
https://lib.uliege.be https://matheo.uliege.be

Travail de fin d'études / Projet de fin d'études : Impact of context familiarity on

computational design logic appropriation

Auteur : Garnavault, Xavier

Promoteur(s) : 451; Leclercq, Pierre

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil architecte, à finalité spécialisée en ingénierie architecturale et urbaine

Année académique : 2021-2022

URI/URL : http://hdl.handle.net/2268.2/16273

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège
Faculty of Applied Sciences

—

Impact of Context Familiarity on
Computational Design Logic

Appropriation

 Master’s thesis in order to a master’s degree in
Architectural Civil Engineering, by

Xavier GARNAVAULT

Supervisors: Prof. Aurélie DE BOISSIEU

 Prof. Pierre LECLERCQ

Jury: Mohamed-Anis GALLAS

Xaviera CALIXTE

Academic year 2021-2022

Page 1 of 108

Table of Contents
List of figures ... 5

1. Introduction .. 7

2. Computational design in AEC .. 8

2.1. Historical context of computation in AEC ... 8

2.2. Defining Computational design... 9

2.2.1. Parametric design ... 9

2.2.2. Generative design ... 9

2.2.3. Algorithmic design .. 10

2.3. CD toolsets .. 11

2.3.1. Grasshopper .. 11

2.3.2. Dynamo ... 11

2.3.3. Community solutions .. 12

2.4. Main problems and challenges ... 13

2.5. Current Development direction .. 14

2.5.1. Computational design platforms .. 14

2.5.2. Interoperability and open source ... 16

2.6. Culture shift... 17

3. Research Question .. 18

4. Research Methodology ... 19

4.1. Design logic implementations ... 19

4.1.1. Origin ... 20

4.1.2. Algorithm overview ... 21

4.1.3. Implementations ... 22

4.2. User selection.. 25

4.3. Experiment Protocol ... 25

4.3.1. Experiment environment variables ... 25

4.3.2. Subject Characterization ... 26

4.3.3. Tool interactions ... 27

4.3.4. Subject feedback ... 27

4.3.5. Protocol validation .. 27

4.4. Data harvesting ... 28

4.5. Data Cleaning .. 29

4.5.1. Survey data cleaning ... 29

4.5.2. Tool interactions data cleaning ... 30

4.6. Data Engineering ... 30

Page 2 of 108

4.6.1. Iterations data engineering ... 32

4.6.2. Modification phases .. 33

4.6.3. Unique values .. 34

4.7. Data visualization .. 35

4.7.1. feedback .. 36

4.7.2. global_analysis .. 37

5. Data analysis ... 40

5.1. Harvested data .. 41

5.1.1. Successful experimentations and collected data points ... 41

5.1.2. Characterization of the population ... 41

5.2. Differences between different Contexts of interaction .. 42

5.2.1. Survey .. 42

5.2.2. Number of iterations ... 43

5.2.3. Number of modification phases.. 43

5.2.4. Unique Values ... 44

5.2.5. Summary ... 44

5.3. Order of interaction impacted behavior ... 45

5.3.1. Survey .. 45

5.3.2. Number of iterations ... 46

5.3.3. Number of Modification Phases ... 46

5.3.4. Number of unique values .. 47

5.3.5. Summary ... 47

5.4. Previous software experience impacted the interaction.. 48

5.4.1. AutoCAD .. 48

5.4.2. SketchUp ... 49

5.4.3. Rhino ... 50

5.4.4. Grasshopper .. 51

5.4.5. Archicad .. 52

5.4.6. Revit .. 53

5.4.7. BIM .. 54

5.4.8. Modeling ... 55

5.5. Context familiarity impacted behavior ... 56

5.5.1. Grasshopper .. 56

5.5.2. Hybrid .. 60

5.5.3. Rhino ... 64

6. Results and discussions ... 68

Page 3 of 108

7. Conclusion ... 69

8. References .. 70

9. Appendix ... 72

Appendix 1 : Average by AutoCAD .. 72

Appendix 2 : Average by SketchUp .. 73

Appendix 3 : Average by Rhino .. 74

Appendix 4 : Average by Grasshopper ... 75

Appendix 5 : Average by Archicad.. 76

Appendix 6 : Average by Revit ... 77

Appendix 7 : Average by BIM ... 78

Appendix 8 : Average by Modeling .. 79

Appendix 9 : Average by Order .. 80

Appendix 10 : Average by Context ... 81

Appendix 11 : Grasshopper by AutoCAD ... 82

Appendix 12 : Grasshopper by SketchUp ... 83

Appendix 13 : Grasshopper by Rhino ... 84

Appendix 14 : Grasshopper by Grasshopper ... 85

Appendix 15 : Grasshopper by Archicad .. 86

Appendix 16 : Grasshopper by Revit .. 87

Appendix 17 : Grasshopper by BIM .. 88

Appendix 18 : Grasshopper by Modeling ... 89

Appendix 19 : Grasshopper by Order ... 90

Appendix 20 : Hybrid by AutoCAD .. 91

Appendix 21 : Hybrid by SketchUp .. 92

Appendix 22 : Hybrid by Rhino ... 93

Appendix 23 : Hybrid by Grasshopper ... 94

Appendix 24 : Hybrid by Archicad .. 95

Appendix 25 : Hybrid by Revit .. 96

Appendix 26 : Hybrid by BIM.. 97

Appendix 27 : Hybrid by Modeling ... 98

Appendix 28 : Hybrid by Order ... 99

Appendix 29 : Rhino by AutoCAD ... 100

Appendix 30 : Rhino by SketchUp ... 101

Appendix 31 : Rhino by Rhino .. 102

Appendix 32 : Rhino by Grasshopper ... 103

Appendix 33 : Rhino by Archicad ... 104

Page 4 of 108

Appendix 34 : Rhino by Revit ... 105

Appendix 35 : Rhino by BIM ... 106

Appendix 36 : Rhino by Modeling .. 107

Appendix 37 : Rhino by Order .. 108

Page 5 of 108

List of figures
Figure 2.1-1 : CAD to Computational Design. Source: (de Boissieu, Introduction to Computational
Design: Subsets, Challenges in Practice and Emerging Roles, 2022) .. 8
Figure 2.2-1 : Venn diagram of Parametric Design (PD), Generative Design (GD), and Algorithmic Design
(AD). (Caetano, Santos, & Leitão, 2020) ... 9
Figure 2.2-2 : Waterloo truss system parametric logic (credits: Shane Burger) 9
Figure 2.5-1 : Hypar UI example ... 14
Figure 2.5-2 : Testfit UI example ... 15
Figure 4.1-1 : Output example .. 20
Figure 4.1-2 : Step 1 .. 21
Figure 4.1-3 : Step 2 .. 21
Figure 4.1-4 : Step 3 .. 21
Figure 4.1-5 : Final result .. 21
Figure 4.1-6 : Grasshopper implementation view .. 22
Figure 4.1-7 : Hybrid implementation view .. 23
Figure 4.1-8 : Result preview .. 24
Figure 4.1-9 : Principal Menu .. 24
Figure 4.1-10 : Grid submenu ... 24
Figure 4.1-11 : Opening submenu ... 24
Figure 4.3-1 : Software proficiency survey ... 26
Figure 4.3-2 : Experiment sequence ... 27
Figure 4.4-1 : Data harvesting example .. 28
Figure 4.5-1 : Feedback DataFrame example (1st interaction survey) .. 30
Figure 4.6-1 : iterations_df example ... 32
Figure 4.6-2 : diff_df example ... 32
Figure 4.6-3 : imp_df example .. 32
Figure 4.6-4 : diff_df example ... 33
Figure 4.6-5 : diff_diff_df example ... 33
Figure 4.6-6 : phase_df example ... 33
Figure 4.6-7 : imp_df ... 34
Figure 4.6-8 : unique_df .. 34
Figure 4.6-9 : Main DataFrame example .. 34
Figure 4.7-1 : feedback graph example ... 36
Figure 4.7-2 : global_analysis(iterations_df, time_iterations_df, [‘Time’,’Rate’,’Total’,’CV’],
‘Iterations’, ‘Level’, None, ‘Grasshopper’, False) .. 37
Figure 4.7-3 : global_analysis(iterations_df, time_iterations_df, [‘Time’,’Rate’,’Total’,’CV’],
‘Iterations’, ‘Level’, None, ‘Grasshopper’, True) ... 38
Figure 4.7-4 : Example of significant value graphic analysis ... 38
Figure 4.7-5 : Rate evolution ... 39
Figure 4.7-6 : Parameter values .. 39
Figure 5.1-1 : Modeling proficiency distribution .. 41
Figure 5.1-2 : CD proficiency distribution ... 41
Figure 5.1-3 : BIM proficiency distribution ... 41
Figure 5.1-4 : Software proficiency chart .. 41
Figure 5.2-1 : Survey data by context of interaction .. 42
Figure 5.2-2 : Iterations by Context .. 43
Figure 5.2-3 : Modification phases by Context ... 43
Figure 5.2-4 : Unique values by Context ... 44
Figure 5.3-1: Survey data by Order ... 45
Figure 5.3-2 : Iterations by Order of interaction ... 46
Figure 5.3-3 : Modification phases by Order of interaction ... 46

Page 6 of 108

Figure 5.5-1: Grasshopper survey data by Grasshopper level .. 56
Figure 5.5-2 : Detailed study of the number of iterations in Grasshopper, by Grasshopper level 57
Figure 5.5-3 : Detailed study of the number of modification phases in Grasshopper, by Grasshopper
level ... 58
Figure 5.5-4 : Detailed study of the number of unique values in Grasshopper, by Grasshopper level 59
Figure 5.5-5 : Hybrid survey data by average Rhino-GH level .. 60
Figure 5.5-6 : Detailed study of the number of iterations in the Hybrid context, by average Rhino and
Grasshopper level ... 61
Figure 5.5-7 : Detailed study of the number of modification phases in the Hybrid context, by average
Rhino and Grasshopper level .. 62
Figure 5.5-8 : Detailed study of the number of unique values in the Hybrid context, by average Rhino
and Grasshopper level .. 63
Figure 5.5-9 : Rhino survey data by Rhino level .. 64
Figure 5.5-10 : Detailed study of the number of iterations in Rhino, by Rhino level 65
Figure 5.5-11 : Detailed study of the number of modification phases in Rhino, by Rhino level 66
Figure 5.5-12 : Detailed study of the number of unique values in Rhino, by Rhino level 67

Page 7 of 108

1. Introduction
I first discovered computational design in 2018, through an introductory course to 3d modeling which
contained a module on Parametric design in Rhino and Grasshopper. Though I did not realize and
appreciate it at the time (using only SketchUp for the rest of my project), I can now say without a
doubt that that introduction had a deeper impact on my life and my future than any other course
during my studies.

After that introductory course, I spent nearly a year without using grasshopper, until I purchased a 3d
printer with a clear vision for generating complex geometry to be printed. Through this exercise and
objective, I rediscovered grasshopper and realized how powerful a tool it could be. This naïve
exploration of grasshopper gave me the brash confidence to use it for the 4th year design studio
project, in which I developed a fully parametric model of the complex geometrical building my team
and I designed, which allowed us not only to control and generate this complex geometry but also
iterate designs faster than would have been possible in even simple buildings using classical tools. This
was my first practical experience of the new ways of working that computational design allowed and
served as a revelation: not only did I learn a great deal during the project, but I also discovered all that
was still left to learn.

Since then I have devoted myself to learning as much as possible, but all the while I could not help but
wonder why my classmates who had been exposed to the same introductory course as I had did not
also attempt to use and develop these tools and . Typical answers they gave were lack of time to learn
these tools or their preference for tools with which they were already familiar.

Later on, during my internship or working as a student in a small architectural practice, I realized how
inefficient standard workflows were, and the possibility for integrating even simple computational
design to automate or enrich workflows.

These experiences, along with my deep interest for computational design, are what drove me to
conduct this work on Computational design logic appropriation, by focusing on whether lack of
familiarity in a software environment is really an obstacle to using computational design within it.

 To conduct this work, we will first provide an overview of computational design within the AEC
industry in section 2 that will help the framing of the research question in section 3.

In section 4, we will present the research methodology that was developed to then proceed to the
data analysis in section 5.

Finally sections 6 and 7 will be reserved for the discussion of the results, a retrospective look on the
implemented methodology, avenues of further development of this research and a final summary that
will conclude this work.

Page 8 of 108

2. Computational design in AEC
In this section, we will first discuss the link between computation and the Architecture, Engineering,
and Construction(AEC) industry by retracing its origins and major advances that led to the emergence
of CAD, BIM, and Computational Design (CD) as we know them today (section 2.1). We will then
provide a more detailed description of CD and its various subsets (section 2.2), as well as the main
toolsets used today (section 2.3). We will then address the main problems and challenges that exist
within computational design, specifically when it comes to its widespread adoption (section 2.4), and
the current development trends in the field that seek to overcome these issues (section 2.5). In section
2.6, we will discuss the culture shift and emergence of new roles.

2.1. Historical context of computation in AEC
The use of computation in the field of architecture is by no means a new development, with early

experimentations dating back to the 1960s (Sutherland, Computational design thinking). Its more
widespread adoption began later, in the late 1980s, with CAD tools such as AutoCAD and Bentleys
MicroStation digitizing traditional manual workflows and enabling previously unattainable accuracy.
Further advancements brought 3d modeling (initially developed for other fields such as mechanical
and industrial engineering) as a resource and novel tool for design, such as in Frank Gehry’s
Guggenheim Bilbao. These tools enabled better documentation workflows, especially with the
emergence of Building Information Modelling (BIM) as we know it today in the late 1990s/ early 2000s
which offered the promise of better collaboration and integration of complex systems.

As advanced as these tools became, they still simply augmented and optimized traditional design
workflows. Furthermore, as can be seen by the relatively long transition period for the adoption of
these and newer Computer-Aided Design (CAD) tools by the AEC industry (Carpo, 2017), even to this
day (Stals, Elsen, & Jancart, Practical Trajectories of Parametric Tools in Small and Medium
Architectural Firms, 2017), compared to other fields such as mechanical engineering, the AEC industry
is far from leveraging all the power of modern computation.

This is where computational design comes in: where CAD automates, augments, and optimizes the
traditional manual design process, Computational Design (CD) is dependent on a new paradigm of
“computational thinking”. While there is no universally accepted definition of computational design
and the distinction between its subsets as well as with terms such as digital design is open to debate,
a common basis is that in this new way of thinking, rather than designing a specific outcome or
geometry, a logic or algorithm is constructed that allows the definition of rules or constraints that will
allow the generation and exploration of novel design solutions, leveraging the power of computation
(Carpo, 2017) (Menges & Ahlquist, 2011).

Given the current and future challenges that face the industry and society (climate change, energy
crisis, …), computational design is an obvious tool for reaching these objectives (Dautremont, Jancart,
Dagnelie, & Stals, 2019): especially when taking into account the responsibility that actors of the AEC
industry have to act on these (Ribeirinho, et al., 2020),. While BIM which aims to solve some of the
problems faced by the industry is gradually being adopted (Charef, Emmitt, Alaka, & Fouchal, 2019),
it can be restrictive in its current form (Aish & Bredella, 2017). Faced with the much more limited
adoption of CD in practice (Stals, Elsen, & Jancart, 2017), the solution may be for BIM and CD to
converge and become more linked (de Boissieu, 2021).

Figure 2.1-1 : CAD to Computational Design. Source: (de Boissieu, Introduction to Computational
Design: Subsets, Challenges in Practice and Emerging Roles, 2022)

Page 9 of 108

2.2. Defining Computational design
As previously mentioned, while there is no
definitive definition for Computational Design,
we can distinguish three subsets: parametric,
generative, and algorithmic design (Caetano,
Santos, & Leitão, 2020). In the following
sections, we will present an overview of these
subsets, their main characteristics, as well as
provide an example for each subset. The link and
overlap of these subsets are represented in
Figure 2.2-1.

2.2.1. Parametric design
The first subset is parametric design. Parametric design is composed of a system of clear inputs on
which rules and constraints are applied to transform these inputs into the desired outputs. One
specificity of parametric design is that this link is unidirectional: this, along with the more obvious
relationship between input and output is the reason parametric design is more easily apprehended by
beginners, particularly through the use of visual programming toolsets, as will be further explained in
section 2.3. In parametric design, the designer can explore the design not only by operating on the
parameters (inputs) but also by modifying the rules applied to them.

One example of the use of parametric design in
AEC is Grimshaw’s Waterloo train station. This
project, designed in 1993, was constrained by a
difficult site. A parametric design was
implemented to describe the variable span of
roof trusses in which the structural logic is
consistent. This structural logic is composed in
two parts: a constant arc section and a variable
arc section which adapts to the constraints of
the site (Figure 2.2-2)1.

2.2.2. Generative design
A distinctive characteristic of generative design is its use of algorithms that are able to generate
complex solutions from simple inputs (Van der Zee & De Vries, 2008). These algorithms function in
such a way that the outputs are not predictable from the inputs, but rather satisfy certain criterion to
form a solution-space. For this reason, generative design is often used to find “optimal” solutions for
complex problems with undefined boundary conditions. Some common algorithms used for this are
evolutionary algorithms, L-systems, cellular automata, or swarm systems.

This type of design is notably used to solve problems such automatic layout of units or furniture in
web-based platforms that offer this as a service, as will be seen in section 2.5.1.

1 Image source: http://shaneburger.com/2011/08/designing-design/waterloo-geometrydiagram-cropped/

Figure 2.2-1 : Venn diagram of Parametric Design (PD), Generative
Design (GD), and Algorithmic Design (AD). (Caetano, Santos, & Leitão,

2020)

Figure 2.2-2 : Waterloo truss system parametric logic (credits: Shane
Burger)

Page 10 of 108

2.2.3. Algorithmic design
Algorithmic design is defined more loosely and can sometimes overlap with parametric or generative
design. It is more dependent on computational thinking and a direct traceability can be found between
the generated results and the inputs. The main difference between algorithmic design and parametric
design is that where in parametric design there is a direct link between input and output, it is acyclical
by nature whereas in AD a logic can be applied continuously until a certain condition is met.
Additionally, in AD the actions performed for each step can adapt to the inputs and make use of
conditional logic; thus, while the result can always be traced back to the input and is consistent, it
cannot always be easily predicted. Some examples of the use of algorithmic design are the Morpheus
hotel by Zaha Hadid architects or projects in which form-finding plays a key role, such as in the
Musmeci bridge.

Page 11 of 108

2.3. CD toolsets
While the use of CD can find its origins in classical text-based programming which is still in use and
indispensable in order to develop and apply more complex algorithms, this requires a skillset not
typically found within the AEC industry. Because of that, the history of the use of computational design
in AEC is intrinsically linked to the development of Visual programming, which is the most common
way in which it is used and developed today.

Visual programming is a method of defining computational logic visually by connecting blocks of
preestablished logic or parameters to one another, following a continuous flow of logic that is
inherently acyclical, making it particularly adapted to the creation of parametric design which is its
main use case. In the following sections we will focus first on the tools that implemented this paradigm
and allowed the wider use of computational design, followed by how these tools were then extended
to address some of their limitations or extend their functionality.

2.3.1. Grasshopper
Grasshopper was developed by David Rutten in 2007, then called “Explicit History”, as a complement
to the existing history tool included in Rhino 4.0. Where the existing history tool kept track of the
different steps taken by the user while modeling and the relation between different geometries, this
new tool allowed the user to precisely define the different steps in logic leading to the desired
outcome geometry. While this presents similarities with the existing Generative Components tool
developed by Bentley, its implementation under the form of visual programming made it much more
accessible to those without prior programming experience. One can simply connect and combine
different blocks of operational logic to create the desired outcome. Although it was first released in
2007, the first stable release arrived in 2013, and has been included in Rhino by default since version
6. On April 1st, 2022, an alpha release of GH2 was made available to testers of Rhino’s WIP build.

2.3.2. Dynamo
 Dynamo was first created by Ian Keough sometime before 20092, and open-sourced shortly
afterwards. It enables users to interact with Revit’s API without explicit scripting to manipulate BIM
objects and systems in Revit. Although it was created with the explicit aim to be used with Revit, in
theory it could be used with another framework.

2 https://dynamobim.org/qa-about-dynamo/

Page 12 of 108

2.3.3. Community solutions
While tools such as grasshopper are already very capable “out of the box”, part of what allowed these
tools (specifically grasshopper) to become so used and appreciated are the thriving communities
around them, and the individuals who not only created solutions in the form of plugins to overcome
some of grasshopper’s limitations and/or extend its capabilities, but also made these tools freely
available to all.

HumanUI
HumanUi3 is a plugin that was developed by Andrew Heumann in 2015 (and open-sourced in 2016) to
overcome a specific problem: Grasshopper’s intimidating UI for people unfamiliar with it. He states
having been frustrated while working at NBBJ that while he developed scripts for others, for every
change needed he had to be solicitated or “babysit” a user. This plugin allows a designer to create a
custom UI so that other users can interact with the underlying script without having to stay in
grasshopper’s (or even Rhino’s) interface or design environment. One can create completely custom
dashboards with friendly interfaces and with only the chosen parameters and outputs.

Kangaroo
Kangaroo is a live physics engine for grasshopper first developed by Daniel Piker in 2010 with this
intention: “The intention is that the various types of form-finding and feedback this allows could inform
and enable some new ways of designing structures.”4

A version 2 of kangaroo was released in 2015 and is included by default in grasshopper since Rhino 6.

Ladybug Tools
Ladybug tools is a set of tools aimed at environmental design. It was first developed starting in 2012
with the ladybug plugin by Mostapha Sadeghipour Roudsari, who states: “I couldn’t stand the
repetitive, simplified and disconnected workflows that I had to use on a daily basis as well as the overall
lack of knowledge about environmental building design. I wanted educate more people about the
principles of environmental building design and that happened to be through Ladybug!”5

Ladybug as a plugin was first released in 2013, in the form of components for weather data
visualization as well as solar radiation and sunlight analysis.

This initial plugin was followed by HoneyBee, which was released in 2014 with the aim to provide a
connection between grasshopper and several validated daylighting and energy simulation engines.

Development continued and in 2016, Ladybug and Honeybee were rewritten in order to be used cross
platform across Grasshopper and Dynamo.

In 2017, computational fluid design (CFD) was made available through the release of dragonfly which
is based on OpenFOAM6.

3 https://github.com/andrewheumann/humanui
4 https://www.grasshopper3d.com/profiles/blogs/project-kangaroo-live-3d
5 https://www.ladybug.tools/about.html
6 https://www.openfoam.com/

Page 13 of 108

2.4. Main problems and challenges
As we have already stated in the previous section, the early adoption of computational design in
architecture was limited by the necessary computer science knowledge required to implement it. Even
with the development and inclusion of tailored programming languages such as AutoLISP7 within CAD
software environments, the use of computational design within architecture was extremely limited
before the early to mid-2000s when visual programming tools appeared.

Although the arrival of these tools enabled easier access to computational design, usually specifically
parametric design, this also came with its challenges. Where other “traditional” CAD tools and
workflows were analogous to well established manual versions, parametric modelling necessitates
another approach that designers were less familiar with. In order to construct a parametric model,
one has to first determine which parameters are needed and how to link them together. This requires
significant “Front Loading”, as described by Davis (2013). In his thesis, Daniel Davis states: “This
upfront planning can be challenging, particularly in a process as notoriously hard to anticipate as the
design process.”

Another challenge discussed by Davis is that in addition to having to figure out how a parametric
model works upfront and what is needed to create it, in order to be able to use it effectively, a designer
has to try to anticipate how it will be used and construct a flexible model. He summarizes it as such:
“(…), the skill of anticipating flexibility is getting the balance right between too much and too little
flexibility.” Indeed, if every step of the logic is made accessible for modification, the number of
parameters a designer has to interact with becomes such that all the advantages of parametric
modelling are lost compared to classic modelling. He also describes other challenges8,9,10 that he
identifies as obstacles to the more widespread adoption and effective use of parametric design in
architecture.

These challenges are also reported by other people, and served as the impetus for the creation of
tools or plugins that aimed to solve these issues (such as HumanUI presented in section 0) and are
part of the driving force for the current direction of development in this field as we will see in section
2.5.

Aside from the tool-based challenges, the novel approach that the use of these tools and development
of custom CD logic necessitates, also called Computational Thinking (Menges & Ahlquist, 2011), is not
part of the traditional architectural culture. This has led to evolutions in education and the emergence
of new roles, as will be explained in section 2.6.

Finally, as identified by Stals (Stals, Elsen, & Jancart, Practical Trajectories of Parametric Tools in Small
and Medium Architectural Firms, 2017), ignorance of the subject as well as perceived difficulty prevent
many smaller and medium architectural practices from even attempting to integrate these practices
in their work. This is particularly problematic, as practices at this scale have the most impact on the
built environment and as such will have a significant role to play in addressing the challenges that face
the industry. Furthermore, the scale and type of projects that these practices are traditionally
responsible for, the “fat middle” (Davis, CAD’s Boring Future and Why it’s Exciting, 2021), will
inevitably see the widespread use of computation, if not by architects, then by others (section 2.5.1).

7 AutoLISP is an integrated programming language for interacting with AutoCAD, first appearing in 1986.
8 Cases where the original logic can no longer be adapted or breaks
9 Unexpected, unwanted, and unseen changes due to the variation of a parameter
10 Obstacles designers of parametric models have when it comes to the reuse and sharing of their created models

Page 14 of 108

2.5. Current Development direction
In reaction to the problems stated in section 2.4, and in addition to the natural typical development
of all software environments, two development trends are of particular interest, even more so as they
are not spearheaded by the traditional giants of the architectural software industry, in part due to the
criticism these giants have faced in recent years (Davis, Architects versus Autodesk, 2020). These
trends are:

 the development of web-based platforms (section 2.5.1Error! Reference source not found..)
 the focus on interoperability and open-source development (section 2.5.2)

2.5.1. Computational design platforms
The past few years have seen the development of several cloud-based platforms that aim to enable
the use of computational design by non-specialists. Of these platforms, we will discuss two that are
already in advanced stages of development and indicative of the two directions that can be seen in
such platforms.

The first platform, Hypar11, is centered around the easy reuse of logic (computational or otherwise)
facilitate the generation of building designs, rather than automate “drawing walls”, and not “start
every building project from a blank page” 12. In this platform, users interact through a user-friendly UI
(Figure 2.5-1) to combine pre-existing logic blocks from a library, with the option for specialists to
create and integrate their own logic blocks (by easily porting existing logic developed in other
environments such as Grasshopper, Dynamo or Excel to name a few) that they can then also make
freely13 available to all, keep private or share with selected individuals. Once the desired combination
of functions is constructed, users can easily explore different solutions, make changes, and share the
logic through a simple URL for collaborators or even clients to interact with.

11 https://hypar.io/
12 https://hypar.io/about/story
13 There are potential plans for a Marketplace in which designers could sell or licence the use of their functions,
but this is not yet the case.

Figure 2.5-1 : Hypar UI example

Page 15 of 108

The second platform, Testfit14, aims to provide a service in the form of CD tools tailored for the study
of feasibility of real estate developments. It uses complex generative design algorithms and the power
of cloud computing to allow real estate developers, general contractors and architects to quickly
generate massing, define unit types and automate their layout while data such interior area, building
efficiency, unit cost, and others are generated to help inform design (Figure 2.5-2). This data and
geometry can then be exported in various formats for the project to be further developed elsewhere.

14 https://testfit.io/

Figure 2.5-2 : Testfit UI example

Page 16 of 108

2.5.2. Interoperability and open source
The issue of interoperability between software (especially software from differing software providers)
has long been a limiting factor for developing more complex workflows and collaboration. Finally, in
this age of data, the subject of data propriety (Davis, 2020) (Fok & Picon, 2016) and data archival is
ever more present.

Rather than continue in this direction, there seems to be a trend of developments that address these
issues, notably through the use of open-source licensing and development.

One such example is the development of Speckle, an open-sourced cloud-based platform first
developed by Dimitrie Stefanescu in 2015, with the explicit aim of addressing and handling
interoperability between software silos, real time collaboration, data management, versioning and
automation.15

Another example of opensource making its way into architecture and computational design is
Blender16. Blender is a free open source 3d creation suite. While it is not currently widely used by the
AEC industry, the release17 of the geometry nodes feature which brought18 visual programming
(making it a viable option for computational design), and the development of projects such as
BlenderBIM19 and Topologic20 indicate that this may change.

Other projects exist such as IfcOpenShell21 and ifc.js22 which aim to enable individuals to develop their
own platforms and tools.

15 https://speckle.systems/about/
16 https://www.blender.org/
17 As of Blender 2.92, released February 25, 2021
18 Although the Sverchock add-on already allowed a version of visual programming in Blender, the default
inclusion and integration of geometry nodes brought it to the masses.
19 https://blenderbim.org/
20 https://topologic.app/
21 http://www.ifcopenshell.org/
22 https://ifcjs.github.io/info/

Page 17 of 108

2.6. Culture shift
In this section, we will investigate the perception of Computational Design in AEC, and how that
perception is evolving through a culture shift and the emergence of new profiles and roles.

As we have already mentioned in previous sections, the adoption of computational design in AEC has
not been as widespread as could have been expected given the advantages it promises. As such,
several researchers have investigated this very topic. While some have identified elements such as the
paradigms of new ways of thinking (Carpo, 2017) (Menges & Ahlquist, 2011) (Oxman, 2017), or
challenges directly resulting from the tools used (Davis, 2013), one research angle that is of particular
interest and directly linked to the research question of this study is the interrogation of the perception
of computational design in “everyday” practitioners workings in small and medium sized architecture
practices, as done by Adeline Stals (Stals, 2019). During the course of their thesis, they conducted
interviews and surveys in which they notably asked architects about their knowledge of parametric
design, and what obstacles prevent them from using it. From the answers we can learn that while
many architects are unfamiliar with parametric design or have trouble defining it, the main obstacles
perceived are difficulties in learning and staying up to date.

While learning computational design goes beyond simply using a tool or software and entails
additional effort and a different approach (Peters & De Kestelier, 2013), it is also becoming more
widespread in education (Gallas, Jacquot, Jancart, & Delvaux, 2015) (Vrouwe, Dissaux, Jancart, & Stals,
2020) and as such every year the amount of architects with at least superficial knowledge of
computational design increases.

From this pool of people who are receptive to the added value that computational design can have,
there is an emergence of a new profile, that of the “super-user” (Deutsch, 2019). Characteristics of a
super-user include a combination of soft-skills, strong technical expertise, and the ability to provide
connections and provide structures that help those around them. In addition to using CD themselves,
super-users can be the catalyst for the use and adoption of computational design practices by those
around them (de Boissieu, 2020).

Page 18 of 108

3. Research Question
From the previous section addressing the history and current state of computational design in AEC, it
is clear that while the use of CD has been growing over the past few years, the industry as a whole is
still largely ignorant or indifferent to this concept, even as they face ever growing pressure and
challenges for which CD would be a precious resource...

At the same time, individuals and small initiatives are developing powerful tools and platforms that
may very well disrupt the industry, either by the automation or power they employ through generative
design and AI, or by adopting the practices of open-source software development and licensing that
change the way we work.

Furthermore, the emergence of new profiles, so called super-users, and the adoption of
Computational Design in education leading to a more informed and receptive culture, may finally
allow CD to permeate through the industry.

However, even with these tools, profiles, and young architects which are receptive, their will still
subsist a critical mass of current practitioners who are neither informed nor particularly receptive to
these new ways of doing things. But in the face of the challenges the industry faces and will continue
to face, it is unacceptable to simply wait for a natural turnover to provide this digital turn, even more
so due to the rate of development in computing.

We must then find ways of rendering Computational Design accessible to them. Even if they do not
create these design logics, non-specialist users can still benefit from them.

Given the common excuse of not knowing a certain program and the current trend for interoperability
and web-based platforms, this work will attempt to provide a basis for the evaluation of the impact
that familiarity with a given context of interaction has on a user’s ability to understand and use it; and
through the analysis of experiments, provide a set of initial results that may inform further research
on the subject.

Page 19 of 108

4. Research Methodology
To attempt to answer the research question, we will perform a quantitative analysis on the way a
subject interacts with an unfamiliar computational design logic in a context and compare this analysis
to the subject’s experience in that and other software contexts. In order to source the data for this
analysis, we will perform a study in the form of an experiment to provide a common computational
design logic to interact with as well as a common design scenario to use it on.

The chosen subject pool will be described in section 4.2, the experiment protocol will be presented in
section 4.3, the raw analysis data and the method for harvesting it is explained in section 4.4, the way
this data will be processed and explored for analysis in sections 4.5 and 4.7.

In the following section (4.1), we will present the design logic that serves as the base for the
experiments of this study, including its origin (section 0), a high-level overview of its inner workings
(section 0) and the 3 implementations developed from it (section Error! Reference source not found.).

4.1. Design logic implementations
To serve as a base logic to be manipulated for the study, it was chosen to reuse an existing design
situation as well as an existing script developed by me. My in-depth knowledge of the developed
design logic allowed the identification of the various issues and points of interest, while the
experimentation protocol allowed to anticipate possible biases. It provided a ready-made base script
that presented sufficient complexity at distinct levels (incorporating parametric, generative, and
algorithmic design). This enabled us to form conclusions from the study that could be extended
throughout the computational design landscape, which would not have been the case if the script had
been solely parametric or purely based on workflow automation.

Page 20 of 108

4.1.1. Origin
The script that served as a base for the study was initially developed by myself in the spring of 2020
for a design project course during my Erasmus exchange in Barcelona. This project took the form of
an assembly of prefabricated modular units, which led to the CD strategy to compose the façades for
each of the units.

In the spirit of the adaptability that was sought and provided by the structural system (a principal
timber framing system filled by secondary lightweight wood framed panels filled with insulating hemp
blocks), and rather than simply copy the façades or constrain them to alignments, I developed a
computational design to confer a unique identity to each unit while remaining in the confines of the
grid system.

The aim was to be able to tailor the positioning and size of every window and door of every unit based
on desired metrics, such as views, daylight, or solar gains, and considering the local context of each
unit. This positioning and sizing would fall within a grid linked with the structural framing and the size
of the smallest sized ceramic tiles which would then form the cladding. An example of a solution for
the project can be seen in Figure 4.1-1.

Figure 4.1-1 : Output example

Page 21 of 108

4.1.2. Algorithm overview
Given the repetitive nature of this modular and unit-based design, types are easily assigned to each
floor of each unit, and for each type established a series of constraints (such as average size and
variability) that would determine the scope of possibilities for generating the openings. The aim was
to then perform an analysis based on the desired design metrics for every possibility within this scope,
identify the best ones and allow the designer to choose between these with the knowledge as to their
performance, but this was not implemented and instead random variations within the scope were
generated and chosen.

The next step concerned the cladding of the facades. To achieve the
previously described desired result, an algorithmic logic was developed to
generate an efficient tiling with various sized tiles (based on multiples of
the unit tile). The algorithm functioned as follows:

1. Generate the grid of points based on the unit tile size (Figure
4.1-2)

2. Determine which points lie within the generated openings and
form a list of exclusion points (Figure 4.1-3)

3. Choose a random point:
o From this point form a rectangle of the current size in

point multiples (starting at a determined max size)
o Verify that no points within it are part of the exclusion

point list (Figure 4.1-4)
 If ok  go to step 4
 If not choose a new random point

 If Nth attempt, go down a rectangle size
4. Add the rectangle to the output rectangle list
5. Add the internal and perimeter points to the exclusion point list
6. Go back to step 3.

This is of course a simplification of the final logic but provides an accessible
and honest overview as to its functioning. Given the cyclical nature of this
algorithm, in comparison to the linear nature of parametric design and
visual programming, it was implemented using scripting, originally thanks
to the use of the python script component and the RhinoScript23
framework.

Further logic then followed which allowed the attribution of a random
color within a predefined palette to each tile, which could also be explored
by the designer.

23 https://developer.rhino3d.com/guides/rhinoscript/

Figure 4.1-2 : Step 1

Figure 4.1-4 : Step 3

Figure 4.1-3 : Step 2

Figure 4.1-5 : Final result

Page 22 of 108

4.1.3. Implementations
As the original script contained other aspects and had not been created with reuse in mind, the steps
for generating openings, generating the cladding, and exploring variations were extracted and
adapted in the following ways:

 Where the original script predetermined the number of openings, parameters to
choose the number of rows, number of columns, and number of doors in the
openings were implemented.

 Although it would have been possible to implement the analysis step, given the vague
design context and to keep script execution as quick and fluid as possible, the choice
was made to function through the exploration of random variations, but still within
a design scope that can be manipulated.

 The cladding algorithm was completely rewritten and re implemented. Originally
created in a python script component using RhinoScript, it was rewritten and
optimized (in part) in C# using RhinoCommon. This allowed easier manipulation of
the logic, as well as substantial performance benefits, going from an average
execution time of over 1 minute to under 50ms. It also facilitated the implementation
of the Rhino command.

 The generation of window and door geometry was also refactored and optimized for
performance.

The resulting logic was then reimplemented to form variants for each of the contexts that were the
basis of the study. These implementations as well as the template file can be found on the GitHub
repository24 of this study.

The details of each implementation are further explained in the following paragraphs.

 GH context: For this variant, the regular best practice rules for grasshopper script structuring
were followed: grouping the various steps of the logic, clearly identifying the parameters, and
labeling where necessary (Figure 4.1-6).

The subjects were instructed
to interact freely with the
script; other than explicit
labeling and grouping, as well
as using clusters for more
complex sub-logic, no
additional efforts were made
to render the script more
accessible. The parameters
could be manipulated in the
context of the parts of the
script where they are
implemented. As such, the
user was exposed to the
entire script.

24 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation

Figure 4.1-6 : Grasshopper implementation view

Page 23 of 108

 Hybrid context:

The aim of this variant is to remain in the typical rhino workspace for the interaction but use
methods of interaction that are not typical to ordinary Rhino workflows, and still have access
to the grasshopper script if finer adjustment or control is needed.

The geometry is automatically referenced based on layer placement.

Parameters such as grid spacing and limits can be manipulated thanks to contextual sliders in
the rhino viewport that are linked to the geometry (à droite dans la fig xxx). This is achieved
using the kangaroo physics engine.

The other parameters are manipulated through overlaid controls, thanks to the use of
HumanUI (seen on the left on Figure 4.1-7).

Figure 4.1-7 : Hybrid implementation view

Page 24 of 108

 Rhino Context:
This implementation aims to replicate a typical rhino command in terms of interaction. The
entire logic was therefore recreated through C# programming and compiled into a plugin. The
interaction is done entirely through the command line and the rhino viewport as with any
other command.
After calling the command, the subject is prompted to select the target surface. The principal
menu then appears in the command line (Figure 4.1-9) and the subject can navigate through
2 submenus depending on whether they would like to interact with parameters that
determine the grid settings and cladding variations (Figure 4.1-10) or parameters that define
and explore the openings of the façade (Figure 4.1-11).

Figure 4.1-9 : Principal Menu

Figure 4.1-10 : Grid submenu

Figure 4.1-11 : Opening submenu

Figure 4.1-8 : Result preview

Page 25 of 108

4.2. User selection
For this study, the test subjects were all from the architectural engineering section of the Faculty of
Applied Science of the University of Liège and were either students or recent graduates (less than one
year of professional experience). This decision was made for three reasons:

 To ensure the skills and experience consistency of the tested population in terms of digital
practices and software knowledge.

 To ensure their relative homogenous background in terms of approach to architectural design.
 To present a variety of proficiency levels, but with a common foundation provided by the

introductory course in Rhino and grasshopper given in the third year.

While a more diverse subject pool could also have produced interesting results, since part of the
objective was to test the common assertion that lack of familiarity in a given software is a major
obstacle to the use of computational design, the choice was made to conduct the study within the
bounds of this described subject pool. While some subjects were still students and others already
working, the differences between the two were not explicitly studied, the hypothesis being that given
the maximum of one year of professional experience by some of the subjects, this difference would
have less impact than their differing software proficiencies, although these are undoubtably linked. A
possible later development of this research which would be interesting variation could be to conduct
this experiment among subjects of various ages or at various stages of their professional career, to see
how cultural differences between generations and varying mindsets impact the interactions.

4.3. Experiment Protocol
In this section, we will describe the how we structured the experiment protocol in order to ensure the
harvesting of data in a coherent, reliable, and rigorous manner (Calixte X. , 2021).

Given the difficulties in performing a systematic qualitative and categorical analysis of the use of tools
for design processes without a more robust protocol (Calixte, Rajeb, & Leclercq, 2018), we instead
chose to perform a quantitative analysis.

We conducted multiple surveys with two types of questions; grid/numerical based questions to ensure
a consistency in the form of the answers to base a quantitative analysis upon, and open questions
which allowed us to contextualize and inform the conclusions of this analysis.

We also chose to study the interactions with the tools by limiting the focus to the actions on these
tools (Calixte X. , 2021). To do this systematically, we implemented a data harvesting strategy to take
into account the entirety of the actions that concerned these tools (Otjacques, 2008).

4.3.1. Experiment environment variables
The experiment was conducted between the December 20, 2021, and December 28, 2021, either at
the University or in my home, to accommodate the schedules and preferences of both the students
and the recent graduates.

For each experiment, the entire interaction took place using my computer to remove obstacles due to
licensing issues and plugin compatibility, as well as to implement automatic data harvesting more
easily.

The subject was seated at a table in front of the computer, with a mouse and keyboard to interact
with it, and myself seated next to them to provide instructions as well as help if needed.

Page 26 of 108

4.3.2. Subject Characterization
Although subjects having passed the third-year course in the ULiege engineer-architect curriculum
were introduced to Rhino, Grasshopper, and computational design25, their familiarity with these topics
varied as their subsequent use of these programs is not systematic and the course introducing them
to these subjects has also evolved. There is also a variability in general concerning modeling program
preferences and proficiency. To gauge their current level and overall familiarity with Rhino,
Grasshopper, and computational design thinking, as well as gain insight as to their current modeling
habits and preferred tools, the first step of the experiment was to conduct a survey to collect
information for establishing profiles. Both open and closed questions are asked, as described below:

 What is your experience with computational design?
(None | Theoretical | Use of existing logic | Creation of custom logic)

 In which circumstances have you previously used or created computation design logic?
(Introductory course | Project | Other)

 According to you, what is the use of computational design and where is it applicable?
(Open question)

 What software have you used and at what proficiency level would you say you are?
(Software proficiency survey with AutoCAD, Blender, SketchUp, Rhino, Grasshopper, Revit,
Archicad and 3dsMax as software choices and No experience, Novice, Limited, Basic,
Advanced and Expert as possible proficiency levels) (Figure 4.3-1)

 What is your experience with and in what context have you used Rhino and Grasshopper

specifically? (Open question)
 What currently prevents you from using computational design more often? (Open question)

25 Details on course can be found here:
https://www.programmes.uliege.be/cocoon/20212022/cours/ARCH0017-4.html

Figure 4.3-1 : Software proficiency survey

Page 27 of 108

4.3.3. Tool interactions
During this step of the experiment, the subject interacted with the design logic reimplemented in the
three different contexts as described in section 4.1.3. The order in which they interacted with the
different implementations was determined based on the order in which the different subjects did the
study. In this way a uniform distribution of the different combinations of order of interaction possible
could be approached to limit the impact of the order of interaction, as studied in section 5.3. The
origin and description of the general design logic were presented to the subject, followed by details
of each implementation that they were about to interact with. For each implementation the starting
setup as well as the provided design scenario is the same. Based on this design scenario, the subject
was instructed to interact with the implementation until they were satisfied with the result. Each
interaction or variation was automatically timestamped and logged for later analysis (the data
harvesting strategy is described in section 4.4).

4.3.4. Subject feedback
After each of the three exercises, the subject was asked to continue the survey in order to

collect their feedback on the interaction method, as well as their satisfaction with the final result.

They were asked to answer the questions using a scale from 0 (not at all) to 10 (very much):

 Accessibility: How easy was it to start interacting with this implementation, having no previous
experience with it?

 Comprehension: How easy was it to understand the underlying design logic by using this
implementation?

 Ease of Use: How easy was it to interact with the design logic using this implementation?
 Usability: To what extent could you see yourself interacting with computational design logic

in this way in your day-to-day work?
 Satisfaction: How satisfied were you in your ability to achieve your desired outcome through

this implementation?

An open question was also asked to allow them to freely express their feedback on their overall
experience. They also had the possibility to ask additional questions if needed. At the end of the
experiment, the subjects were again asked to rate a posteriori the implementations in the different
contexts, with the experience of having done them all. The complete experiment sequence can be
seen on Figure 4.3-2.

4.3.5. Protocol validation
To validate the protocol, a test experiment was conducted before starting any interviews. This
“experiment 0” showed that the initial time estimate for the entire duration of the experiment (20
minutes) was too short and had to be adjusted to 1 hour per subject on average. This is one of the
reasons why the subject sample size was not bigger. This test experiment also revealed several bugs
in the Rhino and Hybrid implementations.

Subject
characterization

Design
scenario

Presentation

1st Context
interaction

1st Context
feedback

survey

2nd Context
interaction

2nd Context
feedback

survey

3rd Context
interaction

3rd Context
feedback

survey

Final feedback
survey
(for all

contexts)

Figure 4.3-2 : Experiment sequence

Page 28 of 108

4.4. Data harvesting
To shed light on the research question, two main sources of harvested data were analyzed during the
experiment.

 The first source of data were the surveys conducted during the experiment in order to profile and
characterize the subjects (their proficiency level in different software mostly) and to collect their
feedback on the interactions (both immediately following each context as well as after having done
all three). Given that this survey was conducted through Microsoft Forms, a *.csv file containing all
the data could be easily exported and manipulated for the analyses.

 The second relevant datapoint pertained to how the subject interacted with each tool
implementation. To analyze the subject’s behavior during the interaction, a bespoke tool was
developed: for each modification of any parameter, a line was automatically added to a csv file. It
contained a timestamp, an identifier as to the current implementation and geometry (which façade)
concerned, and the values of each of the 15 different parameters in a constant order (Figure 4.4-1).
This allowed the automatic harvesting of substantial amounts of data that would not have been
feasible otherwise.

This tool is published on GitHub26 and easily accessible and usable to any researcher or future TFE
student who would like to conduct a similar experiment with Grasshopper or Rhino.

The fact that all the data was harvested automatically allowed all the experiments to be led in a brief
time span without the additional strain of having to harvest the data manually at the same time, and
reduced the chance of human error. This also allowed more time to be invested on data cleaning,
engineering, and visualization, and thus focus on developing a more robust analysis framework that
could be built upon.

26 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation

Figure 4.4-1 : Data harvesting example

Page 29 of 108

4.5. Data Cleaning
In this section, we will present the steps and strategies that were employed to operate the data
cleaning on the raw data. This data cleaning was all done through the use of a Jupyter27 Notebook and
Python28, using the Numpy29 and Pandas30 libraries, in DataSpell31. The methods of data cleaning, data
engineering and data visualization were learned during the course of this research and through various
online resources, mainly the Numpy and Pandas API references, as well as by following several free
courses found on freeCodeCamp32,33 and a paid course34 on the Udemy platform. All the raw*35 data
and source code are available on the GitHub repository36 of the project. Rather than performing a
detailed code walkthrough, we will provide a high-level overview of the structure of the implemented
code to explain the way in which the data was assembled and transformed.

4.5.1. Survey data cleaning
Once harvested, the data had to be cleaned and processed. For the survey data, the data pertaining
to the subjects’ answers for their software proficiency was extracted from the csv that was exported
from Microsoft Forms and formed into a Pandas DataFrame37 with a column for each software and a
row for each subject. As only two of the participants had (limited) experience in Blender and 3dsMax,
these categories were removed from the DataFrame. Additional columns were then added:

 An average column: the average software proficiency for each subject, disregarding the
software in which they had no experience. This was initially done to not overly penalize
subjects who only had experience in a couple of different software, although this did penalize
those who had slight experience in more software and as a whole this was not a representative
metric and unused for the analysis in section 5.4.

 A column representing the subject’s level in the “traditional” CAD software most used in the
AEC field in Belgium currently (Stals, Elsen, & Jancart, Practical Trajectories of Parametric Tools
in Small and Medium Architectural Firms, 2017): AutoCAD and SketchUp. This indicator was
obtained by keeping the maximum value between the AutoCAD and SketchUp results for all
the subjects.

 A column representing the subject’s experience in BIM modeling, obtained by keeping the
maximum value between the Revit and Archicad results.

 A column representing the subject’s average experience in Rhino and Grasshopper, as an
indicator to analyze the Hybrid context implementation within the subject’s existing
experience.

In an analogous way, the data regarding the subject’s feedbacks on the interactions were grouped
into two lists of three DataFrames: one for the answers immediately following each interaction, and
one for the answers given during the final survey. An example can be seen on Figure 4.5-1.

27 https://jupyter.org/
28 At the time of development, Python 3.9.7 https://www.python.org/
29 https://numpy.org/doc/stable/reference/index.html#reference
30 https://pandas.pydata.org/docs/reference/index.html
31 JetBrains DataSpell IDE : https://www.jetbrains.com/dataspell/
32 https://www.freecodecamp.org/news/python-data-science-course-matplotlib-pandas-numpy/
33 https://www.freecodecamp.org/news/data-analysis-with-python-for-excel-users-course/
34 https://www.udemy.com/course/python-for-machine-learning-data-science-masterclass/
35 The original data contained the subjects’ names, those names were replaced by identifiers by passing the raw
harvested data through a data obfuscation function.
36 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation
37 A Pandas DataFrame is a data structure based on Numpy and widely used for data science.

Page 30 of 108

4.5.2. Tool interactions data cleaning
For each of the subjects, a DataFrame was constructed from the raw data and the timestamps
correctly formatted. The data was then split by implementation, the data for the façade used to
explain the implementation was pruned, and the order in which the subject had done the experiments
was identified and used to reorder the experiment data as well as the feedback data in order to have
the data in a consistent order based on the three contexts (Grasshopper, Hybrid, Rhino).

4.6. Data Engineering
In this section, we will provide an overview of how the cleaned and assembled data from the previous
step was transformed to create the various DataFrames that will be used for the analysis. The tools
and methods used were the same as explained in section 4.5.

For this research, the tool interactions were analyzed under the following three indicators which were
created from the harvested data:

 Number of iterations: From this indicator, we will focus on how many times and when each
of the parameters were changed and as such another iteration of the script was computed.
The detail of how this was deduced and put into form from the data will be the subject of
section 0.

 Modification phases: The point of interest for this indicator is the study of when the subjects
passed from changing one parameter to another. We will track these changes in order to
know for each parameter the number of phases in which it was manipulated, as well as to
know how this behavior evolved over the course of the interaction. The creation of the data
needed for this analysis will be explained in section 0.

 Unique values: This analysis indicator focuses on the number of unique values explored by
the subject for each parameter and where in the timeline these numbers evolve. The
specificities involved for determining this from the input data and how it was implemented
will be presented in section 4.6.3.

Figure 4.5-1 : Feedback DataFrame example (1st interaction survey)

Nom Prise en main Compréhension/maitrise de la
logique sous-jacente

Fluidité d'interaction Potentiel d'utilisation au
quotidien/d'intégration dans

des workflows existants

Satisfaction du résultat final

Subject1 7 8 7 10 8
Subject2 10 10 8 7 8
Subject3 10 8 5 6 7
Subject4 8 8 6 8 6
Subject5 5 6 8 8 8
Subject6 9 7 7 2 7
Subject7 10 10 10 10 10
Subject8 9 9 9 8 8
Subject9 10 8 5 10 3
Subject10 7 8 7 8 7
Subject11 10 8 10 9 9
Subject12 9 8 7 10 9
Subject13 6 10 7 10 9
Subject14 6 8 7 4 7

Page 31 of 108

Given the number of DataFrames that will be used and referenced, and the number of transformations
applied to the input data over several step, Table 1 was created to provide an overview of these
DataFrames.

Table 1: DataFrame overview

Name Description input Figure Sections used
imp_df Raw data for the façade Csv Figure 4.6-3 4.6.1, 4.6.3

diff_df

Boolean DataFrame
representing if a value of

imp_df has changed
from the previous row.

imp_df Figure 4.6-2,
Figure 4.6-4

4.6.1, 4.6.2

diff_diff_df

Boolean DataFrame
representing if a value

from diff_df has changed
from the previous row.

diff_df Figure 4.6-5 4.6.2

iterations_df

DataFrame representing
the number of times a
parameter has been

changed

diff_df Figure 4.6-1 4.6.1

time_iterations_df
Evolution of diff_df over

time diff_df xxx 4.6.1

phase_df

Number of distinct
sequences during which
the subject manipulated

a given parameter

diff_diff_df Figure 4.6-6 4.6.2

time_phase_df
Evolution of diff_diff_df

over time diff_diff_df xxx 4.6.2

unique_df

DataFrame representing
the number of unique

values of a parameter in
imp_df

imp_df Figure 4.6-8 4.6.3

time_unique_df

DataFrame representing
the evolution of the

number of unique values
over time

imp_df xxx 4.6.3

Page 32 of 108

4.6.1. Iterations data engineering
The main iterations DataFrame (iterations_df) simply represents how many times a given

parameter was changed. Data was organized by façade and tool implementation (imp_df). A boolean
dataframe diff_df indicating whether a value in imp_df is different to the one in the row above is
created to identify which parameters were changed. The sum of the columns diff_df formed a row
iterations_df upon which the implementation, façade and time were added as additional columns or
indexes.

A second DataFrame represents the evolution of this data over time. Rather than calculate the sum
for the entire façade, in this second DataFrame the data for each façade is resampled at regular
intervals of the total time spent on the given façade. Which means that the datapoints that fell within
that time range were added along. The chosen number of divisions to define the interval is ten, and
while a higher number of divisions would have given a higher resolution, ten divisions appeared to be
enough, as some intervals (usually the last one) occasionally had no data points.

Figure 4.6-3 : imp_df example

Figure 4.6-2 : diff_df example

Figure 4.6-1 : iterations_df example

Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeX UpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
0 40 1 2 1 1 1 0 0 0 6 1 0 4 0 0 2

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:07 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
00:00:10 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
00:00:15 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
00:00:32 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
00:00:37 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:00:41 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:45 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
00:00:46 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:47 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:47 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:48 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:49 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:01:01 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:06 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:16 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:33 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:01:53 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:02:13 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
00:02:17 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 2 0,3 0,3 0,2 2 2 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:07 2 0,3 0,3 0,2 2 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:10 2 0,3 0,3 0,2 3 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:15 2 0,3 0,3 0,3 3 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:32 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 0,8 0,8 0,8 1
00:00:37 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 1,1 0,8 0,8 1
00:00:41 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 1,1 0,8 0,8 1
00:00:45 2 0,3 0,3 0,3 3 3 3 3 1 2 0,4 0,2 1,1 0,8 0,8 2
00:00:46 2 0,3 0,3 0,3 3 3 3 3 1 3 0,4 0,2 1,1 0,8 0,8 2
00:00:47 2 0,3 0,3 0,3 3 3 3 3 1 4 0,4 0,2 1,1 0,8 0,8 2
00:00:47 2 0,3 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:00:48 2 0,3 0,3 0,3 3 3 3 3 1 6 0,4 0,2 1,1 0,8 0,8 2
00:00:49 2 0,3 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:01 2 0,5 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:06 2 0,5 0,7 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:16 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:33 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 2 0,8 0,8 2
00:01:53 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 2 0,8 0,8 2
00:02:13 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 1
00:02:17 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 0,8 0,8 0,8 1

Page 33 of 108

4.6.2. Modification phases
A modification phases DataFrame (phase_df) was constructed by using a similar logic. For each

action recorded, the parameter values are compared to the previous ones, allowing to identify if there
was a change, e.g. if the subject manipulated it (either through sliders or command lines according to
the tool implementation

The resulting DataFrames for each façade of each implementation was then either summed along the
columns to form a row of the number of modification phases for each façade-implementation
combination and added to the modification phases DataFrame, or in the same way as for the iterations
a DataFrame of the evolution of the modification phases over time (time_phase_df) was constructed
by resampling the DataFrames from the previous step across regular time range intervals.

Figure 4.6-4 : diff_df example

Figure 4.6-5 : diff_diff_df example

Figure 4.6-6 : phase_df example

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:07 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
00:00:10 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
00:00:15 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
00:00:32 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
00:00:37 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:00:41 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:45 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
00:00:46 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:47 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:47 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:48 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:00:49 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
00:01:01 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:06 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:16 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:33 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:01:53 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:02:13 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
00:02:17 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:07 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
00:00:10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
00:00:15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
00:00:32 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
00:00:37 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:00:41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:45 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
00:00:46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:00:49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:01 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:06 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:01:33 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
00:01:53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00:02:13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
00:02:17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeX UpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
0 0 1 1 1 1 1 0 0 0 1 1 0 3 0 0 2

Page 34 of 108

4.6.3. Unique values
The unique values DataFrame was constructed using the nunique38 function in pandas which

returns the number of unique values of each column. This means that when studying the number of
unique values, we are currently only looking parameter by parameter and not the combinations. This
shows a very high number of unique parameters explored in each experiment. While this informs us
that the data collection was effective, it was not significative of the studied interactions. The choice
was therefore made to not implement39 it and to analyze the results parameter by parameter.

To construct the DataFrame representing the evolution of unique values over time, almost the same
logic as for the iterations and modification phases was applied. The main difference was that instead
of calculating the number of unique values for the data of each time interval, the number of new
unique values had to be calculated by subtracting the number of unique values from the beginning of
the façade to the beginning of the interval from the number of unique values from the beginning of
the façade to the end of the interval.

For each row of each of the main DataFrames, a multi-index was added containing the corresponding
subject’s identifying number, subject’s proficiency in the different software (concatenated in a
number), the order in which the contexts were done, the context, and the façade each row refers to.
For each subject, rows were added for the total values across the façades, as well as their average and
standard deviation (Figure 4.6-9). They were then exported in a csv format.

38 https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.nunique.html
39 This could be done by simply concatenating each row into a string with a separator thanks to the str.cat
function, then using the nunique function to obtain the number of unique combinations of parameters.

Figure 4.6-7 : imp_df

Figure 4.6-8 : unique_df

Figure 4.6-9 : Main DataFrame example

Time Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeXUpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
00:00:00 2 0,3 0,3 0,2 2 2 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:07 2 0,3 0,3 0,2 2 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:10 2 0,3 0,3 0,2 3 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:15 2 0,3 0,3 0,3 3 3 3 3 1 1 0,2 0,2 0,8 0,8 0,8 1
00:00:32 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 0,8 0,8 0,8 1
00:00:37 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 1,1 0,8 0,8 1
00:00:41 2 0,3 0,3 0,3 3 3 3 3 1 1 0,4 0,2 1,1 0,8 0,8 1
00:00:45 2 0,3 0,3 0,3 3 3 3 3 1 2 0,4 0,2 1,1 0,8 0,8 2
00:00:46 2 0,3 0,3 0,3 3 3 3 3 1 3 0,4 0,2 1,1 0,8 0,8 2
00:00:47 2 0,3 0,3 0,3 3 3 3 3 1 4 0,4 0,2 1,1 0,8 0,8 2
00:00:47 2 0,3 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:00:48 2 0,3 0,3 0,3 3 3 3 3 1 6 0,4 0,2 1,1 0,8 0,8 2
00:00:49 2 0,3 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:01 2 0,5 0,3 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:06 2 0,5 0,7 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:16 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 2
00:01:33 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 2 0,8 0,8 2
00:01:53 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 2 0,8 0,8 2
00:02:13 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 1,1 0,8 0,8 1
00:02:17 2 0,5 0,67 0,3 3 3 3 3 1 5 0,4 0,2 0,8 0,8 0,8 1

Object TileXSize TileYSize Variability Columns Rows MultipleX MultipleYCladdingSeedOpeningSeed MargeX UpperMarginLowerMarginMinOpeningHeightMinOpeningWidthDoorNumber
0 1 2 3 2 2 2 1 1 1 6 2 1 3 1 1 2

Page 35 of 108

4.7. Data visualization
Once the data was cleaned and transformed, the next step was to provide a way to easily analyze

the results. Given the large amount of data as well as all the diverse ways we wanted to combine and
cross reference the data, data visualization was used instead of comparing numbers. This was helpful
to easily and quickly detect which datapoints were significant and would require more in-depth
analysis or discussion.

Care was taken to work in a way that would easily accept more data and could be easily adapted to
study certain aspects more in depth or according to specific parameters or statistical tools. Therefore,
a framework was developed that allowed to automatically generate “Dashboards” based on the
previous indicators defined in section 4.6. These dashboards combine several types of graphs to
provide an overview of the impact of a chosen factor (such as proficiency in a certain software, or the
order in which the experiment was done) on either the average interactions or those in a specific
context.

In practice, this was done using a Jupyter Notebook in python using JetBrains’s DataSpell IDE, with
extensive use of the Pandas, Numpy, Matplotlib and Seaborn libraries. The use of a Jupyter Notebook
allowed easier development of the functions that enabled the generation of these dashboards. Once
these functions were deemed sufficiently developed, they were grouped in a separate python file that
could be referenced as a custom package, after which the Jupyter Notebook was used mainly for
exploring and generating the different dashboards, as well as exporting them to be saved. As for the
previous development done for this research, this code is available on GitHub40 to future researchers.

For the analysis, two main functions were created and used to generate the dashboards: feedback
(described in section 0) and global_analysis (section 4.7.2).

40 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation

Page 36 of 108

4.7.1. feedback
The feedback function defined in the analysis package41 can be called in the following way with these
arguments:

feedback(feedback_df, context_index, software, survey, _level)

 feedback_df: the pandas DataFrame of the subjects’ feedbacks concerning the interactions
generated by the output csv from the data engineering step.

 context_index: this allows the study of either a specific context (GH=0, Hybrid=1, Rhino=2),
the average result (4) or if None is passed the function will plot all the results (so three for
each subject).

 software: this is the software that will be used to group the subjects by proficiency level if that
is the chosen study variable.

 survey: this allows the study of the survey conducted immediately following a given context
(A), at the end of the experiment (B), or both side by side (None).

 _level: this is the study variable with which the surveys are examined, either by proficiency
level (“level”), by order (“order”) or by context (“context”).

The output of this function is a bar plot42 as in Figure 4.7-1, where for each category of the feedback
survey the results are grouped by the study variable, in this case by grasshopper level, with the
individual data points overlaid via a swarm plot43.

Figure 4.7-1 : feedback graph example

41 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation
42 https://seaborn.pydata.org/generated/seaborn.barplot.html
43 https://seaborn.pydata.org/generated/seaborn.swarmplot.html

Page 37 of 108

4.7.2. global_analysis
This is the main function that allows us to study the interactions based on our chosen study variable.

The function is called with the following way:

global_analysis(df, time_df, study_columns, title, level, context_index, software, detail)

with the arguments representing, respectfully:

 df: this is the pandas DataFrame of the study angle we have chosen (iterations, modification
phases or unique values).

 time_df: this is the corresponding DataFrame representing the evolution of the study variable
over time.

 study_columns: this represents a list of the significant values based on the chosen study angle
that we wish to compare between the various groups. Currently we can choose time, rate,
total, maximum or coefficient of variation (CV). Other statistical values such as mean,
skewness or standard deviation could easily be implemented, given the small sample size of
this study this was not developed fully, no doubt with larger sample sizes a more robust
statistical analysis would be pertinent at this step.

 title: this simply allows us to label our graphic.
 level: this is the variable with which we will group our data (software proficiency, order of

interaction or context of interaction).
 context_index: this represents the context in which we want to perform our analysis (0,1 or

2) or None if we chose to perform an analysis across all three contexts.
 software: if we chose to perform our analysis based on a given software proficiency, this is

where we can specify which software.
 detail: this is a Boolean value which indicates whether we would like to have the detail for

each subject in each group or if we would like to group the results and only represent the
average.

Figure 4.7-2 : global_analysis(iterations_df, time_iterations_df, [‘Time’,’Rate’,’Total’,’CV’], ‘Iterations’, ‘Level’, None, ‘Grasshopper’, False)

Page 38 of 108

The output gives us a dashboard like that on Figure 4.7-2 or Figure 4.7-3 (depending on whether we
wish a detailed dashboard or not), and can be split in three categories:

On the left (Figure 4.7-4) we can
find four columns, one for each of
the significant values we chose,
with, from top to bottom:

 A linear regression plot44
across the different groups, to
study the evolution from group
to group and see if there is a
global trend. On this plot is also
represented the mean for each
group along with an error bar
corresponding to the
confidence interval.

 A violin plot45 of the values
showing the discrete data points. This violin plot is split when studying by software proficiency,
with the left representing the three lower proficiency levels and the right the three higher
proficiency levels, to better exacerbate the difference between less and more experienced
subjects.

 A heatmap46 showing the mean value for each of the groups and colored from blue to red
depending on where on the range of values they fall (blue being the lowest, red the highest, and
the middle represented by white).

44 Implemented using seaborn (https://seaborn.pydata.org/generated/seaborn.regplot.html)
45 Implemented using seaborn (https://seaborn.pydata.org/generated/seaborn.violinplot.html)
46 https://seaborn.pydata.org/generated/seaborn.heatmap.html

Figure 4.7-3 : global_analysis(iterations_df, time_iterations_df, [‘Time’,’Rate’,’Total’,’CV’], ‘Iterations’, ‘Level’, None, ‘Grasshopper’, True)

Figure 4.7-4 : Example of significant value graphic analysis

Page 39 of 108

On the top right (Figure 4.7-5), is plotted the evolution of the rate of the study angle during the
experiments, approximated by a cubic polynomial regression plot47 with 10 data points per façade (as
explained in section 4.5), with one curve for each of the groups and the interactions of the façades
clearly separated. The rates are normalized according to the time each subject spent on each façade,
with the relative widths of the sections for each of the façades proportional to the average proportion
of time spent on each of them by the subjects.

On the bottom right (Figure 4.7-6), we can see a combination of a bar plot with the confidence
intervals represented through error bars and a heatmap for the mean values pertaining to each of the
input parameters that the subjects interacted with. This is also where the legend for the dashboard
appears, with a coherent color code across the different dashboards based on the different groupings
that are possible.

These data visualizations were produced for every experimentation. The most significant ones are
used to illustrate the research results, the others are available either in the Appendix or online on the
GitHub48 repository.

47 https://seaborn.pydata.org/generated/seaborn.regplot.html
48 https://github.com/XGar/Impact-of-context-familiarity-on-computational-design-logic-appropriation

Figure 4.7-5 : Rate evolution

Figure 4.7-6 : Parameter values

Page 40 of 108

5. Data analysis
The harvested data are first analyzed to assess the validity of the experience, especially:

 The global behavior across the different contexts, in order to identify possible flaws in the
experimentation set up (5.2)

 The impact of the order in which the subjects interacted with the different implementations
(5.3)

 The impact of previous software knowledge (5.4).

Then, the data are analyzed to answer our research question: how context familiarity impacts the user
behavior (5.5).

Page 41 of 108

5.1. Harvested data
5.1.1. Successful experimentations and collected data points

A total of 14 experiments were conducted, among both current students in the architectural
engineering section of Liège University and recent graduates of the section, 7 and 7 respectively.

As discussed previously (section 4.4), during each interaction, data was automatically recorded every
time the user changed a parameter. In total, 92990 points of data for the interactions were collected.

During the first 3 experiments, the automated data harvesting for the Hybrid interaction failed. Using
the backup screen recordings (explained in section 4.3.1), this data was harvested manually, except
for Subject2 who was unluckily also the only subject for which the screen recording also failed.
Because of that, Subject2 was disregarded for the analysis in the Hybrid context. It should also be note
that for some of the interactions in the Hybrid context, subjects at time suffered significant lag which
was detrimental to their fluid use of the tool.

This raw data was cleaned and processed as seen in sections 4.5 and 4.6. A total of 328 graphs
were generated; amongst them 148 were considered relevant and grouped in categories of four to
form the 37 appendixes. The others can be found on the GitHub repository of the project.

5.1.2. Characterization of the population
Software proficiency in AutoCAD and SketchUp was relatively high for all the subjects, whereas

knowledge in Rhino and Grasshopper is more representative of average proficiency in the different
software (Figure 5.1-4). Only two of the 14 subjects had experience with Blender or 3dsMax, therefore
these were discarded from the analysis.

Figure 5.1-3 : BIM proficiency distribution Figure 5.1-2 : CD proficiency distribution Figure 5.1-1 : Modeling proficiency
distribution

Figure 5.1-4 : Software proficiency chart

Page 42 of 108

5.2. Differences between different Contexts of interaction
The first thing we will assess is the overall behavior across the different contexts of interaction.

The objective is to better understand the specificities of how differently the subjects interacted with
the same underlying logic simply based on the context (as described in section 4.1). This will allow us
to better interpret our results when we evaluate how previous software experience influences usage
of a foreign logic in each context (section 0). To do so, we compared the characteristics of the
interviewee as harvested in the surveys with information from the experimentations, namely the
study of:

 the number of iterations (every time a parameter was changed)
 the modification phases (when the user switched between parameters)
 the number of unique values (unique parameter values explored)

5.2.1. Survey

The survey data (Figure 5.2-1), reveals the following on the perception of the experimentation by the
interviewee:

 The interaction in Rhino was consistently perceived as slightly less accessible from the start
while both the grasshopper and hybrid implementations ranked similarly.

 The three implementations were initially perceived as similar in terms of comprehension by
the subjects, while the Rhino implementation was noted slightly lower in the final survey.

 The hybrid implementation was consistently ranked as being less easy to use. This can be
explained by the difficulties and low fluidity caused by the unoptimized implementation,
specifically the contextual sliders which at times induced lag. Subjects found the Rhino and
Grasshopper implementations equally easy to use, with Rhino being perceived as slightly
easier to use in the first survey while the opposite was expressed in the final survey.

 The subjects’ level of satisfaction at being able to achieve their desired outcome, showed
trivial difference in the answers before and after the experimentations, apart from the fact
that the second survey showed lower variance. The implementations in Grasshopper and
Rhino gave subjects equal satisfaction while they were on average less satisfied in the Hybrid
implementation. This could again be in part explained by the technical issues which arose in
this implementation, particularly given the fact that not all subjects noted it poorly. We can
also see that two subjects noted the Rhino implementation less favorably, which they justified
by the limitation in their capacity to edit the logic, specifically the bounds of values that can
be given to the rows and columns parameters.

 When asked how they could see themselves using tools and logic implemented in similar ways
based on the context, while initially all three contexts performed similarly, in the final survey
subjects rated Grasshopper as the highest, followed closely by Rhino then by the Hybrid
version which did more poorly.

Figure 5.2-1 : Survey data by context of interaction

Page 43 of 108

5.2.2. Number of iterations

Concerning the number of iterations made by the subjects as seen in Figure 5.2-2, we can see
immediately that:

 The subjects spent a similar amount of time between the contexts, but this amount of time
varies greatly (5 to 25 minutes) in each context.

 The Grasshopper rate of interaction is around twice as high as in the other two contexts, on
average. However, a closer look at how that rate evolves over the interaction reveals that this
is particularly the case at the beginning but by the third façade the rate of interaction is more
similar across the different contexts. This would suggest that a study conducted over a longer
period might deliver different results and that we could hypothesize that the subject gets
used to the design logic and begins using it rather than simply exploring it.

 The total number of iterations varies more in Grasshopper than in the other contexts.

5.2.3. Number of modification phases

By studying the subjects’ behavior in terms of count of modification phases and how it evolves over
the interaction (Figure 5.2-3), we can see that the subjects changed which parameters they were
interacting with at a similar rate across all three implementations, slightly more when interacting in
Rhino, and observing the behavior over the interaction duration seems to indicate that subjects
became progressively more at ease switching between parameters in the Rhino implementation.

Figure 5.2-2 : Iterations by Context

Figure 5.2-3 : Modification phases by Context

Page 44 of 108

5.2.4. Unique Values

Studying the evolution of unique values depending on the context of interaction reveals that subjects
explored a wider range of unique solutions overall when interacting through grasshopper and at an
average higher rate, however this difference is more clearly marked during the first 2 façades, with
the average rate during the last façade stabilizing to be closer to that of the other 2 contexts.

5.2.5. Summary
The overall study of the variance in interaction behavior and logic perception across the different
implementations reveals that while there are some differences (namely the higher rate of interaction
in Grasshopper), these differences for the most part seem to stabilize over time or can be explained
by things specific to the implementations (such as the fluidity problems in the hybrid implementation
or the bounds of accepted values in the Rhino implementation) more so than the context. While there
are differences in the interactions from subject to subject, the way the design logic was implemented
in the different contexts seems to be at best only partly responsible for these differences.

Figure 5.2-4 : Unique values by Context

Page 45 of 108

5.3. Order of interaction impacted behavior
In this section, we will study how the order in which the interactions were done had an impact on the
behavior and perception of the subjects. We will first look at the general results, and if necessary, will
discuss how these results vary across the different implementations.

5.3.1. Survey

Figure 5.3-1: Survey data by Order

The average survey results shown on Figure 5.3-1 reveal the order of interaction had an impact on
the subjects’ perception. While immediately following each interaction the average perceived
accessibility was similar across the 3 different interactions, when evaluating them at the end of the
experiment the subjects seem to rank the interactions as more and more accessible. This could be
explained by the fact that the subjects became progressively more familiar with the exercise. This
hypothesis is strengthened by the fact that the perceived level of comprehension of the underlying
logic also increased for every interaction, both immediately following and at the end of the
experiment. Another notable result we can see is that the last interaction was consistently perceived
as being less easy to use.

Studying the impact of the order on the different implementations (Appendix 19-1, Appendix 28-1,
Appendix 37-1) shows that these general observations do not reflect across all three contexts.

In Grasshopper there is no clear progression of the level of accessibility with each successive
interaction, and the level of comprehension is perceived as less favorable and decreases with each
interaction, as do the other categories of the survey, especially for “Usability”. This indicates that while
Grasshopper was well appreciated when it was the first method of interacting with the logic, when
users had already used another implementation, they tended to be harsher when evaluating it
during the final survey.

In the Hybrid implementation, the general trend of increasing level of comprehension can be seen,
while ease of use, usability and satisfaction tended to decrease with each successive interaction.

In Rhino however, the results increased across the board for each successive interaction, especially
in the final survey. This seems to indicate that in this implementation, getting familiar with the logic
took some time (longer than in Grasshopper for example) but once familiar with the exercise the
subjects appreciated it. The difference between the progression of this implementation versus the
others also explains why the global results are perhaps not representative.

Page 46 of 108

5.3.2. Number of iterations

The only notable observation we can identify by studying the average number of iterations by order
of interaction (Figure 5.3-2) is that on average, subjects spent twice as long on their first interaction
as the following two.

A more in depth look in each context (Appendix 19-2, Appendix 28-2, Appendix 37-2), shows that this
is the case in each context of interaction.

5.3.3. Number of Modification Phases

Studying the global evolution of the modifications phases depending on the order of the interaction
(Figure 5.3-3) shows a tendency of slightly increasing rate for each successive interaction. This global
trend is also found in Grasshopper (Appendix 19-3) and Rhino (Appendix 37-3) while the opposite
seems to be true in the Hybrid implementation (Appendix 28-3).

Figure 5.3-2 : Iterations by Order of interaction

Figure 5.3-3 : Modification phases by Order of interaction

Page 47 of 108

5.3.4. Number of unique values

The study of unique values, like that of the modification phases, shows a tendency of increasing rate
both globally and in each implementation (Appendix 19-4, Appendix 28-4, Appendix 37-4), but this
difference seems to be primarily between the first interaction and the following two. This could be
explained by the fact that as stated previously, subjects spent around twice as long on their first
interaction as the following 2, while observing the total number of unique values of the parameters
explored shows they only explored slightly more in that amount of time. Observing the evolution of
the rate over the experiment further shows that for each façade, the rate of new unique values
plateaus then decreases after a certain amount of time.

5.3.5. Summary
From this analysis, we can conclude that the order in which the subjects interacted with the design
logic in the different contexts had a pronounced impact in how they interacted with it, especially for
the first interaction where they discovered the underlying design logic, whereas for the following
two they only discovered how it was implemented. We shall have to take this into account for the
rest of our analysis and what conclusions we can make from them, especially given the small sample
size in relation to the diversity of the profiles of the subjects in regard to their proficiency in the various
software.

Page 48 of 108

5.4. Previous software experience impacted the interaction
In this section we will study if and how previous experience in different software had an impact on the
interactions. To do so we will refer to the generated Dashboards that can be found in the appendix.

5.4.1. AutoCAD
Survey data
Surprisingly, experienced users of AutoCAD seemed to have slightly more favorable views on the
interactions (Appendix 1-1), particularly when it came to the ease of use and day to day usability of
such a logic, as well as a better feeling of comprehension of the underlying logic. The link between the
rating of ease of use and usability was less clear cut when looking at the Grasshopper
implementation (Appendix 11-1), however in that implementation a similar link between AutoCAD
experience and level of comprehension can be observed. For the Hybrid implementation (Appendix
20-1) no clear relationship could be seen, considering the low sample size (1) in the “Expert” category.
In Rhino, a relation trend between proficiency in AutoCAD and the survey results can be seen across
all categories (although sometimes in only one of the two surveys), with higher proficiency levels
corelating with more favorable survey answers (Appendix 29-1).

Number of iterations
Studying the number of iterations values at a global level based on AutoCAD experience yields no clear
observations (Appendix 1-2), nor did that experience have a discernable impact for those metrics in
Grasshopper (Appendix 11-2), the Hybrid context (Appendix 20-2), or in Rhino (Appendix 29-2).

Modification phases
This was also the case for the study of the modification phases (Appendix 1-3, Appendix 11-3,
Appendix 20-3, Appendix 29-3).

Unique values
This was also the case for the study of the unique values explored (Appendix 1-4, Appendix 11-4,
Appendix 20-4, Appendix 29-4).

Summary
When analyzing the harvested data by grouping users by AutoCAD proficiency level, while the survey
data did show a link on average and in Rhino especially, the three implemented study angles for
characterizing the tool interactions revealed nothing. However, this could very well be due to our
low sample size.

Page 49 of 108

5.4.2. SketchUp
Survey data
Observing the subjects’ average survey results (Appendix 2-1) seems to indicate that the categories
for Ease of use and Usability are generally rated higher by more experienced SketchUp users. The
other categories also show slight increases by SketchUp level but not enough to draw definitive
conclusions. In Grasshopper, this general trend is echoed for the Usability category in the 2nd survey,
but much less so for Ease of Use (Appendix 12-1). Another interesting observation is that while the
level of comprehension seemed to be directly correlated with a subject’s level in SketchUp in the
survey conducted immediately after the interaction, this is much less the case in the survey conducted
at the end of the three interactions. No clear conclusions could be drawn for the Hybrid context
based the survey data when cross referencing it with the subjects’ level in SketchUp (Appendix 21-1).
Once again, the interactions in Rhino showed the greatest correlation between higher SketchUp
levels and positive survey answers, across all categories (Appendix 30-1), although this could be a
product of the small sample size of the “Expert” category.

Number of iterations
Studying the number of iterations shows an interesting difference between the behavior in the
different contexts. In Grasshopper, the rate of iterations seemed to decrease with higher levels of
proficiency (Appendix 12-2), while the opposite tendency can be observed in Rhino (Appendix 30-2).
The global study (Appendix 2-2) and the one for the Hybrid context (Appendix 21-2) showed no clear
relationship between Sketchup level and behavior.

Modification phases
This is also the case when we look more in depth at the evolution of the modification phases, albeit
to a lower extent. (Appendix 2-3, Appendix 12-3, Appendix 21-3, Appendix 30-3)

Unique values
Finally, when observing the results of the different analysis of the unique values generated, we can
see that there is no discernable impact of one’s level in SketchUp in general or in any of the contexts.
(Appendix 2-4, Appendix 12-4, Appendix 21-4, Appendix 30-4)

Summary
Although experienced SketchUp users seemed to prefer their interactions in Rhino, and indeed
interacted more quickly there then in Grasshopper, they did not explore more solutions or achieve
their results faster.

Page 50 of 108

5.4.3. Rhino
Survey data
Observing the global survey cross referenced with Rhino level reveals no clear trends of a relationship
(Appendix 3-1). Furthermore and perhaps surprisingly, while the survey results varied significantly
from level to level in the different contexts (Appendix 13-1, Appendix 22-1, Appendix 31-1), no clear
relationship between a subject’s level and their evaluation of the different categories of the survey
could be observed, not even in Rhino where we could have expected that more experienced Rhino
users would have had a bias towards giving better evaluations of the different categories. This reveals
that while someone might have experience in 3d modeling, even in a familiar context, the use of
computational design logic also requires experience in computational thinking (Carpo, 2017) (de
Boissieu, 2022).

Number of iterations
On average, more experienced users of Rhino seem to interact with the logic at a slower rate but
interacted with the logic a similar amount of time on average as less experienced users (Appendix 3-2).
This global trend can also be seen in the interactions which took place in Grasshopper (Appendix 13-2)
although more experienced users tended to interact with the logic for a longer amount of time, in the
Hybrid context this trend was more pronounced (Appendix 22-2), and most significantly in Rhino
(Appendix 31-2).

Modification phases
Studying the way in which users changed from parameter to another across all contexts shows that
on average there is not a significant difference between users of different Rhino levels (Appendix 3-),
nor is there in the Hybrid context (Appendix 22-3). In Grasshopper and Rhino however, there seems
to be a slight tendency for users with a higher level to switch less frequently between parameters,
this tendency is more marked in Grasshopper (Appendix 13-3) but in Rhino we can also observe that
more experienced users interacted with the different parameters more evenly rather than mainly
focusing on switching between a couple of parameters, which results in a lower coefficient of variation
between the number of modification phases by parameter (Appendix 31-3).

Unique values
Finally, studying the average number of unique values of the different parameters traversed by the
users indicates that more experienced Rhino users tested fewer unique values per minute and tested
unique values of the different parameters much more evenly on average

Appendix 3-4). This was also the case in Grasshopper (Appendix 13-4) and Rhino (Appendix 31-4) with
the additional trend of more experienced users interacting with the logic for longer in Grasshopper.
In the Hybrid context, there was no clear relationship between a user’s level in Rhino and how they
explored unique values of the different parameters (Appendix 22-4).

Summary
Based on the harvested data, it would appear that more experienced Rhino users did not benefit from
their experience when it came to interacting with the computational design logic, nor were their
perceptions different than those of the other subject groups, as can be seen by the survey data.

Page 51 of 108

5.4.4. Grasshopper
Survey data
The average survey data by Grasshopper level (Appendix 14-1) shows no clear relationship between
subjects’ grasshopper levels and their evaluation of any of the categories of the survey. This is slightly
biased by the fact that some levels contain only one subject. Removing these levels or grouping them
with the others still does not reveal clear relationships though.

Looking more closely at the data for the survey specific to the Grasshopper context we can make the
following observations:

 In the survey immediately following the interaction, more experienced users had a tendency
of rating their level of comprehension of the underlying logic lower than less experienced
users but were more likely to see themselves using computational design logic in this way day
to day.

 In the survey conducted at the end of the experiment, more experienced users seemed to
rate the accessibility and ease of use of the implementation as higher than less experienced
users.

In the Hybrid context (Appendix 23-1), the second survey data shows a clear relationship between
higher levels in Grasshopper and better levels of comprehension. The other categories showed
elevated levels of variance from level to level, but no clear link is apparent.

In Rhino (Appendix 32-1), the survey data does not lend itself to any definitive conclusions, in part due
to the low sample size of the 2 levels on the extremes. Concentrating only on the experience levels in
which there are more than one subject, we could observe that the perception of usability decreases
with grasshopper level.

Number of Iterations
Looking at the average iterations by Grasshopper level (Appendix 4-2), slight negative correlations
between a user’s level in grasshopper and the rate of interaction as well as the coefficient of variation
of the average number of iterations of the different parameters can be observed, as well as a positive
correlation with the rate of interaction. This is also the case in the Grasshopper and Rhino
implementations (Appendix 14-2, Appendix 32-2) particularly for the time spent on the interaction,
while the Hybrid context implementation shows much less correlation between these metrics and a
user’s Grasshopper level (Appendix 23-2).

Modification phases
The rates of the average modification phases (Appendix 4-3) are also inversely proportional to the
users’ level in grasshopper, to a similar proportion as for the number of iterations, but the CV no longer
follows that trend. Looking more closely at the different contexts, we can see that this global trend is
mostly due to the Rhino implementation (Appendix 32-3) rather than the other 2 (Appendix 14-3,
Appendix 23-3).

Unique values
The unique values followed the trends shown for the number of iterations, as much for the average
values (Appendix 4-4) as for the different contexts, with Grasshopper(Appendix 14-4) and
Rhino(Appendix 32-4) showing more sensitivity to a user’s level in grasshopper than in the Hybrid
implementation (Appendix 23-4).

Page 52 of 108

5.4.5. Archicad
Survey data
The average survey data by Archicad level is not easily interpreted, some trends can be seen in the
surveys conducted immediately after the interactions like an increasing perception of usability with
higher levels in Archicad as well as greater levels of satisfaction with their ability to achieve their
desired results. Looking at the data collected in the survey conducted at the end of the experiment
does not reveal the same trends, however (Appendix 5-1). Similar trends and ambiguities can be found
in the data of the 2 surveys conducted for the Grasshopper context by Archicad level (Appendix 15-1)
preventing us from making any definitive conclusions. The surveys for the other 2 contexts cross
referenced with Archicad level are also inconclusive (Appendix 24-1, Appendix 33-1).

Number of Iterations
Studying the average number of iterations by Archicad level (Appendix 5-2), we can see that more
experienced users on average spent more time doing the interactions and interacted more evenly
with the different parameters, but at a similar rate as the users with a lower Archicad level. This trend
is not reflected In Grasshopper (Appendix 15-2), instead more experienced users interacted at a higher
rate. In the Hybrid implementation (Appendix 24-2), there is variance in the values by level of the
different metrics for the number of iterations (rate, total, cv) such that no clear relationship between
those metrics and Archicad experience can be established. Furthermore, looking at how the rate of
iteration evolves over time for the different level groups shows that there are significant differences
in how different people interact with the logic. In Rhino (Appendix 33-2), we can observe that more
experienced users tend to interact at a slower rate and more evenly between the different parameters
compared to less experienced users.

Modification phases
Observing the average number of modification phases by Archicad level overall (Appendix 5-3), we
can see that the rate is relatively stable (ranging from 3.1 to 3.9 modification phases / minute on
average), with the most variation occurring for the lowest level of Archicad experience. We can also
see a decreasing CV with increasing levels in Archicad, and that while behavior in terms of the
evolution of the rate over time is similar between levels across the first 2 façades, by the 3rd one there
are bigger differences between the different level groups. For the interactions taking place in the
Grasshopper (Appendix 15-3) and Hybrid (Appendix 24-3) contexts, there is no apparent relationship
between the way users went from parameter to parameter and their level in Archicad. In the Rhino
implementation however, we can see that more experienced users interacted with a lower average
rate and lower CV than less experienced users. (Appendix 33-3)

Unique values
Globally (Appendix 5-4), no clear trend could be observed, nor could any definitive links be seen in the
Grasshopper (Appendix 15-4) or Hybrid implementations (Appendix 24-4). In Rhino (Appendix 33-4),
we can observe that the rate decreases with Archicad level as well as the CV between parameters.

Page 53 of 108

5.4.6. Revit
Survey data
The average survey data by Revit level (Appendix 6-1) seems to indicate that as the level of Revit
proficiency increased in users, their rating of the accessibility, comprehension and ease of use
categories was susceptible to decrease. Further investigation in the three contexts reveals no clear
trends in any of them (Appendix 16-1, Appendix 25-1, Appendix 34-1).

Number of Iterations
Studying the global behavior in terms of the number of iterations by Revit level (Appendix 6-2) reveals
no trends apart from a seemingly slight tendency for more experienced users to interact less evenly
between the different parameters and focus primarily on a couple few. No trends could be observed
in Grasshopper either (Appendix 16-2), while in the Hybrid context more proficient Revit users spent
longer on average than less proficient users (Appendix 25-2), and how the rate of iterations evolved
over time varies between the distinct levels. In Rhino (Appendix 34-2), the only observation we can
make is that while for the first façade the rates of interaction varied in the same range between
different levels, for the second and third façades the range of rates of interaction varies more, with
higher levels in Revit reaching higher rates, particularly towards the end of their conception of the
façade.

Modification phases
The study of the modification phases revealed no definitive trends, either on average (Appendix 6-3),
or in any of the contexts (Appendix 16-3, Appendix 25-3, Appendix 34-3).

Unique values
 Global (Appendix 6-4): More experienced users concentrated more on certain parameters in

their exploration of unique values (higher CV).
 Grasshopper (Appendix 16-4): Less exploration of unique values by more experienced Revit

users (lower total).
 Hybrid (Appendix 25-4): More unique values explored by more experienced users, but only on

certain parameters (higher total and CV).
 Rhino (Appendix 34-4): No clear differences between subject groups.

Page 54 of 108

5.4.7. BIM
Survey data

 Global (Appendix 7-1): Lower Accessibility, Comprehension and Ease of Use rating by more
experienced BIM users.

 Grasshopper (Appendix 17-1): Higher Usability perceptions for more experienced BIM users.
 Hybrid (Appendix 26-1): High variability between subject groups and between surveys so no

definitive conclusions can be made.
 Rhino (Appendix 35-1): No conclusions can be made.

Number of Iterations
 Global (Appendix 7-2): No notable trends apart from the fact that more experienced users

spent longer at a similar rate on their interactions.
 Grasshopper (Appendix 17-2): no clear trends.
 Hybrid (Appendix 26-2): More time spent at a higher rate of interaction for more experienced

users.
 Rhino (Appendix 35-2): The most experienced users spent the most time but at the lowest

rate of interaction and the most evenly across the different parameters.

Modification phases
 Global (Appendix 7-3): no new trends could be seen.
 Grasshopper (Appendix 17-3): slightly lower rate for more experienced users.
 Hybrid (Appendix 26-3): More time spent but at the same rate for more experienced users.
 Rhino (Appendix 35-3): same behavior as observed when studying the number of iterations.

Unique values
 Global (Appendix 7-4): no new trends could be seen (same as number of iterations and

modification phases).
 Grasshopper (Appendix 17-4): no clear trends.
 Hybrid (Appendix 26-4): More time spent but at the same rate for more experienced users.
 Rhino (Appendix 35-4): The most experienced users spent the most time but at the lowest

rate of new unique values and the most evenly across the different parameters.

Page 55 of 108

5.4.8. Modeling
Survey data

 Global (Appendix 8-1): minimal differences between subject groups, slight positive link
between subjects’ levels and their perception of comprehension and, for the survey
conducted at the end of the experiment, the ease of use and day to day usability of the context
of implementation.

 Grasshopper (Appendix 18-1): same observations as for the global study.
 Hybrid (Appendix 27-1): no clear trends can be observed.
 Rhino (Appendix 36-1): variability between the 2 surveys, but general correlation between

higher proficiency levels and more favorable answers across all the categories.

Number of Iterations
 Global (Appendix 8-2): No discernable difference in interaction behavior between the

different subject groups.
 Grasshopper (Appendix 18-2): no significant differences between subject groups.
 Hybrid (Appendix 27-2): no significant differences between subject groups.
 Rhino (Appendix 36-2): Higher rates of interaction for more experienced users.

Modification phases
 Global (Appendix 8-3): lower average total number of modification phases for increasing

proficiency levels.
 Grasshopper (Appendix 18-3): lower average rates for more experienced subject groups, but

this especially the case due to the behavior towards the end of the context interaction (end
of façade 2 and façade 3) whereas at the beginning of the context interaction (façade 1) the
rates of change between parameters are similar across subject groups.

 Hybrid (Appendix 27-3): similar behavior across subject groups.
 Rhino (Appendix 36-3): no clear trends except less time spent on the interaction on average

by more experienced subjects.

Unique values

 Global (Appendix 8-4): No significant differences between subject groups.
 Grasshopper (Appendix 18-4): No definitive trends.
 Hybrid (Appendix 27-4): No significant differences between subject groups.
 Rhino (Appendix 36-4): No significant differences between subject groups.

Page 56 of 108

5.5. Context familiarity impacted behavior
5.5.1. Grasshopper

In this section, we will investigate whether more experienced grasshopper users truly benefited from
their experience when it came to using a previously unknown script not made by them. While this
analysis has already been done to some extent in the previous section, we will provide a more in-
depth analysis and hypothesis as to the reasons of some of the observations.

Survey data

Observing the feedback answers (Figure 5.5-1) given by the subjects grouped by their stated
Grasshopper level, we can observe the following:

 While immediately following the interaction in grasshopper no clear link between a subjects
stated perception of the accessibility of the implementation and their experience level in
grasshopper could be seen, when looking at the survey answers given at the end of the
experiment, it seems that the more experienced a subject is in grasshopper, the more
accessible this method of interacting with the design logic seemed to them, which is to be
expected.

 On the other hand, more experienced grasshopper users stated having more difficulty
understanding the underlying design logic, with however a notable difference in the answers
for the 2 surveys or the lone subject in the “Advanced” experience group. This could be
explained partly by the fact that they are more used to creating their own design logic, and
partly because the logic was by choice not purely parametric, which they are more used to.

 While initially following the interaction in Grasshopper the different subject groups rated the
ease of use of the implementation similarly, at the end of the experiment a clear trend where
more experienced users find the implementation easier to use can be seen.

 Concerning the day-to-day usability of general computational design implemented in this way,
unsurprisingly, the more experienced users found this method of interaction more usable
day-to-day.

 Different subject groups rated their level of satisfaction at achieving their desired outcomes
similarly.

From this data we can conclude that while subjects with more experience in grasshopper were
influenced by that experience and more at ease, lack of experience did not affect less experienced
subjects’ ability to use the design logic and achieve their desired outcomes.

Figure 5.5-1: Grasshopper survey data by Grasshopper level

Page 57 of 108

Number of iterations

From the detailed study of the number of iterations in Grasshopper, by Grasshopper level (Figure
5.5-2) we can observe the following:

 Subjects more familiar with grasshopper spent on average more time on the interaction.
 More experienced subjects did not interact with the logic at a higher rate, even at a slightly

lower rate in fact.
 Their behavior was more constant within the subject groups.
 The rate of interaction of more experienced users did not evolve in a significantly different

manner than less experienced subjects.

Based on this study variable and the harvested data, there is no indication that more experienced
subjects in grasshopper interacted significantly differently than novices or even subjects with no
prior experience in Grasshopper.

Figure 5.5-2 : Detailed study of the number of iterations in Grasshopper, by Grasshopper level

Page 58 of 108

Number of modification phases

From the detailed study of the number of modification phases in Grasshopper, by Grasshopper level
(Figure 5.5-3) we can only observe the following:

 The rate of change between parameters was slightly lower on average for more experienced
users, although this could be explained by the fact that they spent more time interacting in
this context.

Based on this study variable and the harvested data, as in the previous observations, there is no
indication that more experienced subjects in grasshopper interacted significantly differently than
novices or even subjects with no prior experience in Grasshopper.

Figure 5.5-3 : Detailed study of the number of modification phases in Grasshopper, by Grasshopper level

Page 59 of 108

Number of unique values

From the detailed study of the number of modification phases in Grasshopper, by Grasshopper level
(Figure 5.5-3) we can only observe the following:

 While more experienced subjects explored a greater number of unique values, they did so at
a lower average rate, and more evenly across the different parameters.

 Observing the link between time spent and the rate seems to indicate a decreasing rate after
a certain period of time spent, which we can also see by observing the evolution of the rate
over the interaction, where towards the end of a façade a decrease was seen in the number
of new unique values as the user converged toward their preferred solution.

As in previous observations, there is no indication that more experienced subjects in grasshopper
interacted significantly differently than novices or even subjects with no prior experience in
Grasshopper.

Summary
In conclusion, based on the harvested data and chosen study parameters, there seems to be no
negative impact on a subject’s use of computational design logic in grasshopper because of their
inexperience or unfamiliarity with the context that can be described as significant or sustained.

Figure 5.5-4 : Detailed study of the number of unique values in Grasshopper, by Grasshopper level

Page 60 of 108

5.5.2. Hybrid
The study of the impact of context familiarity on the Hybrid implementation is not as easy to do given
the fact that this implementation used a custom UI that none of the subjects could have been
previously exposed to. In a way, this simulates the situations found when using new unfamiliar tools
(such as web-based platforms discussed in section Error! Reference source not found.). However,
given the fact that the interaction takes place in the Rhino viewport, and parameters are interacted
with either through manipulating points in the view or through sliders, this implementation is a hybrid
between the Rhino and Grasshopper contexts. For that reason, the hypothesis was taken that users
most familiar with both Rhino and Grasshopper could be considered as most “familiar” with this
context. This is why we will study this context by grouping the subjects by their average experience in
Rhino and Grasshopper, as explained on page 29 .

Survey data

Studying the survey data for the Hybrid context based on subject average level in Rhino and
Grasshopper reveals:

 The only clear trend that can be observed is that in the survey conducted at the end of the
experiment, more experienced users rated their ability to understand the design logic in this
implementation as higher than les experienced users.

 Of all the categories, the level of satisfaction is the most consistent between the surveys and
most homogenous within and among the different subject groups.

 While there are differences between the subject groups, the differences in the 2 surveys as
well as the small sample size and the impact of the order makes drawing any other conclusions
impossible.

From this data we can see that while the answers vary greatly from person to person, the link between
these answers and previous experience in Rhino and Grasshopper is far from clear and looking at
the survey data grouped by the various other software as can be seen in the appendix (20-27) reveals
a link in no other software or category such as BIM or modelling either. The most definitive impact
on the answers is in fact the order in which the subjects did this implementation as can be seen in
Section 5.2 and Appendix 28-1.

Furthermore, given that independently of these variations from subject to subject they all appeared
similarly satisfied with their ability to achieve their desired outcome (particularly as stated at the
end of the experiment), this lends further credence to the hypothesis that in practice the context of
interaction and a user’s previous experience with it have no or a limited impact on their ability to
effectively use a computational design logic, especially given the relatively poor implementation in
this case comparatively to the other 2 and the problems that arose from it as explained in section
5.1.1.

Figure 5.5-5 : Hybrid survey data by average Rhino-GH level

Page 61 of 108

Number of iterations

From the detailed study of the number of iterations in the Hybrid context, based on subjects’ average
proficiency in both Rhino and Grasshopper (Figure 5.5-6), the following observations can be made:

 More experienced subjects spent less time interacting in this context compared to less
experienced subjects.

 More experienced subjects also interacted with the design logic at a lower average rate,
although this rate of interaction occasionally spiked and matched or even surpassed that of
lower-level subject groups. This indicates that in this implementation, the rate of interaction
was not constant across the duration of the interaction in the context.

 The highest spikes in the number of iterations across the parameters can be seen in the
parameters used to explore variations of the established conditions and the average numbers
were substantially higher in the Novice subject group compared to the higher-level subject
groups.

Observing the study of the number of iterations in this context based on proficiency levels in the
different software (Appendix 20 to Appendix 27) reveals that Rhino and Grasshopper were indeed the
software where the biggest differences could be seen between subject groups of different software
proficiency levels, but also that differences could be seen based on subjects BIM proficiency (Appendix
26-2), but with opposite trends as those seen here.

Figure 5.5-6 : Detailed study of the number of iterations in the Hybrid context, by average Rhino and Grasshopper level

Page 62 of 108

Number of modification phases

The detailed study of the number of modification phases in the Hybrid context, by average Rhino and
Grasshopper proficiency, (Figure 5.5-7) reveals no observations different than those already discussed
in the previous section. Observing the evolution of the rate over time shows just how variable the
behavior of interaction from subject to subject was in this implementation.

Comparing to the different analysis based on proficiency level in the other software, we can again see
that Rhino and Grasshopper are indeed the software in which a subjects proficiency level impacts their
interaction in this context of implementation the most, and that although BIM proficiency also seems
to be correlated based on the harvested data, its impact has the opposite effect, with more
experienced users changing between parameters at a higher rate.

Figure 5.5-7 : Detailed study of the number of modification phases in the Hybrid context, by average Rhino and Grasshopper level

Page 63 of 108

Number of unique values

Looking at the detailed study of the number of unique values in the Hybrid context, by average Rhino
and Grasshopper level, (Figure 5.5-8) the same observations can be made, albeit to a lesser extent.
This can be explained by the fact that as we can see by observing the evolution of the rate over time,
after a certain amount of time for each façade, the rate at which users explore new unique values
decreases as the converge on their final solution which is usually composed of previously explored
values for the different parameters. As such longer periods of time spent on the interaction do not
have as great an impact on the various significant values we can observe in the dashboard.

Figure 5.5-8 : Detailed study of the number of unique values in the Hybrid context, by average Rhino and Grasshopper level

Page 64 of 108

5.5.3. Rhino
As in the previous 2 sections, we will investigate if subjects more experienced in Rhino truly benefitted
from that experience when it came to interacting with a computational design logic within its context.

Survey data

Studying the survey data for the interactions done in Rhino, with subjects grouped by Rhino level,
(Figure 5.5-9) we can see that while there are certainly large differences between the answers given
by different subjects, grouping the subjects by their experience in Rhino reveals no clear trend. This
might be partly explained by the impact the order in which the subjects interacted with this
implementation had on their appreciation of it, as discussed in section 5.3 and can be seen in Appendix
37-1.

Comparing this observation to the survey data grouped by proficiency levels in the other software, we
can see that it is when grouping the subjects by average proficiency in “classic” modeling software
(Appendix 36-1) that the greatest link can be found between their answers and their stated proficiency
level, with a positive correlation across all the categories (especially for Ease of Use) although the
differences are minimal so this could very well be attributed to the order in which the subjects did the
interaction or other factors altogether, given the small sample size.

Figure 5.5-9 : Rhino survey data by Rhino level

Page 65 of 108

Number of iterations

From the detailed study of the number of iterations in Rhino, grouping subjects by their stated
proficiency in Rhino, (Figure 5.5-10), we can see that:

 For a similar amount of time spent on the interaction, more experienced subjects interacted
with the logic at a lower average rate.

 More experienced subjects also interacted with the different parameters more evenly,
although this observation is highly influenced by outliers in the lower-level subject groups and
may be a product of the small sample size.

 Across all subject groups, the rate of interaction of interaction gradually increased and
peaked towards the end of use.

From this study based on our harvested data, we can conclude that while experience in Rhino did
impact the behavior of interaction, it was not in a way that was detrimental to less experienced
subjects. Furthermore, the differences between subject groups seem to be mainly attributed to the
higher use in less experienced subject groups of parameters that generated variations of solutions
based on the established conditions, and this higher use was concentrated towards the end of the use
of the logic for a given design problem.

We can then affirm that by looking at this study variable and our harvested data, lack of familiarity
with this interaction context is not an obstacle to the effective use of computational design logic.

Figure 5.5-10 : Detailed study of the number of iterations in Rhino, by Rhino level

Page 66 of 108

Modification Phases

The detailed study of the number of modification phases in Rhino, based on Rhino level, (Figure 5.5-11)
reveals much of the same observations as in the study of the number of iterations done previously,
albeit with less pronounced differences between subject groups, especially when it comes to how
evenly the subjects switched between all the different parameters.

From this study variable and our harvested data, we find no indication that lack of experience in this
context is an obstacle to the use of computational design logic within it.

Figure 5.5-11 : Detailed study of the number of modification phases in Rhino, by Rhino level

Page 67 of 108

Unique values

The detailed study of the number of unique values in Rhino, by Rhino level (Figure 5.5-12) reveals only
a slight tendency that the more experienced users have of exploring unique values across the
parameters more evenly. We can also see differences between subject groups in how the rate evolves
during the exercise, although these differences are not echoed in the average values of the rates.

Figure 5.5-12 : Detailed study of the number of unique values in Rhino, by Rhino level

Page 68 of 108

6. Results and discussions
By looking at the different results across the several ways the data was analyzed, even given our
limited sample size and other factors prohibiting us from making definitive conclusions, we can at least
state the following:

1. Across the test subjects and independently from the order in which they interacted with the
different implementations, it seems that one’s familiarity with a given context of interaction
mattered less than one’s previous experience with computational design logic, as could
notably be observed in the users who only had experience with Rhino.

2. While previous familiarity with a context of implementation or computational design tended
to lead to quicker initial interaction with the logic, over the course of the experiment the
differences between different skill or familiarity levels became less and less pronounced
with there often being no discernible difference that could be attributed to that factor
towards the end of the interaction.

3. Independently of skill level, familiarity or order of interaction, the interactions in
Grasshopper where consistently rated higher and saw higher values across the three study
variables. This shows the impact that the user interface can have, although it should be noted
that while a given user interface may lead to higher interaction rates in the discovery phase
of a computational design logic and may help users to better understand it, this same user
interface may not be ideal when it comes to actual production use of the same logic, as
expressed by several of the test subjects. A longer experiment with a clear given objective on
which to use a computational design logic would explore that hypothesis.

4. The difference in behavior between a subject’s first and second interaction varied
significantly, with subjects spending on average twice the amount of time on the first
interaction where the discovered the computational design logic. While varying the order in
which the subjects did the interactions mitigates this issue, by not disregarding this data or
performing another type of analysis, this further corrupts any conclusions we could hope to
make, in addition to the issues due to the small sample size.

Page 69 of 108

7. Conclusion
The aim of this study was to investigate and attempt to measure the impact that the familiarity with
a context of interaction had on a subject’s use of a computational design logic.

The experiment and consequent analysis focused on the way subjects interacted with the exposed
parameters of the design logic, by harvesting a detailed log of the interactions, and then comparing
the interactions by grouping users by software proficiency level or order of interaction.

The proposed study metrics based on the raw data were the number of iterations, the number of
modification phases and number of unique values across the duration of the interactions. These
metrics were proposed and devised by me, and while they did reveal differences between the subject
groups and contexts of interaction, they were quite corelated with one another on average and
revealed only slight nuances that given the small sample size cannot be considered significant.

An improvement could be made by conducting either longer experiments, or by substantially
increasing the sample size and subject pool, ideally both, with the advantage that the tools created
for this study were made with this in mind, so this could be done with little additional effort apart
from conducting the experiments.

Another improvement could be made by also categorizing the parameters, for instance by grouping
them between boundary conditions, global parameters and variation drivers which would allow a
better interpretation of the differences between the implementations and the different results (i.e.
are the higher number of iterations in grasshopper due to an increase in all these categories compared
the other implementations or did the subjects simply generate a higher number of variations by
playing with the sliders).

While this subject merits further research, the amount of effort necessary to conduct the amount and
kind of experiments that this work attempted falls far beyond the scope of this work, which only aimed
to test experiment protocols, especially concerning the data harvesting, cleaning, engineering and
visualization tools that where created to conduct the analysis.

Page 70 of 108

8. References
Aish, R., & Bredella, N. (2017). The evolution of architectural computing: From Building Modelling to

Design Computation. Architectural Research Quarterly.

Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in architecture: Defining parametric,
generative, and algorithmic design.

Calixte, X. (2021). Les outils dans l'activité collective médiatisée en conception : traçabilité des usages
au sein du processus de conception architecturale.

Calixte, X., Rajeb, B., & Leclercq, P. (2018). Traçabilité de l’usage des outils de conception dans un
processus collaboratif. .

Carpo, M. (2017). The second digital turn: design beyond intelligence. MIT Press.

Charef, R., Emmitt, S., Alaka, H., & Fouchal, F. (2019). Building Information Modelling adoption in the
European Union: An overview. Journal of Building.

Cristie, V., Ibrahim, N., & Joyce, S. C. (2021). CAPTURING AND EVALUATING PARAMETRIC DESIGN
EXPLORATION IN A COLLABORATIVE ENVIRONMENT: A study case of versioning for parametric
design. 26th International Conference of the Association for Computer-Aided Architectural
Design Research in Asia (CAADRIA). 2, pp. 131-140. Hong Kong: CAADRIA.

Dautremont, C., Jancart, S., Dagnelie, C., & Stals, A. (2019). Parametric design and BIM, systemic tools
for circular architecture.

Davis, D. (2011). Datamining Grasshopper. Retrieved from https://www.danieldavis.com/datamining-
grasshopper/

Davis, D. (2013). Modelled on Software Engineering: Flexible Parametric Models in the Practice of
Architecture.

Davis, D. (2020). Architects versus Autodesk. ARCHITECT magazine, American Institute of Architects.

Davis, D. (2021). CAD’s Boring Future and Why it’s Exciting. Retrieved from
https://www.danieldavis.com/cads-boring-future/

de Boissieu, A. (2020). Superusers or super-specialists? Mapping the catalysts for the digital
transformation of architectural practices.

de Boissieu, A. (2021). Architecture et pratiques orientées sur les données : Pour un décloisonnement
du BIM et du design computationnel. In Anticrise architecturale, Analyse d'une discipline
immergée dans un monde numérisé (pp. 237-248). PUL Presses Universitaires de Louvain.

de Boissieu, A. (2022). Introduction to Computational Design: Subsets, Challenges in Practice and
Emerging Roles. In M. Bolpagni, R. Gavina, & D. Ribeiro, Industry 4.0 for the Built Environment.
Structural Integrity, vol 20 (pp. 55-75). Springer, Cham.

Deutsch, R. (2019). Superusers: design technology specialists and the future of practice. Routledge.

Fok, W., & Picon, A. (2016). Digital property: open-source architecture. Wiley.

Gallas, M.-A., Jacquot, K., Jancart, S., & Delvaux, F. (2015). Parametric Modeling: An Advanced Design
Process for Architectural Education.

Page 71 of 108

Menges, A., & Ahlquist, S. (2011). Computational Design Thinking. Wiley.

Otjacques, B. (2008). Techniques de visualisation des informations associées à une plate-forme de
coopération.

Oxman, R. (2017). Thinking difference: Theories and models of parametric design thinking.

Peters, B., & De Kestelier, X. (2013). Computation works: the building of algorithmic thought. Wiley.

Ribeirinho, M. J., Mischke, J., Strube, G., Sjödin, E., Blanco, J. L., Palter, R., . . . Andersson, T. (2020,
June). The next normal in construction: How disruption is reshaping the world’s largest
ecosystem. McKinsey & Company.

Stals, A. (2019). Pratiques numériques émergentes en conception architecturale dans les bureaux de
petite taille – Perceptions et usages de la modélisation paramétrique. Thèse de doctorat,
Université de Liège.

Stals, A., Elsen, C., & Jancart, S. (2017). Practical Trajectories of Parametric Tools in Small and Medium
Architectural Firms.

Terzidis, K. (2006). Algorithmic Architecture. Architectural Press.

Terzidis, K. (2011). Algorithmic Form. In A. Menges, & S. Ahlquist, Computational Design Thinking.
Wiley.

Van der Zee, A., & De Vries, B. (2008). Design by computation. GENERATIVE ART CONFERENCE, 11, pp.
35-37.

Vrouwe, I., Dissaux, T., Jancart, S., & Stals, A. (2020). Concept Learning Through Parametric Design : A
Learning Situation Design for Parametric Design in Architectural Studio Education. Education
and research in Computer Aided Architectural Design in Europe eCAADe20. Berlin.

Page 72 of 108

9. Appendix
Appendix 1 : Average by AutoCAD

Appendix 1-1 : Average survey data by AutoCAD

Appendix 1-2 : Average iterations by AutoCAD level

Appendix 1-3 : Average modification phases by AutoCAD level

Appendix 1-4 : Average Unique values by AutoCAD level

Page 73 of 108

Appendix 2 : Average by SketchUp

Appendix 2-1 : Average survey results by SketchUp

Appendix 2-2 : Iterations by SketchUp level

Appendix 2-3 : Modification phases by SketchUp level

Appendix 2-4 : Unique values by SketchUp level

Page 74 of 108

Appendix 3 : Average by Rhino

Appendix 3-1 : Survey data by Rhino level

Appendix 3-2 : Iterations by Rhino level

Appendix 3-3 : Modification phases by Rhino level

Appendix 3-4 : Unique values by Rhino level

Page 75 of 108

Appendix 4 : Average by Grasshopper

Appendix 4-1 : Average survey data by Grasshopper level

Appendix 4-2 : Iterations by Grasshopper level

Appendix 4-3 : Modification phases by Grasshopper level

Appendix 4-4 : Unique values by Grasshopper level

Page 76 of 108

Appendix 5 : Average by Archicad

Appendix 5-1 : Average survey data by Archicad level

Appendix 5-2 : Iterations by Archicad level

Appendix 5-3 : Modification phases by Archicad level

Appendix 5-4 : Unique values by Archicad level

Page 77 of 108

Appendix 6 : Average by Revit

Appendix 6-1 : Survey data by Revit level

Appendix 6-2 : Iterations by Revit level

Appendix 6-3 : Modification phases by Revit level

Appendix 6-4 : Unique values by Revit level

Page 78 of 108

Appendix 7 : Average by BIM

Appendix 7-1 : Survey data by BIM level

Appendix 7-2 : Iterations by BIM level

Appendix 7-3 : Modification phases by BIM level

Appendix 7-4 : Unique values by BIM level

Page 79 of 108

Appendix 8 : Average by Modeling

Appendix 8-1 : Survey data by Modeling level

Appendix 8-2 : Iterations by Modeling level

Appendix 8-3 : Modification phases by Modeling level

Appendix 8-4 : Unique values by Modeling level

Page 80 of 108

Appendix 9 : Average by Order

Appendix 9-1 : Survey results by order

Appendix 9-2 : Global Iterations by order

Appendix 9-3 : Modification phases by order

Appendix 9-4 : Unique values by order

Page 81 of 108

Appendix 10 : Average by Context

Appendix 10-1 : Survey results by context

Appendix 10-2 : Iterations by context

Appendix 10-3 : Modification phases by context

Appendix 10-4 : Unique values by context

Page 82 of 108

Appendix 11 : Grasshopper by AutoCAD

Appendix 11-1 : Grasshopper survey results by AutoCAD level

Appendix 11-2 : Grasshopper-Iterations by AutoCAD level

Appendix 11-3 : Grasshopper-Modification phases by AutoCAD level

Appendix 11-4 : Grasshopper-Unique values by AutoCAD level

Page 83 of 108

Appendix 12 : Grasshopper by SketchUp

Appendix 12-1 : Grasshopper survey results by SketchUp level

Appendix 12-2 : Grasshopper-Iterations by SketchUp level

Appendix 12-3 : Grasshopper-Modification phases by SketchUp level

Appendix 12-4 : Grasshopper-Unique values by SketchUp

Page 84 of 108

Appendix 13 : Grasshopper by Rhino

Appendix 13-1 : Grasshopper survey results by Rhino level

Appendix 13-2 : Grasshopper-Iterations by Rhino level

Appendix 13-3 : Grasshopper-Modification phases by Rhino level

Appendix 13-4 : Grasshopper-Unique values by Rhino level

Page 85 of 108

Appendix 14 : Grasshopper by Grasshopper

Appendix 14-1 : Grasshopper survey by Grasshopper level

Appendix 14-2 : Grasshopper-Iterations by Grasshopper level

Appendix 14-3 : Grasshopper-Modification phases by Grasshopper level

Appendix 14-4 : Grasshopper-Unique values by Grasshopper level

Page 86 of 108

Appendix 15 : Grasshopper by Archicad

Appendix 15-1 : Grasshopper survey data by Archicad level

Appendix 15-2 : Grasshopper-Iterations by Archicad level

Appendix 15-3 : Grasshopper-Modification phases by Archicad level

Appendix 15-4 : Grasshopper-Unique values by Archicad level

Page 87 of 108

Appendix 16 : Grasshopper by Revit

Appendix 16-1 : Grasshopper survey data by Revit level

Appendix 16-2 : Grasshopper-Iterations by Revit level

Appendix 16-3 : Grasshopper-Modification phases by Revit level

Appendix 16-4 : Grasshopper-Unique values by Revit level

Page 88 of 108

Appendix 17 : Grasshopper by BIM

Appendix 17-1 : Grasshopper survey data by BIM level

Appendix 17-2 : Grasshopper-Iterations by BIM level

Appendix 17-3 : Grasshopper-Modification phases by BIM level

Appendix 17-4 : Grasshopper-Unique values by BIM level

Page 89 of 108

Appendix 18 : Grasshopper by Modeling

Appendix 18-1 : Grasshopper survey data by Modeling level

Appendix 18-2 : Grasshopper-Iterations by Modeling level

Appendix 18-3 : Grasshopper-Modification phases by Modeling level

Appendix 18-4 : Grasshopper-Unique values by Modeling level

Page 90 of 108

Appendix 19 : Grasshopper by Order

Appendix 19-1 : Grasshopper survey data by order

Appendix 19-2 : Grasshopper-Iterations by order

Appendix 19-3 : Grasshopper-Modification phases by order

Appendix 19-4 : Grasshopper-Unique values by order

Page 91 of 108

Appendix 20 : Hybrid by AutoCAD

Appendix 20-1 : Hybrid survey data by AutoCAD level

Appendix 20-2 : Hybrid-Iterations by AutoCAD level

Appendix 20-3 : Hybrid-Modification phases by AutoCAD level

Appendix 20-4 : Hybrid-Unique values by AutoCAD level

Page 92 of 108

Appendix 21 : Hybrid by SketchUp

Appendix 21-1 : Hybrid survey data based on SketchUp level

Appendix 21-2 : Hybrid-Iterations by SketchUp level

Appendix 21-3 : Hybrid-Modification phases by SketchUp level

Appendix 21-4 : Hybrid-Unique values by SketchUp level

Page 93 of 108

Appendix 22 : Hybrid by Rhino

Appendix 22-1 : Hybrid survey data by Rhino level

Appendix 22-2 : Hybrid-Iterations by Rhino level

Appendix 22-3 : Hybrid-Modification phases by Rhino level

Appendix 22-4 : Hybrid-Unique values by Rhino level

Page 94 of 108

Appendix 23 : Hybrid by Grasshopper

Appendix 23-1 : Hybrid survey data by Grasshopper level

Appendix 23-2 : Hybrid-Iterations by Grasshopper level

Appendix 23-3 : Hybrid-Modification phases by Grasshopper level

Appendix 23-4 : Hybrid-Unique values by Grasshopper level

Page 95 of 108

Appendix 24 : Hybrid by Archicad

Appendix 24-1 : Hybrid survey data by Archicad level

Appendix 24-2 : Hybrid-Iterations by Archicad level

Appendix 24-3 : Hybrid-Modification phases by Archicad level

Appendix 24-4 : Hybrid-Unique values by Archicad level

Page 96 of 108

Appendix 25 : Hybrid by Revit

Appendix 25-1 : Hybrid survey data by Revit level

Appendix 25-2 : Iterations by Revit level

Appendix 25-3 : Hybrid-Modification phases by Revit level

Appendix 25-4 : Hybrid-Unique values by Revit level

Page 97 of 108

Appendix 26 : Hybrid by BIM

Appendix 26-1 : Hybrid survey data by BIM level

Appendix 26-2 : Hybrid-Iterations by BIM level

Appendix 26-3 : Hybrid-Modification phases by BIM level

Appendix 26-4 : Hybrid-Unique values by BIM level

Page 98 of 108

Appendix 27 : Hybrid by Modeling

Appendix 27-1 : Hybrid survey data by Modeling level

Appendix 27-2 : Hybrid-Iterations by Modeling level

Appendix 27-3 : Hybrid-Modification phases by Modeling level

Appendix 27-4 : Hybrid-Unique values by Modeling level

Page 99 of 108

Appendix 28 : Hybrid by Order

Appendix 28-1 : Hybrid survey data by order

Appendix 28-2 : Hybrid-Iterations by order

Appendix 28-3 : Hybrid-Modification phases by order

Appendix 28-4 : Hybrid-Unique values by order

Page 100 of 108

Appendix 29 : Rhino by AutoCAD

Appendix 29-1 : Rhino survey data by AutoCAD level

Appendix 29-2 : Rhino-Iterations by AutoCAD level

Appendix 29-3 : Rhino-Modification phases by AutoCAD level

Appendix 29-4 : Rhino-Unique values by AutoCAD level

Page 101 of 108

Appendix 30 : Rhino by SketchUp

Appendix 30-1 : Rhino survey data by SketchUp level

Appendix 30-2 : Rhino-Iterations by SketchUp level

Appendix 30-3 : Rhino-Modification phases by SketchUp level

Appendix 30-4 : Rhino-Unique values by SketchUp level

Page 102 of 108

Appendix 31 : Rhino by Rhino

Appendix 31-1 : Rhino survey data by Rhino level

Appendix 31-2 : Rhino-Iterations by Rhino level

Appendix 31-3 : Rhino-Modification phases by Rhino level

Appendix 31-4 : Rhino-Unique values by Rhino level

Page 103 of 108

Appendix 32 : Rhino by Grasshopper

Appendix 32-1 : Rhino survey data by Grasshopper level

Appendix 32-2 : Rhino-Iterations by Grasshopper level

Appendix 32-3 : Rhino-Modification phases by Grasshopper level

Appendix 32-4 : Rhino-Unique values by Grasshopper level

Page 104 of 108

Appendix 33 : Rhino by Archicad

Appendix 33-1 : Rhino survey data by Archicad level

Appendix 33-2 : Rhino-Iterations by Archicad level

Appendix 33-3 : Rhino-Modification phases by Archicad level

Appendix 33-4 : Rhino-Unique values by Archicad level

Page 105 of 108

Appendix 34 : Rhino by Revit

Appendix 34-1 : Rhino survey data by Revit level

Appendix 34-2 : Rhino-Iterations by Revit level

Appendix 34-3 : Rhino-Modification phases by Revit level

Appendix 34-4 : Rhino-Unique values by Revit level

Page 106 of 108

Appendix 35 : Rhino by BIM

Appendix 35-1 : Rhino survey data by BIM level

Appendix 35-2 : Rhino-Iterations by BIM level

Appendix 35-3 : Rhino-Modification phases by BIM level

Appendix 35-4 : Rhino-Unique values by BIM level

Page 107 of 108

Appendix 36 : Rhino by Modeling

Appendix 36-1 : Rhino survey data by Modeling level

Appendix 36-2 : Rhino-Iterations by Modeling level

Appendix 36-3 : Rhino-Modification phases by Modeling level

Appendix 36-4 : Rhino-Unique values by Modeling level

Page 108 of 108

Appendix 37 : Rhino by Order

Appendix 37-1 : Rhino survey data by order

Appendix 37-2 : Rhino-Number of iterations by order

Appendix 37-3 : Rhino-Modifications phases by order

Appendix 37-4 : Rhino-Unique values by order

