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Abstract 
Evaluation of the quality of classic finite elements by the FE² method 

MORCH Hélène, Civil Engineering, Academic Year 2015-2016 

 Locking phenomena in classic finite element analysis are a well-known problem and many 

solutions have been developed over the years to reduce or suppress their undesirable effects. The most 

common types of locking are shear locking, that can occur with slender elements, and volumetric locking, 

that can occur when the material is quasi-incompressible (with a Poisson’s ratio close to 0.5, for instance). 

The goal of this study is to assess the performance of finite elements created using the FE² technique. This 

technique consists in creating a sub-mesh on each element and was developed to help model materials 

with complex behaviours. In this study, however, the FE² technique is used in the elastic domain with 

homogeneous isotropic materials.  

To conduct this study, a finite element program was created using MATLAB to solve two dimensional 

elastic problems. This program was used to create the equivalent stiffness matrices of the FE² elements, 

and then to test these elements. 

Finally, the elements created were tested for each type of locking mentioned above. The test on shear 

locking (a cantilever beam subject to bending) revealed that even though the FE² method showed some 

improvement compared to classic fully integrated elements, shear locking still appeared and was non-

negligible. To test the appearance of volumetric locking, a cylinder subjected to internal pressure was 

studied for different values of the Poisson’s ratio. The results on volumetric locking, on the other hand, are 

very promising as the new elements developed showed little to no locking. The results on volumetric 

locking were also compared to results obtained with industrial elements, and showed better or equivalent 

performances. 

 

 Les phénomènes de blocage (« locking », en anglais) dans la méthode des éléments finis sont un 

problème bien connu et diverses solutions ont été développées au fil des années pour réduire ou éliminer 

leurs effets. Les types de blocages les plus courants sont le blocage en cisaillement, qui peut se produire 

sur des éléments élancés, et le blocage volumétrique qui se produit lorsque le matériau étudié est quasi-

incompressible (coefficient de Poisson proche de 0,5, par exemple). Le but de cette étude est de déterminer 

la performance d’éléments finis créés en utilisant le méthode FE². Cette méthode consiste à créer un sous-

maillage sur chaque élément. Elle a été développée pour modéliser des matériaux au comportement 

complexe. Dans cette étude, cependant, la méthode FE² est utilisée dans le domaine élastique avec des 

matériaux homogènes isotropes. 

Pour réaliser cette étude, un programme éléments finis a été développé dans MATLAB pour résoudre des 

problèmes en deux dimensions dans le domaine élastique. Ce programme sert aussi à créer les matrices de 

raideur des éléments FE² et à tester ces éléments. 

Finalement, les éléments créés sont testés contre les types de blocage mentionnés ci-dessus. Le test sur le 

blocage en cisaillement (poutre cantilever en flexion) montre que la méthode FE² apporte une amélioration 

par rapport à des éléments classiques complètement intégrés, mais le blocage apparaît et n’est pas 

négligeable. Pour tester l’apparition du blocage volumétrique, nous avons étudié un cylindre soumis à une 

pression interne radiale pour différentes valeurs du coefficient de Poisson. Les résultats sur ce type de 

blocage sont très encourageants, puisque les éléments FE² sont peu voire pas sensibles au phénomène. En 

comparaison avec des éléments industriels, les éléments FE² offrent des performances équivalentes, voire 

meilleures sur le blocage volumétrique.  
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Introduction 

The finite element method is widely used in various domains, and more particularly in 

the field of mechanics of materials, to solve complex problems that cannot be solved through 

manual calculations. However, the finite element method is not infallible. 

There are specific cases for which the results given by the classic finite element method are 

erroneous. This can be caused by a particular behaviour of the material, such as 

incompressibility for instance, or by a specificity in the geometry of the problem (slender 

elements for example). These problems are known as locking phenomena, due to the fact 

that the elements usually show an over-stiff behaviour and fail to reproduce the correct 

deformation of the solid object. 

Solutions to these problems have been developed, which often tackle one specific locking 

phenomenon. The goal of this study is to assess the performance of the Finite Element 

square (FE²) method against locking, compared to the classic elements. 

The Finite Element square (FE²) method is a recently developed method used to render with 

more precision the behaviour of certain materials. It is used mostly for materials with 

heterogeneous properties, as a way of obtaining homogeneous properties over each element. 

In this purpose, each element is refined into a sub-mesh to establish the material’s 

behaviour on a smaller scale. 

The point of this study, however, is to test a different utility of this method. Here, the FE² 

method is used to create new sorts of elements and test their performance against locking. 

The problems studied are limited to elastic two-dimensional problems. The study focuses 

particularly on the problems of shear locking encountered with slender elements, and of 

volumetric locking that happens with incompressible materials. 

This study aims at comparing the performance of the FE² technique compared to the classic 

finite elements. 

In a first part, the theory of the classic finite element method is reminded, and the problems 

of locking studied in this work are explained. The second part of this work focuses on the 

method put in place, first to develop a finite element program, and then to create the new 

elements using the FE² method. Finally, the results obtained with the new elements against 

shear locking and volumetric locking are presented. 
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1 Finite element analysis 

The finite element method is a technique that allows the numerical resolution of differential 

equation(s) on a given domain with boundary conditions. It can be used to determine the 

behaviour of solid objects under a given set of loads or displacements. The general principle 

of the finite element method is to divide the studied domain into sub-domains called 

elements.  

This work focuses exclusively on two-dimensional linear elastic problems. The equations 

used to determine the behaviour of the solid object are the equations from mechanics of 

materials reminded hereafter. 

1.1 Mechanics of materials for elastic solid objects 

In the elastic domain, the behaviour of a two-dimensional isotropic solid object can be 

described by Hooke’s law: 

{𝜎} = [𝐶]{𝜀} [1.1.1] 

With: 

 {𝜎} = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} is the stress vector; 

 {𝜀} = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} is the strain vector; 

 [𝐶] =
𝐸

(1+𝜈)(1−2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1−2𝜈

2

]  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 𝑠𝑡𝑎𝑡𝑒  

𝑜𝑟 [𝐶] =
𝐸

1−𝜈²
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

] 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 𝑠𝑡𝑎𝑡𝑒.  

 

For a solid object subjected to a body force 〈𝐹〉 = 〈𝐹𝑥  𝐹𝑦〉 and to a surface force 〈𝑇〉 = 〈𝑇𝑥 𝑇𝑦〉, 

the equations of equilibrium can be written as follows: 

〈𝜕𝜎〉  +  〈𝐹〉 = 0,𝑤ℎ𝑒𝑟𝑒 {𝜕𝜎} = {

𝜕𝜎𝑥

𝜕𝑥
+
𝜕𝜏𝑥𝑦

𝜕𝑦

𝜕𝜎𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑦

𝜕𝑥

} [1.1.2] 

〈𝑇〉 − 〈𝜎𝑛〉 = 0,𝑤ℎ𝑒𝑟𝑒 {𝜎𝑛} = {
𝜎𝑥𝑛𝑥 + 𝜏𝑥𝑦𝑛𝑦
𝜎𝑦𝑛𝑦 + 𝜏𝑥𝑦𝑛𝑥

} [1.1.3] 

To use the finite element method, these equilibria have to be expressed through a weak 

formulation. 

The weak formulation is obtained through the weighted residuals method.  
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Given a virtual displacement field 〈𝛿𝑢∗〉, the weighted residual corresponding to the 

equilibrium equations is expressed as follows:  

𝑊𝑅 = ∫ [〈𝜕𝜎〉
𝑉

+ 〈𝐹〉]{𝛿𝑢∗}𝑑𝑉 + ∫ [〈𝑇〉 − 〈𝜎𝑛〉]{𝛿𝑢
∗} 𝑑𝐴

𝐴
= 0 [1.1.4] 

Where V is the volume of the domain and A is the contour of the domain. 

Using an integration by parts, the principle of virtual works can be obtained: 

𝑊𝑖𝑛𝑡 = 𝑊𝑒𝑥𝑡 

∫ 〈𝜎〉{𝛿𝜀∗}
𝑉

𝑑𝑉 = ∫ 〈𝐹〉
𝑉

{𝛿𝑢∗}𝑑𝑉 + ∫ 〈𝑇〉{𝛿𝑢∗} 𝑑𝐴
𝐴

 [1.1.5] 

The virtual strain field can be expressed as a function of the virtual displacement: 

{
  
 

  
  𝛿𝜀𝑥

∗ =
𝜕𝛿𝑢𝑥

∗

𝜕𝑥

𝛿𝜀𝑦
∗ =

𝜕𝛿𝑢𝑦
∗

𝜕𝑦

𝛿𝛾𝑥𝑦
∗ =

𝜕𝛿𝑢𝑦
∗

𝜕𝑥
+
𝜕𝛿𝑢𝑥

∗

𝜕𝑦 }
  
 

  
 

 

 

1.2 Finite element method 

The application of the finite element method necessitates the division of the solid object into 

sub-domains: the elements. This allows for a discrete application of the principle of virtual 

works on the solid object.  

1.2.1 Discretisation 

Each element is delimited by a group of nodes. The displacements 𝑈𝑥
𝑖  𝑎𝑛𝑑 𝑈𝑦

𝑖  are computed 

at the nodes, as shown in Figure 1.2-1.  

 

Figure 1.2-1 - Nodal displacements on a 4-node quadrangle 
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The strain field, displacement field, and stress field are expressed on the element through 

interpolation functions that allow a continuous expression of the field on each element 

based on the nodal values. 

The discrete formulation of the displacement on an element is expressed as follows: 

{
𝑢𝑥
∗(𝑥, 𝑦)

𝑢𝑦
∗ (𝑥, 𝑦)

} = [
ℎ1(𝑥, 𝑦) 0

0 ℎ1(𝑥, 𝑦)
   …  

ℎ𝑁(𝑥, 𝑦) 0

0 ℎ𝑁(𝑥, 𝑦)
]

{
 
 

 
 
𝑈𝑥
1

𝑈𝑦
1

⋮
𝑈𝑥
𝑁

𝑈𝑦
𝑁}
 
 

 
 

 

⇔ {𝑢∗(𝑥, 𝑦)} = [𝑁(𝑥, 𝑦)]{𝑞} [1.2.1] 

Where ℎ𝑖(𝑥, 𝑦) are the shape functions. The shape functions are continuous functions of the 

two variables x and y and take the following value on a node j: 

ℎ𝑖(𝑥𝑗 , 𝑦𝑗) = 𝛿𝑖𝑗 

Where 𝑥𝑗  𝑎𝑛𝑑 𝑦𝑗 are the coordinates of node j, and 𝛿𝑖𝑗 is the Kronecker delta. 

In the same way as the displacement field, the strain field and the stress field can be 

expressed using the interpolation functions: 

{

𝜖𝑥
∗(𝑥, 𝑦)

𝜖𝑦
∗(𝑥, 𝑦)

𝛾𝑥𝑦
∗ (𝑥, 𝑦)

} =

[
 
 
 
 
 
 
𝜕ℎ1

𝜕𝑥
0

0
𝜕ℎ1

𝜕𝑦

𝜕ℎ1

𝜕𝑦

𝜕ℎ1

𝜕𝑥

     …   

𝜕ℎ𝑁

𝜕𝑥
0

0
𝜕ℎ𝑁

𝜕𝑦

𝜕ℎ𝑁

𝜕𝑦

𝜕ℎ𝑁

𝜕𝑥 ]
 
 
 
 
 
 

{
 
 

 
 
𝑈𝑥
1

𝑈𝑦
1

⋮
𝑈𝑥
𝑁

𝑈𝑦
𝑁}
 
 

 
 

 

⇔ {𝜖∗(𝑥, 𝑦)} = [𝐵(𝑥, 𝑦)]{𝑞} [1.2.2] 

Using Hooke’s law: {𝜎∗(𝑥, 𝑦)} = [𝐶]{𝜖∗(𝑥, 𝑦)} = [𝐶][𝐵(𝑥, 𝑦)]{𝑞} 

1.2.2 Virtual work principle 

Using the discretised expressions, the virtual work principle can be rewritten in a discrete 

form. 

For any infinitesimal virtual displacement field 𝛿𝑢∗ that fulfils the compatibility of the 

solid: 

 [1.1.5]⇔ ∑ (∫ 〈𝛿𝜀∗〉{𝜎}
𝑉𝐸𝐿

𝑑𝑉)

𝑁𝐸𝐿

𝐸𝑙=1

= ∑ (∫ 〈𝛿𝑢∗〉
𝑉𝐸𝐿

{𝐹}𝑑𝑉 + ∫ 〈𝛿𝑢∗〉{𝑇} 𝑑𝐴
𝐴𝐸𝐿

)

𝑁𝐸𝐿

𝐸𝐿=1

 

 

Where: 

 𝑁𝐸𝐿 is the number of elements used to divide the domain; 

 𝑉𝐸𝐿 is the volume of the element; 



10 

 

 𝐴𝐸𝐿 is the contour of the element. 

 

[1.1.5]⇔ ∑ (∫ 〈𝛿𝑞∗〉𝐸𝐿[𝐵(𝑥, 𝑦)]
𝑇[𝐶][𝐵(𝑥, 𝑦)]{𝑞}𝐸𝐿

𝑉𝐸𝐿

𝑑𝑉)

𝑁𝐸𝐿

𝐸𝑙=1

= ∑ (∫ 〈𝛿𝑞∗〉𝐸𝐿[𝑁(𝑥, 𝑦)]
𝑇

𝑉𝐸𝐿

{𝐹}𝑑𝑉+∫ 〈𝛿𝑞∗〉𝐸𝐿[𝑁(𝑥, 𝑦)]
𝑇{𝑇}𝑑𝐴

𝐴𝐸𝐿

)

𝑁𝐸𝐿

𝐸𝐿=1

 

⇔ ∑ (〈𝛿𝑞∗〉𝐸𝐿∫ [𝐵(𝑥, 𝑦)]𝑇[𝐶][𝐵(𝑥, 𝑦)]
𝑉𝐸𝐿

𝑑𝑉{𝑞}𝐸𝐿)

𝑁𝐸𝐿

𝐸𝑙=1

= ∑ (〈𝛿𝑞∗〉𝐸𝐿∫ [𝑁(𝑥, 𝑦)]𝑇

𝑉𝐸𝐿

{𝐹}𝑑𝑉 + 〈𝛿𝑞∗〉𝐸𝐿∫ [𝑁(𝑥, 𝑦)]𝑇{𝑇} 𝑑𝐴
𝐴𝐸𝐿

)

𝑁𝐸𝐿

𝐸𝐿=1

 

⇔ 〈𝛿𝑞∗〉[𝐾]{𝑞} = 〈𝛿𝑞∗〉{𝑄}        ∀〈𝛿𝑞∗〉 

⇔ [𝐾]{𝑞} = {𝑄}        ∀〈𝛿𝑞∗〉 [1.2.3] 

The stiffness matrix [𝐾] and the vector of equivalent nodal loads {𝑄} are obtained through 

assembling the element stiffness matrices [𝐾𝐸𝐿] and load vectors {𝑄𝐸𝐿}, with: 

[𝐾𝐸𝐿] = ∫ [𝐵(𝑥, 𝑦)]𝑇[𝐶][𝐵(𝑥, 𝑦)]
𝑉𝐸𝐿

𝑑𝑉 [1.2.4] 

{𝑄𝐸𝐿} = ∫ [𝑁(𝑥, 𝑦)]𝑇
𝑉𝐸𝐿

{𝐹}𝑑𝑉 + ∫ [𝑁(𝑥, 𝑦)]𝑇{𝑇} 𝑑𝐴
𝐴𝐸𝐿

 [1.2.5] 

The expression of [𝐾𝐸𝐿] and {𝑄𝐸𝐿} depend on the interpolation functions ℎ𝑖(𝑥, 𝑦). 

1.2.3 Parametric system 

In order to simplify the expression of the interpolation functions for an undefined geometry, 

the parametric representation of the element is used to define the interpolation functions, 

as shown in Figure 1.2-2. 

 

Figure 1.2-2 - Cartesian representation and parametric representation of a 4-node element 
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The interpolation functions can be written in the parametric system of coordinates: 

{
 
 

 
 ℎ

1(𝜉, 𝜂) =
1

4
(1 − 𝜉)(1 − 𝜂)

ℎ2(𝜉, 𝜂) =
1

4
(1 + 𝜉)(1 − 𝜂)

ℎ3(𝜉, 𝜂) =
1

4
(1 + 𝜉)(1 + 𝜂)

ℎ4(𝜉, 𝜂) =
1

4
(1 − 𝜉)(1 + 𝜂)

 [1.2.6] 

The expression of the Cartesian coordinates can be expressed as functions of the parametric 

coordinates 𝜉 and 𝜂: 

𝑥 =∑ℎ𝑖(𝜉, 𝜂)𝑋𝑖

4

𝑖=1

𝑦 =∑ℎ𝑖(𝜉, 𝜂)𝑌𝑖

4

𝑖=1

 

 [1.2.7] 

From [1.2.6] and [1.2.7], the Jacobian matrix can be determined to perform the 

transformation from the Cartesian system to the parametric system: 

[𝐽] = [

𝑑𝑥

𝑑𝜉

𝑑𝑥

𝑑𝜂

𝑑𝑦

𝑑𝜉

𝑑𝑦

𝑑𝜂

] = [
∑

𝜕ℎ𝑖(𝜉,𝜂)

𝜕𝜉
𝑋𝑖

4
𝑖=1 ∑

𝜕ℎ𝑖(𝜉,𝜂)

𝜕𝜂
𝑋𝑖

4
𝑖=1

∑
𝜕ℎ𝑖(𝜉,𝜂)

𝜕𝜉
𝑌𝑖

4
𝑖=1 ∑

𝜕ℎ𝑖(𝜉,𝜂)

𝜕𝜂
𝑌𝑖

4
𝑖=1

] [1.2.8] 

An infinitesimal volume inside the element in the Cartesian space is defined as: 𝑑𝑉 = 𝑒 ∗

𝑑𝑥𝑑𝑦, where 𝑒 is the thickness of the element (considered uniform in the initial 

configuration in a 2D analysis). In the parametric space, the volume element is: 𝑑𝑉 = 𝑒 ∗

𝐽(𝜉, 𝜂)𝑑𝜉𝑑𝜂, where 𝐽(𝜉, 𝜂) = det [𝐽(𝜉, 𝜂)] 

Consequently, the expression of the stiffness matrix [1.2.4] and the equivalent load vector 

[1.2.5] can be written using the parametric system: 

[𝐾𝐸𝐿] = ∫ [𝐵(𝑥, 𝑦)]𝑇[𝐶][𝐵(𝑥, 𝑦)]
𝑉𝐸𝐿

𝑑𝑉 = 𝑒 ∫ [𝐵(𝑥, 𝑦)]𝑇[𝐶][𝐵(𝑥, 𝑦)]
𝛺𝐸𝐿

𝑑𝑥𝑑𝑦 =

𝑒∬ [𝐵(𝜉, 𝜂)]𝑇[𝐶][𝐵(𝜉, 𝜂)]𝐽(𝜉, 𝜂)
1

−1
𝑑𝜉𝑑𝜂 [1.2.9] 

Where Ω𝐸𝐿 is the surface of the element. 

{𝑄𝐸𝐿} = ∫ [𝑁(𝑥, 𝑦)]𝑇

𝑉𝐸𝐿

{𝐹}𝑑𝑉 + ∫ [𝑁(𝑥, 𝑦)]𝑇{𝑇} 𝑑𝐴
𝐴𝐸𝐿

 

                             = 𝑒∬ [𝑁(𝜉, 𝜂)]𝑇{𝐹}𝐽(𝜉, 𝜂)𝑑𝜉𝑑𝜂
1

−1
+ 𝑒 ∫ [𝑁(𝜉, 𝜂)]𝑇{𝑇}𝐽(𝜉, 𝜂)𝑑𝜉𝑑𝜂

𝐶𝑜𝑛𝑡𝑜𝑢𝑟
 [1.2.10] 

 

Where: 

[𝑁(𝜉, 𝜂)] = [
ℎ1(𝜉, 𝜂) 0

0 ℎ1(𝜉, 𝜂)
   …  

ℎ4(𝜉, 𝜂) 0

0 ℎ4(𝜉, 𝜂)
] [1.2.11] 
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[𝐵(𝜉, 𝜂)] =

[
 
 
 
 
𝜕ℎ1(𝜉,𝜂)

𝜕𝑥
0

0
𝜕ℎ1(𝜉,𝜂)

𝜕𝑦

𝜕ℎ1(𝜉,𝜂)

𝜕𝑦

𝜕ℎ1(𝜉,𝜂)

𝜕𝑥

     …   

𝜕ℎ4(𝜉,𝜂)

𝜕𝑥
0

0
𝜕ℎ4(𝜉,𝜂)

𝜕𝑦

𝜕ℎ4(𝜉,𝜂)

𝜕𝑦

𝜕ℎ4(𝜉,𝜂)

𝜕𝑥 ]
 
 
 
 

 [1.2.12] 

The partial derivative of the interpolation functions with respect to x or y are obtained via 

the Jacobian matrix: 

{

𝜕ℎ𝑖(𝜉,𝜂)

𝜕𝑥

𝜕ℎ𝑖(𝜉,𝜂)

𝜕𝑦

} = [𝐽]−𝑇 {

𝜕ℎ𝑖(𝜉,𝜂)

𝜕𝜉

𝜕ℎ𝑖(𝜉,𝜂)

𝜕𝜂

} [1.2.13] 

 

1.2.4 Numerical integration 

In order to implement the finite element method in a program, the stiffness matrices and 

load vectors have to be calculated through a numerical integration.  

On a 4-node quadrangle, the stiffness matrix can be calculated using a Gaussian quadrature 

using 1 or 4 Gauss points (i.e. integration points) to calculate the integral from Equation 

[1.2.9]. 

The expression of the stiffness matrix is: 

[𝐾𝐸𝐿] = 𝑒 ∑ [𝐵(𝜉𝐼𝑃, 𝜂𝐼𝑃)]
𝑇[𝐶][𝐵(𝜉𝐼𝑃 , 𝜂𝐼𝑃)]𝐽(𝜉𝐼𝑃, 𝜂𝐼𝑃)𝑊𝐼𝑃

𝑁𝐼𝑃
𝐼𝑃=1  [1.2.14] 

Where (𝜉𝐼𝑃, 𝜂𝐼𝑃) are the coordinates of the Gauss points in the parametric system, and 𝑊𝐼𝑃 is 

its weight.  

The coordinates of the Gauss points and their respective weight are given in Table 1. 

Table 1 - Gauss points coordinates and weight 

𝑁𝐼𝑃 𝐼𝑃 𝜉𝐼𝑃 𝜂𝐼𝑃 𝑊𝐼𝑃 

1 1 0 0 4 

4 

1 −
1

√3 
 −

1

√3 
 1 

2 −
1

√3 
 

1

√3 
 1 

3 
1

√3 
 −

1

√3 
 1 

4 
1

√3 
 

1

√3 
 1 
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It can be noted that for a 4-node quadrangle, the stiffness matrix calculated with a 

Gaussian quadrature using 4 points gives the same result as the fully integrated matrix, as 

mentioned in J-L. Batoz, G. Dhatt [1]. 

However, when only one Gaussian point is used, the element can develop cinematic modes, 

which means it can deform without any load applied. This happens because the stiffness 

matrix of the element is singular, therefore, there are vectors {𝑞}𝐸𝐿 different from the null 

vector that verify: 

(𝛿𝑊𝐼)𝐸𝐿 =< 𝛿𝑞 >𝐸𝐿 [𝐾𝐸𝐿]{𝑞}𝐸𝐿 = 0 [1.2.15] 

This leads to a phenomenon called ‘hourglassing’, due to the shape the elements take (see 

Figure 1.2-3). 

 

Figure 1.2-3 - Example of hourglassing on a tube loaded with an internal pressure 

1.2.5 Convergence 

For a given application of the finite element method, there are two ways of converging to a 

result closer to the theoretical result.  

The first method is to increase the order of the interpolation functions, while keeping the 

same mesh. To represent higher order shape functions, the number of nodes on each 

element has to be increased as well (second order polynomial shape functions require 3 

nodes per edge, third order require 4 nodes per edge, etc.), which leads to longer 

computation times and new developments. 

The second method consists in refining the mesh, by using smaller elements. This also 

increases the time of calculation.   
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1.3 Locking problems in classic finite elements 

Different locking phenomena can occur in a standard finite element analysis. When locking 

happens, the displacements computed by the analysis may be smaller than those expected 

(that can be obtained from an analytical analysis). This is due to an excess of stiffness in the 

element which usually appears when the stiffness matrix is computed with a full 

integration. 

This work will focus on the two most frequent locking problems that can be observed in 

finite elements: shear locking and volumetric locking. 

1.3.1 Shear locking 

In a 2-dimension analysis, shear locking can occur when using 4-nodes quadrangles 

subjected to bending.  

The interpolation functions of a 4-node quadrangle are linear. Therefore, the displacement 

field on each element will also be linear. However, when subjected to a pure bending 

moment, the element should assume a curved shape as shown in Figure 1.3-1, where the 

cross sections form a 90° angle with the neutral axis. Because of the shape the element 

actually assumes, the cross sections are not at 90° to the neutral axis (see Figure 1.3-2). 

 

Figure 1.3-1 - Shape change of the material block under the moment in the ideal situation - From E. Qiuli Sun [2] 

 

Figure 1.3-2 - Shape change of the fully integrated first order element under the moment - from E. Qiuli Sun [2] 

Because the element is unable of reproducing this curved shape, it develops an artificial 

shear stress to allow the cross sections not to remain perpendicular to the neutral axis. 

Because of that, the strain energy of the element generates shear deformation instead of 

bending deformation. This results in displacements smaller than the theoretical 

displacements under pure bending. 
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A possible solution to that problem would be to use higher order elements, such as 8-nodes 

quadrangles, with parabolic interpolation functions, which allow a correct representation of 

the displacement field on each element. However, the use of this type of element would 

increase the computation time. 

Another solution is to calculate the stiffness matrix using only one Gauss point. This 

decreases the element stiffness and can give better results in some cases, however the use of 

a one-point Gaussian quadrature usually gives less accurate results and can lead to 

hourglassing. 

1.3.2 Volumetric locking 

In the elastic domain, volumetric locking is encountered with quasi-incompressible 

materials (with a Poisson’s ratio close to 0.5) in plane strain state. 

This is due to the fact that the shape functions of the element are unable to approximate a 

volume preserving strain field, as explained in A.F. Bower, [5]. 

For a 2D analysis, Hooke’s law can be written as follows for the plane strain state (see 

[1.1.1]): 

{𝜎} = [𝐶]{𝜀} 

Where [𝐶] =
𝐸

(1+𝜈)(1−2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1−2𝜈

2

] 

When the Poisson’s ratio is close to 0.5, the term  
𝐸

(1+𝜈)(1−2𝜈)
 becomes close to +∞, which 

leads to an increase in the stiffness of the element.  
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2 Methodology 

2.1 Finite Element Program 

The first step of this work was the creation of a code that could be used to carry out a two-

dimensional finite element analysis. 

The code, written using the MATLAB software, contains several scripts that are necessary 

to carry out the analysis:  

 the MAIN script contains the different parameters (Young’s modulus, Poisson’s ratio, 

number of Gauss points, loads, fixed nodes, displacements…); 

 from the MAIN script, a second script is used to read or to generate the mesh of the 

domain; 

 the EF_2D script generates the global stiffness matrix and the global vector of 

equivalent loads; 

 the PLOT and RESULTS scripts generate a graphical representation of the 

displacement and of the stress in the domain. 

2.1.1 Meshing 

The software GMSH [3] was used in order to generate the mesh.  

The geometry of the studied object is defined from points, oriented lines, and oriented 

surfaces. Once the geometry is defined, the mesh can be generated. By default, GMSH 

generates meshes using triangular elements. To obtain a mesh with quadrilateral elements, 

the triangular mesh is recombine using the “Blossom” recombination algorithm. This 

algorithm is the default recombination algorithm. 

The mesh can then be refined using different global mesh size factors. 

GMSH does not allow the direct input of boundary conditions such as supports, but nodes, 

lines, and surfaces can be sorted by assessing them different physical groups. 

GMSH generates a “.msh” file containing the node numbers and coordinates, the element 

numbers, their type (linear, triangular, quadrilateral, …), their physical group(s), and the 

nodes they connect. 

In the program, the script “READ_MESH.m” was created to transform the data from the 

.msh file into matrices that can be used with MATLAB. This script was created from an 

already existing script internal to the university that has been written for another project. 

It is presented in Appendix 1. 

The first part of the script creates a matrix containing the numbers of the nodes and their 

coordinates.  

The second part is used to define boundary conditions from the physical groups. The 

following convention was used to define different boundary conditions: the fixations are 

defined using a two-digit number “XY”. The first digit, “X”, corresponds to the type of 

element and take the following values: 1 for a single node, 2 for a line (containing several 
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nodes). The second digit “Y” corresponds to the direction in which the node is fixed. Table 2 

contains the signification of the different values of “Y”. 

Table 2 - Physical groups for node fixation 

Digit Y Signification 

1 Node fixed in the horizontal direction 

2 Node fixed in the vertical direction 

3 Node fixed in both directions 

 

Finally, a matrix containing all the elements is generated from the .msh file. 

2.1.2 Resolution 

As explained in 1.1., the objective of the finite element program is to find a solution to 

equation [1.2.3]. 

Once the mesh is determined, the global stiffness matrix and the global load vector must be 

generated from the elementary stiffness matrices, the boundary conditions, and the loads 

imposed on the system. 

2.1.2.1 Computation of the elementary stiffness matrices and load vector 

The elementary stiffness matrices are computed using a Gaussian quadrature, using 

equation [1.2.14]. 

The code allows to choose between a numerical integration with 1 Gauss point or 4 Gauss 

points. This is done with the parameter “NIP” that has to be defined in the MAIN script. 

From this value, the parametric coordinates of the Gauss points are defined: 

if NIP==1 
    WIP=[4]; 
    ksiIP=[0]; 
    etaIP=[0]; 
elseif NIP==4 
    WIP=[1 1 1 1]; 
    ksiIP=[-1/(sqrt(3)) -1/sqrt(3) 1/sqrt(3) 1/sqrt(3)]; 
    etaIP=[-1/(sqrt(3)) 1/sqrt(3) -1/sqrt(3) 1/sqrt(3)]; 
end   

 

Once this is defined, the elementary stiffness matrix can be computed for every element, 

using [1.2.14]. The load vector, however, is directly input as a global vector with the data in 

the MAIN script. 

% Parametric coordinates of the element nodes 
KSI=[-1 1 1 -1];   
ETA=[-1 -1 1 1]; 
for i=1:Nel     
    Kel=zeros(2*Nnode,2*Nnode); %Initialisation of the elementary 

stiffness matrix 
    % Cartesian coordinates of the element 
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    for j=1:Nnode    
        X(j)=nodes(elem(i,j),2); 
        Y(j)=nodes(elem(i,j),3); 
    end 
    %% Computation of the elementary stiffness matrix 
        for j=1:NIP 
            eta=etaIP(j); 
            ksi=ksiIP(j); 
            %Computation of the Jacobian matrix and determinant 
            J11=(1-eta)*(X(2)-X(1))+(1+eta)*(X(3)-X(4)); 
            J12=(1-ksi)*(X(4)-X(1))+(1+ksi)*(X(3)-X(2)); 
            J21=(1-eta)*(Y(2)-Y(1))+(1+eta)*(Y(3)-Y(4)); 
            J22=(1-ksi)*(Y(4)-Y(1))+(1+ksi)*(Y(3)-Y(2)); 
            J=1/4*[J11 J12 ; J21 J22]; 
            detJ=det(J); 
            %Computation of matrices B and N 
            dH=zeros(2,Nnode); 
            for k=1:Nnode 
                h=1/4*(1+KSI(k)*ksi)*(1+ETA(k)*eta); 
                dh=1/4*[KSI(k)*(1+ETA(k)*eta) ; ETA(k)*(1+ksi*KSI(k))]; 
                dH(:,k)=transpose(J)\dh; 
                B(1,2*k-1,NIP*(i-1)+j)=dH(1,k); 
                B(2,k*2,NIP*(i-1)+j)=dH(2,k); 
                B(3,2*k-1,NIP*(i-1)+j)=dH(2,k); 
                B(3,k*2,NIP*(i-1)+j)=dH(1,k); 
                N(1,2*k-1,NIP*(i-1)+j)=h; 
                N(2,2*k,NIP*(i-1)+j)=h; 
            end 

Kel=Kel+transpose(B(:,:,NIP*(i-1)+j))*C*B(:,:,NIP*(i-

1)+j)*detJ*WIP(j); 
        end 

 

2.1.2.2 Assembly process 

Once the elementary matrix has been computed, its components must be added to the global 

stiffness matrix through the assembly process. 

The elements 𝐾𝑒𝑙(𝑖, 𝑗), {
𝑖 = 2𝑓 𝑜𝑟 2𝑓 − 1
𝑗 = 2𝑔 𝑜𝑟 2𝑔 − 1

 represents the relation between local nodes g and f, 

where (𝑔, 𝑓) ∈ ⟦1,4⟧². This contribution must be added to the global stiffness matrix, using 

the global numbering of the nodes: 

for i=1:Nel     

… % Computation of the elementary stiffness matrix  

% Assembly process 
for f=1:Nnode 

        a=elem(i,f);            % Global number of local node f 
        for g=1:Nnode 
            b=elem(i,g);        % Global number of local node g 
            Kgl(2*a-1,2*b-1)=Kgl(2*a-1,2*b-1)+Kel(2*f-1,2*g-1); 
            Kgl(2*a-1,2*b)=Kgl(2*a-1,2*b)+Kel(2*f-1,2*g); 
            Kgl(2*a,2*b-1)=Kgl(2*a,2*b-1)+Kel(2*f,2*g-1); 
            Kgl(2*a,2*b)=Kgl(2*a,2*b)+Kel(2*f,2*g); 
        end 
    end    
end 
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2.1.2.3 Boundary conditions 

The boundary conditions include fixed nodes and imposed displacements.  

The fixations are defined in the 3-column matrix fixed_DOF. The first column contains the 

node number. The second column takes the value 1 if the node is fixed in the horizontal 

direction, 0 if it is not. The third column takes the value 1 if the node is fixed in the vertical 

direction, 0 if it is not.  

When a node is fixed in one direction, the global stiffness matrix and the global load vector 

have to be modified. For instance, if a node k is fixed in the horizontal direction, the 

equation 𝑈2𝑘−1 = 0 has to be included in the system described by Equation [1.2.3]. This is 

done by changing the stiffness matrix and the load vector as follows: 

[
 
 
 
 
 
 
 
 
𝐾1,1 ⋯ 0 𝐾1,2𝑘 ⋯ 𝐾1,2𝑁
𝐾2,1 ⋯ 0 𝐾2,2𝑘 ⋯ 𝐾2,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 1 0 ⋯ 0

𝐾2𝑘,1 ⋯ 0 𝐾2𝑘,2𝑘 ⋯ 𝐾2𝑘,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐾2𝑁−1,1 ⋯ 0 𝐾2𝑁−1,2𝑘 ⋯ 𝐾2𝑁−1,2𝑁
𝐾2𝑁,1 ⋯ 0 𝐾2𝑁,2𝑘 ⋯ 𝐾2𝑁,2𝑁 ]

 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

𝑈1
𝑈2
⋮

𝑈2𝑘−1
𝑈2𝑘
⋮

𝑈2𝑁−1
𝑈2𝑁 }

 
 
 

 
 
 

=

{
 
 
 

 
 
 

𝐹1
𝐹2
⋮
0
𝐹2𝑘
⋮

𝐹2𝑁−1
𝐹2𝑁 }

 
 
 

 
 
 

 

This is computed as follows in the program: 

for i=1:size(fixed_DOF,1) 
    k=fixed_DOF(i,1);           % Global number of the node 
    if fixed_DOF(i,2)==1         
        Qgl(2*k-1)=0; 
        for j=1:2*Nnode_tot 
            Kgl(2*k-1,j)=0; 
            Kgl(j,2*k-1)=0; 
        end 
        Kgl(2*k-1,2*k-1)=1; 
    end 
    if fixed_DOF(i,3)==1 
        Qgl(2*k)=0; 
        for j=1:2*Nnode_tot 
            Kgl(2*k,j)=0; 
            Kgl(j,2*k)=0; 
        end 
        Kgl(2*k,2*k)=1; 
    end 
end 

 

The imposed displacements are defined by the matrix dep_imp. The first column contains 

the node number. The second column contains the value of the horizontal displacement (0 if 

no horizontal displacement is imposed), and the third column contains the value of the 

vertical displacement. 
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As well as for the fixations, imposing a horizontal displacement d on a node k is equivalent 

to including the equation 𝑈2𝑘−1 = 𝑑, which is done by changing the stiffness matrix and the 

load vector as follows: 

[
 
 
 
 
 
 
 
 
𝐾1,1 ⋯ 𝐾1,2𝑘−1 𝐾1,2𝑘 ⋯ 𝐾1,2𝑁
𝐾2,1 ⋯ 𝐾2,2𝑘−1 𝐾2,2𝑘 ⋯ 𝐾2,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 1 0 ⋯ 0

𝐾2𝑘,1 ⋯ 𝐾2𝑘,2𝑘−1 𝐾2𝑘,2𝑘 ⋯ 𝐾2𝑘,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐾2𝑁−1,1 ⋯ 𝐾2𝑁−1,2𝑘−1 𝐾2𝑁−1,2𝑘 ⋯ 𝐾2𝑁−1,2𝑁
𝐾2𝑁,1 ⋯ 𝐾2𝑁,2𝑘−1 𝐾2𝑁,2𝑘 ⋯ 𝐾2𝑁,2𝑁 ]

 
 
 
 
 
 
 
 

{
 
 
 

 
 
 

𝑈1
𝑈2
⋮

𝑈2𝑘−1
𝑈2𝑘
⋮

𝑈2𝑁−1
𝑈2𝑁 }

 
 
 

 
 
 

=

{
 
 
 

 
 
 

𝐹1
𝐹2
⋮
𝑑
𝐹2𝑘
⋮

𝐹2𝑁−1
𝐹2𝑁 }

 
 
 

 
 
 

 

In the program: 

for i=1:size(dep_imp,1) 
    k=dep_imp(i,1);        % Global node number 

%% Modification of Kgl and Qgl to impose the displacement 
    if dep_imp(i,2)~=0 
        for j=1:2*Nnode_tot 
            Qgl(j)=Qgl(j)-Kgl(j,2*k-1)*dep_imp(i,2); 
            Kgl(2*k-1,j)=0; 
            Kgl(j,2*k-1)=0; 
        end 
        Kgl(2*k-1,2*k-1)=1; 
        Qgl(2*k-1)=dep_imp(i,2); 
    end 
    if dep_imp(i,3)~=0 
        for j=1:2*Nnode_tot 
            Qgl(j)=Qgl(j)-Kgl(j,2*k)*dep_imp(i,3); 
            Kgl(2*k,j)=0; 
            Kgl(j,2*k)=0; 
        end 
        Kgl(2*k,2*k)=1; 
        Qgl(2*k)=dep_imp(i,3); 
    end 
end 

 

Remark: This technique to impose fixed degrees of freedom or to impose displacements is 

not as efficient as the static condensation. Indeed, it does not permit to reduce the size of 

the system of equations for known DOF values. However, this method can be easily adapted 

for the construction of the FE² method. Additionally, the goal of this study is not the 

computational efficiency of the technique.  
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2.1.3 Numerical tests 

Several tests were performed to validate the finite element program and ensure the right 

behaviour of the element under simple cases of stress. 

The two first tests (rigid modes and constant strain) are necessary to assess the consistency 

criteria. A shear test is also performed on the element to ensure a correct behaviour under 

shear stress. Finally, a patch test was made to verify the behaviour of the elements and the 

assembly process, and therefore the proper functioning of the program. 

2.1.3.1 Rigid modes 

The rigid modes are the modes corresponding to a state with no deformation. In a two 

dimensional case, there are 3 rigid modes:  

 Rigid translation along x axis 

 Rigid translation along y axis 

 Rigid rotation around z axis 

To verify that the element is capable of representing a state where there is no deformation, 

each of these transformations has to be applied to the element represented in Figure 2.1-1. 

 

Figure 2.1-1 - Element tested for the rigid modes 

For the first rigid mode (translation along x axis), a unitary displacement 𝑈𝑥 = 1 is applied 

on node 1, and nodes 1 and 2 are fixed in the vertical direction. 

For the second rigid mode (translation along y axis), a unitary displacement 𝑈𝑦 = 1 is 

applied on nodes 1 and 2, and node 1 is fixed in the horizontal direction. 

The third rigid mode (rotation around z axis) is defined by a direction vector {𝑢} = {
−𝑦
𝑥
}. To 

test this mode, a horizontal displacement 𝑈𝑥 = −0.1𝑦1 and a vertical displacement 𝑈𝑦 =

0.1𝑥1 are applied on node 1, and a vertical displacement 𝑈𝑦 = 0.1𝑥2 is applied on node 2 

(where (𝑥𝑖 , 𝑦𝑖) are the coordinates of node i in the initial configuration). 
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The results of these tests are the same using 1 or 4 Gauss nodes for the integration of the 

stiffness matrix and are shown in Figure 2.1-2 to Figure 2.1-4 below. 

 

Figure 2.1-2 - Element displacement under the first rigid mode 

 

Figure 2.1-3 – Element displacement under the second rigid mode 
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Figure 2.1-4 – Element displacement under the third rigid mode 

2.1.3.2 Constant strain test 

The constant strain test is performed on a single element. The element is a 10x10 mm² 

square with a theoretical thickness of 1 mm. The material properties are those of steel (𝐸 =

210000 𝑀𝑃𝑎;  𝜈 = 0.3). The element is considered to be in a plane stress state. 

A traction force P=100 kN is applied on nodes 2 and 3, as represented in Figure 2.1-5, so as 

to create a constant stress (and therefore a constant strain) in the element. 

Nodes 1 and 2 are fixed in the vertical direction, and nodes 1 and 4 are fixed in the 

horizontal direction. 

 

Figure 2.1-5 – Constant strain test on a square element 
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The theoretical stress, strain, and displacement can be calculated easily from the 2-D 

mechanics of materials: 

- The tensile horizontal stress and the vertical stress are 𝜎𝑥 =
2𝑃

ℎ𝑡
=

20000 𝑀𝑃𝑎 𝑎𝑛𝑑 𝜎𝑦 = 0 𝑀𝑃𝑎, where h is the height of the element and t its thickness; 

- The horizontal and vertical strains are 𝜖𝑥 =
𝜎𝑥

𝐸
= 9.52 ∗ 10−2 𝑎𝑛𝑑 𝜖𝑦 = −𝜈𝜖𝑥 = −2.86 ∗

10−2 ; 

- The horizontal and vertical displacements of node 3 are 𝑑𝑥 = 𝜖𝑥 ∗ 𝑤 =

0.952 𝑚𝑚 𝑎𝑛𝑑 𝑑𝑦 = −0.286 𝑚𝑚, where w is the width of the element; 

The numerical results, using 1 or 4 Gauss points are presented in Table 3: 

Table 3 - Stress and strain in the element under constant strain 

 1 Gauss point 4 Gauss points 

𝜎𝑥 20000 MPa 20000 MPa 

𝜎𝑦 9e-13 MPa 2e-12 MPa 

𝜏𝑥𝑦 1e-12 MPa 8e-13 MPa 

𝜖𝑥 0.0952 0.0952 

𝜖𝑦 -0.0286 -0.0286 

𝛾𝑥𝑦 1e-17 1e-17 

The results are the same in both cases and are identical to the theoretical results. 

However, the representation of the deformed element (see Figure 2.1-6 and Figure 2.1-7) 

reveals that the numerical integration using 1 Gauss point gives erroneous results in terms 

of displacement. This can be explained mathematically by the fact that the global stiffness 

matrix is singular (non-invertible). Physically, this corresponds to a cinematic mode of the 

element, where it can deform freely regardless of the stress and strain at the integration 

point. To prevent this problem, another degree of freedom should be suppressed by adding a 

support, or the mechanism should be removed by assembling multiple elements. 
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Figure 2.1-6 - Deformed shape under constant stress - Reduced integration using 1 Gauss point 

 

 

Figure 2.1-7 - Deformed shape under constant stress - Fully integrated element 

2.1.3.3 Shear test 

A shear test is conducted on the same element as the one used for the constant strain test 

(same geometry, same material properties), to verify that the element can reproduce the 

behaviour of a solid object subjected to shear. 
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The element is subjected to a horizontal displacement 𝑈𝑥 =
𝐿𝑥

10
 on both nodes 3 and 4. Nodes 

1 and 2 are fixed. The deformed shape of the element is represented in Figure 2.1-8 (the 

deformed shape is the same for the fully integrated element and the 1 Gauss point element). 

 

Figure 2.1-8 - Deformed shape of the element under shear stress 

The stresses obtained through the numerical computation are then compared to the 

theoretical shear stress. 

Analytically, the shear stress is: 

𝜏 = 𝐺 ∗ 𝛾 =
𝐸

2 ∗ (1 + 𝜈)
∗
Δ𝐿

𝐿
=
210000

2 ∗ 1.3
∗
1

10
= 8077 𝑀𝑃𝑎 

The finite element analysis gives the following stress vector: 

𝜎 = {
0
0

8077
} 

 The program is therefore functional for shear stress. 

2.1.3.4 Patch test 

A patch test is performed in order to verify that the assembly process is correctly computed 

in the program. 

The patch test is similar to the constant strain test, but instead of a single element, four 

elements are used as shown in Figure 2.1-9. Nodes 2, 4, 6, and 8 are placed in the middle of 

each side of the square. The coordinates of node 5 are (x=3; y=6) (node 1 is the origin of the 

system). 

Again, a constant stress 𝜎 = 20000 𝑀𝑃𝑎 is applied on the right side of the solid object. The 

equivalent nodal loads are represented in Figure 2.1-9. 
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Figure 2.1-9 - Patch test 

The numerical results are shown in Table 4. 

Table 4 - Patch test - Displacement values 

 𝑼𝒙 𝑼𝒚 

Node 1 Gauss 

point 

4 Gauss 

points 

Analytical 

result 

1 Gauss 

point 

4 Gauss 

points 

Analytical 

result 

1 0 0 0 0 0 0 

2 0,476 0,476 0,476 0 0 0 

3 0,952 0,952 0,952 0 0 0 

4 0,952 0,952 0,952 -0,143 -0,143 -0,143 

5 0,285 0,286 0,286 -0,171 -0,171 -0,171 

6 0 0 0 -0,143 -0,143 -0,143 

7 0 0 0 -0,286 -0,286 -0,286 

8 0,476 0,476 0,476 -0,286 -0,286 -0,286 

9 0,952 0,952 0,952 -0,286 -0,286 -0,286 

 

The stress and strains computed numerically also correspond to the theoretical results. The 

patch-test is successful, which means the assembly process in the program works properly. 

It can also be noted that the reduced integration (1 Gauss point) gives the same result as 

the fully integrated element (4 Gauss points), contrarily to the constant strain test with one 

element. 

The different tests performed show that the elements are consistent and that the program is 

working.  
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2.2 FE² elements 

The FE² technique consists in meshing the domain on two different scales. A primary mesh 

is done on the domain, which could then be used in a classic finite element analysis. Once 

this primary mesh is defined, a secondary mesh is applied to each element, as shown in 

Figure 2.2-1. 

 

Figure 2.2-1 - Schematic representation of the FE² method 

Using this secondary mesh, an equivalent stiffness matrix is created for each element of the 

primary mesh. The process used to create these equivalent matrices is explained hereafter 

in 2.2.1. The elements created with this method are then tested to verify their consistency 

and to assess their accuracy. 

2.2.1 Method of construction 

2.2.1.1 Equivalent stiffness matrix 

In a finite element analysis, the elements are represented by their stiffness matrices. The 

stiffness matrix represents the relation between the nodal displacements and the forces 

required to create these displacements. 

For a 4-node element in 2-D, the stiffness matrix is an 8-by-8 matrix. Physically, the 

element 𝐾𝑖𝑗 of the matrix is the force needed on DOF i to create a unitary displacement on 

DOF j, the other remaining DOF’s being fixed. 

This can be understood using equation [1.2.3]: 

[1.2.3]⇔ [𝐾]{𝑞} = {𝑄} 
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⇔ [

𝐾11 𝐾12
𝐾21 𝐾22

… 𝐾18
… 𝐾28

⋮ ⋮
𝐾81 𝐾82

⋮ ⋮
… 𝐾88

]

{
 
 

 
 
𝑈𝑥1
𝑈𝑦1
⋮
𝑈𝑥4
𝑈𝑦4}

 
 

 
 

=

{
 
 

 
 
𝐹𝑥1
𝐹𝑦1
⋮
𝐹𝑥4
𝐹𝑦4}

 
 

 
 

 

In the case where only one of the nodal displacements is different from zero, for instance 

𝑈𝑥1 = 1 and {
𝑈𝑥𝑖 = 0   ∀𝑖 ≠ 1
𝑈𝑦𝑖 = 0  ∀𝑖

 , equation [1.2.3] becomes:  

{
 
 

 
 
𝐾11 ∗ 𝑈𝑥1
𝐾21 ∗ 𝑈𝑥1

⋮
𝐾71 ∗ 𝑈𝑥1
𝐾81 ∗ 𝑈𝑥1}

 
 

 
 

=

{
 
 

 
 
𝐹𝑥1
𝐹𝑦1
⋮
𝐹𝑥4
𝐹𝑦4}

 
 

 
 

⇔

{
 
 

 
 
𝐾11
𝐾21
⋮
𝐾71
𝐾81}

 
 

 
 

=

{
 
 

 
 
𝐹𝑥1
𝐹𝑦1
⋮
𝐹𝑥4
𝐹𝑦4}

 
 

 
 

 [2.2.1] 

This can be generalised, for any 𝑘, 𝑙 ∈ ⟦1 ; 4⟧: 

 𝐾2𝑘,2𝑙 is the vertical force on node k to create a unitary vertical displacement on node 

l; 

 𝐾2𝑘−1,2𝑙 is the horizontal force on node k to create a unitary vertical displacement on 

node l; 

 𝐾2𝑘,2𝑙−1 is the vertical force on node k to create a unitary horizontal displacement on 

node l; 

 𝐾2𝑘−1,2𝑙−1 is the horizontal force on node k to create a unitary horizontal 

displacement on node l; 

This definition of the stiffness is going to be used to compute the equivalent stiffness matrix 

of the FE² element. 

The general idea is to impose a horizontal or vertical displacement on one of the vertex 

nodes of the meshed element, and calculate the equivalent vertical and horizontal forces on 

each vertex node. 

2.2.1.2 Deformation of the element 

The FE² element has to be able to reproduce the behaviour of the classic element. Therefore, 

the global deformation of the meshed element subjected to a displacement at one node has 

to be the same as the deformation of the classic element.  

As it can be seen in Figure 2.2-2, this is not the case if the same boundary conditions are 

applied to both elements. In this example, a 1-by-1 mm square element is considered. A 

horizontal displacement is applied at node 1 and node 1 is fixed in the vertical direction, 

while the three other vertex nodes (2, 3, and 4) are fixed in both directions.  
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Figure 2.2-2 - Deformation of the classic element (left) and of the FE² element (right) with the same boundary 

conditions 

In order to obtain the same deformation for both elements, the nodes on the sides of the FE² 

element have to be kept aligned. 

For a square element, the sides that are unaffected by the displacement can be fixed in the 

horizontal or vertical direction (e.g. top and right sides in Figure 2.2-2). However, for a 

different geometry, or for the side of the square that does not stay parallel to one of the 

axes, specific boundary conditions have to be applied (e.g. left side in Figure 2.2-2). 

In the finite element program, the global stiffness matrix and the equivalent load vector 

have to be modified to take in account these boundary conditions. 

The element is modelled as shown in Figure 2.2-3. The nodes in the vertices are hinged 

(except for the node that is subjected to a displacement), and the nodes on the sides are on 

elastic supports in the direction perpendicular to the side. 
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Figure 2.2-3 - Model of the FE² element 

This model is valid as long as the nodal displacement is small compared to the size of the 

element. Indeed, if the displacement at a given node is big in comparison to the size, then 

the direction of the displacement of the nodes will not be quasi-perpendicular to the side, 

and therefore, the model will not be able to represent the behaviour of the element correctly 

(see section 2.2.1.5 for the choice of the displacement’s value). 

Let (𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), (𝑥4, 𝑦4) be the coordinates of the four vertex nodes in the initial 

configuration. Given a horizontal displacement d at node 1 (see Figure 2.2-3), the 

coordinates (𝑥, 𝑦) of the nodes belonging to side 1 in the deformed configuration must verify 

the following equation: 

𝑦 = 𝑎𝑥 + 𝑏 [2.2.2] 

With {
𝑎 =

𝑦4−𝑦1

𝑥4−𝑥1−𝑑

𝑏 = 𝑦4 − 𝑎𝑥4
 

Let (𝑈𝑥𝑖 , 𝑈𝑦𝑖) the horizontal and vertical displacements of the considered node, and (𝑥𝑖 , 𝑦𝑖) its 

coordinates in the initial configuration: 



32 

 

{
𝑥 = 𝑥𝑖 + 𝑈𝑥𝑖
𝑦 = 𝑦𝑖 + 𝑈𝑦𝑖

 

Therefore: 

[2.2.2]⇒ 𝑦𝑖 +𝑈𝑦𝑖 = 𝑎𝑥𝑖 + 𝑎𝑈𝑥𝑖 + 𝑏 

⇒ 𝑈𝑦𝑖 = 𝛼𝑈𝑥𝑖 + 𝛽 

⇔ 𝑈𝑥𝑖 −
1

𝛼
𝑈𝑦𝑖 = −

𝛽

𝛼
 

With:  {
𝛼 = 𝑎

𝛽 = 𝑎𝑥𝑖 − 𝑦𝑖 + 𝑏
 

To input this condition in the finite element program, the global stiffness matrix and the 

equivalent load vector have to be modified as follows: 

[
 
 
 
 
 
 
 
 
𝐾1,1 𝐾1,2 ⋯ 𝐾1,2𝑖−1 𝐾1,2𝑖 ⋯ 𝐾1,2𝑁−1 𝐾1,2𝑁
𝐾2,1 𝐾2,2 ⋯ 𝐾2,2𝑖−1 𝐾2,2𝑖 ⋯ 𝐾2,2𝑁−1 𝐾2,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐾2𝑖−1,1 𝐾2𝑖−1,2 ⋯ 𝐾2𝑖−1,2𝑖−1 𝐾2𝑖−1,2𝑖 ⋯ 𝐾2𝑖−1,2𝑁−1 𝐾2𝑖−1,2𝑁
𝐾2𝑖,1 𝐾2𝑖,2 ⋯ 𝐾2𝑖,2𝑖−1 𝐾2𝑖,2𝑖 ⋯ 𝐾2𝑖,2𝑁−1 𝐾2𝑖,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐾2𝑁−1,1 𝐾2𝑁−1,2 ⋯ 𝐾2𝑁−1,2𝑖−1 𝐾2𝑁−1,2𝑖 ⋯ 𝐾2𝑁−1,2𝑁−1 𝐾2𝑁−1,2𝑁
𝐾2𝑁,1 𝐾2𝑁,2 ⋯ 𝐾2𝑁,2𝑖−1 𝐾2𝑁,2𝑖 ⋯ 𝐾2𝑁,2𝑁−1 𝐾2𝑁,2𝑁 ]

 
 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑈𝑥1
𝑈𝑦1
⋮
𝑈𝑥𝑖
𝑈𝑦𝑖
⋮
𝑈𝑥𝑁
𝑈𝑦𝑁}

 
 
 

 
 
 

=

{
 
 
 

 
 
 
𝐹𝑥1
𝐹𝑦1
⋮
𝐹𝑥𝑖
𝐹𝑦𝑖
⋮
𝐹𝑥𝑁
𝐹𝑦𝑁}

 
 
 

 
 
 

 

Becomes: 

[
 
 
 
 
 
 
 
 
𝐾1,1 𝐾1,2 ⋯ 𝐾1,2𝑖−1 𝐾1,2𝑖 ⋯ 𝐾1,2𝑁−1 𝐾1,2𝑁
𝐾2,1 𝐾2,2 ⋯ 𝐾2,2𝑖−1 𝐾2,2𝑖 ⋯ 𝐾2,2𝑁−1 𝐾2,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 1 −1/𝛼 ⋯ 0 0

𝐾2𝑖,1 𝐾2𝑖,2 ⋯ 𝐾2𝑖,2𝑖−1 𝐾2𝑖,2𝑖 ⋯ 𝐾2𝑖,2𝑁−1 𝐾2𝑖,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐾2𝑁−1,1 𝐾2𝑁−1,2 ⋯ 𝐾2𝑁−1,2𝑖−1 𝐾2𝑁−1,2𝑖 ⋯ 𝐾2𝑁−1,2𝑁−1 𝐾2𝑁−1,2𝑁
𝐾2𝑁,1 𝐾2𝑁,2 ⋯ 𝐾2𝑁,2𝑖−1 𝐾2𝑁,2𝑖 ⋯ 𝐾2𝑁,2𝑁−1 𝐾2𝑁,2𝑁 ]

 
 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑈𝑥1
𝑈𝑦1
⋮
𝑈𝑥𝑖
𝑈𝑦𝑖
⋮
𝑈𝑥𝑁
𝑈𝑦𝑁}

 
 
 

 
 
 

=

{
 
 
 

 
 
 
𝐹𝑥1
𝐹𝑦1
⋮

−𝛽/𝛼
𝐹𝑦𝑖
⋮
𝐹𝑥𝑁
𝐹𝑦𝑁 }

 
 
 

 
 
 

 

Where N is the total number of nodes in the mesh. 

 

This change is made for every node i on side 1. A similar process is done for each side of the 

quadrangle. 

2.2.1.3 Reactions at the nodes 

So far, the modifications made in the global stiffness matrix and the equivalent load vector 

force the side nodes to stay on a determined line. However, this is not sufficient to represent 

the behaviour of the element as modelled in Figure 2.2-3. 

In order to fit the chosen model, the reactions 𝑅𝑘 at the nodes situated on the sides of the 

quadrangle have to be perpendicular to the side, as it should be for a movable support. 
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The reaction at a given node i has a horizontal component 𝑅2𝑖−1 and a vertical component 

𝑅2𝑖. 

These reactions can be calculated with the following expression: 

𝑅𝑘 = ∑ 𝐾𝑘𝑗𝑈𝑗
2𝑁
𝑗=1 − 𝐹𝑘 [2.2.3] 

Where 𝐾𝑘𝑗 are the elements of the global stiffness before modification, and 𝐹𝑘 are the 

elements of the equivalent load vector before modification. 

The total reaction at the node i can be expressed as: 

𝑅⃗ 𝑡𝑜𝑡,𝑖 = 𝑅2𝑖−1𝑥 + 𝑅2𝑖𝑦  [2.2.4] 

Let a be the slope of the side on which node i is situated. A direction vector for the 

considered side is {𝑢⃗ } = {
1
𝑎
} 

𝑅⃗ 𝑡𝑜𝑡,𝑖 is orthogonal to 𝑢⃗  if and only if: 

𝑅⃗ 𝑡𝑜𝑡,𝑖 . 𝑢⃗ = 0 ⇒ 𝑅2𝑖−1 + 𝑎𝑅2𝑖 = 0 [2.2.5] 

Using [2.2.3] and [2.2.5]: 

∑(𝐾2𝑖−1,𝑗+𝑎𝐾2𝑖,𝑗)𝑈𝑗

2𝑁

𝑗=1

− (𝐹𝑥𝑖 + 𝑎𝐹𝑦𝑖) = 0 

This equation is then used to modify the global stiffness matrix and the load vector: 

[
 
 
 
 
 
 
 
 
 

𝐾1,1 ⋯ 𝐾1,2𝑖−1 𝐾1,2𝑖 ⋯ 𝐾1,2𝑁
𝐾2,1 ⋯ 𝐾2,2𝑖−1 𝐾2,2𝑖 ⋯ 𝐾2,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ 1 −
1

𝛼
⋯ 0

𝐾2𝑖−1,1 + 𝑎𝐾2𝑖,1 ⋯ 𝐾2𝑖−1,2𝑖−1 + 𝑎𝐾2𝑖,2𝑖−1 𝐾2𝑖−1,2𝑖 + 𝑎𝐾2𝑖,2𝑖 ⋯ 𝐾2𝑖−1,2𝑁 + 𝑎𝐾2𝑖,2𝑁
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐾2𝑁−1,1 ⋯ 𝐾2𝑁−1,2𝑖−1 𝐾2𝑁−1,2𝑖 ⋯ 𝐾2𝑁−1,2𝑁
𝐾2𝑁,1 ⋯ 𝐾2𝑁,2𝑖−1 𝐾2𝑁,2𝑖 ⋯ 𝐾2𝑁,2𝑁 ]

 
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 
𝑈𝑥1
𝑈𝑦1
⋮
𝑈𝑥𝑖
𝑈𝑦𝑖
⋮
𝑈𝑥𝑁
𝑈𝑦𝑁}

 
 
 

 
 
 

=

{
 
 
 
 

 
 
 
 

𝐹𝑥1
𝐹𝑦1
⋮

−
𝛽

𝛼
𝐹𝑥𝑖 + 𝑎𝐹𝑦𝑖

⋮
𝐹𝑥𝑁
𝐹𝑦𝑁 }

 
 
 
 

 
 
 
 

 

This modification is applied for each of the side nodes. Once this is done, the system can be 

resolved and the nodal displacements obtained.  
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To compute this in the program, each side is defined as a vector containing the numbers of 

the nodes belonging to this side. These vectors are contained in an array L. 

It is important to note that the modifications of the stiffness matrix and the load vector 

must only be applied if the side considered is not vertical or horizontal in the deformed 

configuration (otherwise, 𝛼 = 0 𝑜𝑟 𝛼 = ∞). Therefore, for a square element on which a 

horizontal displacement is applied at node 1, only side 1 will have to be taken into account. 

This is done in the program by defining an interval (interval in the program) containing 

the numbers of the side(s) that have to be taken into account. 

The following is an excerpt of the code that corresponds to the process described previously 

in 2.2.1.2 and 2.2.1.3: 

for f=interval 
        alpha=a(f);     %slope of side f 
        for i=2:length(L{1,f})-1    % loop on the internal nodes of side f 
            k=L{1,f}(i);            % global number of i-th node of side f 

  % Coordinates of node k in the original configuration 
            y0=nodes(k,3); 
            x0=nodes(k,2); 
            beta=alpha*x0+b(f)-y0; 
            % Modification of the stiffness matrix and of the load vector 
            for j=1:2*Nnode_tot 
                Kgl(2*k-1,j)=0; 
                Kgl(2*k,j)=KglOrigin(2*k-1,j)+alpha*KglOrigin(2*k,j); 
            end 
            Kgl(2*k-1,2*k-1)=1; 
            Kgl(2*k-1,2*k)=-1/alpha; 
            Qgl(2*k-1)=-beta/alpha; 
            Qgl(2*k)=QglOrigin(2*k-1)+alpha*QglOrigin(2*k); 
        end 
    end 

 

2.2.1.4 Equivalent reactions at the vertices 

From the displacement computed, the reactions can be calculated at each side node. 

Each of these reactions is orthogonal to the side, except for the reactions at the vertices. 

These reactions have to be decomposed into two vectors, each perpendicular to one of the 

sides. 

Let 𝑎𝑖 , 𝑎𝑗 be the respective slopes of the two sides i and j that intersect at the vertex node k. 

The direction vectors orthogonal to these two sides are: 

{𝑢𝑖⃗⃗  ⃗} = {
−𝑎𝑖
1
}  𝑎𝑛𝑑 {𝑢𝑗⃗⃗  ⃗} = {

−𝑎𝑗
1
} 

N.B.: if the side is vertical, 𝑎𝑖 = ±∞, and the orthogonal vector {𝑢𝑖⃗⃗  ⃗} is {
1
0
} 

The reaction force at node k is (see [2.2.4]): 

𝑅⃗ 𝑡𝑜𝑡,𝑘 = {
𝑅2𝑘−1
𝑅2𝑘

} 
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Decomposing this reaction force is equivalent to finding 𝛼 and 𝛽 such that: 

{
𝑅2𝑘−1
𝑅2𝑘

} = 𝛼 {
−𝑎𝑖
1
} + 𝛽 {

−𝑎𝑗
1
} 

⇒ {
𝑅2𝑘−1 = −𝛼𝑎𝑖 − 𝛽𝑎𝑗

𝑅2𝑘 = 𝛼 + 𝛽
⇒{

𝛼 = 𝑅2𝑘 − 𝛽

𝛽 = −
𝑅2𝑘−1 + 𝑎𝑖𝑅2𝑘

𝑎𝑗 − 𝑎𝑖

 

At the vertex node, the reaction force is now expressed as a vector 𝛼 {
−𝑎𝑖
1
} perpendicular to 

side i, and a vector 𝛽 {
−𝑎𝑗
1
} perpendicular to side j. 

To evaluate the equivalent force at the vertices, each side can now be considered as a simply 

supported beam subjected to vertical nodal forces 𝑝𝑘 = ±‖𝑅𝑡𝑜𝑡,𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ as shown in Figure 2.2-4. 

The support reactions on this beam correspond to the vertex forces. 

 

Figure 2.2-4 - Model of the side of the element for the calculation of the equivalent vertex forces 

To simplify the calculations, a secondary coordinate system (𝑥𝑖⃗⃗  ⃗, 𝑦𝑖⃗⃗⃗  ) is created for each side as 

shown in Figure 2.2-5. 
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Figure 2.2-5 – Secondary coordinate systems 

For instance, on line 1 (L1), the equivalent vertex forces are then obtained by calculating 

the support reactions of each equivalent beam through an isostatic analysis: 

Let A and B be the two supports (vertex nodes 1 and 4), 𝑅𝐴, 𝑅𝐵 the support reactions: 

{
 
 

 
 𝑅𝐴 + 𝑅𝐵 + ∑ 𝑝𝑘

𝑘∈𝐿1 

= 0

∑𝑀𝐴 = 𝑅𝐵𝑙1 + ∑ 𝑝𝑘𝑦1𝑘
′

𝑘∈𝐿1

= 0
 

{
 
 

 
 𝑅𝐴 = − ∑ 𝑝𝑘

𝑘∈𝐿1 

− 𝑅𝐵

𝑅𝐵 = −
1

𝑙1
∑ 𝑝𝑘𝑦1𝑘

′

𝑘∈𝐿1

 

 

Where 𝑙1 is the length of side 1, and  𝑦1𝑘
′  is the distance of node k to node 1. 

The same process is applied for each side. Each vertex node therefore receives two forces 

(one from each of the sides it intersects) that can be added and expressed in the Cartesian 

coordinate system. 

2.2.1.5 Size of the displacement 

As mentioned in 2.2.1.2, the displacement d must be small for the model to be valid. 
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However, if the displacement is too small, the term −
1

𝛼
 ,that correspond to the inverse of the 

slope of the side in the deformed configuration, becomes close to zero if the side was 

originally vertical (infinite slope) and close to infinity if the side was originally horizontal 

(zero slope). 

This can cause the global stiffness matrix to be singular, and therefore, can lead to errors 

when solving the system to find the displacements of the nodes. 

Consequently, a compromise has to be made to find a value of displacement small enough to 

fit the model and large enough to avoid making the global stiffness matrix singular. 

In order to find that value, the calculation of the FE² stiffness matrix of a square element 

was performed for different values of the displacement d imposed at the vertices. The 

element is a 1x1 mm² square. The sub-mesh contains 247 elements.  

The global stiffness matrix becomes singular for a displacement 𝑑 = 10−9. Therefore, the 

range of values for d becomes [10−8; 10−1 ]. 

Figure 2.2-6 shows the evolution of 𝐾11/𝐾11,𝑟𝑒𝑓 for different values of the displacement, 

where 𝐾11,𝑟𝑒𝑓 is the value of the first element of the equivalent stiffness matrix for 𝑑 = 10−8.  

 

Figure 2.2-6 – Evolution of the ratio between element K11 of the FE² stiffness matrix and a reference value of K11 

for different values of displacement d 

Similar curves can be obtained for other elements of the stiffness matrix 𝐾𝑖𝑗. It can be 

observed on the graph from Figure 2.2-6 that an asymptote is reached for values of 𝑑 below 

10−4. 

Considering the element was a 1x1 square, it can be concluded that the value of the 

displacement d should be kept between ℎ/104  and ℎ/108, where h is the characteristic size 

of the element. 

The minimum value ℎ/108 will be used in the rest of the study. 
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2.2.1.6 Size of the sub-mesh 

To generate the equivalent stiffness matrix of the FE² element, the size of the sub mesh has 

to be chosen.  

The number of elements will be used to characterize the size of the sub mesh. 

The chosen size of the sub-mesh has to be as small as possible to limit the time of 

computation, but it must be big enough to bring a difference compared to a classic element. 

In order to choose the size of the sub-mesh, the evolution of the stiffness matrix elements 

with the number of elements used was observed for a square element. 

Only the first line of the stiffness matrix was studied here, since the square element is 

doubly symmetrical. 

Figure 2.2-7 represents the evolution of the ratio between the elements of the equivalent 

stiffness matrix (FE²) and the elements of the fully integrated stiffness matrix. 

 

Figure 2.2-7 – Evolution of the stiffness with the number of elements used in the sub mesh 

It can be observed that, as expected, all the curves start with a ratio of 1 when only one 

element is used. Some of the elements (𝐾11, 𝐾12, 𝐾13, 𝐾15, 𝐾16) stay close to the value of the 

fully integrated matrix (ratio close to 1), while others (𝐾14, 𝐾17, 𝐾18) show an important 

variation in comparison to the fully integrated matrix. 
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The non-uniform variation in the curve between 1 and 10 elements can be explained by the 

fact that a uniform mesh was used with 4 and 16 elements, whereas the rest of the meshes 

were random. 

In all cases, the curve approaches a horizontal asymptote.  In order to choose a minimal 

value for the number of elements in the sub-mesh, a criterion of ±1% of the asymptotic 

value was used. It was assumed that the asymptotic values were reached with the 

maximum tested number of elements (𝑁𝑒𝑙 = 3300). 

 

Figure 2.2-8 - Choice of a minimum number of elements for the sub-mesh 

Figure 2.2-8 shows that in order to stay within 1% of the value of 𝐾18 obtained with 3300 

elements, the sub mesh must contain at least 550 elements. A similar conclusion would be 

drawn for the other components of the matrix. 

2.2.2 Rotation and size of the element 

The process needed to generate the equivalent stiffness matrix of the element increase with 

N, N being the number of elements in the sub-mesh. 

Therefore, given the FE² stiffness matrix of an element, it is interesting to find ways of 

obtaining the stiffness matrix of the same element after a simple transformation, such as a 

homothetic transformation or a rotation. 

2.2.2.1 Homothetic transformation 

The first thing that was observed from the results of the FE² element calculation was that 

the stiffness matrix is invariant through homothetic transformation. This property of the 

element can be useful to refine a regular mesh, without changing the aspect ratio of the 

elements.   

This can be demonstrated for a classic element: 
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Let (𝑥1, 𝑦1) = (0,0) 𝑎𝑛𝑑 (𝑥𝑖 , 𝑦𝑖), 𝑖 ∈ ⟦2; 4⟧ be the coordinates of a 4-node quadrangle, and [𝐾𝑟𝑒𝑓] 

its stiffness matrix. 

A homothetic transformation with a scale factor 𝜆 and a centre (0,0) is applied to the 

element. The coordinates of the new element are: 

{

𝑛𝑜𝑑𝑒 1: (0,0)
𝑛𝑜𝑑𝑒 2: (𝜆𝑥2, 𝜆𝑦2)
𝑛𝑜𝑑𝑒 3: (𝜆𝑥3, 𝜆𝑦3)
𝑛𝑜𝑑𝑒 4: (𝜆𝑥4, 𝜆𝑦4)

 

The Jacobian matrix for the parametric system of the new element is: 

[𝐽] =

[
 
 
 
 
𝑑𝑥

𝑑𝜉

𝑑𝑥

𝑑𝜂
𝑑𝑦

𝑑𝜉

𝑑𝑦

𝑑𝜂]
 
 
 
 

= [
𝜆𝐽𝑟𝑒𝑓1,1 𝜆𝐽𝑟𝑒𝑓1,2
𝜆𝐽𝑟𝑒𝑓2,1 𝜆𝐽𝑟𝑒𝑓2,2

] = 𝜆[𝐽𝑟𝑒𝑓] 

And the Jacobian determinant is: 𝐽 = 𝜆2𝐽𝑟𝑒𝑓 

From [1.2.10] and [1.2.11], the matrix [𝐵] of the new element can be expressed: 

[𝐵] =
1

𝜆
[𝐵𝑟𝑒𝑓]  

From [1.2.9], the stiffness matrix can be calculated: 

[𝐾] = 𝑒∬ [𝐵(𝜉, 𝜂)]𝑇[𝐶][𝐵(𝜉, 𝜂)]𝐽(𝜉, 𝜂)
1

−1

𝑑ξ𝑑𝜂

= 𝑒∬
1

𝜆
[𝐵𝑟𝑒𝑓(𝜉, 𝜂)]

𝑇[𝐶]
1

𝜆
[𝐵𝑟𝑒𝑓(𝜉, 𝜂)]𝜆

2𝐽𝑟𝑒𝑓(𝜉, 𝜂)
1

−1

𝑑ξ𝑑𝜂 

[𝐾] = [𝐾𝑟𝑒𝑓] 

This was also observed in the stiffness matrices of the FE² elements that were computed 

with the program for square elements of different sizes. 

2.2.2.2 Rotation 

Contrarily to the homothetic transformation, a rotation of the element will lead to a 

modification of the stiffness matrix. This type of transformation can be useful when 

meshing an axisymmetric object. 

However, this change can be analytically determined using the definition of the stiffness 

matrix established in 2.2.1.1. 

The following calculations are valid for a rotation of an angle 𝜃 ∈ [0;
𝜋

2
], measured positive 

clockwise, as represented in Figure 2.2-9. 

Two coordinate systems are used: the original Cartesian coordinate system (𝑥 , 𝑦 ), and the 

rotated coordinate system (𝑥′⃗⃗  ⃗, 𝑦′⃗⃗  ⃗). The rotated element in (𝑥′⃗⃗  ⃗, 𝑦′⃗⃗  ⃗) is equivalent to the original 

element in (𝑥 , 𝑦 ). 
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Figure 2.2-9 - Rotation of the element 

Let [𝐾] the stiffness matrix of the base element, and [𝐾∗] the stiffness matrix of the rotated 

element. 

A horizontal unitary displacement 1 ∗ 𝑥  on a node 𝑖 (𝑖 ∈ ⟦1; 4⟧) in the rotated configuration 

can be decomposed into two displacements:  

{
𝑑𝑥
′ 𝑥′⃗⃗⃗  = 𝑐𝑜𝑠𝜃𝑥′⃗⃗⃗  

𝑑𝑦
′ 𝑦′⃗⃗  ⃗ = 𝑠𝑖𝑛𝜃𝑦′⃗⃗  ⃗

 

In the (𝑥′⃗⃗  ⃗, 𝑦′⃗⃗  ⃗) coordinate system, the equivalent forces on a node j necessary to produce 

these displacements on node i are: 

{
𝐹𝑥′𝑗 = 𝑑𝑥

′𝐾2𝑗−1,2𝑖−1 + 𝑑𝑦
′ 𝐾2𝑗−1,2𝑖 = 𝑐𝑜𝑠𝜃𝐾2𝑗−1,2𝑖−1 + 𝑠𝑖𝑛𝜃𝐾2𝑗−1,2𝑖

𝐹𝑦′𝑗 = 𝑑𝑥
′𝐾2𝑗,2𝑖−1 + 𝑑𝑦

′ 𝐾2𝑗,2𝑖 = 𝑐𝑜𝑠𝜃𝐾2𝑗,2𝑖−1 + 𝑠𝑖𝑛𝜃 𝐾2𝑗,2𝑖
 [2.2.6] 

These forces can be expressed in the original coordinate system (𝑥 , 𝑦 ), as shown in Figure 

2.2-10: 

{
𝐹𝑥𝑗 = 𝑐𝑜𝑠𝜃𝐹𝑥′𝑗 + 𝑠𝑖𝑛𝜃𝐹𝑦′𝑗
𝐹𝑦𝑗 = 𝑐𝑜𝑠𝜃𝐹𝑦′𝑗 − 𝑠𝑖𝑛𝜃 𝐹𝑥′𝑗

 [2.2.7] 
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Figure 2.2-10 - Forces on node j to induce a unitary horizontal displacement on node i 

From [2.2.6] and [2.2.7] the expression of the elements 𝐾2𝑗,2𝑖−1
∗  and 𝐾2𝑗−1,2𝑖−1

∗  can be obtained: 

{
𝐾2𝑗−1,2𝑖−1
∗ = 𝑐𝑜𝑠𝜃(𝑐𝑜𝑠𝜃𝐾2𝑗−1,2𝑖−1 + 𝑠𝑖𝑛𝜃𝐾2𝑗−1,2𝑖) + 𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜃𝐾2𝑗,2𝑖−1 + 𝑠𝑖𝑛𝜃 𝐾2𝑗,2𝑖)

𝐾2𝑗,2𝑖−1
∗ = 𝑐𝑜𝑠𝜃(𝑐𝑜𝑠𝜃𝐾2𝑗,2𝑖−1 + 𝑠𝑖𝑛𝜃 𝐾2𝑗,2𝑖) − 𝑠𝑖𝑛𝜃 (𝑐𝑜𝑠𝜃𝐾2𝑗−1,2𝑖−1 + 𝑠𝑖𝑛𝜃𝐾2𝑗−1,2𝑖)

 [2.2.8] 

Similarly, a vertical unitary displacement 1 ∗ 𝑦  on a node 𝑖 (𝑖 ∈ ⟦1; 4⟧) in the rotated 

configuration can be decomposed into two displacements:  

{
𝑑𝑥
′ 𝑥′⃗⃗⃗  = −𝑠𝑖𝑛𝜃𝑥′⃗⃗⃗  

𝑑𝑦
′ 𝑦′⃗⃗  ⃗ = 𝑐𝑜𝑠𝜃𝑦′⃗⃗  ⃗

 

In the (𝑥′⃗⃗  ⃗, 𝑦′⃗⃗  ⃗) coordinate system, the equivalent forces on a node j necessary to produce 

these displacements on node i are: 

{
𝐹𝑥′𝑗 = 𝑑𝑥

′𝐾2𝑗−1,2𝑖−1 + 𝑑𝑦
′ 𝐾2𝑗−1,2𝑖 = −𝑠𝑖𝑛𝜃𝐾2𝑗−1,2𝑖−1 + 𝑐𝑜𝑠𝜃𝐾2𝑗−1,2𝑖

𝐹𝑦′𝑗 = 𝑑𝑥
′𝐾2𝑗,2𝑖−1 + 𝑑𝑦

′ 𝐾2𝑗,2𝑖 = −𝑠𝑖𝑛𝜃𝐾2𝑗,2𝑖−1 + 𝑐𝑜𝑠𝜃 𝐾2𝑗,2𝑖
 [2.2.9] 

Again, these forces are expressed in the original coordinate system to obtain the expressions 

of the elements 𝐾2𝑗,2𝑖
∗  and 𝐾2𝑗−1,2𝑖

∗ : 

{
𝐾2𝑗−1,2𝑖
∗ = 𝑐𝑜𝑠𝜃(−𝑠𝑖𝑛𝜃𝐾2𝑗−1,2𝑖−1 + 𝑐𝑜𝑠𝜃𝐾2𝑗−1,2𝑖) + 𝑠𝑖𝑛𝜃(−𝑠𝑖𝑛𝜃𝐾2𝑗,2𝑖−1 + 𝑐𝑜𝑠𝜃 𝐾2𝑗,2𝑖)

𝐾2𝑗,2𝑖
∗ = 𝑐𝑜𝑠𝜃(−𝑠𝑖𝑛𝜃𝐾2𝑗,2𝑖−1 + 𝑐𝑜𝑠𝜃 𝐾2𝑗,2𝑖) − 𝑠𝑖𝑛𝜃 (−𝑠𝑖𝑛𝜃𝐾2𝑗−1,2𝑖−1 + 𝑐𝑜𝑠𝜃𝐾2𝑗−1,2𝑖)

 [2.2.10] 

Using [2.2.8] and [2.2.10], the stiffness matrix of the rotated element can be determined from 

the stiffness matrix of the original element. 
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2.2.3 Tests 

The same tests as those that were performed on classic elements in part 2.1.3 were 

performed on the FE² element, to verify its consistency. 

For the three first tests, the element tested is a square element with the material properties 

of steel (E=210 000 MPa and ν=0.3). 

The stiffness matrix of this element, obtained through the process described in 2.2.1, is 

shown in Table 5. The values of the elements of the equivalent stiffness matrix are 

displayed in black, and the difference between their value and the elements of the classic 

fully integrated stiffness matrix 
𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐(𝑖,𝑗)−𝐾𝐹𝐸2(𝑖,𝑗)

𝐾𝑐𝑙𝑎𝑠𝑠𝑖𝑐(𝑖,𝑗)
 are displayed in red. The sub-mesh 

contained 594 elements and the displacement d at the vertices was 10−8. 

Table 5 - Stiffness matrix of the square FE² element 

𝐾𝑖1  𝐾𝑖2  𝐾𝑖3  𝐾𝑖4  

87118 16.1% 27145 27.6% -67443 -6.3% 7471 359.0% 

27145 27.6% 87107 16.1% -7481 359.3% 28278 -145.1% 

-67443 -6.3% -7481 359.3% 87105 16.1% -27134 27.6% 

7471 359.0% 28278 -145.1% -27134 27.6% 87107 16.1% 

-47942 7.7% -27134 27.6% 28279 -145.1% -7481 359.3% 

-27146 27.6% -47941 7.7% 7472 359.0% -67443 -6.3% 

28266 -145.0% 7471 359.0% -47942 7.7% 27145 27.6% 

-7469 358.9% -67443 -6.3% 27143 27.6% -47941 7.7% 

𝐾𝑖5  𝐾𝑖6  𝐾𝑖7  𝐾𝑖8  

-47942 7.7% -27146 27.6% 28266 -145.0% -7469 358.9% 

-27134 27.6% -47941 7.7% 7471 359.0% -67443 -6.3% 

28279 -145.1% 7472 359.0% -47942 7.7% 27143 27.6% 

-7481 359.3% -67443 -6.3% 27145 27.6% -47941 7.7% 

87105 16.1% 27143 27.6% -67443 -6.3% 7472 359.0% 

27143 27.6% 87118 16.1% -7469 358.9% 28267 -145.0% 

-67443 -6.3% -7469 358.9% 87118 16.1% -27146 27.6% 

7472 359.0% 28267 -145.0% -27146 27.6% 87118 16.1% 

 

2.2.3.1 Rigid modes 

The deformation of the three rigid mode tests (see 2.1.3.1) are presented hereafter in Figure 

2.2-11, Figure 2.2-12, and Figure 2.2-13. 
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Figure 2.2-11 - Displacement of the FE² element under the first rigid mode (horizontal translation) 

 

Figure 2.2-12 - Displacement of the FE² element under the second rigid mode (vertical translation) 
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Figure 2.2-13 - Displacement of the FE² element under the third rigid mode (rotation) 

 

2.2.3.2 Constant strain test 

The constant strain test described in 2.1.3.2 is now performed on the FE² element.  

The deformed shape is shown in Figure 2.2-14. The numerical horizontal and vertical 

displacements at node 3 are the same as the analytical displacement. 

 

Figure 2.2-14 - Deformed shape of the FE² element under constant stress 
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The numerical results for the FE² element are presented in the following table, along with 

the results for the fully integrated classic element: 

 FE² Fully integrated 

𝜎𝑥 20000 MPa 20000 MPa 

𝜎𝑦 -9e-6 MPa 2e-12 MPa 

𝜏𝑥𝑦 -4e-6 MPa 8e-13 MPa 

𝜖𝑥 0.0952 0.0952 

𝜖𝑦 -0.0286 -0.0286 

𝛾𝑥𝑦 -5e-11 1e-17 

The vertical stress and the shear stress, despite still being negligible, are much higher when 

using the FE² element. This shows that the FE² element is slightly less accurate than the 

classic element on a simple case. This can be related to the fact that the elements of the 

stiffness matrix are not perfectly accurate (see Table 5): all diagonal elements should be 

equal considering the element is a square. The irregularity comes from the mesh of the 

element. Nevertheless, the results can still be considered satisfying in term of consistency. 

2.2.3.3 Shear test 

The shear test (see 2.1.3.3) is now performed on the FE² element. 

The stress vector obtained is the same as in 2.1.3.3: 

𝜎 = {
0
0

8077
} 

The FE² element can represent shear stress correctly. 

2.2.3.4 Patch test 

The patch test is performed with four trapezoidal elements. The geometry used for this test 

is shown in Figure 2.2-15. The four elements have similar geometry, which allows to 

compute all their equivalent stiffness matrices from the equivalent stiffness matrix of the 

first element. These matrices are displayed in Appendix 2. 
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Figure 2.2-15 - Patch test with trapezoidal elements 

The deformed shape of the elements is shown in Figure 2.2-16 

 

Figure 2.2-16 - Deformed shape of the FE² elements 

The deformed shape does not correspond to the expected deformation of the square plate. 

The error on the displacement at each node is quantified in Table 6. 
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Table 6 - Patch test results with FE² elements 

Node x y 𝑼𝒙,𝒕𝒉 𝑼𝒙,𝒏𝒖𝒎 Error % 𝑼𝒚,𝒕𝒉 𝑼𝒚,𝒏𝒖𝒎 Error % 

1 0 0 0 0 
 

0 0 
 

2 4 0 0.3810 0.3634 4.61% 0 0 
 

3 10 0 0.9524 0.9869 3.63% 0 0 
 

4 10 5 0.9524 1.0769 13.07% -0.1429 -0.1740 21.81% 

5 6 5 0.5714 0.6676 16.82% -0.1429 -0.1880 31.57% 

6 0 5 0 0 
 

-0.1429 -0.1728 20.99% 

7 0 10 0 0 
 

-0.2857 -0.2956 3.45% 

8 4 10 0.3810 0.3653 4.10% -0.2857 -0.4065 42.29% 

9 10 10 0.9524 0.9696 1.81% -0.2857 -0.3284 14.95% 

 

The error on the horizontal displacement goes from 1.81% to 16.82%, whereas the error on 

the vertical displacement goes from 3.45% to 42.29%. Therefore, the FE² trapezoidal 

element is not fit to represent the behaviour of the solid object. 

The square and rectangular elements perform correctly under the simple tests presented 

previously. However, when the geometry of the element contains a side that is not vertical 

or horizontal, the FE² element does not perform well. This may be due to the model used to 

compute the deformation of the sub-mesh under a displacement at one of the vertices. 

Nevertheless, square and rectangular elements, and shapes that are close to squares 

perform well. For the rest of the study, meshes with these types of elements will be used. 

  



49 

 

3 Performance of the FE² element on locking problems 

3.1 Performance on shear locking 
The first type of locking for which the FE² element is tested is shear locking. As mentioned 

in 1.3.1, this type of locking appears, among other cases, on solid objects subjected to 

bending. 

3.1.1 Description of the test 

The problem studied in this test is a cantilever beam subjected to a unitary vertical tip 

displacement, as shown in Figure 3.1-1. 

The beam is a steel beam, with a Young’s modulus 𝐸 = 210000 𝑀𝑃𝑎 and a Poisson’s ratio 

𝜈 = 0.3. 

The object is considered to be in plane stress state. 

 

Figure 3.1-1 – Cantilever beam with unitary tip displacement 

The length of the beam 𝑙𝑥 is fixed to 200 mm. The width b of the beam is 1 mm. The 

thickness varies to study the effect of shear locking for different values of the slenderness 

𝑙𝑥/𝑙𝑦. 

Timoshenko’s beam theory is used to determine the theoretical reaction force at the tip of 

the beam. 

For a static cantilever beam, the expression of the tip deflection as a function of the point 

load P at the tip is: 

𝑤 =
𝑃𝑙𝑥

𝜅𝐴𝐺
+

𝑃𝑙𝑥
3

3𝐸𝐼
 [3.1.1] 

Where: 

 𝜅 is the Timoshenko shear coefficient, 𝜅 = 5/6 for a rectangular section; 

 𝐴 = 𝑙𝑦𝑏 is the cross section area; 

 𝐺 =
𝐸

2(1+𝜈)
 is the shear modulus; 

 𝐼 =
𝑏𝑙𝑦
3

12
 is the moment of inertia. 
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From [3.1.1], it can be observed that when the slenderness of the beam becomes larger (𝑙𝑥 ≫

𝑙𝑦), the term 
𝑃𝑙𝑥

𝜅𝐴𝐺
∝
𝑙𝑥

𝑙𝑦
 becomes negligible compared to 

𝑃𝑙𝑥
3

3𝐸𝐼
∝ (

𝑙𝑥

𝑙𝑦
)
3

 and the expression of the 

deflection becomes 𝑤 =
𝑃𝑙𝑥
3

3𝐸𝐼
, as predicted by the Euler-Bernoulli theory. The term 

𝑃𝑙𝑥

𝜅𝐴𝐺
 

corresponds to the contribution of the shear stress to the deflection. For large values of the 

slenderness, the beam has a pure bending behaviour. 

The theoretical equivalent point load at the tip of the beam for a unitary displacement is: 

𝑃𝑡ℎ =
1

𝑙𝑥
𝜅𝐴𝐺

+
𝑙𝑥
3

3𝐸𝐼

 [3.1.2] 

This force will be compared to the numerical forces estimated in the different tests. 

3.1.1.1 Meshing 

The test described previously was performed using different values of slenderness and 

different meshes. 

The meshes used are regular meshes using only square or rectangular elements. These 

meshes were generated through the script Square_mesh.m. The input parameters for this 

script are the length of the beam lx, the thickness of the beam ly, the height of the 

elements hy and the length of the elements hx. 

The parameters of the mesh are then defined: 

% Number of nodes on the length and on the height 
Nnodex=lx/hx+1; 
Nnodey=ly/hy+1; 
% Number of elements on the length and on the height 
Nelx=lx/hx; 
Nely=ly/hy; 

Nnode_tot=Nnodex*Nnodey;    % Total n° of nodes 
Nel=Nelx*Nely;              % Total n° of elements 
nodes=zeros(Nnode_tot,3);   % Initialisation of the nodes matrix 
elem=zeros(Nel,Nnode);      % Initialisation of the element matrix 
fixed_DOF=zeros(Nnodey,3);  % Definition of the fixed nodes 

 

Afterwards, the nodes and the elements are defined as shown in Figure 3.1-2: 

% Definition of the nodes 
for i=1:Nnodex 
    for j=1:Nnodey 
        nodes(Nnodex*(j-1)+i,:)=[Nnodex*(j-1)+i (i-1)*hx (j-1)*hy]; 
        if i==1 
            fixed_DOF(j,:)=[Nnodex*(j-1)+i 1 1]; 
        end    
    end 
end 
% Definition of the elements 
for i=1:Nelx 
    for j=1:Nely 
        nel=Nelx*(j-1)+i; 
        n1=Nnodex*(j-1)+i; 
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        elem(nel,:)=[n1 n1+1 n1+Nnodex+1 n1+Nnodex]; 
    end 
end 

 

 

Figure 3.1-2 - Regular mesh using rectangular elements for the beam 

3.1.1.2 Geometry and size of mesh 

In this first test, the goal was to compare how close the numeric results were to the 

analytical results for different values of the slenderness ratio 𝑙𝑥/𝑙𝑦. 

As mentioned before, the value of the length is fixed at 𝑙𝑥 = 200 𝑚𝑚. The values of 𝑙𝑦 shown 

in Table 7 were tested: 

Table 7 - Values of thickness and slenderness for the cantilever beam 

𝒍𝒚 40 30 20 10 8 5 

𝒍𝒙/𝒍𝒚 5 6.667 10 20 25 40 

𝒉𝒚 10 7.5 5 2.5 2 1.25 

 

The numbers of elements along the height and along the length of the element are kept 

constant. This means that as the slenderness of the beam increases, the length to thickness 

ratio of the element increases as well. 

The mesh used consists of 4 elements along the height of the beam, and 40 along the length. 

Therefore, the length of the elements keeps a constant value ℎ𝑥 = 5 𝑚𝑚, whereas the height 

of the element ℎ𝑦 takes the values displayed in Table 7. 

The equivalent stiffness matrices of the 6 elements defined from Table 7 were computed 

using the process described in 2.2.1. These matrices were computed using a value of 

displacement 𝑑 = 10−8 and with a sub-mesh containing approximately 550 elements. The 

stiffness matrices of the elements in the sub-mesh were computed using 4 Gauss points for 
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the Gaussian quadrature. The matrices are displayed in Erreur ! Source du renvoi 

introuvable.. 

3.1.2 Results 

The program computes the equivalent point load at the tip 𝑃𝑛𝑢𝑚 necessary to create a 

unitary vertical displacement at the tip of the cantilever: 

P=-QglOrigin(2*Nnode_tot); 
for k=1:2*Nnode_tot 
    P=P+KglOrigin(2*Nnode_tot,k)*U(k); 
end 

Where QglOrigin is the load vector before taking into account the boundary conditions, 

and KglOrigin is the global stiffness matrix before taking into account the boundary 

conditions. U is the vector containing the displacements computed from the finite element 

analysis. 

This numerical load is compared to the theoretical 𝑃𝑡ℎ calculated using Equation [3.1.2]. 

The results obtained with the two classic elements (reduced integration with one Gauss 

point and full integration), and with the FE² element are shown in Figure 3.1-3. 

 

Figure 3.1-3 - Normalised load 𝑃𝑛𝑢𝑚/𝑃𝑡ℎ for different slenderness ratios 

The grey curve represents the evolution of the normalised load 𝑃𝑛𝑢𝑚/𝑃𝑡ℎ computed using 

classic fully integrated elements. The shear locking phenomenon appears very clearly, as 

the normalised load becomes superior to 1 when the slenderness ratio increases. A higher 

numerical load means that a bigger force is necessary to create a unitary displacement, 

which corresponds to the locking phenomenon where the deflection is smaller than 

expected. 
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The yellow curve shows the results using a reduced integration with 1 Gauss point on the 

elements. It can be observed that the value of the normalised load stays below 1, which 

means that the element is less stiff than in theory. For slenderness ratios above 10, the 

numerical load stays at a value of approximately 0.94𝑃𝑡ℎ. However, for lower slenderness 

ratios, the element does not perform well: a phenomenon of hourglassing appears for a 

slenderness ratio of 5, as shown in Figure 3.1-4. 

 

Figure 3.1-4 - Deflection of the beam for a slenderness ratio of 5 using a reduced integration with 1 Gauss point 

Finally, the blue curve shows the performance of the FE² elements. The FE² element shows 

good results for slenderness ratios below 20, as the numerical load stays within a 5% 

margin of error of the theoretical load. However, as for the fully integrated element, the 

locking phenomenon appears when the slenderness ratio increases. Nevertheless, the FE² 

element performs better than the classic fully integrated element. 

Considering that a reduced integration gives better results than a full integration against 

shear locking, the FE² equivalent stiffness matrix was also computed using a reduced 

integration on the sub-mesh. This was done only for the most critical case, i.e. when the 

slenderness ratio is equal to 40. The element is a 1.25x5 mm² rectangle. 

Table 8 and show the comparison between the FE² stiffness matrices computed using fully 

integrated elements, and using a reduced integration with 1 Gauss point. The columns 𝐾𝑖𝑗 

contain the value of the FE² stiffness matrix using fully integrated elements, and the 

percentages in red show the difference between the two matrices: 

𝐾𝑖𝑗,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐾𝑖𝑗,𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

𝐾𝑖𝑗,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛
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Table 8 - Comparison between the FE² stiffness matrix computed with fully integrated elements or reduced 

integration in the sub-mesh 

𝐾𝑖1,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐾𝑖2,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐾𝑖3,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐾𝑖4,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 

43486 1.3% 20937 0.3% -14426 0.0% 13678 -0.5% 

20937 0.3% 301846 0.0% -13679 -0.6% 159692 0.0% 

-14426 0.0% -13679 -0.6% 43441 1.4% -20936 0.4% 

13678 -0.5% 159692 0.0% -20936 0.4% 301846 0.0% 

-14421 0.0% -20936 0.4% -14595 4.1% -13679 -0.6% 

-20943 0.3% -161507 0.0% 13683 -0.5% -300031 0.0% 

-14640 3.7% 13678 -0.5% -14421 0.0% 20937 0.3% 

-13672 -0.5% -300031 0.0% 20933 0.3% -161507 0.0% 
 

𝐾𝑖5,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐾𝑖6,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐾𝑖7,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐾𝑖8,𝑓𝑢𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 

-14421 0.0% -20943 0.3% -14640 3.7% -13672 -0.5% 

-20936 0.4% -161507 0.0% 13678 -0.5% -300031 0.0% 

-14595 4.1% 13683 -0.5% -14421 0.0% 20933 0.3% 

-13679 -0.6% -300031 0.0% 20937 0.3% -161507 0.0% 

43441 1.4% 20933 0.3% -14426 0.0% 13683 -0.5% 

20933 0.3% 301847 0.0% -13672 -0.5% 159692 0.0% 

-14426 0.0% -13672 -0.5% 43486 1.3% -20943 0.3% 

13683 -0.5% 159692 0.0% -20943 0.3% 301847 0.0% 

 

It can be observed that the difference between the two matrices is very small, with a 

maximum of around 4% difference on some of the elements. 

The results on the performance against shear locking are almost the same, the FE² element 

computed with reduced integration performs slightly better but the difference is negligible: 

 𝑃𝑛𝑢𝑚/𝑃𝑡ℎ 

FE² using full integration on the sub-mesh 1.144 

FE² using reduced integration on the sub-mesh 1.140 

It can be concluded that for shear locking, the use of fully integrated elements or reduced 

integration on the elements of the sub-mesh has no influence on the result. 

3.1.3 Convergence 

The results presented previously were obtained using the same number of elements for each 

case. 

Another interesting observation is the convergence of the results for the different elements. 
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The same geometry as before is kept for the beam. In this test, however, the slenderness 

ratio is kept constant and the number of elements varies. 

The study is conducted on a cantilever beam with a slenderness ratio of 25, where shear 

locking is observable for fully integrated elements and FE² elements. The thickness of the 

beam is 𝑙𝑦 = 8 𝑚𝑚. 

The theoretical load necessary to create a unitary tip displacement is (from [3.1.2]): 

𝑃𝑡ℎ =
1

𝑙𝑥
𝜅𝐴𝐺

+
𝑙𝑥
3

3𝐸𝐼

=
1

200
5
6
∗ 8 ∗ 80770

+
2003

3 ∗ 210000 ∗
83

12

= 3,36 𝑁 

The mesh is done with square elements. The different mesh sizes used are shown in Table 9: 

Table 9 - Mesh used to study the convergence of the FE² element 

ℎ𝑥 = ℎ𝑦 8 4 2 1.6 1 0.8 0.5 

Number of elements on the height 1 2 4 5 8 10 16 

Number of elements on the length 25 50 100 125 200 250 400 

𝑁𝑒𝑙  25 100 400 625 1600 2500 6400 

Figure 3.1-5 represents the evolution of the normalised load for different number of 

elements in the mesh. As expected, the results converge for all the elements, however the 

FE² element seems to converge more rapidly to the theoretical result than the classic 

elements. 

 

Figure 3.1-5 - Convergence of the results 
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In order to see if the order of convergence is the same for all the elements, the logarithm of 

the relative error on the numerical load 𝜖 =
|𝑃𝑛𝑢𝑚−𝑃𝑡ℎ|

𝑃𝑡ℎ
 was plotted as a function of ln (

1

ℎ
), 

where h is the size of the element (ℎ = ℎ𝑥 = ℎ𝑦) in Figure 3.1-6.  

 

Figure 3.1-6 - Evolution of the error with the size of the elements 

For both classic elements, the evolution of ln(𝜖) is linear with ln (
1

ℎ
). For the FE² element, 

the evolution seems to be linear as well for ℎ < 1. The non-linearity observed for ℎ > 1 

seems to be a numerical problem and not the actual tendency of the curve. This might be 

due to memory limitations in MATLAB. 

Note: the values of ln(𝜖) for 
1

ℎ
= 1,25 𝑎𝑛𝑑 2 were not computed by the program for the classic 

element, as the direct computation was too heavy in terms of memory (matrices B, N, and J 

have to be computed for each element). 

3.1.4 Comparison with other types of elements 

So far, the FE² element has only been compared to classic elements, which are not always 

performant in terms of stability (hourglassing with the reduced integration) or in terms of 

locking (over-stiffness of the fully integrated elements). 

3.1.4.1 Description of the problem 

A similar test as the one described before was made by Echter and Bischoff [4] to evaluate 

the performance of NURBS (Non Uniform Rational B-Splines) finite elements. 

In this test, referred to as the Timoshenko beam, a cantilever beam is subjected to a 

sinusoidal moment 𝑚(𝑥) = 5 sin (
𝑥

5
), as shown in Figure 3.1-7. The beam is subjected to pure 

bending, which makes it easier to evidence the occurrence of a parasite shear stress. 
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Figure 3.1-7 - Timoshenko beam with sinusoidal moment loading, from [4] 

The length of the beam is 𝐿 = 10 𝑚𝑚, the width is still 𝑏 = 1. The material has the following 

properties: 𝐸 = 10 000 𝑀𝑃𝑎 and 𝜈 = 0. 

As for the previous test, the thickness is varied to test different values of the slenderness 

ratio. 

The beam is loaded with the moment loading 𝑚̂(𝑥) and the error on the deflection is 

computed. The load is scaled by ℎ3 (𝑚̂(𝑥) = 5ℎ3 sin (
𝑥

5
) to make the displacement 

independent of the beam thickness. The exact solution for the deflection of the beam is given 

in [4]: 

𝑤𝑒𝑥(𝑥) =
3

200
𝑥2 cos(2) +

3

4
cos (

𝑥

5
) −

3

4
 

3.1.4.2 Load vector 

The load vector F_ponct has to be implemented directly in the program. The elements of this 

vector are nodal loads expressed in Newtons. In order to impose the sinusoidal moment 

loading to the beam, equivalent nodal loads must be calculated. 

 

Figure 3.1-8 - Equivalent moment and stress on the sides of the element 
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The equivalent bending moments 𝑀𝑥1 and 𝑀𝑥2 on the lateral sides are calculated using the 

force method on 𝑛2𝑛3 and 𝑛1𝑛4 (see Figure 3.1-9): 

𝑋1𝑓11 + 𝑓1𝑃 = 0 

Where 𝑓11 is the displacement at the right support for a unit value of the force 𝑋1 (see Figure 

3.1-9), and 𝑓1𝑃 is the displacement at the right support under the axial force 𝑁𝑃(𝑥) created 

by the moment loading 𝑚̂(𝑥). Here, the goal is to determine the value of the support 

reaction 𝑋1 which corresponds to the stress 𝜎𝑥4 if the bar studied is 𝑛1𝑛4. 

 

Figure 3.1-9 - Force method to determine the equivalent stress at the nodes 

With, for 𝑛1𝑛4: 

 𝑓11 = ∫
𝑁1
2

𝐸𝐴

𝑛4
𝑛1

𝑑𝑥 =
ℎ𝑥

𝐸𝐴
; 

 𝑓1𝑃 = ∫
𝑁1𝑁𝑃

𝐸𝐴

𝑛4
𝑛1

𝑑𝑥; 

 𝑁𝑃(𝑥) = −∫
𝑚̂(𝑥)

𝐼
(𝑦𝑛4 −

𝑙𝑦

2
) 𝑑𝑥

𝑛4
𝑛1

− ∫
𝑚̂(𝑥)

𝐼
(𝑦𝑛4 −

𝑙𝑦

2
) 𝑑𝑥

𝑥

𝑛1
= −25

(𝑦𝑛4−
𝑙𝑦

2
)

𝐼
(cos (

𝑥𝑛1+ℎ𝑥

5
) −

cos (
𝑥

5
)), where 𝑦𝑛4 is measured from the bottom of the element; 

 𝑋1 = −
𝑓1𝑃

𝑓11
=

(𝑦𝑛4−
𝑙𝑦

2
)

𝐼
𝑀𝑥2, the expression of 𝑀𝑥2 is given in the code below; 

 𝑀𝑥1 = ∫ 𝑚̂(𝑥)𝑑𝑥
𝑛4

𝑛1
− 𝑀𝑥2 
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%% Sinusoidal moment loading 
F_ponct=zeros(2*Nnode_tot,1);   % Initialisation of the load vector 
I=1/12;     % Moment of inertia 
for i=1:Nnodex-1 
    for j=1:Nnodey-1 
       n1=i+(j-1)*Nnodex; 
       n2=i+j*Nnodex; 
       n3=n2+1; 
       n4=n1+1; 
       Mx2=25*(-cos(hx/5+nodes(n1,2)/5)+5/hx*(sin(hx/5+nodes(n1,2)/5)-

sin(nodes(n1,2)/5))); 
       Mx1=25*(-cos((nodes(n1,2)+hx)/5)+cos(nodes(n1,2)/5))-Mx2; 
       sig1=Mx1/I*(nodes(n1,3)-ly/2);   %Stress at node 1 from Mx1 
       sig2=Mx1/I*(nodes(n2,3)-ly/2);   %Stress at node 2 from Mx1 
       P2=hy*((sig2-sig1)/3+sig1/2); 
       P1=(sig1+sig2)/2*hy-P2; 
       sig4=Mx2/I*(nodes(n1,3)-ly/2);   %Stress at node 4 from Mx2 
       sig3=Mx2/I*(nodes(n2,3)-ly/2);   %Stress at node 3 from Mx2 
       P3=hy*((sig3-sig4)/3+sig4/2); 
       P4=(sig3+sig4)/2*hy-P3; 
          F_ponct(2*n1-1)=F_ponct(2*n1-1)+P1; 
       F_ponct(2*n2-1)=F_ponct(2*n2-1)+P2; 
       F_ponct(2*n3-1)=F_ponct(2*n3-1)+P3; 
       F_ponct(2*n4-1)=F_ponct(2*n4-1)+P4; 
    end 
end 

 

3.1.4.3 Results 

For this test, a mesh with 4 elements on the height and 20 elements along the length is 

used, and the values of the thickness tested are shown in Table 10: 

Table 10 - Beam thickness, slenderness ratio, and size of the elements tested 

𝒉 4 3 2 1 0.8 0.5 

𝑳/𝒉 2.5 3.333 5 10 12.5 20 

Element size 𝒉𝒙 ∗ 𝒉𝒚 0.5*1 0.5*0.75 0.5*0.5 0.5*0.25 0.5*0.2 0.5*0.125 

The FE² stiffness matrices of the 6 different elements were computed and are shown in 

Erreur ! Source du renvoi introuvable.. 

Figure 3.1-10 shows the evolution of the normalised tip displacement 
wnum(L)

wex(L)
 for different 

values of the slenderness ratio. The results are similar to those observed in the previous test 

in 3.1.2: the displacement using classic elements with reduced integration is constant but 

stays above the exact solution (The numerical displacement is 7% higher than the exact 

solution). The classic fully integrated elements and the FE² elements are both subject to 

shear locking, but the FE² element performs better than the classic element. For a 

slenderness ratio of 20, the FE² element leads to a 13% difference with the exact solution, 

whereas the classic fully integrated leads to 33% difference. 
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Figure 3.1-10 – Normalised tip displacement 𝑤𝑛𝑢𝑚(𝐿)/𝑤𝑒𝑥(𝐿) under the sinusoidal moment loading 

To compare the results of the FE2 element with the NURBS elements used by Echter and 

Bischoff, the L2-norm was calculated and plotted in Figure 3.1-11.  

The L2-norm is defined by:  

‖𝑒𝑢‖𝐿2 = ( ∑ (𝑤𝑒𝑥(𝑥) − 𝑤𝑛𝑢𝑚(𝑥))
2

𝑥𝑛𝑜𝑑𝑒𝑠

)

1
2

 

 

Figure 3.1-11 - Evolution of the L2-norm with the slenderness ratio, comparison with results of the NURBS 

elements from Echter and Bischoff, [4] 
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The results shown for the NURBS are given for a mesh of one element. Since the results 

would not have been comparable with only one FE2 element, two meshes were tested, to 

compare the evolution of the L2-norm rather than its absolute value. It can be observed in 

Figure 3.1-11 that the evolution is similar for both meshes tested (red and blue curves). The 

FE2 element seems to perform better than the 1st order and 2nd order NURBS elements for 

slenderness ratios below 10. However, it can be noted that the slope of the curve keeps 

increasing for the FE2 elements, whereas the NURBS elements show an asymptotic 

behaviour. 

 

To conclude on shear locking, it appears that the FE² element is not as efficient as other 

specific elements on shear locking. The FE² element performs better than a classic fully 

integrated element, and is more accurate and stable than the elements with reduced 

integration for small values of the slenderness ratio. However, specific elements such as 

NURBS elements offer better performances against shear locking. 
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3.3 Performance on volumetric locking 
The second type of locking that the FE2 elements are tested on is volumetric locking (see 

1.3.2). 

3.3.1 Description of the test 

3.3.1.1 Geometry and material properties 

In the elastic domain, volumetric locking appears for solid objects in plane strain state when 

the Poisson’s ratio becomes close to 0.5. 

This type of locking can be shown on a hollow cylinder subjected to an internal radial 

pressure, as shown in Figure 3.3-1. 

 

Figure 3.3-1 – Geometry of the problem 

Since the cylinder is axisymmetric, only a quarter of it is studied, as represented in Figure 

3.3-1. The horizontal border (y=0) is considered fixed in the vertical direction, and the 

vertical border (x=0) is considered fixed in the horizontal direction. 

The internal radius of the tube is 𝑅𝑖𝑛𝑡 = 10 𝑚𝑚, and the external radius is 𝑅𝑒𝑥𝑡 = 13.31 𝑚𝑚. 

The internal pressure is 𝑃𝑖𝑛𝑡 = 100 𝑀𝑃𝑎. 

The Young’s modulus of the material is 𝐸 = 5000 𝑀𝑃𝑎. The Poisson’s ratio is variable to 

study the appearance of volumetric locking when it becomes close to 0.5. 

Under the internal pressure, the tube deforms. The theoretical expression of the radial 

displacement is (from A.F. Bower, [5]): 
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𝑢𝑡ℎ(𝑟) =
(1 + 𝜈)𝑅𝑖𝑛𝑡

2 𝑅𝑒𝑥𝑡
2

(𝐸(𝑅𝑒𝑥𝑡
2 − 𝑅𝑖𝑛𝑡

2 ))
(
(1 − 2𝜈)𝑃𝑖𝑛𝑡

𝑅𝑒𝑥𝑡
2 ∗ 𝑟 +

𝑃𝑖𝑛𝑡
𝑟
) 

Where r is the radius, and 𝜈 is the Poisson’s ratio. 

3.3.1.2 Meshing 

The mesh of the cylinder is regular, as shown in Figure 3.3-1. All the elements are 

homothetic trapezoids. 

In order to create this mesh, GMSH was used to create the nodes on the circular arcs shown 

in Figure 3.3-2. In GMSH, the arcs were defined and then divided in 18 segments to create 

the mesh shown in Figure 3.3-1. 

 

Figure 3.3-2 - Circular arcs for the creation of the mesh 

In order to make the trapezoids homothetic, the distances ℎ, 𝑘ℎ, 𝑘2ℎ between those circular 

arcs were chosen so as to respect the proportions displayed in Figure 3.3-3. 
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Figure 3.3-3 - Homothetic trapezoids 

The chosen value of ratio k is 1.1, to keep the trapezoid’s shape close to the shape of a 

rectangle. The height of the trapezoid h is 1 and the base 𝑎 can be calculated as follows: 

𝑎 = 2𝑅𝑖𝑛𝑡 sin (
1

2
(
𝜋

2

1

18
) ) ≈ 0.872 

Once the nodes are defined, they are imported in MATLAB using the script 

“READ_MESH.m” (see Erreur ! Source du renvoi introuvable.). The vector paroi_int 

contains the nodes of the internal side (𝑟 = 10), and will be used to define the load vector. 

The elements are defined manually using the script written hereafter: 

elem=zeros(54,4); 
elem(1:6,:)=[9 1 7 43 ; 43 7 8 60 ; 60 8 2 26 ; 3 25 59 5 ; 5 59 76 6 ; 

6 76 42 4];  
for n=7:22 
    elem(n,:)=[n+3 n+2 n+36 n+37]; 
end 
for n=23:38 
    elem(n,:)=[n+21 n+20 n+37 n+38]; 
end 
for n=39:54 
    elem(n,:)=[n+22 n+21 n-13 n-12]; 
end 
Nel=length(elem); 

 

3.3.1.3 Load vector 

The load is an internal pressure p_int=100 MPa. Equivalent forces in the horizontal and 

the vertical direction have to be computed to be used in the program. 

In the program, the internal side of the tube is divided in small segments of length a. The 

contribution of the pressure on each of these segments is calculated at the nodes, projected 

onto the Cartesian axes, and then added to the load vector. 
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To simplify the calculation, the pressure on a segment is considered perpendicular to the 

segment, as shown in Figure 3.3-4. Each node, except the extreme ones, receives the 

contribution of two elements. 

 

Figure 3.3-4 - Calculation of the equivalent nodal loads 

The MATLAB script used to compute the load vector is written hereafter: 

 
%% Load vector of the tube 
F_ponct=zeros(2*Nnode_tot,1); 
for i=1:length(paroi_int) 
    nA=paroi_int(i,1); 
    nB=paroi_int(i,2); 

% Cartesian coordinates of the nodes 

    xA=nodes(nA,2); 
    yA=nodes(nA,3); 
    xB=nodes(nB,2); 
    yB=nodes(nB,3); 

% Length of the linear element 
    xl=abs(xA-xB); 
    yl=abs(yA-yB); 
    l=sqrt((xA-xB)^2+(yA-yB)^2); 

% Equivalent radial point load at the nodes [N] 
    R=p_int*l/2;  

% Projection of the load on the horizontal and vertical axes 
    Rx=R/sqrt(1+(xl/yl)^2); 
    Ry=xl/yl*Rx; 

% Load vector 
    F_ponct(2*nA-1)=F_ponct(2*nA-1)+Rx; 
    F_ponct(2*nA)=F_ponct(2*nA)+Ry; 
    F_ponct(2*nB-1)=F_ponct(2*nB-1)+Rx; 
    F_ponct(2*nB)=F_ponct(2*nB)+Ry; 
end 
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3.3.2 Element 

The geometry of the element has been described in 3.3.1.2. For each value of the Poisson’s 

ratio, only one equivalent stiffness matrix has to be computed through the process described 

in 2.2.1. The mesh used contains 762 elements and is shown in Figure 3.3-5. 

 

Figure 3.3-5 - Mesh of the trapezoid element 

The elements are homothetic trapezoids, therefore, once the stiffness matrix of the basis 

element is computed, the stiffness matrix of the other elements can be obtained by simply 

applying the formulas from Equations [2.2.8] and [2.2.10]: 

for i=1:Nel % Element number 
% Coordinates of the nodes of the element 
    for j=1:Nnode    
        X(j)=nodes(elem(i,j),2); 
        Y(j)=nodes(elem(i,j),3); 
    end 
v=atan((nodes(3,3)-nodes(25,3))/(nodes(25,2)-nodes(3,2))); 
theta=atan((X(4)-X(1))/(Y(4)-Y(1)))+theta0; 
    for j=1:2*Nnode 
        for k=1:2*Nnode 
            if mod(j,2)~=0 
                if mod(k,2)==0                    

Kel(j,k)=cos(theta)*(cos(theta)*Kel_eq(j,k)+sin(theta)*Kel_eq(j+1,k))-

sin(theta)*(cos(theta)*Kel_eq(j,k-1)+sin(theta)*Kel_eq(j+1,k-1)); 
                else         

Kel(j,k)=cos(theta)*(cos(theta)*Kel_eq(j,k)+sin(theta)*Kel_eq(j+1,k))+ 

sin(theta)*(cos(theta)*Kel_eq(j,k+1)+sin(theta)*Kel_eq(j+1,k+1)); 
                end 
            elseif mod(k,2)==0 
Kel(j,k)=cos(theta)*(cos(theta)*Kel_eq(j,k)-sin(theta)*Kel_eq(j,k-1))-

sin(theta)*(cos(theta)*Kel_eq(j-1,k)-sin(theta)*Kel_eq(j-1,k-1)); 
            else 
Kel(j,k)=cos(theta)*(cos(theta)*Kel_eq(j,k)+sin(theta)*Kel_eq(j,k+1))-

sin(theta)*(cos(theta)*Kel_eq(j-1,k)+sin(theta)*Kel_eq(j-1,k+1)); 
            end                    
        end 
    end 
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Note: the angle theta0 is the angle of the left side of the trapezoid sown in Figure 3.3-5 with 

the vertical, since the stiffness matrix was computed for a trapezoid with horizontal bases. 

3.3.3 Results 

The test was realized for 12 different values of the Poisson’s ratio which are displayed in 

Table 11 along with the theoretical displacement of the internal border (𝑟 = 10): 

Table 11 - Values of the Poisson's ratio tested and the corresponding exact displacement 

𝝂 0 0.1 0.2 0.3 0.4 0.45 

𝒖(𝒓 = 𝟏𝟎) [mm] 0,7184 0,7332 0,7377 0,7318 0,7155 0,7034 

𝝂 0.46 0.47 0.48 0.49 0.499 0.4999 

𝒖(𝒓 = 𝟏𝟎) [mm] 0,7007 0,6979 0,6950 0,6920 0,6891 0,6889 

For each value of the Poisson’s ratio, the deformation of the cylinder is computed using the 

FE² stiffness matrix of the trapezoid elements. The numerical results obtained are 

compared to those obtained using classic fully integrated elements. Unlike what was done 

for the shear-locking problem, the reduced integration was not used in this case, because it 

provoked hourglassing, as shown in Figure 1.2-3. 

However, two types of FE² elements were tested: the first one where the sub-mesh was done 

with fully integrated elements, and the second one where reduced integration was used in 

the sub-mesh. 

 

Figure 3.3-6 - Normalised internal displacement for different values of the Poisson's ratio 

The normalised displacement 
𝑢𝑛𝑢𝑚

𝑢𝑡ℎ
 is shown in Figure 3.3-6. The locking phenomenon 

appears very clearly for the classic fully integrated element. As the Poisson’s ratio becomes 
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close to 0.5, the normalised displacement becomes exponentially smaller, with the 

numerical displacement reaching only 20% of the theoretical displacement for 𝜈 = 0.4999. 

The FE² element, however, gives good results, as the value of the normalised displacement 

stays close to 1 for both integrations tested. 

Figure 3.3-7 shows a close-up of the percentage of error 𝜀 =
|𝑢𝑡ℎ−𝑢𝑛𝑢𝑚|

𝑢𝑡ℎ
. Again, it appears that 

the FE² elements perform better than the classic element, even for values of the Poisson’s 

ratio that are not close to 0.5.  

Moreover, it can be observed that the FE2 element with fully integrated elements in the sub-

mesh displays a slight locking, with an error reaching 0.5% for 𝜈 = 0.4999. However, the FE2 

with reduced integration shows no locking at all, and the error stays at a value close to 0 for 

any Poisson’s ratio. 

 

Figure 3.3-7 - Error on the displacement as a function of the Poisson’s ratio 

The difference between full integration and reduced integration appears even more clearly 

in Figure 3.3-8. This figure displays the error on the displacement for a Poisson’s ratio 𝜈 =

0.4999. The error was computed using four different elements:  

 762 fully integrated elements on the sub-mesh: 𝜖 = 0.438%; 

 355 fully integrated elements on the sub-mesh: 𝜖 = 0.708%; 

 762 elements numerically integrated using 1 Gauss point in the sub-mesh: 𝜖 =

0.002%; 

 355 elements numerically integrated using 1 Gauss point in the sub-mesh: 𝜖 =

0.0114%. 
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Once again, it appears that the reduced integration gives much better results, with an error 

lower than 0.02%. This can be explained by the fact that the volumetric locking is caused by 

the incompressibility of the material, which has to be verified on the whole element for a 

fully integrated element. The element interpolation functions are unable to approximate a 

volume-preserving strain field at all the integration points. Using reduced integration 

decreases the number of integration points at which the incompressibility constraint has to 

be met, which makes it possible for the interpolation functions to make the volumetric 

strain disappear. 

 

Figure 3.3-8 - Error on the displacement (%) for a Poisson’s ratio of 0.4999 for different types of FE2 – logarithmic 

scale 

The results displayed in Figure 3.3-8 also show that increasing the size of the sub-mesh (i.e. 

increasing the number of elements in the sub-mesh) gives better performance on volumetric 

locking. With fully integrated elements, the error on the displacement is 1.6 times smaller 

when the number of elements is doubled in the sub-mesh. For the reduced integration, the 

absolute error is 5 times smaller when the size of the sub-mesh is doubled. 

Nevertheless, the error is small (inferior to 1%), even with only 355 elements in the sub-

mesh, which validates the choice of a minimum of 550 elements for the sub-mesh that was 

made in 2.2.1.6. 

The use of a larger number of elements in the sub-mesh makes the element more 

deformable, and decreases the stiffness of the FE2 element. Therefore, the element is less 

likely to be subject to locking. 
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3.3.5 Comparison with an industrial element 

The FE² technique has proven very efficient against volumetric locking in comparison to 

classic elements. The test described earlier was also performed with industrial elements 

from the software SAMCEF. 

In these elements, the problem of volumetric locking is tackled by using different 

integration schemes for the deviatoric and the volumetric parts of the constitutive law [6]. 

While the deviatoric part is integrated in a classic way, Lagrange multipliers are used for 

the volumetric part. The Lagrange multipliers connect the internal pressure to the change 

of volume. Two laws can be used, where K is the bulk modulus, p the internal pressure, and 

𝐽 the change of volume: 

 Bulk1: the constraint is written ln(𝐽) = 𝑝/𝐾; 

 Bulk2, 22, 32: the constraint is written 𝐽 − 1 = 𝑝/𝐾. 

Table 12 shows the number of Lagrange multipliers used for the different options of bulk 

behaviour. At degree 2, Bulk 1|2 correspond to bi or trilinear pressure fields, Bulk 22 

corresponds to a linear pressure field, and Bulk 32 corresponds to a bilinear pressure field 

with additional displacement unknowns added at the centre of the element. 

Table 12 - Number of Lagrange multipliers for the quadrangle, from [6] 

Degree Number of Lagrange 

multipliers 

Bulk1|2 

Number of Lagrange 

multipliers 

Bulk22 

Number of Lagrange 

multipliers 

Bulk32 

1 1   

2 4 3 4 

The cylinder was meshed using first-degree SAMCEF elements, and the error on the 

displacement is shown in Figure 3.3-9 for Bulk parameters 0 (no Lagrange multiplier) and 

1.  

 

Figure 3.3-9 - Error on the displacement for the FE2 elements and the SAMCEF element as a function of the 

Poisson's ratio 
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It can be observed that the use of the Lagrange multiplier improves the solution with 

regards to the volumetric locking. The evolution of the error with the Poisson’s ratio is 

almost linear with the parameter Bulk1, contrarily to the evolution of the error with the 

FE2 or the classic elements. Even though the FE² element with full integration gives better 

results than the SAMCEF elements for small values of the Poisson’s ratio, it is much less 

stable when the material approaches incompressible behaviour. However, the FE² element 

with reduced integration shows better performance than both SAMCEF elements, with an 

error that virtually stays equal to zero. 

The Bulk2 parameter and the 2nd degree SAMCEF elements were also tested. To limit the 

computations, the displacement was only computed for the most critical value of the 

Poisson’s ratio: 0.4999. The results are displayed in Figure 3.3-10. 

 

Figure 3.3-10 - Error on the displacement for a Poisson's ratio of 0.4999 

Bulk 1 and 2 give the same result for the 1st degree element. The 2nd degree elements 

perform much better than the first degree elements, with an error below 0.01%. The FE² 

element with reduced integration on the sub-mesh performs as well as the second degree 

SAMCEF elements.  
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Conclusion 

The objective of this study was to assess the performance of the FE² technique against 

the problems of locking that can occur with classic finite elements. 

Firstly, a classic finite element program was developed. This program can be used to 

solve problems in the elastic domain, using different material parameters and different 

geometries. This program was validated by a set of tests to verify its proper functioning. 

Secondly, new elements were created using the FE² technique and the finite element 

program mentioned before. These elements were created by calculating an equivalent 

stiffness matrix, based on the meshed element. The use of a mesh generator allowed to test 

different types and sizes of meshes for the FE² element. The change in the stiffness matrix 

after a transformation of the element (homothetic transformation, rotation) was determined 

through analytical considerations. Unfortunately, after testing these new elements, it 

appeared that elements containing at least one slanting side did not perform well and gave 

erroneous results. The elements with rectangular or quasi-rectangular shapes, however, 

showed a satisfying behaviour under the tests that were performed. 

Finally, the new elements were used to test their performance on the problem of shear 

locking and of volumetric locking. The elements were tested and compared to classic 

elements on a Timoshenko beam with a variable thickness. Several meshes were tested and 

two types of loading were used. This revealed that the FE² element performed better than 

the classic fully integrated element, but not better than elements with reduced integration 

for high values of the slenderness ratio. 

To test the elements against volumetric locking, we studied the deformation of a cylinder 

subjected to an internal pressure for different values of the Poisson’s ratio. Two types of FE² 

elements were tested: one using fully integrated elements on the sub-mesh, others, using 

reduced integration in the sub-mesh. The full integration FE² elements lead to a very slight 

locking, whereas no locking was observed with the reduced-integration FE² elements. 

Moreover, when comparing the results to those obtained with industrial elements, the FE² 

elements with reduced integration performed as well as second degree elements against 

volumetric locking. 

The results obtained are summarized in Table 13. 

The results of this study, especially on volumetric locking, are very promising. However, for 

the moment, the calculation of the FE² stiffness matrix has to be computed individually in 

pre-processor for each geometry of element and material properties. Moreover, a functioning 

model for non-rectangular shapes still has to be developed, using elastic support elements 

on the edge nodes for instance. In order for the FE² elements to be used on more general 

problems, it would be essential to develop a method to generate the equivalent stiffness 

matrix from the material properties and the geometry of the element.  
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Table 13 - Summary of the results on locking problems 

Test Results 
Compared 

to 

Cantilever beam with unitary tip 

displacement 

 

 Less than 5% error for 

slenderness ratios between 

5 and 20 

 Better performance than 

fully integrated elements 

 Reduced integration 

performs better for 

slenderness ratios above 25 

Theory, 

classic 

elements 

Cantilever beam subjected to sinusoidal 

moment loading 

 

 Appearance of the shear 

locking phenomenon 

 Non satisfactory 

behaviour compared to 

NURBS elements 

NURBS 

elements 

[4] 

Cylinder with radial internal pressure 

 

 Less than 0.5% error for a 

Poisson’s ratio of 0.4999 

compared to the theory 

 Error on the displacement 

almost 200 times smaller 

with FE² elements than 

with classic elements for a 

Poisson’s ratio of 0.4999 

 Negligible error (±0.002%) 

for FE² elements with 

reduced integration 

Theory, 

classic 

elements 

 Performance equivalent to 

first degree SAMCEF 

elements when using full 

integration on the sub-

mesh 

 Performance equivalent to 

second degree SAMCEF 

elements when using 

reduced integration on the 

sub-mesh 

SAMCEF 

elements 
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