
http://lib.ulg.ac.be http://matheo.ulg.ac.be

Internet of Things: WLAN Connected Thermostat

Auteur : Takougoum Fonkoua, Thierry

Promoteur(s) : Kraft, Michael

Faculté : Faculté des Sciences appliquées

Diplôme : Master en ingénieur civil électricien, à finalité approfondie

Année académique : 2015-2016

URI/URL : http://hdl.handle.net/2268.2/1651

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

Faculty of Applied Science

Department of Electrical Engineering and Computer Science

Internet of Things:
WLAN Connected Thermostat

Author:
Thierry Takougoum Fonkoua

A thesis submitted in fulfillment of the requirements
for the degree of Master in Electrical Engineering

2015-2016 Academic Year

i

Faculty of Applied Science

Department of Electrical Engineering and Computer Science

Internet of Things:
WLAN Connected Thermostat

Author:
Thierry Takougoum Fonkoua

A thesis submitted in fulfillment of the requirements
for the degree of Master in Electrical Engineering

Panel of examiners:

Prof. Michael Kraft University of Liège Supervisor
Prof. Philippe Vanderbemden University of Liège Examiner
Prof. Benoit Vanderheyden University of Liège Examiner
Dr. Fabrice Axisa University of Liège Examiner
Dr. Philippe Laurent University of Liège Examiner

2015-2016 Academic Year

http://www.montefiore.ulg.ac.be/~mk/

i

Abstract

In the context of the emerging Internet of Things, the project aims at investigating
whether a standard programmable radiator thermostat can be converted into a WLAN
connected device that can be connected to a standard home WiFi router. A software
application is supposed to be developed to control the thermostat remotely.

Based on the main features of electronic thermostats on the market, it was possible to
define a basic model . The ESP8266-01, a low-power WiFi transceiver was then added
to the basic module to add the connectivity. The relatively low cost of the WiFi module
has allowed to show that it is possible to develop low cost connected objects and free
them from a central gateway that is found very often in this type of projects.

A web application was develop to control remotely the electronic board via the Internet.
The database behind the web application allows the thermostat and users to easily
exchange data. To reduce the power consumption, the micro-controller and WiFi module
programs allow them to be in the sleep mode much of the time . They come out of this
mode to execute an operation and then immediately go back in the sleep mode. In
addition a small learning algorithm was develop to allow the thermostat to function
fairly accurately.

The prototype test stages highlight the main features of the thermostat. It is a low
power device powered by battery. It can be connected directly to the WLAN, can
automatically get an IP address. It can be controlled from any place through the Internet.
A comparative study between its operation and two other types of thermostat allowed
to measure the potential energy savings it brings.

ii

Acknowledgements
I would like to express my special thanks to Prof. Michael Kraft for giving me the
opportunity to work in this thesis and for all his advices.

I would also want to express my gratitude to all the staff of the Montefiore Institute for
all the knowledge and experience they brought me.

Finally I would like to thanks my family for their encouragements, especially my wife
for the support for years.

iii

Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures vi

List of Tables viii

List of Abbreviations ix

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Goal . 2
1.4 Outline of the work . 3

2 Background Iinformation and Theory 4
2.1 IoT: Intenet of Things . 4

2.1.1 History and Definitions . 4
2.1.2 Fields of Application . 6

2.2 IoT Architecture Layers . 8
2.3 State of the Art . 9

2.3.1 The Radiator Thermostat . 9
Mechanical Valve . 9
The Electronic Thermostat . 9

2.3.2 Smart-Thermostats market . 10
2.3.3 Examples of Connected Thermostats 10

eQ3-MAX! . 11
The Honeywell Evohome THR992GRT 12

3 Hardware Design 13
3.1 Block Diagriam . 13
3.2 The Microcontroller Unit . 14
3.3 The Connectivity Module . 18

3.3.1 Choice of the Module . 18
3.3.2 The ESP8266-01 . 21

General Overview [22] . 21
Specifications . 22

iv

Major Applications . 23
3.4 The Inputs . 24

3.4.1 The Temperature Sensor . 24
3.4.2 The Keyboard . 25
3.4.3 The Battery Level Sensor . 25

3.5 The Outputs . 27
3.5.1 The UART . 27
3.5.2 The LCD Display . 28
3.5.3 The DC Motor Driver . 29

3.6 The Power Supply . 30
3.7 The PCB Design . 32

4 Software Design 36
4.1 The Flow Chart . 36

4.1.1 The MCU Flow Chart . 36
4.1.2 The ESP8266 Flow Chart . 38

4.2 The Database and Website Interface . 40
4.2.1 The DataBase . 40
4.2.2 The Website Interface . 41

4.3 The MCU Code . 43
4.3.1 The Learning Algorithm . 43
4.3.2 The Main Code . 43

4.4 The ESP8266 . 44
4.4.1 The Lua Language . 44
4.4.2 NodeMCU . 44
4.4.3 The ESP8266 Code . 45

init.lua . 46
openUart.lua . 46
connect.lua . 46
thermo.lua . 47
Deep Sleep Mode . 48

5 Experimental Results and Discussion 49
5.1 The Thermostat . 49
5.2 The Power Consumption . 50
5.3 Energy Saving Estimation . 53

6 Conclusion 55
6.1 Contribution . 55
6.2 Prospect . 56

A PIC18LF25K50 main features 57

B The ESP8266 Electronic Schematic 59

C The Code of the Web Interface 60
C.1 index.php . 60
C.2 temperature.php . 61

v

C.3 TemperatureController.php . 62
C.4 TemperatureRepository.php . 63
C.5 Connection.php . 65

D The PIC18LF45K20 Code 66
D.1 Includes.h . 66
D.2 ISR.c . 66
D.3 lcd.h . 67
D.4 UART.c . 69
D.5 main.c . 70

Bibliography 78

vi

List of Figures

2.1 Technology road map of objects . 5
2.2 Connecting the world . 5
2.3 Application fields . 6
2.4 IoT market trends . 7
2.5 IoT layers . 8
2.6 Mechanical thermostat . 9
2.7 Connected thermostat manufacturers . 11
2.8 eQ3-MAX! . 11
2.9 Honeywell evohome THR992GRT . 12

3.1 Hardware block diagram . 14
3.2 CPU sleep mode power reduction . 17
3.3 The PIC18LF45K50 family block diagram 18
3.4 The ESP8266 family module . 21
3.5 The ESP8266-01 module and pinout . 22
3.6 LM335 pin-out and calibrated schematic 24
3.7 Debounced circuit and push-button with pull-down resistor 25
3.8 Duracell MN1203 typical discharge characteristics 26
3.9 Duracell MN1203 typical discharge characteristics 26
3.10 Duracell MN1203 typical discharge characteristics 27
3.11 UART connection between the MCU and the ESP8266 28
3.12 DOGS102 LCD Graphic Display . 29
3.13 The DC-motor driver . 30
3.14 The H-bridge IC LB1938FA . 31
3.15 Power supply block diagram . 31
3.16 Electronic schematic . 33
3.17 The printed circuit design . 34
3.18 The printed circuit with and without the ground plane 34
3.19 Component side . 35
3.20 Solder side . 35

4.1 The MCU flow chart . 37
4.2 The ESP8266 flow chart . 39
4.3 Design of the database with phpMyAdmin 41
4.4 A view of the web page interface . 42
4.5 Learning algorithm flow chart . 43
4.6 The end-user connection portal . 45
4.7 ESP8266-01 hardware connection to enable deep-sleep 48

vii

5.1 Measurements on the stripboard . 50
5.2 Measurement of the Tx/Rx current consumption 50
5.3 Measurement of the Tx/Rx duration . 51

viii

List of Tables

3.1 Low Power Family examples from 3 manufacturers 16
3.2 MCU Power Management comparison . 17
3.3 WiFi modules comparison . 20
3.4 H-bridge truth table . 30

ix

List of Abbreviations

IoT Internet of Things
HVAC Heating Ventilation And Cooling
HMI Human- Machine Interface
WLAN Wireless-Local Area Network
BPM Business Process Management
BRM Business Rules Management
BSS Billing Support System
OSS Operational Support System
MCU Micro-Controller Unit
ICSP In-Circuit Serial Programming
GPIO General Purpose Input Output
UART Universal Asynchronous Receiver/Transmitter
RX Receiver
TX Transmitter

‘

1

Chapter 1

Introduction

1.1 Background

In recent years, the field of home automation has been subject of a particular interest
to researchers, manufacturers as well as consumers who are recipients of new products.
This interest can be explained primarily by the contribution in terms of comfort and time
savings [2] associated to these products. Although it was destined to a bright future,
home automation has never fully imposed itself in homes. Is this due to the technology?
Is this due to a simple problem of acceptance? Today, thanks to the significant devel-
opment of the Internet and telecommunications technologies, and particularly with the
democratization of some technologies across smart-phones, one can witness a new orien-
tation of a number of research in the field of home automation. For some researchers,
the aim of technological development must not simply be the improvement of human
comfort but should also help making a healthier environment.

Nowadays, people are more likely to be aware that the future of energy is based on ef-
ficient use of that energy today. This awareness about energy consumption comes from
concern about its availability and its environmental impact, and has renewed interest
in finding more efficient ways to use it. Everything now goes through ways to consume
less and better. This efficient management should not be limited only to the indus-
try but to all energy consumption sectors and therefore the applications and consumer
equipments. Different scientific researches aim to contribute to the improvement of en-
ergy management in general and particularly in home HVAC (Heating Ventilation and
Cooling) systems.

Chapter 1. Introduction 2

1.2 Problem

The standard of living today can not be sustained without a sustainable management
of energy resources. Knowing the consequences of poor management of these resources
(blackout, energy war, ...), professionals encourage the use of more energy-efficient equip-
ments and also a responsibility of all users (industrial , large public ...). For Jiakang Lu
[15], HVAC are the largest source of residential energy consumption. He demonstrates
that using technology and investing only $25 in sensors, he can get to up to 28% en-
ergy saving on average. His study also notes that conventional systems often allow to
reduce by around 7% and in some cases are also responsible for the increase of energy
consumption.

Many electronic thermostats are based on the ability to program their operation in
advance. In fact they usually offer the ability to preset the operation for different time
periods (eg period of six hours, days, weeks,...). The problem is that the thermostat does
not follow in case of weather improvement and therefore can cause unnecessary energy
expenditure. Furthermore, practically all current "smart" radiator control valves require
a central gateway box that connects to the Internet. This makes such solutions relatively
expensive for the end user.

1.3 Goal

In the context of the emerging Internet of Things (IoT) also called Internet of Objects,
the project aims at investigating whether a standard programmable radiator thermostat
can be converted into a WLAN connected device that can directly be connected to a
standard home Wifi router. The idea is to build a digital thermostat prototype similar
to those found on the market but which will add a module to connect to the Internet.
A software application is supposed to be developed that can control the thermostat
remotely.

One problem with many numeric thermostats on the market is that they often lack
accuracy. The project also involves the implementation of a learning algorithm that will
allow thermostat to set the temperature with more accuracy and facilitate its adaptation
to any local.

In addition to the main features already defined , the following must apply to the system:

• low power device

• battery powered

Chapter 1. Introduction 3

• WLAN connected

• automatically obtain an IP address

• remote control

• similar size as those on the market

• low cost

The goal is achieved when the above requirements are met in the design.

1.4 Outline of the work

The thesis describes the design of the hardware and software parts of a connected ther-
mostat for home radiators. Results of tests on the designed board are presented and
discussed. The thesis is organised as follow:

• Chapter 2 describes the main concepts of interest (IoT, thermostats) and presents
a short review of the state of the art about connected thermostats.

• Chapter 3 is devoted to the design of the hardware part. A design by functional
blocks is implemented and main components are chosen.

• In Chapter 4 we discuss the software part of the project. Some approaches of IoT
software will be presented. A suitable one for the project will be chosen.

• Chapter 5 presents the experimental results and a discussion about the perfor-
mances of the thermostat.

• The last chapter, Chapter 6 gives the general conclusion of the thesis and presents
some ideas for future researches.

4

Chapter 2

Background Iinformation and Theory

2.1 IoT: Intenet of Things

2.1.1 History and Definitions

The Internet is nowadays the most powerful tool for information sharing. It has led to
profound changes in almost all aspects of human life. It is a global network of billions
of computers through which one can share information, communicate and more.

A thing in the context of IoT can simply be any object. It can be a chair with a pressure
sensor, a smart fridge, a tree in a farm, an animal with a transponder, an automobile that
has a built-in sensors to sense crashes and alert the emergency services, a bio-chemical
or implantable medical sensors, etc...

Kevin Ashton, cofounder and executive director of the Auto-ID Center at MIT, first
mentioned the Internet of Things in a presentation he made to Procter & Gamble in
1999. Here is how Ashton explains the potential of the Internet of Things: “Today
computers - and, therefore, the Internet - are almost wholly dependent on human beings
for information. Nearly all of the roughly 50 petabytes (a petabyte is 1,024 terabytes)
of data available on the Internet were first captured and created by human beings by
typing, pressing a record button, taking a digital picture or scanning a bar code.

The problem is, people have limited time, attention and accuracy – all of which means
they are not very good at capturing data about things in the real world. If we had
computers that knew everything there was to know about things – using data they
gathered without any help from us – we would be able to track and count everything
and greatly reduce waste, loss and cost. We would know when things needed replacing,
repairing or recalling and whether they were fresh or past their best.” In the following
Figure 2.1, we can see the evolution of technology related to objects: we left the RFID

Chapter 2. Background Iinformation and Theory 5

which was adapted for counting and tracking objects to move towards communication and
control objects, of course with the addition of the connectivity and embedded intelligence.

Figure 2.1: Development and Outlook of object related technology [4]

For Margaret Rouse [19], "The Internet of Things (IoT) is a system of interrelated
computing devices, mechanical and digital machines, objects, animals or people that are
provided with unique identifiers and the ability to transfer data over a network without
requiring human-to-human or human-to-computer interaction." The Figure 2.2, presents
another view of what IoT is. It can be simply view as a network where anything or anyone
from anywhere can be connected at anytime and share any information.

Figure 2.2: A view of what IoT is. [23]

Chapter 2. Background Iinformation and Theory 6

A more physically, the Internet of Things (IoT) is the network of physical objects or
“things” embedded with electronics, software, sensors, and network connectivity, which
enables these objects to collect and exchange data.

2.1.2 Fields of Application

As it is now known, any object can be a part of an IoT network, it is obvious that the fields
of application are unlimited since one can turn any object into a smart one. The diversity
of applications will affect almost all sectors including home and consumers, transport
and mobility, health and safety, buildings and infrastructure, energy, etc...Figure 2.3
gives a view of some of the application fields of the IoT.

Figure 2.3: Several fields of application of IoT [5]

The future of IoT sector is promising and there is a growing interest of many large com-
panies (automotive, energy , telecommunications, electronics, IT, biotechnology, etc...)
that are diversifying by opening up this market segment. The economic weight and in-
terest of some applications help to boost investment in research and development and

Chapter 2. Background Iinformation and Theory 7

Figure 2.4: A view of the IoT market evolution. [10]

sustainably install the uses of the IoT. Figure 2.4 shows a projection of market trends
in this sector.

One can observe a rapid change in the number of connected objects for years to come.
This can be explained by highlighting the benefits (increase of efficiency, reduction of
costs) of the connection of inert objects on the Internet. In one report in 2015, BI
Intelligence predicted that:

• IoT will be the largest market for devices in the world with tens of billions of
devices.

• As well as residential areas, business and government will be the main recipients
of the products.

Factors that could slow down the infatuation in the sector concern the cost and security
vulnerabilities. Indeed, the sector is still in the beginning of its development and all
is not yet standardized. Grant and Al [11] show that on a particular brand of smart
thermostat, it is possible for a hacker to use a smart-thermostat as an access point and
bypass all security barriers. The hacker then has access to the entire infrastructure. The
concern might be more pronounced because the manufacturer of this equipment is often
presented as the global industry leader and even a leader in the field of IT.

Chapter 2. Background Iinformation and Theory 8

2.2 IoT Architecture Layers

An in-depth look at the technologies accompanying the IoT allows to identify an architec-
ture model that has 4 main layers.Figure 2.5 represents a structure and some technologies
of a 4 layers architecture model.

Figure 2.5: IoT architecture with 4 layers

From bottom to top:

• Sensing and Identification Layer: this layer includes sensors, actuators, tags(RFID,
Barcode) The sensors are usually of low power, low data rate and real time.

• Network Construction Layer: it manages the local network and the connec-
tivity. Some devices can be connected directly to the Internet without passing
through a local gateway. The choice made here is efficient energy management
oriented since the devices are generally low power.

• Management Layer: create and manage services (configuration, performances,
data flow, security control, etc...) to satisfy users.

• Application Layer: provides interaction methods to users and applications.

Chapter 2. Background Iinformation and Theory 9

2.3 State of the Art

2.3.1 The Radiator Thermostat

The heating system of residential buldings assesses for more than 2/3 of the energy
consumption. In every day life, a few simple actions enable everyone to contribute to the
reduction of its energy consumption. To reduce energy costs related to heating systems,
it is advisable to adjust the heating on lower but comfortable temperatures. For example
it is shown that heating a room at 19◦C instead of 20◦C can reduce energy consumption
by nearly 7% while maintaining a good level of comfort. The thermostat is therefore the
key element to achieve this goal.

Mechanical Valve

The main function of the radiator manual valve is to open or close the supply of hot
water. It does not regulate the temperature therefore may lead to waste of energy.
The temperature sensor in a mechanical thermostatic valve (Figure 2.6) is made up of
two pieces of metal that are laminated together (bi-metal). Each type of metal has a
different rate of expansion when heated and cooled, which is what controls the thermostat
temperature. This regulation of the temperature allows substantial savings. For example
in case of improved weather conditions, the valve will reduce the amount of water flowing
through the radiator, reducing the amount of energy consumed .

Figure 2.6: schematic of a radiator valve [8]

The Electronic Thermostat

Most electronic thermostats, has features that allow them to better operate than me-
chanical valves. These features include:

Chapter 2. Background Iinformation and Theory 10

• a better regulation, because electronic temperature sensor are more accurate than
the bi-metal used in mechanical thermostat;

• a digital display that is a better HMI (human-machine interface);

• an electronic temperature sensor whose output can be directly used for enslave-
ment;

• a program mode that enables the user to predefine the operations over a long time
period.

Most of the time, electronic thermostats use as actuator DC motors to move the trans-
mission shaft. Those motor are often associated with a gearbox to reduce the rotation
speed and manage the transmission shaft of the valve easily.

One of the main disadvantages of electronic thermostats is that they require a source of
electrical power (usually batteries which level should be monitored and replaced when it
is necessary), which is not the case of mechanical thermostats.

2.3.2 Smart-Thermostats market

The future of the connected thermostats market is bright because users are increasingly
sensitized on the gain from the use of this technology. It is clear that thanks to the energy
saving potential of up to 30% announced by most manufacturers, the target audience will
respond in favor. Another very convincing argument is the return on investment because
the potential energy gain and money saving allow in a few years (usually 1 or 2 years)
to fully amortize the equipment. It is then understandable that the enormous economic
potential of this sector leads large multinationals to invest in the sector. Figure 2.7 shows
a classification of some smart thermostat leading manufacturers and their position in the
market.

This classification done by Navigant Research [18] examines the strategy and execution
of several smart thermostat manufacturers and software providers that are active in the
global smart thermostat market and rates them with an objective assessment of these
companies relative strengths and weaknesses in the global smart thermostat market.

2.3.3 Examples of Connected Thermostats

On the market, there is a multitude of connected thermostats which mostly uses the
electric grid to power the Internet gateway. Below are given two examples, one of which
is a product of a leader and one that also meets success.

Chapter 2. Background Iinformation and Theory 11

Figure 2.7: Main manufacturers and market positions [18]

eQ3-MAX!

The eQ3-MAX!(Figure 2.8) is a package consisting of a MAX!Cube which is the central
gateway for the local network, thermostatic valves and a wall thermostat.

Figure 2.8: eQ3-MAX! [1]

It allows the control of the heating system via the Internet. It is able to control up to
50 devices in 10 rooms. This set allows to control the central heating system through a
personal computer or a smart-phone. One of the main positive points of the EQ3-MAX!

Chapter 2. Background Iinformation and Theory 12

is that it is easy to install and configure through its own software. It works based on
a schedule programing and can be operated both manually and remotely. Its sensors
that detect opening windows inform the user and can adapt the heating operation. The
ECO switch reduces the temperature of all parts of a building upon exit and restore last
temperatures when it is reactivate.

The Honeywell Evohome THR992GRT

The Honeywell Evohome THR992GRT pack (Figure 2.9) consists of:

• a central programmable thermostat which is the core of the system

• a RFG100 gateway to control the system via a smart-phone

• one radiator valve

Figure 2.9: The Honeywell evohome THR992GRT [12]

The Evohome allows to independently adjust the temperature in different rooms (up to
12) with the possibility to preset in advance various periods schedules. it is not only
used to control the heat in a room but it can also control the production of hot water
for sanitary. Like other smart thermostats, Evohome learn how long it takes to heat a
room to define the optimal periods of start-up and shutdown. By using the app IFTTT
(If-This-Than-That), it can turn the heaters when a user leave a postal code.

13

Chapter 3

Hardware Design

The previous chapter set the foundation of a connected thermostat project. This chapter
will focus on the design of the hardware part of the project. To carry out an IoT project,
it is always necessary to define in advance some parameters to build a prototype and
estimate costs. Among those parameters, the most relevant are:

• the type of sensors/actuators

• the type of communication interface(s)

• amount of data to be captured and transmitted

• frequency of the data transmission

The methodology is to select the components and modules based on predefined selection
criteria. This chapter is organized into seven sections. The first presents an overview of
the system. The next two are respectively interested in the micro-controller unit (MCU)
and the radio module which together form the core of the project. Sections 4 and 5 deal
with Inputs/Outputs. The last two parts are interested in the power supply and design
of the PCB.

3.1 Block Diagriam

The electronic thermostat valve regulates the temperature by adequately controlling a
transmission shaft. Its HMI allows the user to manipulate it more easily. To perform its
functions, the thermostatic valve must have the following modules:

• a MCU to manage all system functions.

• connectivity module which is the interface between the electronic board and the
LAN.

• sensors(temperature, battery level).

Chapter 3. Hardware Design 14

• an actuator (DC-motor)

• a LCD Display to display information relevant to the user.

• an In-Circuit Serial Programming to program the MCU without having to remove
it from the board.

• a power supply to supply all the parts of the module.

Figure 3.1 shows the block diagram of the hardware part of the project.

Figure 3.1: Block diagram of the hardware

The next sections aim to choose the components of the various modules of the block
diagram.

3.2 The Microcontroller Unit

A MCU is a self-contained system with peripherals, memory and a processor that can
be used as an embedded system. All IoT devices have a MCU to manage the main
functions. For recall, an IoT device can be seen as a classical embedded system based
on a MCU with added connectivity.

Chapter 3. Hardware Design 15

MCU manufacturers in their catalogs usually have many different product ranges. The
choice of the most suitable MCU for a particular application is mainly based on technical
specifications provided by manufacturers in the device datasheets. The main criteria used
in the selection are:

• required hardware interfaces

• the software architecture

• the architecture

• the memory needed

• processing demand

• power constraints

• availability of development tools (hardware and software)

• speed

When it comes to design IoT devices, particular emphasis must be put on the power and
the memory needed.

Most well-known MCU manufacturers because of the enormous potential that represents
the progress of the IoT are opened to this market segment. The logical consequence is
the entrance into their catalogs of many oriented IoT devices among which low and extra
low power MCU. Indeed, most of those devices are battery-powered and must work as
long as possible without requiring a battery replacement.

It is not good enough to only look at main current consumption specifications while
selecting a low-power MCU. One should not only look for the MCU which has the lowest
power but should also look under what circumstances that occurs. Parameters that can
help to better assess the current consumption of a low-power device are:

• supply voltage range

• disabled peripheral(s)

• functioning mode (active, idle, sleep, deep sleep)

• operating speed

• state retention

• wake-up time

• wake-up sources

Chapter 3. Hardware Design 16

Table 3.1: Low Power Family examples from 3 manufacturers

STMicroelectronics
Ultra-low-power

STM8L

Microchip
eXtreme Low Power

Microchip Atmel
picoPower
Technology

Supply Voltage
Range (V) 1.65 to 3.6 1.8 to 5.5 1.8 to 5.5

Max Flash
Size(kB) 64 256 256

Internal RAM
Size (kB) 1 to 4 0.064 to 16384

Functionning
Features

Lowest power mode:
0.30 µA

Dynamic run mode:
180 µA/MHz

sleep currents
down to 9 nA
run currents

down to 30 µA/MHz

<35µA/MHz

Data
EEPROM 256 to 2048 bytes 256 to 1024 4096

Hardware
Interfaces

ADC
DAC

USART, SPI, I2C
RTC
Timers

Temperature sensor
Comparators

etc...

ADC
DAC

USART, SPI, I2C,
USB,
PWM

OPAMP
RTCC
Timers

Comparators
etc...

ADC
DAC

USART, SPI, I2 C,
PWM

OPAMP
RTCC
Timers

Comparators
etc...

Max Operating
Speed (MHz) 16 16 64

Table 3.1 presents some low-power MCU familly from three main manufacturers while
Table 3.2 compares some features of three MCU from these three manufacturers.

When working on battery-powered applications, one of the most important issue to
be taken into account is the battery life. Regular replacement of the battery is not
wanted thus its life needs to be as long as possible. This also presents an economic and
environmental advantages. As in most IoT applications, sensors repetitively collect data
at regular time intervals. It is no longer necessary to use the microprocessor all the
time. The power consumed by a MCU is the sum of a constant part (modules such as
regulators) independent of the frequency and a portion which varies with the frequency.

Chapter 3. Hardware Design 17

Table 3.2: MCU Power Management comparison

PIC18LF25K50 ATMEGA168P STM8L151F1
Flash(kB) 32 32 8
RAM (kB) 2 2 1.5

Pins 28 32 up to 48
Sleep (nA) 20 100 800

Deep Sleep (nA) - 100 300
WDT (nA) 300 3500 450
µA/MHz 110 300 150

Wakeup (µs) 5 - 5

To reduce power consumption, the operating frequency should be reduce to the lowest
possible value that is sufficient for the proper functioning of the application. The use of
the sleep mode also helps to significantly reduce consumption. As shown in Figure 3.2
the processor is used only a short time (active mode) to execute the code and then
disabled with all non necessary modules (sleep or deep sleep mode). The time taken to
go from sleep mode to active mode is an important feature because in this period energy
is lost: why the wake-up time is one of the criteria for selecting low-power MCU.

Figure 3.2: Active and Sleep mode of the CPU

Taking into account the selection criteria listed previously and the availability of develop-
ment tools (software, hardware, free MCU samples), the choice goes to the PIC18LF45K50
whose family block diagram is shown on Figure 3.3. The results of this work will be based

Chapter 3. Hardware Design 18

on this MCU whose main features are presented in AppendixA. The principles will be
the same for the other MCUs.

Figure 3.3: The PIC18LF45K50 family block diagram [17]

3.3 The Connectivity Module

The way an IoT object sends or receives data is a key aspect of the design of IoT devices.
There are many wireless connectivity technologies used in the IoT field (WiFi, LoRa,
Bluetooth, Infrared, Zigbee, LTE, NFC, BLE, Z-Wave, etc ...). To choose one specific
technology, some features should be taken in account among which:

• the range of the network

• the maximum data rate, to be sure to have enough bandwidth

• the frequency

• the available security protocols

• authentication

3.3.1 Choice of the Module

Connectivity is one of the intrinsic characteristics of IoT devices. The choice of a con-
nectivity (or transceiver) module must be done with special attention because with the

Chapter 3. Hardware Design 19

MCU, it is one of the core elements of the device. It provides connectivity between the
unit and the rest of the network. It should be noted that it is usually the largest source
of energy consumption in IoT devices. Some wireless communication integrated MCUs
often incorporate architectures to reduce power consumption but are not always suitable
for small projects.

In addition to the particular weight given to the electric characteristics, the criteria for
choosing a connectivity module, highlight other relevant characteristics including:

• the cost

• interface(s)

• protocol(s)

• sizes

• modes

• etc...

Table 3.3 makes a comparison of WIFI modules from some main manufacturers on the
consumer market. Since the main idea of the project is to add connectivity to existing
systems, criteria such as cost, electrical, interfacing, sizes, number of pins, leads us to
choose the ESP-01 module.

Chapter 3. Hardware Design 20

T
a
bl

e
3.

3:
W

iF
im

od
ul
es

co
m
pa

ri
so
n

W
ifi

Sh
ie
ld

W
ifi

Sh
ie
ld

H
uz
za
h
C
C
30
00

ES
P-

01
ES

P-
12

H
uz
za
h
ES

P8
26
6

R
N
13
1

SP
W

F0
1S

A
Sm

ar
t
C
on

ne
ct

C
om

pa
ny

Sp
ar
kf
un

A
rd
ui
no

A
da

fr
ui
t

Es
pr
es
sif

Es
pr
es
sif

A
da

fr
ui
t

M
ic
ro
ch
ip

ST
M
ic
ro
ch
ip

A
tm

el

C
hi
p
m
od

ul
e

RN
-1
31

C
HD

G2
04

CC
30

00
ES

P8
26

6
ES

P8
26

6
ES

P8
26

6
RN

13
1

SP
W

F0
1S

A
AT

W
IN

C1
50

0

W
ifi

St
an

da
rd
s

80
2.1

1
b/

g
80

2.1
1
b/

g
80

2.1
1
b/

g
80

2.1
1
b/

g/
n

80
2.1

1
b/

g/
n

80
2.1

1
b/

g/
n

80
2.1

1
b/

g
80

2.1
1
b/

g/
n

80
2.1

1
b/

g/
n

Pa
ck
et
s

TC
P,

UD
P

TC
P,

UD
P

TC
P,

UD
P

TC
P,

UD
P

TC
P,

UD
P

TC
P,

UD
P

TC
P,

UD
P

TC
P,

UD
P

TC
P,

UD
P

M
od

es
Cl
ien

t/
Se
rv
er

Cl
ien

t/
Se
rv
er

Cl
ien

t/
Se
rv
er

Cl
ien

t/
Se
rv
er

Cl
ien

t/
Se
rv
er

Cl
ien

t/
Se
rv
er

Cl
ien

t/
Se
rv
er

Cl
ien

t/
Se
rv
er

-

C
on

cu
rr
en
t
so
ck
et
s

-
4

4
5

5
5

-
8

-

Si
ze

66
x5

3m
m

66
x5

3m
m

27
x4

1x
3
m
m

21
x1

1
m
m

24
x1

6
m
m

25
x3

8
m
m

37
x2

0x
4
m
m

27
x1

6x
3
m
m

34
x1

5
m
m

In
te
rf
ac
e

SP
I

SP
I

SP
I

UA
RT

UA
RT

UA
RT

UA
RT

UA
RT

SP
Io

rU
AR

T

En
cr
yp

tio
n

W
PA

2-
PS

K
W

PA
2-
PS

K
W

PA
2-
PS

K
W

PA
2-
PS

K
W

PA
2-
PS

K
W

PA
2-
PS

K
AE

S1
28

AE
S2

56
AE

S

Su
pp

ly
Vo

lta
ge

3.3
V

5V
3.3

V
or

5V
3.3

V
3.3

V
3.3

V
3.3

V
3.3

V
3
to

4.2
V

Sl
ee
p
C
ur
re
nt

4u
A

-
-

10
uA

10
uA

10
uA

4
uA

15
m
A

4u
A

TX
C
ur
re
nt

21
0
m
A

21
0
m
A

35
0
m
A

21
5
m
A

21
5
m
A

21
5
m
A

21
0
m
A

24
3
m
A

17
2
m
A

R
X

C
ur
re
nt

40
m
A

-
-

60
m
A

60
m
A

60
m
A

40
m
A

10
5
m
A

70

N
um

be
r
of

pi
ns

44
30

9
8

22
22

44
29

40

Pr
og

M
C
U

No
Ye

s
No

Ye
s

Ye
s

Ye
s

No
No

No

C
os
t
(E

U
R
)

74
.32

82
.11

37
.13

4.3
0

3.8
5

9
27

.38
18

.43
7.5

Chapter 3. Hardware Design 21

3.3.2 The ESP8266-01

General Overview [22]

Espressif Systems’ Smart Connectivity Platform (ESCP) is a set of high performance,
high integration wireless SOCs, designed for space and power constrained mobile plat-
form designers. It provides unsurpassed ability to embed WiFi capabilities within other
systems, or to function as a standalone application, with the lowest cost, and minimal
space requirement.

Figure 3.4 presents a view of different modules of the ESP8266 family while Figure 3.5
shows the ESP8266-01, target module of the project and its pin-out. Recall that its size
(roughly the size of 1 euro coin), cost (a few euros), its interface (series communications
found on all MCUs) and the number of pins (only 8, which simplifies interfacing) have
contributed to this choice. The main differences between the members of the ESP8266
family are:

• the memory sizes (Flash, RAM)

• the number of GPIOs

• the type of GPIO (digital, ADC, PWM)

• antenna type

Figure 3.4: The ESP8266 family [20]

ESP8266EX offers a complete and self-contained WiFi networking solution; it can be
used to host the application or to offload WiFi networking functions from another ap-
plication processor. When ESP8266EX hosts the application, it boots up directly from

Chapter 3. Hardware Design 22

Figure 3.5: The ESP8266-01 module and pinout [14]

an external flash. It has integrated cache to improve the performances of the system in
such applications. Alternately, serving as a WiFi adapter, wireless internet access can
be added to any micro controllerbased design with simple connectivity (SPI/SDIO or
I2C/UART interface). ESP8266EX is among the most integrated WiFi chips in the in-
dustry; it integrates the antenna switches, RF balun, power amplifier, low noise receive
amplifier, filters, power management modules, it requires minimal external circuitry,
and the entire solution, including front-end module, is designed to occupy minimal PCB
area. ESP8266EX also integrates an enhanced version of Tensilica’s L106 Diamond series
32-bit processor, with on-chip SRAM, besides the WiFi functionalities. ESP8266EX is
often integrated with external sensors and other application specific devices through its
GPIOs; sample codes for such applications are provided in the software development kit
(SDK). Espressif Systems’ Smart Connectivity Platform (ESCP) demonstrates sophisti-
cated system-level features include fast sleep/wake context switching for energy-efficient
VoIP, adaptive radio biasing for low-power operation, advance signal processing, and
spur cancellation and radio co-existence features for common cellular, Bluetooth, DDR,
LVDS, LCD interference mitigation.

Specifications

The main technical features to be considered by designers using the ESP8266EX are the
following:

• 802.11 b/g/n

• Wi-Fi Direct (P2P), soft-AP

• 8 pins header includes 2 GPIO pins

Chapter 3. Hardware Design 23

• serial/UART baud rate: 115200 bps

• integrated TCP/IP protocol stack

• supply voltage: 3 to 3.6V (3.3V typical)

• I/O voltage tolerance: 3.6V Max

• regular operation current draw: ∼ 70mA

• peak operating current draw: ∼ 300mA

• power down leakage current: < 10µA

• +19.5dBm output in 802.11b mode

• flash Memory Size: 1MB (8Mbit)

• WiFi security modes: WPA, WPA2

• wake up and transmit packets in < 2ms

• standby power consumption of < 1.0mW (DTIM3)

Major Applications

Fields of application of ESP8266EX (alone or combined to another MCU) are numerous
and include among others:

• Home Appliances

• Home Automation

• Smart Plug and lights

• Mesh Network

• Industrial Wireless Control

• Baby Monitors

• IP Cameras

• Sensor Networks

• Wearable Electronics

• WiFi Location-aware Devices

• Security ID Tags

• WiFi Position System Beacons

Chapter 3. Hardware Design 24

3.4 The Inputs

3.4.1 The Temperature Sensor

For an efficient operation, the system must be able to measure itself the temperature of
the room where it is located. Taking into account the cost and the sizing specifications
of the system, the choice fell on the LM335 whose pin-out and calibrated schematic are
shown in Figure 3.6. The LM335 is a cheap, precise (1 ◦C initial accuracy available),
easily-calibrated and integrated temperature sensor. It operates as a 2 terminal Zener
over a 450uA to 5mA (which has a relatively low consumption) current range with
virtually no change in performances. Its reverse breakdown voltage is proportional to
absolute temperature at 10mV/ ◦K. When calibrated at 25C, the LM135 has typically
less than 1C error over a 100C temperature range. Unlike other sensors, the LM135 has
a linear output.

Figure 3.6: LM335 pin-out and calibrated schematic [13]

Its operating temperature range: T ∈[40,100] ◦C but in the project it can be assumes
temperature range could be reduced to [10, 40] ◦C. The output of the sensor is directly
connected to the MCU. Since this output is an analog voltage, one ADC channel of the
MCU will be used to convert the value into a digital one. By looking into the datasheet
there are little computations to do in order to get the correct value of the temperature.
Since the ESP8266 is powered at 3.3V and the MCU can use the same voltage, the LM335
will be powered by the same supply. According to calibrated schematic in Figure 3.6,
R1 will be chosen to be nearly 1mA or less to reduce self-heating error.

At 25 ◦C, Vout = 2.98V . If it is assumed that the temperature range is [10, 40] ◦C, it
corresponds to [2.83, 3.13]V .

For a fixed value R1 = 390Ω, imply Ibias ∈[1.2mA,435µA].

Chapter 3. Hardware Design 25

3.4.2 The Keyboard

One of the important elements of the HMI is the keyboard. It enables the user to give
orders directly to the system without having to go through the application. Thus the
user can change the temperature, define an operating program and more. The keyboard
consists of push buttons. One problem encountered with push buttons is the phenomenon
of rebound that bring the designers to associate a debounced circuit. Figure 3.7 shows a
push button and its debounced circuit. To reduce costs and the number of components,
the debounce will be done in the software. To reduce the energy, pull-down resistors are
used (Figure ??). To achieve a good interfacing with the user, the board needs several
push-buttons:

• UP to increase the temperature value wanted

• DOWN to decrease the temperature value wanted

• OK to validate an order

• ECO to activate or disable the economic mode

Figure 3.7: a) Debounced circuit b) push-button with pull-down resistor

3.4.3 The Battery Level Sensor

It is always important for battery powered devices to inform the user about the level of
autonomy so that he replaces it at the right time. A simple estimation of the battery
lifetime is given by the following equation:

Chapter 3. Hardware Design 26

BatteryLife =
Battery_Capacity_in_mAh
Load_Current_in_mAh

Rare are the applications that use a constant current over time which means relying on
the equation is not right and therefore the level of the battery must be regularly measure.
Determine the exact remaining capacity of a battery is a complex exercise. Among the
parameters that determine the remaining capacity of a battery are included the voltage,
current, temperature, aging battery,...etc. To measure it, some critical applications
typically use special ICs dedicated to battery management that will continuously measure
the consumed current, voltage and temperature to allow these calculations. Figures 3.8
and 3.9 present the MN1203 typical discharge characteristics based on the voltage, the
temperature, the discharges current and resistance. One important information that can
be noted is that the battery has a 0.8V cut-off voltage. From this value there is an
almost vertical slope and the battery can not power the unit. The Figure 3.10 shows
various typical discharge curves of the ID1203 (a Duracell industrial 4.5V battery)

Figure 3.8: Duracell MN1203 typical discharge characteristics [6]

Figure 3.9: Duracell MN1203 typical discharge characteristics [6]

Chapter 3. Hardware Design 27

Figure 3.10: Duracell MN1203 typical discharge characteristics [7]

Some devices rely only on a voltage measurement to estimate the remaining capacity.
As the battery of interest are from the alkaline type and the application is not critical,
a simple estimation can be made using a voltmeter. It is known that the voltage goes
down over time and usage. Most of the 4.5V alkaline batteries have their cut-off voltage
between 2.4V and 2.8V. Although the MCU can be powered between 1.8V and 3.6V,
the ESP8266-01 needs at least 3.0V. Therefore, the system will alert the user when the
battery voltage drops to 3.3V.

The battery voltage is measured through an ADC channel of the MCU. Since the value
of the battery voltage is higher than the MCU supply which serves as a reference, a
voltage divider is used. We have :

Vin = BatteryV oltage ∗ R1

R1 +R2

R1 +R2 is chosen high enough (1 MΩ is good) to reduce the current leakage due to the
voltage divider.

3.5 The Outputs

3.5.1 The UART

The Universal Asynchronous Receiver/Transmitter (UART) is a very popular serial com-
munication interface which provides Half or Full Duplex communication between two
devices. UART uses two data lines for sending (TX) and receiving (RX) data and share
a common Ground/Reference. As the name indicates it is an asynchronous communica-
tion interface, which means that it does not need to send CLOCK along with data as
in synchronous communications. The ESP8266 and the MCU will exchange information

Chapter 3. Hardware Design 28

through their UART modules. The Figure 3.11 shows how to connect two devices via
the UART. Note that the RX of a device is connected to the TX of the device with which
it exchanges information.

Figure 3.11: UART connection between the MCU and the ESP8266

By default, the firmware version of new ESP8266-01 ensure the communication speed is
set to 115200 baud. Later or modified versions set the baud rate to 9600 bauds. These
communication speeds are supported by PIC MCU UARTs.

3.5.2 The LCD Display

The LCD is the most important element of the HMI. It is through it that the system
transmits to the user the status information and acknowledges orders from the user. For
the designer it is very useful for debugging purposes. As other system components, its
electrical characteristics are part of the most relevant criteria since the system power
sypply is limited.

One of the most suitable LCD diplays for the system is the DOGS102W-6 (Figure 3.12)
from the DOGS GRAPHIC SERIES of ELECTRONIC ASSEMBLY. It is a 102*64 LCD
Graphic Display designed for compact hand-held devices and particularly it is suitable for
low-power application. It is powered by a voltage between 2.5V and 3.3V and consumes
a current of 250 µA typically. Its SPI and I2C interfaces reduces the number of pins of
the MCU used for interfacing.

Instead of the DOGS102, the system will be connected to the MC21605H6W-SPR3
which is a 2*16 Alphanumeric LCD display with a typical supply voltage of 3V and
supply current of 2mA. It can operate in two different modes:

• an eight bits mode which means every line of the data bus (DB0-DB7) of the LCD
are used to send data to the LCD

Chapter 3. Hardware Design 29

Figure 3.12: DOGS102 LCD Graphic Display [3]

• a four bits mode meaning that just four lines of the bus are used to display a
character.

Of course the latter is chosen to reduce the number of MCU pins and the consumption.

3.5.3 The DC Motor Driver

The control of the thermostat adjustment valve is made with a DC motor associated
with a gearbox. The DC motor has to be a low power one. DC-motors need currents
more important than the maximum output a MCU can provide. To control the motor
with a MCU, a four transistors H-bridge configuration is then used. Its main functions
are:

• to supply the motor with higher current than what the MCU can afford

• to enable the control of the motor in the two directions (forward and reverse) by
inverting the voltage

The H-bridge (pin assignment, truth table and application circuit are shown in Fig-
ure 3.13) takes its name from its structure similar to a "H". The diodes of the bridge are
freewheeling diodes whose goal is to disconnect the motor power safely for transistors.
If the power is brutally cut while the motor is running, an overshoot will appear (Lenz’s
law V = |Ldi

dt
|) across the switches and could destroy them. Therefore the diode allows

current to keep flowing .

The closure of two transistors diagonally while the two others are OFF runs the motor
in one direction. To change the direction of the motor, simply reverse i.e. close those
which were open and open the others.Two transistors of the same arm should never be
closed simultaneously, otherwise there will be a short circuit of the power supply. The
resistor values are chosen to make transistors operate in the saturation mode.

Chapter 3. Hardware Design 30

Figure 3.13: The DC-motor driver [21]

Table 3.4: H-bridge truth table

Operation Q1 Q2 Q3 Q4
Forward ON OFF ON OFF
Reverse OFF ON OFF ON
Coast OFF OFF OFF OFF
Break OFF ON ON OFF

The following Table 3.4 specifies the motor operating type according to the state of the
transistors.

In the project we will use the IC LB1938FA (whose pin assignment shown on Figure 3.14
which is an H-bridge motor driver that supports low-voltage drive and features low-
saturation outputs in an ultra-miniature slim package.

3.6 The Power Supply

One of the most important features to take in consideration while designing battery-
operated systems is reducing power consumption, which increases the battery discharge
time and extends the operational life of a system. Taking into account the reduction of
power consumption is even more important for IoT devices as they are equipped with

Chapter 3. Hardware Design 31

Figure 3.14: The H-bridge IC LB1938FA [21]

RF transceiver that require a significant amount of power to receive or transmit data
packets. As the operating voltage of the ESP8266 is 3.3V and since it exchanges data
with the MCU via their UART modules, it seems good to supply the entire system with
3.3V even if the MCU can drop to 1.8V. The Figure 3.15 represents the block diagram
of the power supply module.

Figure 3.15: Power supply block diagram

In the design stage of a battery powered device, it is always preferable where possible to
oversize the capacity of the battery to extend the operating time. Since the operating
voltage is 3.3V, a 3.7V Lithium Polymer (LiPo) battery would do the job but cost
constraints guide the choice to be a single MN1203 4.5V (5400mA) Alkaline battery or
3 AA cells in series. These batteries are cheap, safe to use, available everywhere and
their capacity for AA size go from 1700 mA to more than 2800 mA. Some models are
rechargeable.

A low dropout regulator is a linear voltage regulator DC which can regulate the output
voltage even when the supply voltage is very close to the output voltage . The LDO

Chapter 3. Hardware Design 32

regulator main advantages are:

• absence of the switching noises (because no switching takes place)

• low ripple

• good noise rejection

• smaller size of the device

• And a greater simplicity of design (available in slim IC packages).

The linear voltage regulators unlike switching DC-DC converters dissipate a large part
of the power limiting their efficiency around 50%. The efficiency is increase when LDO
are used with an input voltage close to the output expected. The switching regulators
with better yields (up to 85%) reduce the total current sourced from the battery and
Extend battery life .

3.7 The PCB Design

The following figures represent respectively the global schematic (Figure 3.16), a view of
the printed circuit design (Figure 3.17), a view of the printed circuit with and without
the ground plane (Figure 3.18), a "3D view" pictures of the component side (Figure 3.19)
and the solder side (Figure 3.20) of the board. The schematic design, simulations and
the printed card was done using Proteus c©. The card measures 5cm*5cm which is the
order of magnitude of most thermostat cards.

The PTC (Positive Temperature Coefficient) added can be seen as an over-current pro-
tection device like fuses. Unlike a fuse, a PTC can self reset itself. When the threshold
current is reached, the device begins to heat up, that increases its resistance, effectively
choking the current back down to a safety level that can not damage components on the
board. When the current is removed, the device cools off and is ready to go again!

Chapter 3. Hardware Design 33

F
ig

u
r
e

3.
16

:
E
le
ct
ro
ni
c
sc
he

m
at
ic

Chapter 3. Hardware Design 34

Figure 3.17: The printed circuit design

Figure 3.18: The printed circuit with and without the ground plane

Chapter 3. Hardware Design 35

Figure 3.19: Component side

Figure 3.20: Solder side

36

Chapter 4

Software Design

In the previous chapter, the scope was to design a battery-powered electronic board for
a radiator thermostat with a particular emphasis on improving the use of energy. This
new chapter primarily deals with the software part of the project. To stay in the logic of
the project, the software must be written in a style that can help to improve the lifetime
of the battery. The structure of the hardware of the card directs the software. To achieve
the scope, the chapter is divided in three parts:

The first part of this chapter describes the overall approach of the electronic board
software. The second part presents the interface through which the user exchanges
with the board through Internet . The last two parts respectively describe the software
implemented in the MCU and the transceiver.

4.1 The Flow Chart

The electronic card is strutured around two chips which constitute the core of the card.
Both chips are actually two MCU (one is associated with a transceiver) that operate
independently and only exchange data through the UART port. Then each one will
have its own code. The MCU is responsible for sending the current temperature to the
ESP8266 module. The ESP8266 updates the value of temperature on the web page,
reads commands and transmits them to the MCU that will control the valve position.

4.1.1 The MCU Flow Chart

The main functions of the MCU are:

• measure temperature and transmit it to the radio module

• monitor the battery level

Chapter 4. Software Design 37

• display useful information on the screen to users

• adjust the position of the thermostatic valve in order to issue the desired temper-
ature

• manage both user’s manual orders and orders received from the transceiver

The Figure 4.1 below represents the flowchart of the PIC18LF45K50. This diagram
describes in a comprehensive manner the main stages of operation of the MCU.

Figure 4.1: The MCU flow chart

Chapter 4. Software Design 38

When the electronic card is powered or the MCU is reset, the MCU activates and con-
figures the necessary modules for operation of the thermostat. Since the thermostat
is designed to be connected to any home WIFI network, it is not possible to program
the connection credentials. It would be ideal for the thermostat to tell the user how to
connect to the WIFI. In this project, the MCU must receive and display the IP address
of the ESP8266. From this address, it can connect to a webpage and submit ESP8266’s
login data to connect the home WIFI. Once the module is connected to the WiFi net-
work, the MCU offers the choice to the user to enable the implementation of a learning
algorithm. This algorithm allows the system to apprehend the environment and then
improve its functioning. In the next stage, the system enters an infinite loop. It performs
measurements (temperature and battery level), updates the display, enters a sleep mode
to reduce the energy it uses, after a delay wakes up to perform the next measurements.

The Pic18LF45K50 EUSART (Enhanced Universal Synchronous Asynchronous Receiver
Transmitter) module is a serial I/O communications peripheral. It contains all the clock
generators, shift registers and data buffers necessary to perform an input or output serial
data transfer independent of device program execution. This explains why the left and
right parts of the flowchart are not connected. The MCU can receive data from the
ESP8266 at any time. When it receives a new temperature target, it updates the related
variables, computes the distance which the piston must be moved, controls the motor,
update the motor position and waits for the next reception.

4.1.2 The ESP8266 Flow Chart

The ESP8266 is the interface between the thermostat and the Internet network. It is
through it that the system informs the user about the current temperature and receives
remote commands. The Figure 4.2 gives the flowchart of the ESP8266.

The first action of the ESP82866 after initialization is to send its IP address through
the UART. This address will allow the user to enter a local web page through which he
enters his WIFI credentials (WIFI name and password). After the chip connects to the
WIFI, it opens the UART connection and then enters an infinite loop :

• waits for the reception of the current temperature

• updates the website

• reads the future temperature

• sends the desired temperature value to the MCU if necessary

• enters into the sleep mode to reduce energy consumption

Chapter 4. Software Design 39

• wakes-up after a delay

• waits for the next reception

Figure 4.2: The ESP8266 flow chart

Chapter 4. Software Design 40

4.2 The Database and Website Interface

Many ESP8266 projects exploit its ability to implement a mini web server. This approach
is very simple and interesting when trying to access the ESP8266 from the same local
network. In fact from a smartphone application for example, requests are sent to the
router through an url. The router forwards the information to the ESP8266 thanks to
its IP address for processing. To access to the chip from the Internet requires more
manipulation such as:

• search for the IP address assigned by the ISP (Internet Service Provider) and
update it in the application

• Update the router to do port forwarding

These actions are not simple for most users.

Another important problem with the previous approach is that the server running the
chip must run continuously. It is not possible to determine when the server is likely to
receive requests so it is always available. This approach implies a waste of resources and
is not good for battery-powered systems.

For this project, it will be simpler and adequate to build the bulk of the application on a
host provider server. Now it is possible to "shut down" the WIFI module and enable it
only when needed. A small database is built to allow the thermostat to share data with
the user. By using http requests, the ESP8266 will be able to read or update information
on the database. The user will access the thermostat data and send orders via a web
interface.

4.2.1 The DataBase

A database can be seen as a system that records information and organize it hierarchi-
cally . This is something on which the website construction is based. The web hoster
(http://www.freewebhostingarea.com) chosen for the project uses MySQL which is a free
and well kwown DBMS (DataBase Management System). Figure 4.3 shows a screen-shot
of phpMyAdmin, the web application used to manage the database.

The table named "thermostat" contains a line with two fields : current and asked which
represent respectively the current temperature of the room and the temperature desired
by the user. This line corresponds to one thermostat module. If the number of modules
is increased, the number of rows in the table is simply increased too. The thermostat

http://www.freewebhostingarea.com

Chapter 4. Software Design 41

Figure 4.3: Design of the database with phpMyAdmin

changes the variable current and reads the value of asked while the user changes asked
and reads current.

4.2.2 The Website Interface

For the software application, it would be interesting to develop a smart-phone application
but this requires to do so for all available operating systems (Symbian OS, Android OS,
Apple iOS, Windows OS, Blackberry OS...). The choice to host the application on a
simple website is more appropriate since it would be accessible from any smart-phone or
PC.

The database is the adequate tool to establish remote communication between the ther-
mostat and the user. But it is not possible for the user to manage directly this commu-
nication from phpMyAdmin. He needs a more intuitive GUI. The language PHP is used
to make the interface between the user and MySQL. PHP (Hypertext Preprocessor) is
a server side scripting language that was designed specifically to produce dynamic web
pages via an HTTP server. The PHP code is included in an HTML page and will be exe-
cuted every time that a visitor displays the page [16]. It is performed at at the server and

Chapter 4. Software Design 42

generates HTML code or other data viewable in the user’s browser . Figure 4.3 shows a
screen-shot of the final interface from which the user will interact with the database.

Figure 4.4: A view of the web page interface

In AppendixC are shown the scripts from the PHP files used to generate and manage
this interface. The structure of the website interface is made from templates available
on https://github.com/naousse.

• index.php is an access point to the webpage. It verifies if the variable "asked"
stored in the database has changed and update the webpage

• temperature.php verifies that an action was requested. Depending on the re-
quest, it executes a piece of code and echo a key value pair

• TemperatureController.ph inherited from the super class Controller, manages
the access to the application

• TemperatureRepository.ph manages the database

• Connection.ph connects to the database

Chapter 4. Software Design 43

4.3 The MCU Code

4.3.1 The Learning Algorithm

Ideally the learning algorithm could be implemented on the application side to limit the
use of the energy resources of the board. Given the energy limitation and the fact that
emission/reception of the WiFi module consumes a large part of the energy available, a
simplified version of the algorithm is implemented in the MCU. Figure 4.5 presents the
flow chart of the learning algorithm. The main idea is to completely close the radiator
valve and then open it by regular small steps. At each one waits a delay to balance the
temperature. If the value of the temperature is relevant, the number of steps and the
value of the temperature are stored in the MCU EEPROM.

Figure 4.5: Learning algorithm flow chart

4.3.2 The Main Code

The code of the PIC18LF45K20is located in AppendixD

Chapter 4. Software Design 44

4.4 The ESP8266

The ESP8266 is a MCU that supports programs added by users like any other MCU.
Most of the available modules on the market are equipped with "AT" firmwares that
supports AT commands via the serial port. This firmware is easy to use but is poorly
suited when it comes to make big programs. To overcome this difficulty, the firmware
can be replaced by one of the many top performing firmware which include NodeMCU
that can be programmed in Python or Lua language.

4.4.1 The Lua Language

The Lua is a programming language developed in 1993 by a team of the Pontifical
Catholic University of Rio de Janeiro. It is a powerful language , efficient, lightweight
supporting different type of programming like procedural programming, object-oriented
programming, functional programming,...etc The Lua presents several advantages:

• it is one of the fastest language

• it is portable

• it is embeddable

• it is powerful but simple

• it is a freeware

• its occupies a small amount of memory

The availability of many libraries and development tools for the ESP8266 and the sim-
plicity of their use make the Lua language one of the most used.

4.4.2 NodeMCU

NodeMCU is a firmware specially developed for programming the ESP8266 more intu-
itively with Lua or python language. One of the main advantages of NodeMCU is that
it gives the opportunity to build specific firmwares. The user, depending on the project
he is working on, has the possibility to choose only the tools he needs and thus build a
lighter firmware (http://nodemcu-build.com).

The NodeMCU firmware built for this project includes the following modules :

• CJSON to encode/decode data to/from JSON which is a key value pair represen-
tation to share data

http://nodemcu-build.com

Chapter 4. Software Design 45

• Enduser setup which provides a simple way to the user to enter credentials for
the WIFI connection through an url (Figure 4.6)

• File to provides access to the file system and its individual files

• GPIO to access the GPIO (General Purpose Input/Output) subsystem

• HTTP that provides an interface to do http requests (GET, POST, PUT, DELETE)

• Node to access to system-level features such as sleep and restart

• RTC time provides advanced timekeeping support

• Timer to allow access to simple timers

• UART for the configuration of the UART serial port

• WiFi for interfacing with WiFi

Figure 4.6: The end-user connection portal [9]

4.4.3 The ESP8266 Code

The ESP8266 program is distributed in 4 files: init.lua, openUart.lua, connect.lua and
thermo.lua. The content of these files is presented below. The init.lua file is always the
first to be read. In this file a Boolean variable and a timer are used to stop the execution
of the program in case of a bug. If all goes well, init.lua hands over to openUart.lua
which opens the serial link. Connect.lua gets the IP address, sends it to the port to allow
the user to enter the URL of the connection portal. Thermo.lua monitors the UART.
When the module gets a temperature on the serial port, it updates the website, reads
the temperature asked and sends it to the MCU if necessary. The next step is the entry
into a deep-sleep mode to wait for the next reception.

Chapter 4. Software Design 46

init.lua

function startup()

if abort == true then

print(’startup aborted’)

return

end

--print("In startup") -- just for debugging

dofile(’openUart.lua’)

end

function initializeUart()

uart.setup(0, 9600, 8, uart.PARITY_NONE, uart.STOPBITS_1, 0)

end

abort = false

tmr.alarm(0,10000,0,startup) --delay to exit in case of malfunctioning

openUart.lua

--print("in file test.lua")-- for debugging

uart.setup(0, 9600, 8, 0, 1, 0)

dofile(’connect.lua’)

connect.lua

wifi.setmode(wifi.STATIONAP)

wifi.ap.config({ssid="MyPersonalSSID",auth=wifi.AUTH_OPEN})

enduser_setup.manual(true)

enduser_setup.start(

function()

print("To:"..wifi.sta.getip())

end,

function(err, str)

print("enduser_setup: Err #" .. err .. ": " .. str)

end

);

uart.write(0,wifi.sta.getip().."\r\n");

print("Connected")

dofile(’thermo.lua’))

Chapter 4. Software Design 47

thermo.lua

currentTemp=20

uart.on("data", "\r",

function(data) --print("receive from uart:", data)

currentTemp=tonumber(data)

--print("A POST method");

http.get("http://tfe.6te.net/thermostat/temperature.php?action=setCurrent¤t="..

currentTemp, nil, function(code, data)

if (code < 0) then

print("HTTP request failed")

else

--print(code, data);

print("update the room temperature is: "..currentTemp);

end

end)

tmr.delay(10000)

--print("A GET method")

http.get("http://tfe.6te.net/thermostat/temperature.php?action=getFuture",

nil, function(code, data)

if (code < 0) then

print("HTTP request failed")

else

result = cjson.decode(data);

temperature = result["future"];

--print(code, data);

if (temperature ~= futureTemp) then

--print("A new value");

uart.write(0,"NT"..temperature.."\r\n"); -- the future te

elseif (temperature == futureTemp) then

--print("The same value");

--uart.write(0,"ActualT"..temperature.."\r\n");

end

end

end)

--tmr.delay(10000)

node.dsleep(840 * 1000000) -- 840s = 14min

if data=="quit\r\n" then

uart.on("data") -- unregister callback function

Chapter 4. Software Design 48

end

end, 0)

Deep Sleep Mode

In the ESP8266 deep-sleep mode, only RTC is powered on. The rest of the chip is
powered off and the current consumption is typically 10µA. To get access to this mode,
a hardware configuration has to be set: a connection between the XPD_DCDC (GPIO16
of the MCU) and the external RST pins (AppendixB). Unfortunately for the ESP8266-
01 version to connect those pins is not easy. The connection has to be done with a thin
wire like shown on Figure 4.7 below.

Figure 4.7: ESP8266-01 hardware connection to enable deep-sleep [24]

49

Chapter 5

Experimental Results and Discussion

The previous two chapter dealt with the design of the hardware and software parts
of the thermostat centered around the PIC18LF45K50 and the esp8266-01. The main
characteristics that the prototype of the connected thermostat should have are its battery
power, its ability to reduce the energy consumption and its control (both manual and
remote).

This chapter discusses the results of the operating tests of the thermostat. A stripboard
is used to perform tests on the thermostat. The first part of this chapter focuses on
its operation. The second part deals with the thermostat consumption to evaluate the
lifetime of the battery. The last part is a simulation of the energy that could be saved
through the use of a connected thermostat.

5.1 The Thermostat

The connected thermostat designed fulfilled all requirements defined at the beginning of
the project:

• it is a low power device and battery powered

• it connects directly to a home WiFi router without going through the intermediary
of a central gateway .

• it can post information on a website and retrieve commands from the user.

• it is remotely controllable

• it obtains IP address automatically,this making it convenient for the user

• it is similar in size than most electronic thermostats on the market

• adding connectivity does not affect significantly the cost since the added component
is very cheap. This allows obtain at the end a cheap thermostat with good features.

Chapter 5. Experimental Results and Discussion 50

5.2 The Power Consumption

The card is powered by a battery. So it is important to evaluate the battery lifetime.
Although the datasheet of the various components indicate the ranges of values, mea-
surements on board helps to improve the battery lifetime prediction. Figures 5.1, 5.2 and
5.3 respectively represent the measurement device (Rigol DS1052E DSO), the measure-
ment of the current consumed during the transmission/reception processes and finally
the measurement of the maximum current consumption duration.

Figure 5.1: Measurements on the stripboard

Figure 5.2: Measurement of the Tx/Rx current consumption

The Rigol DS1052E (50MHz/1GSa/s) gives an idea of the measurements. It is not fast
enough to make accurate measurements. The current in the Tx/Rx phases is measured
through a 1Ω/1W resistor and is it about 180mA. To measure the duration, GPIO2

Chapter 5. Experimental Results and Discussion 51

Figure 5.3: Measurement of the Tx/Rx duration

signal is set to LOW just before the "POST" method and set to HIGH just after the
receipt of the response of the "GET" method. This gives a time TTX/RX = 1.78s. This
time takes into account the transmissions, the receptions but also the data processing.

Chapter 5. Experimental Results and Discussion 52

The following assumptions are made to estimate the lifetime of the battery:

• the code execution lasts 3s

• 4 update of temperature per hour so a sleep time of 897s

• a consumption of 200mA during code execution

• a consumption of 5mA during the sleep mode

• a 5400mAh capacity battery

• a safety discharge 20%

The capacity consumed in one hour is given by:

C1 = 4 ∗ 3 ∗ 200 + 897 ∗ 5

3600
= 5.65mA

Then, the battery lifetime is:

lifetime =
0.8 ∗ 5400

5.65
= 764.6hours

lifetime =
0.8 ∗ 5400

5.65
= 31days20hours

One way to improve the power consumption of the modules is to remove both the power
and status light emitting diodes from the board. These operations are very delicate and
allow to recover around 5mA .

Chapter 5. Experimental Results and Discussion 53

5.3 Energy Saving Estimation

It is always important to pay attention to the rational use of energy. One of the main
advantages of using the connected thermostat compared to a mechanical thermostat is
that it helps to reduce the energy consumption. To assess the quality of the system, a
simple case was studied. Consider a room of 4 ∗ 4 ∗ 2.5m3. The total area (walls, floor
and ceiling) is 72m2. The temperature of the room is supposed to be at 20 ◦C all the
time even if the outside temperature varies. The following simplifying assumptions are
used:

• the temperature is assumed to be 15 ◦C during the day and 10 ◦C during the night.

• day and night are assumed to have equal durations

• the static model is adopted for all the walls (stationary operation)

• all internal walls are in the internal temperature

• all the outside walls are in the external temperature

• the convection exchange resistance between the inside and the internal faces of the
walls is zero

• the convection exchange resistance between the outside and the outside walls is
zero

• the radiation exchange resistance is equal to zero.

In steady state, the thermal power is given by

Q̇ = A ∗ U ∗ (Tin − Tout)

where A represents the total surface and AU the global exchange coefficient.

The energy consumed is:
Q = Q̇ ∗ time

In the case studied, and knowing that U = 0.22W.m−2K ∗ −1, the total energy used in
one day by a mechanical valve preset in the night is:

Qmec/day = 24 ∗ 72 ∗ 0.22 ∗ (20− 10)

Qmec/day = 3801.6Wh

If instead of the mechanical valve the connected thermostat is used,

Chapter 5. Experimental Results and Discussion 54

Qconnected/day = 12 ∗ 72 ∗ 0.22 ∗ (20− 15) + 12 ∗ 72 ∗ 0.22 ∗ (20− 10)

Qconnected/day = 2851.2Wh

The amount of energy that can potentially be save is given by:

Qsaved/day = Qmec/day −Qconnected/day = 950.4Wh

that represents in this case 25% of the total energy.

In the case of comparing the thermostat connected to a basic electronic thermostat, a
parameter to highlight is the occupancy. The electronic thermostat adapts to external
weather conditions but can not turn off the heater when the room is not occupy. As-
suming that the room is occupied all the night and one third of the day (16 hours), the
amount of energy that can potentially be save is :

Qconnected/day = (2/3) ∗ 12 ∗ 72 ∗ 0.22 ∗ (20− 15)

Qconnected/day = 633.6Wh

that represents in this case 22.22% of the total energy.

Although this is a very simple case, it shows the potential of economic gain that the
connected thermostat represents.

55

Chapter 6

Conclusion

The goal of the thesis was to investigate whether a standard programmable radiator
thermostat can be converted into a WLAN connected device that can directly be con-
nected to a standard home WiFi. A software application was supposed to be developed
to control the thermostat remotely. the main interest addressed by this study was then
to build a smart thermostat cheaper and less bulkier than those available on the market.

A literature review helped to understand that one important factor in the development of
the Internet of Things is the democratization of some technologies across the development
the telecommunications sector and in particular of smart-phone devices. The exploitation
of the advancement in the field of microelectronics has allowed researchers to develop
low-power IoT devices adapted to be powered by batteries .

6.1 Contribution

A study of the features of classical electronic thermostats on the market allowed to
design an electronic thermostat board for home radiator. In addition to its small sizes,
it includes a WiFi transceiver that has good performances and low cost compared to its
competitors.

The designed thermostat has several good features compared to the classic electronic
thermostat or mechanical valve. The first thing that has been shown is that we can very
simply added connectivity to any WLAN module such objects the ESP8266 so as to
make a smart-thing. The resulting module can connect directly to a WiFi home without
going through a central gateway that involves extra costs. The reduced cost of wireless
module and its simple connection to an MCU card with a serial link has allowed to
produce a connected thermostat with very good features but a much cheaper than those
available on the market.

Chapter 6. Conclusion 56

A web application has been developed to allow users to remotely control the thermostat
via the Internet. They can read or change the temperature of the room where the
thermostat is located from any computer or phone with an Internet connection.d. One of
the main advantages of this application is that it is possible to add easily new algorithms
in the server side to manage the room temperature. A simple algorithm enables the MCU
to learn how to modulate the displacement of the transmission shaft to get a certain
temperature.

The design of the connected thermostat allows cost saving through the significant reduc-
tion of the energy losses by adapting to external weather conditions or by activating the
heater with respect to the the occupancy of the room.

6.2 Prospect

Although the main objectives set in the beginning of the project have been achieved, this
work represents only one approach of the problem to solve. It would be very interesting
to further investigate how to improve the proposed solution. Among further researches,
one could :

• study the possibility to use the heat source that represents the radiator and improve
the battery lifetime

• consider replacing the MCU/ESP8266-01 pair by an ESP8266-12 that has more
GPIOs, and modules such as ADC, PWM,...

• develop smart-phone applications and examine how the use of MQTT could help
to reduce power consumption

57

Appendix A

PIC18LF25K50 main features

Appendix A. PIC18LF25K50 main features 58

59

Appendix B

The ESP8266 Electronic Schematic

60

Appendix C

The Code of the Web Interface

C.1 index.php

<?php

require_once ’./vendor/autoload.php’;
use Thermostat\Controller\TemperatureController;

/**
* indes.php temperature.php are the access point to the webpage. It verifies
* if the variable "asked", store it in the database update the webpage
**/

$temperatureController = new TemperatureController();

if (isset($_POST[’asked’]) && is_numeric($_POST[’asked’])){
$asked = intval($_POST[’asked’]);
if ($asked>=0){

$temperatureController->setFutureTemperatureAction(1,$asked);
header(’Location: http://’.$_SERVER[’HTTP_HOST’].$_SERVER[’REQUEST_URI’]);

}
}
$temperatureController->indexAction(1);

?>

Appendix C. The Code of the Web Interface 61

C.2 temperature.php

<?php

require_once ’./vendor/autoload.php’;

use Thermostat\Controller\TemperatureController;

/**
* It verifies that an action was requested. Depending on the action executes a
* piece of code and echo a key value pair
*/

$temperatureController = new TemperatureController();

if (isset($_GET[’action’])) {
if ($_GET[’action’] == "setCurrent") {

if (isset($_GET[’current’]) && is_numeric($_GET[’current’])) {
$temperature = intval($_GET[’current’]);
if ($temperature >= 0) {

$temperatureController->setCurrentTemperatureAction(1, $temperature);
echo json_encode(array("status"=>201));
return;

}
}
echo json_encode(array("status"=>500, "error"=>"The value you provided
is not correct!"));
return;

}
if ($_GET[’action’] =="setFuture") {

if (isset($_GET[’future’]) && is_numeric($_GET[’future’])) {
$temperature = intval($_GET[’future’]);
if ($temperature >= 0) {

$temperatureController->setFutureTemperatureAction(1, $temperature);
echo json_encode(array("status"=>201));
return;

}
}
echo json_encode(array("status"=>500, "error"=>"The value you provided
is not correct!"));
return;

}
if ($_GET[’action’] == "getFuture") {

$temperature = $temperatureController->getFutureTemperatureAction(1);
echo json_encode(array("status"=>200, "future"=>$temperature));

Appendix C. The Code of the Web Interface 62

return;
}
if ($_GET[’action’] == "getCurrent") {

$temperature = $temperatureController->getCurrentTemperatureAction(1);
echo json_encode(array("status"=>200, "current"=>$temperature));
return;

}
}

?>

C.3 TemperatureController.php

<?php

namespace Thermostat\Controller;

use Thermostat\Entity\Temperature;
use Thermostat\Repository\TemperatureRepository;

/**
* Inherited from the super class Controller.
* It manages the access to the application
*/

class TemperatureController extends Controller {

public function indexAction($id) {
$temperatureRepository = new TemperatureRepository();

$this->render(array(/*affiche */
"view" => "Temperature/index",/*vue*/
"data" => array(/*les valeurs a afficher sur la vue*/

"temperature" => $temperatureRepository->getCurrent($id),
"future" => $temperatureRepository->getFuture($id)

)
)

);
}
public function setCurrentTemperatureAction($id, $current) {

$temperatureRepository = new TemperatureRepository();
$temperatureRepository->setCurrent($id, $current);

}
public function getCurrentTemperatureAction($id) {

Appendix C. The Code of the Web Interface 63

$temperatureRepository = new TemperatureRepository();
return $temperatureRepository->getCurrent($id);

}
public function setFutureTemperatureAction($id, $current) {

$temperatureRepository = new TemperatureRepository();
$temperatureRepository->setFuture($id, $current);

}
public function getFutureTemperatureAction($id) {

$temperatureRepository = new TemperatureRepository();
return $temperatureRepository->getFuture($id);

}
}

C.4 TemperatureRepository.php

<?php

namespace Thermostat\Repository;

use Thermostat\Entity\Temperature;
/**
* Manages the database
*/

class TemperatureRepository extends Repository {
public function save(Temperature $temperature) {

$this->connection->exec(
"INSERT INTO "
. "temperature(current, asked)"
. " VALUES (" . $temperature->getCurrent() . "," .
$temperature->getFuture() . ")"

);
}
public function update(Temperature $temperature) {

$this->connection->exec(
"UPDATE TABLE temperature "
. "SET "
. "current = ’" . $temperature->getCurrent() . "’ "
. "future = ’" . $temperature->getFuture() . "’ "
. "WHERE id = " . $temperature->getId()

);
}

Appendix C. The Code of the Web Interface 64

public function setFuture($id, $temperature) {
$this->connection->exec(

"UPDATE temperature "
. "SET "
. "asked = " . $temperature . " "
. "WHERE id = " . $id

);
}
public function setCurrent($id, $temperature) {

$this->connection->exec(
"UPDATE temperature "
. "SET "
. "current = " . $temperature . " "
. "WHERE id = " . $id

);
}
public function getCurrent($id) {

$resultats = $this->connection->query("SELECT current FROM
temperature WHERE id=".$id);
$resultats->setFetchMode(\PDO::FETCH_OBJ);
$current = null;
while ($resultat = $resultats->fetch()) {

$current = $resultat->current;
}
$resultats->closeCursor();
return $current;

}
public function getFuture($id) {

$resultats = $this->connection->query("SELECT asked FROM
temperature WHERE id=".$id);
$resultats->setFetchMode(\PDO::FETCH_OBJ);
$future = null;
while ($resultat = $resultats->fetch()) {

$future = $resultat->asked;
}
$resultats->closeCursor();
return $future;

}
}

Appendix C. The Code of the Web Interface 65

C.5 Connection.php

<?php

namespace Thermostat\Repository;

/**
* Connects to the database
*/

class Connection {
protected static $dbname = "DB_name";
protected static $db = "mysql";
protected static $username = "user_name";
protected static $password = "mypassword";
protected static $host = "localhost";
protected static $port = 3306;
protected static $connection = null;

public static function getConnection() {
$dsn = self::$db.’:host=’.self::$host.’;port=’.self::$port.’;dbname=’.self::$dbname;
$options = array(

\PDO::MYSQL_ATTR_INIT_COMMAND => ’SET NAMES utf8’,
\PDO::ATTR_ERRMODE => \PDO::ERRMODE_EXCEPTION

);
if (self::$connection == null){

self::$connection = new \PDO($dsn, self::$username, self::$password, $options);
}
return self::$connection;

}
}

66

Appendix D

The PIC18LF45K20 Code

D.1 Includes.h

#ifndef __INCLUDES_H
#define __INCLUDES_H

// Define CPU Frequency
// This must be defined, if __delay_ms() or
// __delay_us() functions are used in the code
#define _XTAL_FREQ 20000000

#include <htc.h>
#include "UART.h"
#include "ISR.h"

#endif

D.2 ISR.c

#include "Includes.h"
void interrupt ISR(void)
{
if(RCIF) // If UART Rx Interrupt
{
if(OERR) // If over run error, then reset the receiver
{
CREN = 0;
CREN = 1;
}
//SendByteSerially(RCREG); // Echo back received char
}
}

Appendix D. The PIC18LF45K20 Code 67

D.3 lcd.h

//LCD Functions Developed by electroSome

void Lcd_Port(char a)
{
if(a & 1)
D4 = 1;
else
D4 = 0;

if(a & 2)
D5 = 1;
else
D5 = 0;

if(a & 4)
D6 = 1;
else
D6 = 0;

if(a & 8)
D7 = 1;
else
D7 = 0;
}
void Lcd_Cmd(char a)
{
RS = 0; // => RS = 0
Lcd_Port(a);
EN = 1; // => E = 1

__delay_ms(4);
EN = 0; // => E = 0

}

Lcd_Clear()
{
Lcd_Cmd(0);
Lcd_Cmd(1);
}

void Lcd_Set_Cursor(char a, char b)
{
char temp,z,y;
if(a == 1)
{

Appendix D. The PIC18LF45K20 Code 68

temp = 0x80 + b - 1;
z = temp>>4;
y = temp & 0x0F;
Lcd_Cmd(z);
Lcd_Cmd(y);
}
else if(a == 2)
{
temp = 0xC0 + b - 1;
z = temp>>4;
y = temp & 0x0F;
Lcd_Cmd(z);
Lcd_Cmd(y);
}
}

void Lcd_Init()
{

Lcd_Port(0x00);
__delay_ms(20);

Lcd_Cmd(0x03);
__delay_ms(5);

Lcd_Cmd(0x03);
__delay_ms(11);

Lcd_Cmd(0x03);
///
Lcd_Cmd(0x02);
Lcd_Cmd(0x02);
Lcd_Cmd(0x08);
Lcd_Cmd(0x00);
Lcd_Cmd(0x0C);
Lcd_Cmd(0x00);
Lcd_Cmd(0x06);

}

void Lcd_Write_Char(char a)
{

char temp,y;
temp = a&0x0F;
y = a&0xF0;
RS = 1; // => RS = 1
Lcd_Port(y>>4); //Data transfer
EN = 1;
__delay_us(40);
EN = 0;
Lcd_Port(temp);

Appendix D. The PIC18LF45K20 Code 69

EN = 1;
__delay_us(40);
EN = 0;

}

void Lcd_Write_String(char *a)
{
int i;
for(i=0;a[i]!=’\0’;i++)

Lcd_Write_Char(a[i]);
}

void Lcd_Shift_Right()
{
Lcd_Cmd(0x01);
Lcd_Cmd(0x0C);
}

void Lcd_Shift_Left()
{
Lcd_Cmd(0x01);
Lcd_Cmd(0x08);
}

D.4 UART.c

/* File: UART.c
Purpose: To provide UART functionality for PIC uC

*/

#include "Includes.h"

void InitUART(void)
{
//TRISC6 = 1; // TX Pin

TRISC6 = 0; // TX Pin
TRISC7 = 1; // RX Pin

SPBRG = ((_XTAL_FREQ/16)/BAUDRATE) - 1;
BRGH = 1; // Fast baudrate
SYNC = 0; // Asynchronous
SPEN = 1; // Enable serial port pins
CREN = 1; // Enable reception

Appendix D. The PIC18LF45K20 Code 70

SREN = 0; // No effect
TXIE = 1; // Disable tx interrupts
RCIE = 1; // Enable rx interrupts
TX9 = 0; // 8-bit transmission
RX9 = 0; // 8-bit reception
TXEN = 0; // Reset transmitter
TXEN = 1; // Enable the transmitter
}

void SendByteSerially(unsigned char Byte) // Writes a character to the serial port
{
while(!TXIF); // wait for previous transmission to finish
TXREG = Byte;
}

unsigned char ReceiveByteSerially(void) // Reads a character from the serial port
{
if(OERR) // If over run error, then reset the receiver
{
CREN = 0;
CREN = 1;
}

while(!RCIF); // Wait for transmission to receive

return RCREG;
}

void SendStringSerially(const unsigned char* st)
{
while(*st)
SendByteSerially(*st++);
}

D.5 main.c

#define _XTAL_FREQ 20000000

#define RS LATCbits.LATC5
#define EN LATCbits.LATC4
#define D4 LATDbits.LATD4
#define D5 LATDbits.LATD5

Appendix D. The PIC18LF45K20 Code 71

#define D6 LATDbits.LATD6
#define D7 LATDbits.LATD7
#define BUTTON_ECO LATBbits.LATB3
#define BUTTON_UP LATBbits.LATB4
#define BUTTON_DOWN LATBbits.LATB5
#define BUTTON_OK LATBbits.LATB6

#include <xc.h>
#include<string.h>
#include<p18f45k20.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "lcd.h"
#include "Includes.h"

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

// CONFIG1H
#pragma config FOSC = HS
#pragma config FCMEN = OFF
#pragma config IESO = OFF

// CONFIG2L
#pragma config PWRT = OFF
#pragma config BOREN = ON
#pragma config BORV = 18

// CONFIG2H
#pragma config WDTEN = OFF
#pragma config WDTPS = 32768

// CONFIG3H
#pragma config CCP2MX = PORTC
#pragma config PBADEN = ON
#pragma config LPT1OSC = OFF
#pragma config HFOFST = ON
#pragma config MCLRE = ON

// CONFIG4L
#pragma config STVREN = ON
#pragma config LVP = OFF
#pragma config XINST = OFF

// CONFIG5L

Appendix D. The PIC18LF45K20 Code 72

#pragma config CP0 = OFF
#pragma config CP1 = OFF
#pragma config CP2 = OFF
#pragma config CP3 = OFF

// CONFIG5H
#pragma config CPB = OFF
#pragma config CPD = OFF

// CONFIG6L
#pragma config WRT0 = OFF
#pragma config WRT1 = OFF
#pragma config WRT2 = OFF
#pragma config WRT3 = OFF

// CONFIG6H
#pragma config WRTC = OFF
#pragma config WRTB = OFF
#pragma config WRTD = OFF

// CONFIG7L
#pragma config EBTR0 = OFF
#pragma config EBTR1 = OFF
#pragma config EBTR2 = OFF
#pragma config EBTR3 = OFF

// CONFIG7H
#pragma config EBTRB = OFF

char *currentTemp;
char futureTemp[2];
char addressToConnect[20];

void myDelay_n10ms(int n){

while(n > 0){
__delay_ms(10);
--n;

}
}

void initPic(void){

TRISA = 0xFF;

Appendix D. The PIC18LF45K20 Code 73

TRISB = 0xFF;
TRISCbits.RC4 = 0;
TRISCbits.RC5 = 0;
TRISD = 0x00;

}

void ADCinit()
{
ADCON1 =0b00001101;
//ADCON1 =0b00000000;
ADCON2 = 0b10001010;//ADCON2 setup: rigth justified, Tacq =2Tad, Tad=32*Tosc (or Fosc/32)

}

// reverses a string ’str’ of length ’len’
void reverse(char *str, int len)
{

int i=0, j=len-1, temp;
while (i<j)
{

temp = str[i];
str[i] = str[j];
str[j] = temp;
i++; j--;

}
}

// Converts a given integer x to string str[]. d is the number
// of digits required in output. If d is more than the number
// of digits in x, then 0s are added at the beginning.

int intToStr(int x, char str[], int d)
{

int i = 0;
while (x)
{

str[i++] = (x%10) + ’0’;
x = x/10;

}
// If number of digits required is more, then
// add 0s at the beginning
while (i < d)

str[i++] = ’0’;
reverse(str, i);
str[i] = ’\0’;
return i;

}

Appendix D. The PIC18LF45K20 Code 74

// Converts a floating point number to string.
void myftoa(float n, char *res, int afterpoint)
{
int temp_int[2] = {0};

// Extract integer part
int ipart = (int)n;
// Extract floating part
float fpart = n - (float)ipart;
// convert integer part to string
int i = intToStr(ipart, res, 0);

// check for display option after point
if (afterpoint != 0)
{

res[i] = ’.’; // add dot
// Get the value of fraction part upto given no.
// of points after dot. The third parameter is needed
// to handle cases like 233.007
fpart = fpart * pow(10, afterpoint);

intToStr((int)fpart, res + i + 1, afterpoint);
}

}

unsigned int ADCRead(unsigned char ch)
{

if (ch>13) return 0; //Invalid Channel

ADCON0=0x00;
ADCON0=(ch<<2); //Select ADC Channel
ADCON0bits.ADON=1; //switch on the adc module
ADCON0bits.GO_DONE=1;//Start conversion
while(ADCON0bits.GO_DONE); //wait for the conversion to finish
ADCON0bits.ADON=0; //switch off adc
return ADRES;

}

void temp(){
float T;
int i, result;
float conv;
char res[4];
char temp[3];

int temp_int;
ADCinit();

result = ADCRead(0);//Set the delay to the 8 MSB

Appendix D. The PIC18LF45K20 Code 75

conv = (result*3.3)/1024.0;
T = 25.0 +(conv -2.98)*100; //float

//FLOAT TO CHAR
temp_int = T;

if (T < 0.0) {
myftoa(-T, temp, 0);

currentTemp = temp;

Lcd_Set_Cursor(1, 6);
Lcd_Write_Char(’-’);

Lcd_Set_Cursor(1, 1);
Lcd_Write_String("Temp:");

Lcd_Set_Cursor(1, 7);
Lcd_Write_String(temp);

SendStringSerially(currentTemp); // Send string on UART
SendStringSerially("\r\n");

}
else if(T < 100.0 && T >= 0.0){

myftoa(T, res, 0);
currentTemp = res;

Lcd_Set_Cursor(1, 1);
Lcd_Write_String("Temp:");

Lcd_Set_Cursor(1, 6);
Lcd_Write_String(res);

SendStringSerially(currentTemp); // Send string on UART
SendStringSerially("\r\n");

}
else if(T >= 100.0){

myftoa(T, res, 0);
currentTemp = res;

Lcd_Set_Cursor(1, 1);
Lcd_Write_String("Temp:");

Lcd_Set_Cursor(1, 6);
Lcd_Write_String(res);

SendStringSerially(currentTemp); // Send string on UART
SendStringSerially("\r\n");

}

}

void linkToConnect(void){
PEIE = 0; // disable Peripheral Interrupts

Appendix D. The PIC18LF45K20 Code 76

Lcd_Clear();
Lcd_Set_Cursor(1,1);
Lcd_Write_String(addressToConnect);

myDelay_n10ms(1000);

PEIE = 1; // Enable Peripheral Interrupts
}

void interrupt ISR(void)
{

if(RCIF) // If UART Rx Interrupt
{
if(OERR) // If over run error, then reset the receiver
{
CREN = 0;
CREN = 1;
}

char string[20];

char buffer[20];
int i = 0;

while((RCREG != ’\r’)){
buffer[i] = ReceiveByteSerially();
++i;

}
if((buffer[0]==’1’)&&(buffer[1]==’9’)&&(buffer[2]==’2’)&&(buffer[3]==’.’)){

memcpy(addressToConnect, buffer, i);
addressToConnect[i] = ’\0’;
linkToConnect();

}
else if((buffer[0]==’N’)&&(buffer[1]==’T’)){

memcpy(string, buffer, i);
string[i] = ’\0’;
futureTemp[0] = buffer[2];
futureTemp[1] = buffer[3];
futureTemp[2] = ’\0’;
Lcd_Clear();
Lcd_Set_Cursor(2,1);
Lcd_Write_String("Wanted: ");
Lcd_Set_Cursor(2,9);
Lcd_Write_String(futureTemp);

}

Appendix D. The PIC18LF45K20 Code 77

else if((buffer[1]==’N’)&&(buffer[2]==’T’)){
memcpy(string, buffer, i);
string[i] = ’\0’;
futureTemp[0] = buffer[3];
futureTemp[1] = buffer[4];
futureTemp[2] = ’\0’;
Lcd_Clear();
Lcd_Set_Cursor(2,1);
Lcd_Write_String("Wanted: ");
Lcd_Set_Cursor(2,9);
Lcd_Write_String(futureTemp);

}
}

int main()
{

initPic();
InitUART(); // Intialize UART
Lcd_Init();

myDelay_n10ms(1000);
SendStringSerially("dofile(init.lua)\r\n"); // starts the ESP

GIE = 1; // Enable global interrupts
PEIE = 1; // Enable Peripheral Interrupts

Lcd_Clear();
Lcd_Set_Cursor(1,1);
Lcd_Write_String("WLAN Thermostat");
myDelay_n10ms(100);
Lcd_Set_Cursor(2,1);
Lcd_Write_String("ULg 2016");
myDelay_n10ms(1000);
Lcd_Clear();

while(1)
{

Lcd_Clear();
temp();
myDelay_n10ms(87000);

}
return 0;

}

78

Bibliography

[1] eq 3. MAX! Cube LAN Gateway. url: http://www.eq-3.de/produkte/max-
heizungssteuerung/max-hausloesung/bc-lgw-o-tw.html.

[2] Perrinjaquet Roger Amphoux Pascal Jaccoud Christophe. Dictionnaire critique de
la domotique. EPFL, Lausanne, 1989, pp. 44, 76.

[3] Electronic Assembly. DOGS GRAPHIC SERIES. url: http://www.lcd-module.
com/eng/pdf/grafik/dogs102-6e.pdf.

[4] Sue Beckingham. Curious about the Internet of Things? Read on – a short intro.
IoT. url: https:/ /socialmediaforlearning.com /2015/12/ 04/curious-
about-the-internet-of-things-read-on-a-short-intro-iot/.

[5] Maylab Information Technology Sdn Bhd. What is IoT? url: http://maylab.
my/?page_id=9.

[6] Duracell. Alkaline-Manganese dioxyde, Performance characteristics. url: http://
docs-europe.electrocomponents.com/webdocs/0215/0900766b802155d9.pdf.

[7] Duracell. INDUSTRIAL by Duracell. url: http://www.all- batteries.fr/
media/pdf/PRA2411_UK.pdf.

[8] energie+. Les vannes thermostatiques. url: http://www.energieplus-lesite.
be/index.php?id=10965.

[9] Robert Foss. enduser setup Module. url: http://nodemcu.readthedocs.io/en/
master/en/modules/enduser-setup/.

[10] John Greenough. The ’Internet of Things’ Will Be The World’s Most Massive De-
vice Market And Save Companies Billions Of Dollars. url: http://uk.businessinsider.
com/how-the-internet-of-things-market-will-grow-2014-10?r=US&IR=T.

[11] Grant Hernandez et al. “Smart nest thermostat: A smart spy in your home”. In:
Black Hat USA (2014).

[12] Honeywell. Honeywell Thermostat Evohome. url: https://www.amazon.fr/
Honeywell-THR992GRT-Thermostat-Evohome/dp/B00MPJF6DU?dpID=41WgEIUxmxL&

dpSrc=sims&ie=UTF8&preST=_AC_UL160_SR160%2C160_.
[13] Texas Instruments. LMx35, LMx35A Precision Temperature Sensors. url: http:

//www.ti.com/lit/ds/symlink/lm235.pdf.

http://www.eq-3.de/produkte/max-heizungssteuerung/max-hausloesung/bc-lgw-o-tw.html
http://www.eq-3.de/produkte/max-heizungssteuerung/max-hausloesung/bc-lgw-o-tw.html
http://www.lcd-module.com/eng/pdf/grafik/dogs102-6e.pdf
http://www.lcd-module.com/eng/pdf/grafik/dogs102-6e.pdf
https://socialmediaforlearning.com/2015/12/04/curious-about-the-internet-of-things-read-on-a-short-intro-iot/
https://socialmediaforlearning.com/2015/12/04/curious-about-the-internet-of-things-read-on-a-short-intro-iot/
http://maylab.my/?page_id=9
http://maylab.my/?page_id=9
http://docs-europe.electrocomponents.com/webdocs/0215/0900766b802155d9.pdf
http://docs-europe.electrocomponents.com/webdocs/0215/0900766b802155d9.pdf
http://www.all-batteries.fr/media/pdf/PRA2411_UK.pdf
http://www.all-batteries.fr/media/pdf/PRA2411_UK.pdf
http://www.energieplus-lesite.be/index.php?id=10965
http://www.energieplus-lesite.be/index.php?id=10965
http://nodemcu.readthedocs.io/en/master/en/modules/enduser-setup/
http://nodemcu.readthedocs.io/en/master/en/modules/enduser-setup/
http://uk.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10?r=US&IR=T
http://uk.businessinsider.com/how-the-internet-of-things-market-will-grow-2014-10?r=US&IR=T
https://www.amazon.fr/Honeywell-THR992GRT-Thermostat-Evohome/dp/B00MPJF6DU?dpID=41WgEIUxmxL&dpSrc=sims&ie=UTF8&preST=_AC_UL160_SR160%2C160_
https://www.amazon.fr/Honeywell-THR992GRT-Thermostat-Evohome/dp/B00MPJF6DU?dpID=41WgEIUxmxL&dpSrc=sims&ie=UTF8&preST=_AC_UL160_SR160%2C160_
https://www.amazon.fr/Honeywell-THR992GRT-Thermostat-Evohome/dp/B00MPJF6DU?dpID=41WgEIUxmxL&dpSrc=sims&ie=UTF8&preST=_AC_UL160_SR160%2C160_
http://www.ti.com/lit/ds/symlink/lm235.pdf
http://www.ti.com/lit/ds/symlink/lm235.pdf

BIBLIOGRAPHY 79

[14] The Garage Lab. ESP8266 - The Easiest Way to Automate Your Home. url:
http://thegaragelab.com/esp8266-the-easiest-way-to-automate-your-

home/.
[15] Jiakang Lu and Al. “The Smart Thermostat: Using Occupancy Sensors to Save

Energy in Homes”. In: SenSys ’10 Proceedings of the 8th ACM Conference on
Embedded Networked Sensor Systems (2010), pp. 211–224. url: http://dl.acm.
org/citation.cfm?doid=1869983.1870005.

[16] Laura Thomson Luke Welling. PHP MySQL. Pearson, 2009, pp. 2,3.
[17] Toni McConnel. DESIGN East - Microchip USB 8-bit PIC MCUs need no external

crystal. url: http://www.embedded.com/electronics-products/electronic-
product-reviews/mcus-processors-and-socs/4396293/Microchip-USB-8-

bit-PIC-MCUs-need-no-external-crystal.
[18] Navigant Research. Navigant Research Leaderboard Report: Smart Thermostats.

url: https://www.navigantresearch.com/wp-assets/brochures/LB-STHERM-
15-Executive-Summary.pdf.

[19] Margaret Rouse. Internet of Things (IoT). url: http://internetofthingsagenda.
techtarget.com/definition/Internet-of-Things-IoT.

[20] Rui Santos. Getting Started with ESP8266 WiFi Transceiver (Review). url: http:
//randomnerdtutorials.com/getting-started-with-esp8266-wifi-transceiver-

review/.
[21] ON Semiconductor. “LB1938FA, Monolithic Digital IC 1ch, Low-saturation For-

ward/Reverse Motor Driver”. In: ().
[22] Espressif Systems. ESP8266EX Datasheet. url: http://download.arduino.org/

products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf.
[23] Janani Gopalakrishnan Vikram.What is the IoT ? url: http://electronicsofthings.

com/fundamentals-basics-start-101/what-is-iot/.
[24] www.esp8266.com. ESP8266 enable deep-sleep mode. url: http://www.esp8266.

com/viewtopic.php?f=32&t=5701&start=30.

http://thegaragelab.com/esp8266-the-easiest-way-to-automate-your-home/
http://thegaragelab.com/esp8266-the-easiest-way-to-automate-your-home/
http://dl.acm.org/citation.cfm?doid=1869983.1870005
http://dl.acm.org/citation.cfm?doid=1869983.1870005
http://www.embedded.com/electronics-products/electronic-product-reviews/mcus-processors-and-socs/4396293/Microchip-USB-8-bit-PIC-MCUs-need-no-external-crystal
http://www.embedded.com/electronics-products/electronic-product-reviews/mcus-processors-and-socs/4396293/Microchip-USB-8-bit-PIC-MCUs-need-no-external-crystal
http://www.embedded.com/electronics-products/electronic-product-reviews/mcus-processors-and-socs/4396293/Microchip-USB-8-bit-PIC-MCUs-need-no-external-crystal
https://www.navigantresearch.com/wp-assets/brochures/LB-STHERM-15-Executive-Summary.pdf
https://www.navigantresearch.com/wp-assets/brochures/LB-STHERM-15-Executive-Summary.pdf
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
http://randomnerdtutorials.com/getting-started-with-esp8266-wifi-transceiver-review/
http://randomnerdtutorials.com/getting-started-with-esp8266-wifi-transceiver-review/
http://randomnerdtutorials.com/getting-started-with-esp8266-wifi-transceiver-review/
http://download.arduino.org/products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf
http://download.arduino.org/products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf
http://electronicsofthings.com/fundamentals-basics-start-101/what-is-iot/
http://electronicsofthings.com/fundamentals-basics-start-101/what-is-iot/
http://www.esp8266.com/viewtopic.php?f=32&t=5701&start=30
http://www.esp8266.com/viewtopic.php?f=32&t=5701&start=30

