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ABSTRACT

The C400 is the first compact superconducting cyclotron used for carbon therapy in the world. Dur-
ing the ramp-up procedure from zero to nominal current, the changing magnetic field leads to heat
dissipation within the superconducting coil. The aim of this thesis is to predict the magnetothermal
behaviour of the superconducting coil during ramp-up. To this end, a finite element model of the
C400 has been developed using the GetDP open-source software.

Based on a detailed theoretical background, the magnetic and thermal models are first described
individually as their numerical parameters are fine-tuned for optimal efficiency. The magnetother-
mal results are then studied in detail. The hysteresis losses, occurring in superconducting filaments,
play a central role in the magnetothermal behaviour of the coil, as the inter-filament coupling losses
are found to be negligible. Due to the efficiency of the liquid helium cooling system, the maximal
temperature rise in the coil is less than 0.01 K. The results are compared with expectations from
dimensional analysis and several parametric studies are carried out. Among other results, the ramp-
up procedure cannot be performed in less than 20 minutes and an optimized current profile allows
the maximal temperature rise to be reduced by 14 %.

In the second part of this work, a filament model is introduced to compute the hysteresis loss at
the superconducting filament scale. The results are compared with analytical approximations, high-
lighting the complexity of the physical phenomena involved. Among other observations, the critical
current density dependence on flux density and the effect of transport current on flux penetration
cannot be neglected. Finally, a multi-scale approach, based on the filament model, is proposed
and implemented for computing the hysteresis loss within the coil, together with the corresponding
temperature distribution. Its robustness significantly improves the accuracy of the results, since
analytical approximations underestimate the losses in the intermediate field regime.
The observed temperature rise in the coil is small and the filaments should remain in the supercon-
ducting state during a regular ramp-up procedure.
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INTRODUCTION

Developed in collaboration between Ion Beam Applications (IBA) and Normandy Hadrontherapy
(NHa), the C400 is a compact superconducting cyclotron used for carbon therapy [1]. Supercon-
ducting cyclotrons are at the cutting edge of technology, combining many complex physical phe-
nomena involving both ferromagnetic and superconducting materials, while relying on cryogenic
equipment for cooling. The remarkable properties of the superconducting Nb-Ti alloy used in the
C400 coil allow it to carry large currents without dissipating much energy [2], making it possible
to generate large magnetic fields required for accelerating ions in a compact environment. During
the ramp-up procedure from zero to nominal current, the changing magnetic field leads to heat dis-
sipation within the superconducting coil. It is critical to accurately predict the temperature rise of
the coil, as an excessive temperature increase would drive the superconductor out of its supercon-
ducting state. In such a case, the magnetic energy contained in the cyclotron would be released in
the form of heat, potentially causing irreversible damage to the device [3].

The main goal of this study is to develop a numerical model to predict the magnetothermal be-
haviour of the coil during the C400 energization process. It involves solving for the magnetic
field in the cyclotron, while computing the temperature distribution inside the superconducting coil
during ramp-up. The most popular approach for modelling such a behaviour is the finite element
method. To this end, the GetDP [4] open-source software is used for solving the finite element prob-
lem. It provides a complete control of the numerical modelling, which allows to freely describe the
coupling between magnetodynamics and thermodynamics. The mesh required for discretizing the
finite element problem is produced by the Gmsh [5] open-source software.

This thesis is divided into eight chapters. The medical context of the study is presented in Chap-
ter 1, where the concept of hadron therapy is briefly introduced before discussing the basic working
principle of isochronous cyclotrons. The C400 geometry is described in Chapter 2, where the sym-
metries of the device are used for modelling one eighth of the cyclotron. Themodelling assumptions
are discussed and a simplified axisymmetric model is also introduced for preliminary computations.

The theoretical background required for modelling the various physical phenomena is presented in
Chapter 3. The theory related to magnetodynamic modelling heavily relies on the previous works of
Geuzaine [6] and Dular [7]. An extensive description of superconducting materials is provided, in-
cluding practical considerations and theoretical models for the constitutive law of superconductors.
The different types of losses in composite conductors are discussed in the last part of the chapter. In
particular, analytical approximations for hysteresis losses in Nb-Ti filaments are adapted from [8].
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Louis DENIS Introduction

The magnetic model of the cyclotron is introduced in Chapter 4. After studying their sensitivity
to numerical parameters, magnetostatic and magnetodynamic results are presented. Models of in-
creasing complexity are investigated, from a two-dimensional axisymmetric geometry to the full
three-dimensional geometry of the cyclotron. The differences between the various configurations
are also highlighted. The thermal model of the coil is described in Chapter 5 and the effective ther-
mal properties of the homogenized coil are derived. Furthermore, the magnetic and thermal time
constants of the system are determined in these two chapters.

The coupled magnetothermal model is presented in Chapter 6, where the corresponding results
are discussed and a physical interpretation is provided. Additionally, the order of magnitude of the
temperature rise is compared with expectations based on dimensional analysis. The difference be-
tween the simplified axisymmetric model and the full three-dimensional model is also highlighted.
In the last part of the chapter, several parametric studies are carried out. Among others, the effect
of the cooling efficiency and the effect of the total ramp time on the temperature rise are investi-
gated. This chapter provides a comprehensive description of the magnetothermal behaviour of the
coil during the ramp-up procedure.

In Chapter 7, the accuracy of the analytical approximations used for computing the hysteresis loss
in the coil is evaluated. For this purpose, a model at the filament scale is introduced. The influence
of several physical parameters on the hysteresis loss in Nb-Ti filaments is studied and numerical
results are compared with analytical predictions. Again, a physical interpretation of the various
observations is provided.

In Chapter 8, the models described in Chapter 6 and Chapter 7 are combined and a multi-scale
approach is proposed to determine the maximal coil temperature during the ramp-up procedure.
After discussing the implementation of the method, the final results are compared with those pre-
sented in Chapter 6 and the robustness of the multi-scale approach is highlighted.

Computational resources have been provided by the Consortium des Équipements de Calcul In-
tensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under
Grant No. 2.5020.11. In particular, all computing times reported in this study have been measured
on the NIC5 cluster, hosted at the University of Liège and operated by the CÉCI. The convention
for mathematical notations used throughout the thesis is described in Appendix A.1.
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CHAPTER 1
MEDICAL CONTEXT

The purpose of the C400 cyclotron is to accelerate protons and carbon ions for treating cancer.
In this chapter, the conventional radiotherapy, involving photons, is compared to hadron therapy
with protons and carbon ions. Their respective advantages are discussed. In the second part of
the chapter, the working principle of cyclotrons for medical applications is briefly described. In
particular, the focus is set on the isochronous cyclotron.

1.1 Radiation therapy for cancer treatment
Throughout the 20th century, the knowledge of particle physics rapidly evolved following Wil-
helm Röntgen’s discovery of a new type of radiation known as X-rays, in 1895 [9]. Photons were
immediately used for medical applications, as the first X-ray radiograph was performed in 1896.
In 1901, the first use of radiation for cancer treatment was brachytherapy, in which a radioactive
source was placed near the tumor to be treated. In the 1930s, the first experiments on radiotherapy
involving X-rays for healing diseased animals were conducted. During this time, scientists also
achieved successful results using neutron beams. Unlike photons, neutrons have mass, marking the
emergence of what is nowadays called hadron therapy. The technology continued to evolve, and
in 1946, Wilson proposed the use of accelerated protons for hadron therapy [10]. Since then, the
impact of various particles on tumors has been studied. Today, both conventional radiotherapy and
hadron therapy remain popular and effective cancer treatment techniques, alongside chemotherapy.
Hadron therapy is mostly performed using protons and carbon ions [9].

To understand the difference between conventional radiotherapy and hadron therapy, their working
principles must be introduced. In a simplified way, diseased cells can grow in an uncontrolled man-
ner, forming a cluster known as a tumor. In radiotherapy, a high-energy photon beam (∼ 10 MeV)
is applied to the tumor, where the photon transfers its energy to electrons through ionization pro-
cesses. These energetic electrons can then collide with cells and in particular, they can break the
DNA of diseased cells.
Unfortunately, using this type of radiotherapy, a significant dose is also deposited in the healthy
tissues surrounding the tumor. The dose deposited in tissues varies smoothly with the depth of
deposition, unlike what is observed for hadron therapy methods [11]. For charged particle beams,
ionization occurs mostly at the end of the penetration range [12]. As a result, the dose transmitted
to tissues exhibits a Bragg peak, first observed by William Henry Bragg in 1904 [13]. Bragg peaks
for proton and carbon ion beams are shown in Fig. 1.1. The depth of the Bragg peak can be adjusted
by tuning the energy of the particles.

3



Louis DENIS Chapter 1. Medical context

Figure 1.1: Relative dose distributed in tissues
against depth of proton and carbon ion beams cal-
ibrated for a Bragg peak at ∼ 14 cm. Figure
from [12].

Such a radiation peak allows the focus of ra-
diation on the tumor without strongly affect-
ing the surrounding healthy tissues. Con-
versely, a higher dose can be delivered to
the tumor while maintaining the same irradi-
ation level in healthy tissues as achieved us-
ing X-rays. This property is particularly im-
portant when dealing with children: hadron
therapy reduces the probability of developing
later tumors compared to conventional radio-
therapy [9].

As observed in Fig. 1.1, the relative dose after
the Bragg peak drops more rapidly using pro-
tons. However, working with carbon ions of-
fers a significant advantage. Since the charge
of carbon ions is six times greater than that of
single protons, the ionization density of carbon
ions is 36 times larger [11]. This results in a
much lower lateral spread of ionization in tis-
sues for carbon ion beams compared to proton beams. Additionally, due to their charge, carbon
ions decelerate more rapidly when reaching their Bragg peak. Without delving into details, in ad-
dition to the secondary ionization process associated with the emission of high-energy electrons
(already discussed for photons), primary ionization processes occur within the tumor when using
carbon ions. This is not the case for proton beams. Primary ionization processes arise from the
interaction of carbon ions with molecules and lead to denser ionizations, potentially causing double
strand breaks. Consequently, carbon therapy proves more effective in treating radioresistant and
hypoxic tumors, which lack oxygen and are less responsive to secondary ionizations [9]. However,
while the proton therapy industry is already well-developed, carbon therapy is still in the process
of being commercialized. Nevertheless, carbon therapy has already demonstrated remarkable ef-
ficiency in the treatment of various types of malignancies [14], and the future prospects for this
technology are highly promising.

IBA is a leader in the hadron therapy market and is the most experienced company in proton ther-
apy. It has successfully launched multiple particle accelerators for proton therapy, such as the C235
isochronous cyclotron and the S2C2 synchrocyclotron. The C235 cyclotron is based on a normal-
conducting magnet, while the S2C2 relies on superconducting Nb-Ti. The C400 cyclotron studied
in this work is a superconducting isochronous cyclotron for proton therapy and carbon therapy. It
is developed in collaboration between IBA and NHa [1]. Its main advantage is the possibility for
medical centers to produce proton and carbon ion beams with one single machine.
In the C400, 12C6+ carbon ions are accelerated to 400 MeV/u (or 4800 MeV). Protons are usually
accelerated to 230 MeV. Next, the concept of isochronous cyclotron is described.

1.2 Isochronous cyclotron
To understand the utility of isochronism in a cyclotron, the basic working principle of the classic
cyclotron is presented first, and some of its implications are discussed.
In a cyclotron, an ion (charge q in [C] and mass m in [kg]) with velocity v [m/s] in a flux density

4
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b [T] follows a circular orbit of radius r [m], due to the centripetal Lorentz force fL = qv × b
(in [N]). Its angular frequency ω [rad/s] is then given by

ω =
v

r
=

qb

m
. (1.1)

While magnetic induction b bends the trajectory of the charged particle, it cannot accelerate the par-
ticle, as the work done by the Lorentz force is equal to zero: fL · v = 0. The particle is accelerated
by means of an electric field e [V/m]. In practice, radiofrequency (RF) cavities are used to transfer
energy to the particle. For consistent acceleration, the angular frequency of the electric field must
be the same as or a multiple of the revolution frequency of the particle, given by Eq. (1.1) [15].
In a classic cyclotron, the flux density b is assumed to be uniform in space. In that case, the max-
imum energy that can be reached is limited by the relativistic mass increase that needs to be taken
into account for high-energy particles. More generally, the angular frequency is

ω =
qb

m
=

qb

γm0

=
qb

m0

√
1−

(v
c

)2
, (1.2)

with γ [-] the relativistic factor, m0 [kg] the ion rest mass and c [m/s] the speed of light [16]. The
relativistic impact is not negligible as for carbon ions at 4800 MeV, γ = 1.43. At any given mo-
ment, the frequency of the electric field in RF cavities must match Eq. (1.2). However, the velocity
v of the particle increases with the radius r of its orbit. Therefore, if the magnetic induction b is
uniform, the frequency of the electric field must be adjusted as r increases.

A second issue arises in the case of a classic cyclotron: orbit stability [15]. Due to its transverse
dimensions, not all of the beam circulates exactly in the median plane of the cyclotron or on the
ideal trajectory. Instead, it oscillates around it, as shown in Fig. 1.2. Radial deviations are observed
in the median plane of the cyclotron, while axial deviations are perpendicular to the median plane.

Figure 1.2: Illustration of the concepts of radial and axial stability of a charged particle in a cy-
clotron. The circular path (equilibrium orbit) represents the ideal trajectory of a particle at constant
velocity, while the modified path is a perturbed yet stable trajectory. The oscillation amplitude is
not at scale. Figure from [15].

For the particle trajectory to remain stable, focusing Laplace forces are required to act against the
deviations. Focusing can be achieved with a flux density varying with the radial position. The
spatial evolution of the magnetic induction is typically described by

b(r) = b0

(
r

r0

)−nb

, (1.3)

with nb [-] the field index and b0 [T] and r0 [m] some reference quantities [16]. From [15], radial
orbit stability is achieved for nb < 1 and axial orbit stability for nb > 0. Hence, the condition for
global orbit stability is 0 < nb < 1. In a classic cyclotron, the field index is nb = 0 and the stability
condition is not met.
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One possibleway to achieve orbit stabilitywhile accounting for the relativisticmass increase (Eq. (1.2))
is through the use of a synchro-cyclotron. In a synchro-cyclotron, the flux density decreases with
radius, indicated by a positive field index nb, which ensures orbit stability. To satisfy Eq. (1.2), the
frequency of RF cavities also decreases with radius to balance the simultaneous induction decrease
and mass increase [16]. This principle has been exploited in the IBA S2C2.

Figure 1.3: Yoke shape of an az-
imuthally varying field cyclotron. Fig-
ure from [16].

In an isochronous cyclotron, the frequency of RF cavities
remains constant. For satisfying Eq. (1.2), the field index
must be negative meaning the flux density in the median
plane increases with radial position [16]. As a result, the
axial stability condition is not met, and additional axially
focusing forces are required. These forces are achieved
with an azimuthally varying field (AVF) cyclotron.
In practice, the magnet of the cyclotron is modified to in-
duce high magnetic field zones (hills or poles) and low
field zones (valleys), as shown in Fig.1.3. Consequently,
the equilibrium orbit is no longer perfectly circular. In
high field zones, the ions have a smaller radius of curva-
ture compared to low field zones. As a result, the velocity
of ions is no longer exclusively azimuthal but now has a
radial component. At the transition between hills and val-
leys, the magnetic induction has an azimuthal component.
It can be shown that the corresponding local Lorentz force
provides strong focusing [15]. Please refer to [15] for a
detailed and graphical demonstration.
This concept was first introduced by Thomas in 1938 [16] and the corresponding forces are thus
called Thomas forces. In an isochronous cyclotron, focusing Thomas forces overcome the vertical
defocusing caused by the negative field index and axial stability is achieved. In practice, the focus-
ing obtained with AVF cyclotrons can be significantly increased by using spiralized poles instead
of straight poles. Due to the shape of the poles, the local Lorentz force at hill/valley transitions is
alternatively focusing and defocusing. That alternating focusing can be quite strong [16].

In the C400 cyclotron, which is described in detail in the next chapter, isochronism has been re-
spected to account for the relativistic mass increase. It enables a constant frequency of the electric
field in RF cavities. The negative field index related to isochronism has been achieved with an el-
liptical pole gap. As the vertical gap between the poles decreases, the magnetic field in the median
plane increases. Moreover, the spiralized poles ensure vertical focusing of the ion beam.
A strong magnetic field is required for the ions to reach high energy within a compact space. In the
C400, it is produced by a superconducting coil in combination with a ferromagnetic yoke used to
channel flux lines. The superconducting coil allows the C400 to be the first compact superconduct-
ing cyclotron used for carbon therapy in the world.

As mentioned earlier, the C400 accelerates 12C6+ carbon ions to 4800 MeV. As shown in Eq. (1.1),
the charge-to-mass ratio q/m governs the beam dynamics. To maintain this ratio constant for the
production of proton beams, 2H+ ions are accelerated (to 230 MeV/u). At extraction, the 2H+ beam
passes through a stripper foil, a thin carbon sheet that breaks the bond between the two protons [16].
Consequently, the resulting H+ protons possess a kinetic energy of 230 MeV.
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CHAPTER 2
GEOMETRY AND PROBLEM DEFINITION

As mentioned in the first chapter, the C400 cyclotron is an isochronous cyclotron with spiralized
poles and elliptical gap. Its first design was proposed by IBA in 2007 [17]. The cyclotron is owned
by Normandy Hadrontherapy (NHa) and its current design status can be found in [1]. This chapter
focuses on the geometrical description of the C400 model studied in this thesis.

The cyclotron exhibits a reflection symmetry in the middle of the pole gap. The x-z symmetry
plane is further referred to as the median plane of the cyclotron. The vertical axis is the ŷ-axis.
One realistic view of the bottom half of the ferromagnetic yoke is shown in Fig. 2.1(a). Please note
that the mapping system also represented in the figure does not belong to the permanent cyclotron
design. The yoke does not exhibit a four-fold rotational symmetry, due to the single extraction chan-
nel at the bottom of Fig. 2.1(a). Nevertheless, the geometry has been simplified by IBA in order to
take advantage of that four-fold rotational symmetry as represented in Fig. 2.1(b). The equivalent
symmetric model has been designed in order to take the impact of the single extraction channel into
account using effective radial extraction channels. In practice, the central vertical hole in the yoke
contains the injection line, for injecting low-energy particles inside the cyclotron cavity.

(a)

x̂
ŷ

ẑ

(b)

Figure 2.1: (a) Bottom part of the ferromagnetic yoke. Figure from [18]. The light brown and cyan
rings as well as the central rod are parts of the temporary mapping design developed in [18].
(b) One quarter of the bottom part of the ferromagnetic yoke (in green) and the bottom supercon-
ducting coil (in blue), from the CAD file c400_vs4.stp prepared by IBA. For scale, the radius of the
yoke is ∼ 3.5 m.
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Louis DENIS Chapter 2. Geometry and problem definition

Consequently, one eighth of the cyclotron has been modelled in this work, with Gmsh [5] and
GetDP [4]. Implementing the symmetries has allowed to reduce the number of degrees of freedom
of the numerical system to be solved, as well as the computing times. The final model of the C400 is
shown in Fig. 2.2. For confidentiality reasons, the exact dimensions of the model are not included
in this report. They have been retrieved from the CAD file c400_vs4.stp provided by IBA. The
choice has been taken to model one quarter of the top part (not the bottom part !) of the cyclotron.
Note that an offset angle of θoffset = 0.2 rad has been introduced in the final geometry to ease mesh
generation. Moreover, the present model also takes the helium vessel into account.

x̂
ŷ ẑ

x̂
ŷ

ẑ

Figure 2.2: Numerical model of one quarter of the cyclotron top part implemented in Gmsh and
GetDP. Only solid parts are shown: the ferromagnetic yoke, the helium vessel and the coil. For
scale, the radius of the yoke is ∼ 3.5 m.

Air is assumed outside of the cyclotron. The ferromagnetic yoke is made of iron and is at room tem-
perature. Perfect vacuum is assumed in the central cavity of the yoke. The helium vessel is made of
stainless steel (SS304L). Inside the helium vessel, liquid helium is assumed to be at a temperature
of THe = 4.2 K. The helium vessel is the central part of the cryostat used to cool the coil. Together,
the helium vessel and the coil form the cold mass of the cyclotron. The coil is immersed in flowing
liquid helium and split in two sub-coils for a total of 1344 conductor turns (Nt = 672 turns per
sub-coil). Note that the cyclotron contains four sub-coils and two of them above the median plane.
The conductor is made of copper and superconducting Nb-Ti and its exact composition is further
discussed in Section 3.3.1.

The goal of this study is to solve for the magnetic field in the cyclotron, while retrieving the tem-
perature distribution inside the superconducting coil during ramp-up. The ramp-up of the cyclotron
consists in the energization of the coil, starting from zero current to reach nominal operating current.
The beam extraction mechanism, the beam injection line as well as the RF cavities are neglected
from a magnetic point of view. Liquid helium is considered as vacuum. The focus is set on the
superconducting coil itself. A simplified axisymmetric geometry is used several times for prelim-
inary computations in this study. An axisymmetric model enables working in two dimensions,
significantly reducing computing times. It is presented next.

2.1 Simplified axisymmetric geometry
The axisymmetric model used for preliminary studies is represented in Fig. 2.3. It has been obtained
by neglecting the yoke cavities, the off-center vertical holes in the yoke and the extraction channels.
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Louis DENIS Chapter 2. Geometry and problem definition

(a) Axisymmetric top part of the yoke. (b) Helium vessel - coil assembly.

Figure 2.3: Top part of the simplified axisymmetric yoke (in green) and its internal components: the
helium vessel (in blue) and the two sub-coils (top part in dark grey, bottom part in light grey). The
vacuum and the air are represented in white. The outer domain is not represented. The geometry is
simplified to be made axisymmetric with respect to the ŷ-axis (in red).

Figure 2.3(b) represents the cross-section of the helium vessel - coil assembly, which is axisym-
metric by definition. The radial width of the coil is denoted by wcoil [m] and its height by hcoil [m].
The top sub-coil is further referred to as sub-coil 1, the bottom one as sub-coil 2. In practice, the
assembly is supported by a stainless steel support located between the lower coil (below the median
plane, not shown) and the upper coil. It is also neglected in this work. The horizontal space between
the coil and the vessel is larger than the vertical space, as radial movement can occur during cool-
down or energization. The space is assumed to be completely filled with liquid helium. Grooved
plates are placed at the top and bottom surfaces of the coil, which are designed to allow efficient
circulation of the liquid helium. Again, the grooves are neglected.

2.2 Current profile
In this work, linear current profiles are considered. The total ramp-up time of the C400 cyclotron is
2 hours: Tup = 7200 s. Tab. 2.1 gathers the different nominal current configurations in the conduc-
tor composing the two sub-coils represented in Fig. 2.3(b). The two different carbon configurations
constitute two different solutions for accelerating carbon ions as they produce a very similar flux
density in the median plane. Such an observation is also valid for the two proton configurations.
Configuration 0 is the default configuration in which most of the results of this study are obtained,
unless otherwise specified. The intentional current asymmetry between the two sub-coils is im-
plemented for beam dynamics purposes. It is achieved by applying an opposite voltage difference
between the terminals of sub-coil 2. In the following, the steady-state solution corresponds to the
calculated static magnetic flux density distribution at nominal current.

Configuration 0 Carbon 1 (C1) Carbon 2 (C2) Proton 1 (P1) Proton 2 (P2)
i1 [A] 1002 990 1015 990 1015
i2 [A] 918 948 932 1034 1015

Table 2.1: Different nominal current conditions investigated. Current in the conductor of sub-coil 1
is denoted i1 [A], for a total current in sub-coil 1 of I1 = Nti1. The four last columns correspond to
C400 operating conditions during beam extraction. Please note that these are hypothetical values,
subject to modification and used for modelling purposes.
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CHAPTER 3
THEORETICAL BACKGROUND

Now that its geometry has been presented, this chapter focuses on establishing the theoretical back-
ground required for modelling the magnetothermal behaviour of the C400 cyclotron. First, mag-
netodynamics is discussed, introducing the magneto-quasi-static approximation. This chapter also
presents the properties of ferromagnetic materials and superconducting materials, which play a cru-
cial role in the working principle of the C400 cyclotron. Furthermore, a more detailed description
of superconductivity, along with practical considerations, is provided. The heat equation and other
thermodynamic quantities are also discussed. Finally, the physical coupling mechanisms between
magnetodynamics and thermal physics are presented. In particular, the losses occurring in super-
conducting cables are described in detail, as they will play a central role in the magnetothermal
behaviour of the coil, as highlighted in Chapter 6.

3.1 Magnetodynamics
Maxwell’s equations are valid in any medium:

∇ · b = 0, (3.1) ∇ · d = ρe, (3.2)

∇× h = j + ∂td, (3.3) ∇× e = −∂tb, (3.4)

with b [T] denoting the flux density, d [C/m2] the electric displacement field, h [A/m] the magnetic
field, e [V/m] the electric field, j [A/m2] the current density and ρe [C/m3] the electric charge
density [19]. Equations (3.1) to (3.4) are referred to as the differential forms of Gauss’s law for
magnetism, Gauss’s law for electricity, Ampère-Maxwell’s law, and Faraday’s law, respectively.
Source terms j and ρe, along with constitutive laws, initial and boundary conditions, allow to solve
for the electromagnetic fields in the domain of study Ω. In this work, the boundary of Ω is denoted
by Γ = ∂Ω.
Constitutive laws describe the interaction of the medium with electromagnetic fields. They allow
to close the system of Maxwell’s equations:

b = µh, (3.5) d = εe, (3.6)

with µ [H/m] denoting the permeability of the medium and ε [F/m] its permittivity. In an isotropic
medium, they can both be considered as scalar values. Generally, they are expressed as

µ = µ0 µr (h) , (3.7) ε = ε0 εr (e) , (3.8)
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Louis DENIS Chapter 3. Theoretical background

with µ0 = 4π × 10−7 H/m the free space magnetic permeability, ε0 = 8.854 × 10−12 F/m the free
space electric permittivity, the relative permeability µr (h) [-] and the relative permittivity εr (e) [-]
accounting for the material response. The relative permeability of the C400 ferromagnetic yoke is
described in Section 3.2. As mentioned later in this work, it is convenient to express the magnetic
constitutive law (Eq. (3.5)) in terms of the reluctivity ν = µ−1 [m/H] as

h = ν (b) b. (3.9)

For normal conductors (e.g. iron or stainless steel), the electric field is linked to the current density
through Ohm’s law:

j = σe, (3.10)
with the electrical conductivity σ [S/m] being considered independent of the electric field. Please
note however that the electrical conductivity depends on temperature [20]. Equation (3.10) is not
valid for materials in the superconducting state, for which the conductivity strongly depends on the
electric field σ (e). This is discussed in Section 3.3.
As in the previous works of Geuzaine [6] and Dular [7], the conducting part of the domain, for
which Eq. (3.10) is valid, is denoted by Ωc. By contrast, the current density is assumed equal to
zero in air and in vacuum:

j = 0. (3.11)
Air and vacuum are the non-conducting part of the domain, denoted by ΩC

c = Ω\Ωc.
In stranded conductors, the source current density is imposed

j = js (3.12)

and it is assumed independent of the local electromagnetic fields [6]. The volume of stranded
conductors is denotedΩs and numerically, it is a subset ofΩC

c as eddy currents are neglected. Hence,
in ΩC

c , the current density is

j =

{
js, in Ωs,
0, in ΩC

c \Ωs.
(3.13)

As the dimensions of the system are much smaller than the electromagnetic characteristic wave-
length (see Appendix A.4), the displacement current term ∂td can be neglected and Ampère’s law
(Eq. (3.3)) reduces to

∇× h = j, (3.14)
which is called themagneto-quasi-static (MQS) approximation [2]. In that case, the energy is mostly
stored under magnetic form, as expected for a cyclotron. The MQS approximation is particularly
valid when dealing with good conductors and thus, it is valid inside superconductors.
In terms of magnetic boundary conditions, an interface between two regions, region 1 and region
2, is considered. Denoting by n the normal unit vector pointing from region 1 into region 2, the
following boundary conditions must be satisfied at any instant:

n× (h2 − h1) = K, (3.15) Kn · (b2 − b1) = 0, (3.16)

with K [A/m] the surface current at the interface and xi the quantity x evaluated at the interface
in region i [2]. Similarly, the tangential component of the electric field is continuous across any
interface: n× (e2 − e1) = 0.
As in [7], the boundary Γ of the magnetic domain is split into two distinct subsets Γe and Γh, on
which boundary conditions are applied:

h× n = h̄× n on Γh, (3.17) e× n = ē× n on Γe, (3.18)
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with h̄ and ē imposed fields. In the case of homogeneous boundary conditions, Eq. (3.18) implies

e× n = 0 on Γe ⇒ ∂tb · n = 0 on Γe ⇒ b · n = 0 on Γe, (3.19)

in which last equation is obtained assuming the initial condition satisfies b · n = 0 on Γe [7].
Next, two different formulations are described: the magnetic vector potential formulation and the
magnetic field formulation, denoted respectively as the a-formulation and the h-ϕ-formulation.
These are required for discretizing the problem in the context of the finite element method.

Vector potential formulation

From Eq. (3.1) and Eq. (3.4), one can define the magnetic vector potential a [Tm] and the electric
scalar potential v [V], such that

b = ∇× a (3.20) e = −∂ta−∇v. (3.21)

Note that v is only defined in Ωc. As shown in [7], it is possible to define an auxiliary quantity such
that v∗ = 0 and

e = −∂ta
∗ in Ωc, (3.22)

with a∗ [Tm] the modified magnetic vector potential. The modified vector potential is adopted in
this study and further, it is denoted by a∗ = a. In that context, a is uniquely defined in Ωc but
it is not in ΩC

c , where a gauge condition is required for selecting one particular solution [21]. The
gauging issue and its impact on the magnetic solution is addressed in Section 4.5.
The (modified) vector potential formulation relies
on the following strong form:

∇× (ν∇× a) =


−σ∂ta, in Ωc,

js, in Ωs,
0, in ΩC

c \Ωs,
(3.23)

which is based on Ampère’s law. It simultane-
ously satisfies Eq. (3.9), Eq. (3.10), Eq. (3.13),
Eq. (3.14), Eq. (3.20) and Eq. (3.22). A general
representation of the different regions involved in
Eq. (3.23) is shown in Fig. 3.1.
The main unknown is the vector potentiala. Con-
sidering the fact that a is a primitive of e and
a(t = 0) = 0 in this work, the boundary

Figure 3.1: Abstract representation of Ω,
Ωc ∈ Ω and Ωs ∈ ΩC

c , along with Γe (in red)
and Γh (in blue). Figure adapted from [22].

condition (Eq. (3.18)) reduces to an essential boundary condition a × n = ā × n on Γe. The
weak formulation is obtained by seeking a ∈ A(Ω), multiplying Eq. (3.23) by a test function
a

′ ∈ A0(Ω) and integrating over the volume Ω. Please refer to Appendix A.2 for the definition of
function spaces A(Ω) and A0(Ω). Adapting the a-formulation derived in [7] to the present study,
the weak formulation reads:

From a zero initial solution in t = 0, find a ∈ A(Ω) such that, for t > 0, ∀a′ ∈ A0(Ω),

(ν ∇× a,∇× a
′
)Ω − ⟨h̄× n,a

′⟩Γh
+ (σ ∂ta,a

′
)Ωc

= (js,a
′
)Ωs

,
(3.24)

involving the inner product notations (·, ·)Ω and ⟨·, ·⟩Γ defined in Appendix A.1. The essential
boundary condition on Γe is strongly imposed through A(Ω) while the natural boundary condition
on Γh is weakly satisfied. The a-formulation is applied to the C400 geometry in Chapter 4.
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Magnetic field formulation

Alternatively, the h-ϕ-formulation strong form relies on Faraday’s law (Eq. (3.4)). Later in this
work, the h-ϕ-formulation will be used for modelling the behaviour of a single superconducting
filament. In that case, no source current density js is considered and Ωs = ∅. As mentioned in
Section 3.3.4, the superconducting behaviour can be modelled using an equation of the form:

j = σ(e)e ⇐⇒ e = ρ(j)j, (3.25)

in which ρ [Ωm] denotes the electrical resistivity.
As explained in Section 7.1, the superconductor filament will constitute the only conductor in the
domain and therefore it can be denoted by Ωc. The net current Īt [A] flowing in Ωc is imposed
strongly by setting the circulation of h along a closed loop C around Ωc to

I(h) =
∮
C
h · dl = Īt, (3.26)

with I(h) the functional of the net current throughΩc givenh. It is the integral version of Ampère’s
law in the MQS approximation (Eq. (3.14)). The weak formulation is obtained by seeking the
unknown h in H(Ω), which takes the strong global condition of Eq. (3.26) into account. H(Ω)
is defined in Appendix A.2 alongside H0(Ω). Throughout this work, the magnetic field is equal
to zero in t = 0. Introducing a test function h

′ ∈ H0(Ω), the weak formulation can be adapted
from [7]:

From a zero initial solution in t = 0, find h ∈ H(Ω) such that, for t > 0, ∀h′ ∈ H0(Ω),

(µ ∂th,h
′
)Ω + (ρ ∇× h,∇× h

′
)Ωc

− ⟨ē× n,h
′⟩Γe

= 0.
(3.27)

Please refer to [7] for the full derivation of the weak formulation. When applying an electric poten-
tial difference to the conductor, the right-hand-side of the weak formulation is not zero. Neverthe-
less, this situation is not encountered in this work.
The essential boundary condition on Γh is imposed throughH(Ω) while the natural boundary con-
dition on Γe is weakly satisfied. In ΩC

c , h is curl-free: ∇ × h = 0. As a consequence, a scalar
magnetic potential ϕ [A] can be introduced, such that

h = −∇ϕ. (3.28)

Numerically, the curl-free property is ensured by decomposing h as a sum of gradients of nodal
functions inΩC

c [7]. The h-ϕ-formulation is further adapted in Section 7.1 as it is used for modelling
the behaviour of a superconducting filament.

Performance of both formulations

Dular [7] has shown that the a-formulation leads to better performance than the h-ϕ-formulation in
geometries including ferromagnetic materials. This is linked to the concavity of the ferromagnetic
constitutive law (cf. Section 3.2). Non-convergence of the Newton-Raphson linearization scheme
can be observed in the case of the h-ϕ-formulation. Conversely, the strongly nonlinear constitutive
law in type-II superconductors leads to better performance with the h-ϕ-formulation than with the
a-formulation. This can also be explained by the shape of the power-law (cf. Section 3.3.4).
For systems that include both ferromagnetic and superconducting materials, Dular has proposed
hybrid finite-element formulations that yield effective results [7].
In this work, the magnetic behaviour of the C400 at the macroscopic scale is modelled without tak-
ing the superconducting constitutive law into account, as explained in Chapter 4. In that case, the
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a-formulation is preferred.
In Chapters 7 and 8, the local response of single superconducting filaments is assessed with a sep-
arated model. The filament-scale model does not involve any ferromagnetic material. The h-ϕ-
formulation is thus preferred for modelling single filaments.

3.1.1 Magnetostatics case
In this work, some magnetostatic computations are also performed at the macroscopic scale of the
whole cyclotron. In that case, the source current density js is assumed constant in time. In practice,
it corresponds to the nominal state of operation of the cyclotron. The magnetic field distribution is
therefore constant and in particular, ∂ta = 0, which corresponds to the steady-state assumption. As
a consequence, the a- formulation (Eq. (3.24)) simplifies to

Find a ∈ A(Ω) such that, ∀a′ ∈ A0(Ω),

(ν ∇× a,∇× a
′
)Ω − ⟨h̄× n,a

′⟩Γh
= (js,a

′
)Ωs

.
(3.29)

As a reminder, the essential boundary condition (Eq. (3.18)) is strongly imposed through A(a).
Note that in steady-state, there is no distinction between Ωc and ΩC

c and the gauge condition must
be applied in the whole domain.

3.1.2 Magnetic energy
For the purpose of evaluating the convergence of a global quantity during a parametric study, the
magnetic energyEm [J] is introduced. It will be particularly useful for assessing the convergence of
the results with respect to the global mesh size in Chapter 4. The magnetic energy density um [J/m3]
can be defined as

um(b) =

∫ b

0

h(b∗) db∗ =

∫ b

0

ν(b∗) b∗ db∗ =


b2/2µ, in ΩL,∫ b

0

ν(b∗) b∗ db∗, in ΩNL,
(3.30)

by anticipating on the next section and splitting the magnetic domain in its linear part ΩL and its
nonlinear part ΩNL = Ω\ΩL. In ΩL, the reluctivity ν of the medium does not depend on b. The total
magnetic energy can finally be computed as

Em =

∫
Ω

um dΩ. (3.31)
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3.2 Ferromagnetic materials
The nonlinear magnetic domain is constituted by ferromagnetic materials as described in this sec-
tion. In the context of the C400, the magnet yoke is made of iron, a ferromagnet.
Ferromagnetic materials exhibit a strong material response to an applied magnetic field and the b-h
relation is not linear. In this work, the ferromagnetic yoke is considered isotropic, its permeability
is scalar and the magnetic response is decomposed as

b = µ(h)h = µ0(h+m(h)), (3.32)

with m [A/m] the magnetization of the material, which depends on the magnetic field and can
be large when dealing with ferromagnets. The magnetic response of the material is linked to mi-
croscopic domains that are spontaneously magnetized. Without an applied magnetic field, the mi-
croscopic magnetic moments are randomly arranged. When the applied field is increased, domain
walls (boundaries between neighbouring domains) tend to move in such a way that the domains
with magnetization parallel to the field are growing. When all magnetic dipoles are aligned with
the applied field, the material enters the saturation regime [23] and dm/dh = 0. This theory is
referred to as the Weiss theory.
Moreover, ferromagnetic materials exhibit an hysteretic behaviour. The first magnetization b-h
curve of the ferromagnetic yoke has been measured by IBA and is shown in Fig. 3.2. In the context
of the cyclotron ramp-up from zero to nominal current, working with the first magnetization curve
seems adequate.
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Figure 3.2: Experimental flux density b - magnetic field h curve of the ferromagnetic yoke, (a) h
in logarithmic scale, (b) in linear scale, along with the extrapolated saturated curve of slope µ0 =
4π × 10−7 H/m.

As can be observed, experimental data is only gathered for b < 2.38 T. However, as will be ob-
served in Chapter 4, the flux density in the cyclotron can be larger than that. This issue has been
solved by artificially adding new b-h points for larger b. As can be observed in Fig. 3.2(b), the
experimental curve has reached the saturation regime as it matches the curve of linear slope µ0 for
h > 105 A/m. Consequently, new points (bi, hi) were generated starting from the last experimental
point (bend, hend) as

bi = µ0 (hi − hend) + bend. (3.33)

In the numerical implementation, points have been added until b = 7 T. Due to the intricate be-
haviour of the b-h curve at low field and in the medium range (Fig. 3.3(a)), no satisfying analytical
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approximation has been obtained. Below bT = 0.723 T, the b-h curve exhibits a positive concav-
ity d2b/dh2 > 0 as observed in Fig. 3.3(a), characteristic of the Rayleigh law [23]. In the rest of
the curve, d2b/dh2 < 0 until the saturation regime is reached, for which yields d2b/dh2 = 0. As
explained in Section 4.4, this inflexion point at b = 0.723 T has an impact on the stability of the
linearization algorithms.
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Figure 3.3: (a) Experimental flux density b - magnetic field h curve of the ferromagnetic yoke and
(b) reluctivity ν(b) curve, both in the low-medium field range (b < 1.7 T).

In Chapter 4, the cyclotron is modelled with the a-formulation (Eq. (3.24)). As a result, the reluc-
tivity ν(b) of the yoke is required as a function of the flux density b. It is shown in Fig. 3.3(b) in
the low field range. As can be observed, dν/db < 0 for b = 0.723 T, which will lead to numerical
instabilities as described in Section 4.4. The minimal reluctivity is νmin = 140 m/H, corresponding
to a relative permeability of µr,max = 5700.
Numerically, the b-h curve is reconstructed directly from material data and a spline interpolation
is performed in GetDP to retrieve the reluctivity ν(b) for any input flux density b > 0. The corre-
sponding magnetic field is then retrieved with Eq. (3.9). For the first input point (b1, h1) = (0, 0),
the reluctivity ν1 = h1/b1 is not defined. It is linearly extrapolated from the second and third data
points:

ν(b = 0) = ν1 ≈ ν2 −
ν3 − ν2
b3 − b2

b2 = 871 m/H. (3.34)

The computation of the local magnetic energy density as a function of the flux density in the yoke
um(b) (Eq. (3.30)) is performed beforehand and tabulated, it is then passed as an input to the GetDP
solver. Later in this work, the Jacobian matrix element ∂hi/∂bj is required for the Newton-Raphson
linearization scheme. Based on the isotropic assumption, it comes successively, in index notation:

hi = ν(b)bi ⇒ ∂hi

∂bj
= ν(b)

∂bi
∂bj

+
∂ν

∂b2
∂b2

∂bj
bi = ν(b)δij +

∂ν

∂b2
2bjbi. (3.35)

3.3 Superconducting materials
The coil of the C400 cyclotron is made of Nb-Ti, a superconducting material. In this section, super-
conductors are first described theoretically. A more practical discussion of applied superconductors
is also provided. Finally, different models encountered during the study are presented.

Below their critical temperatureTc [K], superconductors exhibit the unique property of having an ex-
tremely lowDC resistance that cannot be measured. For mercury, it was discovered by Kamerlingh-
Onnes in 1911. In 1933, theMeissner effect was observed experimentally, still for mercucy: a super-
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conducting piece expels an externally applied magnetic flux [2]. At the microscopic scale, the cur-
rent is carried by Cooper pairs formed by two paired electrons. Apart from its critical temperature, a

T [K]
b [T]

j
[A

/m
m

2
]

Figure 3.4: Critical surface of Nb-Ti in the (j-b-T )-space.
Figure adapted from [24].

superconductor can carry a maximal
current density, the critical current
density jc [A/m2]. Similarly, su-
perconductivity occurs below some
threshold magnetic field, the critical
magnetic field hc [A/m]. Together,
the critical quantities form a critical
surface [2], as shown in Fig. 3.4.
A superconductor is in the super-
conducting state if it lies below the
critical surface in the (j-b-T )-space.
Above, it is considered as a normal
conductor. In the normal conduct-
ing state, the material is usually much
more resistive than copper [25].
A distinction must be made between
type-I and type-II superconductors.
In type-I superconductors, the mag-
netic flux cannot enter the material,
except on a small thickness λ [m], the
penetration depth. The superconduc-
tor is said to be in the Meissner state, which is described by the first and the second London equa-
tions [2]. Type-I superconductors are not exploited much in practical applications, as their critical
field is low (µ0hc ≲ 0.1 T) and the current is only flowing on a thickness λ in the Meissner state.

Figure 3.5: Critical surface
of a type-II superconductor in
the j = 0 plane. Figure
adapted from [25].

In the C400 coil, Nb-Ti is preferred for working at larger fields.
The niobium titanium alloy is a type-II superconductor. Type-II
superconductors exhibit an intermediate state which is called the
mixed state, in which magnetic flux enters the material in the form
of quantum fluxoids, also called vortices. The (h-T ) phase diagram
of a typical type-II material is shown in Fig. 3.5. As observed, type-
II materials are characterized by three possible states, depending on
the applied magnetic field ha [A/m]:

• below hc,1: Meissner state, no flux density inside the super-
conductor.

• between hc,1 and hc,2: mixed state, mean flux density inside
the superconductor between 0 and µ0ha.

• above hc,2: resistive, normal conducting state.

Note that Fig. 3.5 is not to scale: the lower critical field µ0hc,1 ∼ 0.01 T is much lower than the
upper critical field, that can reach µ0hc,2 ∼ 100 T for type-II superconductors [25]. Furthermore,
the Meissner state is neglected in this work.
Type-II superconductors can be subdivided into two categories. First, the low-temperature super-
conductors (LTS), like Nb-Ti and Nb3Sn, have a critical temperature Tc around 9 K and 18 K, re-
spectively [2]. Second, the high-temperature superconductors (HTS) are capable of reaching much
higher temperatures while remaining in the mixed state. The most common LTS are Nb-Ti and

17



Louis DENIS Chapter 3. Theoretical background

Nb3Sn. Even though Nb3Sn has a larger critical current density, Nb-Ti is often preferred as it is
ductile [24]. Nb3Sn is much more brittle and it is limited to higher field applications [26], for which
Nb-Ti cannot be used. In section 3.3.1, the focus is set on the manufacturing of LTS in the form of
wires and filaments. Conversely, HTS are usually manufactured as tapes. Section 3.3.1 describes
the engineering view of processing Nb-Ti in the context of the C400 superconducting coil.

3.3.1 Practical considerations

Figure 3.6: Quenching event (red
zone) of a superconductor (in blue)
in a normal conducting matrix (in
grey). The current is in red. Figure
adapted from [24].

When Nb-Ti crosses the critical surface represented in Fig. 3.4,
it goes from the superconducting state to the normal conduct-
ing state. As a result, its resistivity suddenly increases and the
corresponding Joule losses can lead to an enormous heat dis-
sipation. Such an event is called a quench [3], it is sketched in
Fig. 3.6. To ensure the superconductor does not break down
when suffering a quench, multiple superconducting filaments
are embedded in parallel in a normal conducting matrix, also
called the stabilizer, usually made of copper. During a quench,
copper can transport current to adjacent filaments while diffus-
ing the heat generated at the local quench event [27]. The pur-
pose of the copper matrix is to protect and to stabilize Nb-Ti.
Indeed, working with fine Nb-Ti filaments embedded in cop-
per also reduces transient losses and flux jumps in the superconductor, as well as field distortions [3].
Transient losses and field distortions are linked to the permanent magnetization of filaments, which
can be reduced by decreasing the filament diameter [8]. In practice, the filaments are twisted to re-
duce losses in the matrix [27]. The particular issue of losses in the superconducting coil is described
later in Section 3.5. A group of twisted filaments is called a strand. Finally, a superconducting cable
is made of several strands. Please note that the term superconducting cable refers to a composite
assembly of Nb-Ti in copper.

Many different cable configurations exist, depending among other parameters on the distribution
of strands, the type of the stabilizer and the superconductor to matrix ratio. The C400 coil relies on
the wire-in-channel (WIC) technology, in which a composite core wire is embedded inside a copper
channel as represented in Fig. 3.6.

Fibre glass

Copper channel

Composite wire

Nb-Ti filament

tfg

wch

hch

Figure 3.7: Sketch of the cross-section of a wire-in-channel superconducting cable. In orange,
insulating fibre glass. In grey, copper. In blue, Nb-Ti filaments. Note that the figure is not to scale:
filaments are much smaller and more closely manufactured than what is represented.

The diameter of the filaments is expected to be df = 51 µm. The number of filaments per conductor
is denoted by Nf [-]. The height and the width of the channel are respectively denoted by hch [m]
and width wch [m], while the thickness of the fibre glass insulation is denoted by tfg [m]. One
particular quantity of interest is the Nb-Ti filling factor of the cable, λSC [-]. It is defined as the ratio
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of the total cross-section of the Nb-Ti filaments to the cross-section of the cable, it thus represents
the volumic fraction of Nb-Ti inside the cable. It has been computed from data provided by the
manufacturer:

λSC = 0.03. (3.36)

It is required for determining losses in the coil as explained in Section 3.5. Similarly, the local Nb-
Ti factor inside the composite core wire λw [-] can be retrieved from the copper-to-superconductor
ratio of 1.4 in the wire:

λw =
1

1 + 1.4
= 0.42. (3.37)

During operation, the current is expected to be carried almost exclusively by Nb-Ti. The local
current density jSC [A/m2] in Nb-Ti is linked to the engineering current density jeng [A/m2] through:

jeng = λSC jSC. (3.38)

The engineering current density is mentioned when looking at the conductor from a global point of
view, without focusing on its internal structure.
The residual resistivity ratio (RRR) of copper is defined as the ratio between electrical resistivity
at room temperature and the resistivity at cryogenic temperature [27]. It is an image of copper
purity [20]. The expected RRR of copper in the composite conductor is 80.

3.3.2 Critical surface of Nb-Ti
For modelling superconductors, the critical current density jc is required. As can be observed in
the critical surface diagram of Nb-Ti (Fig. 3.4), it depends on the applied flux density and on tem-
perature. More precisely, the critical current decreases as both the applied magnetic field and the
temperature increase. In this section, the critical current jc dependence on b and T is discussed.

While the critical temperature Tc and the critical field hc,2 of a superconductor depends on the ma-
terial itself, the critical current jc depends on its microstructure [2]. Physically, the critical current
density is linked to the Lorentz-like force fL = j×b, in [N/m3], locally acting on flux vortices inside
type-II superconductors [28]. The Lorentz-like forces tend to set the vortices in motion. The mo-
tion of vortices then leads to a flux variation, induced currents and losses in the normal-conducting
core of the vortices. This is referred to as flux flow [25]. To counterbalance the Lorentz-like force,
pinning centers, defects in irreversible superconductors, trap vortices by exerting a pinning force
fP [N/m3] on them. If the pinning force overcomes the Lorentz-like force, there is no flux motion
and no losses. On the opposite, if the Lorentz-like force is larger:

fL = ∥j × b∥ > fP, (3.39)

flux flow occurs. The critical current density or depinning current density can be retrieved by bal-
ancing Eq. (3.39).

One popular model for the critical current density dependence on flux density is Kim’s law, first
proposed in 1962 [29]:

jc(b) =
jc,0

1 + b/b0
, (3.40)

in which jc,0 [A/m2] and b0 [T] are reference quantities. As Nb-Ti has been widely used since,
many measurements are now available and more recently, Bottura [30] has proposed a specific
practical fit for the critical surface of Nb-Ti. It is in good agreement with the description based on
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the pinning force (Eq. (3.39)). It allows to retrieve the critical current as a function of flux density
and temperature:

jc(b, T ) =
C0

b

(
b

bc,2(T )

)αNb-Ti
(
1− b

bc,2(T )

)βNb-Ti
(
1−

(
T

Tc,0

)1.7
)γNb-Ti

, (3.41)

in which αNb-Ti [-], βNb-Ti [-], γNb-Ti [-] are global fitting parameters, Tc,0 = 9.2 K is the critical
temperature at zero field and zero current and C0 [T A/m2] is a normalization constant depending
on the particular sample. The Nb-Ti critical field dependence on temperature has been studied by
Lubell [31], reading:

bc,2(T ) = bc,20

(
1−

(
T

Tc,0

)1.7
)
, (3.42)

with bc,20 = 14.5 T the upper critical field at 0 K. As highlighted by experimental results on Nb-Ti
strands in [32], Bottura’s relationship is fairly consistent with both magnetization data at low field
and transport current measurements at high field. Moreover, it has been used many times, includ-
ing in the design of the superconducting magnet of the International Thermonuclear Experimental
Reactor (ITER) tokamak [33]. In the present work, Bottura’s relationship (Eq. (3.41)) is also used
for describing the Nb-Ti critical surface.
In his paper [30], Bottura fitted his curve on several data sets. The data set corresponding the most
to the present study is the Spencer data set [34], which relates to a field range from 0 T to 8 T and
temperatures from 4.2 K to 9 K. In that case, Bottura obtained the following fitting parameters:

αNb-Ti = 0.57, βNb-Ti = 0.9, γNb-Ti = 1.9. (3.43)

The normalization constant C0 remains to be determined. Ideally, measurements should be per-
formed on the C400 coil to provide an accurate estimation. The manufacturer of the coil provided
one single critical current value, from which the constant C0 is retrieved, assuming the current only
flows in the Nb-Ti filaments:

Ic(4.5 T, 4.2 K) = 2850 A ⇒ jc(4.5 T, 4.2 K) = 3142 A/mm2 (3.44)
⇒ C0 = 6.773× 1010 T A/m2. (3.45)

The final jc(b, T ) variation with respect to T and b implemented in the numerical model is repre-
sented in Fig. 3.8. As observed in the left graph, the critical current density decreases as temperature
increases. As the flux density increases, themaximal current-sharing temperature, themaximal tem-
perature for which Nb-Ti is superconducting, decreases. The order of magnitude is consistent with
the experimental results obtained by Boutboul et al. [32]. For several strands from the Large Hadron
Collider (LHC), they measured jc(6 T, 4.2 K) in the range 2278 ∼ 2344 A/mm2. The fitting used
in the present study yields jc(6 T, 4.2 K) = 2162 A/mm2. The slight difference could be explained
by the difference in filament diameter (df = 51 µm for the C400, against 6 µm in [32]) and the fact
that jc is expected to decrease when the filament diameter is increased [28].
As represented in Fig. 3.8(b), the critical current density increases as the flux density is reduced. In
particular, it tends towards infinity as the flux density tends towards zero. Equation (3.41) diverges
for b = 0 T. After having discussed the matter with Luca Bottura, the divergence itself has no
physical meaning, as in practice the b = 0 T condition is never met for a filament in which transport
current is flowing. It is at least subjected to its self-field: 0.01 − 0.1 T. One solution to avoid
this divergence is to measure the maximal critical current density jc,self due to self-field and use an
effective critical current density1 as

jc,eff =

(
1

jc
+

1

jc,self

)−1

, (3.46)

1Private communication with Luca Bottura, 11/05/2023.
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Figure 3.8: Critical current density jc of Nb-Ti filaments in the C400 coil dependence on (a) tem-
perature T , (b) flux density b, according to Bottura’s relationship (Eq. (3.41)).

with jc computed using Eq. (3.41).
However, when dealing with hysteresis losses in Nb-Ti filaments, the divergence of jc at zero field is
not a problem, as shown later in this work. Moreover, as the value of jc,self is not known, Eq. (3.41)
is simply implemented and used in the next chapters. Numerically, Eq. (3.41) has been regularized
by implementing it as jc(max(b; εb), T ) with εb = 10−6 T.

3.3.3 Critical state model
In this section and in the following section, models for the j-e constitutive law of superconductors
are presented. The most popular model for describing the behaviour of superconductors has been
introduced by Bean [35] in 1962: the critical state model (CSM) also referred to as Bean’s model. It
is valid for irreversible or hard superconductors, in which the pinning forces are strong. It assumes
hc,1 → 0 and hc,2 → ∞, i.e. the type-II superconductor is always in the mixed state. It also assumes
the dimensions are larger than the penetration depth λ [25]. In the present study, considering Nb-Ti
filaments (df ≫ λ ∼ 0.1 µm [2]), these assumptions seem reasonable.
The CSM states that the norm of the current density j inside superconductors is either 0 or jc. It
is only zero in regions where the electric field has always been zero. For any finite value of the
electric field e > 0, the current density is parallel to the electric field. When the electric field is
reduced to zero, the direction of the current density remains the same as the electric field just before
it vanished. Consequently, the superconducting material exhibits hysteresis [8]. An example of
such an hysteretic behaviour is represented in Fig. 3.9, for an infinite slab.
In Section 3.5, a constant critical current density jc is assumed for deriving analytical approxima-
tions for losses based on the CSM. These results are then extrapolated to the jc(b, T ) case in the
numerical implementation at the macroscopic scale. Nevertheless, the CSM is a simplified model
and does not always represent reality. In practice, such a discontinuous j-e constitutive law is not
observed experimentally. As discussed in the following section, the discontinuity is smoothed out
by the flux creep phenomenon.

3.3.4 Power-law model
Many experimental observations, e.g. [36], have illustrated a strongly nonlinear, yet continuous
voltage-current characteristic in superconducting filaments. This behaviour can be explained by
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ba [T]

t [s]

j
=

0

Figure 3.9: Evolution of the induced currents (at the top) in an infinite slab as a function of the
external applied flux density ba varying in time as shown in the bottom, according to the CSM. ⊙
represents an out-of-plane current density of norm jc, ⊗ in-plane.

the so-called power-law model:

e =
ec
jc

(
j

jc

)n−1

j = ρ(j)j ⇐⇒ j =
jc
ec

(
e

ec

)(1−n)/n

e = σ(e)e, (3.47)

with ec [V/m] a threshold electric field, usually chosen as ec = 10−4 V/m, and the n-exponent char-
acterising the steepness of the transition [37]. Physically, it is linked to the flux creep phenomenon:
due to thermal excitation, some vortices leave their pinning centers even for j < jc, resulting in
a finite resistivity and a non-vanishing electric field. The n-exponent is linked to the activation
energy Ua [J] of the pinning potential well through n = Ua/kBT , with kB = 1.38 × 10−23 J/K
the Boltzmann constant [38]. The CSM model is recovered in the asymptotic regime (n → ∞) of
Eq. (3.47). Strictly speaking, this model is valid until the material enters the flux flow regime [37].
The flux flow regime is neglected in the present study.
For Nb-Ti at 4.2 K, the n-exponent lies in the range 20−60, n decreasing when the flux density b is
increased [39]. Even though [39] provides extensive data for the n-exponent, no analytical approx-
imation is obtained for the n(b) relationship. Moreover, the n-exponent is expected to decrease as
T is increased: in the limit T > Tc, n → 1 and Ohm’s law is recovered as the material is in the
normal conducting state [25].
Numerically, the power-law is implemented at the filament scale, for which the h-ϕ formulation
(Eq. (3.27)) is used. The nonlinear equation requires a numerical linearization scheme, based on
the Jacobian matrix of Eq. (3.47). From [7], it reads using index notation:

∂ei
∂jj

= ρ(j)δij + (n− 1)
ρ(j)

j2
jijj. (3.48)

3.4 Thermodynamics
In this study, the focus is set on the thermal study of the coil of the C400 cyclotron. The main
unknown is the temperature distribution T [K] inside the coil. The liquid helium bath temperature
is assumed to be at a temperature THe = 4.2 K. The temperature distribution inside the helium flow
will not be computed, as it would require to solve for the whole set of Navier-Stokes equations [40].
Thus, we will focus on the heat conduction process inside the C400 coil and liquid helium will be
modelled as a convective boundary condition.
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Conduction in a solid is dictated by the heat diffusion equation:

−∇ · q′′
+ qs = ρV cp∂tT, (3.49)

with q
′′ [W/m2] the heat flux, qs [W/m3] the volumetric heat source, ρV [kg/m3] the density of

the material and cp [J/(kg K)] its specific heat [40]. Physically, it corresponds to the local thermal
energy balance. The heat flux is generally described by Fourier’s law:

q
′′
= −κ · ∇T, (3.50)

with κ [W/(m K)] the thermal conductivity tensor of the material. In the most general way, κ is
written as a tensor to allow for modelling anisotropic behaviour [40].
Before diving into the derivation of the thermal weak formulation, the expressions of the internal
energy U [J] in a fixed volume Ω and its variation U̇ [W] are recalled:

U =

∫
Ω

ρcpT dΩ ⇒ U̇ =

∫
Ω

ρcp∂tT dΩ. (3.51)

Similarly, Eq. (3.49) simplifies to the global thermal energy balance equation when integrated:∫
Ω

qs dΩ =

∫
Γ

q
′′ · n dΓ + U̇ ⇔ Qs = Qout + U̇ , (3.52)

with Γ = ∂Ω, Qs [W] the heat generation rate and Qout [W] the net exchanged heat rate, counted
positive if the heat is going from the volume Ω to its surroundings.

3.4.1 Thermal weak formulation
In this section, the thermal weak formulation is derived in its most general context. The goal is to
provide a framework for future works, as Dular [7] did for magnetodynamic formulations.

Let us consider a fixed domain Ωth with regular boundary Γth. Multiple boundary conditions are
considered on different subsets of Γth:

• Dirichlet boundary conditions: the temperature T = T̄ is imposed on ΓD
th .

• Neumann boundary conditions: the heat flux q
′′ · n = q̄

′′ · n is imposed on ΓN
th . The adi-

abatic boundary condition q̄
′′ · n = 0 corresponds to an homogeneous Neumann boundary

conditions.

• Robin boundary conditions: the heat flux q′′ ·n = f̄(T ) is imposed as a function of temper-
ature on ΓR

th. Two particular cases are of interest:

– Convective boundary condition: q′′ ·n = h(T − T∞), with h [W/m2 K] the convective
heat transfer coefficient and T∞ [K] the bulk temperature of the fluid involved in the
heat transfer process [40].

– Radiative boundary condition: q′′ ·n = εRσR(T
4−T 4

sur), with εR [-] the surface radiative
emissivity, σR = 5.67 × 10−8 [W/m2 K4] the Stefan-Boltzmann constant and Tsur [K]
the surroundings temperature [40].
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The subsets ΓD
th , ΓN

th and ΓR
th are assumed distinct and complementary subsets of Γth. In the proposed

weak formulation, only Dirichlet boundary conditions are strongly imposed. They are thus referred
to as essential boundary conditions. The weak formulation is obtained by seeking the temperature
T ∈ T (Ωth), multiplying Eq. (3.49) by some test function T

′ ∈ T0(Ωth) and integrating over the
volumeΩth. Spaces T (Ωth) and T0(Ωth) are defined in AppendixA.2. The thermal weak formulation
reads:

From an initial solution in t = 0, find T ∈ T (Ωth) such that, for t > 0, ∀T ′ ∈ T0(Ωth),

(ρV cp ∂tT, T
′
)Ωth

+ (κ · ∇T,∇T
′
)Ωth

+ ⟨q̄′′ · n, T ′⟩ΓN
th
+ ⟨f̄(T ), T ′⟩ΓR

th
= (qs, T

′
)Ωth

.
(3.53)

The full derivation of the thermal integral equation can be found in Appendix A.3. Neumann and
Robin boundary conditions are weakly imposed, corresponding to natural boundary conditions.
The proposed thermal weak formulation is validated and adapted to the C400 coil geometry in
Chapter 5.

3.5 Magnetothermal coupling mechanisms
Now that the magnetodynamics and the thermal physics have been discussed, let us focus on the
coupling mechanisms linking the two physics. As will be shown, the time variation of the flux
density in the superconducting coil will induce losses through heat dissipation. In this section, ana-
lytical approximations for volumetric losses are presented. In the coupled magnetothermal model,
these losses correspond to the source term in the heat diffusion equation discussed above.
In the most general way, the volumetric losses q [W/m3] can be computed as

q = j · e, (3.54)

which is valid both in normal conductors and in superconductors. First, Joule losses in normal
conductors are discussed. Later, the focus is set on losses in superconducting cables. These have
been extensively studied in the literature. The present work mainly relies on the principles detailed
byCarr [8], Verweij [27] andWilson [3, 41]. In superconducting cables, lossesmainly occur through
two particular mechanisms: filament hysteresis losses and inter-filament coupling losses [27, 41].
Longitudinal Joule losses in the copper matrix are neglected as the longitudinal current is mainly
carried by the Nb-Ti filaments, much less resistive than the copper matrix.

3.5.1 Joule losses
Losses in normal conductors are often referred to as Joule losses. In the present study, it refers to
the stainless steel helium vessel and the iron yoke. As Ohm’s law (Eq. (3.10)) is valid in normal
conductors, the ohmic heat dissipation qj [W/m3] is simply qj = σe · e = σe2. Using the a-
formulation presented in Section 3.1, it reduces to

qj = σe2 = σ∥∂ta∥2, (3.55)

which is valid in the conducting domain Ωc. While the ferromagnetic yoke is assumed at room
temperature, the temperature dependence of σ in the helium vessel is taken into account numerically.

3.5.2 Hysteresis losses in Nb-Ti filaments
The focus is now set on filament hysteresis losses, also called AC losses. In type-II superconductors
in the mixed state, flux vortices can enter the material when the external magnetic field is increased.
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Persisting currents are generated in order to prevent the flux density from fully penetrating the ma-
terial. The motion of flux vortices and the corresponding flux density variation (db/dt ̸= 0) induces
an electric field through Faraday’s law (Eq. (3.4)). Together, the currents and the induced electric
field lead to local losses through Eq. (3.54). In the CSM and considering a cyclic external field
applied to the superconductor, Carr [8] and Wilson [3] have shown that the losses per cycle are in-
dependent of the cycle speed in the case of an infinite cylinder and proportional to the area enclosed
by the cyclic magnetization curve of the superconductor. For these reasons, the losses correspond-
ing to persistent magnetization currents are usually referred to as hysteresis losses. In this section,
different types of configurations are investigated and the corresponding losses are discussed.

As the longitudinal radius of curvature of filaments (diameter df = 51 µm) is in the range of meters,
filaments can be approximated as infinite superconducting cylinders. Despite the composite cable
being composed of multiple filaments and the field pattern between closely arranged filaments po-
tentially being complex, the field perturbations caused by neighbouring turns will generally cancel
each other out, resulting in a loss equivalent to that of an isolated cylinder [3]. Also, the magnetic
field is mostly perpendicular to the filament axis and the focus is set on the transverse field loss. In
this work, approximations for the hysteresis loss qhys,1 [W/m3] in one single filament are adapted
from Carr [8]. The most common method of extrapolating filament losses to macroscopic hystere-
sis losses is presented in Wilson’s book [3]. Taking the Nb-Ti filling factor λSC into account, the
macroscopic hysteresis losses per unit volume qhys [W/m3] are retrieved as

qhys = λSC qhys,1. (3.56)

Physically, this method distributes the filament hysteresis loss over the whole volume of the com-
posite conductor. It is adequate when the thermal problem is solved at a scale larger than the one
of a single filament, which is the case in this study.

Carr focuses on AC applied fields and on the corresponding losses per cycle (in [J/m3]), as Wilson
in [3, 41] and Verweij in [27]. However, the present study requires the instantaneous power loss per
unit volume qhys (in [W/m3]), which is why the different developments from [8] are adapted here.
Carr’s results are based on the CSM (Section 3.3.3). In the following section, the hysteresis loss is
computed as an average over the volume of one filament:

qhys,1 =
4

πd2f

∫ df/2

0

∫ 2π

0

j · e r dr dθ. (3.57)

Transverse field variation

In this section, the direction of the applied field is assumed constant in time.
Assuming no transport current, an uniform external magnetic field and a constant critical current
density ∂jc/∂b = 0, Carr distinguishes two cases. The validity of these assumptions is discussed in
Chapter 7 when compared to losses computed from a filament model. The ∂jc/∂b = 0 assumption
is relaxed at the end of the section. Introducing the penetration flux density

bp =
µ0 jc df

π
, (3.58)

and the applied flux density ba (the source of the applied flux density is considered at a scale much
larger than the filament dimensions, such that the filament magnetization has no impact on the
macroscopic flux density and ba = µ0 ha), the distinction is made between:

• the weakly penetrated filament: ba ≪ bp, for which the current density distribution is shown
in the left part of Fig. 3.10,
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• the fully penetrated filament: ba ≥ bp, in the right part of Fig. 3.10.

There is no analytical approximation in the intermediate regime (ba ≲ bp).
In full penetration, the magnetization of the filament is constant and the induced electric field along
the filament axis is ez = −ḃa y. The instantaneous power loss per unit volume is given [8] by

qhys,1 =
2

3π
jc df ḃa. (3.59)

This result is one particular reason for working with fine filaments [41] as mentioned in Sec-
tion 3.3.1.

ba

ba ≪ bp

bi = 0

r
θ

Rf

Ri(t, θ)

j

j

ba
j

jba > bp

x̂ẑ

ŷ

Figure 3.10: Current density j distribution in a superconducting filament of radius Rf subjected to
an uniform external increasing transverse flux density ba of constant direction, in the weak pene-
tration regime (left) and in the full penetration regime (right). Ri(t, θ) denotes the inner radius of
the evolving current shell. Adapted from [8].

In the weak penetration regime, no persistent currents are assumed in the initial state and the field
ramp-up is assumed monotonic. Such assumptions are appropriate in the context of the cyclotron
ramp-up. When the external field increases, shielding currents are induced in the external part of
the filament to prevent the flux density to enter the material. Adapting the development of Carr [8]
in a ramp-up context, the filamentary hysteresis loss in weak penetration is

qhys,1 =
64

3πjcµ2
0df

b2a ḃa, (3.60)

for which the full development is given in Appendix A.7. The fact that jc diverges at zero field (cf.
Section 3.3.2) simply induces no hysteresis loss.
Carr [8] has proposed an approximation for the cyclic transverse loss over the full range of applied
field. The idea is to interpolate both limiting regimes (ba ≪ bp) and (ba > bp) and it has been
adapted to the instantaneous hysteresis loss as

qhys,1 =
2jc df b

2
a /3π

j2c µ
2
0 d

2
f /32 + b2a

ḃa, (3.61)

which tends towards Eq. (3.60) for ba → 0 and towards Eq. (3.59) for ba ≫ bp. In first approxima-
tion, Eq. (3.61) is assumed valid for ∂jc/∂b ̸= 0 and is interpreted as involving jc(ba, T ).

Transverse rotating field

In this section, the amplitude of the external field ba is assumed to be constant in time and larger
than the penetration field bp given by Eq. (3.58). Let the applied flux density, assumed uniform, be
described by:

ba(t) = ba (cos (ωt+ ϕ) x̂+ sin (ωt+ ϕ) ŷ) , (3.62)
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in which ω [rad/s] denotes the instantaneous rotation speed of the external field, ϕ [rad] some phase
shift, x̂ and ŷ [-] the orthogonal unit vectors in the plane perpendicular to the axis ẑ of the cylinder.

According to Carr [8], still in the Bean approximation, the resulting current distribution can be
retrieved from the right part of Fig. 3.10, considering this time the symmetry axis of j is aligned
with ḃa and not with ba. The previous subsection considered the particular case for which ḃa and ba
were parallel. Moreover, the instantaneous power loss over the volume of the filament, neglecting
any macroscopic transport current and assuming a constant critical current [8], is given by

qhys,1 =
2

3π
jc df ω ba. (3.63)

This expression is similar to Eq. (3.59), considering that ω can be retrieved from Eq. (3.62) as

ω =
1

ba

∥∥∥∥dbadt

∥∥∥∥ ̸= 1

ba

d

dt
(∥ba∥) = 0. (3.64)

The last result shows that Eq. (3.59) involves the norm of the time derivative of the flux density and
not the time derivative of its norm. This result is extrapolated to the weak penetration range and the
macroscopic hysteresis losses per unit volume are thus obtained as

qhys = λSC
2jc df b

2
a /3π

j2c d
2
f µ

2
0 /32 + b2a

∥∥∥∥dbadt

∥∥∥∥ , (3.65)

which is valid either in a rotating field or in an increasing field of constant direction. In this work, it is
also assumed valid for a combination of both cases, i.e. for any ḃa : ∥dba/dt∥ > 0. Equation (3.65)
is used in Chapter 6 with the jc(b, T ) dependence taken into account via Bottura’s relationship
described in Section 3.3.2. The validity of the underlying assumptions in Eq. (3.65) is evaluated
with a single filament model in Chapter 7.

Impact of transport current

In the previous section, the transport current It [A] inside filaments has been neglected and only
induced currents were considered. Literature [8, 27, 3] provides results for the transverse field loss
inside a fully penetrated filament considering a fixed DC transport current. Carr [8] has shown,
again based on the CSM and assuming a constant jc value, that the transport current simply shifts
the symmetry axis of the current distribution in the filament (right part of Fig. 3.10) by some value
y1 [m] along the ŷ-axis, with y1 > 0 if It > 0 along ẑ. The shift y1 corresponds to a net transport
current and depends on the transport current ratio i = It/Ic. According to Carr, the transverse
hysteresis loss is then

qhys,1 =
2

3π
jc df ḃa · g(i), with g(i) =

(
1− 4y21

d2f

)3/2

+
3π

2

y1
df

i

and i =
2

π

(
2y1
df

√
1− 4y21

d2f
+ sin−1 2y1

df

)
.

(3.66)

On the other hand, Wilson [3] has derived a relative loss increase of (1 + i2) for the cyclic loss in
a fully penetrated infinite slab, also based on the CSM. Verweij [27] also mentions a relative loss
increase of (1 + i2) for a fully penetrated filament:

qhys,1 =
2

3π
jc df ḃa ·

(
1 + i2

)
. (3.67)
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Physically, the loss increase is due to the work done by the current source to maintain the net trans-
port current despite the induced persistent currents [3]. Moreover, the three authors agree that the
impact of transport current is more complex to quantify if the filament is not fully penetrated and
Wilson [3] has shown the impact in weak penetration is significant in the case of a slab. Also, as
the transport current in the coil increases linearly with time, an additional loss component related
to the varying self-field must be considered [27]. In the C400, the transport current ratio is quite
low (i < 0.28) and the g(i) or (1+ i2) factors are quite small (below 1.073 and 1.078 respectively).
Hence, the impact of transport current on the hysteresis loss is neglected in first approximation. It
is investigated in more detail in Chapter 7 and it is also taken into account in Chapter 8.

3.5.3 Inter-filament coupling losses
Even though the longitudinal current can be neglected in the copper matrix, some losses still occur
inside the matrix. Their physical origin stems from the variation of the magnetic flux density over
several filaments inducing transverse eddy currents inside the matrix and between the filaments.
The longitudinal eddy currents are carried by the superconducting filaments and their contribution
is already taken into account in the filamentary hysteresis loss.
Similarly to the case of a pair of normal wires, the coupling currents are strongly reduced by twisting
the filaments [41]. For this reason, the conductor described in Section 3.3.1 is made of twisted
filaments. It can be quantified by the twist length or twist pitch, denoted as pL [m]. The twist pitch
represents the longitudinal distance over which the twisted wires complete one full rotation around
each other. Verweij [27] mentions the local coupling loss qc [W/m3] as

qc =
1

ρeff

(pL
2π

)2 ∥∥∥∥dbldt

∥∥∥∥2 , (3.68)

with ρeff [Ω m] the effective transverse resistivity of the matrix and ḃl [T/s] the local flux density
variation between filaments. In a slowly changing magnetic field, which is a valid assumption in the
context of the cyclotron ramp-up of 2 hours, the shielding effect of induced currents at the periphery
of the composite wire is negligible. Thus, the local flux density variation ḃl within the matrix is
simply the macroscopic applied flux density variation dbl/dt = dba/dt [41]. Similarly, Carr [8]
claims that the total eddy current loss in the matrix of a composite wire of radius Rc [m] is

qc =
1

ρeff

[(pL
2π

)2
+

R2
c

4

] ∥∥∥∥dbadt

∥∥∥∥2 , (3.69)

also in the case of a small rate of applied field variation. For the C400 conductor presented in
Section 3.3.1, the second term in Eq. (3.69) is negligible as the radiusRc ∼ 1mm of the core wire is
much smaller than the twist pitch pL ∼ 100mm. The twist pitch value provided by the manufacturer
is implemented in the code, but not mentioned in this manuscript for confidentiality purposes. The
effective transverse resistivity depends on the matrix transverse resistivity, the local Nb-Ti filling
factor of thewire and onwhether or not transverse currents flow across theNb-Ti filaments [3, 27, 8].
As the contact resistance at the matrix-filament interface is usually large due to intermetallic layers
formed during fabrication heat treatment [3], the effective resistivity is determined [8] by

ρeff = ρCu
1 + λw

1− λw
, (3.70)

in which care must be taken to use the local Nb-Ti filling ratio λw [26]. The resistivity of copper at
THe = 4.2 K is linked to the resistivity at room temperature (ρCu(T = 293 K) = 1.68 × 10−8 Ωm,
[42]) through the RRR coefficient (cf. Section 3.3.1).
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At THe, the effective resistivity of the copper matrix is 5.1× 10−10 Ωm.
Finally, since the inter-filament coupling losses occur within the central wire of the conductor shown
in Fig. 3.7 and not in the whole volume of the composite conductor, their volume average can be
expressed as

qc =
λSC

λw

1

ρeff

(pL
2π

)2 ∥∥∥∥dbdt
∥∥∥∥2 . (3.71)

Magnetoresistance

The presence of magnetic field inside the coil results in an increase in copper resistivity. While
the effect is relatively small at room temperature, magnetoresistance becomes significant at lower
temperatures and must be consistently considered [41]. Verweij [27] mentions a linear relationship
between the relative resistivity increase and the flux density. Simon et al. [43] provide a more
detailed empirical relation for the magnetoresistive effect on copper at cryogenic temperatures:

ρCu(b) = ρCu(b = 0) (1 + ∆ρ) ,

with log (∆ρ) = −2.66 + 0.317β + 0.623β2 − 0.184β3 + 0.0183β4

and β = log

(
ρCu(T = 273 K) · b

ρCu

)
≈ log (RRR · b) ,

(3.72)

in which ∆ρ [-] denotes the fractional resistivity increase and RRR = 80 the residual resistivity
ratio introduced in Section 3.3.1. In this context, the ρCu-b relation is almost linear for b > 0.1 T. At
b ∼ 5 T, the copper resistivity is doubled. As shown in [41], the validity of the empirical relation
has been confirmed on effective transverse resistivity measurements in different magnetic fields.
Consequently, Eq. (3.72) is implemented in the code for computing the copper resistivity involved
in the effective transverse resistivity (Eq. (3.70)).
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CHAPTER 4
MAGNETIC MODEL

In this chapter, the magnetic model of the C400 cyclotron is described. The different choices per-
formed during the study are discussed. The magnetic results, both in steady-state and during ramp-
up, are then presented and interpreted.
First, results are computed based on the simplified axisymmetric model of the cyclotron, allowing
for lower computing times while capturing the main physical mechanisms at play. Among others,
the impact of the helium vessel on magnetodynamics is investigated. Later, results in the full three-
dimensional geometry are presented.

Solving the magnetic problem in the complete range from the Nb-Ti filament scale to the full scale
of the cyclotron is not possible from a computational point of view. It would require meshing the
superconducting coil with a mesh size at least 5 times lower than the filament diameter (∼ 10 µm).
Considering the cross-section of the coil is around 4 × 1010 µm2, it would require at least 4 × 108

degrees of freedom (DOFs) to mesh the coil cross-section.
As a consequence, the coil is approximated as a stranded conductor. The validity of such an assump-
tion is discussed in Appendix A.5. From a numerical point of view, the coil is thus homogenized
and a source current density js is imposed in the volume of the coil as the engineering current den-
sity jeng. Amore subtle approach taking the filament response into account is presented in Chapter 8.
In the present chapter, as well as in Chapter 6, the a-formulation (Eq. (3.24)) is used to solve the
equations numerically with the finite element method. The steady-state configuration refers to the
weak formulation of Eq. (3.29). No section is dedicated to the validation of the weak formulation
implemented in GetDP as it has already proven to be accurate in previous works [6, 7].

4.1 Symmetry and boundary conditions
The three-dimensional geometry of the cyclotron is represented in Fig. 2.2. The magnetic domain
of study is Ω = {(x, y, z) : x ≥ 0, y ≥ 0, z ≤ 0} = {(r, y, θ) : r ≥ 0, y ≥ 0, θ ∈ [−π/2; 0]} and its
boundary is Γ. The Cartesian coordinate system and the the particular cylindrical coordinate system
used in this study are shown in Appendix A.6. The median plane boundary is Γxz and the four-fold
rotational symmetric planes, (z = 0) and (x = 0), are respectively Γxy and Γyz. The remaining part
of Γ, the outer boundary, is denoted by Γout. The distinct sets involved in the weak formulation of
Eq. (3.24) are respectively constituted of:

• Ωc: the helium vessel and the ferromagnetic yoke.

• Ωs: the two superconducting sub-coils.
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• ΩC
c \Ωs: the air, the vacuum and the liquid helium which is considered as vacuum.

In sub-coil i, the imposed current density is

js =



0, for t < 0,
Ii

hcoilwcoil/2

t

Tup
· (sin(θ) x̂− cos(θ) ẑ) , for 0 ≤ t ≤ Tup,

Ii
hcoilwcoil/2

· (sin(θ) x̂− cos(θ) ẑ) , for t > Tup,

(4.1)

where hcoilwcoil/2 is the cross-sectional area of each of the two sub-coils shown in Fig. 2.3(b).
Due to the reflection symmetry on Γxz, the median plane magnetic field must be along the ŷ-axis.
Thus h̄ × n = 0 on the median plane Γxz. It corresponds to an homogeneous natural boundary
condition. Furthermore, a periodic boundary condition must be applied to Γyz as:

a(0, y, z︸ ︷︷ ︸
∈ Γyz

) =

cos(−π/2) 0 − sin(−π/2)
0 1 0

sin(−π/2) 0 cos(−π/2)

 · a(−z, y, 0︸ ︷︷ ︸
∈ Γxy

) =

 0 0 1
0 1 0
−1 0 0

 · a(−z, y, 0︸ ︷︷ ︸
∈ Γxy

), (4.2)

Figure 4.1: Magnetic computa-
tional domain. The outer shell is
used as an infinite spherical shell
transformation.

with x = (0, y, z) ∈ Γyz. This boundary condition is strongly
imposed through the function spaceA(Ω). Finally, a homoge-
neous essential boundary condition b̄ · n = 0 is applied to the
outer boundary of the domain Γout ∈ Γe. Ideally, this boundary
condition should be applied at infinity, meaning the numerical
domain should be unbounded. Numerically, an infinite shell
transformation [44] is applied to map the unbounded region
into a numerical domain of finite size. The spherical shell is
shown in Fig. 4.1 with an inner radius of 10 m and an outer ra-
dius of 20 m. The size of the computational domain is further
discussed in Section 4.6.

Axisymmetric geometry

In the simplified axisymmetric geometry, the problem can be solved in two dimensions (2D). In this
case, the numerical computational domain corresponds to a slice of one radian of the total geometry.
Care must be taken to use an appropriate Jacobian transformation for numerical integration. The
simplified axisymmetric geometry is shown in Fig. 2.3. The different physical groups are the same
as those presented for the full geometry, except for the periodic boundary conditions. They are
replaced by an homogeneous boundary condition b̄ · n = 0 on the ŷ-axis of rotational symmetry,
in red in Fig. 2.3.

4.2 Material properties
As can be observed in the weak formulation (Eq. (3.24)), the reluctivity ν is required in the whole
domain and the electrical conductivity σ is required in Ωc.
The reluctivity of the ferromagnetic yoke is retrieved frommaterial data as discussed in Section 3.2.
The yoke is the only part of the domain in ΩNL. In all other parts of the cyclotron, the reluctivity is
assumed constant. In first approximation, neglecting magnetization in Nb-Ti filaments, the reluctiv-
ity in Ωs is simply ν = 1/µ0 as the relative permeability of copper is 1 in very good approximation.
The relative permeability of the SS304L helium vessel is µr = 1.035 [45]. Thus, in ΩL = Ω\ΩNL,
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the reluctivity is ν = 1/µ0, except in the helium vessel for which it is ν = 1/(1.035µ0).
From [46], the electrical resistivity of SS304L does not vary more than 0.5% around ρ = 0.485 ×
10−6 Ωm in the range 1 ∼ 50 K. The variation of the vessel conductivity around 2.062 × 106 S/m
is thus neglected. The electrical conductivity of iron is 107 S/m at room temperature [47].
Therefore, the electric and magnetic properties required for the magnetodynamic computation of
the cyclotron do not depend on temperature.

4.3 Space and time discretization
This section only introduces basic concepts required for understanding the finite element method in
the context of magnetodynamics. For a complete description and a detailed analysis, please refer to
the works of P. Dular [21], Geuzaine [6] and J. Dular [7].

4.3.1 Space discretization
As usual when dealing with the finite element method, the computational domain is discretized by
means ofmesh generation. In the a-formulation, themain unknown is the vector potentiala. In three
dimensions (3D), the vector potential is approximated by a linear combination of edge functions and
the degrees of freedom (DOFs) are thus associated to the circulation of a along the different edges
of the mesh. Without diving into the concept of Whitney forms, such a discretization ensures the
continuity of the normal component of b across facets and it is thus referred to as b-conform [6].
The gauging issue is addressed in Section 4.5. In this work, shape functions of the lowest order are
chosen.
In the simplified axisymmetric geometry, the flux density is parallel to the two-dimensional plane
of study. Thus, the vector potential is perpendicular to the plane and it is approximated by a linear
combination of perpendicular edge functions associated to the nodes of the 2Dmesh. The DOFs are
associated to the flux of b across edges incident to the different nodes of the mesh. In cylindrical
coordinates, the vector potential is simply a = aθ(r, y)θ̂ and there is no need for gauging as a is
divergence free and it thus satisfies an implicit Coulomb gauge [7].

4.3.2 Time discretization
Again without going too much into details, the numerical integration of the spatially discretized
weak formulation leads to a system of NDOF equations, with NDOF degrees of freedom u ∈ RN

depending on time as unknowns. It can be written under the semi-discrete form

M (u, t)
du

dt
(t) +K(u, t)u(t) = g(t), (4.3)

with g ∈ RN and M ,K ∈ RN×N . The successive discrete time steps at which the solution is
sought are denoted tn and the initial solution is provided in t0 = 0. In this work, the numerical
time integration of Eq. (4.3) is performed using the backward Euler method, also referred to as the
implicit Euler method. At time step tn, Eq. (4.3) is reduced to a system of the form:

M (u; tn)
u(tn)− u(tn−1)

tn − tn−1

+K(u; tn)u(tn) = g(tn) ⇒ A(u; tn)u(tn) = p(u; tn), (4.4)

in which A ∈ RN×N and p ∈ RN can be retrieved from ∆t, M , K, g and u(tn−1). Thus, the
system of Eq. (4.4) must be solved at each time step. For the macrosopic resolution at the cyclotron
scale, a fixed time step ∆t = tn − tn−1 [s] is considered.
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4.4 Linearization algorithms
Due to the yoke reluctivity dependence on flux density (cf. Section 3.2), Eq. (4.4) is nonlinear
through K and thus through A. The two most common iterative methods used for dealing with
such a nonlinearity are the Picard method and the Newton-Raphson method. In this section, they
are first introduced before describing their practical implementation in the context of the cyclotron.
Please refer to [7] for an extended description of those methods.
Let us focus on one resolution of the system described by Eq. (4.4), at one specific time step. In
this work, the initial estimate u0 of the iterative method is chosen as the solution at the previous
time step (or as the initial solution in the case of the first time step). The approximate solution at
iteration i is denoted by ui. The residual ri of the discrete system is

ri = p(ui)−A(ui)ui, (4.5)

which is equal to zero if xi is the exact solution of the system. The convergence criterion used in
this study is based on the relative residual: convergence is assumed if ∥ri∥/∥r1∥ ≤ εrel, with ∥ri∥
the 2-norm of the residual at iteration i, r1 the residual after the first iteration and εrel the relative
tolerance. The tolerance strongly depends on the considered problem. In the present context, its
most suitable value has been determined to be εrel = 10−10. The relative tolerance is particularly
small to ensure robustness when the magnetic flux is established inside the cyclotron yoke, in the
first part of the ramp-up. The nonlinear algorithm is stopped once either the condition on the relative
residual is met or a maximal number of 50 iterations has been reached.
One Picard iteration and one Newton-Raphson iteration respectively read

A(ui)ui+1 = p(ui) and A(ui)ui + J(ui) (ui+1 − ui) = p(ui), (4.6)

with J(u) the Jacobian matrix linked to the Jacobian of the magnetic constitutive law given earlier
(Eq. (3.35)). The Newton-Raphson iteration is based on a first-order Taylor development and ex-
hibits a faster rate of convergence than the Picard method when the estimate is sufficiently close to
the solution.

4.4.1 Practical implementation

0 2.68b [T]

Figure 4.2: Flux density b at t1 = 200 s ob-
tained in the axisymmetric geometry with the
NR linearization scheme. Global mesh size
s = 0.8.

In steady-state conditions, theNewton-Raphson (NR)
algorithm exhibits fast and monotonic convergence
of the residual norm, whereas the Picard algorithm
does not converge and instead shows cycles. This
can be attributed to the concavity of the h-b curve
of the yoke, as discussed in Section 3.2. Such di-
vergent behaviour has previously been observed by
Dular [7] using the Picard method for ferromagnets
in the a-formulation. As a consequence, the Newton-
Raphson algorithm is adopted in the present study.
However, certain issues still arise when solving the
transient problem. For the sake of clarity, the next
results are obtained in the simplified axisymmetric
geometry. As shown in Fig. 4.2, non-physical spurious rotational components of the flux density b
are observed when the magnetic field is established in the ferromagnetic yoke. The spurious flux
vortices are due to cycles appearing in the NR algorithm, which does not converge. Indeed, as
illustrated in Fig. 4.3, the relative residual of the NR linearization scheme exhibits these cycles.
Dular [7] also observed such cycles with the NR method in the a-formulation for a constitutive law
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of opposite concavity. Thus, the iteration cycles may be explained by the opposite concavity of the
yoke h-b curve below the threshold flux density bT = 0.723 T (cf. Section 3.2).
One first solution is proposed in the present work: an hybrid iterative method, locally based on the
Picard iteration if b < bT and based on the classical NR iteration if b ≥ bT. Numerically, the choice
of the method depends on the numerical value of the flux density at the considered Gauss point. As
shown in Fig. 4.3, this hybrid method does converge.
A second solution is proposed by numerically setting the reluctivity at ν = νmin = 140 m/H below
bT. As a consequence, ∂ν/∂b = 0 for b ≤ bT and the concavity of the h-b curve is not problem-
atic anymore when using the NR scheme. As observed in Fig. 4.3, the modified reluctivity method
provides the fastest convergence rate as twice less iterations needed. This is expected as the final
scheme is exclusively based on the NR iteration.

0 10 20 30 40 50

10
-10

10
0

Figure 4.3: Evolution of the relative residual as a function of the iteration number for the axisym-
metric geometry, at the first time step t1 = ∆t = 200 s. Global mesh size s = 1. Comparison
between the naive NR, the hybrid and the modified reluctivity schemes.

The difference between the numerical results obtained using the hybrid method and the modified
reluctivity method is not significant. At t = 200 s, the relative difference in magnetic energy
contained within the domain is 0.033 %. Additionally, both methods yield identical results under
nominal operating conditions as the flux density in the yoke exceeds bT. Given that the present study
primarily focuses on the superconducting coil itself, the modified reluctivity method is employed
throughout the next parts of the study to benefit from its faster convergence rate. However, it is
important to note that the code still includes the implementation of the hybrid method with the
material h-b curve, providing the user with the option to choose it if desired.

4.5 Gauge condition
As already mentioned earlier, the vector potential a is not uniquely defined in ΩC

c when working in
3D. Thus, a so-called gauge condition must be applied to the a field in ΩC

c . In the magnetostatics
case, the gauge condition must be applied in the whole domain. This section briefly presents the two
most common gauge conditions, the Coulomb gauge and the co-tree gauge, before comparing their
performance in the case of the C400 cyclotron. Please refer to [21, 6] for the rigorous mathematical
description of these gauges and their impact on the discretization of the vector potential.
The most common gauge condition is the Coulomb gauge:

∇ · a = 0, (4.7)

which can be imposed weakly through the use of a Lagrange multiplier [48]. A more abstract con-
dition is the co-tree gauge condition [48], which reduces the number of DOFs from one per mesh
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edge to one per mesh facet. This is done by setting the degrees of freedom associated to the edges
of a spanning tree on ΩC

c (starting with a complete spanning tree on (∂Ωc∩ ∂ΩC
c )∪Γe) to zero, thus

focusing only on the egdes of the complementary tree [7, 49]. In the present case, the complete
spanning tree surface corresponds to the union of the surfaces Γxy, Γyz and Γout with the interface
between the conducting domain (the yoke and the helium vessel) and the surrounding air. In the
magnetostatic case, it reduces to the union of Γxy, Γyz and Γout.
The magnetic vector potential fields obtained in steady-state with the two different gauges are rep-
resented in Fig. 4.4. As observed, the vector potential is much more regular using the Coulomb
gauge. However, the corresponding flux density b (shown in Section 4.8.2) is the same with both
gauges. The magnetic energy contained within the domain is Em = 3.38771× 107 J in both cases.
The main difference lies in the number of DOFs: NDOF = 43400 for the Coulomb gauge compared
toNDOF = 32100 for the co-tree gauge, resulting in a 69% increase in computation time. For taking
advantage of its efficiency, the co-tree gauge is considered in the next parts of this study.

0 3.13a [T m] 0 200a [T m]

Figure 4.4: Vector potential a field obtained in the magnetostatics case with the Coulomb gauge (at
left) and the co-tree gauge (at right). Global mesh size s = 1.

4.6 Computational domain
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Figure 4.5: Total magnetic energy Em [J] in the
domain as a function of its outer radius rout [m].
Results obtained in axisymmetric magnetostatics
with global mesh size s = 0.5.

Before diving into the description of the mesh,
let us first focus on the appropriate size of the
numerical domain. As a reminder, an infinite
shell transformation [44] has been used to apply
the homogeneous essential boundary condition
at infinity, as represented in Fig. 4.1. The outer
radius of the numerical domain is denoted by
rout [m]. Even though it takes a finite value, the
transformation is supposed to represent an un-
bounded theoretical domain. The evolution of
the total magnetic energy as a function of the
domain size is represented in Fig. 4.5. As ob-
served, the magnetic energy does not vary sig-
nificantly when the shell transformation is applied numerically. In this case, the magnetic energy
relative variation is 0.019 % between rout = 10 m and rout = 100 m.
Figure 4.5 emphasizes the necessity of using an infinite shell transformation. The results are also
shown for the case where the essential boundary condition is simply applied to the outer boundary of
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the domain without any shell transformation. In this case, the boundary condition has a significant
impact on the results, leading to a decrease in magnetic energy compared to the shell transformation
case. For the following analysis, an outer domain radius of rout = 20 m is chosen, with an infinite
shell transformation with an inner radius of 10m.

4.7 Axisymmetric geometry
In a first step, the focus is set on the simplified axisymmetric geometry represented in Fig. 2.3.
The two-dimensional problem allows for a significant reduction in the computing time (CPU time)
required for the numerical computation. It thus allows to perform preliminary studies such as mesh
convergence or selecting the optimal time step in transient analysis. The mesh structure can also be
described more easily in 2D.

4.7.1 Mesh convergence
As explained in Section 4.3.1, the magnetic weak formulation is solved numerically by discretizing
the domain using a mesh. The final mesh structure, shown in Fig. 4.6, is the result of numerous
attempts to find the most suitable mesh structure for the problem. Note that the represented mesh
structure is the final one, not its size, which is discussed in next section. Only the final mesh structure
is discussed in this report. The main idea is to refine the mesh in regions where the flux density
varies the most. Therefore, the mesh is refined near the helium vessel and the pole ends. All the
results presented in this subsection are obtained in the magnetostatic configuration.
The global mesh size s [-] is introduced as the global factor multiplying the local mesh size, which
is quantified by a local mesh scaling factor pmesh [mm]. A global mesh size of s = 1 corresponds
to a minimal local mesh size of 20 mm. The mesh size scaling factors pmesh assigned to each of the
green, black and red boundaries in Fig. 4.6, as well as to the internal and external boundaries of
the infinite shell transformation, are gathered in Tab. 4.1. These factors allow to compute the local
mesh size as pmesh · s. Note that the configuration without helium vessel allows for a coarser mesh
inside the coil as the surrounding geometry is less intricate.

pmesh [mm]
Boundary Vessel No vessel

Infinite spherical shell (external) 3500 3500
Infinite spherical shell (internal) 1500 1500

Yoke (external) 300 300
Yoke (internal) and vacuum median plane 60 60

Coil (and helium vessel) 20 45

Table 4.1: Scaling factors pmesh attributed to the different boundaries of the axisymmetric geometry,
considering the cases with and without the helium vessel modelled around the coil.

As represented in orange in Fig. 4.6(c), the bottom tip of the yoke is located 6 mm above the median
plane of the cyclotron. The scaling factor is locally refined to pmesh = 20 mm to avoid distorded
triangles in the mesh between the tip and the symmetry plane, which could lead to numerical in-
accuracies. Ensuring the regularity of the mesh elements is particularly important near the median
plane, as the flux density in the median plane is necessary for any beam dynamics computation.
The relation between the number of DOFs NDOF [-] and the global mesh size s is represented in
Fig. 4.7(a). NDOF corresponds to the size of the linear system that must be solved at each iteration
of the linearized algorithm introduced in Section 4.4. As highlighted, the total CPU time required
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Figure 4.6: Final mesh structure of the axisymmetric model. The represented global mesh size is
s = 1 and the corresponding minimal mesh size is 20 mm. The external boundary of the yoke
is represented in green and its internal boundary in black. The median plane in vacuum is also in
black. The boundaries of the helium vessel and of the coil are in red. The point at the tip of the
yoke (at 6 mm above the median plane) is represented in orange.

for convergence of the nonlinear algorithm increases greatly with the number of DOFs. In par-
ticular, it must be kept in mind that these results are obtained in the magnetostatic configuration
(one single step) and that the goal of this study is to perform transient simulations, involving tens
or hundreds of time steps. A mesh leading to a CPU time of 1000 s in statics might not be suited
for magnetodynamic computations. Note that the number of NR iterations required for reaching
convergence also increases when the mesh is refined.
For studying the convergence of the results as the mesh is refined, the focus is set on the magnetic
energy defined in Section 3.1.2. As illustrated in Fig. 4.8(a), the magnetic energy within the domain
converges towards an asymptotic value as the mesh is refined. The relative difference between the
asymptotic values with and without the vessel is 0.13 %.
To highlight the degree of accuracy of the obtained results, the relative error on the total magnetic
energy is represented in Fig. 4.8(b). The relative error is computed with respect to the results ob-
tained with global mesh size s = 0.04. As observed, the accuracy is greatly increased as the mesh
is refined and the convergence is similar in the two configurations. Nevertheless, there is a trade-
off between accuracy and speed of execution and the mesh cannot be refined indefinitely. Two
different thresholds are set: a relative error of 0.1 % is assumed satisfying for rapid computations,
corresponding to a global mesh size of s1 = 0.64. The threshold is set to 0.002 % for the most
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Figure 4.7: Evolution of the number of degrees of freedom as a function of the global mesh size s
and corresponding evolution of the total CPU time. Results shown with and without helium vessel.

precise analysis, which corresponds to a global mesh size of s2 = 0.12. However, such a refined
mesh cannot be used in 3D and most of the presented results are obtained with global mesh size s1.
Approximating the ramp-up as one quarter of a sine period as done in Appendix A.5, it can be
shown that the skin depth, both in the helium vessel and in the iron yoke, is much larger than the
corresponding local mesh size. The optimal mesh size derived in this section is therefore considered
to be valid in magnetodynamics.
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Figure 4.8: Evolution of the total magnetic energy Em and its relative error as a function of the
number of degrees of freedom. Both results shown with and without helium vessel.

4.7.2 Impact of the time step
Now that the impact of the spatial discretization on results has been discussed, let us explore the
impact of the time step on transient results. As a reminder, the backward Euler method is used for
the time integration of the spatially discretized problem. The time step of the numerical scheme has
been varied between ∆t = 10 s and ∆t = 500 s, the total ramp-up time is Tup = 7200 s and the
total simulation time is 9000 s. In particular, two global quantities are studied. The total Joule loss
Qj [W] in the ferromagnetic yoke due to eddy currents, obtained by integrating Eq. (3.55) over the
volume of the yoke, is linked to the establishment of the magnetic flux inside the yoke. Second, as
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the thermal study focuses on the coil itself, the magnetic energyEm inside the superconducting coil
is also retrieved.
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Figure 4.9: (a) Evolution of the total Joule losses Qj in the yoke, and (b) the relative error on the
magnetic energy in the superconducting coil, for various time steps ∆t. Relative error computed
with respect to the results for ∆t = 10 s. Results obtained with global mesh size s = 0.64 and
without helium vessel.

As can be observed in Fig. 4.9(a), the time step has a significant impact on the total Joule loss in
the ferromagnetic yoke. The yoke Joule losses are the largest for t < 1200 s, which corresponds
to the time required for the magnetic flux to establish itself inside the yoke during ramp-up. Once
it is established in the complete yoke, the induced currents are much lower. This phenomenon is
discussed in next section. The main conclusion is that the time step should not exceed ∆t = 100 s
for obtaining a relatively accurate representation of the flux penetration in the ferromagnetic yoke.
The relative error on themagnetic energy inside the conductor is shown in Fig. 4.9(b). It is computed
at intervals of 200 s, comparing the results to those obtained with a time step of ∆t = 10 s. As
observed, the relative error decreases over time. Notably, there is a significant drop in the error
for t > 7200 s, suggesting the steady-state regime is reached due to the constant injected current.
The relatively larger error for t < 1200 s may be attributed to the flux penetration in the yoke. As
expected, refining the time step leads to a reduction in the relative error. However, this comes at the
cost of a substantial increase in the total number of iterations required for solving the linear systems,
rising from 196 for ∆t = 200 s to 2360 for ∆t = 10 s. Hence, there is again a trade-off between
accuracy and computation time. The determination of the optimal time step is not universal and
will be further discussed in Chapter 6 when considering the coupled thermal problem. For now, a
time step of ∆t = 20 s is selected as it yields a relative error of less than 1 % at all times.

4.7.3 Main results
For clarity, the mesh is no more represented along physical results. As already mentioned in pre-
vious section, the magnetodynamics in the cyclotron are mostly dictated by the establishment of
the flux density in the ferromagnetic yoke. The magnetic problem is thus strongly nonlinear. The
evolution of the flux density during ramp-up is shown in Fig. 4.10.
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Figure 4.10: Flux density b at different instants. Results obtained with global mesh size s = 0.64,
∆t = 20 s and without helium vessel.

As can be observed, the flux density enters the yoke through its inner boundary. Then, it progresses
until the complete yoke is penetrated around t = 1200 s. Once the flux has entered the yoke, the
saturation regime (at b ∼ 2.2 T, cf. Section 3.2) is quickly reached. At t = 9000 s, the cyclotron is
in steady-state and the field in Fig. 4.10(b) corresponds to the field obtained with a magnetostatic
resolution. The ferromagnetic yoke channels the flux lines and the leakage flux is negligible. The
flux density is maximal in the yoke, close to the median plane. The magnetostatic results have been
confirmed using the Opera software at IBA.
The establishment of magnetic flux within the yoke induces an electric field and results in the gen-
eration of eddy currents, as shown in Fig. 4.11. The correlation with Fig. 4.10(a-c) is remarkable.
Once the flux has fully penetrated the yoke, the intensity of eddy currents significantly decreases,
leading to a corresponding reduction in total Joule loss, as highlighted in Fig. 4.9(a).

0 4.46 104j [A/m2] X
Y
Z

(a) t = 100 s.

0 4.46 104j [A/m2] X
Y
Z

(b) t = 500 s.

0 4.46 104j [A/m2] X
Y
Z

(c) t = 1000 s.

Figure 4.11: Out-of-plane induced current density j in the yoke at different instants. Results ob-
tained with global mesh size s = 0.64, ∆t = 20 s and without helium vessel.

Additionally, as the ferromagnetic yoke gradually saturates, the magnetic field rotates around the
conductor, as illustrated in Fig. 4.12. The various sections of the coil do not experience the same
variation in flux density. This is a direct result of the nonlinear magnetic behaviour of the yoke,
which affects the magnetic field within the entire cavity. It should be noted that the position of the
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central region of low field moves downward over time. Such a behaviour can have an impact on
AC loss, as mentioned in Chapters 6 and 8.
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Figure 4.12: Flux density b in the conductor at different instants. Results obtained with global mesh
size s = 0.64, ∆t = 20 s and without helium vessel. For clarity, the color scale has been adapted
to each instant.

4.7.4 Impact of the helium vessel
As already mentioned in Section 4.7.1, the relative difference in total magnetic energy is 0.13 %
between the two configurations, with and without the helium vessel.
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Figure 4.13: Evolution of the coil magnetic energy Em,c with and without vessel and the corre-
sponding relative difference. Results obtained with global mesh size s = 0.64 and ∆t = 20 s.

As the thermal study will focus on the coil, let us examine the impact of the helium vessel on the
magnetic energy of the conductor during ramp-up. As highlighted in Section 3.5, the coil losses
primarily depend on the flux density and its variation. Therefore, the magnetic energy of the coil,
which represents the volume integral of a quadratic form of the local flux density, serves as an
appropriate quantity for evaluating the influence of the vessel on magnetodynamics. As shown in
Fig. 4.13, the magnetic energy stored in the coil is only minimally affected when the vessel is added
to the system, despite the presence of opposing eddy currents in the vessel due to flux variation.
However, due to the small thickness of the helium vessel, the impact of these eddy currents on the
magnetic energy within the conductor is negligible. The relative difference in energy between the
two configurations is less than 1 % at any given moment. The magnetic energy is slightly higher
when the vessel is included, which can be attributed to the vessel’s relative permeability of µr =
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1.05. It should be noted that the magnetic energy curve does not follow a quadratic relationship.
Instead, it evolves as Em,c ∝ t1.74. This behaviour may be attributed to the nonlinearity of the
ferromagnetic yoke. The helium vessel is neglected in the next parts of this chapter.

4.7.5 Magnetic time constant
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Figure 4.14: Evolution of the total magnetic en-
ergy Em after a step of nominal current imposed
at t = 2 s. Results obtained with global mesh size
s = 0.64 and ∆t = 0.25 s.

When coupling two different physics, it is con-
venient to compare their respective characteris-
tic time constants. In this context, a current step
of nominal amplitude is injected in the coil. The
evolution of the total magnetic energy is shown
in Fig. 4.14. As observed, it cannot be fitted
easily as an exponential as the behaviour of the
system is strongly nonlinear. Still, the magnetic
time constant τm [s] can be estimated by assum-
ing Em ∼ E0(1− exp(−t/τm)) with E0 [-] the
steady-state magnetic energy, in which case it
is given by τm = 13.23 s.

4.7.6 Three-dimensional axisymmetry
Finally, let us highlight the equivalence between the results obtained from a 2D axisymmetric model
and those obtained from a 3D model of the axisymmetric geometry. The steady-state flux density
is represented in Fig. 4.15(a) and is very similar to what has been obtained in Fig. 4.10(d). Conse-
quently, the flux density by in the median plane is also nearly identical, as shown in Fig. 4.15(b).
The staircase shape of the 2D result may be due to the specific discretization adopted in 2D, with
nodes instead of edges as in 3D. Additionally, the 3D mesh consists of tetrahedra rather than trian-
gles. The total magnetic energy is Em = 2.844× 107 J in 2D compared to Em = 2.831× 107 J in
3D. However, the number of DOFs is 1947 in 2D and 344100 in 3D, resulting in a computing time
approximately 5000 times longer in 3D (∼ 4200 s).
The positive field index for r < Rv, satisfying the isochronism condition introduced in Section 1.2,
is observed in Fig. 4.15(b). Rv [m] denotes the radius of the poles. The positive field index is a
direct consequence of the elliptic pole gap.
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Figure 4.15: (a) Steady-state flux density b field computed in 3D and (b) median plane flux density
compared to the 2D axisymmetric model result. Results obtained with global mesh size s = 0.64.
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4.8 Complete three-dimensional geometry
Let us now discuss the magnetic results obtained with a complete three-dimensional model of the
C400 cyclotron as introduced in Fig. 2.2. In this section, all results are presented without the helium
vessel. As the thermal coupling is not introduced yet, the focus is mainly set on the magnetic results
under steady-state operating conditions. Nevertheless, some dynamic results are also presented.

4.8.1 Mesh convergence
The structure of the mesh used for discretizing the 3D model is more complex as the one discussed
in Section 4.7.1 as the 3D geometry includes the spiralized poles, the off-center holes in the yoke
and the extraction channels. The 3D mesh structure is shown in Appendix B.1. Compared to the
axisymmetric mesh, the mesh has been refined in the spiral ends and in the median plane.
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Figure 4.16: Evolution of the magnetic energy Em and the total CPU time against the number of
DOFs in 3D magnetostatics. Global mesh size s varied between 4 and 0.5.

As highlighted in Fig. 4.16(a), convergence of the magnetic energy is also observed in the complete
geometry. However, the number of DOFs is much larger in 3D than in 2D: 132400 DOFs in 3D
compared to 939 in 2D for a global mesh size of s = 1. Consequently, the total computing time has
dramatically increased as shown in Fig. 4.16(b).
For a global mesh size of s = 0.64, the CPU time is 8400 s, which is appropriate for magnetostatics.
However, in the context of magnetodynamic simulations with multiple hundreds of time steps, the
mesh refinement level must be decreased. A reasonable value is s = 1, which corresponds to
NDOF = 1.3×105 and results in a relativemagnetic energy difference of 0.58%compared to themost
refined mesh. It is worth noting that in 3D the total computing time scales as TCPU ∝ N1.97

DOF, while
the number of DOFs scales asNDOF ∝ s−2.73. Therefore, the total CPU time varies as TCPU ∝ s−5.38.
Reducing the mesh size by half yields a 4000 % CPU time increase.

4.8.2 Static results
The steady-state flux density is represented in Fig. 4.17. The maximal flux density has increased
with respect to the axisymmetric geometry, even though parts of the yoke have been removed.
Similarly, the total magnetic energy has increased from 2.84×107 J to 3.43×107 J. The flux density
is maximal in the spiral ends, where the vertical magnetic flux is channeled in a slab of decreasing
thickness. Notably, the spiralized poles have a significant impact on the flux density in the median
plane. The flux density outside of the cyclotron quickly tends towards zero. Consequently, the flux
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density in the modified extraction channels is also negligible. In the outer return part of the yoke,
the flux density is in the opposite direction compared to the inner cavity, as expected.
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Figure 4.17: Steady-state flux density b, (a) in the ferromagnetic yoke and in the conductor, and (b)
in the median plane (top view). Results obtained with global mesh size s = 0.64.

The maximal flux density on the conductor is bc,max = 3.58 T, which corresponds to a Nb-Ti critical
current density jc = 3928 A/mm2 at THe = 4.2 K. It corresponds to a conductor critical current of
Ic = 3563 A, thus leading to a maximal transport current ratio of i = 0.28. Next, the influence of
the spiralized poles on the median plane flux density is further investigated.
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Figure 4.18: Evolution of the median plane flux density by along the azimuthal coordinate θ for
various radii r, fractions of the pole radius Rv. Results obtained with global mesh size s = 0.64.

The evolution of the flux density by along circular paths of various radii is shown in Fig. 4.18. The
reference of the azimuthal coordinate θ is represented in Fig. 4.17(b). For each separate curve,
the flux density is larger between yoke poles and lower between valleys. As expected, all curves
are periodic. Further, the pole and valley flux densities are respectively denoted by bpol [T] and
bval [T]. As the radial coordinate increases, the pole flux density becomes larger. This behaviour
is highlighted in Fig. 4.19 and is desired for an isochronous cyclotron. The quantities bpol and bval
were determined as the maximum andminimum values, respectively, obtained from the median flux
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density curves shown above. These curves have now been filtered using a moving average over a
5◦ range to reduce noise. As observed, the pole flux density nearly doubles from the center of the
cyclotron to the pole edge. Remarkably, the pole flux density matches the valley flux density as the
radius tends towards zero. Such a behaviour is expected as the circular path reduces to the central
point of the cyclotron. For r/Rv > 0.5, the valley flux density also increases with r.
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Figure 4.19: Evolution of the pole bpol and cavity bcav flux densities along the radial coordinate r
normalized by the pole radius Rv. Results obtained with global mesh size s = 0.64.

The influence of the extraction channels and the off-center yoke holes on the field distribution is
also assessed. As can be observed in Fig. 4.20(a), the median plane pole flux density is increased
as the holes are filled. Such a result is expected as parts of the yoke are added while keeping the
same spiralized poles. The impact of the holes is thus significant and they must be included in the
complete model.
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Figure 4.20: Pole flux density bpol along the normalized radial coordinate r/Rv (a) compared to the
model without the off-center holes and the extraction channels, and (b) compared to the different
nominal current conditions gathered in Tab. 2.1. Results obtained with global mesh size s = 0.64.

Finally, the pole flux density is also represented in Fig. 4.20(b) for the carbon and proton configura-
tions introduced in Tab. 2.1. The two carbon configurations produce the same bpol(r) variations and
a similar behaviour has been observed for the two proton configurations. Thus, one single curve is
shown for each configuration. The proton configuration exhibits a larger field near extraction, at
the end of the poles. It is expected as the injected current is higher for the proton configurations
compared to the carbon ones. The carbon configuration is very similar to the default configuration
(Config. 0) that has been studied so far.
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4.8.3 Dynamic results
In 3D, the saturation of the yoke does not occur at the same rate as in axisymmetric conditions. At
t = 1200 s, the axisymmetric yoke is already fully penetrated by the magnetic flux. However, the
real yoke, as highlighted in Fig. 4.21(a), has not reached full penetration yet. Similarly, the total
yoke Joule losses, resulting from the magnetic flux entering the yoke, are lower in 3D but occur
over a longer time scale compared to 2D, as shown in Fig. 4.21(b). This can be attributed to the
spiralized poles, which prevent the azimuthal flow of eddy currents in the bottom part of the yoke.
As expected, the magnetic behaviour is more complex in 3D than in axisymmetric conditions.
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Figure 4.21: (a) Flux density b in the ferromagnetic yoke and in the conductor at t = 1200 s, and
(b) total yoke Joule losses Qj, for ∆t = 100 s. Results obtained with global mesh size s = 1.

As emphasized in this chapter, the magnetic behaviour of the C400 cyclotron has been thoroughly
investigated. The numerical methods involved in the resolution of the magnetic problem have been
discussed and various numerical parameters have been fine-tuned for optimal efficiency. The com-
plexity of the model has been increased step by step, starting from the 2D axisymmetric geometry,
showing the equivalence of the 3D axisymmetric model and finally modelling the complete geom-
etry of the cyclotron. The spiralized poles have a significant impact on the flux density within the
whole cyclotron. In particular, the effect of the poles on the mean plane flux density was presented.
In addition, the need to include the off-center vertical holes in the yoke and the extraction channels
in the final model was demonstrated, as they also modify the flux density distribution.
Before focusing on the coupling between magnetodynamics and thermodynamics in Chapter 6, the
thermal solver is discussed in the next chapter.

46



CHAPTER 5
THERMAL MODEL

In this chapter, the thermal model of the coil is described. First, the thermal formulation is vali-
dated in a reference geometry. Then, the thermal numerical domain and the corresponding boundary
conditions are discussed. As mentioned in the beginning of Chapter 4, the coil has been homoge-
nized. The effective thermal properties are thus derived and their temperature dependence is also
described. As the properties depend on temperature, the discretized formulation is nonlinear and an
iterative procedure must be used for solving the system of equations. Before coupling the thermal
solver with the magnetodynamic solver presented in the previous chapter, the thermal time constant
of the homogenized coil is briefly discussed.

5.1 Validation of the weak formulation
The reference geometry proposed for the thermal modelling
validation is an infinite cylinder. This geometry has been
extensively studied in [40]. As represented in Fig. 5.1, only
its cross-section is modelled. The cylinder is considered
isotropic and its thermal conductivity is thus a scalar. The
thermal dependence of all material properties is neglected.
A convective boundary condition is applied to the cylinder
boundary. Considering an uniform volumetric heat source
of qs = 500W/m3, the steady-state temperature field is [40]

T (r) =
qsR

2

4κ

(
1−

( r

R

)2)
+

qsR

2h
+ T∞. (5.1)

As shown in Fig. 5.2(a), the temperature field is accurately
retrieved using a coarse mesh of characteristic size 0.1 m.

T∞ = 4.2 K
h = 1000W/m2K

R = 1 m

κ = 50W/m2K
ρV = 8000 kg/m3

cp = 385 J/(kg K)

r̂

θ

Figure 5.1: Reference geometry for
the thermal validation case and corre-
sponding material properties.

A transient conduction problem without heat generation is considered next. The cylinder, initially
at temperature Ti = 8 K, is suddenly immersed in the convective bath at T∞ = 4.2 K. From [40],
the temperature field is given in the form of an infinite series:

T − T∞

Ti − T∞
=

∞∑
n=1

2

ξn

J1(ξn)

J2
0 (ξn) + J2

1 (ξn)
exp

(
−ξ2nκt

ρV cpR2

)
J0

(
ξn

r

R

)
, with ξn

J1(ξn)

J0(ξn)
=

hR

κ
, (5.2)

J0 and J1 denoting Bessel functions of first kind. As shown in Fig. 5.2(b), the numerical solution
(∆t = 100 s) accurately captures the transient behaviour of the cylinder at different locations. In
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conclusion, the proposed weak formulation (Eq. (3.53)) appropriately incorporates heat generation,
transient conduction, and convective boundary conditions.
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Figure 5.2: Comparison of the temperature distribution obtained with the numerical model (GetDP)
and the theoretical distribution in the reference geometry. Static and dynamic results.

5.2 Thermal domain and boundary conditions
In the thermal study, the focus is set on the cold mass
of the cyclotron. More precisely, the goal is to de-
termine the temperature distribution inside the su-
perconducting coil. The model implemented in the
present study also allows the temperature distribu-
tion to be retrieved in the helium vessel.
Numerically, the thermal domain Ωth is composed of
two sub-domains: the superconducting coil denoted

x̂
ŷ

ẑ

Figure 5.3: Global view of the thermal do-
main composed of the coil and the vessel.

by Ωth,1 and the helium vessel Ωth,2. A global view of the thermal domain is shown in Fig. 5.3. One
cross-section of the two sub-domains is represented in Fig. 5.4.
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Figure 5.4: Cross-section of the thermal computational domain ΩTh composed of the supercon-
ducting coil ΩTh,1 and the helium vessel ΩTh,2. Liquid helium flows between the two thermal sub-
domains. The thermal boundary conditions are as follows: convective cooling on the boundary
ΓTh,1 of the coil. Similar convective cooling on the vessel interior boundary Γint

Th,2 and radiative heat
transfer on its exterior boundary Γint

Th,2.

The determination of the temperature distribution inside the flowing helium requires solvingNavier-
Stokes equations, which goes beyond the scope of the present study. The heat capacity of the helium
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bath is assumed infinite, meaning its temperature remains constant at THe = 4.2 K. Consequently,
the two thermal sub-domains are thermally decoupled, resulting in a natural domain decomposition.
This decomposition allows for the separate solution of the two systems, reducing the size of the
discretized system that needs to be solved. The two sub-domains and the corresponding boundary
conditions are discussed next. The material properties are presented in the following section.

Coil thermal domain

The coil has one single lateral boundary ΓTh,1, on which a convective boundary condition must
be applied. The coil cryostat has been designed to maintain cooling conditions corresponding to
an effective convective heat transfer coefficient of h = 100 W/m2K. Theoretically, the convective
coefficient depends on many parameters, such as the interface temperature, the channel geometry
or the helium velocity, among others [40]. The grooves on the horizontal plates above and below
the coil are designed to optimize the cooling conditions. In the following, the effective heat transfer
coefficient is assumed uniform on the surface of the coil. Its impact on the thermal behaviour of
the coil is discussed in Section 6.4.1. The numerical value of h = 100 W/m2K is considered to be
conservative, as Bottura [50] reported larger convective coefficients in his report on cable stability
when using liquid helium as a coolant.
In the coil, the volumetric heat source is

qs = qhys + qc, (5.3)

with qhys the macroscopic hysteresis loss and qc the inter-filament coupling loss, respectively given
by Eq. (3.65) and Eq. (3.71). No Neumann boundary conditions and no Dirichlet boundary condi-
tions are considered in the weak formulation of the coil domain. Hence, the thermal weak formula-
tion only involves transient conduction, convective heat transfer and volumetric heat generation.

Vessel thermal domain

A similar convective boundary condition is applied to the inner boundary of the helium vessel,
while a radiative boundary condition is applied to its outer boundary. The radiative heat flux is
incoming from a radiation screen, which is cooled down with liquid nitrogen at a temperature of
Tsur = 77 K. The surface of the helium vessel has been treated so that its emissivity can be assumed
to be εR = 0.025 in first approximation.
In the vessel, the volumetric heat source is

qs = qj, (5.4)

with qj the Joule loss given by Eq. (3.55). As for the coil, the helium vessel domain only involves
Robin boundary conditions.

Periodic boundary conditions

As one quarter of the bottom part of the cyclotron is modelled in this study, a specific boundary
condition must be applied to the planes Γxy and Γyz introduced in Chapter 4. The temperature
being a scalar quantity, the periodic boundary condition simply reads

T (0, y, z︸ ︷︷ ︸
∈ Γyz

) = T (−z, y, 0︸ ︷︷ ︸
∈ Γxy

), (5.5)

with x = (0, y, z) ∈ Γyz. This periodicity condition is applied to the corresponding boundaries of
the two thermal sub-domains.
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5.3 Material properties
For solving the thermal problem as stated in this study, three material properties are required: the
thermal conductivity κ, the density ρV and the specific heat cp. The effective thermal properties
of the homogenized coil are derived from an equivalent model of the conductor. The numerical
values of all mentioned properties are taken from the National Institute of Standards and Technology
(NIST) database [51] and are gathered in Appendix B.2.

5.3.1 Coil effective thermal properties
The coil is made of 1344 conductor turns. The conductor cross-section has been described in
Fig. 3.7. In this section, the Nb-Ti filling factor of the cable is neglected. Only the copper channel
and the fibreglass insulation are considered here. Neglecting Nb-Ti, their respective filling factors
are λCu = 0.72 and λfg = 0.28. Let us respectively denote by ρCu [kg/m3] and ρfg [kg/m3] the den-
sities of copper and fibreglass. For respecting mass conservation, the effective density ρeff [kg/m3]
of the coil must satisfy

ρeff = λCuρCu + λfgρfg. (5.6)

Similarly, the internal energy of the homogenized coil must be equivalent to the internal energy of
its components. Considering the case of an homogeneous temperature T and denoting by V [m3]
the total coil volume, by VCu [m3] and Vfg [m3] the total copper and total fibreglass volumes, the
effective specific heat cp,eff [J/(kg K)] must satisfy

V ρeffcp,effT = VCuρCucp,CuT + Vfgρfgcp,fgT ⇒ cp,eff =
λCuρCucp,Cu + λfgρfgcp,fg

ρeff
. (5.7)

For deriving the effective thermal conductivity tensor of the coil, let us consider a simplified rect-
angular cross-section of one conductor as illustrated in Fig. 5.5. Moreover, as the radius of the coil
(≳ 2 m) is much larger than the dimensions of the conductor, the conductor radius of curvature
is neglected. Copper is assumed isotropic with conductivity κCu [W/(m K)], while fibreglass is
anisotropic as its thermal conductivity κfg,w [W/(m K)] along the cable η̂3-axis (warp direction) is
larger than in the perpendicular (normal) direction κfg,n [W/(m K)] [51].
Let us first derive the conductor conductivity tensor in the local system of axis shown in Fig. 5.5.
Considering a steady-state configuration without heat generation, the heat rate q [W] through a wall
of thickness tw [m], cross-section Aw [m2] and thermal conductivity κw [W/m K], submitted to a
temperature difference ∆T [K], is

q =
κwAw

tw
∆T =

∆T

R
, (5.8)

with R [K/W] the thermal resistance of the plane wall, concept introduced in [40] for studying
composite materials. Working with resistances allows to tackle the problem using electrical circuits
modelling. The equivalent resistive circuits of the conductor along its η̂1-axis and its η̂2-axis are
shown in Fig. 5.5, with the per-unit-length thermal resistances:

R
′

fg,10 =
tfg

κfg,n(hch + 2tfg)
, R

′

fg,11 =
wch

κfg,ntfg
, R

′

Cu,1 =
wch

κCuhch
,

R
′

fg,20 =
tfg

κfg,n(wch + 2tfg)
, R

′

fg,21 =
hch

κfg,ntfg
, R

′

Cu,2 =
hch

κCuwch
.

(5.9)
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Figure 5.5: Simplified conductor cross-section with local coordinate system and equivalent thermal
resistive circuits along the η̂1-axis and the η̂2-axis.

The effective thermal conductivities κ1 [W/(m K)] and κ2 [W/(m K)] along the η̂1-axis and the
η̂2-axis can thus be derived as

κ1 =
wch + 2tfg

R
′
eq,1(hch + 2tfg)

=
wch + 2tfg
hch + 2tfg

2R′

fg,10 +

(
1

R
′
Cu,1

+
2

R
′
fg,11

)−1
−1

,

κ2 =
hch + 2tfg

R
′
eq,2(wch + 2tfg)

=
hch + 2tfg
wch + 2tfg

2R′

fg,20 +

(
1

R
′
Cu,2

+
2

R
′
fg,21

)−1
−1

.

(5.10)

Along the η̂3-axis, a similar development yields two thermal resistances in parallel and the effective
thermal conductivity κ3 [W/(m K)] is given by

κ3 =
(wch + 2tfg)(hch + 2tfg)

κfg,w2tfg(hch + wch + 2tfg) + κCuhchwch
, (5.11)

taking this time the warp thermal conductivity
of fibreglass into account. The temperature de-
pendence of the effective thermal conductivity
is quantified in Appendix B.2 and represented
in Fig. 5.6. As highlighted, the conductivity
is the largest along the axis of the conductor.
Such a behaviour is expected as copper is much
more thermally conductive than fibreglass. The
electrical insulating layer around the conductors
also acts as a thermal insulator. Consequently,
the transverse effective conductivity of the coil
is mostly dictated by the fibreglass normal con-
ductivity.
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Figure 5.6: Temperature dependence of the coil
effective thermal conductivity, together with
κCu(T ), κfg,n(T ) and κfg,w(T ).

From a macroscopic point of view, the local coordinate system of the conductor corresponds to the
cylindrical coordinate system, so that the anisotropic effective thermal conductivity tensor is

κ =

κr 0 0
0 κy 0
0 0 κθ

 =

κ1 0 0
0 κ2 0
0 0 κ3

 . (5.12)

Numerically, the conductivity tensor is implemented in Cartesian coordinates as

κ =

κx 0 0
0 κy 0
0 0 κz

 =

κr cos
2(θ) + κθ sin

2(θ) 0 (κr − κθ) cos(θ) sin(θ)
0 κy 0

(κr − κθ) cos(θ) sin(θ) 0 κr sin
2(θ) + κθ cos

2(θ)

 . (5.13)
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The change of coordinate system is discussed in Appendix A.6. It is worth noting that due to
the anisotropy of the homogenized coil, some non-diagonal terms appear in the expression of the
thermal conductivity tensor.

5.3.2 Vessel thermal properties
All thermal properties of the vessel and their thermal dependence are gathered in Appendix B.2.

5.4 Numerical implementation
In this section, the numerical implementation of the thermal weak formulation and the correspond-
ing nonlinear procedure is briefly discussed.

Discretization

The main unknown of the thermal problem is temperature. Numerically, the temperature field is
approximated by a linear combination of nodal shape functions and the correspondingDOFs are thus
associated to the temperature at the different nodes of the mesh. The time integration of the spatially
discretized formulation is performed using a backward Euler method as for the magnetodynamic
resolution.

Nonlinear procedure

As the thermal properties involved in the weak formulation depend on temperature, the discretized
system is nonlinear. The iterative procedure used for numerical computations is the Picard algo-
rithm, which was introduced in Section 4.4. This iterative procedure is performed at each time step
until the relative norm of the thermal residual is lower than εrel,th = 10−10. The convergence of the
thermal iterative method was observed to be more regular and much faster compared to the magne-
todynamic method. This is expected as the nonlinearity of the thermal properties is less pronounced
than that observed for ferromagnets or superconductors. To avoid unnecessary iterations when the
relative residual reaches an asymptotic value, the maximal number of thermal iterations is set to 10.

5.5 Thermal time constant
The magnetic time constant of the cyclotron has been characterized in Chapter 4. Let us now briefly
discuss the thermal time constant of the coil. Three phenomena are at play: heat generation, con-
vection and thermal diffusion through conduction. The heat exchange with liquid helium results
from a balance between convection and conduction along the η̂1 and η̂2 axes of the coil. At The,
κ1 = 0.46W/(m K) ∼ κ2 = 0.6W/(m K) ∼ 0.5W/(m K). The Biot number of the coil is thus

Bi =
hLc

κ
∼ 10, (5.14)

with the characteristic length Lc = 0.053 m chosen as the ratio of the coil volume to its lateral sur-
face. Such a large Biot number implies that spatial temperature variations inside the coil cannot be
neglected. In that context, there is no direct analytical estimation for the thermal time constant [40].
Nevertheless, the thermal time constant τth [s] of the coil is estimated numerically by applying a step
of volumetric heat source qs = 1 W/m3 in the whole volume of the coil Ωth,1. The evolution of the
coil internal energy is represented in Fig. 5.7. For clarity, the results do not involve any coupling
with magnetodynamics for now. As can be observed, the convective coefficient has a significant
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impact on the coil thermodynamics. Assuming
an exponential behaviour, the thermal time con-
stant is respectively given by τth = 16.85 s,
τth = 8.64 s and τth = 7.85 s for h =
{10; 100; 1000}W/m2K. The thermal time con-
stant seems to reach some asymptotic value for
large Biot numbers. In that context, assuming
the thermodynamics is mostly related to the bal-
ance between the conduction and the internal
energy variation terms, the thermal time con-
stant can be estimated from dimensional anal-
ysis as

τth ∼
ρeffcp,effL

2
c

κ
∼ 10 s, (5.15)

0 20 40 60 80 100

9460

9480

9500

9520

9540

Figure 5.7: Evolution of the coil internal en-
ergy U(t) after a step of qs = 1 W/m3 for vari-
ous convective coefficients h. Results obtained
with s = 0.64 and ∆t = 0.5 s.

with κ ∼ 0.5 W/(m K) as previously, ρeff = 6950 kg/m3 and cp,eff = 0.267 J/(kg K). The order of
magnitude is very similar to the numerical results, which further validates the numerical implemen-
tation of the thermal problem.

Comment on numerical errors linked to the anisotropic conductivity tensor

The anisotropy of the conductor effective thermal conductivity tensor (Eq. (5.13)) is extremely pro-
nounced. It introduces numerical errors, with excessive heat flux components along the azimuthal
axis of the coil. It may be linked to the fact that the heat equation is satisfied weakly and not
strongly. In the configuration of the last section, the heat source qs is uniform throughout the coil.
Since the coil is axisymmetric, the temperature field is expected to be independent of the azimuthal
coordinate: ∂θT = 0 and the 3D simulation should give the same results as the 2D axisymmetric
solution. With the effective conductivity tensor as given in Eq. (5.13), the final internal energy in
the coil is U = 9480.5 J in 3D, which is much lower than the 2D results. As has been observed by
experimenting with the thermal model, a much finer spatial discretization is required to accurately
model such an anisotropy. However, as the unstructured 3D mesh is shared between the magneto-
dynamic and the thermal solvers, the mesh size in the coil is on the order of centimeters and cannot
be sufficiently refined. To avoid these numerical errors and to match the 2D results, the azimuthal
conductivity is set to κ∗

θ = κr. In this case the thermal conductivity is isotropic in the horizontal
plane, but still anistropic with respect to the vertical axis.

Brief chapter conclusion

This chapter has described the thermal model, focusing on the thermal boundary conditions and
the domain separation between the coil and the helium vessel. The effective thermal properties
of the coil have also been derived and presented. The thermal time constant has been evaluated
numerically and validated using dimensional analysis. As emphasized, the liquid helium cooling
mechanism ensures a large Biot number regime, which will have a significant impact on the mag-
netothermal behaviour of the coil during ramp-up, as will be shown in Chapter 6.
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CHAPTER 6
MAGNETOTHERMAL BEHAVIOUR DURING RAMP-UP

In this chapter, themagnetodynamicmodel described in Chapter 4 is coupledwith the thermal model
introduced in Chapter 5. The magnetothermal behaviour of the superconducting coil is character-
ized during ramp-up. First, the scheme used to couple the magnetic and thermal solvers numerically
is presented and discussed. As explained in Section 3.5, hysteresis losses in the Nb-Ti filaments
and inter-filament coupling losses in the copper matrix lead to heat generation inside the coil. The
magnetothermal results are first discussed in the simplified axisymmetric geometry. Again, the re-
duced computational time allows some preliminary studies to be carried out while understanding
the physical concepts involved. Results are then presented in the full three-dimensional geometry.
The differences with respect to axisymmetric results are highlighted and their physical explana-
tion is provided. Finally, several physical parameters are varied and their impact on the maximal
temperature rise within the coil is assessed.

6.1 Magnetothermal coupling scheme
As emphasized in Chapter 4, the magnetic properties involved in the magnetodynamic formulation
are almost independent of temperature in the considered temperature range. In this study, their
temperature dependence is neglected. Consequently, the magnetodynamic resolution does not de-
pend on the thermal resolution, resulting in a one-way coupling. Note that this reasoning is valid
as long as the temperature increase in the coil does not lead to a quench event. Modelling a quench
propagation phenomenon would require modelling the magnetothermal behaviour of the coil at the
filament scale, which is beyond the scope of this work. The coupling scheme implemented in this
study is shown in Fig. 6.1.
The magnetodynamic solver represented in the left part of Fig. 6.1 has been discussed in Chapter 4.
At each time step, the volumetric heat source in the coil Ωth,1 is computed locally, as a function of
the magnetic flux density and its variation over time. The filamentary hysteresis loss also depends
on the temperature through the critical current density jc(b, T ). The thermal formulation allows the
temperature in the coil to be retrieved from the hysteresis loss qhys and the inter-filament coupling
loss qc. Similarly, the temperature can be computed in the helium vessel Ωth,2, where the source
term is the Joule loss qj.

As shown in Chapter 4, the impact of the helium vessel in magnetodynamics is negligible. In the
final implementation of the code, it is up to the user whether or not to include the vessel. In the first
part of this chapter, the helium vessel is not included. It is specifically discussed in Section 6.2.3.
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a-formulation, in Ω

t = tn

IN: js = f(ramp-up)
a(t < tn)

OUT:
a(tn)

b(tn)

∂tb(tn)

T -formulation, in Ωth,1

IN:
qs = qhys + qc = qs(b, ∂tb, T )

T (t < tn)

OUT: T (tn)

T -formulation, in Ωth,2

IN:
qs = qj = qs(∂tb)

T (t < tn)

OUT: T (tn)

t = t+∆t

Figure 6.1: One time step of the magnetothermal coupling scheme implemented between the mag-
netodynamic solver in Ω and the two thermal solvers in Ωth,1 and Ωth,2. All solvers are nonlinear
and each system is solved iteratively at all time steps.

6.2 Results in the axisymmetric geometry
As a reminder, the axisymmetric geometry neglects the spiralized poles and the extraction holes.
Nevertheless, it allows to perform some preliminary study. First, the choices for the time step and
the global mesh size are discussed.

6.2.1 Sensitivity to numerical parameters
Impact of the time step

The evolution of the mean temperature increase∆Tm [K] during ramp-up is represented in Fig. 6.2
for various time steps. It is computed as ∆Tm = Tm − THe, with Tm [K] the mean temperature in
the coil. For now, let us focus on the impact of the time step on the results. The shape of the curves
and the corresponding order of magnitude are discussed later. As highlighted, the mean temperature
increase is underestimated for large time steps. As observed in Chapter 4, the time step should not
exceed ∆t = 100 s, for which the relative difference in maximal mean temperature increase is
1.2% higher than that calculated for∆t = 10 s and 1.5% higher than that calculated for∆t = 1 s.
For clarity, the curves for ∆t < 10 s are not shown in Fig. 6.2 as they are all similar. A time step
of ∆t = 100 s is adopted for all 3D simulations, while a time step of ∆t = 20 s is used for the
following axisymmetric simulations. It corresponds to a total CPU time of 189 s and a total number
of 1861 nonlinear iterations.

Impact of the mesh size

Although the effect of the global mesh size has been investigated in Chapter 4, let us check the
convergence of thermal results with mesh refinement. As highlighted in Fig. 6.3, the mean temper-
ature increase in the coil becomes slightly larger as the mesh is refined. Such a behaviour can be
explained by the fact that the magnetic energy within the whole domain increases as the global mesh
size is refined (cf. Section 4.7.1). Consequently, the average flux density and its time variation are
also slightly increased, leading to greater heat dissipation and temperature rise in the coil. The rel-
ative difference in the maximal mean temperature increase compared to s = 0.012 is summarized
in Tab. 6.1. The thermal results do converge as the mesh is refined, at the expense of CPU time. As
the computing time is reasonable in 2D, a mesh size of s = 0.12 is adopted in next section.
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Figure 6.2: Evolution of the mean temperature increase ∆Tm in the coil for various time steps. (a)
global view, (b) focus on the peak around t ∼ 900 s. Global mesh size s = 0.64.
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Figure 6.3: Evolution of the mean tempera-
ture increase∆Tm in the coil for various mesh
sizes s. Focus on the peak around t ∼ 900 s.
∆t = 20 s.

s max(∆Tm) [K] εrel,s=0.12 TCPU [s]
0.12 0.00360 - 5980
0.24 0.00359 0.23 % 1353
0.40 0.00358 0.65 % 471
0.64 0.00354 1.75 % 189
1 0.00354 1.56 % 88
2 0.00341 5.28 % 32

Table 6.1: Maximal mean temperature increase
∆Tm in the coil for various mesh sizes s, cor-
responding relative difference compared to s =
0.12 and total CPU time TCPU. ∆t = 20 s.

6.2.2 Main results
Before going further, please note that all global quantities such as losses (in [W]) are expressed for
the complete cyclotron, rather than just one half (or one eighth in 3D).
The temperature evolution at different points of the coil is shown in Fig. 6.4, along with the maximal
temperature observed in the coil. The evolution of the mean temperature has already been shown
in Fig. 6.2. As highlighted, the temperature is larger in the left (internal) part of the coil, which is
closer to the center of the cyclotron. The temperature is the lowest in the bottom right part, which is
expected as the flux density is also the lowest in this area (as observed in Fig. 4.12). Consequently,
the flux density variation and corresponding heat dissipation are relatively lower in this region.
Remarkably, all temperature curves exhibit some very short quasi-quadratic rise before increasing
quasi-linearly until t = 900 s. The temperature then reaches its local maximal before decreasing
smoothly. At t = 7200 s, the nominal current is reached and the magnetothermal behaviour of the
cyclotron is rapidly stabilized. The time scale of such a stabilisation process is similar to τth.
Moreover, the temperature increase in the coil is extremely low: ∆Tmax = 0.0084 K. It highlights
the cooling efficiency of liquid helium. Note that ∆Tmax is still much larger than the discretization

56



Louis DENIS Chapter 6. Magnetothermal behaviour during ramp-up

error of ∼ 10−5 K deduced from Tab. 6.1. The expected order of magnitude of the temperature
increase is discussed at the end of this section.
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Figure 6.4: Evolution of the temperature T at different points of the coil (represented at right).
∆t = 20 s, s = 0.12.

To understand the shape of the temperature
curves, the evolution of losses in the coil is dis-
cussed. The integrated filamentary hysteresis loss
and inter-filament coupling loss are respectively
denoted byQhys [W] andQc [W]. The correspond-
ing curves are represented in Fig. 6.5. Hystere-
sis losses are nearly 1000 times larger than cou-
pling losses. This ratio of hysteresis loss to cou-
pling loss is confirmed when applying basic di-
mensional analysis as emphasized further at the
end of this section. The main conclusion to be
drawn here is that the hysteresis loss dictates the
thermal behaviour of the coil. The striking simi-
larity between the temperature curves and the
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Figure 6.5: Evolution of integrated losses in-
side the coil. ∆t = 20 s, s = 0.12.

hysteresis loss curve further reinforces this conclusion. The hysteresis loss also exhibits a quadratic
evolution at first before increasing linearly until reaching its peak around t = 900 s. Most losses
occur in the left part of the coil, as highlighted in Fig. 6.6(a). The losses are larger because the
corresponding flux density variations are greater as shown in Fig. 6.6(b). Note that the coil flux
density almost evolves linearly over time. Remarkably, the flux density in the bottom right part of
the coil remains very low, which can be explained by the fact that the central region of low field
moves downward over time until reaching the bottom right part of the coil as shown in Fig. 4.12.
The corresponding hysteresis loss is particularly small as the flux density variation is limited.
The particular shape of the local hysteresis loss curves can be explained by discussing Eq. (3.61):

qhys,1 =
2jc df b

2 /3π

j2c µ
2
0 d

2
f /32 + b2

ḃ,

which has been derived as an interpolation between the low field regime (Eq. (3.60)) and the high
field regime (Eq. (3.59)). It is a strongly nonlinear equation in the flux density, as it is a rational
function of b, while the critical current density jc also depends on b through Bottura’s relationship.
The corresponding single filament hysteresis loss is shown in Fig. 6.7, where it has been normalized
by the flux density variation to highlight the effect of the flux density norm on the loss amplitude.
As a consequence of Eq. (3.60), the hysteresis loss evolves quadratically in low field.
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As the filament becomes more penetrated, the hysteresis loss tends towards Eq. (3.59), which is a
decreasing function of the flux density through jc(b). Since the critical current density diverges at
low field, Eq. (3.59) also diverges, highlighting the need to derive a more refined approximation in
weak penetration, as done in Appendix A.7. As a global consequence of this nonlinear behaviour of
the hysteresis loss, the normalized loss is maximal around b ∼ 0.38 T. Quite remarkably, the norm
of the flux density in the left part of the coil reaches this particular value between t ∼ 750 s and
t ∼ 1000 s, which explains the peak in hysteresis loss around t ∼ 900 s.
Furthermore, Fig. 6.7 illustrates the quadratic behaviour of the hysteresis loss at low field and thus
the quasi-quadratic evolution of the global hysteresis loss at the beginning of the ramp-up process.
Since the time scale of the ramp-up is much larger than the thermal time constant τth, the temperature
in the coil also follows the same shape as the heat source in the form of hysteresis losses. The main
conclusion here is the central role played by filament hysteresis losses in the thermal behaviour of
the coil. In Chapter 7, hysteresis losses are studied in detail using a single filament numerical model
and the validity of the underlying assumptions in Eq. (3.61) is discussed.
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Figure 6.6: Evolution of (a) the local filamentary hysteresis loss qhys at different points of the coil and
(b) corresponding flux density norm b. The position of the points is shown in Fig. 6.4. ∆t = 20 s,
s = 0.12.
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Figure 6.7: Theoretical single filament hysteresis loss qhys,1 normalized by the flux density variation
ḃ, as a function of the flux density b at THe = 4.2 K. The interpolated Eq. (3.61) implemented in the
code is shown along the weakly penetrated (Eq. (3.60)) and the fully penetrated regimes (Eq. (3.59)).

The temperature field is shown in Fig. 6.8. The color scale is adapted to the different instants. As
observed, the hottest point in the coil moves from the bottom left upward, then moves towards the
center of the coil. The maximal temperature is Tmax = 4.2084 K at t = 900 s. The temperature
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increase in the coil is very small and there is no risk of a quench. As represented in Fig. 6.9, the
heat flux is always directed from the hot region towards the boundary of the coil, where convective
heat transfer takes place. The heat flux is maximal at t = 900 s, its norm being q = 0.111 W/m2

corresponding to a peak coil surface temperature of T−THe = 0.0011K. The temperature difference
in the coil itself is much larger than in the liquid helium, which is a direct consequence of the large
Biot number regime.
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Figure 6.8: Temperature T [K] in the conductor at different instants. ∆t = 20 s, s = 0.12. For
clarity, the color scale has been adapted to each instant.
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Figure 6.9: Heat flux q [W/m2] in the conductor at different instants. ∆t = 20 s, s = 0.12. For
clarity, the color scale has been adapted to each instant.
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Figure 6.10: Filament hysteresis loss qhys [W/m3] in the conductor at different instants. ∆t = 20 s,
s = 0.12. For clarity, the color scale has been adapted to each instant.
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The local hysteresis loss is represented in Fig. 6.10. At first, the loss mostly occurs in the bottom
left part of the coil. Once again, the loss is maximal at t = 900 s. In the second part of the ramp-up
process, the loss mainly occurs in the top left part of the coil. It is directly linked to the flux density
evolution in the coil discussed in Chapter 4 and shown in Fig. 4.12.
The temperature profiles along horizontal and vertical cuts is shown in Fig. 6.11, highlighting the
larger temperature difference T − THe within the coil compared to the temperature difference be-
tween the surface of the coil and the liquid helium. Once again, such a behaviour is explained by
the cooling efficiency of liquid helium and a corresponding large Biot number.
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Figure 6.11: Temperature profiles at different instants (a) along the radial axis of the coil and (b)
along its vertical axis. The cuts and the axes are shown in Fig. 6.4(b). ∆t = 20 s, s = 0.12.

Orders of magnitude
As observed, the maximal temperature increase in the coil is Tmax = 0.0084 K. Let us estimate if
such an increase can be expected from dimensional analysis. In a regime characterized by a large
Biot number, the temperature variations are most pronounced within the coil itself as mentioned
previously. Hence, the total temperature difference in the coil can be roughly estimated as ∆T =
T −THe, and it is primarily influenced by the diffusion mechanism within the coil. Indeed, the limit
h → ∞ simply corresponds to a Dirichlet condition T = THe on the surface of the coil. As the
time scale of the ramp-up process is much larger than the thermal time constant τth, a steady-state
balance between conduction and heat source is assumed. Using again κ ∼ 0.5 W/(m K), it comes
from dimensional analysis:

qs ∼
κ∆T

L2
c

⇒ ∆T ∼ qsL
2
c

κ
∼ 0.01 K, (6.1)

assuming the same characteristic length Lc = 0.053 m as in Chapter 5 and a heat source of qs =
2W/m3. The order of magnitude is similar to what has been obtained numerically.
Similarly, let us check the order of magnitude of the filamentary hysteresis loss and inter-filament
coupling loss. Let us apply dimensional analysis on Eq. (3.59) and Eq. (3.71) respectively. Assum-
ing jc ∼ 5× 109 A/m2 and ḃ ∼ 2 T/Tup, it comes (all quantities expressed in SI units):

qhys ∼ λSCdfjc ḃ ∼ 0.03 · 5× 10−5 · 5× 109 · 2/7200 ∼ 2W/m3, (6.2)

qc ∼
λSC

λw

1

ρeff

(pL
2π

)2
ḃ2 ∼ 6.67× 10−2 · 2× 109 · (10−2)2 · (2/7200)2 ∼ 10−3 W/m3, (6.3)

which is also similar to the numerical results. The orders of magnitude retrieved with the magne-
tothermal model are thus in good agreement with dimensional analysis, which further validates the
results and the previous physical interpretation.
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Finally, let us check if the coil has crossed the critical surface, in which case Nb-Ti filaments would
have gone out of the superconducting state. During the whole ramp-up process, the minimal local
critical current density jc(b, T ) (taking b and T contributions into account) is jc = 3917 A/mm2 at
t = 7200 s, which corresponds to the end of the ramp-up procedure. The impact of temperature on
jc is negligible with respect to the impact of the flux density. The corresponding transport current
ratio is i = It/Ic = ∥jt∥/jc = 0.281 and the coil effectively remains in the superconducting state.

6.2.3 Modelling the helium vessel
In this section, the helium vessel Ωth,2 is included
in the thermal resolution. The two different heat
sources act on the vessel, namely the Joule losses
and the radiation incoming from the radiation
shield, are shown in Fig. 6.12. The radiative
heat rate remains stable at Qrad ∼ 1.39 W. The
Joule loss Qj is maximal at the beginning of
the ramp-up process (around t ∼ 100 s) and
then quickly decreases below the radiative heat
rate. Consequently, its impact on the temperature
field inside the vessel rapidly becomes negligible.
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Figure 6.12: Evolution of integrated Joule
losses Qj and radiative heat rate Qrad in the he-
lium vessel. ∆t = 20 s, s = 0.12.

The temperature field is shown in Fig. 6.13(a-b). As observed, the maximal temperature in the
vessel is T = 4.235 K. The temperature increase is small because the liquid helium cooling is very
efficient on the inner boundary of the vessel. The temperature field at t = 2000 s is very similar to
the steady-state temperature field as it is mainly determined by the radiative heat rate. The steady-
state maximal temperature in the vessel is T = 4.209 K. As highlighted in Fig. 6.13(c), the Joule
dissipation is larger in the left part of the vessel, which can be explained by the larger flux density
variation as was already the case for the hysteresis losses in the coil.
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Figure 6.13: Temperature T field in the helium vessel at (a) t = 100 s and (b) t = 2000 s, as well
as the local Joule loss qj at t = 100 s. ∆t = 20 s, s = 0.12.

As already highlighted in Section 4.7.4, the impact of the helium vessel on the magnetic energy
in the coil is negligible. As a consequence, the effect of the helium vessel eddy currents on the
flux variation within the composite conductor is also negligible. In fact, the maximal temperature
increase in the coil during ramp-up is Tmax − THe = 0.00843 K with the vessel included, to be
compared to 0.00840 K without the vessel. The relative difference of 0.36 % is not significant.
Consequently, the helium vessel is neglected in the next parts of the study. Nevertheless, the helium
vessel is still implemented in the final version of the code (also in 3D) and the user can still choose
to include it before starting the full magnetothermal resolution.
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6.3 Results in the three-dimensional geometry
The aim of this section is to discuss the magnetothermal behaviour of the coil in three dimensions.
The geometry considered is the complete geometry, including the off-center holes, but excluding
the helium vessel. The results presented in Fig. 6.14 are obtained from amagnetothermal simulation
with global mesh size s = 0.84 and time step ∆t = 100 s, for a total CPU time of 23 hours. Note
that the 2D axisymmetric results are slightly different from those presented in the previous section
as the numerical parameters have been set to s = 0.84 and ∆t = 100 s to allow comparison with
the 3D results.
As can be seen in Fig. 6.14(a), the mean and maximal temperature curves in the coil are smoothed
out compared to the 2D axisymmetric resolution. The maximal temperature is now reached around
t ∼ 1200 s. On the other hand, the maximal temperature in the 3D coil in the intermediate regime
is higher than that obtained in 2D. Nevertheless, the maximal temperature increase is similar as
it is ∆Tmax = 0.0074 K in 3D and ∆Tmax = 0.0083 K in 2D with the considered set of numerical
parameters. Consequently, working in the axisymmetric geometry provides a conservative approach
of studying themagnetothermal behaviour, as the predictedmaximal temperature increase is slightly
overestimated. As discussed in the previous section, the temperature increase is mainly caused by
the hysteresis loss in the Nb-Ti filaments. As observed in Fig. 6.14(b), the integrated hysteresis
loss has also been smoothed out compared to axisymmetric results, which explains the shape of the
temperature curves.
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Figure 6.14: Evolution of (a) the mean Tm and maximal Tmax temperatures in the coil and (b) inte-
grated hysteresis lossQhys. 3D results are compared to axisymmetric results. ∆t = 100 s, s = 0.84.

The hysteresis loss in the coil is further investigated. A possible explanation for the peculiar shape
of the hysteresis loss curve is the fact that unlike in the axisymmetric geometry, the flux density and
the corresponding local hysteresis loss also depend on the angular position in the coil. As mentioned
in Section 6.2.2, most losses occur in the upper central part of the coil. Fig. 6.15 compares the local
hysteresis loss in different angular positions θ. Please refer to Fig. 4.17(b) for the definition of
the angular position with respect to the spiralized poles. As may be observed, the hysteresis loss
peak does not occur at the same instant depending on the angular position. In particular, the peak is
reached sooner for the parts of the coil which are close to the poles (θ = {−25,−10,−85} ◦) and the
corresponding hysteresis loss is larger. It may be explained by the proximity of the ferromagnetic
poles, increasing the flux density (and its variation) in some parts of the coil. On the other hand,
the region of the coil which is closer to a cavity (θ = {−70,−55,−40} ◦) experiences a smaller
flux variation and the loss peak is reached later. Consequently, the hysteresis loss integrated over
the volume of the coil may be smoothed out by the angular variation of the local losses. Please note
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that this is one possible explanation for the observed behaviour of the integrated loss curve. As the
geometry is complex and the magnetic response of the system is nonlinear, many different physical
phenomena are involved and the previous discussion covers only a small part of these phenomena.
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Figure 6.15: Evolution of the local hysteresis loss qhys at the point p1 displayed in Fig 6.4(b) for
different angular positions θ. ∆t = 100 s, s = 0.84.

6.4 Parametric studies
In this section, multiple physical parameters are varied and their impact on the maximal temperature
within the coil is assessed. The default configuration of the cyclotron is recalled: h = 100W/m2K,
Tup = 7200 s and ff = 51 µm. The studies are mostly performed in the three-dimensional geometry,
for which the numerical parameters are s = 0.84 and∆t = 100 s. In some cases, the results are also
discussed in the axisymmetric geometry, which allows for a simpler interpretation while providing
a conservative approach to the problem as discussed previously. The axisymmetric simulations are
performed with s = 0.12 and ∆t = 20 s.

6.4.1 Impact of the convective heat transfer coefficient
As mentioned in Chapter 5, the value of the convective heat transfer coefficient h = 100 W/m2K
used in the previous sections is considered conservative as larger coefficients have been reported
for liquid helium. Nevertheless, its impact on the maximal temperature within the coil is shown
in Fig. 6.16. As may be observed, even for an excessively small value of h = 0.1 W/m2K, the
maximal temperature increase is ∆Tmax = 0.389 K. In that case, considering the worst case of the
maximal flux density bc,max = 3.58 T, the critical current density of Nb-Ti is jc = 3525 A/mm2

corresponding to a conductor critical current of Ic = 3197 A which is still much larger than the
maximal conductor current of 1002A.Asmay be observed in Fig. 6.16(a), decreasing the convective
coefficient introduces some delay in the system. Once again it can be explained using dimensional
analysis. For h < 1W/m2K, the Biot number is small: Bi < 0.1, from Eq. (5.14). In that case, the
temperature gradients in the coil can be neglected [40] and the thermal time constant is given by:

τth =
ρeffcp,effLc

h
∼ 100

h
, (6.4)

which is retrieved numerically when looking at the cooling down after the ramp-up is completed, i.e.
t > 7200 s. On the other hand, further increasing the convective coefficient above h = 100W/m2K
does not affect the thermal behaviour of the coil. Such a behaviour is expected because the thermal
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time constant does not depend on h for a large Biot number, as discussed in Chapter 5. Furthermore,
the maximal temperature rise in the coil is independent of h in the theoretical limit of h → ∞
as highlighted in Eq. (6.1). It is therefore of no practical interest to further increase the cooling
efficiency of the coil cryostat, as this would mean increasing the velocity of the liquid helium and
hence the power consumption of the cryogenic equipment.
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Figure 6.16: Evolution of the maximal temperature Tmax in the coil for various convective heat
transfer coefficients h. 3D results.
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Figure 6.17: Maximal temperature increase∆Tmax during ramp-up against liquid helium convective
heat transfer coefficient h. Comparison between results in 3D and in 2D axisymmetric geometry.

The maximal temperature increase during ramp-up is shown in Fig. 6.17 for different convective co-
efficients. As discussed earlier, the 2D axisymmetric model slightly overestimates the temperature
rise. Notably, two asymptotic regimes can be distinguished. In the large Biot number regime, the
temperature increase is independent of the convective coefficient. On the other hand, in the small
Biot number regime, temperature gradients in the solid can be neglected and there is a balance be-
tween heat generation and convective cooling. Assuming a thermal time constant smaller than the
ramp-up characteristic time (which is less and less true as h decreases), it comes from dimensional
analysis:

qhysLc ∼ h∆T ⇒ ∆T ∼
qhysLc

h
, (6.5)

which explains the shape of the curve in Fig. 6.17. The fact that the numerical maximal temperature
rise scales as ∆Tmax ∝ h−0.8 can among other reasons be explained by the nonlinearity of the
problem. Since the critical current density decreases as temperature is increased, so does the local
hysteresis loss (assuming mostly fully penetrated filaments). In the intermediate regime, all the
different phenomena must be considered and it is more complex to perform dimensional analysis.

64



Louis DENIS Chapter 6. Magnetothermal behaviour during ramp-up

6.4.2 Impact of the total ramp time
The total ramp time of the C400 is Tup = 7200 s.
As previously observed, the temperature rise in
the coil is not significant. In this section, the du-
ration of the current ramp is reduced. For now,
a linear current profile as described by Eq. (4.1)
is still considered. For all the simulations per-
formed, the time step has been adjusted to keep
the ratio Tup/∆t fixed throughout the study. It
is Tup/∆t = 72 in 3D and Tup/∆t = 360 in
2D. The maximal temperature rise in the coil is
shown in Fig. 6.18. As expected, the tempera-
ture rise increases with the ramp rate. Remark-
ably, even for a ramp time of 360 s, the maximal
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Figure 6.18: Evolution of the maximal temper-
ature Tmax in the coil for various ramp times Tup.
For proper comparison, the time is normalized
by Tup. 3D results.

temperature rise is ∆Tmax = 0.15 K and the coil still remains in the superconducting state. Never-
theless, such a fast ramp-up is not feasible in practice: this issue is addressed below. Before that, a
closer look at Fig. 6.18 allows us to observe a∆Tmax ∼ 1/Tup dependence of the temperature peak.
This can be explained by the results shown in Fig. 6.19, representing the mean loss averaged over
the duration of the ramp-up. Note the agreement between the 3D and the 2D axisymmetric results.
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Figure 6.19: Mean hysteresis loss Q̄hys and mean coupling loss Q̄c during ramp-up against total
ramp-up time Tup. Comparison between results in 3D and in 2D axisymmetric geometry.

As previously discussed, the hysteresis loss is much larger than the coupling loss. However, the
ratio between the two loss sources decreases as the ramp time is reduced. It is expected from di-
mensional analysis as the hysteresis loss scales as qhys ∝ ḃ ∝ 1/Tup, while the coupling loss scales
as qc ∝ ḃ2 ∝ 1/T 2

up. Such results are obtained numerically. In 3D: Q̄hys = 15.31W for Tup = 360 s
compared to Q̄hys = 1.568W for Tup = 3600 s. Reducing the ramp time further increases the max-
imal temperature in the coil, which tends to slightly reduce the hysteresis loss due to ∂jc/∂T < 0,
highlighting the nonlinearity of the problem. In the large Biot number regime, the temperature in-
crease is proportional to the loss source, as emphasized by Eq. (6.1). The hysteresis loss scaling
law therefore explains the evolution of the maximal coil temperature with ramp time in Fig. 6.19.

In the present case, the limiting factor is not the temperature increase. Due to the consequent energy
that needs to be charged in the magnet (Em = 34.3MJ, from Section 4.8.2), the ramp time is mainly
constrained by the voltage available at the power supply terminals: ∆vlim = 20 V. In practice, the
two coils (below and above the median plane of the cyclotron) are arranged in series and the maxi-
mal voltage available for the coil studied in this work is ∆v

′

lim = ∆vlim/2 = 10 V.
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The a-formulation presented in Chapter 3 can be adapted to retrieve the potential difference across
one stranded conductor turn ∆v1 [V] as a global quantity. The corresponding formulation is called
the a-v-formulation. Please refer to [6] for a theoretical description of the formulation and the cou-
pling to circuit relations.
The total voltage across the coil ∆v [V] has
been computed in the axisymmetric geometry,
taking into account the number of turns of the
two sub-coils: ∆v = 1344∆v1.
Physically, the induced voltage drop across the
conductor is a direct consequence of Lenz’s law:
∆v1 = −dϕb/dt. Neglecting the electrical
resistance of the superconducting coil, the in-
duced voltage is equal to the time variation of
the magnetic flux ϕb [Wb] embraced by the coil.
It depends strongly on the magnetic response of
the ferromagnetic yoke and on the induced eddy
currents in the yoke, which oppose the flux vari-
ation. The maximal voltage drop across the coil
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Figure 6.20: Maximal voltage drop ∆vmax
across the coil for various ramp-up times Tup.
Axisymmetric results.

is shown in Fig. 6.20 for different ramp times. The voltage drop increases as the ramp time de-
creases, which is expected since the magnetic flux grows more rapidly. Remarkably, the maximal
voltage drop scales as∆vmax ∝ T−0.65

up . The particular numerical value of the scaling factor is diffi-
cult to interpret as the magnetic problem is nonlinear. Nevertheless, Fig. 6.20 highlights the need to
choose a ramp time greater than Tup = 1200 s (20 minutes) to avoid overloading the power source
when working with a linear current profile.

6.4.3 Impact of the filament diameter
As mentioned in Section 3.5, working with finer filaments is expected to reduce the Nb-Ti hys-
teresis losses. One simulation has been performed with filaments of diameter df = 30 µm and the
corresponding maximal temperature evolution is shown in Fig. 6.21. It is compared to the results
discussed previously. The number of filaments per conductor has been increased to keep a constant
Nb-Ti filling ratio with respect to the default configuration.
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Figure 6.21: Evolution of the maximal temperature Tmax in the coil for two different Nb-Ti filament
diameters df . 3D results.

As a direct consequence of the smaller hysteresis loss, the maximal temperature increase in the coil
is reduced to ∆Tmax = 0.0055 K. Initially, the temperature is higher when using finer filaments.
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Additionally, the maximal temperature is reached earlier during ramp-up. These results can again
be explained by the analytical approximation (Eq. (3.61)) used to compute the hysteresis loss, which
is represented in Fig. 6.22 for the considered di-
ameters. With all other parameters held con-
stant, the loss is decreased in the fully pen-
etrated regime, as expected from Eq. (3.59).
Conversely, the loss is increased in the weakly
penetrated regime, as also anticipated from
Eq. (3.60). Furthermore, the fully penetrated
regime is achieved earlier for finer filaments.
Globally, the hysteresis loss in the C400 coil is
indeed reduced when working with finer fila-
ments. Reducing the filament diameter there-
fore constitutes a solution for decreasing the
temperature increase during ramp-up. Note that
a filament diameter of 30 µm seems reasonable
as 6 µm filaments were used in superconducting
cables for the LHC [32].
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Figure 6.22: Theoretical (Eq. (3.61)) single fil-
ament hysteresis loss qhys,1 normalized by the
flux density variation ḃ at THe = 4.2 K for two
filament diameters df .

6.4.4 Impact of the current profile
The diameter of Nb-Ti filaments cannot be modified once the coil is built. A more convenient
solution to reduce the temperature rise in the coil is to modify the default linear current ramp used
in the previous sections. In fact, the ramp-up procedure can be adjusted based on the physical
interpretation provided in Section 6.2.2. Since the hysteresis loss is proportional to the flux density
variation, the main idea is to reduce the ramp rate in the period corresponding to the maximal loss in
the default configuration. From the results shown in Fig. 6.14(b), the hysteresis loss is maximal in
the time range t ∼ 600− 2500 s. However, reducing the ramp rate in one range requires increasing
the ramp rate in another range to keep the total ramp time at Tup = 7200 s. The ramp rate is thus
increased in the final part of the ramp-up procedure where the losses are relatively small.
Different piecewise linear functions were tested and the optimized ramp shown in Fig. 6.23(a) has
been fine-tuned by trial and error. The final current ramp rate reads

dI(t)/Imax
dt/Tup

=


1, for t ∈ [0; 600[ s,
0.75, for t ∈ [600; 2800[ s,
0.9, for t ∈ [2800; 5000[ s,
1.35, for t ∈ [5000; 7200[ s.

(6.6)

As can be observed in Fig. 6.23(b), the integrated hysteresis loss has indeed been reduced in the
period that previously corresponded to the maximal loss. On the other hand, the loss in the last
part of the ramp has been significantly increased. The optimal choice thus results from a trade-off.
Accordingly, the maximal temperature rise in the coil has been reduced from∆Tmax = 0.0074 K to
∆Tmax = 0.0064K. The maximal temperature rise has thus been decreased by 14% compared to the
default current ramp, highlighting the effectiveness of the optimized ramp-up procedure proposed
in this section.
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Figure 6.23: (a) Optimized current profile normalized by the nominal current I/Imax and (b) evolu-
tion of the corresponding integrated hysteresis lossQhys in the coil, compared to the default current
profile. 3D results.

6.4.5 Impact of the current configuration
Let us discuss the different nominal current configurations summarized in Tab. 2.1. Asmentioned in
Section 4.8.2, the two proton configurations give similar steady state results. As shown in Fig. 6.24,
working in the p1 configuration induces a slightly larger temperature increase during ramp-up. Such
a result is quite complex to interpret as the problem is highly nonlinear. In addition, the two carbon
configurations lead to a smaller temperature rise in the coil as they involve lower nominal currents
compared to the proton configuration. The peak temperature is also reached slightly later in the
carbon configurations. Nevertheless, all configurations give very similar results as the maximal
temperature rise during ramp-up remains in the range ∆Tmax = 0.0074 − 0.0080 K. The default
configuration (Config. 0) induces the smallest temperature rise.
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Figure 6.24: Evolution of the maximal temperature Tmax in the coil for the different nominal current
configurations listed in Tab. 2.1. 3D results.
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Conclusion of the chapter
After discussing the coupling scheme between the magnetodynamic and thermal solvers, the nu-
merical simulation parameters were varied until the convergence of the results was found to be
satisfactory. During a normal ramp-up procedure, the temperature increase in the coil is extremely
small. The maximal temperature rise is ∆Tmax = 0.0084 K in the 2D axisymmetric geometry. As
discussed, this result was expected from dimensional analysis. In addition, the inter-filament cou-
pling loss was shown to be negligible compared to the hysteresis loss in Nb-Ti filaments, which
was also expected from dimensional analysis. A deeper physical interpretation has highlighted the
significant role of the hysteresis loss in the maximal temperature increase in the coil. The large Biot
number regime leads to a temperature rise that is directly proportional to the main source of loss,
namely the filamentary hysteresis loss. The hysteresis loss has been studied in more detail and the
maximal loss occurs around t ∼ 900 s due to the coil region closer to the cyclotron center reach-
ing the threshold flux density value of b ∼ 0.38 T, which maximizes the local hysteresis losses.
Furthermore, since the thermal time constant of the coil is small compared to the ramp time, the
temperature evolution is remarkably consistent with the hysteresis loss evolution.
The hysteresis loss curve is smoothed out in the three-dimensional geometry of the cyclotron and
the maximal temperature rise in the coil is∆Tmax = 0.0074 K, which is lower than that obtained in
2D. Among other reasons, this can be explained by the angular variation of the flux density in the
coil due to the spiralized poles. As a result, the maximal loss in the coil occurs at different times
depending on the angular position. Nevertheless, the 3D results are very similar to the 2D axisym-
metric results, which slightly overestimate the maximal temperature rise and therefore provide a
conservative approach to the problem.
In the last part of this chapter, the convective heat transfer coefficient was varied and it was shown
that even with an excessively small convective coefficient, the temperature increase is not signif-
icant and the Nb-Ti filaments still remain in the superconducting state. It was also possible to
distinguish different asymptotic regimes depending on the Biot number.
The ramp time was reduced and the maximal temperature rise did not exceed ∆Tmax = 0.16 K
even for a 6minute ramp-up. However, due to the limited voltage difference available at the power
source terminals, it was found that the ramp-up procedure could not be performed in less than 20
minutes. This result is valid for a linear current ramp.
Since the temperature rise is mainly determined by the hysteresis loss in the coil, a solution to reduce
the temperature rise during ramp-up is to reduce the diameter of the Nb-Ti filaments. The effective-
ness of this solution has been demonstrated in this chapter. Furthermore, an optimized current ramp
has been proposed to reduce the hysteresis loss during ramp-up, which constitutes a more practical
solution as it can be implemented and adapted on an existing machine. It has reduced the maximal
temperature rise by 14%.

The main conclusion of the chapter is the fundamental role played by hysteresis losses in the mag-
netothermal behaviour of the coil. The analytical approximation used to compute these losses relies
on many assumptions as discussed in Section 3.5. Consequently, the accuracy of the hysteresis loss
prediction is evaluated in the next chapter based on a numerical model at the filament scale, which
will be the main building block of the multi-scale resolution presented in the final chapter of this
thesis.
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CHAPTER 7
LOSSES AT THE FILAMENT SCALE

As highlighted in Chapter 6, hysteresis loss in Nb-Ti filaments plays a central role in the thermal
behaviour of the coil. The aim of this chapter is to assess the accuracy of the analytical approx-
imation (Eq. (3.61)) used thus far for computing hysteresis losses at the macroscopic scale. For
that purpose, a single Nb-Ti filament is modelled, and its magnetic response to a transverse applied
magnetic field is computed numerically. The impact of the transport current on hysteresis loss,
which has been neglected thus far, is also explored. The superconducting constitutive equation im-
plemented numerically is the power-law, an extension of the CSM as introduced in Chapter 3. It
is important to note that the analytical approximation used in the previous chapter is based on the
CSM. Therefore, using the power-law will affect the hysteresis loss in the filament, and this impact
will be quantified in this chapter. Finally, the filament model allows the limitations of analytical
approximations to be highlighted. Consequently, a multi-scale approach for computing hysteresis
losses is proposed and implemented in Chapter 8.

7.1 Numerical model
A representation of the filament model and the
corresponding boundary conditions is shown in
Fig. 7.2. The radius of curvature of the filament
is neglected and only its cross-section is mod-
elled. The model developed by Geuzaine, Ka-
mani and Stenvall [52] as a GetDP benchmark
for superconductors has been adapted to meet
the requirements of the present study. A trans-
verse uniform flux density b̄a(t) [T] is applied to
the outer boundary of the domain. It can be in-
terpreted as the local flux density in the compos-
ite conductor of the C400 coil. As the applied
flux density varies with time, induced currents
are generated in the superconducting filament.
The outer domain must be chosen large enough
to avoid impacting the magnetic response of the

Figure 7.1: Mesh discretization of the filament.

filament. In the present context, an outer diameter of dout = 10df = 510 µm was found to be
appropriate. The mesh used for discretizing the domain is shown in Fig. 7.1. It has been carefully
refined and the convergence of results has been checked.
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Moreover, a net transport current Īt(t) [A]
is imposed along the ẑ-axis of the fila-
ment, which corresponds to the local trans-
port current contribution to the total cur-
rent in the composite conductor. The j-e
constitutive law of the superconducting fil-
ament is modelled using the power-law in-
troduced in Section 3.3.4. The h-ϕ formula-
tion is chosen as the weak formulation and
it is described in Section 3.1. The conduct-
ing domain Ωc is only composed of the fil-
ament. The outer domain is chosen to be
non-conductive for focusing on the hystere-
sis loss inside the Nb-Ti filament. As such,
the inter-filament coupling losses are disre-
garded. No essential boundary condition is
considered, Γh = ∅ and Γe = Γ. However,
the formulation as stated in Eq. (3.27) must
be adapted for allowing a uniform external
flux density to be imposed.
The surface term in the h-ϕ-formulation can
be modified by taking into account the fact
that the boundary Γe is around the non-
conducting domain of study in which the
curl-free property of h is satisfied.

ŷ

x̂ẑ
b̄a(t)

Īt(t)

Γe

Ωc

df

dout

Figure 7.2: Numerical model of oneNb-Ti filament,
denoted by Ωc. The outer domain is composed of
a non-conducting medium and a uniform external
field b̄a [T] is applied to the outer boundaryΓe of the
domain. A net transport current Īt [A] is imposed
along the ẑ-axis of the filament. The diameter of
the filament is df = 51 µm and the outer domain
diameter is dout = 510 µm.

Hence, by setting the test function to h′
= ∇ϕ′ (the missing negative sign with respect to Eq. (3.28)

does not matter as test functions are arbitrary), it comes successively

⟨ē× n,h
′⟩Γe

= ⟨ē× n,∇ϕ
′⟩Γe

(7.1)

=

∫
Γe

∇ ·
(
ϕ

′
(ē× n)

)
dΓe − ⟨∇ · (ē× n), ϕ

′⟩Γe
(7.2)

=

∫
Γe

∇ ·
(
ϕ

′
(ē× n)

)
dΓe + ⟨ē · (∇× n), ϕ

′⟩Γe
− ⟨n · (∇× ē), ϕ

′⟩Γe
(7.3)

= −⟨n · (∇× ē), ϕ
′⟩Γe

= ⟨n · ∂tb̄, ϕ
′⟩Γe

. (7.4)

The first term in Eq. (7.3) is equal to zero because the boundary Γe is closed, while the second
term is equal to zero because the boundary is smooth. Hence, through Faraday’s law, the natural
boundary condition amounts to specify the variation of the flux density n · ∂tb̄ = n · ∂tb̄a normal
to the boundary Γe. As the applied flux density is considered zero in t = 0, a boundary condition
on n · ∂tb̄a is equivalent to a boundary condition on n · b̄a =

∫ t∗

0
n · ∂tb̄a dt.

Note that such a boundary condition does not interfere with the magnetic field generated by a net
transport current in the superconducting filament. The self-field bself is mostly azimuthal far from
the filament, implying that n · bself = 0 on Γe.

Due to the strongly nonlinear behaviour of the power-law, the convergence of the Newton-Raphson
algorithm depends on various parameters, such as the rate of applied flux density variation or the rate
of transport current increase in the filament. To ensure robustness, the model involves an adaptive
time step. If the iterative algorithm fails to converge within 12 iterations, the time step is reduced
by a factor of 3. Conversely, if the convergence is achieved in less than 6 iterations, the time step
is increased by a factor of 1.5.
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7.2 Constant critical current density
First, let us consider a constant critical current density jc = 5 × 109 [A/m2] in the filament. It is
consistent with the constant jc assumption made for the derivation of the analytical approximation
introduced in Section 3.5. The corresponding penetration flux density (Eq. (3.58)) is bp = 0.102 T.
The transport current is neglected for now, Īt = 0, and a uniform flux density is applied along the
ŷ-axis. For now, a linear monotonically increasing field ramp is considered from 0 T to bmax = 2 T
at a constant rate denoted by ḃa [T/s]:

b̄a(t) = ḃa t ŷ, for t ∈ [0; bmax/ḃa]. (7.5)

7.2.1 Flux penetration in the filament
The flux penetration mechanism has been discussed in Section 3.5. Here, numerical results obtained
with n = 50 and ḃa = 1 T/s are briefly presented to validate the previous theoretical description.
Note that the rate ḃa = 1 T/s applied in this section is several orders of magnitude larger than what is
observed in the C400 coil (ḃ ∼ 3× 10−4 T/s). The results are shown in Fig. 7.3. Initially, persistent
currents are established on a thin elliptical layer on the surface of the filament, resulting in a zero
flux density within the center of the filament. The current density is determined by the power-law
model, allowing the electric field to vary smoothly while the current density magnitude is either
very small or close to jc. In the center of the filament, the current density magnitude is lower
than 100 A/m2, and the variations in Fig. 7.3(a-b) are due to numerical perturbations around zero.
Then, the flux density gradually penetrates the filament until currents are established throughout
the entire filament. At t = 0.11 s, ba = 0.11 T, and the fully penetrated regime is reached, which
is consistent with the bp = 0.102 T prediction from the CSM. In the fully penetrated regime, the
persistent currents and the filament magnetization are, to a first approximation, independent of time
(as predicted by the CSM), resulting in an electric field of ez ∼ ḃax according to Faraday’s law.
Note the similarity between Fig. 7.3(a,d) and the theoretical expectation from the CSM in Fig. 3.10.

−4.77× 109 4.77× 109jz [A/m2] X
Y
Z

(a) t = 0.02 s.

−9.97× 10−6 9.97× 10−6ez [V/m] X
Y
Z

(b) t = 0.02 s.

0 0.0356b [T] X
Y
Z

(c) t = 0.02 s.

−4.86× 109 4.86× 109jz [A/m2] X
Y
Z

(d) t = 0.11 s.

−2.49× 10−5 2.49× 10−5ez [V/m] X
Y
Z

(e) t = 0.11 s.

0.0129 0.138b [T] X
Y
Z

(f) t = 0.11 s.

Figure 7.3: From left to right: current density jz, electric field ez and flux density b in the filament
at t = 0.02 s (weak penetration) and t = 0.11 s (full penetration).
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In fact, the electric field in full penetration is very similar to ez = ḃax as highlighted in Fig. 7.4(a).
The current density distribution can be deduced from the power-law constitutive equation as

jz(x) = sign(x)jc

(
|ḃax|
ec

)1/n

, (7.6)

which is retrieved numerically as shown in Fig. 7.4(b). As |ḃax|< ec = 10−4 V/m in the present
configuration, the current density is slightly lower than the critical current density.
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Figure 7.4: (a) Electric field ez and (b) current density jz along the x̂-axis of the filament, in y = 0
and t = 2 s for ḃa = 1 T/s. Numerical results for n = 50 and n = 10 (GetDP) are compared to the
distribution (Eq. (7.6)) deduced from ez = ḃax and to the CSM.

7.2.2 Impact of the power-law exponent
The quantity of interest is the filament hysteresis loss averaged over the volume of the filament,
qhys,1 as defined by Eq. (3.57). It has been computed numerically during the linear field ramp-up
and the results are shown in Fig. 7.5 for multiple power-law exponent n values.
Several conclusions can be drawn from the analysis of Fig. 7.5. First, the hysteresis loss reaches
a constant value once the applied flux density reaches bp = 0.102 T. Consequently, the interpo-
lated analytical approximation (Eq. (3.61)) used thus far underestimates the loss in the intermediate
regime, in which the loss evolution is complex to quantify. Furthermore, the constant loss value in
the fully penetrated regime differs from the prediction of the CSM (Eq. (3.59)). The difference in
loss between the CSM and the power-lawmodel is quantified in the next section. As anticipated, the
numerical full penetration loss tends towards the CSM prediction as n tends towards infinity. Also,
the numerical model allows for the validation of the analytical approximation in the weak penetra-
tion regime (Eq. (3.60)) derived in this study. The numerical oscillations observed in Fig. 7.5(b)
can be attributed to the finite spatial discretization of the filament, with the persisting eddy currents
entering the filament element by element as shown in Fig. 7.3(a). Finally, as the exponent of the
power-law increases, its nonlinearity becomes stronger, making numerical convergence more chal-
lenging. In fact, the total number of iterations for performing the whole resolution from t = 0 to
t = 2 s evolves from 319 with n = 10 to 3398 with n = 120.

As already discussed, the literature [36, 39] suggests an exponent dependence on flux density and
temperature. Nevertheless, the n value for Nb-Ti filaments seems relatively stable in the considered
b ∼ 0− 4 T range [36, 39] of the C400 conductor and a reasonable value of n = 50 is chosen in the
next parts of this study, including Chapter 8.
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Figure 7.5: Filament hysteresis loss qhys,1 during linear field ramp-up (Eq. (7.5)) with ḃa = 1 T/s
for various n exponents, compared to analytical predictions based on the CSM. (a) Global view and
(b) focus on the weak penetration regime.

7.2.3 Impact of the ramp rate
In the CSM analytical approximation, the fila-
mentary hysteresis loss is directly proportional
to the field ramp rate ḃa. In order to compare
the loss curves for different ramp rates ḃa, the
hysteresis loss is normalized by the field vari-
ation rate in this section. Results are presented
in Fig. 7.6. Once again, the analytical approxi-
mation seems accurate in the weak penetration
regime but results do not correspond in the in-
termediate regime ba ∼ 0.05− 0.02 T. As high-
lighted, the normalized loss ratio in full penetra-
tion increases with the ramp rate, which is not
predicted by the CSM. Such a result is expected
as the fully penetrated electric field can be esti-
mated as ez = ḃax as shown previously.
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Figure 7.6: Filament hysteresis loss qhys,1 during
linear field ramp-up (Eq. (7.5)) normalized by
the ramp rate ḃa, with n = 50 and for various
ramp rates, compared to analytical predictions
based on the CSM.

The fact that the fully penetrated filamentary hysteresis loss can be estimated analytically assuming
ez = ḃax also holds in the power-law model. From the current density distribution in the filament
(Eq. (7.6)), the integration of the hysteresis loss in the whole filament yields

qhys,1 =

∫ π/2

−π/2
(cos θ)(n+1)/ndθ

(3 + 1/n)π
jcdf ḃa

(
df ḃa
2ec

)1/n

, (7.7)

for which the full development is given in Appendix A.8. In the asymptotic regime n → ∞,
Eq. (7.7) simplifies to the CSM approximation of Eq. (3.59). The

∫ π/2

−π/2
(cos θ)(n+1)/ndθ/(3 + 1/n)

factor in Eq. (7.7) is very close to 2/3 for high n values. Its evolution is represented in Fig. 7.7.
For n = 50, it is equal to 0.6582 which yields a 1.4 % relative difference with respect to the CSM
asymptotic regime (2/3).
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The fully penetrated hysteresis loss computed
numerically is compared to values predicted by
both the power-law model and the CSM model
and results are gathered in Tab. 7.1. The first
conclusion is the validity of the power-law an-
alytical approximation derived in this study.
Nevertheless, such a similarity between numer-
ical results and predictions is expected as they
both rely on the same power-law model, which
is a model andwhich does not exactly reflect the
reality. The nearly constant relative difference
of 0.13% is due to the spatial discretization of
the filament.
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0.6

0.62
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Figure 7.7: Evolution of the∫ π/2

−π/2
(cos θ)(n+1)/ndθ/(3 + 1/n) factor in

Eq. (7.7) with the power-law n exponent.
In particular, it can be explained by the finite size of elements lying on the x = 0-axis for which
the current density is significantly lower than jc as observed in Fig. 7.3(d). Such an interpretation
has been validated by reducing the size of the mesh by a factor of two, in which case the relative
difference reaches 0.037 %.
As highlighted in Tab. 7.1, the CSM prediction does not yield satisfying results in full penetration
as it does not take the impact of the ramp rate into account, among other parameters. In practice, the
physics of Nb-Ti filaments is more accurately represented by the power-law model, as the transition
to the resistive state is not abrupt but rather smoothed out [36]. As such, the proposed approximation
(Eq. (7.7)) is considered more accurate than the CSM prediction used thus far.

n [-] 10 50 120 50 50

ḃa [T/s] 1 1 1 0.01 100
GetDP [W/m3] 44273 51920 53149 473.52 5692950

Power-law, Eq. (7.7) [W/m3] 44336 51990 53216 474.13 5700300
δqhys,1/qhys,1 [%] 0.14 0.13 0.13 0.13 0.13

CSM, Eq. (3.59) [W/m3] 54113 54113 54113 541.13 5411300
δqhys,1/qhys,1 [%] 22.2 4.22 1.81 14.3 4.95

Table 7.1: Fully penetrated hysteresis loss qhys,1 obtained with GetDP for various parameter sets,
compared to the power-law approximation (Eq. (7.7)) and the CSM approximation (Eq. (3.59)).
The numerical fully penetrated hysteresis loss is computed as an average over b ∈ [0.2; 2] T. The
relative difference compared to numerical results is denoted by δqhys,1/qhys,1.

Please note that the results obtained in this section rely on three strong assumptions: a constant
critical current density, a constant field variation rate, and no transport current. These assumptions
will be relaxed in the next sections.

7.3 Critical current dependence on flux density
As discussed in Section 3.3.2, the critical current density of Nb-Ti depends on flux density and
temperature. As the temperature variations in the C400 coil are very small, the temperature depen-
dence is neglected in this section and T = THe = 4.2 K is assumed. The jc(b) relation implemented
numerically is the Bottura relationship introduced in Section 3.3.2. The same linear field ramp is
considered as in the previous section (Eq. (7.5)) and no transport current is applied to the filament.
The normalized hysteresis loss for various ramp rates is shown in Fig. 7.8. It is compared to the
CSM analytical approximations already introduced in Fig. 6.7.
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As observed, the weak penetration regime is once again accurately described, even though the ana-
lytical approximation was derived assuming a constant jc. In the second part of the fully penetrated
regime, the numerical results also align with the analytical approximation, and once again, the loss
seems to increase with the ramp rate. However, the behaviour in the intermediate regime is quite
complex. The interpolated approximation (Eq. (3.61)) underestimates the loss, as already discussed
previously. Remarkably, even the fully penetrated approximation (Eq. (3.59)) underestimates the
loss in the first part of the fully penetrated regime, which was not the case in the constant jc scenario.
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Figure 7.8: Filament hysteresis loss qhys,1 during linear field ramp-up (Eq. (7.5)) normalized by the
ramp rate ḃa, with n = 50, the jc(b) Bottura relationship and for various ramp rates, compared to
analytical predictions based on the CSM.

This discrepancy may be explained by the fact
that Eq. (3.59) and Eq. (3.61) evaluate jc(ba)
based on the external flux density, while the
numerical implementation at the filament scale
evaluates jc(b) based on the local flux density
b within the superconductor, which is differ-
ent from ba due to the filament magnetization.
As a consequence, the fully penetrated current
density distribution in the filament differs from
what has been observed previously, as shown in
Fig. 7.9. The jc(b = 0.5) curve represents the
current distribution expected from the CSM at
t = 0.5 s (in absolute value) neglecting filament
magnetization. The flux density is lower in the
filament center because of persisting currents,
the critical current density is therefore larger.
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Figure 7.9: Current density jz computed numer-
ically with jc(b) along the x̂-axis, in y = 0 and
at different instants, for ḃa = 1 T/s and n = 50.
Compared to the jc(b = 0.5) value.

The opposite phenomenon takes place in the outer shell of the filament. Such a behaviour is less
observed at higher external fields because the permanent magnetization of the filaments becomes
negligible with respect to the applied field.

More generally, the physical phenomena at play are more intricate considering a critical current
density depending on flux density. In that context, it is more complex to derive an analytical ap-
proximation for the hysteresis loss and the CSM prediction used in Chapter 6 does not provide
accurate results in the intermediate range of transverse fields.
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7.4 Impact of transport current
In this section, the focus is set on the impact of transport current on the hysteresis loss. Let us again
consider a constant jc = 5×109 A/m2. As previously, the exponent is kept at n = 50. The aim is to
compute the transverse field loss in a filament carrying a fixed DC current It. The parameter here
is the transport current ratio of the filament i = It/Ic. Numerically, the state of the superconducting
filament is solved for t ∈ [0; 5] s. The imposed transport current is first established in the system
with a linear ramp of 2 s, followed by a stand-by situation of 1 s, before increasing the uniform
applied field from ba(t = 3 s) = 0 T to ba(t = 5 s) = 2 T at a constant rate of ḃa = 1 T/s as
previously. The evolution of the transport current and the applied flux density are respectively:

It(t) = iIc
t

2
for t ≤ 2 s, It(t) = iIc for t > 2 s,

ba(t) = 0 for t ≤ 3 s, ba(t) = (t− 3) for t > 3 s.
(7.8)

The current density first enters the filament through its boundary as shown in Fig. 7.10(a). The
irregular pattern of smaller current on the interior boundary of the current shell is due to the finite
resolution of the spatial discretization. Note that the transport current generates an azimuthal flux
density, shown in Fig. 7.10(b), which therefore has a zero normal component on the boundary of
the numerical domain.
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Figure 7.10: (a) Current density jz and (b) flux density b in a filament carrying a positive transport
current along the ẑ-axis. Boundary conditions described by Eq. (7.8), with n = 50 and i = 0.4.

The filamentary hysteresis loss is represented in Fig. 7.11 for various transport current ratios i.
As observed, the hysteresis loss increases with the transport current carried by the filament. In
full penetration, the loss is once again constant at fixed field ramp rate. As may be observed in
Fig. 7.12(a), the electric field is almost linear in full penetration. The staircase shape of the curves
is due to the numerical discretization. Assuming a linear electric field ez = (x − x0)ḃa, which
is valid if the magnetization of the filament is considered constant, the y-axis of symmetry of the
electric field is shifted by some value x0 [m] along the x̂-axis. The current density is then given
by jz(x − x0) with jz the distribution of Eq. (7.6). This result is also retrieved numerically in
Fig. 7.12(b). The shift x0 depends on the net transport current It and it can be computed by solving
the implicit equation:

It =

∫ df/2

0

∫ 2π

0

sign(r cos θ − x0)jc

(
|r cos θ − x0|ḃa

ec

)1/n

r dθ dr. (7.9)
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Such an equation can be solved numerically. Once the shift x0 is known, the fully penetrated hys-
teresis loss can be computed from the ez and jz distribution through Eq. (3.57). The shift x0 has a
significant impact on the local loss jz · ez, as shown in Fig.7.12(c). The increase in total hysteresis
loss is a direct consequence of x0, which is itself due to a net transport current. Without going
into much detail, the fully penetrated loss computed numerically is close to the g(i) factor derived
by Carr (Eq. (3.66)), which is based on the same shift reasoning in the CSM (n → ∞) limit. For
i = 0.8, the numerical relative loss increase is 1.76with respect to i = 0, compared to g(0.8) = 1.68
predicted by Carr. Still for i = 0.8, solving Eq. (7.9) yields x0 = −0.351 df and the integration
of the theoretical current and electric field distributions leads to a relative loss increase of 1.754,
which much closer to the numerical results.

0 0.05 0.1 0.15 0.2 0.25 0.3

0

2

4

6

8

10
10

4

Figure 7.11: Filament hysteresis loss qhys,1 in boundary conditions given by Eq. (7.8), with n = 50,
jc = 5× 109 A/m2 and for various transport current ratios i.
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Figure 7.12: Electric field ez, current density jz and local losses q = j · e along the x̂-axis of the
filament, in y = 0 and t = 5 s for boundary conditions given by Eq. (7.8), n = 50 and various
transport current ratios i.

On the other hand, Fig. 7.11 highlights a significant increase in loss in weak penetration, even
for low transport current ratios. These large losses can be explained by the fact that persistent
currents are already established in the filament before the applied field is increased, as shown in
Fig. 7.10(a). Moreover, approximating the transport current loss in weak penetration analytically is
quite complex. From Fig. 7.8, the full penetration regime is reached at b ∼ 0.3− 0.5T, considering
the dependence of jc(b). Consequently, some filaments of the C400 coil may never reach the fully
penetrated regime, as inferred from Fig. 6.6(b). Thus, the interpolated analytical approximation
used in Chapter 7, which neglected the transport current, may have underestimated the hysteresis
loss.
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7.5 Application in realistic conditions
So far, only simple academic problems have been considered in this chapter. Let us now focus
on more realistic boundary conditions. In particular, for each of the four positions indicated in
Fig. 6.4(b), the filament model is simulated with the flux density computed from the macroscopic
model as the external flux density ba, while the filament transport current is assumed to increase
linearly over time. The flux density was computed in the axisymmetric geometry with ∆t = 20 s
and s = 0.12. Note that the filament model also takes the direction of the applied field into account
by considering the evolution of each component of ba individually. The transport current carried
by the filament is also taken into account, assuming a filament current equal to the conductor cur-
rent divided by the number of filaments. The evolution of the flux density norm is represented in
Fig. 6.6(b), and the corresponding hysteresis loss per unit volume, computed from Eq. (3.61), is
shown in Fig. 6.6(a). The results obtained with the filament model (n = 50) are shown in Fig. 7.13.
Note that qhys = λSCqhys,1 is represented in contrast with the previous graphs of this chapter.
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Figure 7.13: Hysteresis loss computed from the filament model with n = 50 at the four points
indicated in Fig. 6.4(b) compared to the analytical approximation of Eq. (3.61).

As observed, there is a significant difference between the analytical approximation and the numer-
ical results. The relative difference of the analytical approximation used in the previous chapters is
quite important as it is around ∼ 40 % in the worst conditions. The first three graphs in Fig. 7.13
can be interpreted similarly. In weak penetration, the analytical approximation is accurate. In the
intermediate regime, the loss is underestimated as highlighted multiple times in this chapter. Also,
the critical current dependence on flux density tends to further increase the numerical hysteresis
loss in the intermediate regime, compared to the analytical approximation. Once the filament is
fully penetrated, the numerical loss is lower than the analytical approximation, even though it takes
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the transport current into account. This may be explained by the low field variation rate in the coil,
around ḃ ∼ 3/7200 ∼ 4 × 10−4 T/s. In full penetration, the induced electric field is thus signifi-
cantly lower than the critical electric field ec, leading to a lower loss as emphasized by the last factor
in Eq. (7.7).
As already discussed in Chapter 6, the flux density reaches the threshold value b ∼ 0.38 T sooner
in the left part of the coil. This explains why the loss peak appears earlier and why the losses are
greater compared to the p3 point, as there is a larger field variation.
The behaviour of the loss in the p4 point is more complex to discuss. As shown in Fig. 6.6(b),
the flux density never exceeds b ∼ 0.41 T and thus the filament cannot be considered fully pene-
trated. In that context, the signifant loss increase computed with the numerical model may also be
explained by the impact of transport current as discussed in the previous section.

Conclusion of the chapter
The aim of this chapter has been to introduce a numerical model for computing the hysteresis loss
at the filament scale. As such, the limitations of the analytical approximation used in Chapter 6
have been highlighted. Although it may be accurate in weak penetration when the transport cur-
rent is negligible, the losses in the intermediate regime have been underestimated. Furthermore,
the power-law model introduced an additional dependence of the losses on the ramp rate and on
the power-law exponent. This effect was quantified in the fully penetrated regime, for which an
analytical approximation of the hysteresis loss was derived in the present study. This allowed the
validation of the filament model, as the numerical results were very close to the analytical predic-
tion. However, the critical current dependence on the flux density further increased the complexity
of the physical phenomena involved and analytical approximations could no longer be derived. The
transport current was shown to have a significant effect on the loss in weak penetration and the phys-
ical origin of the relative loss increase when taking transport current into account was also discussed.

Finally, the numerical results were compared to analytical approximations in real flux density con-
ditions obtained from a magnetodynamic computation at the macroscopic scale. The relative dif-
ference was quite large, highlighting the need for a numerical model at the filament scale. The
physics of hysteresis losses in superconducting filaments is complex and depends on many phys-
ical parameters. Although the temperature dependence and the coupling between filaments have
been neglected in this chapter, the filament model allowed the variation of the potentially rotating
local flux density inside the coil to be taken into account, while considering the net transport current
inside the filament and the critical current density dependence on flux density. In the next chapter,
the robustness of the filament model is exploited and it is coupled to the magnetodynamic resolution
at the macroscopic scale, enabling a more precise prediction of hysteresis losses during ramp-up.
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CHAPTER 8
MULTI-SCALE APPROACH

As emphasized in Chapter 6, the hysteresis loss plays a fundamental role in the magnetothermal
behaviour of the coil. In Chapter 7, the limitations of the analytical approximation for predicting
hysteresis losses were highlighted, using a filament model. In this final chapter, the filament model
is coupled with the macroscopic magnetothermal model presented in Chapter 6. The hysteresis
losses are computed at the filament scale, which allows for a more robust resolution since the fila-
ment model has been validated in Chapter 7. The aim of this chapter is to increase the accuracy of
the maximal temperature evolution in the coil obtained numerically. First, the implementation of
the multi-scale approach is presented. The sensitivity of the results to the single numerical param-
eter of the approach is again briefly investigated. The final results are then discussed, both in the
axisymmetric geometry and in the full cyclotron geometry. Furthermore, the losses computed from
the filament scale are compared with those predicted from the analytical approximation.

8.1 Description of the method
For the purpose of the multi-scale approach, the
coil is subdivided intoNz zones, which are rep-
resented in Fig. 8.1 and respectively denoted
by Ωfil,i. As discussed next, the first step of
the multi-scale procedure is to retrieve the mean
flux density variation in each of the Nz zones.
Since the flux density variations are much more
pronounced within the coil cross-section than
along the azimuthal axis, it was decided to split
the coil into several concentric rings.

ŷ

r̂

Ωfil,1

Ωfil,6

...

...

Ωfil,48

Ωfil,43

Figure 8.1: Subdivision of the coil cross-section
into Nz zones, respectively denoted by Ωfil,1,
...,Ωfil,Nz , in the particular case Nz = 48.

This allows a representative mapping of the flux density distribution within the coil to be obtained.
The proposed multi-scale resolution scheme for computing the temperature distribution in the coil
is summarized in Fig. 8.2. First, the flux density distribution in the coil is obtained from the magne-
todynamic solver described in Chapter 4, relying on the a-formulation. Then, the volume average
flux density b̄(t) is computed in each of the Nz zones as a function of time. In particular, the radial
b̄r and vertical b̄y components are computed independently.
The second step of the multi-scale procedure is to compute the response of one filament per zone
Ωfil,i, based on the filament model described in Chapter 7 relying on the h-ϕ formulation. In each
zone, the mean flux density evolution from the previous macroscopic resolution is applied as a
boundary condition to the outer boundary of the filament model. Since the radius of curvature of
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the filaments is neglected, the radial component b̄r is applied along the x̂ local axis of the filament
in Fig. 7.2. In each zone, the local filament transport current Īt(t) is assumed to be the conductor
current divided by the number of filamentsNf per conductor. It increases linearly with time during
the ramp-up procedure. As explained in Section 3.3.2, the critical current density depends on tem-
perature. In first approximation, the temperature is assumed to be T = THe. From these inputs, the
average filamentary hysteresis loss q̄hys,1(t) is computed numerically, again as a function of time.
In the third and final step of the procedure, the temperature distribution in the coil is computed from
the hysteresis loss, based on the thermal model of the coil described in Chapter 5, denoted by the
T -formulation in Fig. 8.2. In each zone Ωfil,i, the volumetric heat source is qs = qc + λSCq̄hys,1,
where inter-filamentary coupling loss qc is taken from the magnetodynamic computation.
An optional feedback loop could then be implemented. From the thermal computation, the mean
temperature evolution T̄ (t) in each zone could be extracted and sent back to the corresponding
filament model. An iterative procedure could then take place with the filament models and the
macroscopic model communicating until some stopping criterion on the integrated hysteresis loss
Qhys is met. At this point, the temperature distribution could be retrieved from the last iteration
of the multi-scale procedure. In this study, since the temperature increase in the C400 is less than
∆Tmax = 0.01 K, the variation of the critical current density with temperature has been neglected.
Therefore, the focus is on the accurate numerical prediction of the hysteresis losses that occur within
the coil during ramp-up. Note that the twisting of filaments, as well as the coupling between fila-
ments, is neglected at the filament scale.
In summary, the multi-scale resolution takes a ramp-up profile as an input and provides the corre-
sponding temperature distribution within the coil as an output.

a-formulation, in Ω
IN:

Īt(t), b̄(t) in Ωfil,1

js = f(ramp-up)
...

...

...

Īt(t), b̄(t) in Ωfil,Nz

h-ϕ-formulation, in Ωfil,1, ..., Ωfil,Nz

T -formulation, in ΩTh,1

first iteration only !

δQhys < εQ

Qhys(t)

T (x, t)

q̄hys,1(t) in Ωfil,1

...

...

q̄hys,1(t) in Ωfil,Nz

OUT:
T̄ (t) in Ωfil,1

...

...

T̄ (t) in Ωfil,Nz

T = THe

yesno

iterative
scheme

Figure 8.2: Flowchart of the multi-scale approach for computing the temperature field in the coil
based on hysteresis losses retrieved from the filament model.

Note that with the mesh presented in Fig. 7.1 of Chapter 7, a simulation at the filament scale takes
on average 45 minutes of CPU time. In this chapter, the adaptive time step of the filament model
is constrained to not exceed 50 s for numerical stability and a power-law exponent of n = 50 has
been assumed for all computations. The critical current density jc(b, T ) dependence is modelled
with Bottura’s relationship described in Section 3.3.2.
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8.2 Impact of the domain discretization
The only numerical parameter to be studied in
this chapter is the number of zones Nz used to
discretize the coil cross-section, as represented
in Fig. 8.1. The integrated hysteresis loss is
shown in Fig. 8.3 for an increasing number of
zones, in the axisymmetric geometry. The os-
cillations in the hysteretic loss for

Nz [-] 1 4 12 48
Ehys [J] 4413 5037 5470 5510

Table 8.1: Total energy Ehys dissipated in the
form of hysteresis loss during ramp-up for var-
ious Nz, in the axisymmetric geometry.

Nz = 1 can be explained by the mesh discretization of the filament model as discussed in Chapter 7.
As expected, the results converge as the number of zones increases. In particular, the energyEhys =∫ +∞
0

Qhys(t) dt dissipated in the form of hysteresis loss converges monotonically as highlighted in
Tab. 8.1. Such a behaviour is also expected since averaging the flux density in the different zones
will smooth out the flux density variations and thus reduce the hysteresis loss. As the number of
zones increases, the effect of volume averaging decreases. The relative difference in dissipated
energy Ehys between Nz = 12 and Nz = 48 is 0.72 %. For the following simulations, the number
of zones is set to Nz = 48: 8 zones along the r̂-axis of the coil and 6 along its ŷ-axis.
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Figure 8.3: Integrated hysteresis loss Qhys computed with the multi-scale approach, based on a 2D
axisymmetric simulation with s = 0.12 and ∆t = 20 s, for various number of zones Nz.

8.3 Main results
The integrated hysteresis loss Qhys computed from the multi-scale approach is shown in Fig. 8.4,
both in the 2D axisymmetric geometry and in the three-dimensional geometry. The results are
compared to themacroscopic results presented in Chapter 6, where the hysteresis loss was computed
based on Eq. (3.61). As can be seen in Fig. 8.4, the peak hysteresis loss was underestimated by the
macroscopic computation. As discussed several times in Chapter 7, this is a direct consequence of
the analytical approximation not being sufficiently accurate in the intermediate field regime. The
peak hysteresis loss is given byQhys = 1.728W andQhys = 1.457W in 2D and in 3D respectively,
yielding an increase of 29% and 24% compared to the results of Chapter 6. In the second part of the
ramp-up procedure, the numerical hysteresis loss is lower than that predicted by Eq. (3.61). Such
a behaviour is also expected because the induced electric field in the fully penetrated regime of the
filaments is much smaller than the critical electric field, thus reducing the power loss as quantified
in the previous chapter. The different observations are similar in both geometries. As discussed in
Section 6.3, the 3D results are smoothed out in comparison to the axisymmetric results.
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Figure 8.4: Evolution of the integrated hysteresis lossQhys computed with the multi-scale approach,
(a) 2D axisymmetric results (s = 0.12, ∆t = 20 s) and (b) 3D results (s = 0.84, ∆t = 100 s),
compared to the results of Chapter 6 based on Eq. (3.61) (macro-scale).

Overall, the discussion in Section 7.5, interpreting the results in Fig. 7.13(a-b-c), is still valid in
the present context and can be applied to the hysteresis loss integrated over the volume of the coil.
The evolution of the average flux density in different zones of the coil is gathered in Appendix B.3,
together with the corresponding hysteresis loss obtained from the multi-scale resolution. The dif-
ferent zones are shown in Fig. B.2. The peak hysteresis loss in the regions of the coil closer to the
cyclotron center was indeed underestimated by the analytical approximation. The same conclusion
holds for the zones {8, 16, 32, 35} corresponding to the upper and central parts of the coil. How-
ever, some peculiar phenomena can be observed in the lower right part of the coil cross-section. As
mentioned in Section 4.7.3, the low field region moves downward over time. In particular, the zero
field region crosses the zone 39 during the ramp-up procedure. The evolution of the corresponding
average flux density is also represented in Appendix B.3. Since the low field region crosses the
zone during ramp-up, the flux density and its variation are remarkably low. There is a significant
difference between the hysteresis loss computed from the multi-scale resolution and the analytical
approximation. This can be explained by the current density distribution in the filament and the
corresponding flux density, which are shown in Fig. 8.5, at t = 7200 s.

−3.42× 1010 3.42× 1010jz [A/m2] X
Y
Z

(a) t = 7200 s.

0 0.286

b [T]

X
Y
Z

(b) t = 7200 s.

Figure 8.5: (a) Current density and (b) induced flux density in the filament of zone 39 at t = 7200 s,
retrieved from the multi-scale resolution based on a 3D magnetodynamic simulation with s = 0.84
and ∆t = 100 s.
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As observed in Fig. 8.5, the filament never reaches the fully penetrated regime, due to the partic-
ularly low flux density in zone 39. Moreover, the flux density rotates around the zero field region
crossing the zone. Consequently, the final distribution of persistent currents in the superconducting
filament is remarkable. A similar distribution of field lines has also been obtained numerically by
Prigozhin [53]. He studied a cylindrical superconductor with square cross-section subjected to a
perpendicular field which increases but remains in the weak penetration regime and then rotates.
The physical mechanisms at play are quite complex. In particular, the assumptions of the CSM
prediction introduced in Section 3.5 are not valid in such a configuration and the analytical approx-
imations fail to provide consistent results. These observations again highlight the importance of
modelling the magnetic behaviour of filaments using a multi-scale resolution for predicting hys-
teresis losses in the C400 coil.

Last but not least, the maximal coil temperature evolution computed from the multi-scale reso-
lution is shown in Fig. 8.6. In the axisymmetric geometry, the maximal temperature rise ∆Tmax is
increased by 35.7% compared to the previous results of Chapter 6 and reaches∆Tmax = 0.0114 K.
In the full three-dimensional geometry of the C400, the maximal temperature rise in the coil is
∆Tmax = 0.0101 K, corresponding to a 36.5% relative increase with respect to the macroscopic
resolution. As is the case for the hysteresis loss, the maximal temperature was previously under-
estimated by the macroscopic model. Also, the temperature is lower than what has been predicted
in Chapter 6 during the second part of the ramp-up procedure. Again, the similarity between the
temperature evolution and the hysteresis loss evolution is remarkable. This has been discussed in
Chapter 6. Still, the temperature rise in the coil is not significant and the Nb-Ti filaments should
effectively remain in the superconducting state during ramp-up. Nevertheless, the multi-scale res-
olution allowed to increase the accuracy of the numerical prediction. The next step should be to
measure the hysteresis loss experimentally to validate the numerical results. A practical solution
for doing so would be to measure the enthalpy variation of the liquid helium used for cooling.
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Figure 8.6: Evolution of themaximal coil temperatureTmax computedwith themulti-scale approach,
(a) 2D axisymmetric results (s = 0.12, ∆t = 20 s) and (b) 3D results (s = 0.84, ∆t = 100 s),
compared to the results of Chapter 6 (macro-scale).

As a conclusion to this chapter, the multi-scale approach for computing hysteresis losses has been
successfully implemented in the context of the C400 coil. As a result, the numerical resolution is
more robust than that discussed in Chapter 6 and complex phenomena can now be modelled in the
Nb-Ti filaments. The proposed approach is quite general and it could be extended to other composite
superconducting coil.
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CONCLUSION AND PERSPECTIVES

In this thesis, a numerical model has been developed to predict the magnetothermal behaviour of
the superconducting coil during the ramp-up of the C400 cyclotron. After describing the context
and defining the problem and its geometry in the first two chapters, the theoretical background and
a literature review were presented in detail in Chapter 3. In particular, an approximation for the
hysteresis loss in Nb-Ti filaments in the weakly penetrated regime was derived based on the CSM.
An interpolated analytical approximation was then proposed for the full range of applied transverse
flux densities, neglecting the transport current in the filaments.

Chapter 4 introduced the magnetic model of the cyclotron, in which the coil was homogenized
and approximated as a stranded conductor. Various numerical parameters, such as the time step
and the mesh size, were fine-tuned for optimal efficiency. The consistency of the results obtained
with models of increasing complexity was demonstrated, while the need to include the spiralized
poles and the off-center vertical holes in the final model was also highlighted. The thermal model of
the coil was introduced in Chapter 5. In particular, the natural domain decomposition between the
coil and the surrounding helium vessel and the corresponding boundary conditions were discussed.
Since the coil was homogenized, its effective thermal properties were derived. Finally, the large
Biot number regime allowed the determination of the thermal time constant of the coil (τth ∼ 10 s),
which was confirmed by numerical results.

The coupled magnetothermal model was described in Chapter 6. Again, the numerical parame-
ters were varied until the convergence of the results was found to be satisfactory. As discussed, the
impact of the helium vessel on the numerical results is not significant and it can be disregarded in
the final model. The central role played by hysteresis losses in the magnetothermal behaviour of
the coil was highlighted as the inter-filament coupling losses were found to be negligible. In this
context, the large Biot number regime leads to a temperature rise that is directly proportional to the
hysteresis loss since the thermal time constant is much smaller than the ramp-up time. Accordingly,
the maximal temperature rise of ∆Tmax = 0.0074 K obtained numerically was expected from di-
mensional analysis. In Section 6.4, the convective heat transfer coefficient was varied over several
orders of magnitude and even with an excessively small convective coefficient, the Nb-Ti filaments
still remain in the superconducting state. Similarly, reducing the ramp time to 6 minutes leads to
a temperature rise of ∆Tmax = 0.16 K. However, due to the limited voltage difference available at
the power source terminals, it was found that the linear ramp-up procedure could not be performed
in less than 20 minutes. Two solutions were then proposed to reduce the temperature rise in the
coil: reducing the diameter of the Nb-Ti filaments and adjusting the current ramp profile based on
the physical interpretation of hysteresis losses. The second, more practical solution reduced the
temperature rise by 14 %.
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In Chapter 7, it was decided to further investigate the transverse field hysteresis losses with a fila-
ment model, as they determine the magnetothermal behaviour of the coil. The model was adapted
to consider both the transport current and the time variation of an external transverse flux density.
The analytical approximation used in the previous chapters was found to underestimate the loss in
the intermediate field range. While simplified academic problems allowed analytical solutions to
be derived to validate the numerical implementation, the complexity of the physical phenomena
involved was highlighted. In particular, the critical current density dependence on the flux density
and the effect of the transport current cannot be neglected. In this context, the limitations of analyt-
ical approximations in realistic flux density conditions have been demonstrated.

Finally, the filament model was coupled with the macroscopic model discussed in Chapter 6, as
a multi-scale approach for computing hysteresis loss was proposed and implemented in Chapter 8.
Based on the flux density evolution obtained from a magnetodynamic computation at the macro-
scopic scale, the hysteresis loss is determined at the filament scale, allowing the temperature dis-
tribution to be computed with greater accuracy since more realistic phenomena can be modelled at
the filament scale. Based on the multi-scale approach, the effective temperature rise in the three-
dimensional coil was found to be ∆Tmax = 0.0101 K. Consequently, the Nb-Ti filaments should
remain in the superconducting state during a regular ramp-up procedure.

Some of the results discussed in Chapters 7 and 8 were presented at the 14th International Particle
Accelerator Conference in Venice last May [54].

Further improvements and perspectives
The analysis carried out in this thesis could be further extended in several ways:

• Although negligible in the context of the C400 coil, inter-filament coupling losses could be
investigated at the filament scale in a similar way to hysteresis losses. Twisted filaments could
be modelled using an equivalent two-dimensional model based on a helicoidal transformation
method as already introduced in [7].

• In addition to the magnetic response of the filaments, their thermal response could be studied
at the microscopic scale by modelling the transient heat conduction in the Nb-Ti filaments,
together with the corresponding heat transfer at the interface with the copper matrix. Further-
more, a magnetothermal model at the filament scale could be developed to describe complex
phenomena such as quench propagation.

• Among other possibilities, the finite element model at the filament scale could be replaced
by a machine learning algorithm. In particular, recurrent neural networks have proven very
successful in multi-scale modelling for nonlinear mechanics [55]. Such methods could be
adapted to model the hysteretic behaviour of superconductors, potentially increasing the com-
putational efficiency of the multi-scale resolution presented in this thesis. Including machine
learning in magnetic finite element simulations looks promising as it has already been applied
for modelling stacks of ferromagnetic laminations [56].
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APPENDIX A
MATHEMATICAL NOTATIONS AND DEVELOPMENTS

A.1 Mathematical notations
This section gathers the different mathematical notations used throughout the work:

• Vector u component along x̂-axis:
ux = u · x̂. (A.1)

• Norm of vector u:
u = ∥u∥ =

√
u2
x + u2

y + u2
z. (A.2)

• Partial derivative of u with respect to x:

∂xu =
∂u

∂x
. (A.3)

• Volume inner product of vector fields a and b in Ω and volume inner product of scalar fields
c and d in Ω, respectively:

(a, b)Ω =

∫
Ω

a · b dΩ, (c, d)Ω =

∫
Ω

c d dΩ. (A.4)

• Surface inner product of vector fields a and b on Γ and surface inner product of scalar fields
c and d on Γ, respectively:

⟨a, b⟩Γ =

∫
Γ

a · b dΓ, ⟨c, d⟩Γ =

∫
Γ

c d dΓ. (A.5)

A.2 Definition of function spaces
Vector potential formulation

Similarly to what is done in [7], we seek a solution a in the function space

A(Ω) =
{
a ∈ H(∇×; Ω) | a is gauged in ΩC

c , (a− ā)× n = 0 on Γe

}
, (A.6)

with
H(∇×; Ω) =

{
a ∈ L2(Ω) : ∇× a ∈ L2(Ω)

}
, (A.7)

88



Louis DENIS Appendix A. Mathematical notations and developments

in which the curl (∇×) must be understood in the sense of distributions and L2(Ω) denotes the
vector space of square integrable vector fields on Ω. Likewise, an auxiliary function space used for
test functions a′ is introduced:

A0(Ω) =
{
a

′ ∈ H(∇×; Ω) | a′ is gauged in ΩC
c ,a

′ × n = 0 on Γe

}
. (A.8)

Magnetic field formulation

Again, similarly to what is done in [7], we seek a solution h in the function space

H(Ω) =
{
h ∈ H(∇×; Ω) | ∇ × h = 0 in ΩC

c , (h− h̄)× n = 0 on Γh, I(h) = Īt
}
. (A.9)

The auxiliary function space used for test functions h′ is:

H0(Ω) =
{
h

′ ∈ H(∇×; Ω) | ∇ × h
′
= 0 in ΩC

c ,h
′ × n = 0 on Γh, I(h

′
) = 0

}
. (A.10)

Thermal formulation

We seek a solution T in the function space

T (Ωth) =
{
T ∈ H1(Ωth) | T = T̄ on ΓD

th
}
, (A.11)

with
H1(Ωth) =

{
T ∈ L2(Ωth) : ∇T ∈ L2(Ωth)

}
, (A.12)

in which the gradient (∇) must be understood in the sense of distributions and L2(Ωth) denotes the
vector space of square integrable scalar fields on Ωth. Likewise, an auxiliary function space used
for test functions T ′ is introduced:

T0(Ωth) =
{
T

′ ∈ H1(Ωth) | T
′
= 0 on ΓD

th

}
. (A.13)

A.3 Derivation of the thermal weak formulation
The thermal weak formulation is obtained by multiplying Eq. (3.49) by a test function T ′ ∈ T0(Ωth),
taking Eq. (3.49) into account and integrating over the domain Ωth. Taking advantage of the nota-
tions introduced in Appendix A.1, it comes:

(ρV cp ∂tT, T
′
)Ωth

− (∇ · (κ · ∇T ), T
′
)Ωth

= (qs, T
′
)Ωth

. (A.14)

From Green’s identity, the second term becomes

−(∇ · (κ · ∇T ), T
′
)Ωth

= (κ · ∇T,∇T
′
)Ωth

− ⟨(κ · ∇T ) · n, T ′⟩Γth
. (A.15)

The surface term, taking Fourier’s law (Eq. (3.50)) and Γth = ΓD
th ∪ ΓN

th ∪ ΓR
th into account, can be

simplified to

−⟨(κ · ∇T ) · n, T ′⟩Γth
= ⟨q′′ · n, T ′⟩Γth

(A.16)

= ⟨q′′ · n, T
′︸︷︷︸

=0

⟩ΓD
th
+ ⟨q′′ · n︸ ︷︷ ︸

=q̄′′ ·n

, T
′⟩ΓN

th
+ ⟨q′′ · n︸ ︷︷ ︸

=f̄(T )

, T
′⟩ΓR

th
(A.17)

= ⟨q̄′′ · n, T ′⟩ΓN
th
+ ⟨f̄(T ), T ′⟩ΓR

th
. (A.18)

Dirichlet boundary conditions have been imposed strongly while Neumann and Robin boundary
conditions are weakly satisfied. All in all, Eq. (A.14) reduces to

(ρV cp ∂tT, T
′
)Ωth

+ (κ · ∇T,∇T
′
)Ωth

+ ⟨q̄′′ · n, T ′⟩ΓN
th
+ ⟨f̄(T ), T ′⟩ΓR

th
= (qs, T

′
)Ωth

. (A.19)
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A.4 Validity of the MQS approximation
As described in [2], themagneto-quasi-static (MQS) approximation is valid as long as the dimension
l of the system is much lower than the electromagnetic wavelength λem. If the C400 ramp-up (2
hours) is approximated by a quarter of a sine period, the wave period is 8 hours: Tem = 4tup =
28800 s. The corresponding wavelength is

λem = c · Tem =
Tem√
ε0µ0µr

≥ 1.14× 1011 m. (A.20)

This result has been obtained considering (in the worst case) a relative permeability of µr = 5696
given by the maximal relative permeability of the ferromagnetic iron yoke (cf. Section 3.2). Ob-
viously, the diameter of the C400 (∼ 7 m) (cf. Chapter 2) is much lower than λem and the MQS
approximation is valid in the present study.

A.5 Validity of the stranded conductor approximation
As described in [6], the stranded conductor approximation is valid for a winded conductor of diam-
eter smaller than the skin depth δ =

√
2/ωµσ, in [m].

In the superconducting coil, the current is almost exclusively conducted through the superconduct-
ing filaments, of diameter df = 51 µm.
The computation of the skin depth relies on further approximations:

• The 2 hours ramp-up corresponds to one quarter of a sine period of Tem = 28880 s.

• Even though the electrical conductivity is not constant in the superconducting filaments (cf.
power-law, Section 3.3.4), it is approximated as σ = jc/ec. The critical current density is
also not constant (cf. Section 3.3.2). From a conservative point of view, it is evaluated at
b = 0.5 T and T = 4.2 K: jc ≈ 1.27× 1010 A/mm2.

• In good approximation, µ = µ0 in Nb-Ti.

In that context, the skin depth is

δ ≈

√
2Temec
2πµ0jc

= 7.6 mm ≫ df . (A.21)

Hence, the stranded conductor assumption is valid in first approximation.
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A.6 Cylindrical to Cartesian change of coordinate system
In the present study, the cylindrical coordinate system is
defined as

x = r cos(θ), y = y, z = r sin(θ), (A.22)

meaning that θ ∈ [−π/2; 0] is negative as represented in
Fig. A.1.
Let us apply the change of coordinates in the context of
the thermal conductivity tensor of the coil. In cylindrical
coordinates, Fourier’s law reads

q
′′

r = −κr∂rT, q
′′

y = −κy∂yT, q
′′

θ = −κθ

r
∂θT.

(A.23)
Geometrically, it comes{

q
′′

x = q
′′

r cos(θ)− q
′′

θ sin(θ)

q
′′

z = q
′′

r sin(θ) + q
′′

θ cos(θ)
. (A.24)

ẑ

ŷ
x̂

θ < 0

θ̂

r̂

r

Figure A.1: Representation of the cylin-
drical (r̂,ŷ,θ̂) to Cartesian (x̂,ŷ,ẑ) sys-
tem of coordinates change.

Inserting Eq. (A.23) into the previous equation and applying the chain rule with Eq. (A.22), the heat
flux in Cartesian coordinates is given by

q
′′

x = −
(
κr cos

2(θ) + κθ sin
2(θ)

)
∂xT − (κr − κθ) cos(θ) sin(θ)∂zT

q
′′

y = −κy∂yT

q
′′

z = −(κr − κθ) cos(θ) sin(θ)∂xT −
(
κr sin

2(θ) + κθ cos
2(θ)

)
∂zT

⇒ q
′′
= −κ∇xT,

(A.25)
with κ being the tensor from Eq. (5.13).

A.7 Transverse hysteresis loss in weak penetration based on the
CSM

As introduced in Section 3.5, the focus is set on ba ≪ bp, no persistent currents are supposed in the
initial state and the field ramp-up is supposed monotonic. The current density distribution in the
filament is shown in the left part of Fig. 3.10. The moving boundary between j = jc and j = 0
is denoted Ri(t, θ). Cylindrical coordinates (r, θ, z) ∈ R+ × [0; 2π[×R are preferred to study this
phenomenon. In the present configuration, hz = eθ = er = 0. Hence, Ampère’s law (Eq. (3.14))
and the radial component of Faraday’s law (Eq. (3.4)) are respectively given by:

1

r
∂r (ez) = µ0ḣθ, (A.26)

1

r
∂r (rhθ)−

1

r
∂θ (hr) = jz. (A.27)

The losses per unit volume (Eq. (3.54)) averaged over one filament can be computed using

qhys,1 =
1

πR2
f

∫ 2π

0

dθ

∫ Rf

0

e · j r dr, (A.28)

=
jc

πR2
f

∫ 2π

0

dθ

∫ Rf

Ri

|ez| r dr. (A.29)
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Near the moving boundary Ri(t, θ), the current density is (from CSM):

jz = ∓jc H(r −Ri) =


−jc, if r > Ri and θ < π
+jc, if r > Ri and θ > π
0, if r < Ri,

(A.30)

with H(·) the Heaviside step function, whose derivative (in the sense of distributions) is the Dirac
delta δ(·). Hence, deriving Eq. (A.27) with respect to time and introducing Ri < r∗ < Rf yields

1

r
∂r

(
rḣθ

)
− 1

r
∂θ

(
ḣr

)
= j̇z = ±jc Ṙi δ (r −Ri) , (A.31)

⇒
∫ r∗

R−
i

j̇z r dr = ±jc Ṙi Ri = r∗ ḣθ −
(
Ri ḣθ

)−
−
∫ r∗

R−
i

∂θ

(
ḣr

)
dr. (A.32)

The last integral term in Eq. (A.32) can be neglected because of the small integration range (Ri ≲
r∗ ≲ Rf in weak penetration) and because one can show the argument itself is small. Moreover,
ḣθ

(
R−

i

)
= 0 and Eq. (A.32) and the integral of Eq. (A.26) respectively simplify to

ḣθ ≈ ±jc Ṙi Ri/r
∗ ≈ ±jc Ṙi (A.33)

⇒
∫ r∗

R−
i

∂r (ez) dr = ez(r
∗)− ez(R

−
i )︸ ︷︷ ︸

=0

=

∫ r∗

R−
i

±µ0 jc Ṙi dr = ±µ0 jc Ṙi (r
∗ −Ri) . (A.34)

During ramp-up, the current shell thickness increases, Ṙi < 0 and

|ez| = −µ0 jc Ṙi (r
∗ −Ri) H(r∗ −Ri), (A.35)

⇒ qhys,1 =
−µ0 j

2
c

πR2
f

∫ 2π

0

Ṙi dθ

∫ Rf

R−
i

(r −Ri) r︸︷︷︸
≈Rf

dr (A.36)

=
−µ0 j

2
c

2πRf

∫ 2π

0

Ṙi (Rf −Ri)
2 dθ. (A.37)

In theweak penetration approximation and in the CSMcontext, the current distribution only depends
on the applied field: Ri = Ri (ba/µ0). Carr [8] has shown that a surface current K [A/m] distribu-
tion ofK = 2h sin (θ) on the boundary of the cylinder can shield from an applied field ha. Still in the
weak penetration approximation, the surface current can be approximated byK = ±jc (Rf −Ri).
Hence, the current shell thickness is linked to the applied field and the integral in Eq. (A.37) can be
developed:

Rf −Ri =
2 ha

jc
|sin (θ)| = 2 ba

µ0 jc
|sin (θ)| , (A.38)

⇒ Ṙi = − 2

µ0 jc
ḃa |sin (θ)| , (A.39)

⇒ qhys,1 =
4

πjcµ2
0Rf

b2a ḃa

∫ 2π

0

|sin (θ)|3 dθ︸ ︷︷ ︸
=8/3

=
64

3πjcµ2
0df

b2a ḃa. (A.40)

Please note that this result has been obtained considering an external field increasing over time and a
virgin superconducting initial state. Such an assumption is appropriate in the context of the ramp-up
of the device.
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A.8 Transverse hysteresis loss in full penetration based on the
power-law model

Assuming a uniform external flux density ba along the ŷ-axis, increasingmonotonically at a constant
rate ḃa, the induced electric field in the filament can be estimated as ez = ḃax in full penetration, as
shown in Fig. 7.4(a). In other words, the magnetization of the filament is assumed constant. The
corresponding current density distribution is given by Eq. (7.6). The filamentary hysteresis loss
averaged over the volume of the filament is then, using cylindrical coordinates (x = r cos θ):

qhys,1 =
4

πd2f

∫ df/2

0

∫ 2π

0

j · e r dr dθ (A.41)

=
8

πd2f

∫ df/2

0

∫ π/2

−π/2

jc

(
ḃar cos θ

ec

)1/n

ḃar cos θ r dr dθ (A.42)

=
8

πd2f
jcḃa

(
ḃa
ec

)1/n ∫ π/2

−π/2

(cos θ)(n+1)/ndθ

∫ df/2

0

r2+1/ndr (A.43)

=
8

πd2f
jcḃa

(
ḃa
ec

)1/n
1

3 + 1/n

(
df
2

)(3+1/n) ∫ π/2

−π/2

(cos θ)(n+1)/ndθ (A.44)

=

∫ π/2

−π/2
(cos θ)(n+1)/ndθ

(3 + 1/n)π
jcdf ḃa

(
df ḃa
2ec

)1/n

. (A.45)

The second equality is obtained by symmetry of the electric field and current density with respect
to the x = 0 axis.
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ADDITIONAL TABLES AND FIGURES

B.1 Three-dimensional mesh structure
The mesh structure used for discretizing the complete 3D C400 model is shown in Fig. B.1. The
mesh is composed of tetrahedra. Only their facets are shown.

B.2 Thermal properties
The numerical values of specific heat and thermal conductivity are taken from the National Institute
of Standards and Technology (NIST) database [51]. Copper properties are found under Copper
(OFHC) - RRR100 (RRR100 is the closest value to RRR80), fibreglass under Fiberglass Epoxy
G-10 and stainless steel under Stainless Steel 304L.

Density

The thermal expansion is neglected in the present study, meaning the cryogenic densities of copper,
fibreglass and stainless steel are their respective density at ambient temperature. For copper and
fibreglass, the relative linear expansion between 273K and 4K is [51] less than 1%, which justifies
the previous assumption. The densities are

ρCu = 8960 kg/m3, ρfg = 1800 kg/m3, ρss = 8000 kg/m3, (B.1)

respectively retrieved from [57], [58] and [59]. The effective density of the coil is ρeff = 6955 kg/m3.

Specific heat

The specific heat of the different materials has been fitted [51] using an equation of the form

log10(cp(T )) = ac+bc tc+cc t
2
c+dc t

3
c+ec t

4
c+fc t

5
c+gc t

6
c+hc t

7
c+ic t

8
c , with tc = log10(T ). (B.2)

The corresponding coefficients are gathered in Tab. B.1. At THe = 4.2 K, it corresponds to

cp,Cu = 0.109 J/(kg K), cp,fg = 2.297 J/(kg K), cp,eff = 0.267 J/(kg K), cp,ss = 1.772 J/(kg K).
(B.3)
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(a) Global view.

(b) Focus on the median plane. (c) Focus on the inner yoke boundary.

Figure B.1: Final mesh structure of the 3D model without helium vessel. The represented global
mesh size is s = 1, the corresponding minimal mesh size is 30 mm. The mesh is refined where the
flux density varies strongly, e. g. in the spiral ends.

Material ac bc cc dc ec fc gc hc ic
cp,Cu -1.92 -0.16 8.61 -19.0 22.0 -12.7 3.54 -0.380 0
cp,fg -2.41 7.60 -8.30 7.33 -4.24 1.43 -0.244 0.0152 0
cp,ss -352 3120 -12000 26100 -35200 30000 -15800 4720 -611

Table B.1: Coefficients involved in Eq. (B.2), for the heat capacity of copper, fibreglass and stainless
steel. From [51].
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Thermal conductivity

The thermal conductivity of fibreglass (normal and warp directions) and stainless steel has been
fitted [51] with

log10(κ(T )) = ak+ bk tk+ ck t
2
k+dk t

3
k+ ek t

4
k+fk t

5
k+gk t

6
k+hk t

7
k+ ik t

8
k, with tk = log10(T ),

(B.4)
while the conductivity of copper has been fitted [51] with

log10(κ(T )) =
ak + ck T

0.5 + ek T + gk T
1.5 + ik T

2

1 + bk T 0.5 + dk T + fk T 1.5 + hk T 2
. (B.5)

The corresponding coefficients are gathered in Tab. B.2 and the temperature dependence of κCu,
κfg,n and κfg,w is represented in Fig. 5.6.

Material ak bk ck dk ek fk gk hk ik
κCu 2.22 -0.475 -0.881 0.139 0.295 -0.0204 -0.0483 0.00128 0.00321
κfg,n -4.12 13.8 -26.1 26.3 -14.7 4.50 -0.690 0.0397 0
κfg,w -2.65 8.80 -24.9 41.2 -39.9 23.2 -7.96 1.49 -0.117
κss -1.41 1.40 0.254 -0.626 0.233 0.426 -0.466 0.165 -0.0199

Table B.2: Coefficients involved in Eq. (B.4) and Eq. (B.5), for the thermal conductivity of copper,
fibreglass (normal and warp directions) and stainless steel. From [51].

B.3 Hysteresis loss evolution in particular zones of the coil
This section gathers the average flux density evolution
in multiple zones of the coil, which are represented
in Fig. B.2. The corresponding variation of the flux
density ḃ = ∥∂tb̄∥ is also shown in the respective fig-
ures. For the different zones, the filament hysteresis
loss q̄hys,1 has been computed based on the CSM ap-
proximation (Eq. (3.61)) derived in Section 3.5 and
used in Chapter 6 for computing the hysteresis loss at
the macroscopic scale. The results are compared to
the hysteresis loss retrieved from the filament model
discussed in Chapter 7. Note that the local hystere-
sis loss q̄hys,1 = q̄hys/λSC is represented. All results
are obtained from a 3D simulation with s = 0.84 and
∆t = 100 s.

ŷ

r̂

8

16

35

32

39

44

Figure B.2: Zones of the coil (cf. Fig. 8.1)
for which the results are presented in this
section.
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Figure B.3: Evolution of the average radial flux density b̄r, vertical flux density b̄y and flux density
variation ḃ in zones {8, 16, 32, 35} of Fig. B.2.
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Figure B.4: Local filament hysteresis loss q̄hys,1 computed (at left) from Eq. (3.61) and (at right)
with the multi-scale approach, in zones {8, 16, 32, 35} of Fig. B.2.
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Figure B.5: Evolution of the average radial flux density b̄r, vertical flux density b̄y and flux density
variation ḃ in zones {39, 44} of Fig. B.2.
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Figure B.6: Local filament hysteresis loss q̄hys,1 computed with the multi-scale approach compared
to the results of Eq. (3.61), in zones {39, 44} of Fig. B.2. Zone 39 at left and zone 41 at right.
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