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1. Introduction 
I first discovered computational design in 2018, through an introductory course to 3d modeling which 
contained a module on Parametric design in Rhino and Grasshopper. Though I did not realize and 
appreciate it at the time (using only SketchUp for the rest of my project), I can now say without a 
doubt that that introduction had a deeper impact on my life and my future than any other course 
during my studies.  

After that introductory course, I spent nearly a year without using grasshopper, until I purchased a 3d 
printer with a clear vision for generating complex geometry to be printed. Through this exercise and 
objective, I rediscovered grasshopper and realized how powerful a tool it could be. This naïve 
exploration of grasshopper gave me the brash confidence to use it for the 4th year design studio 
project, in which I developed a fully parametric model of the complex geometrical building my team 
and I designed, which allowed us not only to control and generate this complex geometry but also 
iterate designs faster than would have been possible in even simple buildings using classical tools. This 
was my first practical experience of the new ways of working that computational design allowed and 
served as a revelation: not only did I learn a great deal during the project, but I also discovered all that 
was still left to learn.  

Since then I have devoted myself to learning as much as possible, but all the while I could not help but 
wonder why my classmates who had been exposed to the same introductory course as I had did not 
also attempt to use and develop these tools and . Typical answers they gave were lack of time to learn 
these tools or their preference for tools with which they were already familiar.  

Later on, during my internship or working as a student in a small architectural practice, I realized how 
inefficient standard workflows were, and the possibility for integrating even simple computational 
design to automate or enrich workflows. 

These experiences, along with my deep interest for computational design, are what drove me to 
conduct this work on Computational design logic appropriation, by focusing on whether lack of 
familiarity in a software environment is really an obstacle to using computational design within it.  

 To conduct this work, we will first provide an overview of computational design within the AEC 
industry in section 2 that will help the framing of the research question in section 3.  

In section 4, we will present the research methodology that was developed to then proceed to the 
data analysis in section 5.  

Finally sections 6 and 7 will be reserved for the discussion of the results, a retrospective look on the 
implemented methodology, avenues of further development of this research and a final summary that 
will conclude this work.  

 

 

  



Page 8 of 108 
 

2. Computational design in AEC 
In this section, we will first discuss the link between computation and the Architecture, Engineering, 
and Construction(AEC) industry by retracing its origins and major advances that led to the emergence 
of CAD, BIM, and Computational Design (CD) as we know them today (section 2.1). We will then 
provide a more detailed description of CD and its various subsets (section 2.2), as well as the main 
toolsets used today (section 2.3). We will then address the main problems and challenges that exist 
within computational design, specifically when it comes to its widespread adoption (section 2.4), and 
the current development trends in the field that seek to overcome these issues (section 2.5). In section 
2.6, we will discuss the culture shift and emergence of new roles.  

2.1. Historical context of computation in AEC 
The use of computation in the field of architecture is by no means a new development, with early 

experimentations dating back to the 1960s (Sutherland, Computational design thinking). Its more 
widespread adoption began later, in the late 1980s, with CAD tools such as AutoCAD and Bentleys 
MicroStation digitizing traditional manual workflows and enabling previously unattainable accuracy. 
Further advancements brought 3d modeling (initially developed for other fields such as mechanical 
and industrial engineering) as a resource and novel tool for design, such as in Frank Gehry’s 
Guggenheim Bilbao. These tools enabled better documentation workflows, especially with the 
emergence of Building Information Modelling (BIM) as we know it today in the late 1990s/ early 2000s 
which offered the promise of better collaboration and integration of complex systems.  

As advanced as these tools became, they still simply augmented and optimized traditional design 
workflows. Furthermore, as can be seen by the relatively long transition period for the adoption of 
these and newer Computer-Aided Design (CAD) tools by the AEC industry (Carpo, 2017), even to this 
day (Stals, Elsen, & Jancart, Practical Trajectories of Parametric Tools in Small and Medium 
Architectural Firms, 2017), compared to other fields such as mechanical engineering, the AEC industry 
is far from leveraging all the power of modern computation. 

This is where computational design comes in: where CAD automates, augments, and optimizes the 
traditional manual design process, Computational Design (CD) is dependent on a new paradigm of 
“computational thinking”. While there is no universally accepted definition of computational design 
and the distinction between its subsets as well as with terms such as digital design is open to debate, 
a common basis is that in this new way of thinking, rather than designing a specific outcome or 
geometry, a logic or algorithm is constructed that allows the definition of rules or constraints that will 
allow the generation and exploration of novel design solutions, leveraging the power of computation 
(Carpo, 2017) (Menges & Ahlquist, 2011).  

Given the current and future challenges that face the industry and society (climate change, energy 
crisis, …), computational design is an obvious tool for reaching these objectives (Dautremont, Jancart, 
Dagnelie, & Stals, 2019): especially when taking into account the responsibility that actors of the AEC 
industry have to act on these (Ribeirinho, et al., 2020),. While BIM which aims to solve some of the 
problems faced by the industry is gradually being adopted (Charef, Emmitt, Alaka, & Fouchal, 2019), 
it can be restrictive in its current form (Aish & Bredella, 2017). Faced with the much more limited 
adoption of CD in practice (Stals, Elsen, & Jancart, 2017), the solution may be for BIM and CD to 
converge and become more linked (de Boissieu, 2021). 

Figure 2.1-1 : CAD to Computational Design. Source: (de Boissieu, Introduction to Computational 
Design: Subsets, Challenges in Practice and Emerging Roles, 2022) 
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2.2. Defining Computational design      
As previously mentioned, while there is no 
definitive definition for Computational Design, 
we can distinguish three subsets: parametric, 
generative, and algorithmic design (Caetano, 
Santos, & Leitão, 2020). In the following 
sections, we will present an overview of these 
subsets, their main characteristics, as well as 
provide an example for each subset. The link and 
overlap of these subsets are represented in 
Figure 2.2-1.   

2.2.1. Parametric design 
The first subset is parametric design. Parametric design is composed of a system of clear inputs on 
which rules and constraints are applied to transform these inputs into the desired outputs. One 
specificity of parametric design is that this link is unidirectional: this, along with the more obvious 
relationship between input and output is the reason parametric design is more easily apprehended by 
beginners, particularly through the use of visual programming toolsets, as will be further explained in 
section 2.3. In parametric design, the designer can explore the design not only by operating on the 
parameters (inputs) but also by modifying the rules applied to them.  

One example of the use of parametric design in 
AEC is Grimshaw’s Waterloo train station. This 
project, designed in 1993, was constrained by a 
difficult site. A parametric design was 
implemented to describe the variable span of 
roof trusses in which the structural logic is 
consistent. This structural logic is composed in 
two parts: a constant arc section and a variable 
arc section which adapts to the constraints of 
the site (Figure 2.2-2)1.  

2.2.2. Generative design 
A distinctive characteristic of generative design is its use of algorithms that are able to generate 
complex solutions from simple inputs (Van der Zee & De Vries, 2008). These algorithms function in 
such a way that the outputs are not predictable from the inputs, but rather satisfy certain criterion to 
form a solution-space. For this reason, generative design is often used to find “optimal” solutions for 
complex problems with undefined boundary conditions. Some common algorithms used for this are 
evolutionary algorithms, L-systems, cellular automata, or swarm systems.  

This type of design is notably used to solve problems such automatic layout of units or furniture in 
web-based platforms that offer this as a service, as will be seen in section 2.5.1.  

  

 
1 Image source: http://shaneburger.com/2011/08/designing-design/waterloo-geometrydiagram-cropped/ 

Figure 2.2-1 : Venn diagram of Parametric Design (PD), Generative 
Design (GD), and Algorithmic Design (AD). (Caetano, Santos, & Leitão, 

2020) 

Figure 2.2-2 : Waterloo truss system parametric logic (credits: Shane 
Burger) 
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2.2.3. Algorithmic design 
Algorithmic design is defined more loosely and can sometimes overlap with parametric or generative 
design. It is more dependent on computational thinking and a direct traceability can be found between 
the generated results and the inputs. The main difference between algorithmic design and parametric 
design is that where in parametric design there is a direct link between input and output, it is acyclical 
by nature whereas in AD a logic can be applied continuously until a certain condition is met. 
Additionally, in AD the actions performed for each step can adapt to the inputs and make use of 
conditional logic; thus, while the result can always be traced back to the input and is consistent, it 
cannot always be easily predicted. Some examples of the use of algorithmic design are the Morpheus 
hotel by Zaha Hadid architects or projects in which form-finding plays a key role, such as in the 
Musmeci bridge. 
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2.3.  CD toolsets 
While the use of CD can find its origins in classical text-based programming which is still in use and 
indispensable in order to develop and apply more complex algorithms, this requires a skillset not 
typically found within the AEC industry. Because of that, the history of the use of computational design 
in AEC is intrinsically linked to the development of Visual programming, which is the most common 
way in which it is used and developed today.  

Visual programming is a method of defining computational logic visually by connecting blocks of 
preestablished logic or parameters to one another, following a continuous flow of logic that is 
inherently acyclical, making it particularly adapted to the creation of parametric design which is its 
main use case. In the following sections we will focus first on the tools that implemented this paradigm 
and allowed the wider use of computational design, followed by how these tools were then extended 
to address some of their limitations or extend their functionality.  

2.3.1. Grasshopper 
Grasshopper was developed by David Rutten in 2007, then called “Explicit History”, as a complement 
to the existing history tool included in Rhino 4.0. Where the existing history tool kept track of the 
different steps taken by the user while modeling and the relation between different geometries, this 
new tool allowed the user to precisely define the different steps in logic leading to the desired 
outcome geometry. While this presents similarities with the existing Generative Components tool 
developed by Bentley, its implementation under the form of visual programming made it much more 
accessible to those without prior programming experience. One can simply connect and combine 
different blocks of operational logic to create the desired outcome.  Although it was first released in 
2007, the first stable release arrived in 2013, and has been included in Rhino by default since version 
6. On April 1st, 2022, an alpha release of GH2 was made available to testers of Rhino’s WIP build.  

2.3.2. Dynamo 
 Dynamo was first created by Ian Keough sometime before 20092, and open-sourced shortly 
afterwards. It enables users to interact with Revit’s API without explicit scripting to manipulate BIM 
objects and systems in Revit. Although it was created with the explicit aim to be used with Revit, in 
theory it could be used with another framework.  

  

 
2 https://dynamobim.org/qa-about-dynamo/ 



Page 12 of 108 
 

2.3.3. Community solutions 
While tools such as grasshopper are already very capable “out of the box”, part of what allowed these 
tools (specifically grasshopper) to become so used and appreciated are the thriving communities 
around them, and the individuals who not only created solutions in the form of plugins to overcome 
some of grasshopper’s limitations and/or extend its capabilities, but also made these tools freely 
available to all.  

HumanUI 
HumanUi3 is a plugin that was developed by Andrew Heumann in 2015 (and open-sourced in 2016) to 
overcome a specific problem: Grasshopper’s intimidating UI for people unfamiliar with it. He states 
having been frustrated while working at NBBJ that while he developed scripts for others, for every 
change needed he had to be solicitated or “babysit” a user. This plugin allows a designer to create a 
custom UI so that other users can interact with the underlying script without having to stay in 
grasshopper’s (or even Rhino’s) interface or design environment. One can create completely custom 
dashboards with friendly interfaces and with only the chosen parameters and outputs.   

Kangaroo 
Kangaroo is a live physics engine for grasshopper first developed by Daniel Piker in 2010 with this 
intention: “The intention is that the various types of form-finding and feedback this allows could inform 
and enable some new ways of designing structures.”4  

A version 2 of kangaroo was released in 2015 and is included by default in grasshopper since Rhino 6.  

Ladybug Tools 
Ladybug tools is a set of tools aimed at environmental design. It was first developed starting in 2012 
with the ladybug plugin by Mostapha Sadeghipour Roudsari, who states: “I couldn’t stand the 
repetitive, simplified and disconnected workflows that I had to use on a daily basis as well as the overall 
lack of knowledge about environmental building design. I wanted educate more people about the 
principles of environmental building design and that happened to be through Ladybug!”5 

Ladybug as a plugin was first released in 2013, in the form of components for weather data 
visualization as well as solar radiation and sunlight analysis.  

This initial plugin was followed by HoneyBee, which was released in 2014 with the aim to provide a 
connection between grasshopper and several validated daylighting and energy simulation engines.  

Development continued and in 2016, Ladybug and Honeybee were rewritten in order to be used cross 
platform across Grasshopper and Dynamo.  

In 2017, computational fluid design (CFD) was made available through the release of dragonfly which 
is based on OpenFOAM6.  

  

 
3 https://github.com/andrewheumann/humanui 
4 https://www.grasshopper3d.com/profiles/blogs/project-kangaroo-live-3d 
5 https://www.ladybug.tools/about.html 
6 https://www.openfoam.com/ 
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2.4. Main problems and challenges 
As we have already stated in the previous section, the early adoption of computational design in 
architecture was limited by the necessary computer science knowledge required to implement it. Even 
with the development and inclusion of tailored programming languages such as AutoLISP7 within CAD 
software environments, the use of computational design within architecture was extremely limited 
before the early to mid-2000s when visual programming tools appeared.  

Although the arrival of these tools enabled easier access to computational design, usually specifically 
parametric design, this also came with its challenges. Where other “traditional” CAD tools and 
workflows were analogous to well established manual versions, parametric modelling necessitates 
another approach that designers were less familiar with. In order to construct a parametric model, 
one has to first determine which parameters are needed and how to link them together. This requires 
significant “Front Loading”, as described by Davis (2013). In his thesis, Daniel Davis states: “This 
upfront planning can be challenging, particularly in a process as notoriously hard to anticipate as the 
design process.”   

Another challenge discussed by Davis is that in addition to having to figure out how a parametric 
model works upfront and what is needed to create it, in order to be able to use it effectively, a designer 
has to try to anticipate how it will be used and construct a flexible model. He summarizes it as such: 
“(…), the skill of anticipating flexibility is getting the balance right between too much and too little 
flexibility.” Indeed, if every step of the logic is made accessible for modification, the number of 
parameters a designer has to interact with becomes such that all the advantages of parametric 
modelling are lost compared to classic modelling. He also describes other challenges8,9,10 that he 
identifies as obstacles to the more widespread adoption and effective use of parametric design in 
architecture.  

These challenges are also reported by other people, and served as the impetus for the creation of 
tools or plugins that aimed to solve these issues (such as HumanUI presented in section 0) and are 
part of the driving force for the current direction of development in this field as we will see in section 
2.5. 

Aside from the tool-based challenges, the novel approach that the use of these tools and development 
of custom CD logic necessitates, also called Computational Thinking (Menges & Ahlquist, 2011), is not 
part of the traditional architectural culture. This has led to evolutions in education and the emergence 
of new roles, as will be explained in section 2.6.    

Finally, as identified by Stals (Stals, Elsen, & Jancart, Practical Trajectories of Parametric Tools in Small 
and Medium Architectural Firms, 2017), ignorance of the subject as well as perceived difficulty prevent 
many smaller and medium architectural practices from even attempting to integrate these practices 
in their work. This is particularly problematic, as practices at this scale have the most impact on the 
built environment and as such will have a significant role to play in addressing the challenges that face 
the industry. Furthermore, the scale and type of projects that these practices are traditionally 
responsible for, the “fat middle” (Davis, CAD’s Boring Future and Why it’s Exciting, 2021), will 
inevitably see the widespread use of computation, if not by architects, then by others (section 2.5.1). 

 
7 AutoLISP is an integrated programming language for interacting with AutoCAD, first appearing in 1986. 
8 Cases where the original logic can no longer be adapted or breaks 
9 Unexpected, unwanted, and unseen changes due to the variation of a parameter 
10 Obstacles designers of parametric models have when it comes to the reuse and sharing of their created models 
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2.5. Current Development direction 
In reaction to the problems stated in section 2.4, and in addition to the natural typical development 
of all software environments, two development trends are of particular interest, even more so as they 
are not spearheaded by the traditional giants of the architectural software industry, in part due to the 
criticism these giants have faced in recent years (Davis, Architects versus Autodesk, 2020). These 
trends are: 

 the development of web-based platforms (section 2.5.1Error! Reference source not found..) 
 the focus on interoperability and open-source development (section 2.5.2) 

2.5.1. Computational design platforms 
The past few years have seen the development of several cloud-based platforms that aim to enable 
the use of computational design by non-specialists. Of these platforms, we will discuss two that are 
already in advanced stages of development and indicative of the two directions that can be seen in 
such platforms.  

The first platform, Hypar11, is centered around the easy reuse of logic (computational or otherwise) 
facilitate the generation of building designs, rather than automate “drawing walls”, and not “start 
every building project from a blank page” 12. In this platform, users interact through a user-friendly UI 
(Figure 2.5-1) to combine pre-existing logic blocks from a library, with the option for specialists to 
create and integrate their own logic blocks (by easily porting existing logic developed in other 
environments such as Grasshopper, Dynamo or Excel to name a few) that they can then also make 
freely13 available to all, keep private or share with selected individuals. Once the desired combination 
of functions is constructed, users can easily explore different solutions, make changes, and share the 
logic through a simple URL for collaborators or even clients to interact with. 

 
11 https://hypar.io/ 
12 https://hypar.io/about/story 
13 There are potential plans for a Marketplace in which designers could sell or licence the use of their functions, 
but this is not yet the case.  

Figure 2.5-1 : Hypar UI example 
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The second platform, Testfit14, aims to provide a service in the form of CD tools tailored for the study 
of feasibility of real estate developments. It uses complex generative design algorithms and the power 
of cloud computing to allow real estate developers, general contractors and architects to quickly 
generate massing, define unit types and automate their layout while data such interior area, building 
efficiency, unit cost, and others are generated to help inform design (Figure 2.5-2). This data and 
geometry can then be exported in various formats for the project to be further developed elsewhere.  

  

 
14 https://testfit.io/ 

Figure 2.5-2 : Testfit UI example 
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2.5.2. Interoperability and open source 
The issue of interoperability between software (especially software from differing software providers) 
has long been a limiting factor for developing more complex workflows and collaboration. Finally, in 
this age of data, the subject of data propriety (Davis, 2020) (Fok & Picon, 2016) and data archival is 
ever more present. 

Rather than continue in this direction, there seems to be a trend of developments that address these 
issues, notably through the use of open-source licensing and development.  

One such example is the development of Speckle, an open-sourced cloud-based platform first 
developed by Dimitrie Stefanescu in 2015, with the explicit aim of addressing and handling 
interoperability between software silos, real time collaboration, data management, versioning and 
automation.15 

Another example of opensource making its way into architecture and computational design is 
Blender16. Blender is a free open source 3d creation suite. While it is not currently widely used by the 
AEC industry, the release17 of the geometry nodes feature which brought18 visual programming 
(making it a viable option for computational design), and the development of projects such as 
BlenderBIM19 and Topologic20 indicate that this may change.  

Other projects exist such as IfcOpenShell21 and ifc.js22 which aim to enable individuals to develop their 
own platforms and tools.  

  

 
15 https://speckle.systems/about/ 
16 https://www.blender.org/ 
17 As of Blender 2.92, released February 25, 2021 
18 Although the Sverchock add-on already allowed a version of visual programming in Blender, the default 
inclusion and integration of geometry nodes brought it to the masses. 
19 https://blenderbim.org/ 
20 https://topologic.app/ 
21 http://www.ifcopenshell.org/ 
22 https://ifcjs.github.io/info/ 
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2.6. Culture shift 
In this section, we will investigate the perception of Computational Design in AEC, and how that 
perception is evolving through a culture shift and the emergence of new profiles and roles.  

As we have already mentioned in previous sections, the adoption of computational design in AEC has 
not been as widespread as could have been expected given the advantages it promises. As such, 
several researchers have investigated this very topic. While some have identified elements such as the 
paradigms of new ways of thinking (Carpo, 2017) (Menges & Ahlquist, 2011) (Oxman, 2017), or 
challenges directly resulting from the tools used (Davis, 2013), one research angle that is of particular 
interest and directly linked to the research question of this study is the interrogation of the perception 
of computational design in “everyday” practitioners workings in small and medium sized architecture 
practices, as done by Adeline Stals (Stals, 2019). During the course of their thesis, they conducted 
interviews and surveys in which they notably asked architects about their knowledge of parametric 
design, and what obstacles prevent them from using it. From the answers we can learn that while 
many architects are unfamiliar with parametric design or have trouble defining it, the main obstacles 
perceived are difficulties in learning and staying up to date.  

While learning computational design goes beyond simply using a tool or software and entails 
additional effort and a different approach (Peters & De Kestelier, 2013), it is also becoming more 
widespread in education (Gallas, Jacquot, Jancart, & Delvaux, 2015) (Vrouwe, Dissaux, Jancart, & Stals, 
2020) and as such every year the amount of architects with at least superficial knowledge of 
computational design increases.  

From this pool of people who are receptive to the added value that computational design can have, 
there is an emergence of a new profile, that of the “super-user” (Deutsch, 2019). Characteristics of a 
super-user include a combination of soft-skills, strong technical expertise, and the ability to provide 
connections and provide structures that help those around them. In addition to using CD themselves, 
super-users can be the catalyst for the use and adoption of computational design practices by those 
around them (de Boissieu, 2020).   
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3. Research Question 
From the previous section addressing the history and current state of computational design in AEC, it 
is clear that while the use of CD has been growing over the past few years, the industry as a whole is 
still largely ignorant or indifferent to this concept, even as they face ever growing pressure and 
challenges for which CD would be a precious resource...  

At the same time, individuals and small initiatives are developing powerful tools and platforms that 
may very well disrupt the industry, either by the automation or power they employ through generative 
design and AI, or by adopting the practices of open-source software development and licensing that 
change the way we work.  

Furthermore, the emergence of new profiles, so called super-users, and the adoption of 
Computational Design in education leading to a more informed and receptive culture, may finally 
allow CD to permeate through the industry.  

However, even with these tools, profiles, and young architects which are receptive, their will still 
subsist a critical mass of current practitioners who are neither informed nor particularly receptive to 
these new ways of doing things. But in the face of the challenges the industry faces and will continue 
to face, it is unacceptable to simply wait for a natural turnover to provide this digital turn, even more 
so due to the rate of development in computing. 

We must then find ways of rendering Computational Design accessible to them. Even if they do not 
create these design logics, non-specialist users can still benefit from them.  

Given the common excuse of not knowing a certain program and the current trend for interoperability 
and web-based platforms, this work will attempt to provide a basis for the evaluation of the impact 
that familiarity with a given context of interaction has on a user’s ability to understand and use it; and 
through the analysis of experiments, provide a set of initial results that may inform further research 
on the subject.   
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4. Research Methodology 
To attempt to answer the research question, we will perform a quantitative analysis on the way a 
subject interacts with an unfamiliar computational design logic in a context and compare this analysis 
to the subject’s experience in that and other software contexts. In order to source the data for this 
analysis, we will perform a study in the form of an experiment to provide a common computational 
design logic to interact with as well as a common design scenario to use it on.  

The chosen subject pool will be described in section 4.2, the experiment protocol will be presented in 
section 4.3, the raw analysis data and the method for harvesting it is explained in section 4.4, the way 
this data will be processed and explored for analysis in sections 4.5 and 4.7.  

In the following section (4.1), we will present the design logic that serves as the base for the 
experiments of this study, including its origin (section 0), a high-level overview of its inner workings 
(section 0) and the 3 implementations developed from it (section Error! Reference source not found.).  

4.1. Design logic implementations 
To serve as a base logic to be manipulated for the study, it was chosen to reuse an existing design 
situation as well as an existing script developed by me. My in-depth knowledge of the developed 
design logic allowed the identification of the various issues and points of interest, while the 
experimentation protocol allowed to anticipate possible biases. It provided a ready-made base script 
that presented sufficient complexity at distinct levels (incorporating parametric, generative, and 
algorithmic design). This enabled us to form conclusions from the study that could be extended 
throughout the computational design landscape, which would not have been the case if the script had 
been solely parametric or purely based on workflow automation.  
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4.1.1. Origin 
The script that served as a base for the study was initially developed by myself in the spring of 2020 
for a design project course during my Erasmus exchange in Barcelona. This project took the form of 
an assembly of prefabricated modular units, which led to the CD strategy to compose the façades for 
each of the units. 

In the spirit of the adaptability that was sought and provided by the structural system (a principal 
timber framing system filled by secondary lightweight wood framed panels filled with insulating hemp 
blocks), and rather than simply copy the façades or constrain them to alignments, I developed a 
computational design to confer a unique identity to each unit while remaining in the confines of the 
grid system.  

 

The aim was to be able to tailor the positioning and size of every window and door of every unit based 
on desired metrics, such as views, daylight, or solar gains, and considering the local context of each 
unit. This positioning and sizing would fall within a grid linked with the structural framing and the size 
of the smallest sized ceramic tiles which would then form the cladding. An example of a solution for 
the project can be seen in Figure 4.1-1. 

  

Figure 4.1-1 : Output example 
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4.1.2. Algorithm overview  
Given the repetitive nature of this modular and unit-based design, types are easily assigned to each 
floor of each unit, and for each type established a series of constraints (such as average size and 
variability) that would determine the scope of possibilities for generating the openings. The aim was 
to then perform an analysis based on the desired design metrics for every possibility within this scope, 
identify the best ones and allow the designer to choose between these with the knowledge as to their 
performance, but this was not implemented and instead random variations within the scope were 
generated and chosen. 

The next step concerned the cladding of the facades. To achieve the 
previously described desired result, an algorithmic logic was developed to 
generate an efficient tiling with various sized tiles (based on multiples of 
the unit tile). The algorithm functioned as follows:  

1. Generate the grid of points based on the unit tile size (Figure 
4.1-2) 

2. Determine which points lie within the generated openings and 
form a list of exclusion points (Figure 4.1-3) 

3. Choose a random point: 
o From this point form a rectangle of the current size in 

point multiples (starting at a determined max size)  
o Verify that no points within it are part of the exclusion 

point list (Figure 4.1-4) 
 If ok  go to step 4 
 If not choose a new random point 

 If Nth attempt, go down a rectangle size 
4. Add the rectangle to the output rectangle list 
5. Add the internal and perimeter points to the exclusion point list 
6. Go back to step 3.  

This is of course a simplification of the final logic but provides an accessible 
and honest overview as to its functioning. Given the cyclical nature of this 
algorithm, in comparison to the linear nature of parametric design and 
visual programming, it was implemented using scripting, originally thanks 
to the use of the python script component and the RhinoScript23 
framework.  

Further logic then followed which allowed the attribution of a random 
color within a predefined palette to each tile, which could also be explored 
by the designer.  

  

 
23 https://developer.rhino3d.com/guides/rhinoscript/ 

Figure 4.1-2 : Step 1 

Figure 4.1-4 : Step 3 

Figure 4.1-3 : Step 2 

Figure 4.1-5 : Final result 
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4.1.3. Implementations 
As the original script contained other aspects and had not been created with reuse in mind, the steps 
for generating openings, generating the cladding, and exploring variations were extracted and 
adapted in the following ways:  

 Where the original script predetermined the number of openings, parameters to 
choose the number of rows, number of columns, and number of doors in the 
openings were implemented. 

 Although it would have been possible to implement the analysis step, given the vague 
design context and to keep script execution as quick and fluid as possible, the choice 
was made to function through the exploration of random variations, but still within 
a design scope that can be manipulated. 

 The cladding algorithm was completely rewritten and re implemented. Originally 
created in a python script component using RhinoScript, it was rewritten and 
optimized (in part) in C# using RhinoCommon. This allowed easier manipulation of 
the logic, as well as substantial performance benefits, going from an average 
execution time of over 1 minute to under 50ms. It also facilitated the implementation 
of the Rhino command.  

 The generation of window and door geometry was also refactored and optimized for 
performance. 

The resulting logic was then reimplemented to form variants for each of the contexts that were the 
basis of the study. These implementations as well as the template file can be found on the GitHub 
repository24 of this study.  

The details of each implementation are further explained in the following paragraphs.  

 GH context: For this variant, the regular best practice rules for grasshopper script structuring 
were followed: grouping the various steps of the logic, clearly identifying the parameters, and 
labeling where necessary (Figure 4.1-6).  

The subjects were instructed 
to interact freely with the 
script; other than explicit 
labeling and grouping, as well 
as using clusters for more 
complex sub-logic, no 
additional efforts were made 
to render the script more 
accessible. The parameters 
could be manipulated in the 
context of the parts of the 
script where they are 
implemented. As such, the 
user was exposed to the 
entire script.   

 
24 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation 

Figure 4.1-6 : Grasshopper implementation view 
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 Hybrid context: 

The aim of this variant is to remain in the typical rhino workspace for the interaction but use 
methods of interaction that are not typical to ordinary Rhino workflows, and still have access 
to the grasshopper script if finer adjustment or control is needed. 

The geometry is automatically referenced based on layer placement.  

Parameters such as grid spacing and limits can be manipulated thanks to contextual sliders in 
the rhino viewport that are linked to the geometry (à droite dans la fig xxx). This is achieved 
using the kangaroo physics engine. 

The other parameters are manipulated through overlaid controls, thanks to the use of 
HumanUI (seen on the left on Figure 4.1-7).  

 

  

Figure 4.1-7 : Hybrid implementation view 
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 Rhino Context:  
This implementation aims to replicate a typical rhino command in terms of interaction. The 
entire logic was therefore recreated through C# programming and compiled into a plugin. The 
interaction is done entirely through the command line and the rhino viewport as with any 
other command.  
After calling the command, the subject is prompted to select the target surface. The principal 
menu then appears in the command line (Figure 4.1-9) and the subject can navigate through 
2 submenus depending on whether they would like to interact with parameters that 
determine the grid settings and cladding variations (Figure 4.1-10) or parameters that define 
and explore the openings of the façade (Figure 4.1-11).  

 

 

 

Figure 4.1-9 : Principal Menu 

Figure 4.1-10 : Grid submenu 

Figure 4.1-11 : Opening submenu 

Figure 4.1-8 : Result preview 
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4.2. User selection  
For this study, the test subjects were all from the architectural engineering section of the Faculty of 
Applied Science of the University of Liège and were either students or recent graduates (less than one 
year of professional experience). This decision was made for three reasons:  

 To ensure the skills and experience consistency of the tested population in terms of digital 
practices and software knowledge. 

 To ensure their relative homogenous background in terms of approach to architectural design.  
 To present a variety of proficiency levels, but with a common foundation provided by the 

introductory course in Rhino and grasshopper given in the third year. 

While a more diverse subject pool could also have produced interesting results, since part of the 
objective was to test the common assertion that lack of familiarity in a given software is a major 
obstacle to the use of computational design, the choice was made to conduct the study within the 
bounds of this described subject pool. While some subjects were still students and others already 
working, the differences between the two were not explicitly studied, the hypothesis being that given 
the maximum of one year of professional experience by some of the subjects, this difference would 
have less impact than their differing software proficiencies, although these are undoubtably linked. A 
possible later development of this research which would be interesting variation could be to conduct 
this experiment among subjects of various ages or at various stages of their professional career, to see 
how cultural differences between generations and varying mindsets impact the interactions.   

4.3. Experiment Protocol 
In this section, we will describe the how we structured the experiment protocol in order to ensure the 
harvesting of data in a coherent, reliable, and rigorous manner (Calixte X. , 2021).  

Given the difficulties in performing a systematic qualitative and categorical analysis of the use of tools 
for design processes without a more robust protocol (Calixte, Rajeb, & Leclercq, 2018), we instead 
chose to perform a quantitative analysis.  

We conducted multiple surveys with two types of questions; grid/numerical based questions to ensure 
a consistency in the form of the answers to base a quantitative analysis upon, and open questions 
which allowed us to contextualize and inform the conclusions of this analysis.  

We also chose to study the interactions with the tools by limiting the focus to the actions on these 
tools (Calixte X. , 2021). To do this systematically, we implemented a data harvesting strategy to take 
into account the entirety of the actions that concerned these tools (Otjacques, 2008). 

4.3.1. Experiment environment variables 
The experiment was conducted between the December 20, 2021, and December 28, 2021, either at 
the University or in my home, to accommodate the schedules and preferences of both the students 
and the recent graduates.  

For each experiment, the entire interaction took place using my computer to remove obstacles due to 
licensing issues and plugin compatibility, as well as to implement automatic data harvesting more 
easily. 

The subject was seated at a table in front of the computer, with a mouse and keyboard to interact 
with it, and myself seated next to them to provide instructions as well as help if needed.  
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4.3.2. Subject Characterization 
Although subjects having passed the third-year course in the ULiege engineer-architect curriculum 
were introduced to Rhino, Grasshopper, and computational design25, their familiarity with these topics 
varied as their subsequent use of these programs is not systematic and the course introducing them 
to these subjects has also evolved. There is also a variability in general concerning modeling program 
preferences and proficiency. To gauge their current level and overall familiarity with Rhino, 
Grasshopper, and computational design thinking, as well as gain insight as to their current modeling 
habits and preferred tools, the first step of the experiment was to conduct a survey to collect 
information for establishing profiles. Both open and closed questions are asked, as described below:  

 What is your experience with computational design? 
(None | Theoretical | Use of existing logic | Creation of custom logic) 

 In which circumstances have you previously used or created computation design logic?  
(Introductory course | Project | Other) 

 According to you, what is the use of computational design and where is it applicable?  
(Open question) 

 What software have you used and at what proficiency level would you say you are?  
(Software proficiency survey with AutoCAD, Blender, SketchUp, Rhino, Grasshopper, Revit, 
Archicad and 3dsMax as software choices and No experience, Novice, Limited, Basic, 
Advanced and Expert as possible proficiency levels) (Figure 4.3-1) 

 
 What is your experience with and in what context have you used Rhino and Grasshopper 

specifically? (Open question) 
 What currently prevents you from using computational design more often? (Open question) 

 
25 Details on course can be found here: 
https://www.programmes.uliege.be/cocoon/20212022/cours/ARCH0017-4.html 

Figure 4.3-1 : Software proficiency survey 
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4.3.3. Tool interactions 
During this step of the experiment, the subject interacted with the design logic reimplemented in the 
three different contexts as described in section 4.1.3. The order in which they interacted with the 
different implementations was determined based on the order in which the different subjects did the 
study. In this way a uniform distribution of the different combinations of order of interaction possible 
could be approached to limit the impact of the order of interaction, as studied in section 5.3. The 
origin and description of the general design logic were presented to the subject, followed by details 
of each implementation that they were about to interact with. For each implementation the starting 
setup as well as the provided design scenario is the same. Based on this design scenario, the subject 
was instructed to interact with the implementation until they were satisfied with the result. Each 
interaction or variation was automatically timestamped and logged for later analysis (the data 
harvesting strategy is described in section 4.4). 

4.3.4. Subject feedback 
After each of the three exercises, the subject was asked to continue the survey in order to 

collect their feedback on the interaction method, as well as their satisfaction with the final result.  

They were asked to answer the questions using a scale from 0 (not at all) to 10 (very much):  

 Accessibility: How easy was it to start interacting with this implementation, having no previous 
experience with it? 

 Comprehension: How easy was it to understand the underlying design logic by using this 
implementation?  

 Ease of Use: How easy was it to interact with the design logic using this implementation?  
 Usability: To what extent could you see yourself interacting with computational design logic 

in this way in your day-to-day work?  
 Satisfaction: How satisfied were you in your ability to achieve your desired outcome through 

this implementation?  

An open question was also asked to allow them to freely express their feedback on their overall 
experience. They also had the possibility to ask additional questions if needed. At the end of the 
experiment, the subjects were again asked to rate a posteriori the implementations in the different 
contexts, with the experience of having done them all. The complete experiment sequence can be 
seen on Figure 4.3-2.  

 

4.3.5. Protocol validation 
To validate the protocol, a test experiment was conducted before starting any interviews. This 
“experiment 0” showed that the initial time estimate for the entire duration of the experiment (20 
minutes) was too short and had to be adjusted to 1 hour per subject on average. This is one of the 
reasons why the subject sample size was not bigger. This test experiment also revealed several bugs 
in the Rhino and Hybrid implementations.   

Subject 
characterization

Design 
scenario 

Presentation

1st Context 
interaction

1st Context 
feedback 

survey

2nd Context 
interaction

2nd Context 
feedback 

survey

3rd Context 
interaction 

3rd Context 
feedback 

survey

Final feedback 
survey 
(for all 

contexts) 

Figure 4.3-2 : Experiment sequence 
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4.4. Data harvesting 
To shed light on the research question, two main sources of harvested data were analyzed during the 
experiment.  

 The first source of data were the surveys conducted during the experiment in order to profile and 
characterize the subjects (their proficiency level in different software mostly) and to collect their 
feedback on the interactions (both immediately following each context as well as after having done 
all three). Given that this survey was conducted through Microsoft Forms, a *.csv file containing all 
the data could be easily exported and manipulated for the analyses. 

 The second relevant datapoint pertained to how the subject interacted with each tool 
implementation. To analyze the subject’s behavior during the interaction, a bespoke tool was 
developed: for each modification of any parameter, a line was automatically added to a csv file. It 
contained a timestamp, an identifier as to the current implementation and geometry (which façade) 
concerned, and the values of each of the 15 different parameters in a constant order (Figure 4.4-1). 
This allowed the automatic harvesting of substantial amounts of data that would not have been 
feasible otherwise.  

This tool is published on GitHub26 and easily accessible and usable to any researcher or future TFE 
student who would like to conduct a similar experiment with Grasshopper or Rhino.  

The fact that all the data was harvested automatically allowed all the experiments to be led in a brief 
time span without the additional strain of having to harvest the data manually at the same time, and 
reduced the chance of human error. This also allowed more time to be invested on data cleaning, 
engineering, and visualization, and thus focus on developing a more robust analysis framework that 
could be built upon.  

  

 
26 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation 

Figure 4.4-1 : Data harvesting example 



Page 29 of 108 
 

4.5. Data Cleaning 
In this section, we will present the steps and strategies that were employed to operate the data 
cleaning on the raw data. This data cleaning was all done through the use of a Jupyter27 Notebook and 
Python28, using the Numpy29 and Pandas30 libraries, in DataSpell31. The methods of data cleaning, data 
engineering and data visualization were learned during the course of this research and through various 
online resources, mainly the Numpy and Pandas API references, as well as by following several free 
courses found on freeCodeCamp32,33 and a paid course34 on the Udemy platform. All the raw*35 data 
and source code are available on the GitHub repository36 of the project. Rather than performing a 
detailed code walkthrough, we will provide a high-level overview of the structure of the implemented 
code to explain the way in which the data was assembled and transformed.  

4.5.1. Survey data cleaning 
Once harvested, the data had to be cleaned and processed. For the survey data, the data pertaining 
to the subjects’ answers for their software proficiency was extracted from the csv that was exported 
from Microsoft Forms and formed into a Pandas DataFrame37 with a column for each software and a 
row for each subject. As only two of the participants had (limited) experience in Blender and 3dsMax, 
these categories were removed from the DataFrame. Additional columns were then added:  

 An average column: the average software proficiency for each subject, disregarding the 
software in which they had no experience. This was initially done to not overly penalize 
subjects who only had experience in a couple of different software, although this did penalize 
those who had slight experience in more software and as a whole this was not a representative 
metric and unused for the analysis in section 5.4.  

 A column representing the subject’s level in the “traditional” CAD software most used in the 
AEC field in Belgium currently (Stals, Elsen, & Jancart, Practical Trajectories of Parametric Tools 
in Small and Medium Architectural Firms, 2017): AutoCAD and SketchUp. This indicator was 
obtained by keeping the maximum value between the AutoCAD and SketchUp results for all 
the subjects.  

 A column representing the subject’s experience in BIM modeling, obtained by keeping the 
maximum value between the Revit and Archicad results. 

 A column representing the subject’s average experience in Rhino and Grasshopper, as an 
indicator to analyze the Hybrid context implementation within the subject’s existing 
experience.   

In an analogous way, the data regarding the subject’s feedbacks on the interactions were grouped 
into two lists of three DataFrames: one for the answers immediately following each interaction, and 
one for the answers given during the final survey. An example can be seen on Figure 4.5-1. 

 
27 https://jupyter.org/ 
28 At the time of development, Python 3.9.7 https://www.python.org/ 
29 https://numpy.org/doc/stable/reference/index.html#reference 
30 https://pandas.pydata.org/docs/reference/index.html 
31 JetBrains DataSpell IDE : https://www.jetbrains.com/dataspell/ 
32 https://www.freecodecamp.org/news/python-data-science-course-matplotlib-pandas-numpy/ 
33 https://www.freecodecamp.org/news/data-analysis-with-python-for-excel-users-course/ 
34 https://www.udemy.com/course/python-for-machine-learning-data-science-masterclass/ 
35 The original data contained the subjects’ names, those names were replaced by identifiers by passing the raw 
harvested data through a data obfuscation function.  
36 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation 
37 A Pandas DataFrame is a data structure based on Numpy and widely used for data science.  



Page 30 of 108 
 

 

4.5.2. Tool interactions data cleaning 
For each of the subjects, a DataFrame was constructed from the raw data and the timestamps 
correctly formatted. The data was then split by implementation, the data for the façade used to 
explain the implementation was pruned, and the order in which the subject had done the experiments 
was identified and used to reorder the experiment data as well as the feedback data in order to have 
the data in a consistent order based on the three contexts (Grasshopper, Hybrid, Rhino).  

4.6. Data Engineering 
In this section, we will provide an overview of how the cleaned and assembled data from the previous 
step was transformed to create the various DataFrames that will be used for the analysis. The tools 
and methods used were the same as explained in section 4.5.  

For this research, the tool interactions were analyzed under the following three indicators which were 
created from the harvested data: 

 Number of iterations: From this indicator, we will focus on how many times and when each 
of the parameters were changed and as such another iteration of the script was computed. 
The detail of how this was deduced and put into form from the data will be the subject of 
section 0.  

 Modification phases: The point of interest for this indicator is the study of when the subjects 
passed from changing one parameter to another. We will track these changes in order to 
know for each parameter the number of phases in which it was manipulated, as well as to 
know how this behavior evolved over the course of the interaction. The creation of the data 
needed for this analysis will be explained in section 0.  

 Unique values: This analysis indicator focuses on the number of unique values explored by 
the subject for each parameter and where in the timeline these numbers evolve. The 
specificities involved for determining this from the input data and how it was implemented 
will be presented in section 4.6.3.  

  

Figure 4.5-1 : Feedback DataFrame example (1st interaction survey) 

Nom Prise en main Compréhension/maitrise de la 
logique sous-jacente

Fluidité d'interaction Potentiel d'utilisation au 
quotidien/d'intégration dans 

des workflows existants

Satisfaction du résultat final

Subject1 7 8 7 10 8
Subject2 10 10 8 7 8
Subject3 10 8 5 6 7
Subject4 8 8 6 8 6
Subject5 5 6 8 8 8
Subject6 9 7 7 2 7
Subject7 10 10 10 10 10
Subject8 9 9 9 8 8
Subject9 10 8 5 10 3
Subject10 7 8 7 8 7
Subject11 10 8 10 9 9
Subject12 9 8 7 10 9
Subject13 6 10 7 10 9
Subject14 6 8 7 4 7



Page 31 of 108 
 

Given the number of DataFrames that will be used and referenced, and the number of transformations 
applied to the input data over several step, Table 1 was created to provide an overview of these 
DataFrames.  

 

Table 1: DataFrame overview 

 

  

Name Description input Figure Sections used 
imp_df Raw data for the façade Csv Figure 4.6-3 4.6.1, 4.6.3 

diff_df 

Boolean DataFrame 
representing if a value of 

imp_df has changed 
from the previous row. 

imp_df Figure 4.6-2, 
Figure 4.6-4 

4.6.1, 4.6.2 

diff_diff_df 

Boolean DataFrame 
representing if a value 

from diff_df has changed 
from the previous row.  

diff_df Figure 4.6-5 4.6.2 

iterations_df 

DataFrame representing 
the number of times a 
parameter has been 

changed 

diff_df Figure 4.6-1 4.6.1 

time_iterations_df 
Evolution of diff_df over 

time diff_df xxx 4.6.1 

phase_df 

Number of distinct 
sequences during which 
the subject manipulated 

a given parameter 

diff_diff_df Figure 4.6-6 4.6.2 

time_phase_df 
Evolution of diff_diff_df 

over time diff_diff_df xxx 4.6.2 

unique_df 

DataFrame representing 
the number of unique 

values of a parameter in 
imp_df  

imp_df Figure 4.6-8 4.6.3 

time_unique_df 

DataFrame representing 
the evolution of the 

number of unique values 
over time 

imp_df xxx 4.6.3 
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4.6.1. Iterations data engineering 
The main iterations DataFrame (iterations_df) simply represents how many times a given 

parameter was changed. Data was organized by façade and tool implementation (imp_df). A boolean 
dataframe diff_df indicating whether a value in imp_df is different to the one in the row above is 
created to identify which parameters were changed. The sum of the columns diff_df formed a row 
iterations_df upon which the implementation, façade and time were added as additional columns or 
indexes.  

A second DataFrame represents the evolution of this data over time. Rather than calculate the sum 
for the entire façade, in this second DataFrame the data for each façade is resampled at regular 
intervals of the total time spent on the given façade. Which means that the datapoints that fell within 
that time range were added along. The chosen number of divisions to define the interval is ten, and 
while a higher number of divisions would have given a higher resolution, ten divisions appeared to be 
enough, as some intervals (usually the last one) occasionally had no data points.  

  

Figure 4.6-3 : imp_df example 

Figure 4.6-2 : diff_df example 

Figure 4.6-1 : iterations_df example 

Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeX UpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
0 40 1 2 1 1 1 0 0 0 6 1 0 4 0 0 2

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:07 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
00:00:10 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
00:00:15 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
00:00:32 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
00:00:37 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:00:41 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:45 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
00:00:46 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:47 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:47 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:48 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:49 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:01:01 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:06 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:16 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:33 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:01:53 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:02:13 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
00:02:17 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 2 0,3 0,3 0,2 2 2 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:07 2 0,3 0,3 0,2 2 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:10 2 0,3 0,3 0,2 3 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:15 2 0,3 0,3 0,3 3 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:32 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 0,8 0,8 0,8 1
00:00:37 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 1,1 0,8 0,8 1
00:00:41 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 1,1 0,8 0,8 1
00:00:45 2 0,3 0,3 0,3 3 3 3 3 1 2 0,4 0,2 1,1 0,8 0,8 2
00:00:46 2 0,3 0,3 0,3 3 3 3 3 1 3 0,4 0,2 1,1 0,8 0,8 2
00:00:47 2 0,3 0,3 0,3 3 3 3 3 1 4 0,4 0,2 1,1 0,8 0,8 2
00:00:47 2 0,3 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:00:48 2 0,3 0,3 0,3 3 3 3 3 1 6 0,4 0,2 1,1 0,8 0,8 2
00:00:49 2 0,3 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:01 2 0,5 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:06 2 0,5 0,7 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:16 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:33 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 2 0,8 0,8 2
00:01:53 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 2 0,8 0,8 2
00:02:13 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 1
00:02:17 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 0,8 0,8 0,8 1
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4.6.2. Modification phases 
A modification phases DataFrame (phase_df) was constructed by using a similar logic. For each 

action recorded, the parameter values are compared to the previous ones, allowing to identify if there 
was a change, e.g. if the subject manipulated it (either through sliders or command lines according to 
the tool implementation  

 

The resulting DataFrames for each façade of each implementation was then either summed along the 
columns to form a row of the number of modification phases for each façade-implementation 
combination and added to the modification phases DataFrame, or in the same way as for the iterations 
a DataFrame of the evolution of the modification phases over time (time_phase_df) was constructed 
by resampling the DataFrames from the previous step across regular time range intervals. 

 

 

  

Figure 4.6-4 : diff_df example 

Figure 4.6-5 : diff_diff_df example 

Figure 4.6-6 : phase_df example 

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:07 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
00:00:10 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
00:00:15 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
00:00:32 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
00:00:37 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:00:41 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:45 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
00:00:46 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:47 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:47 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:48 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:49 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:01:01 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:06 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:16 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:33 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:01:53 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:02:13 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
00:02:17 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:07 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
00:00:10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
00:00:15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
00:00:32 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
00:00:37 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:00:41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:45 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
00:00:46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:06 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:33 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:01:53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:02:13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
00:02:17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeX UpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
0 0 1 1 1 1 1 0 0 0 1 1 0 3 0 0 2
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4.6.3. Unique values 
The unique values DataFrame was constructed using the nunique38 function in pandas which 

returns the number of unique values of each column. This means that when studying the number of 
unique values, we are currently only looking parameter by parameter and not the combinations. This 
shows a very high number of unique parameters explored in each experiment. While this informs us 
that the data collection was effective, it was not significative of the studied interactions.  The choice 
was therefore made to not implement39 it and to analyze the results parameter by parameter.   

To construct the DataFrame representing the evolution of unique values over time, almost the same 
logic as for the iterations and modification phases was applied. The main difference was that instead 
of calculating the number of unique values for the data of each time interval, the number of new 
unique values had to be calculated by subtracting the number of unique values from the beginning of 
the façade to the beginning of the interval from the number of unique values from the beginning of 
the façade to the end of the interval. 

For each row of each of the main DataFrames, a multi-index was added containing the corresponding 
subject’s identifying number, subject’s proficiency in the different software (concatenated in a 
number), the order in which the contexts were done, the context, and the façade each row refers to. 
For each subject, rows were added for the total values across the façades, as well as their average and 
standard deviation (Figure 4.6-9). They were then exported in a csv format.  

 
38 https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.nunique.html 
39 This could be done by simply concatenating each row into a string with a separator thanks to the str.cat 
function, then using the nunique function to obtain the number of unique combinations of parameters. 

Figure 4.6-7 : imp_df 

Figure 4.6-8 : unique_df 

Figure 4.6-9 : Main DataFrame example 

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 2 0,3 0,3 0,2 2 2 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:07 2 0,3 0,3 0,2 2 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:10 2 0,3 0,3 0,2 3 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:15 2 0,3 0,3 0,3 3 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:32 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 0,8 0,8 0,8 1
00:00:37 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 1,1 0,8 0,8 1
00:00:41 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 1,1 0,8 0,8 1
00:00:45 2 0,3 0,3 0,3 3 3 3 3 1 2 0,4 0,2 1,1 0,8 0,8 2
00:00:46 2 0,3 0,3 0,3 3 3 3 3 1 3 0,4 0,2 1,1 0,8 0,8 2
00:00:47 2 0,3 0,3 0,3 3 3 3 3 1 4 0,4 0,2 1,1 0,8 0,8 2
00:00:47 2 0,3 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:00:48 2 0,3 0,3 0,3 3 3 3 3 1 6 0,4 0,2 1,1 0,8 0,8 2
00:00:49 2 0,3 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:01 2 0,5 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:06 2 0,5 0,7 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:16 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:33 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 2 0,8 0,8 2
00:01:53 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 2 0,8 0,8 2
00:02:13 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 1
00:02:17 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 0,8 0,8 0,8 1

Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeX UpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
0 1 2 3 2 2 2 1 1 1 6 2 1 3 1 1 2
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4.7. Data visualization 
Once the data was cleaned and transformed, the next step was to provide a way to easily analyze 

the results. Given the large amount of data as well as all the diverse ways we wanted to combine and 
cross reference the data, data visualization was used instead of comparing numbers. This was helpful 
to easily and quickly detect which datapoints were significant and would require more in-depth 
analysis or discussion.  

Care was taken to work in a way that would easily accept more data and could be easily adapted to 
study certain aspects more in depth or according to specific parameters or statistical tools. Therefore, 
a framework was developed that allowed to automatically generate “Dashboards” based on the 
previous indicators defined in section 4.6. These dashboards combine several types of graphs to 
provide an overview of the impact of a chosen factor (such as proficiency in a certain software, or the 
order in which the experiment was done) on either the average interactions or those in a specific 
context.  

In practice, this was done using a Jupyter Notebook in python using JetBrains’s DataSpell IDE, with 
extensive use of the Pandas, Numpy, Matplotlib and Seaborn libraries. The use of a Jupyter Notebook 
allowed easier development of the functions that enabled the generation of these dashboards. Once 
these functions were deemed sufficiently developed, they were grouped in a separate python file that 
could be referenced as a custom package, after which the Jupyter Notebook was used mainly for 
exploring and generating the different dashboards, as well as exporting them to be saved. As for the 
previous development done for this research, this code is available on GitHub40 to future researchers.  

For the analysis, two main functions were created and used to generate the dashboards: feedback 
(described in section 0) and global_analysis (section 4.7.2). 

  

 
40 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation 
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4.7.1. feedback 
The feedback function defined in the analysis package41 can be called in the following way with these 
arguments:  

feedback(feedback_df, context_index, software, survey, _level) 

 feedback_df: the pandas DataFrame of the subjects’ feedbacks concerning the interactions 
generated by the output csv from the data engineering step. 

 context_index: this allows the study of either a specific context (GH=0, Hybrid=1, Rhino=2), 
the average result (4) or if None is passed the function will plot all the results (so three for 
each subject). 

 software: this is the software that will be used to group the subjects by proficiency level if that 
is the chosen study variable. 

 survey: this allows the study of the survey conducted immediately following a given context 
(A), at the end of the experiment (B), or both side by side (None).  

 _level: this is the study variable with which the surveys are examined, either by proficiency 
level (“level”), by order (“order”) or by context (“context”). 
 

The output of this function is a bar plot42 as in Figure 4.7-1, where for each category of the feedback 
survey the results are grouped by the study variable, in this case by grasshopper level, with the 
individual data points overlaid via a swarm plot43. 

 
Figure 4.7-1 : feedback graph example 

           

  

 
41 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation 
42 https://seaborn.pydata.org/generated/seaborn.barplot.html 
43 https://seaborn.pydata.org/generated/seaborn.swarmplot.html 
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4.7.2. global_analysis 
This is the main function that allows us to study the interactions based on our chosen study variable.  

The function is called with the following way:  

global_analysis(df, time_df, study_columns, title, level, context_index, software, detail) 

with the arguments representing, respectfully:  

 df: this is the pandas DataFrame of the study angle we have chosen (iterations, modification 
phases or unique values). 

 time_df: this is the corresponding DataFrame representing the evolution of the study variable 
over time.  

 study_columns: this represents a list of the significant values based on the chosen study angle 
that we wish to compare between the various groups. Currently we can choose time, rate, 
total, maximum or coefficient of variation (CV). Other statistical values such as mean, 
skewness or standard deviation could easily be implemented, given the small sample size of 
this study this was not developed fully, no doubt with larger sample sizes a more robust 
statistical analysis would be pertinent at this step.   

 title: this simply allows us to label our graphic.  
 level: this is the variable with which we will group our data (software proficiency, order of 

interaction or context of interaction). 
 context_index: this represents the context in which we want to perform our analysis (0,1 or 

2) or None if we chose to perform an analysis across all three contexts.  
 software: if we chose to perform our analysis based on a given software proficiency, this is 

where we can specify which software.  
 detail: this is a Boolean value which indicates whether we would like to have the detail for 

each subject in each group or if we would like to group the results and only represent the 
average.  

 

Figure 4.7-2 : global_analysis(iterations_df, time_iterations_df, [‘Time’,’Rate’,’Total’,’CV’], ‘Iterations’, ‘Level’, None, ‘Grasshopper’, False) 
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The output gives us a dashboard like that on Figure 4.7-2 or Figure 4.7-3 (depending on whether we 
wish a detailed dashboard or not), and can be split in three categories:  

On the left (Figure 4.7-4) we can 
find four columns, one for each of 
the significant values we chose, 
with, from top to bottom:  

 A linear regression plot44 
across the different groups, to 
study the evolution from group 
to group and see if there is a 
global trend. On this plot is also 
represented the mean for each 
group along with an error bar 
corresponding to the 
confidence interval.  

 A violin plot45 of the values 
showing the discrete data points. This violin plot is split when studying by software proficiency, 
with the left representing the three lower proficiency levels and the right the three higher 
proficiency levels, to better exacerbate the difference between less and more experienced 
subjects. 

 A heatmap46 showing the mean value for each of the groups and colored from blue to red 
depending on where on the range of values they fall (blue being the lowest, red the highest, and 
the middle represented by white). 

  

 
44 Implemented using seaborn (https://seaborn.pydata.org/generated/seaborn.regplot.html) 
45 Implemented using seaborn (https://seaborn.pydata.org/generated/seaborn.violinplot.html) 
46 https://seaborn.pydata.org/generated/seaborn.heatmap.html 

Figure 4.7-3 : global_analysis(iterations_df, time_iterations_df, [‘Time’,’Rate’,’Total’,’CV’], ‘Iterations’, ‘Level’, None, ‘Grasshopper’, True) 

Figure 4.7-4 : Example of significant value graphic analysis 
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On the top right (Figure 4.7-5), is plotted the evolution of the rate of the study angle during the 
experiments, approximated by a cubic polynomial regression plot47 with 10 data points per façade (as 
explained in section 4.5), with one curve for each of the groups and the interactions of the façades 
clearly separated. The rates are normalized according to the time each subject spent on each façade, 
with the relative widths of the sections for each of the façades proportional to the average proportion 
of time spent on each of them by the subjects.  

   

On the bottom right (Figure 4.7-6), we can see a combination of a bar plot with the confidence 
intervals represented through error bars and a heatmap for the mean values pertaining to each of the 
input parameters that the subjects interacted with. This is also where the legend for the dashboard 
appears, with a coherent color code across the different dashboards based on the different groupings 
that are possible.  

These data visualizations were produced for every experimentation. The most significant ones are 
used to illustrate the research results, the others are available either in the Appendix or online on the 
GitHub48 repository. 

  

 
47 https://seaborn.pydata.org/generated/seaborn.regplot.html 
48 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation 

Figure 4.7-5 : Rate evolution 

Figure 4.7-6 : Parameter values 
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5. Data analysis 
The harvested data are first analyzed to assess the validity of the experience, especially: 

 The global behavior across the different contexts, in order to identify possible flaws in the 
experimentation set up (5.2) 

 The impact of the order in which the subjects interacted with the different implementations 
(5.3) 

 The impact of previous software knowledge (5.4).  

Then, the data are analyzed to answer our research question: how context familiarity impacts the user 
behavior (5.5). 
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5.1. Harvested data 
5.1.1. Successful experimentations and collected data points 

A total of 14 experiments were conducted, among both current students in the architectural 
engineering section of Liège University and recent graduates of the section, 7 and 7 respectively.  

As discussed previously (section 4.4), during each interaction, data was automatically recorded every 
time the user changed a parameter. In total, 92990 points of data for the interactions were collected. 

During the first 3 experiments, the automated data harvesting for the Hybrid interaction failed. Using 
the backup screen recordings (explained in section 4.3.1), this data was harvested manually, except 
for Subject2 who was unluckily also the only subject for which the screen recording also failed. 
Because of that, Subject2 was disregarded for the analysis in the Hybrid context. It should also be note 
that for some of the interactions in the Hybrid context, subjects at time suffered significant lag which 
was detrimental to their fluid use of the tool.  

This raw data was cleaned and processed as seen in sections 4.5 and 4.6. A total of 328 graphs 
were generated; amongst them 148 were considered relevant and grouped in categories of four to 
form the 37 appendixes. The others can be found on the GitHub repository of the project.   

5.1.2. Characterization of the population 
Software proficiency in AutoCAD and SketchUp was relatively high for all the subjects, whereas 

knowledge in Rhino and Grasshopper is more representative of average proficiency in the different 
software (Figure 5.1-4).  Only two of the 14 subjects had experience with Blender or 3dsMax, therefore 
these were discarded from the analysis.  

 

Figure 5.1-3 : BIM proficiency distribution Figure 5.1-2 : CD proficiency distribution Figure 5.1-1 : Modeling proficiency 
distribution 

Figure 5.1-4 : Software proficiency chart 
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5.2.  Differences between different Contexts of interaction  
The first thing we will assess is the overall behavior across the different contexts of interaction. 

The objective is to better understand the specificities of how differently the subjects interacted with 
the same underlying logic simply based on the context (as described in section 4.1). This will allow us 
to better interpret our results when we evaluate how previous software experience influences usage 
of a foreign logic in each context (section 0). To do so, we compared the characteristics of the 
interviewee as harvested in the surveys with information from the experimentations, namely the 
study of:  

 the number of iterations (every time a parameter was changed)  
 the modification phases (when the user switched between parameters)  
 the number of unique values (unique parameter values explored)  

5.2.1. Survey 

The survey data (Figure 5.2-1), reveals the following on the perception of the experimentation by the 
interviewee: 

 The interaction in Rhino was consistently perceived as slightly less accessible from the start 
while both the grasshopper and hybrid implementations ranked similarly. 

 The three implementations were initially perceived as similar in terms of comprehension by 
the subjects, while the Rhino implementation was noted slightly lower in the final survey.  

 The hybrid implementation was consistently ranked as being less easy to use. This can be 
explained by the difficulties and low fluidity caused by the unoptimized implementation, 
specifically the contextual sliders which at times induced lag. Subjects found the Rhino and 
Grasshopper implementations equally easy to use, with Rhino being perceived as slightly 
easier to use in the first survey while the opposite was expressed in the final survey.   

 The subjects’ level of satisfaction at being able to achieve their desired outcome, showed 
trivial difference in the answers before and after the experimentations, apart from the fact 
that the second survey showed lower variance. The implementations in Grasshopper and 
Rhino gave subjects equal satisfaction while they were on average less satisfied in the Hybrid 
implementation. This could again be in part explained by the technical issues which arose in 
this implementation, particularly given the fact that not all subjects noted it poorly. We can 
also see that two subjects noted the Rhino implementation less favorably, which they justified 
by the limitation in their capacity to edit the logic, specifically the bounds of values that can 
be given to the rows and columns parameters. 

 When asked how they could see themselves using tools and logic implemented in similar ways 
based on the context, while initially all three contexts performed similarly, in the final survey 
subjects rated Grasshopper as the highest, followed closely by Rhino then by the Hybrid 
version which did more poorly.  

Figure 5.2-1 : Survey data by context of interaction 
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5.2.2. Number of iterations 

Concerning the number of iterations made by the subjects as seen in Figure 5.2-2, we can see 
immediately that: 

 The subjects spent a similar amount of time between the contexts, but this amount of time 
varies greatly (5 to 25 minutes) in each context.  

 The Grasshopper rate of interaction is around twice as high as in the other two contexts, on 
average. However, a closer look at how that rate evolves over the interaction reveals that this 
is particularly the case at the beginning but by the third façade the rate of interaction is more 
similar across the different contexts. This would suggest that a study conducted over a longer 
period might deliver different results and that we could hypothesize that the subject gets 
used to the design logic and begins using it rather than simply exploring it. 

 The total number of iterations varies more in Grasshopper than in the other contexts. 

 

5.2.3. Number of modification phases 

By studying the subjects’ behavior in terms of count of modification phases and how it evolves over 
the interaction (Figure 5.2-3), we can see that the subjects changed which parameters they were 
interacting with at a similar rate across all three implementations, slightly more when interacting in 
Rhino, and observing the behavior over the interaction duration seems to indicate that subjects 
became progressively more at ease switching between parameters in the Rhino implementation.  

Figure 5.2-2 : Iterations by Context 

Figure 5.2-3 : Modification phases by Context 
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5.2.4. Unique Values 

Studying the evolution of unique values depending on the context of interaction reveals that subjects 
explored a wider range of unique solutions overall when interacting through grasshopper and at an 
average higher rate, however this difference is more clearly marked during the first 2 façades, with 
the average rate during the last façade stabilizing to be closer to that of the other 2 contexts.  

5.2.5. Summary 
The overall study of the variance in interaction behavior and logic perception across the different 
implementations reveals that while there are some differences (namely the higher rate of interaction 
in Grasshopper), these differences for the most part seem to stabilize over time or can be explained 
by things specific to the implementations (such as the fluidity problems in the hybrid implementation 
or the bounds of accepted values in the Rhino implementation) more so than the context. While there 
are differences in the interactions from subject to subject, the way the design logic was implemented 
in the different contexts seems to be at best only partly responsible for these differences.   

Figure 5.2-4 : Unique values by Context 
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5.3. Order of interaction impacted behavior 
In this section, we will study how the order in which the interactions were done had an impact on the 
behavior and perception of the subjects. We will first look at the general results, and if necessary, will 
discuss how these results vary across the different implementations.  

5.3.1. Survey  

Figure 5.3-1: Survey data by Order 

The average survey results shown on Figure 5.3-1 reveal the order of interaction had an impact on 
the subjects’ perception. While immediately following each interaction the average perceived 
accessibility was similar across the 3 different interactions, when evaluating them at the end of the 
experiment the subjects seem to rank the interactions as more and more accessible. This could be 
explained by the fact that the subjects became progressively more familiar with the exercise. This 
hypothesis is strengthened by the fact that the perceived level of comprehension of the underlying 
logic also increased for every interaction, both immediately following and at the end of the 
experiment. Another notable result we can see is that the last interaction was consistently perceived 
as being less easy to use.  

Studying the impact of the order on the different implementations (Appendix 19-1, Appendix 28-1, 
Appendix 37-1) shows that these general observations do not reflect across all three contexts.  

In Grasshopper there is no clear progression of the level of accessibility with each successive 
interaction, and the level of comprehension is perceived as less favorable and decreases with each 
interaction, as do the other categories of the survey, especially for “Usability”. This indicates that while 
Grasshopper was well appreciated when it was the first method of interacting with the logic, when 
users had already used another implementation, they tended to be harsher when evaluating it 
during the final survey.  

In the Hybrid implementation, the general trend of increasing level of comprehension can be seen, 
while ease of use, usability and satisfaction tended to decrease with each successive interaction.  

In Rhino however, the results increased across the board for each successive interaction, especially 
in the final survey. This seems to indicate that in this implementation, getting familiar with the logic 
took some time (longer than in Grasshopper for example) but once familiar with the exercise the 
subjects appreciated it. The difference between the progression of this implementation versus the 
others also explains why the global results are perhaps not representative.  
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5.3.2. Number of iterations 

The only notable observation we can identify by studying the average number of iterations by order 
of interaction (Figure 5.3-2) is that on average, subjects spent twice as long on their first interaction 
as the following two.  

A more in depth look in each context (Appendix 19-2, Appendix 28-2, Appendix 37-2), shows that this 
is the case in each context of interaction.  

 

5.3.3. Number of Modification Phases 

Studying the global evolution of the modifications phases depending on the order of the interaction 
(Figure 5.3-3) shows a tendency of slightly increasing rate for each successive interaction. This global 
trend is also found in Grasshopper (Appendix 19-3) and Rhino (Appendix 37-3) while the opposite 
seems to be true in the Hybrid implementation (Appendix 28-3).  

  

Figure 5.3-2 : Iterations by Order of interaction 

Figure 5.3-3 : Modification phases by Order of interaction 
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5.3.4. Number of unique values 

The study of unique values, like that of the modification phases, shows a tendency of increasing rate 
both globally and in each implementation (Appendix 19-4, Appendix 28-4, Appendix 37-4), but this 
difference seems to be primarily between the first interaction and the following two. This could be 
explained by the fact that as stated previously, subjects spent around twice as long on their first 
interaction as the following 2, while observing the total number of unique values of the parameters 
explored shows they only explored slightly more in that amount of time. Observing the evolution of 
the rate over the experiment further shows that for each façade, the rate of new unique values 
plateaus then decreases after a certain amount of time.  

5.3.5. Summary 
From this analysis, we can conclude that the order in which the subjects interacted with the design 
logic in the different contexts had a pronounced impact in how they interacted with it, especially for 
the first interaction where they discovered the underlying design logic, whereas for the following 
two they only discovered how it was implemented. We shall have to take this into account for the 
rest of our analysis and what conclusions we can make from them, especially given the small sample 
size in relation to the diversity of the profiles of the subjects in regard to their proficiency in the various 
software.  
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5.4. Previous software experience impacted the interaction 
In this section we will study if and how previous experience in different software had an impact on the 
interactions. To do so we will refer to the generated Dashboards that can be found in the appendix.  

5.4.1. AutoCAD 
Survey data 
Surprisingly, experienced users of AutoCAD seemed to have slightly more favorable views on the 
interactions (Appendix 1-1), particularly when it came to the ease of use and day to day usability of 
such a logic, as well as a better feeling of comprehension of the underlying logic. The link between the 
rating of ease of use and usability was less clear cut when looking at the Grasshopper 
implementation (Appendix 11-1), however in that implementation a similar link between AutoCAD 
experience and level of comprehension can be observed. For the Hybrid implementation (Appendix 
20-1) no clear relationship could be seen, considering the low sample size (1) in the “Expert” category. 
In Rhino, a relation trend between proficiency in AutoCAD and the survey results can be seen across 
all categories (although sometimes in only one of the two surveys), with higher proficiency levels 
corelating with more favorable survey answers (Appendix 29-1). 

Number of iterations 
Studying the number of iterations values at a global level based on AutoCAD experience yields no clear 
observations (Appendix 1-2), nor did that experience have a discernable impact for those metrics in 
Grasshopper (Appendix 11-2), the Hybrid context (Appendix 20-2), or in Rhino (Appendix 29-2).  

Modification phases 
This was also the case for the study of the modification phases (Appendix 1-3, Appendix 11-3, 
Appendix 20-3, Appendix 29-3). 

Unique values 
This was also the case for the study of the unique values explored (Appendix 1-4, Appendix 11-4, 
Appendix 20-4, Appendix 29-4). 

Summary 
When analyzing the harvested data by grouping users by AutoCAD proficiency level, while the survey 
data did show a link on average and in Rhino especially, the three implemented study angles for 
characterizing the tool interactions revealed nothing. However, this could very well be due to our 
low sample size.     
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5.4.2. SketchUp 
Survey data 
Observing the subjects’ average survey results (Appendix 2-1) seems to indicate that the categories 
for Ease of use and Usability are generally rated higher by more experienced SketchUp users. The 
other categories also show slight increases by SketchUp level but not enough to draw definitive 
conclusions. In Grasshopper, this general trend is echoed for the Usability category in the 2nd survey, 
but much less so for Ease of Use (Appendix 12-1).  Another interesting observation is that while the 
level of comprehension seemed to be directly correlated with a subject’s level in SketchUp in the 
survey conducted immediately after the interaction, this is much less the case in the survey conducted 
at the end of the three interactions. No clear conclusions could be drawn for the Hybrid context 
based the survey data when cross referencing it with the subjects’ level in SketchUp (Appendix 21-1). 
Once again, the interactions in Rhino showed the greatest correlation between higher SketchUp 
levels and positive survey answers, across all categories (Appendix 30-1), although this could be a 
product of the small sample size of the “Expert” category.  

Number of iterations 
Studying the number of iterations shows an interesting difference between the behavior in the 
different contexts. In Grasshopper, the rate of iterations seemed to decrease with higher levels of 
proficiency (Appendix 12-2), while the opposite tendency can be observed in Rhino (Appendix 30-2).  
The global study (Appendix 2-2) and the one for the Hybrid context (Appendix 21-2) showed no clear 
relationship between Sketchup level and behavior.  

Modification phases 
This is also the case when we look more in depth at the evolution of the modification phases, albeit 
to a lower extent. (Appendix 2-3, Appendix 12-3, Appendix 21-3, Appendix 30-3) 

Unique values 
Finally, when observing the results of the different analysis of the unique values generated, we can 
see that there is no discernable impact of one’s level in SketchUp in general or in any of the contexts. 
(Appendix 2-4, Appendix 12-4, Appendix 21-4, Appendix 30-4) 

Summary 
Although experienced SketchUp users seemed to prefer their interactions in Rhino, and indeed 
interacted more quickly there then in Grasshopper, they did not explore more solutions or achieve 
their results faster.   
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5.4.3. Rhino 
Survey data 
Observing the global survey cross referenced with Rhino level reveals no clear trends of a relationship 
(Appendix 3-1). Furthermore and perhaps surprisingly, while the survey results varied significantly 
from level to level in the different contexts (Appendix 13-1, Appendix 22-1, Appendix 31-1), no clear 
relationship between a subject’s level and their evaluation of the different categories of the survey 
could be observed, not even in Rhino where we could have expected that more experienced Rhino 
users would have had a bias towards giving better evaluations of the different categories. This reveals 
that while someone might have experience in 3d modeling, even in a familiar context, the use of 
computational design logic also requires experience in computational thinking (Carpo, 2017) (de 
Boissieu, 2022). 

Number of iterations 
On average, more experienced users of Rhino seem to interact with the logic at a slower rate but 
interacted with the logic a similar amount of time on average as less experienced users (Appendix 3-2). 
This global trend can also be seen in the interactions which took place in Grasshopper (Appendix 13-2) 
although more experienced users tended to interact with the logic for a longer amount of time, in the 
Hybrid context this trend was more pronounced (Appendix 22-2), and most significantly in Rhino 
(Appendix 31-2). 

Modification phases 
Studying the way in which users changed from parameter to another across all contexts shows that 
on average there is not a significant difference between users of different Rhino levels (Appendix 3-), 
nor is there in the Hybrid context (Appendix 22-3). In Grasshopper and Rhino however, there seems 
to be a slight tendency for users with a higher level to switch less frequently between parameters, 
this tendency is more marked in Grasshopper (Appendix 13-3) but in Rhino we can also observe that 
more experienced users interacted with the different parameters more evenly rather than mainly 
focusing on switching between a couple of parameters, which results in a lower coefficient of variation 
between the number of modification phases by parameter (Appendix 31-3). 

Unique values 
Finally, studying the average number of unique values of the different parameters traversed by the 
users indicates that more experienced Rhino users tested fewer unique values per minute and tested 
unique values of the different parameters much more evenly on average 

Appendix 3-4). This was also the case in Grasshopper (Appendix 13-4) and Rhino (Appendix 31-4) with 
the additional trend of more experienced users interacting with the logic for longer in Grasshopper. 
In the Hybrid context, there was no clear relationship between a user’s level in Rhino and how they 
explored unique values of the different parameters (Appendix 22-4). 

Summary 
Based on the harvested data, it would appear that more experienced Rhino users did not benefit from 
their experience when it came to interacting with the computational design logic, nor were their 
perceptions different than those of the other subject groups, as can be seen by the survey data. 
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5.4.4. Grasshopper 
Survey data 
The average survey data by Grasshopper level (Appendix 14-1) shows no clear relationship between 
subjects’ grasshopper levels and their evaluation of any of the categories of the survey. This is slightly 
biased by the fact that some levels contain only one subject. Removing these levels or grouping them 
with the others still does not reveal clear relationships though. 

Looking more closely at the data for the survey specific to the Grasshopper context we can make the 
following observations:  

 In the survey immediately following the interaction, more experienced users had a tendency 
of rating their level of comprehension of the underlying logic lower than less experienced 
users but were more likely to see themselves using computational design logic in this way day 
to day.  

 In the survey conducted at the end of the experiment, more experienced users seemed to 
rate the accessibility and ease of use of the implementation as higher than less experienced 
users.  

In the Hybrid context (Appendix 23-1), the second survey data shows a clear relationship between 
higher levels in Grasshopper and better levels of comprehension. The other categories showed 
elevated levels of variance from level to level, but no clear link is apparent. 

In Rhino (Appendix 32-1), the survey data does not lend itself to any definitive conclusions, in part due 
to the low sample size of the 2 levels on the extremes. Concentrating only on the experience levels in 
which there are more than one subject, we could observe that the perception of usability decreases 
with grasshopper level.  

Number of Iterations 
Looking at the average iterations by Grasshopper level (Appendix 4-2), slight negative correlations 
between a user’s level in grasshopper and the rate of interaction as well as the coefficient of variation 
of the average number of iterations of the different parameters can be observed, as well as a positive 
correlation with the rate of interaction. This is also the case in the Grasshopper and Rhino 
implementations (Appendix 14-2, Appendix 32-2) particularly for the time spent on the interaction, 
while the Hybrid context implementation shows much less correlation between these metrics and a 
user’s Grasshopper level (Appendix 23-2). 

Modification phases 
The rates of the average modification phases (Appendix 4-3) are also inversely proportional to the 
users’ level in grasshopper, to a similar proportion as for the number of iterations, but the CV no longer 
follows that trend. Looking more closely at the different contexts, we can see that this global trend is 
mostly due to the Rhino implementation (Appendix 32-3) rather than the other 2 (Appendix 14-3, 
Appendix 23-3).  

Unique values 
The unique values followed the trends shown for the number of iterations, as much for the average 
values (Appendix 4-4) as for the different contexts, with Grasshopper(Appendix 14-4) and 
Rhino(Appendix 32-4) showing more sensitivity to a user’s level in grasshopper than in the Hybrid 
implementation (Appendix 23-4). 
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5.4.5. Archicad 
Survey data 
The average survey data by Archicad level is not easily interpreted, some trends can be seen in the 
surveys conducted immediately after the interactions like an increasing perception of usability with 
higher levels in Archicad as well as greater levels of satisfaction with their ability to achieve their 
desired results. Looking at the data collected in the survey conducted at the end of the experiment 
does not reveal the same trends, however (Appendix 5-1). Similar trends and ambiguities can be found 
in the data of the 2 surveys conducted for the Grasshopper context by Archicad level (Appendix 15-1) 
preventing us from making any definitive conclusions. The surveys for the other 2 contexts cross 
referenced with Archicad level are also inconclusive (Appendix 24-1, Appendix 33-1). 

Number of Iterations 
Studying the average number of iterations by Archicad level (Appendix 5-2), we can see that more 
experienced users on average spent more time doing the interactions and interacted more evenly 
with the different parameters, but at a similar rate as the users with a lower Archicad level. This trend 
is not reflected In Grasshopper (Appendix 15-2), instead more experienced users interacted at a higher 
rate. In the Hybrid implementation (Appendix 24-2), there is variance in the values by level of the 
different metrics for the number of iterations (rate, total, cv) such that no clear relationship between 
those metrics and Archicad experience can be established. Furthermore, looking at how the rate of 
iteration evolves over time for the different level groups shows that there are significant differences 
in how different people interact with the logic. In Rhino (Appendix 33-2), we can observe that more 
experienced users tend to interact at a slower rate and more evenly between the different parameters 
compared to less experienced users.  

Modification phases 
Observing the average number of modification phases by Archicad level overall (Appendix 5-3), we 
can see that the rate is relatively stable (ranging from 3.1 to 3.9 modification phases / minute on 
average), with the most variation occurring for the lowest level of Archicad experience. We can also 
see a decreasing CV with increasing levels in Archicad, and that while behavior in terms of the 
evolution of the rate over time is similar between levels across the first 2 façades, by the 3rd one there 
are bigger differences between the different level groups. For the interactions taking place in the 
Grasshopper (Appendix 15-3) and Hybrid (Appendix 24-3) contexts, there is no apparent relationship 
between the way users went from parameter to parameter and their level in Archicad. In the Rhino 
implementation however, we can see that more experienced users interacted with a lower average 
rate and lower CV than less experienced users. (Appendix 33-3) 

Unique values 
Globally (Appendix 5-4), no clear trend could be observed, nor could any definitive links be seen in the 
Grasshopper (Appendix 15-4) or Hybrid implementations (Appendix 24-4). In Rhino (Appendix 33-4), 
we can observe that the rate decreases with Archicad level as well as the CV between parameters. 
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5.4.6. Revit 
Survey data 
The average survey data by Revit level (Appendix 6-1) seems to indicate that as the level of Revit 
proficiency increased in users, their rating of the accessibility, comprehension and ease of use 
categories was susceptible to decrease. Further investigation in the three contexts reveals no clear 
trends in any of them (Appendix 16-1, Appendix 25-1, Appendix 34-1). 

Number of Iterations 
Studying the global behavior in terms of the number of iterations by Revit level (Appendix 6-2) reveals 
no trends apart from a seemingly slight tendency for more experienced users to interact less evenly 
between the different parameters and focus primarily on a couple few. No trends could be observed 
in Grasshopper either (Appendix 16-2), while in the Hybrid context more proficient Revit users spent 
longer on average than less proficient users (Appendix 25-2), and how the rate of iterations evolved 
over time varies between the distinct levels. In Rhino (Appendix 34-2), the only observation we can 
make is that while for the first façade the rates of interaction varied in the same range between 
different levels, for the second and third façades the range of rates of interaction varies more, with 
higher levels in Revit reaching higher rates, particularly towards the end of their conception of the 
façade. 

Modification phases 
The study of the modification phases revealed no definitive trends, either on average (Appendix 6-3), 
or in any of the contexts (Appendix 16-3, Appendix 25-3, Appendix 34-3). 

Unique values 
 Global (Appendix 6-4): More experienced users concentrated more on certain parameters in 

their exploration of unique values (higher CV). 
 Grasshopper (Appendix 16-4): Less exploration of unique values by more experienced Revit 

users (lower total).  
 Hybrid (Appendix 25-4): More unique values explored by more experienced users, but only on 

certain parameters (higher total and CV). 
 Rhino (Appendix 34-4): No clear differences between subject groups.   
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5.4.7. BIM 
Survey data 

 Global (Appendix 7-1): Lower Accessibility, Comprehension and Ease of Use rating by more 
experienced BIM users. 

 Grasshopper (Appendix 17-1): Higher Usability perceptions for more experienced BIM users. 
 Hybrid (Appendix 26-1): High variability between subject groups and between surveys so no 

definitive conclusions can be made.  
 Rhino (Appendix 35-1): No conclusions can be made.  

Number of Iterations 
 Global (Appendix 7-2): No notable trends apart from the fact that more experienced users 

spent longer at a similar rate on their interactions.  
 Grasshopper (Appendix 17-2): no clear trends.  
 Hybrid (Appendix 26-2): More time spent at a higher rate of interaction for more experienced 

users.  
 Rhino (Appendix 35-2):  The most experienced users spent the most time but at the lowest 

rate of interaction and the most evenly across the different parameters.  

Modification phases 
 Global (Appendix 7-3): no new trends could be seen.  
 Grasshopper (Appendix 17-3): slightly lower rate for more experienced users.  
 Hybrid (Appendix 26-3): More time spent but at the same rate for more experienced users. 
 Rhino (Appendix 35-3): same behavior as observed when studying the number of iterations. 

Unique values 
 Global (Appendix 7-4): no new trends could be seen (same as number of iterations and 

modification phases). 
 Grasshopper (Appendix 17-4): no clear trends.  
 Hybrid (Appendix 26-4): More time spent but at the same rate for more experienced users. 
 Rhino (Appendix 35-4): The most experienced users spent the most time but at the lowest 

rate of new unique values and the most evenly across the different parameters. 
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5.4.8. Modeling 
Survey data 

 Global (Appendix 8-1): minimal differences between subject groups, slight positive link 
between subjects’ levels and their perception of comprehension and, for the survey 
conducted at the end of the experiment, the ease of use and day to day usability of the context 
of implementation.  

 Grasshopper (Appendix 18-1): same observations as for the global study.  
 Hybrid (Appendix 27-1): no clear trends can be observed.  
 Rhino (Appendix 36-1): variability between the 2 surveys, but general correlation between 

higher proficiency levels and more favorable answers across all the categories.  

Number of Iterations 
 Global (Appendix 8-2): No discernable difference in interaction behavior between the 

different subject groups.  
 Grasshopper (Appendix 18-2): no significant differences between subject groups.  
 Hybrid (Appendix 27-2): no significant differences between subject groups.  
 Rhino (Appendix 36-2): Higher rates of interaction for more experienced users.  

Modification phases 
 Global (Appendix 8-3): lower average total number of modification phases for increasing 

proficiency levels.  
 Grasshopper (Appendix 18-3): lower average rates for more experienced subject groups, but 

this especially the case due to the behavior towards the end of the context interaction (end 
of façade 2 and façade 3) whereas at the beginning of the context interaction (façade 1) the 
rates of change between parameters are similar across subject groups.  

 Hybrid (Appendix 27-3): similar behavior across subject groups.  
 Rhino (Appendix 36-3): no clear trends except less time spent on the interaction on average 

by more experienced subjects.  

Unique values 

 Global (Appendix 8-4): No significant differences between subject groups.  
 Grasshopper (Appendix 18-4): No definitive trends.  
 Hybrid (Appendix 27-4): No significant differences between subject groups.  
 Rhino (Appendix 36-4): No significant differences between subject groups.   
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5.5. Context familiarity impacted behavior 
5.5.1. Grasshopper 

In this section, we will investigate whether more experienced grasshopper users truly benefited from 
their experience when it came to using a previously unknown script not made by them. While this 
analysis has already been done to some extent in the previous section, we will provide a more in-
depth analysis and hypothesis as to the reasons of some of the observations.  

Survey data 

Observing the feedback answers (Figure 5.5-1) given by the subjects grouped by their stated 
Grasshopper level, we can observe the following:  

 While immediately following the interaction in grasshopper no clear link between a subjects 
stated perception of the accessibility of the implementation and their experience level in 
grasshopper could be seen, when looking at the survey answers given at the end of the 
experiment, it seems that the more experienced a subject is in grasshopper, the more 
accessible this method of interacting with the design logic seemed to them, which is to be 
expected. 

 On the other hand, more experienced grasshopper users stated having more difficulty 
understanding the underlying design logic, with however a notable difference in the answers 
for the 2 surveys or the lone subject in the “Advanced” experience group. This could be 
explained partly by the fact that they are more used to creating their own design logic, and 
partly because the logic was by choice not purely parametric, which they are more used to.  

 While initially following the interaction in Grasshopper the different subject groups rated the 
ease of use of the implementation similarly, at the end of the experiment a clear trend where 
more experienced users find the implementation easier to use can be seen. 

 Concerning the day-to-day usability of general computational design implemented in this way, 
unsurprisingly, the more experienced users found this method of interaction more usable 
day-to-day. 

 Different subject groups rated their level of satisfaction at achieving their desired outcomes 
similarly.  

From this data we can conclude that while subjects with more experience in grasshopper were 
influenced by that experience and more at ease, lack of experience did not affect less experienced 
subjects’ ability to use the design logic and achieve their desired outcomes. 

Figure 5.5-1: Grasshopper survey data by Grasshopper level 



Page 57 of 108 
 

Number of iterations 

From the detailed study of the number of iterations in Grasshopper, by Grasshopper level (Figure 
5.5-2) we can observe the following:  

 Subjects more familiar with grasshopper spent on average more time on the interaction.  
 More experienced subjects did not interact with the logic at a higher rate, even at a slightly 

lower rate in fact. 
 Their behavior was more constant within the subject groups. 
 The rate of interaction of more experienced users did not evolve in a significantly different 

manner than less experienced subjects. 

Based on this study variable and the harvested data, there is no indication that more experienced 
subjects in grasshopper interacted significantly differently than novices or even subjects with no 
prior experience in Grasshopper. 

Figure 5.5-2 : Detailed study of the number of iterations in Grasshopper, by Grasshopper level 
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Number of modification phases 

From the detailed study of the number of modification phases in Grasshopper, by Grasshopper level 
(Figure 5.5-3) we can only observe the following:  

 The rate of change between parameters was slightly lower on average for more experienced 
users, although this could be explained by the fact that they spent more time interacting in 
this context. 

Based on this study variable and the harvested data, as in the previous observations, there is no 
indication that more experienced subjects in grasshopper interacted significantly differently than 
novices or even subjects with no prior experience in Grasshopper. 

 

 

Figure 5.5-3 : Detailed study of the number of modification phases in Grasshopper, by Grasshopper level 
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Number of unique values 

From the detailed study of the number of modification phases in Grasshopper, by Grasshopper level 
(Figure 5.5-3) we can only observe the following:  

 While more experienced subjects explored a greater number of unique values, they did so at 
a lower average rate, and more evenly across the different parameters. 

 Observing the link between time spent and the rate seems to indicate a decreasing rate after 
a certain period of time spent, which we can also see by observing the evolution of the rate 
over the interaction, where towards the end of a façade a decrease was seen in the number 
of new unique values as the user converged toward their preferred solution.   

As in previous observations, there is no indication that more experienced subjects in grasshopper 
interacted significantly differently than novices or even subjects with no prior experience in 
Grasshopper. 

Summary 
In conclusion, based on the harvested data and chosen study parameters, there seems to be no 
negative impact on a subject’s use of computational design logic in grasshopper because of their 
inexperience or unfamiliarity with the context that can be described as significant or sustained.   

Figure 5.5-4 : Detailed study of the number of unique values in Grasshopper, by Grasshopper level 
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5.5.2. Hybrid 
The study of the impact of context familiarity on the Hybrid implementation is not as easy to do given 
the fact that this implementation used a custom UI that none of the subjects could have been 
previously exposed to. In a way, this simulates the situations found when using new unfamiliar tools 
(such as web-based platforms discussed in section Error! Reference source not found.). However, 
given the fact that the interaction takes place in the Rhino viewport, and parameters are interacted 
with either through manipulating points in the view or through sliders, this implementation is a hybrid 
between the Rhino and Grasshopper contexts. For that reason, the hypothesis was taken that users 
most familiar with both Rhino and Grasshopper could be considered as most “familiar” with this 
context. This is why we will study this context by grouping the subjects by their average experience in 
Rhino and Grasshopper, as explained on page 29 .  

Survey data 

Studying the survey data for the Hybrid context based on subject average level in Rhino and 
Grasshopper reveals:  

 The only clear trend that can be observed is that in the survey conducted at the end of the 
experiment, more experienced users rated their ability to understand the design logic in this 
implementation as higher than les experienced users.  

 Of all the categories, the level of satisfaction is the most consistent between the surveys and 
most homogenous within and among the different subject groups.  

 While there are differences between the subject groups, the differences in the 2 surveys as 
well as the small sample size and the impact of the order makes drawing any other conclusions 
impossible.   

From this data we can see that while the answers vary greatly from person to person, the link between 
these answers and previous experience in Rhino and Grasshopper is far from clear and looking at 
the survey data grouped by the various other software as can be seen in the appendix (20-27) reveals 
a link in no other software or category such as BIM or modelling either. The most definitive impact 
on the answers is in fact the order in which the subjects did this implementation as can be seen in 
Section 5.2 and Appendix 28-1.  

Furthermore, given that independently of these variations from subject to subject they all appeared 
similarly satisfied with their ability to achieve their desired outcome (particularly as stated at the 
end of the experiment), this lends further credence to the hypothesis that in practice the context of 
interaction and a user’s previous experience with it have no or a limited impact on their ability to 
effectively use a computational design logic, especially given the relatively poor implementation in 
this case comparatively to the other 2 and the problems that arose from it as explained in section 
5.1.1. 

Figure 5.5-5 : Hybrid survey data by average Rhino-GH level 
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Number of iterations 

From the detailed study of the number of iterations in the Hybrid context, based on subjects’ average 
proficiency in both Rhino and Grasshopper (Figure 5.5-6), the following observations can be made:  

 More experienced subjects spent less time interacting in this context compared to less 
experienced subjects.  

 More experienced subjects also interacted with the design logic at a lower average rate, 
although this rate of interaction occasionally spiked and matched or even surpassed that of 
lower-level subject groups. This indicates that in this implementation, the rate of interaction 
was not constant across the duration of the interaction in the context.  

 The highest spikes in the number of iterations across the parameters can be seen in the 
parameters used to explore variations of the established conditions and the average numbers 
were substantially higher in the Novice subject group compared to the higher-level subject 
groups.  

Observing the study of the number of iterations in this context based on proficiency levels in the 
different software (Appendix 20 to Appendix 27) reveals that Rhino and Grasshopper were indeed the 
software where the biggest differences could be seen between subject groups of different software 
proficiency levels, but also that differences could be seen based on subjects BIM proficiency (Appendix 
26-2), but with opposite trends as those seen here.   

 

 

 

 

  

Figure 5.5-6 : Detailed study of the number of iterations in the Hybrid context, by average Rhino and Grasshopper level 
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Number of modification phases 

The detailed study of the number of modification phases in the Hybrid context, by average Rhino and 
Grasshopper proficiency, (Figure 5.5-7) reveals no observations different than those already discussed 
in the previous section. Observing the evolution of the rate over time shows just how variable the 
behavior of interaction from subject to subject was in this implementation.  

Comparing to the different analysis based on proficiency level in the other software, we can again see 
that Rhino and Grasshopper are indeed the software in which a subjects proficiency level impacts their 
interaction in this context of implementation the most, and that although BIM proficiency also seems 
to be correlated based on the harvested data, its impact has the opposite effect, with more 
experienced users changing between parameters at a higher rate.  

  

Figure 5.5-7 : Detailed study of the number of modification phases in the Hybrid context, by average Rhino and Grasshopper level 
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Number of unique values 

Looking at the detailed study of the number of unique values in the Hybrid context, by average Rhino 
and Grasshopper level, (Figure 5.5-8) the same observations can be made, albeit to a lesser extent. 
This can be explained by the fact that as we can see by observing the evolution of the rate over time, 
after a certain amount of time for each façade, the rate at which users explore new unique values 
decreases as the converge on their final solution which is usually composed of previously explored 
values for the different parameters. As such longer periods of time spent on the interaction do not 
have as great an impact on the various significant values we can observe in the dashboard.  

 

 

  

Figure 5.5-8 : Detailed study of the number of unique values in the Hybrid context, by average Rhino and Grasshopper level 
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5.5.3. Rhino 
As in the previous 2 sections, we will investigate if subjects more experienced in Rhino truly benefitted 
from that experience when it came to interacting with a computational design logic within its context.  

Survey data 

Studying the survey data for the interactions done in Rhino, with subjects grouped by Rhino level, 
(Figure 5.5-9) we can see that while there are certainly large differences between the answers given 
by different subjects, grouping the subjects by their experience in Rhino reveals no clear trend. This 
might be partly explained by the impact the order in which the subjects interacted with this 
implementation had on their appreciation of it, as discussed in section 5.3 and can be seen in Appendix 
37-1.  

Comparing this observation to the survey data grouped by proficiency levels in the other software, we 
can see that it is when grouping the subjects by average proficiency in “classic” modeling software 
(Appendix 36-1) that the greatest link can be found between their answers and their stated proficiency 
level, with a positive correlation across all the categories (especially for Ease of Use) although the 
differences are minimal so this could very well be attributed to the order in which the subjects did the 
interaction or other factors altogether, given the small sample size.  

 

 

  

Figure 5.5-9 : Rhino survey data by Rhino level 
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Number of iterations 

From the detailed study of the number of iterations in Rhino, grouping subjects by their stated 
proficiency in Rhino, (Figure 5.5-10), we can see that:  

 For a similar amount of time spent on the interaction, more experienced subjects interacted 
with the logic at a lower average rate.  

 More experienced subjects also interacted with the different parameters more evenly, 
although this observation is highly influenced by outliers in the lower-level subject groups and 
may be a product of the small sample size. 

 Across all subject groups, the rate of interaction of interaction gradually increased and 
peaked towards the end of use.  

From this study based on our harvested data, we can conclude that while experience in Rhino did 
impact the behavior of interaction, it was not in a way that was detrimental to less experienced 
subjects. Furthermore, the differences between subject groups seem to be mainly attributed to the 
higher use in less experienced subject groups of parameters that generated variations of solutions 
based on the established conditions, and this higher use was concentrated towards the end of the use 
of the logic for a given design problem.  

We can then affirm that by looking at this study variable and our harvested data, lack of familiarity 
with this interaction context is not an obstacle to the effective use of computational design logic. 

Figure 5.5-10 : Detailed study of the number of iterations in Rhino, by Rhino level 
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Modification Phases 

The detailed study of the number of modification phases in Rhino, based on Rhino level, (Figure 5.5-11) 
reveals much of the same observations as in the study of the number of iterations done previously, 
albeit with less pronounced differences between subject groups, especially when it comes to how 
evenly the subjects switched between all the different parameters.  

From this study variable and our harvested data, we find no indication that lack of experience in this 
context is an obstacle to the use of computational design logic within it.  

 

  

Figure 5.5-11 : Detailed study of the number of modification phases in Rhino, by Rhino level 
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Unique values 

The detailed study of the number of unique values in Rhino, by Rhino level (Figure 5.5-12) reveals only 
a slight tendency that the more experienced users have of exploring unique values across the 
parameters more evenly. We can also see differences between subject groups in how the rate evolves 
during the exercise, although these differences are not echoed in the average values of the rates.  

Figure 5.5-12 : Detailed study of the number of unique values in Rhino, by Rhino level 
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6. Results and discussions 
By looking at the different results across the several ways the data was analyzed, even given our 
limited sample size and other factors prohibiting us from making definitive conclusions, we can at least 
state the following:  

1. Across the test subjects and independently from the order in which they interacted with the 
different implementations, it seems that one’s familiarity with a given context of interaction 
mattered less than one’s previous experience with computational design logic, as could 
notably be observed in the users who only had experience with Rhino.  

2. While previous familiarity with a context of implementation or computational design tended 
to lead to quicker initial interaction with the logic, over the course of the experiment the 
differences between different skill or familiarity levels became less and less pronounced 
with there often being no discernible difference that could be attributed to that factor 
towards the end of the interaction.  

3. Independently of skill level, familiarity or order of interaction, the interactions in 
Grasshopper where consistently rated higher and saw higher values across the three study 
variables. This shows the impact that the user interface can have, although it should be noted 
that while a given user interface may lead to higher interaction rates in the discovery phase 
of a computational design logic and may help users to better understand it, this same user 
interface may not be ideal when it comes to actual production use of the same logic, as 
expressed by several of the test subjects. A longer experiment with a clear given objective on 
which to use a computational design logic would explore that hypothesis. 

4. The difference in behavior between a subject’s first and second interaction varied 
significantly, with subjects spending on average twice the amount of time on the first 
interaction where the discovered the computational design logic. While varying the order in 
which the subjects did the interactions mitigates this issue, by not disregarding this data or 
performing another type of analysis, this further corrupts any conclusions we could hope to 
make, in addition to the issues due to the small sample size.  
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7. Conclusion 
The aim of this study was to investigate and attempt to measure the impact that the familiarity with 
a context of interaction had on a subject’s use of a computational design logic.  

The experiment and consequent analysis focused on the way subjects interacted with the exposed 
parameters of the design logic, by harvesting a detailed log of the interactions, and then comparing 
the interactions by grouping users by software proficiency level or order of interaction.  

The proposed study metrics based on the raw data were the number of iterations, the number of 
modification phases and number of unique values across the duration of the interactions. These 
metrics were proposed and devised by me, and while they did reveal differences between the subject 
groups and contexts of interaction, they were quite corelated with one another on average and 
revealed only slight nuances that given the small sample size cannot be considered significant.  

An improvement could be made by conducting either longer experiments, or by substantially 
increasing the sample size and subject pool, ideally both, with the advantage that the tools created 
for this study were made with this in mind, so this could be done with little additional effort apart 
from conducting the experiments.  

Another improvement could be made by also categorizing the parameters, for instance by grouping 
them between boundary conditions, global parameters and variation drivers which would allow a 
better interpretation of the differences between the implementations and the different results (i.e. 
are the higher number of iterations in grasshopper due to an increase in all these categories compared 
the other implementations or did the subjects simply generate a higher number of variations by 
playing with the sliders).  

While this subject merits further research, the amount of effort necessary to conduct the amount and 
kind of experiments that this work attempted falls far beyond the scope of this work, which only aimed 
to test experiment protocols, especially concerning the data harvesting, cleaning, engineering and 
visualization tools that where created to conduct the analysis. 
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9. Appendix 
Appendix 1 : Average by AutoCAD  

Appendix 1-1 : Average survey data by AutoCAD 

Appendix 1-2 : Average iterations by AutoCAD level 

Appendix 1-3 : Average modification phases by AutoCAD level  

Appendix 1-4 : Average Unique values by AutoCAD level 
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Appendix 2 : Average by SketchUp  

Appendix 2-1 : Average survey results by SketchUp 

Appendix 2-2 : Iterations by SketchUp level 

Appendix 2-3 : Modification phases by SketchUp level 

Appendix 2-4 : Unique values by SketchUp level 
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Appendix 3 : Average by Rhino 

Appendix 3-1 : Survey data by Rhino level 

Appendix 3-2 : Iterations by Rhino level 

Appendix 3-3 : Modification phases by Rhino level 

Appendix 3-4 : Unique values by Rhino level 
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Appendix 4 : Average by Grasshopper 

Appendix 4-1 : Average survey data by Grasshopper level 

Appendix 4-2 : Iterations by Grasshopper level  

Appendix 4-3 : Modification phases by Grasshopper level 

Appendix 4-4 : Unique values by Grasshopper level 
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Appendix 5 : Average by Archicad 

Appendix 5-1 : Average survey data by Archicad level 

Appendix 5-2 : Iterations by Archicad level 

Appendix 5-3 : Modification phases by Archicad level 
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Appendix 6 : Average by Revit 

Appendix 6-1 : Survey data by Revit level 

Appendix 6-2 : Iterations by Revit level 

Appendix 6-3 : Modification phases by Revit level 

Appendix 6-4 : Unique values by Revit level 
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Appendix 7 : Average by BIM 

Appendix 7-1 : Survey data by BIM level 

Appendix 7-2 : Iterations by BIM level 
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Appendix 8 : Average by Modeling 

Appendix 8-1 : Survey data by Modeling level 

Appendix 8-2 : Iterations by Modeling level 

Appendix 8-3 : Modification phases by Modeling level 

Appendix 8-4 : Unique values by Modeling level 
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Appendix 9 : Average by Order 

Appendix 9-1 : Survey results by order 

Appendix 9-2 : Global Iterations by order 

Appendix 9-3 : Modification phases by order 

Appendix 9-4 : Unique values by order 
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Appendix 10 : Average by Context 

Appendix 10-1 : Survey results by context 

Appendix 10-2 : Iterations by context 

Appendix 10-3 : Modification phases by context 

Appendix 10-4 : Unique values by context 
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Appendix 11 : Grasshopper by AutoCAD 

Appendix 11-1 : Grasshopper survey results by AutoCAD level 

Appendix 11-2 : Grasshopper-Iterations by AutoCAD level 

Appendix 11-3 : Grasshopper-Modification phases by AutoCAD level 

Appendix 11-4 : Grasshopper-Unique values by AutoCAD level 
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Appendix 12 : Grasshopper by SketchUp 

Appendix 12-1 : Grasshopper survey results by SketchUp level 

Appendix 12-2 : Grasshopper-Iterations by SketchUp level 

Appendix 12-3 : Grasshopper-Modification phases by SketchUp level 

Appendix 12-4 : Grasshopper-Unique values by SketchUp 
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Appendix 13 : Grasshopper by Rhino 

Appendix 13-1 : Grasshopper survey results by Rhino level 

Appendix 13-2 : Grasshopper-Iterations by Rhino level 

Appendix 13-3 : Grasshopper-Modification phases by Rhino level 

Appendix 13-4 : Grasshopper-Unique values by Rhino level 
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Appendix 14 : Grasshopper by Grasshopper 

Appendix 14-1 : Grasshopper survey by Grasshopper level 

Appendix 14-2 : Grasshopper-Iterations by Grasshopper level 

Appendix 14-3 : Grasshopper-Modification phases by Grasshopper level 

Appendix 14-4 : Grasshopper-Unique values by Grasshopper level 
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Appendix 15 : Grasshopper by Archicad 

Appendix 15-1 : Grasshopper survey data by Archicad level 

Appendix 15-2 : Grasshopper-Iterations by Archicad level  

Appendix 15-3 : Grasshopper-Modification phases by Archicad level 
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Appendix 16 : Grasshopper by Revit 

Appendix 16-1 : Grasshopper survey data by Revit level 

Appendix 16-2 : Grasshopper-Iterations by Revit level 

Appendix 16-3 : Grasshopper-Modification phases by Revit level 

Appendix 16-4 : Grasshopper-Unique values by Revit level 
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Appendix 17 : Grasshopper by BIM 

Appendix 17-1 : Grasshopper survey data by BIM level 

Appendix 17-2 : Grasshopper-Iterations by BIM level 

Appendix 17-3 : Grasshopper-Modification phases by BIM level 

Appendix 17-4 : Grasshopper-Unique values by BIM level 
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Appendix 18 : Grasshopper by Modeling 

Appendix 18-1 : Grasshopper survey data by Modeling level 

Appendix 18-2 : Grasshopper-Iterations by Modeling level 

Appendix 18-3 : Grasshopper-Modification phases by Modeling level 

Appendix 18-4 : Grasshopper-Unique values by Modeling level 
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Appendix 19 : Grasshopper by Order 

Appendix 19-1 : Grasshopper survey data by order 

Appendix 19-2 : Grasshopper-Iterations by order 

Appendix 19-3 : Grasshopper-Modification phases by order 

Appendix 19-4 : Grasshopper-Unique values by order 
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Appendix 20 : Hybrid by AutoCAD  

Appendix 20-1 : Hybrid survey data by AutoCAD level 

Appendix 20-2 : Hybrid-Iterations by AutoCAD level 

Appendix 20-3 : Hybrid-Modification phases by AutoCAD level 

Appendix 20-4 : Hybrid-Unique values by AutoCAD level 
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Appendix 21 : Hybrid by SketchUp  

Appendix 21-1 : Hybrid survey data based on SketchUp level 

Appendix 21-2 : Hybrid-Iterations by SketchUp level 

Appendix 21-3 : Hybrid-Modification phases by SketchUp level 

Appendix 21-4 : Hybrid-Unique values by SketchUp level 
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Appendix 22 : Hybrid by Rhino 

Appendix 22-1 : Hybrid survey data by Rhino level 

Appendix 22-2 : Hybrid-Iterations by Rhino level 

Appendix 22-3 : Hybrid-Modification phases by Rhino level 

Appendix 22-4 : Hybrid-Unique values by Rhino level 
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Appendix 23 : Hybrid by Grasshopper 

Appendix 23-1 : Hybrid survey data by Grasshopper level 

Appendix 23-2 : Hybrid-Iterations by Grasshopper level 

Appendix 23-3 : Hybrid-Modification phases by Grasshopper level 

Appendix 23-4 : Hybrid-Unique values by Grasshopper level 
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Appendix 24 : Hybrid by Archicad 

Appendix 24-1 : Hybrid survey data by Archicad level 

Appendix 24-2 : Hybrid-Iterations by Archicad level 

Appendix 24-3 : Hybrid-Modification phases by Archicad level 

Appendix 24-4 : Hybrid-Unique values by Archicad level 
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