. This
allows us to see if some widgets are rebuilt more than necessary, and in converse, if
widgets that should be rebuilt are. This tool allows to fine-tune the notifyListeners()
in ChangeNotifier to the strict minimum.

Figure 7.5: Flutter widget rebuild tracking tool

7.4.4 Performance overlay

The performance overlay is not directly visible on top of the application for a web ap-
plication but can still be accessed from the Dart Devtools. This tool shows over a time
axis the time required by each frame to be rendered. A frame is considered to be janky if
it takes more than 16ms to render it for 60fps3 devices[44]. Thus, one can use its appli-
cation as a regular user would do and then check the frame rendering time to see if the
application is smooth or not.

Figure 7.6: Flutter frames rendering time tracking tool

3frame per seconds

Chapter 7. Flutter modules 48

7.5 Calendar module

This section describes the available features in the calendar module. Some screenshots
of the different views are already provided in the following section, and the rest can be
found in the appendices (section B.1).

7.5.1 Calendar page

The calendar page is the main page of the calendar module. This page allows the authen-
ticated user to visualize the events of the athletes he manages. Upon opening of the page,
the events are fetched from the database and then displayed inside the calendar, which
proposes multiple displays: day, week, month, or list of events. Displayed events can
be dragged&dropped and resized to modify respectively their starting time and duration
without having to access their details. The month view has the particularity of being
divided in two. The upper part displays the calendar while a window below the calendar
displays all the events of the selected day. Finally, on clicking on a particular event, what-
ever the used view, it opens the corresponding event details pop-up (see section 7.5.2).

In addition to the calendar, the left side of the screen provides some filters to ease
the search for specific events. The user can filter events according to their types, the
categories of players supposed to be present at the event, or the list of players registered
in the event. Each filter allows the selection of as many values as they are in the database.

Finally, the dark blue button with circular shape in the bottom right of the screen
opens a window that allows to create a new event. This button appears on top of the
calendar whatever the calendar view selected.

Figure 7.7: Calendar module agenda, overview (event day display)

Chapter 7. Flutter modules 49

7.5.2 Event details view

On clicking on a particular event, a user can access its details. This allows the user to
see more information on the event and modify it if necessary. The first thing displayed
is an overview of the event that includes all the information about the event except the
athletes registered.

The Data section is where the user can see the athlete added to the event. On top of
that, the user can also add new athletes thanks to the add button located in the bottom
right corner, delete some athletes by clicking on the red trash, and modify the status of
athletes by clicking on the pencil in the status column.

The Status part doesn’t bring any new information but simply allows us to get an
easier overview of who is currently participating in the event and who is not.

Finally, the modify tab allows modifying all the fields of the event, except the athletes.
Note that it is not possible to directly modify athletes but athletes might still be modified
if the selected categories are. When adding a new category to an event, all the players
belonging to that category are automatically added. On the converse, when removing a
category, the user has to possibility to select some athletes to keep and the others are
removed.

Figure 7.8: Calendar module event details, overview

7.6 Medical module

This section lists the different features of the medical module. Some screenshots of the
different views are already provided here, but more can be found in the appendices (section
B.2).

Chapter 7. Flutter modules 50

7.6.1 Injuries table

This view corresponds to the home view of the injury module. On that page, we can see a
table listing athletes’ injuries. This table, like all the tables in this module, can be sorted
according to any of its columns. The purpose of the table is not to describe in detail the
injuries, but it is rather to expose some general information about the different injuries
to ease the search for a specific one. Once the injury of interest has been found the user
can click on the small blue eye to access its details (see section 7.6.2).

On left, the user can find a list of different filters that can be combined to locate either
a specific injury, all the injuries of an athlete, finished injuries, ongoing injuries, injuries
with specific diagnostics, or injuries with particular authorizations.

Finally, a button on the bottom of the table allows to create a new injury and add it
to the table.

Figure 7.9: Medical module overview

7.6.2 Injury details

The injury details pop-up allows to get all the available information about an injury and
to modify them if needed. This pop-up is divided in 7 sections each serving a specific
purpose.

The first one, the overview section, as its name suggests, recaps all the information
about the injury in a single view. However, nothing can be modified from this part.

The diagnostics section allows us to see all the different diagnostics made for the in-
jury and to see who did them. This is useful to know if the injury has evolved and to
compare the opinions of different specialists. Note that each diagnostic can be modified
or deleted and it is also possible to add new diagnostics from there.

Chapter 7. Flutter modules 51

The circumstances part consists of a list of fields that have to be completed by the
injured athlete to describe how he injured himself. Most of the fields propose a list of
possible choices but if the other choice is made, then a text field will appear allowing the
athlete to describe what happened.

The consultation tab lists all the medical appointments that have been done, and to
be done by the athlete in the context of this particular injury. Doctors can also create
new events or modify existing ones from there. This allows the health specialists to be
able to interact with the calendar module without having to give them access to it.

The authorization section allows defining what kind of activity the injured athlete is
allowed to perform depending on the evolution of its injury. The athlete’s participation
in events will be updated accordingly to the authorizations defined. To do so each au-
thorization has been assigned a particular level and each type of event requires a specific
authorization level to participate.

Finally the closed tab allows to modify the starting and ending date of the injury.

Figure 7.10: Medical module injury details, overview

7.6.3 Statistics

The last part of the medical module is the statistics page. On this page, the user can
visualize statistics about the athletes’ injuries. This page is made of 4 pie charts. Those
charts allow us to visualize the distribution of the injured body parts, the injured sides,
the pathologies diagnosed, and the circumstances. On top of the charts, the right side
of the screen displays the average and median values of the number of unavailable days,
missed sessions, and medical consultations with respect to the value selected on the cor-
responding chart.

Chapter 7. Flutter modules 52

Figure 7.11: Medical module statistics overview

This chapter, concludes the part about the implementation of the
system. It has reviewed most of the components constituting the project
and explained how the modules are concretely working.

In the next chapter, we will address the testing strategies that have
been implemented, or that could be used to improve the project.

Chapter 8

Testing

This chapter presents testing tools and techniques to ensure the correctness of the imple-
mented functionalities. The chapter is divided into two sections. The first one focuses on
the REST server testing strategies, whereas the second reviews testing approaches for the
frontend part of the project. This allows distinguishing the differences that exist between
frontend and backend regarding testing.

8.1 REST server testing

Providing tests on the REST API was an important part of the creation process of the
database. Indeed, the hard task is usually not to design a database but to make sure
that its implementation conforms to what has been decided. This is especially true in a
REST API where users rely on the specifications to interact with it. Therefore, it was
really important to make sure that the system was performing and reacting just as it is
supposed to. Tests provide a way to track down bugs and ensure the integrity of the
implemented methods, which avoids the burdensome tasks of having to check manually
that a function works as intended each time we slightly change it. However, as always
with testing, just because you’ve counted all the trees doesn’t mean you’ve seen the forest.
Said otherwise, the tests provided try to be as complete as possible and to check every
issue, but it is hard to make sure that all of them have been covered.

8.1.1 Go testify package

Testify[45] is a developer-friendly package with over 16,500 stars on GitHub, and signifi-
cant community support of almost 200 contributors. It extends the capabilities of the Go
standard test package in particular by allowing to perform assertion while still providing
an easy to read and write syntax.

To create tests with testify, there is nothing fancy. The REST server contains a folder
named tests (see section 6.1.2) that contains several Go files, each targeting a specific
table, and importing the testify package. Then, once we imported the package, there is
no need to extend a specific class or implement an interface. It suffices to create methods
taking as argument a variable of type assert.TestingT and to use it to make some as-
sertions on a variable’s value, returned status code from the database, or compare some
objects. Note that the files’ name must end with the "test" keyword for Go to understand
that they are test files.

53

Chapter 8. Testing 54

Finally, to run a specific test, or whole test file the user can either run it from its IDE
(GoLand by JetBrains[46] is well suited for Go) or using the go test -v <package> -run
<TestFunction> command from the terminal to run a specific function from a specific
package. Note that it is the developer’s responsibility to make sure that the database
state is restored after each test performed. If the created records are not properly deleted
after the tests, it will alter the database state.

8.1.2 Unit tests

Unit tests aim at testing small pieces of code independently from each other to make
sure that each piece is performing what it is supposed to do whatever the behavior of the
others. This kind of test fits perfectly for REST API methods testing.

Ideally, a unit test should be written for each implemented method. However, in this
project, we decided to write a unit test for each route exposed by the API. This approach
allows testing the behavior of the API rather than its "implementation", in the sense that
a test aims at enforcing that the tested route is compliant with its specifications whatever
the way it is implemented or used. According to theory, those tests could be considered
as integration tests as they involve several components (routing part of the REST server,
controller, model, JSON decoding ...) but as each target a single component, we believe
they can be viewed as unit tests. We could have written tests for each part individually,
but we don’t think it would have brought more value to the tests.

8.1.2.1 Testing template

Each test follows a particular testing approach, divided into several specific steps. This
allows to make sure that most of the interesting cases have been tested, and that the
database state is restored after the test. Here are the steps followed by each test:

1. List all the different objects that will be created for the test. The first object should
always lead to a valid execution and the followings aim at testing invalid requests.

2. Declare the route and method tested (e.g path:="/api/events" and method:= "GET").

3. Start by trying to send the request with a wrong JWT and checked that the server
returns an error.

4. Send the request with a correct JWT.

5. Check that the HTTP response status complies with what is described in the REST
guidelines.

6. Check that the received JSON is well-formatted, and that the objects it describes
are what they are supposed to be.

7. If the request is supposed to alter the database, check that the database has indeed
been modified.

8. Once all the different cases have been tested, remove all the created records to
restore the database state.

Chapter 8. Testing 55

8.1.2.2 Test coverage

Test coverage is defined as a metric in Software Testing that measures the amount of
testing performed by a set of tests. It gathers information about which parts of a pro-
gram are executed when running the test suite to determine which branches of conditional
statements have been taken[47]. Said otherwise, a covering test tracks which part of the
source code are tested by a specific serie of tests and then computes the percentage of
tested code. This allows getting an estimation of how far the tests are going. The higher
the coverage, the more use cases have been tested.

Go, since release 1.2, provides a mechanism to compute the covering percentage
and display test coverage results on an HTML page. The first step consists in run-
ning tests with a specific flag to signal that we are interested in getting coverage in-
formation. This is done using the following command go test -v -coverpkg=./{YOUR
PACKAGE(S)} -coverprofile cover.out {./TEST PACKAGE}. Then, once all the tests
have been run, one can visualize the result in his browser using: go tool cover -html=
cover.out -o cover.html | open cover.html. A sample of what is provided as result
is displayed in figure 8.1. In this picture, in green, we have the code that has been covered
during the tests, and in red what has not been reached. For the models we get a covering
of 78.66% and 76.36% for controllers (the details are provided in the appendix, see figures
A.3 and A.4, yellow rectangles highlight the files created for this thesis). Those values
are quite good since most of the uncovered code consists of database error checks which
are not reached since no internal error occurs during the tests (see figure 8.1).

Figure 8.1: Coverage result for the event model

Chapter 8. Testing 56

8.1.3 Performance tests

Database performances have already been introduced in the section 6.2. This section
gives details about how long it takes to get all the events of a specific member from the
database. Those results will allow us to determine if pagination will be needed or not
when the number of events will increase.

To get meaningful performance tests, it was first necessary to know how the platform
was going to be used. To do so, I discussed with Julien Paulus to know his expectations
concerning the future of the two modules.

In the short term, he hopes to reach around 100 rugby clubs. For the long term, his
estimation is between 300 and 1000 clubs. On top of that, each club would provide 2
training sessions per day. Assuming 4.5 weeks per month this would lead, per month, to:

100 ∗ 14 ∗ 4.5 = 6300 events

300 ∗ 14 ∗ 4.5 = 18900 events

1000 ∗ 14 ∗ 4.5 = 63000 events

Those numbers represent the total number of events stored per month, which leads to 63
events per month per club.

On top of his estimations, I decided to create another simulation that would lead to
more events per month. This could happen in a situation where the events would target
athletes individually instead of teams. My assumptions were the following. The number
of clients would be between 10 and 100. As for the previous situation, the clients would
be rugby clubs and thus teams of 15 athletes. We could imagine that each club would
have 3 different teams. Then each player in the team could be involved in 4 different
events per week. Assuming we have 4.5 weeks per month, on average, every month, we
get for 10 clubs,

10 ∗ 3 ∗ 15 ∗ 4 ∗ 4.5 = 8100 events

For 100 clubs, with the same assumptions, we get 81,000 events, and in both cases, we
have 810 events per club per month. On top of those numbers, I also tested performances
for 10 events per club, 100, and 400. This allows seeing if the performance’s evolution is
almost linear or if it is exponential according to the number of events stored.

The graphs 8.2 and 8.3 show the results of respectively Mr.Paulus estimations and
our simulation1. The first thing we can note from both graphs is that the number of
clubs (thus the total number of events stored in the database) doesn’t seem to affect the
execution time. What matters is the number of events fetched from the table. This can
be explained by the index. Then, the second graph shows us that the evolution of the
request duration is more or less linear regarding the number of events fetched. Finally,
for 810 events, the request lasts around 10 seconds. From this value, we can deduce that
if we have to fetch all the events of a club for one year, this would take around 2 minutes.

From all those observations, we can first conclude that the total number of events
stored won’t lead to performance issues. Second, in a situation where the number of

1There is an index fast_member_events on the events table to decrease the time necessary to find the
events associated with a particular member.

Chapter 8. Testing 57

Figure 8.2: Result of the performance test on the get member events route (Mr.Paulus
estimations)

Figure 8.3: Result of the performance test on the get member events route (Our
estimations)

events per month per client would increase too much2, pagination might be required to
avoid a too-long delay at the launch of the application. Concerning pagination, several
approaches could be possible: load events by week, by month, load the next 100 events,
and so on. This will have to be discussed when the project will be released. Nevertheless,
if the module usage follows the estimations of Mr.Paulus, the current design will be
efficient enough.

8.2 Flutter Web modules testing

Flutter web user interface testing is probably the weakness of this project. Indeed, the
development phase of the two web modules consisted of repetitive phases of development
and manual testing. This strategy has the benefit of allowing a quicker development, but
at the end of the day, the software is sorely lacking automated tests. Even if usual use
cases have been manually tested, those tests are not robust enough and some corner cases

2more than 500

Chapter 8. Testing 58

may not have been identified. In the section 8.2.1 and 8.2.2, we describe testing strategies
dedicated to flutter applications to address this flaw.

On the contrary, the interactions with the REST API have been tested. The tests
provided verify that the HTTP methods used by the different services (see section 7.2)
succeed in contacting the REST API and that the received response is syntactically correct.
However, they do not proceed to any check on the response content, as this is supposed
to be handled by the database tests.

8.2.1 Widget testing

A widget test (in other UI frameworks referred to as component test) tests a single wid-
get. The goal of a widget test is to verify that the widget’s UI looks and interacts as
expected[48]. We could view this as unit testing for widgets. In a very large applica-
tion, with lots of interactions between widgets, this kind of test might not be the most
appropriate to verify that the platform is doing what it is supposed to. However, it still
might be interesting to verify that some crucial parts of the applications are rendering
well whatever the circumstances.

8.2.2 Integration testing

An integration test tests a complete app or a large part of an app. The goal of an inte-
gration test is to verify that all the widgets and services being tested work together as
expected[48]. In other words, an integration test makes it possible to simulate user inter-
actions and verify that the response from the application is the expected one (e.g when
the user taps a button a network request is sent, which induces a loading indicator to be
displayed and once it is finished, the view is restored and the table has been updated).
On top of the testing capabilities, Flutter also provides a visualization tool that allows
seeing in live the actions performed by the test. This is especially useful for debugging
when a test fails. However, nothing comes for free, and integration tests are no exception
to the rule. Indeed, they usually cost a lot in maintenance and are quite slow to execute.

In this chapter, we have seen how the REST server has been tested,
and we reviewed two kinds of testing strategies that could be put in
place to enhance the test coverage of the Flutter web modules.

As a last chapter, we will see how the project has been deployed
using Docker and Nginx.

Chapter 9

Deployment

This chapter reviews the methodology used to deploy the different parts of the project.
This goes from the encapsulation of each module with its dependencies in independent
containers up to the Nginx configuration to route requests toward the right server. Note
that the deployment strategy has been established by the professor Laurent Mathy, and
his team. As result, my work regarding the deployment simply consisted in adding, on
top of the current configuration, instructions to build the modules created in the scope
of this thesis.

9.1 Docker to encapsulate the modules

The first deployment step was to create dedicated environments for each module. It has
been done by encapsulating each module1 in a container and installing in each the required
dependencies. This way, the dependencies of each module can be managed independently
of the others. The resulting separation between modules allows notably to run them on
different dependencies’ versions according to what they have been developed for. Finally,
using docker to encapsulate the modules allows for quicker and easier deployment. In-
deed, one can run the project inside a VM and the only thing he has to pay attention to is
to install docker inside that VM. The rest is managed by the containers. Without docker,
it would have been necessary to install the dependencies required by all the modules in
the VM.

In the context of this thesis, I created three containers, one for the REST server, and
one for each Flutter web application. On top of that, I reused a Dockerfile provided by
the professor Mathy’s team to build a container for the Nginx reverse proxy (see section
9.2). The figure 9.1 provides an overview of how the project files are organized.

• The REST server container is based on the official Golang image from Dockerhub[49]
on which we copy the Go files, and install all the dependencies used by the REST
server such as GORM or testify. On top of that, we also include the certificates used
for SSL connection for the mobile application. Once this has been done, we build
the executable of the server. Then, we create a new container from a lighter Linux
image, alpine[50], and copy on it the executable, as well as the certificates, and
some SQL scripts used to fill the database. Finally, all the environment variables
used by the server are redefined inside the alpine image and the server entry-point
is defined as the being the path to the executable.

1frontend or backend

59

Chapter 9. Deployment 60

• The Flutter web module containers are built on top of a Debian image. However,
Flutter requires a series of tools to be available in the environment as installation
requirements[51]. Thus, the first step consists in installing those tools. Once it is
done, we download the Flutter SDK version of interest from the Flutter website[52]
and copy all the files of the current directory to the container2. In the scope of this
thesis, we use the Flutter SDK version 2.10.5. Once this have been done, using
the Flutter build command, we ask Flutter to produce JavaScript files using
its dart2js compiler. Those files are later copied inside an Nginx image which will
be the final container and is referenced by the reverse proxy to make the module
accessible by users from their browser (see section 9.2).

• The reverse proxy container is based on an Nginx image and on which we add our
own configuration file.

Figure 9.1: Organization of the project files

9.2 Nginx as a reverse proxy

Once all the modules had been encapsulated, it was necessary to design a web server
to make them accessible from the outside world. This has been done with the Nginx
solution. In a few words, Nginx is an event-driven, and non-blocking asynchronous web
server released through an open-source software[53]. Unlike Apache, one of its major con-
current, which is process-driven, Nginx only required a few processes and distribute the
load among them. It works by creating worker processes to handle incoming requests,
and then managing the events they spawn by adding them to a continuous loop.

In the context of this thesis, Nginx has been configured as a reverse proxy to distribute
users across the different modules depending on the URI they send. To do so, all the
modules have been assigned to the same domain but each one has a specific port. This
way Nginx can easily distribute clients on the right server according to the targeted port.
The figure 9.2 shows what has been explained here.

2Dockerfile is located inside a folder holding all the Flutter code required to start the module

Chapter 9. Deployment 61

Figure 9.2: High level overview of the deployment case. Nginx used as a reverse proxy
to handle different routes

9.3 Starting scripts

The scripts described in this section are not mandatory but they ease the deployment of
the solution by aggregating all the operations to perform to set everything up. They are
3 scripts to use to start the Flutter web modules and the REST server, they are described
here below,

• The build.sh script contains the instructions to build all the docker containers.
This script must be started first unless the docker containers have already been
built.

• The start.sh script contains the instructions to start the previously build contain-
ers. This script can be used with the argument resetdb to reset the database content
and fill it with predefined data.

• The stop.sh script contains instructions to stop and remove all the docker contain-
ers previously started.

This concludes the implementation part. Through this part, we have
seen the requirements of the project, how it was organized globally, the
implementation details of each component, the different testing strate-
gies, and finally how the project was deployed. The next chapter will
conclude this thesis.

Part IV

Conclusion

62

Chapter 10

Conclusion

Throughout this master thesis, we describe how we designed and implemented a database,
a REST server, and two web modules for the ATHLETin company. One of the web mod-
ules allows the management of events from a calendar. The other aims at providing health
specialists with an interface from which they can manage athletes’ injuries. This thesis
expands a project already started by the professor Laurent Mathy and his team. This
has motivated the choice of developing modular components to ease future integration.

Before diving in project implementation, it was necessary to analyze the current sys-
tem specifications, notably the technologies used and the architectural choices. For the
backend, the existing system was composed of a PostgreSQL database with a REST server
in Go. The latter interacts with the database using an ORM dedicated to Go, GORM. For the
frontend part, the choice fell on the Dart language and the Flutter framework. Flutter
is a cross-platform SDK that allows to write once and deploy everywhere. Property that
might be useful later on if the professor Mathy wants to reuse web module parts into a
mobile application.

The development of the solution happened in two phases. First, we designed and
implemented the calendar module part. Then we moved on with the medical module.
This approach helped us to produce modular components.

The primary concern with this thesis was to provide both great performances and
user-friendly interactions, and it has been challenging. To improve the efficiency of the
REST server, we have enhanced the database’s tables with indexes. Those indexes help
to preserve acceptable requests’ duration when the database grows up. Concerning the
web, performance issues are usually due to unnecessary page rebuilding. To overpass this
problem, we used the provider state management pattern. The latter allows selective
rebuild of components depending on the user’s interactions and thus prevents rebuilding
parts that have not been modified.

Once the modules were completed, we created some tests to verify automatically what
we did manually throughout the development phase. On top of that, we also designed
some performance tests to ensure that the efficiency improvements we made were indeed
rewarding. Finally, we created several docker containers for the different project parts.
This way, one can quickly deploy the modules in any environment as soon as it contains
the docker technology.

63

Chapter 10. Conclusion 64

The goal of this thesis was to create a solution for the ATHLETin problems. Af-
ter several designing and implementation phases, the result fits well with the client’s
requirements. The calendar module provides an ergonomic way to visualize and man-
age supervised athletes’ events. The medical solution successfully digitalizes the shuttle
sheets to provide a better follow-up of injuries. As far as the backend is concerned, the
tables have been designed in a modular way to ease the integration within the professor
Mathy architecture. Concerning efficiency, it was not leftover, and several strategies
have been established to ensure stable performances. Finally, the solution comes with
documentation and deploying scripts to ease the reuse in the future.

Chapter 11

Future work

To close this thesis, we list here below possible improvements and new features that could
be added to enrich the current system capabilities.

11.1 Add pagination

As we have seen in the section 8.1.3 the system has some limitations in terms of loading
capabilities. Adding pagination to limit the number of requested events or injuries at the
launch of the modules will most probably tackle this issue without restricting the possible
use cases of the different platforms.

11.2 Improve responsiveness

The application has only a few responsiveness capabilities, as it was not meant to be used
on other devices than computers. Some Flutter widgets already adapt their view once
the screen size change, but improvements could be made to make the platform usable on
other devices.

11.3 Upgrade it to Flutter 3.0

Flutter 3.0 has been released on the 11th of May. This release provides new features such
as compatibility with macOS and Linux desktop apps. Making the required modifications
to deploy the application as a desktop app on the three platforms, Windows, macOS, and
Linux could again enhance the application capabilities.

11.4 Internationalizing the web modules

The modules have been developed for French speakers. Enlarging the number of supported
languages could make the ATHLETin solution available to a greater number of users.

11.5 Improve the current role system

The current application role system doesn’t allow for a lot of authorization tuning. Im-
proving the role system could allow making the platforms more suitable for the need of a
hierarchical organization.

65

Chapter . Future work 66

11.6 Instant messaging in medical module

In the requirement section 4.1.2, we have said that "A discussion part should allow doctors
and managers to exchange messages in an instant messaging similar to Messenger or
WhatsApp". This functionality has not been implemented yet, but as a suggestion for
the future handler of this project, this could be done with web sockets.

Appendix A

Backend part

67

A.1 Database architecture

Figure A.1: Internal structure of the database (Primary keys are colored in yellow and Foreign keys in blue)

A.2 Full Database overview

Figure A.2: Whole database overview

Chapter A. Backend part 70

A.3 Databases indexes

Index name Table (fields) Benefits

categories_pkey categories
(id_category)

Checks for the uniqueness of
each category.

index_fast_team_athlete category_athlete
(id_category)

Speeds up the fetching of a
team’s athletes.

circumstance_pkey circumstances
(id_circumstance)

Checks for the uniqueness of
each circumstance and speeds
up the fetching of the circum-
stances of an injury.

diagnostic_pkey diagnostics
(id_diagnostic)

Checks for the uniqueness of
each diagnostic and speeds up
the fetching of a specific diag-
nostic.

diagnostic_body_parts_pkey diagnostic_body_parts
(id_part)

Checks for the uniqueness of
each body part and speeds up
the fetching of a specific body
part.

diagnostic_pathologies_pkey diagnostic_pathologies
(id_pathology)

Checks for the uniqueness of
each pathology and speeds up
the fetching of a specific pathol-
ogy.

diagnostic_types_pkey diagnostic_types
(id_type)

Checks for the uniqueness
of each diagnostic type and
speeds up the fetching of a
specific diagnostic type.

diagnostic_subtypes_pkey diagnostic_subtypes
(id_subtype)

Checks for the uniqueness of
each diagnostic subtype and
speeds up the fetching of a spe-
cific diagnostic subtype.

events_pkey events (id_event) Checks for the uniqueness of
each event and speeds up the
fetching of a specific event.

event_athletes_pkey event_athletes
(id_event, id_user)

Checks for the uniqueness of
each event athlete and speeds
up the fetching of an athlete in
an event.

fast_users_of_events event_athletes
(id_event)

Speeds up the fetching of all the
athletes of an event.

event_categories_pkey event_categories
(id_event,
id_category)

Checks for the uniqueness of
each event category.

Chapter A. Backend part 71

event_types_pkey event_types
(id_event, id_type)

Checks for the uniqueness of
each event type.

injuries_pkey injuries (id_injury) Checks for the uniqueness of
each injury and speeds up the
fetching of a specific injury.

injury_authorizations_pkey injury_authorizations
(id_injury,
id_authorization)

Checks for the uniqueness of in-
jury authorization and speeds
up the fetching of a specific in-
jury authorization.

fast_auth_of_injury injury_authorizations
(id_injury)

Speeds up the fetching of all the
authorizations of an injury.

injury_diagnostics_pkey injury_diagnostics
(id_injury,
id_diagnostic)

Checks for the uniqueness of in-
jury diagnostics and speeds up
the fetching of a specific injury
diagnostic.

fast_diag_of_injury injury_diagnostics
(id_injury)

Speeds up the fetching of all the
diagnostics of an injury.

injury_events_pkey injury_events
(id_injury, id_event)

Checks for the uniqueness of
injury events and speeds up
the fetching of a specific injury
event.

fast_events_of_injury injury_events
(id_injury)

Speeds up the fetching of all the
events of an injury.

types_pkey types (id_type) Checks for the uniqueness of
types events.

fast_member_events events (creator) Speeds up the fetching of all
the events created by a specific
member.

Table A.1: List of the indexes defined in the database

A.4 Test coverage results

Chapter A. Backend part 72

Figure A.3: Covering percentage for models

Chapter A. Backend part 73

Figure A.4: Covering percentage for controllers

Appendix B

Flutter web modules

B.1 Calendar module screenshots

Figure B.1: Calendar module agenda, overview (event list display)

74

Chapter B. Flutter web modules 75

Figure B.2: Calendar module agenda, overview (event month display)

Figure B.3: Calendar module agenda, multi-select filter

Chapter B. Flutter web modules 76

Figure B.4: Calendar module event details, data view

Figure B.5: Calendar module event details, status view

Chapter B. Flutter web modules 77

Figure B.6: Calendar module event details, modify event view

Figure B.7: Calendar module add a new event 1

Chapter B. Flutter web modules 78

Figure B.8: Calendar module add a new event 2

B.2 Medical module screenshots

Figure B.9: Medical module injury details, diagnostics

Chapter B. Flutter web modules 79

Figure B.10: Medical module injury details, add a new diagnostic (wound)

Figure B.11: Medical module injury details, add a new diagnostic (wound) 2

Chapter B. Flutter web modules 80

Figure B.12: Medical module injury details, add a new diagnostic (disease)

Figure B.13: Medical module modify a diagnostic

Chapter B. Flutter web modules 81

Figure B.14: Medical module injury details, circumstances

Figure B.15: Medical module injury details, consultations

Chapter B. Flutter web modules 82

Figure B.16: Medical module injury details, add a new consultation

Figure B.17: Medical module injury details, modify a consultation

Chapter B. Flutter web modules 83

Figure B.18: Medical module injury details, authorizations

Figure B.19: Medical module injury details, add new authorizations

Chapter B. Flutter web modules 84

Figure B.20: Medical module injury details, modify injury dates

Bibliography

[1] The Go programming language. url: https://go.dev/.

[2] Quotes about Go. url: http://go-lang.cat-v.org/quotes.

[3] Google. Documentation - the go programming language. url: https://go.dev/doc/.

[4] Go wikipedia. url: https://en.wikipedia.org/wiki/Go_(programming_language).

[5] Rob Pike. Go at Google: Language Design in the Service of Software Engineering.
url: https://talks.golang.org/2012/splash.article.

[6] Jinzhu Zhang. GORM documentation. url: https://gorm.io/.

[7] RedHat. What is a REST API? url: https://www.redhat.com/en/topics/api/
what-is-a-rest-api.

[8] Postman. url: https://www.postman.com/.

[9] Jacob Sharir. How to use Postman for API Testing Automation. url: https://www.
blazemeter.com/blog/how-use-postman-manage-and-execute-your-apis.

[10] Dart programming language. url: https://dart.dev/.

[11] Gilad Bracha. The Dart Programming Language. Addison Wesley, 2014. isbn: 9780321927705.

[12] Google. Dart overview. url: https://dart.dev/overview#web-platform.

[13] Chris Buckett. Dart in Action. Manning Publications, 2013.

[14] Google. dartdevc: The Dart dev compiler. url: https://dart.dev/tools/dartdevc.

[15] Vyacheslav Egorov. Introduction to Dart VM. url: https://mrale.ph/dartvm/.

[16] Google. Asynchronous programming: futures, async, await. url: https://dart.dev/
codelabs/async-await.

[17] Flutter framework. url: https://flutter.dev/.

[18] Google. Flutter architecture overview. url: https ://docs .flutter .dev/resources/
architectural-overview.

[19] Eric Windmill. Flutter in Action. Manning Publications, 2019.

[20] Chris Sells. What’s New in Flutter 2. url: https://medium.com/flutter/whats-
new-in-flutter-2-0-fe8e95ecc65.

[21] Temitope Oyedele. A complete guide to Flutter architecture. url: https ://blog .
logrocket.com/complete-guide-flutter-architecture/.

[22] Google. Widget catalog. url: https://docs.flutter.dev/development/ui/widgets.

[23] Google. Flutter dispose method. url: https://api.flutter.dev/flutter/widgets/State/
dispose.html.

85

https://go.dev/
http://go-lang.cat-v.org/quotes
https://go.dev/doc/
https://en.wikipedia.org/wiki/Go_(programming_language)
https://talks.golang.org/2012/splash.article
https://gorm.io/
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.postman.com/
https://www.blazemeter.com/blog/how-use-postman-manage-and-execute-your-apis
https://www.blazemeter.com/blog/how-use-postman-manage-and-execute-your-apis
https://dart.dev/
https://dart.dev/overview#web-platform
https://dart.dev/tools/dartdevc
https://mrale.ph/dartvm/
https://dart.dev/codelabs/async-await
https://dart.dev/codelabs/async-await
https://flutter.dev/
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65
https://medium.com/flutter/whats-new-in-flutter-2-0-fe8e95ecc65
https://blog.logrocket.com/complete-guide-flutter-architecture/
https://blog.logrocket.com/complete-guide-flutter-architecture/
https://docs.flutter.dev/development/ui/widgets
https://api.flutter.dev/flutter/widgets/State/dispose.html
https://api.flutter.dev/flutter/widgets/State/dispose.html

Chapter B. BIBLIOGRAPHY 86

[24] Google. Flutter State<T extends StatefulWidget> class. url: https://api.flutter.
dev/flutter/widgets/State-class.html#:~:text=State%5C%20is%5C%20information%
5C % 20that % 5C % 20(1 , such % 5C % 20state % 5C % 20changes % 5C % 2C % 5C %
20using%5C%20State..

[25] Google. Differentiate between ephemeral state and app state. url: https://docs.
flutter.dev/development/data-and-backend/state-mgmt/ephemeral-vs-app.

[26] Google. Pubdev. url: https://pub.dev/packages/provider.

[27] Google. Simple app state management. url: https://docs.flutter.dev/development/
data-and-backend/state-mgmt/simple.

[28] Thomas Burkhart. GetIt package. url: https://pub.dev/packages/get_it.

[29] Google. Hot reload. url: https://docs.flutter.dev/development/tools/hot-reload.

[30] Google. Using packages. url: https://docs.flutter.dev/development/packages-and-
plugins/using-packages.

[31] Microsoft. Database design basics. url: https ://support .microsoft .com/en- us/
office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5.

[32] Marianne Winslett. Bruce Lindsay Speaks Out. url: https://sigmod.org/publications/
interviews/pdf/p71-column-winslet.pdf.

[33] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems 2nd
Edition. McGraw Hill, 2000.

[34] jwt.io. Introduction to JSON Web Tokens. url: https://jwt.io/introduction.

[35] Gorilla mux package. url: https://github.com/gorilla/mux.

[36] Swaggo. url: https://github.com/swaggo/swag.

[37] Swagger. url: https://swagger.io/.

[38] davidbritch et al. The Model-View-ViewModel Pattern. url: https://docs.microsoft.
com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm.

[39] dart.dev. Http package. url: https://pub.dev/packages/http.

[40] Jank. url: https://developer.mozilla.org/en-US/docs/Glossary/Jank.

[41] Dart. Concurrency in Dart. url: https://dart.dev/guides/language/concurrency#
how-isolates-work.

[42] Filip Hracek. Flutter performances. url: https://www.youtube.com/watch?v=
vVg9It7cOfY.

[43] Flutter. Flutter performances profiling. url: https ://docs .flutter .dev/perf/ui -
performance#launch-devtools.

[44] Google. Flutter performance best practices. url: https://docs.flutter.dev/perf/best-
practices.

[45] Testify package - Thou Shalt Write Tests. url: https://github.com/stretchr/testify.

[46] JetBrains. GoLand. url: https://www.jetbrains.com/go/.

[47] Thomas Hamilton. Test Coverage in Software Testing. url: https://www.guru99.
com/test-coverage-in-software-testing.html.

[48] Flutter. Testing Flutter apps. url: https://docs.flutter.dev/testing.

[49] Goland container. url: https://hub.docker.com/_/golang/.

https://api.flutter.dev/flutter/widgets/State-class.html#:~:text=State%5C%20is%5C%20information%5C%20that%5C%20(1,such%5C%20state%5C%20changes%5C%2C%5C%20using%5C%20State.
https://api.flutter.dev/flutter/widgets/State-class.html#:~:text=State%5C%20is%5C%20information%5C%20that%5C%20(1,such%5C%20state%5C%20changes%5C%2C%5C%20using%5C%20State.
https://api.flutter.dev/flutter/widgets/State-class.html#:~:text=State%5C%20is%5C%20information%5C%20that%5C%20(1,such%5C%20state%5C%20changes%5C%2C%5C%20using%5C%20State.
https://api.flutter.dev/flutter/widgets/State-class.html#:~:text=State%5C%20is%5C%20information%5C%20that%5C%20(1,such%5C%20state%5C%20changes%5C%2C%5C%20using%5C%20State.
https://docs.flutter.dev/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://docs.flutter.dev/development/data-and-backend/state-mgmt/ephemeral-vs-app
https://pub.dev/packages/provider
https://docs.flutter.dev/development/data-and-backend/state-mgmt/simple
https://docs.flutter.dev/development/data-and-backend/state-mgmt/simple
https://pub.dev/packages/get_it
https://docs.flutter.dev/development/tools/hot-reload
https://docs.flutter.dev/development/packages-and-plugins/using-packages
https://docs.flutter.dev/development/packages-and-plugins/using-packages
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://support.microsoft.com/en-us/office/database-design-basics-eb2159cf-1e30-401a-8084-bd4f9c9ca1f5
https://sigmod.org/publications/interviews/pdf/p71-column-winslet.pdf
https://sigmod.org/publications/interviews/pdf/p71-column-winslet.pdf
https://jwt.io/introduction
https://github.com/gorilla/mux
https://github.com/swaggo/swag
https://swagger.io/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/enterprise-application-patterns/mvvm
https://pub.dev/packages/http
https://developer.mozilla.org/en-US/docs/Glossary/Jank
https://dart.dev/guides/language/concurrency#how-isolates-work
https://dart.dev/guides/language/concurrency#how-isolates-work
https://www.youtube.com/watch?v=vVg9It7cOfY
https://www.youtube.com/watch?v=vVg9It7cOfY
https://docs.flutter.dev/perf/ui-performance#launch-devtools
https://docs.flutter.dev/perf/ui-performance#launch-devtools
https://docs.flutter.dev/perf/best-practices
https://docs.flutter.dev/perf/best-practices
https://github.com/stretchr/testify
https://www.jetbrains.com/go/
https://www.guru99.com/test-coverage-in-software-testing.html
https://www.guru99.com/test-coverage-in-software-testing.html
https://docs.flutter.dev/testing
https://hub.docker.com/_/golang/

Chapter B. BIBLIOGRAPHY 87

[50] Alpine container. url: https://hub.docker.com/_/alpine.

[51] Google. Install Flutter on Linux. url: https://docs.flutter.dev/get-started/install/
linux.

[52] Google. Flutter SDK. url: https : / /docs . flutter . dev/development / tools / sdk/
releases.

[53] Tom Rankin. Nginx vs Apache: Which Is the Best Web Server? url: https : / /
themeisle.com/blog/nginx-vs-apache/.

https://hub.docker.com/_/alpine
https://docs.flutter.dev/get-started/install/linux
https://docs.flutter.dev/get-started/install/linux
https://docs.flutter.dev/development/tools/sdk/releases
https://docs.flutter.dev/development/tools/sdk/releases
https://themeisle.com/blog/nginx-vs-apache/
https://themeisle.com/blog/nginx-vs-apache/

