
University of Liège
Faculty of Applied Sciences

Wind Power Forecasting

Master’s thesis carried out to obtain the degree of Master of Science in Data
Science and Engineering by

Dachet Victor

Supervised by

Prof. Ernst Damien

Academic year 2021-2022

Contents

1 Introduction 3

2 Background 5
2.1 Wind turbine physics . 5

2.1.1 Output Power of a wind turbine . 5
2.1.2 Load factor . 7

2.2 Forecasting as supervised learning . 7
2.3 Models and their building blocks . 8

2.3.1 ReLu . 8
2.3.2 Sigmoid . 8
2.3.3 Linear Layer . 8
2.3.4 Softmax Layer . 9
2.3.5 Attention Layer . 9
2.3.6 Multi-Head Attention . 9
2.3.7 Positional Encoding . 9
2.3.8 Recurrent Layer . 9
2.3.9 Transformer . 11
2.3.10 Random Forest . 12
2.3.11 Extra Trees . 12
2.3.12 Naive models: Persistence and climatology 12

2.4 Training Neural Networks . 13
2.4.1 Adam Optimizer . 13

2.5 Metrics . 14
2.5.1 Forecast error . 14
2.5.2 Bias . 14
2.5.3 MAE . 14
2.5.4 MSE . 14
2.5.5 RMSE . 14
2.5.6 MAPE . 14
2.5.7 SMAPE . 14

2.6 Statistics . 15
2.6.1 Pearson Correlation . 15
2.6.2 Spearman’s rank correlation . 15

3 Related Work 16
3.1 Deterministic forecast . 16

i

CONTENTS CONTENTS

4 Datasets Exploration and Preparation 19
4.1 GEFCom2014 dataset . 19
4.2 ORES dataset . 22

4.2.1 MAR data . 22
4.2.2 ORES data . 25
4.2.3 Time-Series matching . 25
4.2.4 Power normalization . 26
4.2.5 Visualization of the distributions . 26
4.2.6 Data set splitting . 27

5 Deterministic forecast 28
5.1 Problem statement . 28
5.2 Naive Method . 29
5.3 Random Forest . 30
5.4 Extra Trees . 30
5.5 RNN . 30

5.5.1 Simple RNN . 30
5.5.2 Architecture 1 . 30
5.5.3 History Forecast Context RNN . 32

5.6 Transformers . 32
5.6.1 Encoder architecture . 32
5.6.2 Encoder/Decoder architecture . 33

6 Experiments on ORES Dataset 36
6.1 Baselines . 36
6.2 Sklearn Models . 36
6.3 Comparison RNN . 37
6.4 Comparison Cells in History forecast . 39
6.5 Comparison Training on different Losses . 40
6.6 Comparison Transformer . 42

6.6.1 Transformer . 42
6.6.2 Transformer Encoder Decoder . 43
6.6.3 Discussion . 45

6.7 Qualitative Results . 46

7 Experiments on Gefcom Dataset 52
7.1 Baselines . 52
7.2 Sklearn . 52
7.3 RNN . 53
7.4 Transformer . 53

7.4.1 Transformer Encoder . 53
7.4.2 Transformer Encoder Decoder . 55

7.5 Qualitative Results . 58
7.6 Discussion comparison ORES and Gefcom Datasets 59

8 Conclusion 63
8.1 Future Work . 63
8.2 Conclusion . 64

ULiège -ii- May 2022

CONTENTS CONTENTS

Glossary 66

Appendix 70
A Pinson formalism . 70

A.1 Renewable energy generation as a stochastic process 70
A.2 Model based forecasting . 70
A.3 Deterministic Forecast . 70
A.4 Probabilistic Forecasts . 71

B Supplementary Results . 71

ULiège -iii- May 2022

Abstract

Renewable energies are challenging to forecast due to their intermittence. However, it is
crucial for the energy transition to predict accurately what is going to be produced at different
temporal resolution (short, mid or long term) to integrate them in the network. In this work,
we investigate the short term horizon. We work in the practical setting of the day-ahead
forecast for wind farms. The aim of this work is twofold: to help the transmission system
operator (TSO) in its task of balancing the network and the market participants of the day-
ahead spot market. Both tasks require to know what is going to be produced for the next day.
In this work, we will try new Artificial Intelligence (i.e. AI) models for wind energy forecasting.
We explore state-of-the-art Machine Learning and Deep Learning models like Random Forest,
Extra Trees, Recurrent Neural Network (i.e. RNN) and Transformers. We also investigate
new RNN cells (e.g. BRC, nBRC and hybrid). We create original architectures of RNNs and
Transformers. To compare the models and assess the results, we use two datasets: the ORES
and the Gefcom2014 dataset. The first dataset is built from ORES recording productions of
wind farms located in Belgium and weather data produced by the MAR (Modèle Atmosphérique
Régional) developed at the University of Liège. The second dataset is often used in the scientific
community. Then, we perform a deep analysis of the results given by the best models on both
datasets. Additionally, we provide perspectives of improvement and we discuss other interesting
techniques to investigate further.

1

Acknowledgement

In this part, I would like to thank the following persons:

• My supervisor Prof. Damien Ernst for proposing me to work with him since a few years
now. I learnt a lot in writing problem statements with his intransigent remarks. I also par-
ticularly appreciate his support when my computer was down. What a stressful moment
quickly solved! I still have a lot to learn with him in the upcoming years.

• ORES for providing me the data of wind farms in Belgium. The wind farm data is difficult
to get. So, I thank them for their help in research. I also would especially thank Mr David
Vangulick for the answers he provided to my questions about the data and the electricity
market

• I would like to thank Mathias Berger who gave me some good pointers in order to go in
the right direction.

• Prof. Xavier Fettweis who agreed that I enrolled to its class about the MAR model last
year. He learnt me a lot of things without those I would not have been able to retrieve the
data from the climatological server. Moreover, he developed the MAR which is a fantastic
model. I admire the wonderful work he did to develop it

• Prof. Gilles Louppe for the discussion we had about the transformer but also because he
introduced me to a lot of technical aspects that I used in this work. I would also generally
thank the professors I had during my studies and especially during the master for the
wonderful training courses they gave me.

• Dr. Antonio Sutera from Haulogy which gave me valuable advice week after week for this
work. He spent a lot of time with me discussing the results and the research directions.
He was a wonderful guide throughout this demanding work.

• My friends for the wonderful time we had during these years of study. Moreover, I greatly
thank my family and particularly my parents for the support they gave me during these
studies

2

Chapter 1

Introduction

Today, our societies heavily rely on electricity. In the last decades, the trend is to go towards
more and more electrical devices, making electricity essential for our daily life. Nowadays, in
Europe, it seems normal to have electricity at any time. However, this common access to elec-
tricity hides a very complex system which requires continuously producing what we consume.
Indeed, it is currently impossible to store a high volume of electricity at a good price.

Europe is slightly transitioning towards renewable energy sources. This transition requires
to find new solutions in order to adapt the network to these new energy sources.

Renewable wind and solar energy sources are intermittent and their production is difficult
to forecast. Nevertheless, it is useful to know previously how much electricity is available in
the future. For example, on a short time horizon, it is important for the transmission system
operator (TSO) to know in advance the power production that will be available in order to
balance the network but also for the market participants of the day-ahead spot market which
need to set up a price for their bids on the day ahead wholesale market. On a long time horizon,
it is necessary to have an idea of the power generation capacity of our grid to plan the construc-
tion of other means of production or not. All these reasons explain why advanced forecasting
techniques are of great help in order to integrate these new technologies in the existing network.

The rising of artificial intelligence offers new tools to forecast energy production. In this
work, we will explore machine learning and deep learning techniques in order to apply them on
this renewable energy forecasting problem. Especially, we will use recurrent neural networks
(i.e. RNN) and transformers which are powerful techniques to deal with time series but also
more classic algorithms like random forest.

First, we will forecast the energy production of wind farms located in Belgium. Thanks
to meteorological data simulations produced by the MAR1 [1] developed at the University of
Liège in the Laboratory of Climatology and production data from ORES2. Then, we will use
the GEFCom2014 dataset [2] which is a well known dataset used in the scientific community.
It is composed of several tasks. Among them, one is the wind energy forecasting. We will
explore the capacity of machine learning and deep learning techniques to predict renewable
energy production.

1Modèle atmosphérique régional
2ORES is a belgian distribution company

3

CHAPTER 1. INTRODUCTION

We will work in the practical setting of the day-ahead spot market which requires to forecast
the energy production at midday for the next day. Thus, we will adapt both datasets mentioned
above to this practical framework.

The research questions on which we will attempt to shed light will be:

• Are new artificial intelligence methods better than naive or simple regression models?

• Which is the most suited algorithm for point energy forecasting among RNNs, transform-
ers and random forests? Especially at quarter and hour wind turbine day-ahead forecast.

• Are the new bistable recurrent neural networks [3], which allow long term memory, better
than the other methods?

In order to answer these research questions, we will first describe the background necessary
to assess the results as well as to understand the models (e.g. RNN) in chapter 2. Then, in
chapter 4, we will dive into the different datasets. After that in chapter 5, we will define formally
the deterministic problem statement as well as describing the architectures developed. Then,
in chapter 6, we will compare the different approaches on the ORES dataset and lead a study
of the results of our best model. After that, in chapter 7 we will apply the same methodology
on the gefcom dataset. Finally, we will conclude in chapter 8.

ULiège -4- May 2022

Chapter 2

Background

In this chapter, we will first describe basic knowledge about wind turbine physics in sec-
tion 2.1. Then, in section 2.2, we will explain what is supervised learning and the intuition
why a forecasting problem can be formulated in this way. After that, in section 2.3, we will
explicitly define all the building blocks and models used in this work. Afterwards, in section 2.4
we will explain how we train the deep learning models in this work. Finally, in section 2.5 and
section 2.6, the different metrics and statistics will be defined.

2.1 Wind turbine physics

2.1.1 Output Power of a wind turbine

In the book [4] part III B., they introduce basic concepts of wind turbines physics. In
Figure 2.1, one can see a little scheme with an area equals to A and a volume of wind equals
to Avt with v the speed norm of the wind and t the time variable. The kinetic energy of the
volume of air represented is equal to

1

2
mv2 =

1

2
ρAvtv2 =

1

2
ρAtv3. (2.1)

The energy of the wind per unit time (power) is equal to

1

2
mv2

t
=

1

2
ρAv3. (2.2)

The physics rule which governs the power given by the wind is thus proportional to the cube
of the speed norm.

In practice, the wind turbine power output has a typical shape like in Figure 2.2. One can
see the four regimes of a wind turbine:

1. Below the cut-in speed, the wind turbine does not produce electricity.

2. Between vc and vr, the power production follows the physics rule as defined in Equa-
tion 2.2.

3. Between vr and vf , the wind turbine produces electricty at its maximum capacity.

4. Higher than vf , the wind turbine is shut down to prevent damages.

According to [5], typical values ranges are vc = 3−4m/s, vr = 11−17m/s and vf = 25m/s.

5

2.1. Wind turbine physics

Figure 2.1: Wind Turbine Physics Scheme from [4] where we can see a volume of air passing
through an given area of wind turbine.

Figure 2.2: Typical Wind Turbine Output from [5] where we can see the four regimes of a wind
turbine.

ULiège -6- May 2022

2.2. Forecasting as supervised learning

2.1.2 Load factor

The load factor of a wind farm is defined in [6] as:

η =
Average Load

Maximum load in given time period
.

This coefficient gives the efficiency of the means of production.

2.2 Forecasting as supervised learning

A forecasting problem is a problem where we try to predict the values of a given process
based on currently available data. It can be seen as a supervised learning problem. There are
two main types of tasks: classification and regression. This work only relates to regression so
let us introduce this supervised learning task.

As defined in [7, Lecture 1: Fundamentals of machine learning], supervised learning consists
in given training data i.e. pairs of input variables and target variables measured

(xi,yi) ∼ P (X, Y) (2.3)

with P (X, Y) an unknown joint probability distribution, xi ∈ X , yi ∈ Y , i = 1, . . . , N . The
training data is generated i.i.d. and can be of any finite size N . We usually do not have prior
information on P (X, Y).

Our inference task is that given our training data we want to infer for any new x

E[Y |X = x]. (2.4)

To achieve this goal, we perform an empirical risk minimization. Given a function f : X → Y
the predictions of this function can be evaluated through a loss

l : Y × Y → R+ (2.5)

where l(y, f(x)) ≥ 0 measures how close the prediction f(x) is to y.

The function f belongs to an hypothesis space F . We define the empirical risk as

R̂(f,d) =
1

N

∑
(xi,yi)∈d

l(yi, f(xi)) (2.6)

where d is the dataset.

The empirical risk minimization consists in finding the optimal model

f∗ = argmin
f∈F

R̂(f,d). (2.7)

A regression supervised learning problem can be seen as given (xi, yi) ∈ X × Y for i =
1, . . . , N , we want to estimate for any new x,

E[Y |X = x]. (2.8)

ULiège -7- May 2022

2.3. Models and their building blocks

Our power production forecasting problem can be seen as a supervised learning regression
problem by creating pairs of input/output data. Therefore, given the data available x at a
given moment, we will try to find ŷ = f(x) as close as possible to the ground truth y.

A more detailed problem statement is given in section 5.1.

In order to assess that we effectively find the expected value of y given x as stated in Equa-
tion 2.8, it is important to create three distinct datasets: train, validation and test set. The
train set is used in the empirical risk minimization process in order to find an optimal model.
Then, using the validation set we will tune the hyper-parameters of the model. Finally, after
several iterations of hyper-parameters tuning, we will assess the performance of the model on
the test set.

In section 2.3, the different deep learning building blocks as well as the different typical
models used in this work will be introduced.

2.3 Models and their building blocks

In this section, we will describe all the building blocks required to fully understand the
different architectures that we will test in this work.

2.3.1 ReLu

The ReLu function is an activation layer defined as follows:

ReLu(x) = max(0, x)

which introduces useful non linearities in the model.

2.3.2 Sigmoid

Sigmoid function is an activation layer defined as follows:

σ(x) =
1

1 + e−x
(2.9)

which has as great property to clip its output between 0 and 1. This property can be exploited
when we want to approximate a probability or a normalized power production.

2.3.3 Linear Layer

A linear layer applies a linear transformation to the input x ∈ Rin as:

y = xAT + b (2.10)

with A ∈ Rout×in and b ∈ Rout.

ULiège -8- May 2022

2.3. Models and their building blocks

2.3.4 Softmax Layer

A softmax layer applies to a vector x ∈ Rp

Softmax(xi) =
expxi∑
j expxj

(2.11)

The nice property of this layer is that the sum of the elements in the output vector is equal to
1.

2.3.5 Attention Layer

The scaled dot-product attention mechanism as defined in [8]:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.12)

with queries Q and keys K ∈ Rdk and V ∈ Rdv .
The scaling factor

√
dk is there to avoid suspected vanishing gradient for large values of dk.

2.3.6 Multi-Head Attention

The multi-head attention mechanism is based on the concatenation of h attention mecha-
nisms.

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O (2.13)

where headi = Attention(QWQ
i , KW

K
i , V W

V
i) (2.14)

with WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk and W V
i ∈ Rdmodel×dk are the parameters to learn.

2.3.7 Positional Encoding

The positional encoding as defined in [8] consists in adding to a time multivariate time series
input ∈ RSx,p:

PE(pos,2i) = sin(pos/100002i/dmodel) (2.15)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.16)

to the features at place 2i and 2i+ 1 of the token with position pos ∈ {1, . . . , Sx}.

2.3.8 Recurrent Layer

In classical supervised learning, we try to find a function f : X → Y where X is a p-
dimensional space and Y a q-dimensional space. When we have to deal with time series, we get
a sequence S(X) = ∪n−1

t=0 X t of observed variables. Recurrent Neural Networks (RNN) are well
known deep learning models to deal with these time series. Indeed, they ingest one by one the
elements of the input window sequence it while updating their recurrent states ht ∈ Rq with q
the size of the layer.

ULiège -9- May 2022

2.3. Models and their building blocks

More formally, the recurrent state ht ∈ Rq with q the number of units in the recurrent layer
is updated at each time step t ∈ {0, 1, . . . , n− 1}. Formally, for t = 1, . . . , n,

ht = ϕ(xt,ht−1)

where ϕ : Rp × Rq → Rq and h0 ∈ Rq.
It can output a prediction yt at any time step t from the recurrent state

yt = ψ(ht)

with ψ = Rq → RC . So, it finally outputs a tensor of size n × C with C which is equal to
q or a given projected size. We will use four different types of RNN: LSTM, GRU [9], BRC [3]
and nBRC [3]. We will formally describe each of these architectures. Indeed, the hypothesis
space F of each RNN is completely defined by its number of layers, units, update function ϕ of
its recurrent states and its prediction function ψ.

LSTM
The long short term memory (LSTM) introduced by [10] in 1997, has 2 recurrent states to
update: ht and ct. The updates are written as:

ft = σ(Wfxt + Ufht−1 + bf)

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = σ(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ σh(ct)

with xt ∈ Rp,Wf ∈ Rh×p,Wi ∈ Rh×p,Wo ∈ Rh×p,Wc ∈ Rh×p, Uf ∈ Rh×h, Ui ∈ Rh×h, Uo ∈
Rh×h, Uc ∈ Rh×h,b ∈ Rh and ct ∈ Rh.

GRU
The Gated Recurrent Unit (i.e. GRU) was introduced by [9] in 2014 to simplify the LSTM

and has similar performance than the previous one. Its update is given by:

zt = σ(Wzxt + Uzht−1)

rt = σ(Wrxt + Urht−1)

ht = zt ⊙ tanh(Whxt + Uh(rt ⊙ ht−1) + bh) + (1− zt)⊙ ht−1

with xt ∈ Rp, vectors b ∈ Rh,h ∈ Rh and matrices W ∈ Rh×p and U ∈ Rh×h .

BRC
More recently in 2021, the bistable recurrent cell (BRC) introduced by [3], tries to mitigate

the problem of long lasting memory in RNN. By imitating a neuronal mechanism which allows
to store information at the cellular level for a long term, the BRC is able to better memorize
information than classical GRU and LSTM on several tasks. This mechanism is called bistability.

ULiège -10- May 2022

2.3. Models and their building blocks

The updates are written as:

ct = σ (Ucxt +wc ⊙ ht−1)

at = 1 + tanh (Uaxt +wa ⊙ ht−1)

ht = ct ⊙ ht−1 + (1− ct)⊙ tanh (Uxt + at ⊙ ht−1)

with xt ∈ Rp, Uc ∈ Rh×p, Ua ∈ Rh×p, U ∈ Rh×p

nBRC
Introduced by [3] again, the neuromodulated bistable recurrent cell (nBRC) improve further

the BRC by relaxing the constraint of bistability. They create a dependency of at and ct on the
outpout of other neurons of the layer. The difference with the BRC stands in the formula of at
and ct. The update rule is the same as in BRC. The updates are written as:

at = 1 + tanh (Uaxt +Waht−1)

ct = σ (Ucxt +Wcht−1)

ht = ct ⊙ ht−1 + (1− ct)⊙ tanh (Uxt + at ⊙ ht−1) .

with xt ∈ Rp, Uc ∈ Rh×p, Ua ∈ Rh×p, U ∈ Rh×p,Wa ∈ Rh×h,Wc ∈ Rh×h.

Hybrid cell An Hybrid RNN cell is the concatenation of several different cells into the hidden
state of a Recurrent Neural Network. Instead of having only n GRU cells, you may for example
concatenate n/2 GRU cells and n/2 BRC cells.

2.3.9 Transformer

In [8], they introduced a new architecture: the Transformer. It is almost only based on
the attention mechanism. The performance was tested on a natural language processing task.
However, this new architecture can be adapted to regression tasks like in [11].

In Figure 2.3, one can see the building blocks of the transformer which is a composition
of N Encoder and Decoder. The Encoder block is itself composed of Multi-Head Attention
mechanisms and Feed Forward neural networks. The Decoder block is built with masked multi-
head attention, a Multi-Head Attention layer and a final Feed-Forward Neural Network. They
also both use skip connections in the add and norm layer in order to avoid vanishing gradients
problems.

Then, the output of the decoder passes through a linear and Softmax layer to get a proba-
bility vector over the vocabulary. It is important to notice some particularities. The input of
the model is a sequence of size RSx×v. Then, this sequence is embedded into a sequence of size
RSx×e. The embedding size e will remain constant through each Encoder/Decoder block.

Moreover, a positional encoding is applied on the input embedding this ensure that the
position of the token in the sequence is kept in the input of the Transformer. The dmodel
parameter of the positional encoding is equal to the dimension of the embedding e.

ULiège -11- May 2022

2.3. Models and their building blocks

Figure 2.3: Transformer architecture introduced in [8] composed of N stacked encoder and
decoder with positional encoding and a softmax output layer.

2.3.10 Random Forest

Random forest is an ensemble method which consists in building an ensemble of randomized
regression trees. It belongs to the class of averaging methods and use the perturb and combine
paradigm. In fact, it combines bagging and random attribute subset selection [12]. Bagging is
the contraction of Bootstrap Aggregation and consist in reducing the variance of weak models
(trees).

2.3.11 Extra Trees

Introduced in [13], the Extra Trees model is an ensemble method close to the Random Forest
except in the choice of attribute subsets and in the choice of cut-off points. Indeed, Extra Trees
do not use bootstrap whereas the Random Forest does. The choice of cut-off point is done
randomly instead of using the optimal one.

2.3.12 Naive models: Persistence and climatology

Persistence and climatology are two naive methods in order to compare whether or not our
model learns some patterns. The persistence model is defined by: given y0, . . . , yk−1,

ŷk−1+n = yk−1∀n ∈ N0 (2.17)

ULiège -12- May 2022

2.4. Training Neural Networks

The climatology model is defined as the mean of the time series power production:

ŷk−1+n =
1

M

m−1∑
i=0

yi (2.18)

We draw your attention to the fact that this mean must be computed on the training set only
to avoid leaking information from the validation set to the model.

2.4 Training Neural Networks

2.4.1 Adam Optimizer

The Adam optimizer is considered as one of the default optimizer in deep learning. Indeed
as described in [7, Lecture 4: Training neural networks], it performs mini-batch gradient descent
while combining adaptive learning rate and momentum.

Mini-batch gradient descent consists in applying iteratively gradient steps on several sam-
ples:

gt =
1

N

N∑
n=1

∇θℓ (yn, f (xn; θt)) (2.19)

θt+1 = θt − γgt (2.20)

where γ is the learning rate and N is the batch size. A pass on every sample in our batch is
called an epoch. In order to optimize Neural Networks, several passes on the entire dataset
are usually required i.e. the number of epoch is a key parameter.

The updates of the parameters θ with adaptive learning rate and momentum are performed
as follows:

st = ρ1st−1 + (1− ρ1) gt (2.21)

ŝt =
st

1− ρt1
(2.22)

rt = ρ2rt−1 + (1− ρ2) gt ⊙ gt (2.23)

r̂t =
rt

1− ρt2
(2.24)

θt+1 = θt − γ
ŝt

δ +
√
r̂t
. (2.25)

In this work, default parameters of the [14, pytorch] implementation are kept i.e. ρ1 = 0.9, ρ2 =
0.999. The learning rate was set to 0.0001.

ULiège -13- May 2022

2.5. Metrics

2.5 Metrics

2.5.1 Forecast error

The forecast error is defined as the difference between the truth and the forecast error:

ϵ = yi − ŷi. (2.26)

2.5.2 Bias

The bias is the mean over the forecasting horizon of the errors:

bias =
1

n

n−1∑
i=0

yi − ŷi (2.27)

2.5.3 MAE

The mean absolute error (MAE) is defined as

L(ŷ,y) = 1

n

n−1∑
i=0

|yi − ŷi| (2.28)

2.5.4 MSE

The mean square error (MSE) is defined as

L(ŷ,y) = 1

n
||y − ŷ||22 =

1

n

n−1∑
i=0

(yi − ŷi)2 (2.29)

2.5.5 RMSE

The root mean square error (RMSE) is defined as

L(ŷ,y) =
√

1

n
||y − ŷ||22 =

√√√√ 1

n

n−1∑
i=0

(yi − ŷi)2 (2.30)

2.5.6 MAPE

The mean absolute percentage error (MAPE) is defined as

MAPE =
1

n

n∑
i=1

|yi − ŷi|
|yt|

(2.31)

2.5.7 SMAPE

The symmetric absolute percentage error (SMAPE) is defined as

SMAPE =
2

n

n∑
i=1

|yi − ŷi|
|yi + ŷi|

∈ [0, 2] (2.32)

ULiège -14- May 2022

2.6. Statistics

2.6 Statistics

2.6.1 Pearson Correlation

As stated in [15] the Pearson coefficient is defined as

corr(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(2.33)

with x ∈ Rn and y ∈ Rn.

2.6.2 Spearman’s rank correlation

As stated in [16] the person coefficient is defined as

spearman(X, Y) = ρrgX ,rgY =
cov(rgX , rgY)

σrgXσrgY
, (2.34)

where

• ρ denotes the usual Pearson correlation coefficient, but applied to the rank variables,

• cov(rgX , rgY) is the covariance of the rank variables,

• σrgXσrgXand σrgY σrgY are the standard deviations of the rank variables.

ULiège -15- May 2022

Chapter 3

Related Work

We will structure this section as in [17] but focusing on deterministic forecasting. More-
over, we will rely on [18] which is a review only focused on deterministic wind power forecasting.

Deterministic forecasting models have been more investigated in the past but are still im-
proved over the years thanks to new methods. On the other hand, probabilistic forecasting is
nowadays a promising method in order to better catch the uncertainty around a single point
forecast. It allows to have more information about the possible outcomes of the studied process.

Firstly, the authors introduced the most common metrics in order to assess the quality of
a deterministic and a probabilistic forecast. Some of these metrics are also defined in this
work in section 2.5. Secondly, they introduce the deterministic methods and classify them
into three approaches: (1) Physical, (2) Statistical : also divided in: based on time series and
based on Artificial Intelligence, (3) Hybrid. Third, they described the probabilistic approaches
and classify them into two main categories: parametric and non-parametric approaches. The
non-parametric approaches are also decomposed into five compartments: (1) QR (Quantile
Regression) (2) KDE (Kernel Density Estimation) (3) Ensemble (4) Lube (Lower and upper
bound estimation) and (5) Bootstrap. An overview of the different approaches is illustrated in
Figure 3.1. In the appendix subsection A.4, some of these methods are mathematically defined.
Now, let us dive into the deterministic forecast.

3.1 Deterministic forecast

The first approach was a physical approach, using numerical weather prediction (NWP).
They use meteorological data like temperature, humidity, pressure, wind speed, wind direction
but also topographical information in order to get an accurate estimation of the wind speed
passing through the hub of the wind turbine. The NWP produce output of variable resolution.
Depending on the resolution, they are well suited for long or short term energy forecasting.

The second approach is a statistical approach which covers different techniques. In the be-
ginning, it was methods like ARMA, ARIMA and Grey Method which was developed. Those
kind of methods are based on time series. Indeed, they try to find a recursive pattern in the
data in order to predict the next values. For example, a typical ARMA model can be described
as:

16

3.1. Deterministic forecast

Figure 3.1: Taxonomy of wind power forecasting methodologies (extracted from [17]).

Xt =

p∑
i=1

ϕiXt−1 + at −
q∑

j=1

θjat−j (3.1)

where Xt is the next value given the autoregressive model with parameter ϕi and the mov-
ing average model with parameters θj and at a white gaussian noise. The ARMA tends to be
inaccurate if we do not have high-quality stationary data. To improve the capacity to deal with
non-stationary data distribution they introduce ARIMA with an integrated part in order to
tackle non-stationarity. Some alternatives or improvements of ARMA/ARIMA methods were
developed like fractional-ARIMA (f-ARIMA), a combinaison of ARIMA and Autoregressive
Conditional Heteroscedasticity (ARCH) model.

Another method used in statistical approach based on time series is the Grey Method which
is useful for very-short-term predictions but tends to be highly inaccurate at longer time scales.

The second class in statistical approaches is the model based on AI. In this category, you
can find well known algorithms like Artificial Neural Networks (ANN) and support vector ma-
chines. For the ANN, authors ([19], [20] and [21]) developed different architectures 2-3 layers,
Convolutional Long Short Term Memory (Conv-LSTM).

The third class of statistical approaches is hybrid models which combines different models
in order to improve the accuracy. For example, they can mix short-term and mid-term models
or physical and statistical or just combining different AI based models. This approach tends
to take the advantages from each model. For example, mixing ARIMA and ANN or SVM
can improve the performance in comparison with single model. An example of article were the
combination of all the models tested improved the accuracy is [22]. Indeed, they apply an MLP,
a bi-directional LSTM, a Random Forest and a Gradient Boosting Decision tree on forecasting
wind power time series. It is the ensemble i.e. the average of the four models which displayed
the best results. Another type of hybrid model consists in combining algorithms like Wavelet
Decomposition (WD) and LSTM. It shows higher accuracies but at an higher computational

ULiège -17- May 2022

3.1. Deterministic forecast

cost. In this class of hybrid models, genetic algorithm and particle swarm optimization were
also used to optimize Neural Networks parameters. Another new meta-heuristic called Drag-
onfly Algorithm was also tested to find the best parameters of an SVM model.

At the end of this literature review, we do not find any transformer model applied on wind
power forecasting. Except in [11], where they applied a transformer model on energy load fore-
casting which is not exactly like in our problem focused on wind power.

ULiège -18- May 2022

Chapter 4

Datasets Exploration and Preparation

In this chapter, we will introduce the two datasets we use: the GEFcom 2014 and ORES
dataset. Then, we will perform an exploration data analysis on both datasets. These latter
are challenging however: the first one is a simulated dataset at an hourly resolution while the
second comes from real wind farms in Belgium at the minute resolution. The second dataset
will be used to predict at a quarter resolution the day ahead production of wind turbines. For
both datasets, we will mimic the practical setting which consists in predicting before midday
the entire next day at a hour or quarter resolution.

4.1 GEFCom2014 dataset

The GEFcom dataset 2014 [2] is a dataset introduced for a machine learning competition
about probabilistic energy forecasting. This competition includes different tasks. One among
them is wind energy forecasting. This competition was about probabilistic forecasting. How-
ever, we will use this dataset for deterministic forecast.

This dataset is composed of hourly measurements which cover more than one year. It starts
on the 01/01/2012 and finishes on the 12/01/2013.

These hourly measurements contains as features:

1. ZONEID : integer between 1 and 10

2. TARGETVAR : Normalized power output

3. U10: zonal wind speed at 10 meters

4. V10: meridional wind speed at 10 meters

5. U100: zonal wind speed at 100 meters

6. V100: meridional wind speed at 100 meters

In Figure 4.1, one can see the histogram of the turbine output. There is an high peak around
zero which is characteristic for wind turbines. Indeed, the main cause is that the wind speed is
not high enough. There is not enough power in the wind to drive the turbine. Another reason
might be that if the wind is too strong we may shut down the turbine. These two reasons are

19

4.1. GEFCom2014 dataset

easily discovered by looking at Figure 4.2 which shows the power curve of the wind turbine.

Again by crossing Figure 4.1 and Figure 4.2, we can also notice that around 0.95 percent
of the power output a small increase of occurences. This may be due to the bridle of the wind
turbines. When the wind is too strong, it is important to limit the velocity of the blades to
avoid a technical problems.

Like we mentioned before, in Figure 4.2, one can see the power curve of the wind turbine
in zone 1. For the x axis, we used the norm of the wind speed. We can see the characteristic
cubic shape of the power output given the wind speed norm as explained in section 2.1. The
difference is double: first, as explained before a wind turbine needs a minimum of wind power
to drive the turbine. Second, the power output of the turbine is limited because the turbines
are bridled by very strong wind.

0.0 0.2 0.4 0.6 0.8 1.0
Turbine outputs

0

250

500

750

1000

1250

1500

1750

2000

O
cc

ur
en

ce
s

Figure 4.1: Histogram of the output of a typical wind turbine with a high peak in zero showing
that a wind farm often does not produce electricity.

In Figure 4.4 and Figure 4.5, one can see two pair plots. In these plots, we subsample the
entire dataset by taking randomly only 1000 records instead of the 16800 available for the first
turbine. The first dataset consists in the raw data expressed in cartesian coordinates (also
known as zonal and meridional directions in climatology) while the second is expressed in polar
coordinates. In Table 4.2, we can notice the difference of correlation coefficient between the
zonal and meridional variable and the polar coordinates expressions (H and A designate respec-
tively the norm and the angle). The highest correlation coefficient is obtained for the norm in
polar coordinates. It signifies that a simple linear relation would better fit the target variable in
this case. Also in Figure 4.5, one can notice that the wind farm in zone 1 has low level of power
outputs when the wind is blowing with an angle around 50 degrees. We may suggest that an
obstacle like an hill, mountain or building keeps the wind from blowing. Another explanation
could be a shadow effect from the other wind turbines in this particular configuration. Since
we do not have access to the location of these wind turbines, it is difficult to draw a conclusion
on the potential cause of this effect.

In Figure 4.3, we plot a realisation of the wind at both altitudes (normalized for the ease of
comparison) and the power output. It allows us to understand the correlation better. Indeed,
we clearly see an impact due to the wind power to the output of the turbine. However, there are

ULiège -20- May 2022

4.1. GEFCom2014 dataset

Figure 4.2: Empirical Power Curve of a wind turbine with a typical cubic shape.

a lot of discrepancies which occur. This implies that the simple physics explained in section 2.1
is clearly not sufficient to predict the power output.

By diving into the data, we can highlight another fact which is the load factor of the wind
farms. The load factors as defined in subsection 2.1.2 for each wind turbine is listed in Table 4.1.
The load factor for the aggregated wind farms is equal to 0.36 ± 0.31. We can interpret this
by saying that the total power production installed produces only 30 percents of its maximal
capacity in average.

For training our models, we only use the wind farm located in ZONEID 1 and we create
train, validation and test sets of repectively 575, 59 and 59 samples.

Turbine 1 2 3 4 5

mean ± std 0.30± 0.29 0.32± 0.27 0.41± 0.30 0.35± 0.33 0.43± 0.34

Turbine 6 7 8 9 10

mean ± std 0.43± 0.34 0.30± 0.27 0.30± 0.28 0.30± 0.29 0.45± 0.34

Table 4.1: Gefcom Load factors per wind turbine.

ULiège -21- May 2022

4.2. ORES dataset

0 50 100 150 200 250 300 350 400

Hours since January 1, 2012 at 00:00
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(N
or

m
al

ize
d

Un
its

)

Turbine 1 power
Wind speed at 10m
Wind speed at 100m

Figure 4.3: Realisation of 400 hours of production with wind speed each one normalized showing
that those times series are correlated.

U10 U100 V10 V100

0.379 0.366 -0.193 -0.202

H10 H100 A10 A100

0.706 0.741 -0.153 -0.140

Table 4.2: Correlation coefficients with wind power output. We can see an higher correlation
coefficient with the features expressed in polar coordinates.

4.2 ORES dataset

In this section, we will introduce the two different data sources used to create the dataset
over Belgium. Besides, we will explain the main operations done to make the dataset usable in
practice.

4.2.1 MAR data

First, the MAR data is composed of wind speed time series in Belgium simulated by the
MAR1. We have two kind of features: an historical simulation of the MAR and a forecast
simulation. The data cover the overall territory of Belgium. Thus, we only keep the time series
data from the pixels2 corresponding to the 3 wind farms we have. The 6 features that we will
keep are:

• the wind speed at 80 and 100 meters of altitude in cartesian coordinates (components x
and y)

• the temperature at 80 and 100 meters.

1Modèle Atmosphérique Régional
2The MAR defines a 2D grid of pixels over Belgium.

ULiège -22- May 2022

4.2. ORES dataset

Figure 4.4: Pair plot in cartesian coordinates where it is difficult to see easily well known
patterns between the targetvar and the other features.

ULiège -23- May 2022

4.2. ORES dataset

Figure 4.5: Pair plot in polar coordinates where the typical power curve of wind farms is visible.

ULiège -24- May 2022

4.2. ORES dataset

Moreover, we transform these cartesian coordinates values into polar coordinates:

w =
√

w2
x +w2

y ∈ Rn (4.1)

ω = arctan(wy/wx) ∈ Rn (4.2)

where every operation is applied element-wise and wx ∈ Rn and wy ∈ Rn denote the
cartesian wind speed.

The forecast data simulated by the MAR is produced each day at midnight, 6, 12 and 18
hour. Each file contains the forecast for 10 days ahead. Due to the practical setting in which we
are we took as forecast the value of the next day coming with the files produced at midnight.
For example: the 18 january 2021 at 00h00 we will take the forecast
for the entire 19 january 2021 from midnight to 23h59.

To retrieve the data from the climato server, we use the software [23, Ferret] useful to con-
catenate and manipulate netcdf3 data files.

4.2.2 ORES data

Second, the ORES data is the production of 3 wind farms located in Belgium , more precisely
in Wallonia. Until now, the period covered by the production data extends from January 2021
to the end of January 2022. The data contains 5 fields: the coordinates of the wind farm, the
rated installed power in kVA, the contractual maximum power in kVA, the production power
and the date-time. The most important feature will be the production power which is the target
variable of our problem.

4.2.3 Time-Series matching

The production is recorded minutes by minutes while the MAR data is only produced by
intervals of 7 minutes. To match the different time series, we made a linear interpolation on
the MAR data to be at the resolution of the ORES records.

Let i ∈ {0, 1, 2} be the index for the wind farm considered. Let pi ∈ Rn be the production
vector from January 2021 to January 2022 for wind farm i and let wi ∈ Rn be the wind speed
norm forecast for wind farm i. In Table 4.3, we can see the results of correlation coefficient4 and
Spearman’s rank correlation coefficient5 obtained between the production from the wind farms
and the wind speed forecast norm at their locations i.e. corr(wi,pi) and spearman(wi,pi) for
each wind farm. A correlation coefficient is always included between -1 and 1. A correlation
of 0 depicts no linear correlation between the variables while a correlation of -1 or 1 depicts a
perfect linear correlation between the two variables. The correlations obtained are greater than
0.7 which is a quite high linear correlation between the wind speed and the production from
the wind farm. It implies that the data set is correctly made.

3Netcdf are special formatted files often used in climatology.
4See subsection 2.6.1 for a formal definition
5See subsection 2.6.2 for a formal definition

ULiège -25- May 2022

4.2. ORES dataset

corr(wi,pi) spearman(wi,pi)

Altitude (m) 80 100 80 100

Wind Farm 0 0.7410 0.7540 0.7268 0.7455

Wind Farm 1 0.7527 0.7548 0.7427 0.7490

Wind Farm 2 0.7585 0.7717 0.7637 0.7793

Table 4.3: Correlation and spearman coefficient for each wind farm in the ORES dataset with
the wind speed features got by the MAR model.

4.2.4 Power normalization

To easily compare the different wind farms, each time series production are normalized
by the maximum power installed of each plant. Let Pi = max (wi) be the maximum power
production for wind farm i. We apply for each i ∈ {0, 1, 2}:

pi ←
pi

Pi

(4.3)

where the division is applied element wise.

4.2.5 Visualization of the distributions

In Figure 4.6, one can see the box plot for each variable in our data set. We can see that
there are a lot of outliers for the production and wind speed distributions. In fact, the distribu-
tions do not follow normal distributions. We try using log distribution for the positive variables
but the decrease in the number of outliers was not significant.

Figure 4.6: Boxplots of the features in the MAR dataset where we can see a lot of outliers for
the diffenrent wind norms.

ULiège -26- May 2022

4.2. ORES dataset

Set Starting Date Ending Date Nbr of samples

Train 01-18-2021 11-17-2021 306

Valid 11-17-2021 12-25-2021 36

Test 12-25-2021 01-31-2022 36

Table 4.4: Division of the samples between the different sets.

4.2.6 Data set splitting

As explained in section 2.2 in order to assess the results, we need to split the data set into
3 distinct parts: train, validation and test set. In this case, we keep 80% of the data for the
train set and 10% for the validation and test set. We wimply apply a split of the time series.
These splits correspond to the dates in Table 4.4.

In Table 4.4, we can see that the number of samples is quite low. First of all, let us explain
what is a sample: a sample is composed of one day of historic data from midday to midday
of the previous day as well as some forecast features starting from midday to the next day
midnight. We have a dataset covering a little bit more than one year precisely 378 days this is
why we get a small dataset. It is also the reason why we try a second approach. We decided
to create a bigger dataset where we did not try each day at midday to predict the next day.
We opted for this approach: at each quarter of hour of the entire dataset, We took an historic
of 96 quarters and a forecast of 48 + 96 = 144 timesteps. This approach has one drawback: in
many cases we get the forecast of two different files from the MAR data forecast. The dataset
was far bigger the train, validation and test sets were composed of respectively 29342, 3458 and
3458 samples. However, when we trained our model with it and then assessed the performance
on it or on the small dataset we did not get better performance. We also tried the way around:
training on the small dataset and assessing the results on the big dataset and again models
trained on the small dataset were better. We did not try to do again the retrieval of the data
from the climato server because a huge amount of files hat to be download.

A last little note about the implementation: when making the input windows for the mod-
els, we concatenate the historical, the gap and the forecast wind speed. We fill with zeros the
vectors into the gap and forecast matrices in order to match the size of the features window.
See section 5.1 for more details about those matrices.

ULiège -27- May 2022

Chapter 5

Deterministic forecast

In this chapter, we will explicitly define the problem statement of deterministic forecast. It
will be solved at an hourly and quarter resolution for the day-ahead and be focused on wind
turbines output. Then, we will describe all the deterministic models from naive to machine
learning and deep learning models.

5.1 Problem statement

Let X = x0x1 . . . represents a time series with xt ∈ Rp represents the p features at time t.
We assume that every vector xt can be decomposed into 2 vectors yt ∈ R which represents the
energy production at time t and the vector zt ∈ Rp−1 represents the (p− 1) other features

xt =
(
yt zt

)⊤
.

A multidimensional time serie from time step t = 0 until t = m− 1 is defined as

X =
(
x0 x1 . . . xm−1

)
∈ Rp×m (5.1)

At time step k − 1, the sequential data from time 0 to time k − 1 is available and we seek to
predict as accurately as possible the energy production in the forecasting window from time
k + T to k + T + n − 1 with a fixed T ∈ N which represents the delay before the forecasting
period. Moreover, we also have a forecast for the entire gap window of size R(p−1)×T and the
forecasting window of size R(p−1)×n (see Figure 5.1). These gap (γ ∈ R(p−1)×T) and forecast
(ϕ ∈ R(p−1)×n) windows contain forecasts of the zt vectors. By concatenating both of them, we
form a multidimensional time series from time step t = k to time step t = k + T + n− 1

Ẑ =
(
γ ϕ

)
=

(
ẑk . . . ẑk+T+n−1

)
∈ R(p−1)×(T+n) (5.2)

Formally, we want to find a function

f : Rp×k × R(p−1)×(T+n) → Rn

with k, T, n ∈ N 3 of fixed size. The function f takes two time series as input a historical and
a forecast.
The function f outputs a vector ŷ ∈ Rn. The quality of these outputs is measured with the
criterion

L : Rn × Rn → R+.

28

5.2. Naive Method

Figure 5.1: Input features matrices with the historical features X the gap matrix γ and the
forecast matrix phi. The two last form a matrix of predicted features Ẑ. All the past and future
features are given as input to f to forecast ŷ.

which measures the discrepancy between the 2 vectors y and ŷ.
The time series X is built with previous wind power production and record of meteorological

variables while the time series Ẑ is built with forecast of meteorological values (see chapter 4).
The vector ŷ = fk(ik, jT+n) with ik ∈ X0:k which represents the trajectory available before
starting to forecast and jT+n ∈ Ẑk:k+T+n the forecast variables will be compared to the electricity
production y measured on the renewable energy farm.

In this work, the main quality criteria will be the RMSE.

GEFCom2014 and ORES datasets

In the GEFCom2014 dataset, the difference between two timesteps is one hour. The history
size k is equal to 24, the delay T before the forecasting window is equal to 12 and the fore-
casting window has a size of n = 24 timesteps. It is important to notice that there is only one
data distribution for the value of wind speed and that we use this data distribution for both
historical and forecast features.

In the ORES dataset, the difference between two timesteps is one quarter of hour. We will
forecast at midday of the day D−1 with a historic of one day i.e. a history size equal to k = 96
the n = 96 quarters of hour of the next day D with a delay T equals to 48. In the ORES
dataset we have two different data distributions one for the forecasts and one for the historical
data.

5.2 Naive Method

As defined in subsection 2.3.12, the climatology and persistence models are two simple
methods to compare with advances one to see if the advances methods perform better. The
climatology is the mean of observed power production while the persistence is the last accessible
power production.

ULiège -29- May 2022

5.5. RNN

5.3 Random Forest

The Random Forest model is in fact composed of n = 96 Random Forests. Each Ran-
dom Forest is trained to predict a particular time-step of the next day. Let RFi depict
the ith Random Forest trained on all the historic, gap matrix and forecast features for the
timestep i ∈ {0, 1, . . . , n − 1}. Thus, the global model output is the concatenation of all
ŷi = RFi(X, γ, ϕt≤i). each Random Forest is composed of 50 regression trees with the criterion
squared error. The other parameters were kept to the default values see [24] for an exhaustive
list.

5.4 Extra Trees

The Extra Trees model is exactly defined as in section 5.3. It is composed of n = 96 models.
It is composed of 50 estimators per Extra tree model.

5.5 RNN

In this section, we will describe all the RNN architectures used in this work. The first one,
simple RNN, is a kind of encoder RNN while the second one called architecture 1 is more like
an encoder decoder architecture. The third one history forecast context RNN is an original
architecture. It is again a kind of encoder decoder architecture but it has a special way to deal
with the gap matrix.

5.5.1 Simple RNN

This architecture is displayed in Figure 5.2. It consists in consuming the entire time series
composed of the historical matrix and the forecast matrices in order to get an hidden state h
considered as a context vector. Then, this context vector and the historical production yhisto

are fed to a multilayer perceptron a.k.a. MLP.

5.5.2 Architecture 1

This architecture is displayed in Figure 5.3. It consists in giving the historical time series X
(composed of historical features and production) to an RNN to get an hidden state hi−1. After
that, sequentially the MLP will output a power production ŷi based on hi−1 and the forecast
features ẑi. Then, the output ŷi and again the forecast features ẑi are given to the RNN to
update the hidden sate hi−1 to hi.

ULiège -30- May 2022

5.5. RNN

Figure 5.2: Simple RNN architecture: a view is applied to the historical matrix X to separate
the fetaures Z and the production yhisto. All the (p−1) features are concatenated into a matrix
and fed to a RNN which produces an embedded vector h. From the embedded vector and the
yhisto vector a MLP produces the forecast vector ŷ.

Figure 5.3: RNN architecture 1: the X features are consumed by the RNN. Then, from the
predicted features it iteratively produces ŷi and re-use the same RNN by updating its hidden
state.

ULiège -31- May 2022

5.6. Transformers

Figure 5.4: Context RNN architecture: It consumes the X and γ matrices by two distinct RNN.
Then the concatenation of their last hidden states is fed as initial hidden state of a third RNN
to consume the forecast window.

5.5.3 History Forecast Context RNN

This architecture is displayed in Figure 5.4. It consists in getting two hidden states h1 and
h2 by respectively consuming the historical time series X and the gap matrix γ. Then, these two
hidden states, by concatenating them, become the new hidden state of a third RNN consum-
ing sequentially the forecast time series ϕ and gives its hidden state to an MLP which outputs ŷ.

5.6 Transformers

5.6.1 Encoder architecture

The Encoder architecture displayed in Figure 5.5, consists in using a positional encoding.
In this case, the positional encoding simply consists in adding two features to the time series.
Indeed, compared to [8], the dimension of the multidimensional time series is relatively low (The
number of features is equal to 7 versus 512 of embedded size in the original paper). Therefore
the input X is fed to the positional encoder then to a stack of nlayers Encoder. The stacked
encoders output a kind of hidden states as in the RNN of the size of the input multidimensional
time series. This representation is then given to an MLP in order to get the desired output
feature size. After that, a view is applied to only keep the ŷ corresponding to the forecasting
window.

Notice that the positional encoder is not strictly equivalent to those in the original paper.

Indeed, we made a kind of cyclical features encoding from the timestamp. Let x denotes
the timestamp, it consists in concatenating

sin(x× k) (5.3)

ULiège -32- May 2022

5.6. Transformers

and
cos(x× k) (5.4)

with k = exp (−log(104)/d model) ≈ 0.5657.

The choice of concatenating these two vectors instead of adding the positional encoding is
motivated by the fact that we are working with a d model equals to 7 and not 512. Therefore,
adding two features do not increase too much the curse of dimensionality in our case.

5.6.2 Encoder/Decoder architecture

The Encoder Decoder architecture displayed in Figure 5.6, consists in almost exactly the
same architecture as in [8] except for two things: (1) the softmax output layer is replaced by a
Linear Layer (2) the input to the decoder is, instead of giving an embedding representation of
the sequence of words, the concatenation of the forecast features ẑ with the last yi predicted.
The first input token is the last element of the gap window padded with a 0 as yi production.

Given these two differences the architecture is similar to the original one, the encoder part
is the same as in subsection 5.6.1 without the MLP. This output is given to the decoder also
composed of nlayers stacked decoder. Then, the linear layer transforms the features into power
production and a view comes to remove the first input token.

A big difference occurs in this model in comparison with the other ones. In fact, the decoder
part requires the ground truth y during training. The forward method of the model which is
used to train the model is consequently different from the method used at testing time called
predict. The forward is done in one pass and is highly parallelized thanks to the GPU. We
create a matrix:

Yfh×fh =

y1 −∞ −∞ . . . −∞ −∞

y1 y2 −∞ . . . −∞ −∞
...

. . .
...

y1 y2 y3 . . . −∞ −∞

y1 y2 y3 . . . yfh−1 −∞

y1 y2 y3 . . . yfh−1 yfh

A mask is applied to hide the ground truth which is not already available when predicting

the next token. However, this method cannot be applied at testing time because we do not have
directly access to the entire ŷ. Indeed, we predict greedily one at a time each ŷi in a sequential
manner. The first input token called the starting token is in [8] a vector full of zeros but in our
case we use the last output production recorded i.e. the last vector in the historical matrix X.

ULiège -33- May 2022

5.6. Transformers

Figure 5.5: Encoder Transformer architecture: only composed of the encoder part as defined in
[8] with a MLP on top of it to transform the embedded representation into production forecast.

ULiège -34- May 2022

5.6. Transformers

Figure 5.6: Encoder Decoder Transformer architecture: same architecture as in [8] except that
we remove the softmax output layer by a linear one.

ULiège -35- May 2022

Chapter 6

Experiments on ORES Dataset

In this chapter, results are displayed for the training, validation and testing set. However,
to select the different models the assessment was only done on the validation set. It implies
that if some selections were done, the performance displayed in each table is the performance
obtained by the model which performs the best on the validation set. When comparing the
results between the tables and the curve losses, it is important to notice that the curve losses
are expressed in MSE while the tables are most of the time expressed in RMSE.

6.1 Baselines

In this section, we will explore the results of the baselines described in subsection 2.3.12.
In Table 6.1, the results for the training and validation set are displayed. What is important
to remember is that the persistence and climatology method perform with a RMSE of ap-
proximatively 0.21 with a standard deviation of 0.15. We will analyse our results in the light
of those results. If they do not perform better, the models do not learn anything and are useless.

Model train valid test

Persistence 0.1860± 0.1487 0.2102± 0.1536 0.2241± 0.1828

Climatology 0.1893± 0.1098 0.2166± 0.1409 0.2196± 0.1219

Table 6.1: NRMSE (µ± σ) on MAR train, validation and test set

6.2 Sklearn Models

In this section, we will discuss the results obtained with the Extra Tree model and the
Random Forest. As mentioned in section 5.3, the model is in fact composed of fh models with
fh the forecasting horizon. In Table 6.2, we can see that both models perform to around 7%
better on the RMSE than the baselines.

The extra Tree weights 114.7MB and the Random Forest weights 113.7MB for the entire
model.

36

6.3. Comparison RNN

Model train valid test

ExtraTree 0.0443± 0.0231 0.1434± 0.0850 0.1463± 0.0640

Random Forest 0.0448± 0.0231 0.1412± 0.0860 0.1442± 0.0648

Table 6.2: NRMSE (µ± σ) on MAR train, validation and test set

6.3 Comparison RNN

In this section, we will compare the results over our three architectures of RNN described
in section 5.5: simple RNN, architecture and history forecast context RNN. In order to com-
pare them, we ran 40 epochs of training with an MSE loss. Each model is trained with an
hidden size equals to 256 and 512. The curve losses are displayed in Figure 6.1 while the per-
formance of the model which performs the best on the validation set is displayed in Table 6.4.

In Figure 6.1, we can clearly see that the simple RNN cannot achieve the performance of the
other models either on the training or the validation set. Nevertheless, a bigger hidden size
helps to learn quicker. Indeed, the simple rnn with an hidden size equals to 512 converges
around 27 epochs while the simple RNN with hidden size equal to 256 do not achieve any
landing in the given 40 epochs.

As displayed in Table 6.4, the best performance is achieved by the history forecast context
RNN with an hidden size of 512 closely followed by itself with an hidden size of 256 and the
architecture RNN. Indeed, when looking at Figure 6.1, we can see the convergence of the 4
models (history forecast and architecture for hidden size of 256 and 512) towards more or less
the same MSE on the validation set. Then, we test the models with an hidden size of 1024
but the performance is poorer e.g. 0.1372± 0.0825 on the validation set with history forecast.

An interesting behavior is the fact that the models with a bigger hidden size (i.e. 512)
have a quicker convergence than the smaller one. Indeed, the curve losses have the same kind
of shape but stretched for smaller hidden size.

Moreover, we can notice a big increase of performance compared to the baselines. The
smallest RMSE worths 0.1355 which means an error in mean of 13.55% of the maximum power
production. Consequently, this is 7.47% better than the baselines. We also notice a decrease
in the standard deviation this means that the dispersion of poor and good predictions around
the mean is decreased.

Lastly, let us discuss the weight of the models. Indeed, by looking at Table 6.3, we can see
that history forecast is maybe heavier than the orther simple RNN and architecture RNN but
simple RNN even with bigger hidden size does not achieve good results and architecture RNN
has a decrease in performance on the validation set from 512 to 1024 of hidden size.

ULiège -37- May 2022

6.3. Comparison RNN

0 5 10 15 20 25 30 35 40
Epoch

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

simple_rnn_GRU_MSE_256 Train Loss
simple_rnn_GRU_MSE_256 Validation Loss
history_forecast_GRU_MSE_256 Train Loss
history_forecast_GRU_MSE_256 Validation Loss
architecture_GRU_MSE_256 Train Loss
architecture_GRU_MSE_256 Validation Loss
simple_rnn_GRU_MSE_512 Train Loss
simple_rnn_GRU_MSE_512 Validation Loss
history_forecast_GRU_MSE_512 Train Loss
history_forecast_GRU_MSE_512 Validation Loss
architecture_GRU_MSE_512 Train Loss
architecture_GRU_MSE_512 Validation Loss

Figure 6.1: Curve loss of the RNNs

ULiège -38- May 2022

6.4. Comparison Cells in History forecast

Model simple RNN architecture GRU history forecast GRU

Hidden Size 256 512 1024 256 512 1024 256 512 1024

Weights 1.3 4.6 17.7 1.1 4.3 16.9 5.4 21.2 84.3

Model History forecast

Cell GRU BRC nBRC Hybrid

Weight 21.2 2.3 14.9 10.2

Table 6.3: Weights in MB of the RNN

Model - Cell - Loss - Hidden Size train valid test

simple RNN GRU MSE 256 0.1351± 0.0774 0.1832± 0.0991 0.1744± 0.0897

history forecast GRU MSE 256 0.1055± 0.0608 0.1357± 0.0841 0.1436± 0.0626

architecture GRU MSE 256 0.1092± 0.0602 0.1378± 0.0814 0.1464± 0.0627

simple RNN GRU MSE 512 0.1247± 0.0676 0.1675± 0.0964 0.1451± 0.0808

history forecast GRU MSE 512 0.1063± 0.0617 0.1355± 0.0831 0.1352± 0.0588

architecture GRU MSE 512 0.1074± 0.0614 0.1368± 0.0823 0.1393± 0.0600

simple RNN GRU MSE 1024 0.1167± 0.0636 0.1610± 0.0939 0.1421± 0.0787

history forecast GRU MSE 1024 0.1078± 0.0628 0.1372± 0.0825 0.1374± 0.0584

architecture GRU MSE 1024 0.1074± 0.0589 0.1380± 0.0820 0.1474± 0.0631

Table 6.4: NRMSE (µ± σ) on MAR train, validation and test set

6.4 Comparison Cells in History forecast

In this experiment, we re-use the history forecast context model and we apply to it different
cells of Recurrent Neural Network. We use GRU,BRC, nBRC and Hybrid cells. In Figure 6.2,
we can see that the GRU is clearly the best one. Its training loss does not decrease as much
as the other ones but the validation loss is better since the twentieth epoch. It seems that
the other type of cells tends to overfit a little bit the dataset in comparison with the GRU.
However, what is interesting to notice is the light weight of the BRC cell. Indeed, by looking at
Table 6.3, we can see that the BRC history forecast weigths only 2.3MB. Moreover, although
the BRC cell does not perform really better than architecture RNN on the validation set but
performs far better on the test set with an RMSE of 0.1355± 0.0671 which is the second better
score behind the GRU history forecast with 0.1352± 0.0588.

In general, all the cells perform better than the baselines. There is also no significant dif-
ferences in performance with respect to the type of cells.

ULiège -39- May 2022

6.5. Comparison Training on different Losses

Model - train valid test

history forecast GRU MSE 512 0.1063± 0.0617 0.1355± 0.0831 0.1352± 0.0588

history forecast BRC MSE 512 0.0991± 0.0556 0.1398± 0.0866 0.1355± 0.0671

history forecast HybridRNN MSE 512 0.1016± 0.0562 0.1405± 0.0852 0.1356± 0.0658

history forecast nBRC MSE 512 0.1055± 0.0565 0.1400± 0.0832 0.1377± 0.0622

Table 6.5: NRMSE (µ± σ) on MAR train, validation and test set

6.5 Comparison Training on different Losses

In this experiment, we re-use our best model on the RMSE validation metric i.e. the history
forecast context RNN and we train it with different losses. We use (1) MSE, (2) MAE and (3)
MSE plus SMAPE below denominated as MSEsMAPE.

In Figure 6.3, we can see the MSE evolution during the training with respect to the num-
ber of epoch. We can see better convergence properties with the loss combining the MSE and
SMAPE losses.

In Table 6.6, we can notice that the best performance with respect to a given metric is
always achieved by the training loss MSEsMAPE except for the test set where the best perfor-
mance according to MAE and SMAPE is achieved by the model trained with the MAE metric.
However the MSEsMAPE training is really close.

In general, if the results with respect to a given loss on the train set are not significantly
better, the interest is on the validation and test set. Indeed, we achieve the best performance
on the validation and test sets with the MSEsMAPE training. It seems that combining both
metrics bring a better generalization property.

ULiège -40- May 2022

6.5. Comparison Training on different Losses

0 5 10 15 20 25 30 35 40
Epoch

0.02

0.04

0.06

0.08

0.10

M
SE

history_forecast_GRU_MSE_512 Train Loss
history_forecast_GRU_MSE_512 Validation Loss
history_forecast_BRC_MSE_512 Train Loss
history_forecast_BRC_MSE_512 Validation Loss
history_forecast_HybridRNN_MSE_512 Train Loss
history_forecast_HybridRNN_MSE_512 Validation Loss
history_forecast_nBRC_MSE_512 Train Loss
history_forecast_nBRC_MSE_512 Validation Loss

Figure 6.2: Comparison of cells: the GRU stays the best but the other cells have a smoother
convergence.

0 5 10 15 20 25 30 35 40
Epoch

0.02

0.04

0.06

0.08

0.10

M
SE

history_forecast_GRU_MSE_512 Train Loss
history_forecast_GRU_MSE_512 Validation Loss
history_forecast_GRU_MAE_512 Train Loss
history_forecast_GRU_MAE_512 Validation Loss
history_forecast_GRU_MSEsMAPE_512 Train Loss
history_forecast_GRU_MSEsMAPE_512 Validation Loss

Figure 6.3: Comparison of Losses: All losses perform relatively closely in term of RMSE but
the MSE and SMAPE loss achieve a better result on the validation set.

ULiège -41- May 2022

6.6. Comparison Transformer

Metric/Loss MSE MAE MSEsMAPE

train

RMSE 0.1063± 0.0617 0.1068± 0.0660 0.1060± 0.0654

MAE 0.0853± 0.0496 0.0837± 0.0537 0.0837± 0.0527

SMAPE 0.7156± 0.3916 0.7153± 0.3915 0.7016± 0.3887

valid

RMSE 0.1355± 0.0831 0.1345± 0.0846 0.1328± 0.0863

MAE 0.1128± 0.0700 0.1082± 0.0714 0.1075± 0.0722

SMAPE 0.7024± 0.3873 0.7047± 0.3565 0.6902± 0.3640

test

RMSE 0.1352± 0.0588 0.1255± 0.0701 0.1242± 0.0681

MAE 0.1141± 0.0520 0.1012± 0.0608 0.1014± 0.0572

SMAPE 0.8720± 0.5637 0.8207± 0.5129 0.8297± 0.5293

Table 6.6: Loss Comparison where the vertical entries correspond to one training loss and the
horizontal entries to a metric. We can see that the MSE plus SMAPE has good performance.

6.6 Comparison Transformer

In this section, we will compare the two transformers architectures developed i.e. Trans-
former (only composed of an encoder part) and Transformer Encoder Decoder.

6.6.1 Transformer

First, let us have a look at the curve losses displayed in Figure 6.4. We see a completely
different behavior during the training in comparison with the training of RNNs. Indeed, there
is more noise on the train and validation loss. This behavior is often observed when training
transformers and we mitigate it by clipping the gradients absolute values when performing gra-
dient descent. In Figure 6.4, we clearly see that the blue dashed line is under the other. The
model Transformer with N = 4 times encoder block and a feedforward dimension of 256 seems
to be the best. Without surprise by looking at Table 6.7, the best model according to the
RMSE on the validation set is this later model.

In order to fine tune the hyperparameters it is quite difficult to extract obvious rules, for
example, adding blocks is better or reducing the feedforward dimension. Indeed, in Table 6.7,
we see a complex relationship between the embedded size and the number of encoder blocks.

In terms of performance, the Transformers beat the baselines but do not achieve so good
results in comparison with simple Sklearn models.

ULiège -42- May 2022

6.6. Comparison Transformer

Model - N - Loss - ff dim train valid test

Transformer 4 MSE 256 0.1085± 0.0532 0.1553± 0.0893 0.1435± 0.0854

Transformer 6 MSE 256 0.1149± 0.0611 0.1580± 0.0862 0.1595± 0.0972

Transformer 8 MSE 256 0.1115± 0.0568 0.1667± 0.0936 0.1544± 0.0931

Transformer 4 MSE 512 0.1107± 0.0558 0.1657± 0.0964 0.1448± 0.0742

Transformer 6 MSE 512 0.1080± 0.0586 0.1594± 0.1004 0.1409± 0.0857

Transformer 8 MSE 512 0.1066± 0.0538 0.1596± 0.0936 0.1502± 0.0886

Table 6.7: NRMSE (µ± σ) on MAR train, validation and test set

6.6.2 Transformer Encoder Decoder

The training losses displayed in Figure 6.5 show the same kind of noisy training as the
Transformer composed of only one encoder part. Only 4 models are displayed on the curve
losses while 6 models are compared in Table 6.8 in order to not overload the figure. In this case
we do not see with the validation losses a better model obviously. In Table 6.8, we can see that
the best model selected on the validation set is the Transformer Encoder Decoder with N = 8
blocks of encoder and decoder with a feedforward dimension of 512.

Model - N - Loss - ff dim train valid test

TransformerEncDec 4 MSE 256 0.1111± 0.0591 0.1649± 0.1060 0.1859± 0.1314

TransformerEncDec 6 MSE 256 0.1095± 0.0583 0.1762± 0.1053 0.1703± 0.1031

TransformerEncDec 8 MSE 256 0.1041± 0.0523 0.1677± 0.0852 0.1716± 0.0955

TransformerEncDec 4 MSE 512 0.1088± 0.0533 0.1772± 0.1107 0.1735± 0.1044

TransformerEncDec 6 MSE 512 0.1057± 0.0488 0.1662± 0.1114 0.1896± 0.1235

TransformerEncDec 8 MSE 512 0.1038± 0.0519 0.1593± 0.1145 0.1681± 0.1112

Table 6.8: NRMSE (µ± σ) on MAR train, validation and test set

ULiège -43- May 2022

6.6. Comparison Transformer

0 25 50 75 100 125 150 175 200
Epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
SE

Transformer_4_MSE_256 Train Loss
Transformer_4_MSE_256 Validation Loss
Transformer_6_MSE_256 Train Loss
Transformer_6_MSE_256 Validation Loss
Transformer_8_MSE_256 Train Loss
Transformer_8_MSE_256 Validation Loss
Transformer_4_MSE_512 Train Loss
Transformer_4_MSE_512 Validation Loss
Transformer_6_MSE_512 Train Loss
Transformer_6_MSE_512 Validation Loss
Transformer_8_MSE_512 Train Loss
Transformer_8_MSE_512 Validation Loss

Figure 6.4: Curve loss of the Transformers: we can see that the Transformer composed with
N=4 and 256 of feedforward size performs the best on the validation loss.

ULiège -44- May 2022

6.6. Comparison Transformer

0 25 50 75 100 125 150 175 200
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
SE

TransformerEncoderDecoder_6_MSE_256 Train Loss
TransformerEncoderDecoder_6_MSE_256 Validation Loss
TransformerEncoderDecoder_8_MSE_256 Train Loss
TransformerEncoderDecoder_8_MSE_256 Validation Loss
TransformerEncoderDecoder_6_MSE_512 Train Loss
TransformerEncoderDecoder_6_MSE_512 Validation Loss
TransformerEncoderDecoder_8_MSE_512 Train Loss
TransformerEncoderDecoder_8_MSE_512 Validation Loss

Figure 6.5: Curve loss of the Transformers Encoder Decoder: Difficult to see which one is the
best because of the noisy behavior on the validation set.

6.6.3 Discussion

In the end, both models do not show spectacular performance. They are able to beat the
baselines but do not perform better than the baselines. The problem may come from the em-
bedded size of the vector which is smaller than in natural language processing (NLP) task1 (7
instead of 512 with the default embedding in [14, pytorch]). which may limit the capacity of
the model.

Another problem may be the overfitting. Indeed, here we are training the Transformers with
a small dataset in comparison with the typical size of datasets in NLP tasks composed of billion
words (see for example [25]). Moreover when looking at the training RMSE in Table 6.7 and
Table 6.8, we can see that they are at the same order of magnitude than the losses obtained
with RNN (see e.g. Table 6.4) but the validation are not which confirms a problem of overfitting
the data.

Then, another aspect to mention is the difficulty to create and train transformers. Indeed,
as already mentioned it was difficult to find patterns into hyper-parameters tuning in order to

1The embedded size is the size given to an encoded word in an n-dimensional space

ULiège -45- May 2022

6.7. Qualitative Results

find the best model. Besides, the need of a GPU in order to train or to make inference is also
constraining because it is highly time-consuming while GPU is not required when training RNN
in this work.

Nevertheless, other Transformer architectures can be imagined. For instance, instead of us-
ing the forecast matrix ϕ as described in section 5.1 in the decoder part maybe simply padding
with zeroes the forecast features may be an option. Another idea could be to take inspiration
from the history forecast context RNN and to have to encoder part: one for the history matrix
and one for the gap matrix both connected into a new decoder of twice the embedded size.

6.7 Qualitative Results

In this section, we will perform a deep analysis of the results obtained with our best model:
the history forecast context RNN trained with MSEsMAPE loss and with an hidden size of 512.

In Figure 6.12, we can see the best and worst results obtained with respect to the RMSE
metric as well as those from a random sample: the sample six. Most of the time, the best
and worst results with the MAE are the same but those with the SMAPE are not. The best
results on validation and test set with respect to the SMAPE metric are displayed in Figure 6.17.

Let us first discuss the results according to the RMSE/MAE metric. The best results often
lead to days when wind power production is low. It seems normal: if the model predicts low
wind power for the next day, then the difference between zero and a small predicted power
production will lead to small RMSE/MAE while the model may have difficulties to follow the
power production by a day with stronger wind power. The worst results in term of RMSE
tends to make this hypothesis. However, it is not really the case. To clarify this hypothesis, we
display the results of a random sample (the sample 6) on the test and validation set in order
to see that even with non-zero power production the model is able to follow the production.

Nevertheless, the worst results are really bad. This is why we conduct a deeper analysis by
looking at the distribution of RMSE errors on the different sets. The distributions are displayed
in Figure 6.21. In the histograms, we can see that the distribution is skewed towards 0.1 and
we have an outlier with 0.46 of RMSE. We have the same problem on the validation set with
the worst result which is really an outlier. In fact, most of the results on the validation and
test set are around 0.10 and the worst results have a RMSE around 0.25.

Now, let us discuss the results obtained with respect to the SMAPE metric. First, it is
interesting to notice that worst samples according to the SMAPE metrics leads to good results
according to the RMSE or MAE. This must convince us of the importance of the loss/metric
used. In this work, we focused ourselves most of the time on the RMSE loss but this latter
cannot capture a kind of proportion error while the SMAPE can. However, for a dispatcher, we
may wonder if it is really useful for him. Indeed, if the power production is close to zero and the
prediction is thus a little bit higher leading to poor results in term of SMAPE but the important
information - there will be not so much wind power tomorrow - is given then the dispatcher
has the information needed for its task. However, the best results according to SMAPE are
interesting to see. Indeed, even with the fact that they do not lead to the best RMSEs, we can
see again that the model is able to follow the production with non-zero output power production.

ULiège -46- May 2022

6.7. Qualitative Results

Lastly, we conduct an analysis per timestamps (also known as lead time in [26, Chapter 2]
see also in the appendix section A). The aim is to find some patterns e.g. the last lead times
lead to poorer results. In Figure 6.25, the MAE and RMSE are displayed per timestamp i.e.
the average is not done per sample but per timestamp. We also display the bias which needs to
be equal to zero. We draw your attention to the fact that this is a necessary but not sufficient
condition to get perfect results hence the RMSE and MAE also displayed. In the analysis per
timestamp, we can see that for the training set everything looks homogeneous. Indeed, the
mean of the MAE is equal to 0.0837 (see Table 6.6) on the train set. The results on the valida-
tion and test sets are not so homogeneous. Indeed, we can see an alteration of over and under
estimations. The overestimation problem is worst on the test set in the beginning. In general
we find more or less the same pattern as in the validation set anyway. The RMSE/MAE on
the valid and test sets are not so flat than on the training set either. Nevertheless, no tendency
appeared very clearly. Usually, when the records are available until the moment we predict i.e.
there is no gap matrix, the first timestamps are better predicted as the later ones. We do not
see this pattern in our case with a gap between the prediction time and the realisation.

ULiège -47- May 2022

6.7. Qualitative Results

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.6: Worst on valid set w.r.t. the
RMSE metric with RMSE 0.4236, MAE
0.3481 and SMAPE 1.3510

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.7: Best on valid set w.r.t. the RMSE
metric with RMSE 0.0365, MAE 0.0334 and
SMAPE 1.3179

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.8: Worst on test set w.r.t. the
RMSE metric with RMSE 0.2645, MAE
0.2085 and SMAPE 0.8509

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.9: Best on test set w.r.t. the RMSE
metric with RMSE 0.0260, MAE 0.0242 and
SMAPE 1.6949

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.10: Sample 6 on valid set with
RMSE 0.1252, MAE 0.0848
and SMAPE 0.3175

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.11: Sample 6 on test set with RMSE
0.0699, MAE 0.0533 and SMAPE 0.3419

Figure 6.12: History Forecast Context RNN On different samples

ULiège -48- May 2022

6.7. Qualitative Results

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.13: worst on valid set w.r.t. the
SMAPE metric with RMSE 0.0693, MAE
0.0616 and SMAPE 1.7531

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.14: best on valid set w.r.t. the SMAPE
metric with RMSE 0.1772, MAE 0.1374 and
SMAPE 0.2904

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.15: worst on test set w.r.t. the
SMAPE metric with RMSE 0.0425, MAE
0.0390 and SMAPE 1.8113

0 20 40 60 80
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 6.16: best on test set w.r.t. the SMAPE
metric with RMSE 0.0970, MAE 0.0797 and
SMAPE 0.1658

Figure 6.17: History Forecast Context RNN On different samples

ULiège -49- May 2022

6.7. Qualitative Results

0.0 0.1 0.2 0.3 0.4
RMSE

0
3
6
9

12
15
18
21
24
27
30
33

Nb
r o

f o
cc

ur
en

ce
s

Figure 6.18: Histogram on the Train set

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
RMSE

0

1

2

3

4

5

6

Nb
r o

f o
cc

ur
en

ce
s

Figure 6.19: Histogram on the Valid set

0.05 0.10 0.15 0.20 0.25
RMSE

0

1

2

Nb
r o

f o
cc

ur
en

ce
s

Figure 6.20: Histogram on the Test set

Figure 6.21: Histograms of the History Forecast Context RNN on the different sets.

ULiège -50- May 2022

6.7. Qualitative Results

0 20 40 60 80
Timestamps

0.05

0.00

0.05

0.10

0.15

0.20
%

 o
f p

ow
er

 p
ro

du
ct

io
n

MAE
RSE
bias

Figure 6.22: Timestamp analysis on the train set.

0 20 40 60 80
Timestamps

0.05

0.00

0.05

0.10

0.15

0.20

%
 o

f p
ow

er
 p

ro
du

ct
io

n

MAE
RSE
bias

Figure 6.23: Timestamp analysis on the valid set.

0 20 40 60 80
Timestamps

0.05

0.00

0.05

0.10

0.15

0.20

%
 o

f p
ow

er
 p

ro
du

ct
io

n

MAE
RSE
bias

Figure 6.24: Timestamp analysis on the test set.

Figure 6.25: History Forecast Context RNN Timestamp analysis.

ULiège -51- May 2022

Chapter 7

Experiments on Gefcom Dataset

In this chapter, we will conduct several experiments on the Gefcom dataset. First, in sec-
tion 7.1 we will analyse the results of the baselines models. Second, in section 7.2 we use the
classical sklearn models. Third, in section 7.3, we will compare the different RNN architec-
tures. In section 7.4, we will confront the two Transformers architecture developed. Then , in
section 7.5, we will look at some qualitative results and perform some further analysis. Lastly,
in section 7.6, we will compare the results obtained with the Gefcom dataset on the light of the
results with the ORES dataset.

7.1 Baselines

In Table 7.1, we can see baselines performance on the Gefcom dataset. The Climatology
model performs the best on each set. It achieves surprising good results on the test set with a
RMSE of 0.26 which is better than on the train set. Nevertheless, let us remind the fact that
the validation and test sets are composed of a few samples only.

Model train valid test

Persistence 0.2859± 0.1855 0.3744± 0.1912 0.3113± 0.1813

Climatology 0.2745± 0.0843 0.3455± 0.0987 0.2600± 0.0917

Table 7.1: NRMSE (µ± σ) on Gefcom train, validation and test set

7.2 Sklearn

In Table 7.2, we can see the results of our two sklearn models. The random forest model is
slightly better on each set. Again, we can see the same phenomena as with the baselines where
the test set performance is better than on the validation set.

52

7.4. Transformer

Model train valid test

ExtraTree 0.0616± 0.0299 0.2126± 0.0647 0.1750± 0.0750

Random Forest 0.0612± 0.0295 0.2019± 0.0697 0.1748± 0.0701

Table 7.2: NRMSE (µ± σ) on Gefcom train, validation and test set

7.3 RNN

In Table 7.3, the results for the three architectures of RNN trained with a MSE loss for three
different hidden size. The simple RNN architecture with an hidden size of 1024 performs bet-
ter than the other models. In Figure 7.1, we clearly see that the simple RNN is better on the
validation set than the other architectures. Moreover, the convergence behavior is different.
Indeed, we can see that the simple RNN converges slowly but steadily while the other architec-
tures converge quicker to their best performance but cannot achieve as good performance.

Model - Cell - Loss - Hidden Size train valid test

simple RNN GRU MSE 256 0.1631± 0.0817 0.2060± 0.0846 0.1723± 0.0735

history forecast GRU MSE 256 0.1515± 0.0710 0.2007± 0.0674 0.1728± 0.0740

architecture GRU MSE 256 0.1599± 0.0774 0.2107± 0.0720 0.1787± 0.0776

simple RNN GRU MSE 512 0.1505± 0.0732 0.1952± 0.0799 0.1709± 0.0754

history forecast GRU MSE 512 0.1507± 0.0729 0.1979± 0.0704 0.1752± 0.0792

architecture GRU MSE 512 0.1580± 0.0756 0.2084± 0.0714 0.1775± 0.0780

simple RNN GRU MSE 1024 0.1371± 0.0679 0.1776± 0.0799 0.1633± 0.0777

history forecast GRU MSE 1024 0.1443± 0.0705 0.1954± 0.0673 0.1702± 0.0716

architecture GRU MSE 1024 0.1561± 0.0805 0.2043± 0.0751 0.1748± 0.0824

Table 7.3: NRMSE (µ± σ) on Gefcom train, validation and test set

7.4 Transformer

In this section, we will describe the results that we get with the Transformer only composed
of an Encoder part and then with the transformer composed of both an Encoder and Decoder.

7.4.1 Transformer Encoder

In Table 7.4, we can see all the Transformers’ performance with an Encoder part tested with
different hyper parameters. We analyse the influence of the number of stacked Encoders and the
size of the feedforward Neural Networks. We can observe that the more stacked Encoders we
have, the less good the performance is. The best performance is obtained with the Transformer

ULiège -53- May 2022

7.4. Transformer

0 5 10 15 20 25 30 35 40
Epoch

0.00

0.05

0.10

0.15

0.20

M
SE

gefcom_simple_rnn_GRU_MSE_512 Train Loss
gefcom_simple_rnn_GRU_MSE_512 Validation Loss
gefcom_history_forecast_GRU_MSE_512 Train Loss
gefcom_history_forecast_GRU_MSE_512 Validation Loss
gefcom_architecture_GRU_MSE_512 Train Loss
gefcom_architecture_GRU_MSE_512 Validation Loss
gefcom_simple_rnn_GRU_MSE_1024 Train Loss
gefcom_simple_rnn_GRU_MSE_1024 Validation Loss
gefcom_history_forecast_GRU_MSE_1024 Train Loss
gefcom_history_forecast_GRU_MSE_1024 Validation Loss
gefcom_architecture_GRU_MSE_1024 Train Loss
gefcom_architecture_GRU_MSE_1024 Validation Loss

Figure 7.1: Curve loss of the RNNs on the gefcom dataset: the simple RNN composed of 1024
units has the best performance on the validation set.

ULiège -54- May 2022

7.4. Transformer

only composed of one Encoder and with a feedforward size of 1024 units. This performance
is close to the best RNN which performs with 0.1776 ± 0.0799 but a little bit less good with
0.01883±0.0670. In the Figure 7.2, we can see the training losses of the transformers composed
with 1 or 2 stacked Encoder and feedforward size equal to 512 and 1024. We clearly see that
the validation loss of the Transformer with 1 stacked Encoder and 1024 as feedforward size is
under the others.

Model - N - Loss - ff dim train valid test

Transformer 1 MSE 128 0.1613± 0.0683 0.2018± 0.0668 0.1755± 0.0679

Transformer 1 MSE 256 0.1648± 0.0661 0.2109± 0.0602 0.1765± 0.0620

Transformer 1 MSE 512 0.1594± 0.0641 0.2000± 0.0613 0.1768± 0.0643

Transformer 1 MSE 1024 0.1504± 0.0651 0.1883± 0.0670 0.1681± 0.0615

Transformer 2 MSE 512 0.1817± 0.0744 0.2213± 0.0656 0.1954± 0.0689

Transformer 2 MSE 1024 0.1781± 0.0700 0.2189± 0.0622 0.1876± 0.0612

Transformer 4 MSE 512 0.2561± 0.1093 0.2852± 0.0706 0.2513± 0.0974

Transformer 4 MSE 1024 0.2308± 0.0628 0.2642± 0.0581 0.2288± 0.0557

Transformer 6 MSE 512 0.3207± 0.1433 0.3631± 0.1079 0.3045± 0.1262

Transformer 6 MSE 1024 0.2634± 0.0697 0.2887± 0.0664 0.2566± 0.0692

Transformer 8 MSE 512 0.3448± 0.1478 0.3793± 0.1208 0.3185± 0.1312

Transformer 8 MSE 1024 0.2901± 0.0782 0.3254± 0.0762 0.2719± 0.0725

Table 7.4: NRMSE (µ± σ) on Gefcom train, validation and test set

7.4.2 Transformer Encoder Decoder

In Figure 7.3, we can see the curve losses of the transformer composed with Encoder and
Decoder. We can see very noisy curve losses for the validation set. By looking at Table 7.5, we
can see that the Transformer Encoder on the validation set is composed of 1 stack of Encoder
and Decoder and 1024 of feedforward size. Nevertheless, it is not the best model on the test
set. Indeed, it is beaten by the same model but with a feedforward size of 512 but with a very
close performance on the validation set.

We would like to emphasize the fact that this architecture is beaten by the sklearn models.
Thereby, it would be interesting to look after new architectures for the Transformer composed
of encoder and Decoder. However, it can be caused to the propency of Transformer to overfit
the data. Again, the dataset is rather small.

ULiège -55- May 2022

7.4. Transformer

0 50 100 150 200 250 300 350 400
Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
SE

gefcom_Transformer_1_MSE_512 Train Loss
gefcom_Transformer_1_MSE_512 Validation Loss
gefcom_Transformer_1_MSE_1024 Train Loss
gefcom_Transformer_1_MSE_1024 Validation Loss
gefcom_Transformer_2_MSE_512 Train Loss
gefcom_Transformer_2_MSE_512 Validation Loss
gefcom_Transformer_2_MSE_1024 Train Loss
gefcom_Transformer_2_MSE_1024 Validation Loss

Figure 7.2: Curve losses of the Transformers: the one composed of 1 Encoder and Decoder and
a feed forward size of 1024 performs the best on the validation set.

ULiège -56- May 2022

7.4. Transformer

0 20 40 60 80 100
Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
SE

gefcom_TransformerEncoderDecoder_1_MSE_256 Train Loss
gefcom_TransformerEncoderDecoder_1_MSE_256 Validation Loss
gefcom_TransformerEncoderDecoder_2_MSE_256 Train Loss
gefcom_TransformerEncoderDecoder_2_MSE_256 Validation Loss
gefcom_TransformerEncoderDecoder_1_MSE_512 Train Loss
gefcom_TransformerEncoderDecoder_1_MSE_512 Validation Loss
gefcom_TransformerEncoderDecoder_2_MSE_512 Train Loss
gefcom_TransformerEncoderDecoder_2_MSE_512 Validation Loss
gefcom_TransformerEncoderDecoder_1_MSE_1024 Train Loss
gefcom_TransformerEncoderDecoder_1_MSE_1024 Validation Loss
gefcom_TransformerEncoderDecoder_2_MSE_1024 Train Loss
gefcom_TransformerEncoderDecoder_2_MSE_1024 Validation Loss

Figure 7.3: Curve loss of the Transformers Encoder Decoder on the gefcom dataset: difficult to
draw a conclusion.

ULiège -57- May 2022

7.5. Qualitative Results

Model - N - Loss - ff dim train valid test

TransformerEncDec 1 MSE 256 0.2257± 0.0926 0.3173± 0.0890 0.2314± 0.1069

TransformerEncDec 2 MSE 256 0.2928± 0.1456 0.4292± 0.1864 0.3038± 0.1533

TransformerEncDec 1 MSE 512 0.2030± 0.0816 0.2653± 0.0848 0.2186± 0.0825

TransformerEncDec 2 MSE 512 0.2638± 0.1395 0.3700± 0.1641 0.2478± 0.1343

TransformerEncDec 1 MSE 1024 0.2054± 0.0784 0.2605± 0.0696 0.2271± 0.0880

TransformerEncDec 2 MSE 1024 0.3201± 0.1096 0.3411± 0.1112 0.3499± 0.1184

TransformerEncDec 4 MSE 256 0.3723± 0.2083 0.5844± 0.2607 0.3695± 0.2100

TransformerEncDec 6 MSE 256 0.4077± 0.2432 0.6541± 0.2918 0.4019± 0.2378

TransformerEncDec 8 MSE 256 0.4240± 0.2556 0.6878± 0.3053 0.4393± 0.2501

TransformerEncDec 4 MSE 512 0.2997± 0.1670 0.4168± 0.1975 0.3032± 0.1704

TransformerEncDec 6 MSE 512 0.3826± 0.1797 0.5098± 0.2183 0.3789± 0.1780

TransformerEncDec 8 MSE 512 0.3797± 0.1931 0.5342± 0.2431 0.3735± 0.1942

TransformerEncDec 4 MSE 1024 0.4559± 0.1693 0.5041± 0.1976 0.5245± 0.1825

TransformerEncDec 6 MSE 1024 0.4609± 0.1936 0.5079± 0.1961 0.5534± 0.2034

TransformerEncDec 8 MSE 1024 0.4534± 0.2109 0.5193± 0.2139 0.5641± 0.2144

Table 7.5: NRMSE (µ± σ) on Gefcom train, validation and test set

7.5 Qualitative Results

In this section, we will have a look at the results obtained with the simple RNN with a
hidden size of 1024. In Figure 7.10, we can see the worst and best results according to the
RMSE and the sample 6 on the validation and test set. As in section 6.7, the worst results
are disapointing. It is why we conduct the same analysis with the histograms of the RMSE
that we display in Figure 7.14. We can see that the distribution is more homogeneous than in
section 6.7 with a clear outlier on the validation set. It seems that in case of high change in
the production the model tends to have difficulties to predict them. Indeed, in each qualitative
results the model gives more the general trend of the production but is not very precise in terms
of drastic changes.

In Figure 7.18, we can see the timestamp analysis of the simple RNN. As for the ORES
dataset, we do not notice any interesting patterns, except some alternation of over and under
estimation on the valid and test sets while the error on the train set is rather constant.

ULiège -58- May 2022

7.6. Discussion comparison ORES and Gefcom Datasets

7.6 Discussion comparison ORES and Gefcom Datasets

In this section, we will discuss the results obtained over the ORES and Gefcom dataset.
First of all, we would like to highlight the fact that the models were developed and validated
on the ORES dataset and only then, they were tested on the Gefcom dataset. The objective
was to see their capacity to handle a new data distribution in the same practical setting of
the day-ahead forecast. It is also important to notice the difference in temporal resolution, the
ORES dataset is at the quarter resolution while the gecfom is at the hour resolution. This
has a big influence on the size of the time series to handle. Indeed, the ORES dataset is
composed of samples with an historic window, a gap window and a forecast window of sizes
respectively equal to 96, 48 and 96 while it is only equal to 24, 12 and 24 for the Gefcom dataset.

It is interesting to notice that the best model on the ORES dataset (i.e. the history forecast
context rnn) is not the same as the best one on the Gefcom dataset (i.e. the simple RNN).
Moreover, the simple RNN is the model which is unable to capture good patterns on the ORES
dataset but outperforms the other architectures on the Gefcom dataset. This fact shows the
importance of testing different architectures with different data distribution and resolution. In-
deed, one hypothesis to understand the cause of the ineffectiveness of the context RNN could
be the fact that it is specially designed to handle separately data distribution: the forecast
features and the historical features.

In the qualitative results, the models applied on the ORES dataset section 6.7 are more able
to follow changes in the power production while the qualitative results on Gefcom section 7.5
are not. They show a general trends more than an high resolution forecast.

ULiège -59- May 2022

7.6. Discussion comparison ORES and Gefcom Datasets

0 5 10 15 20
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 7.4: Worst on valid set w.r.t. the
RMSE metric with RMSE 0.3704, MAE
0.3048 and SMAPE 1.0822

0 5 10 15 20
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 7.5: Best on valid set w.r.t. the RMSE
metric with RMSE 0.0526, MAE 0.0425 and
SMAPE 0.4101

0 5 10 15 20
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 7.6: Worst on test set w.r.t. the
RMSE metric with RMSE 0.3251, MAE
0.2674 and SMAPE 0.7676

0 5 10 15 20
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 7.7: Best on test set w.r.t. the RMSE
metric with RMSE 0.0440, MAE 0.0386 and
SMAPE 0.7592

0 5 10 15 20
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 7.8: Sample 6 on valid set with
RMSE 0.1687, MAE
0.1309 and SMAPE 0.2168

0 5 10 15 20
timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 7.9: Sample 6 on test set w.r.t. the
RMSE metric with RMSE 0.2587, MAE 0.2147
and SMAPE 0.7506

Figure 7.10: Simple RNN On different samples

ULiège -60- May 2022

7.6. Discussion comparison ORES and Gefcom Datasets

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
RMSE

0
3
6
9

12
15
18
21
24
27
30
33
36
39
42
45
48
51
54
57
60
63

Nb
r o

f o
cc

ur
en

ce
s

Figure 7.11: Histogram on the Train set.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
RMSE

0

1

2

3

4

5

6

Nb
r o

f o
cc

ur
en

ce
s

Figure 7.12: Histogram on the Valid set.

0.05 0.10 0.15 0.20 0.25 0.30
RMSE

0

1

2

3

4

Nb
r o

f o
cc

ur
en

ce
s

Figure 7.13: Histogram on the Test set.

Figure 7.14: Histograms of the simple RNN on the different sets on the gefcom dataset.

ULiège -61- May 2022

7.6. Discussion comparison ORES and Gefcom Datasets

0 5 10 15 20 25
Timestamps

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30
%

 o
f p

ow
er

 p
ro

du
ct

io
n

MAE
RSE
bias

Figure 7.15: Timestamp analysis on the train set.

0 5 10 15 20 25
Timestamps

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 o

f p
ow

er
 p

ro
du

ct
io

n

MAE
RSE
bias

Figure 7.16: Timestamp analysis on the valid set.

0 5 10 15 20 25
Timestamps

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

%
 o

f p
ow

er
 p

ro
du

ct
io

n

MAE
RSE
bias

Figure 7.17: Timestamp analysis on the test set.

Figure 7.18: Simple RNN Timestamp analysis on Gefcom dataset.

ULiège -62- May 2022

Chapter 8

Conclusion

In this chapter, we will first discuss some future work. Then, we will conclude this work
by summarizing what has been done in this work and answering the questions mentioned in
chapter 1.

8.1 Future Work

This work is an open door towards the field of wind power forecasting. The originality of
the work lies more into the architectures used than in an exhaustive comparison of the methods
existing. There are many aspects to explore deeper.

First, exploring different data cleansing techniques may be interesting. Indeed, in this work
there is no data cleansing applied except the averaging to get the time resolution expected.
Moreover, wind turbine data are really noisy. Some techniques are developed (e.g. [27]) in
order to improve the quality of the features in the datasets. Furthermore, new features could
be added as mentioned in the chapter 3 e.g. wavelet decomposition algorithm is often used to
extract frequency features of the wind signal.

Second, getting more data would be of great help to better estimate the performance of our
models but also to train them better. We already discussed the over-fitting problem with the
transformers’ architectures but this could be alleviate by more training data.

Third, new architectures could be developed. We already mentioned some alternative ar-
chitectures for the transformer models but new RNN architectures could be interesting to
investigate as well as convolutional neural network models not used in this work. Besides, the
teacher/professor forcing techniques [28] could be implemented too. These techniques could be
helpful for convergence purposes but also to get better performance. We could also explore the
extension to multiple layers in the RNN and to the bidirectional RNN which are not explored
in this work. Moreover, an ensemble model using all the best models developed throughout this
work could be used in order to maybe get better performance.

Fourth, exploring transfer learning. In this work, we got access to three wind farms in
Belgium. It would be interesting to see if our algorithms generalize well on the other wind
farms without being trained on them. In chapter 3, it was mentioned that most of the time
the models generalize pretty badly over wind farms on which the model is not trained. Thus, it

63

8.2. Conclusion

could be interesting to try transfer learning techniques to see if we need less data to converge
and understand patterns on other wind farm with one model already trained on another one.
Transfer learning could help in cases where only a few data is available.

Fifth, to extend our model architectures towards probabilistic forecast as described in sec-
tion A. Indeed, probabilistic forecast is more and more developed because it gives more infor-
mation about the uncertainty associated with the forecast of our model. This is an interesting
topic in order to dive into a more wide class of problems like automatic control of production
power plants in order to balance the network optimally and to minimize the demand of technical
staff maintaining the network day to day.

8.2 Conclusion

In conclusion, we tried in this work to forecast wind power thanks to meteorological data
obtained with the model MAR developed at the University of Liège and ORES power produc-
tion records over Belgium. We created ourselves the dataset quarter per quarter of hour with
both sources of data. In a second time, we also used the gefcom dataset at an hour resolu-
tion. For both datasets, we work into the practical setting of the day ahead spot market. In
this setting, at midday we should forecast the data of interest for the entire next day. This
leads to the different matrices we described across the problem statement in section 5.1: the
historical, gap and forecast matrices. They contain either features available or forecast features.

To make these forecasts, we developed several statistical models from naive methods to-
wards classical machine learning models and advanced deep learning methods. Indeed, we
tested some baselines useful in times series forecasting in order to assess the performance of
our newly developed models. Other less naive baselines were also done with Random Forests
and Extra Tree models implemented thanks to [29]. Then, we implemented three architectures
of recurrent neural networks (RNN). Lastly, we developed two architectures of transformers,
a very recent architecture which displayed great results on natural language processing tasks.
Thus, we modify the architecture to fit the needs of our regression task. These architectures
presented different performance depending on the dataset.

First, on the ORES dataset, the RNN architectures all beat the naive baselines but only
the two last beat the sklearn baselines. Moreover, we compared with the best RNN i.e. the
history forecast context RNN the influence of newly discovered RNN cells like BRC, nBRC
and Hybdrid cells against the more classic GRU. Even if the GRU stayed the best cell, it was
interesting to notice the high performance achieved by the BRC cell while decreasing a lot the
size of the model. Another analysis comparing the training losses was performed with this
last RNN showing that a combining loss with MSE and SMAPE improved the performance.
Then, the transformers did not show as great results as we get with the RNN. Nevertheless, in
subsection 6.6.3 we discuss potential improvements of these architectures.

After analyzing the results of all experiments, we made a deep analysis of the results we
get with our selected best model based on its performance in terms of RMSE on the validation
set. This best model is the history forecast context RNN an original architecture from this
work described in subsection 5.5.3. So it was trained with a loss combining the MSE and the
SMAPE metric. It has an hidden size of 512 units. The analysis of the results was done by

ULiège -64- May 2022

8.2. Conclusion

looking at some qualitative results with the best and worst forecasts done on the valid set and
test set. We also look at the histograms of the losses on the training, validation and testing
sets in order to better understand the distributions of the results. Lastly, we made an analysis
per timestamp hoping to find some relevant patterns but no one was found. The analysis of the
results showed that the metrics we used were really important to assess our results. Finally,
the forecasts we produce do not perfectly follow the power production. Sometimes they miss
some peaks or changes in the production. However, they often give a good idea of what is
going to be produced on the next day. The forecast of renewable energy is a hot topic and
still needs some progress. However, thanks to AI we already get some good models in order
to get some insights at the resolution of the quarter for the next day when predicting at midday.

Second, on the gefcom dataset we get different results than on the previous dataset. It is
also an RNN which performs the best but the one which was the worst on the other dataset:
the simple RNN. For this best RNN, the same analysis of the qualitative results was done with
an histogram and timestamp analysis. The timestamp analysis again do not show interesting
patterns. Besides, it seems that in contrary with the models applied on the ORES dataset, the
output on the gefcom were more general trends than a close follow of the production. As far as
Transformers are concerned, they displayed interesting results. Indeed, the Transformer only
composed of an encoder part was close to the best RNN but the Encoder Decoder Transformer
had bad performance. Even if it stays better than the naive baselines, it is worse than the
sklearn baselines.

Finally, we could conclude that advanced AI techniques beat naive baselines and give some
better insights on the forecasts of renewable energy. The new developed cells introduced in [3]
did not beat the classic GRU but were close in performance and the BRC cell displayed an in-
teresting light weight property. The RNNs stay the best algorithms on this task in comparison
with Transformers, Random Forest, Extra Trees and naive baselines.

ULiège -65- May 2022

Glossary

AI Artificial Intelligence.

ANN Artificial Neural Network.

ARCH Auto Regressive Conditional Heteroscedasticity.

ARIMA Auto Regressive Integrated Moving Average.

ARMA Auto Regressive Moving Average.

BRC Bistable Recurrent Cell.

GPU Graphical Process Unit.

GRU Gated Recurrent Unit.

KDE Kernel Density Estimation.

LSTM Long Short Term Memory.

Lube Lower and upper bound estimation.

MAE Mean Absolute Error.

MAPE Mean Absolute Percentage Error.

MAR Modèle Atmosphérique Régional.

MLP Multi Layer Perceptron.

MSE Mean Square Error.

nBRC Neuromodulated Bistable Recurrent Cell.

NLP Natural Language Processing.

NRMSE Normalized Root Mean Square Error.

NWP Numerical Weather Prediction.

QR Quantile Regression.

RMSE Root Mean Square Error.

66

Glossary Glossary

RNN Recurrent Neural Network.

SMAPE Symmetrical Mean Absolute Percentage Error.

TSO Transmission System Operator.

WD Wavelet Decomposition.

ULiège -67- May 2022

Bibliography

[1] Xavier Fettweis, Jason E. Box, Cécile Agosta, Charles Amory, Christoph Kittel, Char-
lotte Lang, Dirk van As, Horst Machguth, and Hubert Gallée. Reconstructions of the
1900–2015 greenland ice sheet surface mass balance using the regional climate mar model.
The Cryosphere, 11:1015–1033, 2016.

[2] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J.
Hyndman. Probabilistic energy forecasting: Global energy forecasting competition 2014
and beyond. International Journal of Forecasting, 32:896–913, 2016.

[3] Nicolas Vecoven, Damien Ernst, and Guillaume Drion. A bio-inspired bistable recurrent
cell allows for long-lasting memory. PLOS ONE, 16(6):e0252676, Jun 2021.

[4] David J. C. MacKay. Sustainable Energy — Without the Hot Air. UIT, 2008.

[5] Elise Dupont, Rembrandt Koppelaar, and Hervé Jeanmart. Global available wind energy
with physical and energy return on investment constraints. Applied Energy, 209, 10 2017.

[6] Wikipedia Community. Load Factor (Electrical). 2021. [Online; accessed 31-March-2022].

[7] Prof. Gilles Louppe. Deep learning. 2021.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2017.

[9] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical eval-
uation of gated recurrent neural networks on sequence modeling. 2014.

[10] Schmidhuber J. Hochreiter S. Long short-term memory. Neural Comput., Nov 1997.

[11] Zhuyi Rao and Yunxiang Zhang. Transformer-based power system energy prediction model.
pages 913–917, 06 2020.

[12] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[13] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
Learning, 63(1):3–42, 2006.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

68

BIBLIOGRAPHY BIBLIOGRAPHY

[15] Wikipedia Community. Pearson Correlation Coefficient. [Online; accessed 18-March-2022].

[16] Wikipedia Community. Spearman’s Rank Coefficient. [Online; accessed 18-March-2022].

[17] Ioannis K. Bazionis and Pavlos S. Georgilakis. Review of deterministic and probabilistic
wind power forecasting: Models, methods, and future research. Electricity, 2(1):13–47,
2021.

[18] Zhongda Tian. A state-of-the-art review on wind power deterministic prediction. Wind
Engineering, 45(5):1374–1392, 2021.

[19] Erasmo Cadenas and Wilfrido Rivera. Short term wind speed forecasting in la venta,
oaxaca, méxico, using artificial neural networks. Renewable Energy, 34:274–278, 2009.

[20] João P. S. Catalão, Hugo M. I. Pousinho, and Victor M. F. Mendes. Short-term wind power
forecasting in portugal by neural networks and wavelet transform. Renewable Energy,
36:1245–1251, 2011.

[21] Zexian Sun and Mingyu Zhao. Short-term wind power forecasting based on vmd decom-
position, convlstm networks and error analysis. IEEE Access, 8:134422–134434, 2020.

[22] Zacharie De Grève, Jérémie Bottieau, David Vangulick, Aurélien Wautier, Pierre-David
Dapoz, Adriano Arrigo, Jean-François Toubeau, and François Vallée. Machine learning
techniques for improving self-consumption in renewable energy communities. Energies,
13(18), 2020.

[23] NOAA’s Pacific Marine Environmental Laboratory. Software ferret.

[24] Scikit-learn. Random forest regressor. [Online; accessed 02-May-2022].

[25] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. 2018.

[26] Juan M Morales and al. Integrating renewables in electricity markets: operational prob-
lems. Springer Science and Business Media, pages 15–56, 2014.

[27] Xiaojun Shen, Xuejiao Fu, and Chongcheng Zhou. A combined algorithm for cleaning
abnormal data of wind turbine power curve based on change point grouping algorithm and
quartile algorithm. IEEE Transactions on Sustainable Energy, 10(1):46–54, 2019.

[28] Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua
Bengio. Professor forcing: A new algorithm for training recurrent networks. 2016.

[29] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler,
Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API
design for machine learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–122,
2013.

ULiège -69- May 2022

Appendix

A Pinson formalism

A.1 Renewable energy generation as a stochastic process

In [26, Chapter 2], they stated the generation of renewable energy as a stochastic process.
Indeed, in chapter 4 we will see the stochasticity of the process with point clouds which will be
further detailed. The stochastic nature of renewable energy is due to the shadowing effects on
wind farms, dust, turbulence effects, etc. As defined in [26],

{Yr,s,t, r = r1, . . . , rm, s = s1, . . . , s = sn, t = 1, . . . , T} (1)

is a multivariate stochastic process in space (different locations s = s1, . . . , s = sn) and time
(t = 1, . . . , T). There exist potentially different sources r = r1, . . . , rm. The corresponding
realization of that stochastic process are denoted by

{yr,s,t, r = r1, . . . , rm, s = s1, . . . , s = sn, t = 1, . . . , T}. (2)

In our case all the sources r = r1, . . . , rm will be wind farms. Thus, in the following we will omit
the subscript r. In the same spirit, subscripts r and s may be omitted if we are only focusing
on the time dimension. We will also assume that

Yr,s,t ∈ [0, 1],∀r, s, t (3)

Indeed, all the power plants may be normalized by their nominal capacity installed.

A.2 Model based forecasting

Forecasting can be seen as making an estimate .̂t+k|t of a particular characteristic of the
stochastic process Equation 1. Given a model fθ with the parameters θ ∈ H in a chosen
hypothesis space H. Notice that k denotes the forecasting horizon and the notation ”|t” is
coming from the probability theory ”given t” to express that we have an information set Ωt

containing information up to time t.

A.3 Deterministic Forecast

In the case of deterministic forecast (also know as point forecast), we focus ourselves on the
conditional expectation of the energy production. More precisely,

ŷt+k|t = E[Yt+k|f,Ωt,H] (4)

is a point forecast at time t+ k.

70

B. Supplementary Results

A.4 Probabilistic Forecasts

In the case of probabilistic forecasting, we will focus on the prediction of the probabilistic
density function of the variable Y . There exists several methods:

Quantile Forecasts

A quantile forecast q̂
(α)
t+k|t with

P
[
Yt+k ≤ q̂

(α)
t+k|t | f,Ωt,H

]
= α (5)

The forecaster gives the information that at lead time k there is a probability α that the the
production is less than q̂.

Prediction intervals

A prediction interval is defined as

P
[
Yt+k ∈ Î(β)t+k|t | f,Ωt,H

]
= 1− β (6)

Î
(β)
t+k|t =

[
q̂
(α)
t+k|t, q̂

(ᾱ)
t+k|t

]
(7)

where the production is included between the two bounds q̂
(α)
t+k|t and q̂

(ᾱ)
t+k|t at a given level

probability 1− β.

Density Forecasts

Density forecast f̂t+k|t output at time t for time t+k would be a complete description of the
pdf given a model f ∈ H and an information set Ωt.

B Supplementary Results

In this appendix, we display several qualitative results of other models on the ORES dataset.
In Figure 3 the naive persistence method is displayed with its best performances in RMSE. In
Figure 6, the best and worst samples for the naive method climatology are displayed.

In Figure 9 and Figure 12, we can see the best and worst results of the Extra Tress and
Random Forest model on the validation set.

ULiège -71- May 2022

B. Supplementary Results

0 20 40 60 80
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 1: Best

0 20 40 60 80
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 2: Worst

Figure 3: Persistance method on validation set samples

0 20 40 60 80
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 4: Best

0 20 40 60 80
Timestamps

0.0

0.2

0.4

0.6

0.8

1.0

Pr
od

uc
tio

n
Po

we
r N

or
m

al
ize

d

True values
Predicted values

Figure 5: Worst

Figure 6: Climatology method on validation set samples

Figure 7: Best Figure 8: Worst

Figure 9: Extra Trees on validation set samples

ULiège -72- May 2022

B. Supplementary Results

Figure 10: Best Figure 11: Worst

Figure 12: Random Forest method on validation set samples

ULiège -73- May 2022

	Introduction
	Background
	Wind turbine physics
	Output Power of a wind turbine
	Load factor

	Forecasting as supervised learning
	Models and their building blocks
	ReLu
	Sigmoid
	Linear Layer
	Softmax Layer
	Attention Layer
	Multi-Head Attention
	Positional Encoding
	Recurrent Layer
	Transformer
	Random Forest
	Extra Trees
	Naive models: Persistence and climatology

	Training Neural Networks
	Adam Optimizer

	Metrics
	Forecast error
	Bias
	MAE
	MSE
	RMSE
	MAPE
	SMAPE

	Statistics
	Pearson Correlation
	Spearman's rank correlation

	Related Work
	Deterministic forecast

	Datasets Exploration and Preparation
	GEFCom2014 dataset
	ORES dataset
	MAR data
	ORES data
	Time-Series matching
	Power normalization
	Visualization of the distributions
	Data set splitting

	Deterministic forecast
	Problem statement
	Naive Method
	Random Forest
	Extra Trees
	RNN
	Simple RNN
	Architecture 1
	History Forecast Context RNN

	Transformers
	Encoder architecture
	Encoder/Decoder architecture

	Experiments on ORES Dataset
	Baselines
	Sklearn Models
	Comparison RNN
	Comparison Cells in History forecast
	Comparison Training on different Losses
	Comparison Transformer
	Transformer
	Transformer Encoder Decoder
	Discussion

	Qualitative Results

	Experiments on Gefcom Dataset
	Baselines
	Sklearn
	RNN
	Transformer
	Transformer Encoder
	Transformer Encoder Decoder

	Qualitative Results
	Discussion comparison ORES and Gefcom Datasets

	Conclusion
	Future Work
	Conclusion

	Glossary
	Appendix
	Pinson formalism
	Renewable energy generation as a stochastic process
	Model based forecasting
	Deterministic Forecast
	Probabilistic Forecasts

	Supplementary Results

