
https://lib.uliege.be https://matheo.uliege.be

Master Thesis : Implicit neural representations for robotic grasping

Auteur : Gustin, Julien

Promoteur(s) : Louppe, Gilles

Faculté : Faculté des Sciences appliquées

Diplôme : Master en science des données, à finalité spécialisée

Année académique : 2022-2023

URI/URL : https://arxiv.org/abs/2304.08805; http://hdl.handle.net/2268.2/17624

Avertissement à l'attention des usagers : 

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.



University of Liège
School of Engineering and Computer Science

Implicit neural representations for
robotic grasping

A dissertation submitted in partial fulfillment of the requirements
for the degree of

Master of Science in Data Science

Author
Julien Gustin

Advisor
Pr. Gilles Louppe

Academic year 2022-2023



Abstract

Robotic grasping is a fundamental skill in many robotic applications. While most grasping
methods excel in constrained tasks within structured environments. When operating in
more complex and uncertain scenarios, handling uncertainty becomes essential. Bayesian
frameworks provide a means to address this uncertainty but require prior knowledge about
the grasping pose. However, previous research has demonstrated that using a uniform
prior over the workspace is highly inefficient.

In this work, we propose a novel approach that exploits implicit neural representations
to construct scene-dependent priors. This enables the application of powerful simulation-
based inference algorithms to determine plausible and successful grasp poses in unstruc-
tured environments.

We demonstrate the significant improvements achieved by incorporating this informative
prior. Specifically, our model achieves an impressive success rate of 97% in grasping a
single object, surpassing the performance of the previous model. Additionally, we reduce
acquisition time by 60% by capturing only a partial view of the scene and training a neural
network to reconstruct the complete scene. Furthermore, in the more complex scenario of
multi-object grasping, our model achieves a success rate of 91.37% in simulation and 95.6%
in real-world scenarios, comparable to benchmark models. These results demonstrate the
effectiveness of our approach and its impressive sim2real transfer capabilities.

We also provide valuable explainability by examining the predicted posterior distribution.
This provides a better understanding of the uncertainty associated with the estimation
of the grasping pose, enhancing the transparency of the system’s decision-making pro-
cess.
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Chapter 1

Introduction

Robotic systems heavily rely on the ability to grasp objects. However, current meth-
ods are mainly effective for highly constrained tasks in structured environments. When
attempting to operate outside these limits, dealing with uncertainty about the environ-
ment is necessary. To tackle this challenge, probabilistic models are needed. Among the
available probabilistic modeling methods, Bayesian inference stands out as a promising
approach to handle these uncertainties.

Bayesian inference is a method that updates initial prior beliefs about parameters θ based
on new observations x using Bayes’ theorem. The updated belief, known as the posterior,
is given by the equation:

p(θ | x) = p(x | θ)
p(x) p(θ).

In this equation, p(x | θ) represents the likelihood, p(θ) represents the prior, and p(x) is
a marginalization factor called evidence.

When applied to the complex task of grasping unknown objects, the parameters cor-
respond to the hand pose, and the observed data to the success of a grasp, generally
conditioned on a scene representation or additional information. Having an informative
prior on potential grasping poses becomes crucial, especially for learning-based algorithms
that require a certain amount of successful grasps to learn from examples, typically sam-
pled from a prior distribution. Although a uniform prior may appear objective, it proves
to be highly inefficient, particularly when objects occupy only a small portion of the
workspace.

To address these issues, this research builds on recent advancements in implicit neural
representations to introduce an informative, scene-dependent prior. This prior is learned
through training a neural network to represent a 3D scene. By capturing valuable in-
formation about objects from a single observation, the network provides prior knowledge
that indicates that the grasping point should be within an object present in the scene,
rather than anywhere in the workspace. This significantly reduces the sampling area,
focusing on a relevant region of interest. Integrating this learned prior into Bayesian in-
ference aims to enhance the grasping process for robotic systems operating in uncertain
and unstructured environment.
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Figure 1.1. Our benchmark scene. (left) The simulated environment. (right) The real
setup.

1.1 Problem statement
This work addresses the problem of grasping, which involves clearing a table of unknown
objects by repeatedly grasping one object at a time using a three-finger gripper. The
benchmark scene is illustrated in Figure 1.1. For more information about the setup,
please refer to Appendix A.

Building on previous research on simulation-based inference for robotic grasping [1, 2],
this master’s thesis aims to improve the previous model by introducing an informative
scene-dependent prior for grasping pose using neural implicit representations.

The previous model represented the posterior of the hand configuration as follows:

p(h | S,V) = p(S | h,V)
p(S | V) p(x | V)p(q),

where h := (x,q) denotes the hand pose, composed of a position x ∈ R3 and an orientation
q, S ∈ {0, 1} indicates whether a grasp is successful, and V ∈ RN×N×N is a voxel grid
representing the scene. In this model, the prior over the grasping position is uniform over
the voxel axis-aligned bounding box of objects. While this model has produced promising
results for a single object, it does not scale well to multiple objects, since the greater the
number of objects placed on the table, the larger the bounding box becomes, reducing the
efficiency of the approach. In addition, obtaining the voxel grid using a truncated signed
distance function requires a complete scan of the scene, resulting in a time-consuming
process that takes ∼ 1 minute to capture depth images from various viewpoints.

To overcome these limitations, the model now assumes that the grasping point should lie
within the occupied region of an object. This is achieved by conditioning the posterior
on o = 1, where o ∈ {0, 1} indicates whether a point x is inside an object. The posterior
distribution is given by:

p(h | S, o = 1,P) = p(S | h, o = 1,P)
p(S | o = 1,P) p(x | o = 1,P)p(q),

with P ∈ RN×3 being a partial point cloud of the scene.
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Figure 1.2. 3D visualization of the prior and posterior distributions of potential grasping
points. Grasping points sampled from p(h | S = 1, o = 1,P) are colored with a gradient
from blue to red, indicating their relative posterior values. Grey points represent grasping
points sampled from the prior distribution p(x | o = 1,P), obtained from the same scene
as depicted in Figure 1.1 in the real setup.

This assumption is natural and generally holds for most non-convex objects, as it provides
a clear region of interest for the grasping rather than assuming the grasping point can be
anywhere on the table. In order to obtain this prior about the position we need a way to
represent any 3D scene and determines the occupancy of a point. This can be done using
implicit neural representations. By taking advantage of this assumption, we can improve
the quality of grasp samples when constructing the dataset of (h, S) pairs for a scene using
this prior. This introduces a novel sampling procedure adaptable to various configurations,
as long as sample generation is feasible using a simulator. Furthermore, by using a partial
point cloud instead of a voxel grid, a single depth image of the scene is needed, significantly
speeding up the acquisition stage and reducing its memory consumption. Figure 1.2
visually illustrates the prior and posterior distribution.

• Part I of the thesis extensively reviews the literature on implicit representation.
Various methods are carefully compared and evaluated to identify the most effective
and suitable approaches to our problem.

• Part II is dedicated to the integration of the selected implicit representation method
into a robotic grasping pipeline. Additionally, input features with different level of
knowledge about the scene are compared and assessed to determine the most relevant
information to provide to the model.

1.2 Contributions
The contributions of this work can be summarized as follows:

• Comparison, evaluation, and integration of implicit representation priors.

• Speeding up computation by working with a partial view of the scene instead of a
full 3D scan.

• Validation of the method through simulated and real experiments, demonstrating
promising grasping performance.
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Scientific contribution During my master’s thesis, I had the opportunity of co-writing
a paper with Norman Marlier, which was directly related to my work [3]. This paper was
published as part of a workshop entitled "Geometric Representations: The Roles of Screw
Theory, Lie Algebra, & Geometric Algebra," held at ICRA 2023. Our work was presented
in London, where we had the chance to share our findings. The complete paper and the
poster created for the workshop can be found in the appendix (see Appendix B).

4



Part I

Implicit representations of 3D scenes
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Chapter 2

Neural implicit representations

Deep learning for 3D data is becoming increasingly important in a variety of fields, such
as robotics, autonomous vehicles, and virtual reality. In these domains, achieving precise
and accurate representations of the surrounding environment is crucial.

This chapter delves into the concept of 3D representations, exploring both classical explicit
methods and more modern implicit methods that harness the power of deep learning. By
examining these approaches, we aim to provide an overview of the diverse strategies em-
ployed in 3D representation. Furthermore, we conduct an in-depth analysis and compari-
son of various architectures of occupancy-based models all re-implemented in TensorFlow
[4], with the aim of providing a detailed understanding of the strengths and limitations
associated with each approach.

Back to our problem, we need to find a suitable representation for our scence-dependent
prior p(x | o = 1,P). This prior can be rewritten as follows:

p(x | o = 1,P) = p(o = 1 | x,P)p(x)
p(o = 1 | P) .

In the equation above, we only require to define the distributions p(o = 1 | x,P) and p(x),
as explained in more detail in Section 5.4.2. The last term is a uniform over the workspace,
while the first term involves estimating whether a given 3D point x is located inside an
object within the scene representation P. It is essential for this estimation to provide
not just a binary answer, but a probability value that fits within the Bayesian inference
framework. Additionally, the estimation should be differentiable to facilitate optimization
(refer to Section 6.2). This leads us to explore methods of representing a 3D scene
in a probabilistic manner, which can be achieved using neural implicit representation,
particularly occupancy networks.

2.1 Related work
2.1.1 Explicit representations
In the traditional approach to 3D reconstruction using deep learning, explicit representa-
tions such as point clouds [5–7], voxel grids [8–10], and meshes [11–13] have been widely
used. These representations allow for convenient readability and manipulation, but they
also have their limitations. Figure 2.1 compare these three representations visually.
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Figure 2.1. Comparison of 3D representation techniques for a rabbit model: point cloud,
voxel grid, and polygon mesh. While point clouds accurately represent the shape of
the model, voxel grids provide higher resolution at the cost of increased memory usage.
Meshes are efficient in memory usage and can capture fine geometry, but may be chal-
lenging to create and manipulate.

Point Clouds Point clouds P ∈ R3×N consist of 3D points and can accurately represent
any complex shape, but they require a significant amount of points to adequately capture
the scene. However, this format alone is not very useful as it does not include information
about the surface or any other properties of the scene.

Voxel Grids Voxel grids V ∈ RN×N×N are another accurate 3D representation that can
represent any scene with a desired level of resolution. However, the memory requirement
grows quadratically with the resolution, which can be a significant limitation in deep
learning-based systems.

Meshes Meshes are commonly used in graphics and CAD software and consist of a
collection of vertices, edges, and faces. They can be useful in capturing complex geom-
etry and are efficient in terms of memory usage. However, current methods struggle to
accurately represent complex and water-tight topology [13].

2.1.2 Implicit Neural Representations
Implicit Neural Representations are parameterized functions that can represent signals
like images, audio, and 3D shapes. Unlike conventional 3D representations that are typ-
ically discrete, a 3D implicit neural representation is a continuous function that maps
coordinates to specific properties such as occupancy, opacity, or color [14–16]. These rep-
resentations cannot be derived analytically or expressed as mathematical formulas due to
their complexity, so state-of-the-art approaches employ neural networks to approximate
them.

One notable advantage of implicit representations is their capability to achieve infinite res-
olution, allowing for detailed representation at any level of granularity. Additionally, some
methods allow the reconstruction of complete 3D shapes from partial or noisy observa-
tions [14, 17]. This ability to deal with imperfect input data makes implicit representation
methods well suited to applications where input data is noisy or incomplete, such as in
real robotics [3] or object recognition tasks.

7



Figure 2.2. The Signed Distance Function (SDF) applied to a 3D representation of an
armadillo. The SDF values are visualized using a color gradient, ranging from blue to
red. The warmer colors indicate proximity to the surface, which is sliced along the z-axis.
Image source: open3D.

As Vincent Sitzmann an assistant professor at the MIT noted, neural scene representation
is the way neural networks learn to represent information about our world.1

Signed distance functions A Signed Distance Function (SDF) [18] of a specific 3D
object determines the orthogonal distance from a given point x ∈ R3 to the surface
of the 3D shape, with SDF value’s sign indicating whether the point x lies inside or
outside the shape (See Figure 2.2). Traditional methods of approximating a SDF involve
discretizing 3D space into a grid of voxels, where each voxel is labeled with the distance
to the nearest surface. An example of such an approximation is the Truncated Signed
Distance Field (TSDF) [19]. However, the use of voxels is computationally expensive and
memory-intensive, limiting the scalability of this approach as well as it is tied to a fixed
shape, and it is limited to representing a single shape.

Recent advances in deep learning have introduced methods that overcome these limitations
by leveraging neural networks to approximate SDF, namely DeepSDF. [16]. Instead of
relying on voxel grids, these methods sample points near the object’s surface and train a
neural network to predict the corresponding SDF values for those points. This approach
offers the advantage of representing entire classes of shapes, rather than being restricted
to a fixed shape. A slight improvement from Chabra et al. [20] consist in discretizing the
scene into local features, which reduces the complexity of the neural network and enables
faster inference. Moreover, this method solves the problem of computationally expensive
memory usage associated with traditional voxel-based methods.

In conclusion, the combination of signed distance functions (SDFs) and deep learning has
demonstrated immense potential in representing 3D geometry. However, it is important to
note that this approach has its limitations. It currently works best for a single object and
does not incorporate crucial inductive bias such as translation or rotation equivariance.
This could result in difficulties in generalizing to novel object shapes and orientations,
making the process of representing such objects more challenging.

Neural radiance fields Neural Radiance Field (NeRF) [15] is another way for rep-
resenting a scene using a fully-connected deep neural network. In contrast to previous

1https://github.com/vsitzmann
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Figure 2.3. A visual summary of NeRF [15].

methods [14, 21–24], NeRF predicts the volume density/opacity σ ∈ R and emitted color
c ∈ R3 at every spacial location x and viewing direction d using a single neural network.
The volume density σ(x, y, z) can be seen as the differential probability of a ray that
terminates at an infinitesimal particle at position (x, y, z). The approximation of the ex-
pected color C(r) of camera ray r(t), which is computed from an origin o and a direction
d, within the bound [tn, tf ]

C(r) =
ˆ tf

tn

T (t)σ(r(t))c(r(t),d)dt

where
T (t) = exp

(
−
ˆ t

tn

σ(r(s))ds
)

is the probability that the ray doesn’t hit any other particle in a range from tn to t, also
denoted as the accumulated transmittance along the ray. This integral is estimated using
quadrature, yielding an estimation Ĉ(r). To map the inputs to the corresponding volume
density and emitted color, an MLP Fθ : (x,d) → (c, σ) is optimized (in practice, two
networks are trained to capture different levels of detail: a "coarse" network and a "fine"
network). To optimize these networks, the following loss function is used, which measures
the total squared error between the rendered and true pixel colors:

L =
∑

r∈R

[
||Ĉc(r) − C(r)||22 + ||Ĉf (r) − C(r)||22

]
,

where R is the set of rays in each batch, and C(r), Ĉc(r), and Ĉf (r) represent the
ground truth, coarse volume-predicted, and fine volume-predicted RGB colors for ray r,
respectively. Once trained, to generate a synthetic image, the following operations must
be performed:

1. Each pixel of that image sends a ray through the scene.

2. Query the MLP at each location, where the ray traverses the scene with the viewing
direction to get a vector of colors and densities.

3. Use classical volume rendering algorithm to render these colors and the density into
a pixel.

Despite its high accuracy, NeRF model has a significant limitation, it is computationally
expensive and time-consuming, taking up to one or two days to optimize for a single
scene using a powerful NVIDIA V100 GPU, according to the authors [15]. Moreover,
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Figure 2.4. Comparison between depth images and RBG images taken in the simulated
environment.

NeRF requires a large number of images captured from different perspectives to achieve
high-quality results, and it does not generalize to any scene as it is trained to represent a
specific scene. However, recent advancements in the field of 3D modeling have led to the
development of faster alternatives, such as Instant NGP [25] by NVIDIA.

2.2 Occupancy-based Implicit Representations
Considering our specific requirements, we have decided to focus on occupancy-based im-
plicit representation methods [14] to represent p(o = 1 | x,P). These methods consist in a
parameterized function fθ which takes a 3D point coordinate x ∈ R3, and a representation
of the scene (in our case, a partial point cloud P) as inputs. The function then outputs
a real number that represents the probability of occupancy (o = 1) at the given point, as
determined by the scene. Mathematically, we express the occupancy network as:

fθ : R3 × P → [0, 1].

One of the main advantages of using occupancy-based models is that they provide a
probability that aligns well with the principles of Bayesian inference. By reframing this
problem as a classification task to determine whether x lies within an object of a scene
P or not, this model is trained with the objective of minimizing the binary cross-entropy
(BCE) loss L:

LB(θ) = 1
|B|

|B|∑

i=1

T∑

j=1
L(fθ(xij,Pi), oij).

Where B represents a batch sampled from the dataset, and oij indicates whether the j-th
query point xij lies within an object in the point cloud Pi.

Point cloud representation was chosen for two main reasons. Firstly, it enables faster ac-
quisition using only a depth image of the scene (partial view). Secondly, since our training
process is based on simulated data, but we intend to deploy the model in real-world sce-
narios, we needed a representation that bridges the sim2real gap. To this end, we used
a simulator based on PyBullet [26], which provides a powerful simulation environment
despite its limited realism. Notably, depth images were chosen over RGB images as they
offer a closer approximation to reality (see Figure 2.4). These depth images are then used
to segment the objects and generate the corresponding point cloud representation.
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Pre-process & Cropping

Figure 2.5. The segmentation pipeline consists of preprocessing a raw depth image ob-
tained from a depth camera with known extrinsic and intrinsic parameters. The image
is first projected into a new coordinate system, then cropped and normalized. Next, the
preprocessed image is fed into a UNet model, which accurately segments the objects.

2.2.1 Input processing
Objects point cloud segmentation The segmentation of the point cloud of interest
from depth images is a critical task, and to achieve this, the UNet architecture [27]
has been investigated as a means to accurately segment objects from the background.
Figure 2.5 show the pipeline of the segmentation task.

Before feeding the raw depth images into the UNet, we applied several preprocessing
techniques to improve the accuracy and speed of the segmentation process.

• Firstly, we projected the point cloud from the camera frame to the workspace frame,
ensuring that the z component was set to zero on the table. This step enabled
the rendered depth image to be independent of the camera pose, thus providing
robustness to the segmentation process.

• Secondly, we cropped the acquired depth image, which initially had a shape of
480 × 848, to a smaller size of 480 × 576. This was necessary due to memory
limitations during processing and also to focus on the part of the image containing
the workspace.

• Lastly, we standardized the data by setting the mean to zero and the standard
deviation to one. This technique has been shown to enhance the convergence rate
of neural networks during training [28, 29].

The process is carried out entirely through simulation, enabling direct access to the seg-
mentation mask and eliminating the need for manual annotation of depth images. Since
the same model will be used in real-world scenarios, we applied data augmentation tech-
niques, including image rotation, zooming, and cropping, to enhance the model’s ability
to handle the sim2real transition. We also introduced noise to the camera position and
depth image, similar to Mahler et al. [30].

We also investigated the use of the RANSAC method [31] to fit planes in the 3D point
cloud. As applied to our problem, we could detect the table and set a threshold z at that
height, then cutoff the point cloud beyond that threshold. However, due to the inherent
noise in real depth images, this method did not perform well.

11



Figure 2.6. The point cloud obtained after extracting and converting the segmented
objects from a depth image.

Depth image to point cloud

After obtaining an accurate segmentation of the objects, their corresponding point cloud
are then extracted to generate a point cloud solely containing the objects of interest
(Figure 2.6). The conversion of a depth image into a point cloud involves computing the
3D coordinates (x, y, z) for each pixel (u, v) along with its corresponding depth value d.
To achieve this, we can use the following set of equations

x = (u− cx)d
fx

y = (v − cy)d
fy

z = d

Here, cx and cy represent the coordinates of the principal point, typically located close
to the center of the image. fx and fy represent the focal lengths of the camera, and d
represents the depth value at pixel (u, v). By utilizing both intrinsic and extrinsic camera
parameters, we can accurately compute the 3D coordinates for each pixel and create a
complete point cloud from the depth image.

Once we have computed the 3D coordinates for each pixel, we can represent the point
cloud as a set of points P = p0,p1, . . . ,pN−1, where pi = [xi, yi, zi] is the 3D position of
the i-th point in the cloud, and N is the total number of points.
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Figure 2.7. The ONet is an encoder-decoder architecture. The encoder converts a point
cloud P to global features c ∈ RC′′ , which are then fed to the decoder along with T
query points. The decoder consists of 5 modified residual blocks that use Conditional
Batch Normalization to condition the input by the point cloud embedding. Finally a
fully connected layer with sigmoid activation represents the probability of each point x
being inside an object given P.

2.2.2 Architectures
The following architectures presented in this section were re-implemented entirely in Ten-
sorFlow due to the unavailability of their source code or the absence of an existing imple-
mentation using this framework.

Occupancy network (ONet)

The ONet [14] architecture consists of a PointNet-based [5] encoder and a decoder, as
illustrated in Figure 2.7.

The encoder is an adapted PointNet that takes inputs of shape N × C, N denotes the
number of points in the point cloud P and C is the feature size, initially the latter
corresponds to the 3 coordinates x, y, and z. The encoder begins with a fully connected
layer that yields features for each point, with dimensions C ′. Subsequently, these features
pass through an adapted residual block five times, each consisting of a residual block [32]
followed by max pooling. The output have the shape 1 × C ′′, and are then expanded to
N×C ′′ and concatenated with the output of the residual block. This procedure is repeated
five times, followed by a final residual block and max pooling, and fully connected layers
that output features of shape C ′′ that globally represent P. A comprehensive illustration
of the encoder architecture is provided in Figure 2.8.

The ONet’s decoder is provided with the output features from the encoder along with
a batch of T 3D coordinates x. These query points undergo a fully connected layer
to generate a 256-dimensional feature vector for each point, followed by five modified
residual-blocks that uses Conditional Batch Normalization (CBN) [33, 34] to modulate
the input query point using the features of the point cloud.

13
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Figure 2.8. PointNet-based encoder that takes a point cloud of N -point as input. The
encoder consists of a fully connected layer, a modified residual block with additional
pooling and expansion layers repeated five times, a final residual block, and maxpooling.
The global features of the point cloud are obtained by the last fully connected layer, which
outputs 256 features.

Based on Mescheder et al. [14] we use a CBN to condition the input query points to the
point cloud embedding. CBN is an adaptation of the well-known Batch Normalization
[28] that normalizes an input x using the mean and standard deviation over the current
batch, with learnable parameters γ and β, introduced to accelerate and facilitate the
convergence of neural networks. However, in CBN, γ and β parameters are replaced with
γ̂ = γ + ∆γ and β̂ = β + ∆β, where the offsets ∆γ and ∆β are learned from conditional
data, i.e., the point cloud embedding, using a multi-layer perceptron (MLP). Specifically,
we obtain:

∆β = MLPβ(c) and ∆γ = MLPγ(c).

Where c = Encoder(P) and the MLP used in CBN has one hidden layer with 256 neurons.
The CBN operation can be expressed mathematically as:

y = x′ − E[x′]√
Var[x′] + ϵ

γ̂ + β̂

with x′ being a feature representation of the query point x.

While this method is promising, it is important to note that there are two major limi-
tations that must be considered. Firstly, the embedding of the point cloud captures the
global structure of the represented shape, making it difficult to learn correlations between
the latent code and fine-grained 3D structural details of the shape. As a result, the
generated shapes can be oversimplified and may struggle to represent thin details.

Secondly, in the case of robotic, objects do not have a predetermined pose and can be
placed anywhere on a table with any rotation. While data augmentation can help with
training, there is a lack of rotation or translation equivariance that could potentially help
with faster training and be more robust to novel pose and objects.

Vector neurons occupancy network (VN-ONet)

The Vector Neurons (VN) framework, proposed by Deng et al. [35], provides a novel
approach for creating rotation equivariant neural networks to process point clouds. This
framework achieves rotation equivariance by replacing classical operations, such as fully

14



Classical
Scalar neurons Vector neurons

Figure 2.9. Comparison between classical scalar neurons and vector neurons.

connected layers, pooling, non-linear activation, and batch normalization, with an up-
graded version that uses vector neuron representations.

In this framework, classical neuron representations are replaced with vector neurons (Fig-
ure 2.9), which are vectors v ∈ R3, rather than a scalar z ∈ R. A layer of neurons is
represented as a matrix V = [v1,v2, ...,vC ]⊤ ∈ RC×3, where C is the number of vector
neurons in the layer. For a point cloud of N points, x ∈ RN×3, a collection of N such
vector-list features is obtained, denoted as V = {V1,V2, ...,VN} ∈ RN×C×3 .

Similar to a neural network, the number of channels between layers can be changed via
a mapping function f(V(d); θ), where V(d) ∈ RN×C(d)×3 is the input to layer d and θ
represents the learnable parameters of the layer. This mapping function produces an
output tensor V(d+1) ∈ RN×C(d+1)×3.

In this framework, Deng et al. [35] provide several layers that replace the traditional ones
including:

• Linear layers: A linear operation flin(.,W) is applied to the input tensor V ∈ V ∈
RN×C×3 using a weight matrix W ∈ RC′×C , as follows:

V′ = flin(V; W) = WV ∈ RC′×3 (2.1)

This is in contrast to the classical operation xW⊤ +b. It is straightforward to verify
that a rotation matrix R ∈ SO(3) commutes with this linear layer:

flin(VR; W) = WVR = flin(V; W)R = V′R

This corresponds to the definition of rotation equivariance: f(VR) = f(V)R, where
R ∈ SO(3). Note that the bias term in Eq. 2.1 had been omitted since it would
interfere with equivariance.

• Non-linear activation: Activation functions are crucial for the success of neural
networks, as they introduce non-linearity into the system and enable the input
domain to be mapped differently into two half-spaces. For vector neurons, a 3D
version of these non-linearities is required. However, using a fixed frame of reference,
such as the standard coordinate system, would violate equivariance. To address this
issue, Deng et al. [35] proposed a VN-ReLU that dynamically predicts a direction
from the input vector-list feature and truncates the portion of a vector that points
into the negative half-space of the learned direction. The non-linear VN-ReLU is
implemented by applying a weight matrix U ∈ R1×C to each input vector channel
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Figure 2.10. This figure illustrates the rotation equivariance properties of vector neurons.
A partial point cloud of an object and the same object after being rotated by R ∈ SO(3)
are both processed by a VN-Pointnet (Figure 2.11). The resulting feature spaces are
compared, revealing that the feature space of the rotated object is equivalent to the
feature space obtained by rotating the original features with the same matrix R.

v ∈ V to obtain a direction k ∈ R1×3, where k = UV. The activation function is
then defined as follows:

v′ =





v if ⟨v,k⟩ ≥ 0,

v − ⟨v, k
||k||⟩

k
||k|| otherwise.

(2.2)

This approach allows for the application of a 3D version of non-linear activation
functions frelu(V) = [v′]Cc=1, while preserving equivariance.

• Invariant layers: This layer is based on the property that the product of an
equivariant signal V ∈ RC×3 by the transpose of another equivariant signal T ∈
RC′×3 is rotation invariant. In other words, (VR)(TR)⊤ = VRR⊤T⊤ = VT⊤.
Deng et al. [35] leveraged this property to produce rotation invariant features by
generating a coordinate system T ∈ RC′×3 from V and applying it to V. To
implement this, for each Vn in V ∈ RN×C×3, a matrix Tn is produced by applying
the VN-linear function to Vn with a target number of channels C ′. Specifically, Tn

is defined as:
Tn := VN-linear(Vn).

Finally, the invariant layer is defined as:

VN-In(Vn) := VnT⊤
n .
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Figure 2.11. The VN-ONet architecture is shown here, which employs a VN-Pointnet
encoder to convert a point cloud with N points into equivariant features c. These features
are then used to generate three invariant features by merging them with T query points x.
The resulting features are passed through a fully connected layer, followed by 5 residual
blocks, another fully connected layer, and a sigmoid function, to obtain p(o = 1 | P,x).

Above are presented the most important layers for this work. For additional and more
detailed information on these layers, please refer to the original paper [35].

Building on top of these layers we can create an upgraded version of the occupancy
network as seen previously, VN-ONet (Figure 2.11). The VN-Pointnet [35] encoder is
quite similar to the structure of PointNet of the ONet [14], as discussed in the previous
section, albeit with updated vector neurons layers. However, a notable difference is the
introduction of the edge convolution (EdgeConv) layer. This layer is included to avoid
degeneracy, which occur if flin is applied to a set of point cloud coordinates Vn ∈ R1×3.
The resulting set of RC×3 vector-lists would have all its vector components being linearly
dependent. To mitigate this problem, the EdgeConv layer selects the k nearest neighbors
for each point and computes three features:

• The relative euclidean distance between a point and its k neighbors.

• The k neighbors themselves.

• The cross product between the current point and each of its k neighbors.

This yields features of shape N ×C × 3 × k, and a mean pool operation is applied to the
last dimension to obtain features of shape N × C × 3.

The output of the encoder, denoted as c, is passed to a rotation-invariant decoder together
with query points x. To achieve rotation-invariance, three invariant features are created:
||x||2, ⟨x, c⟩, and VN-In(c). These features are then input to a (classical) 5-residual block
followed by a final fully-connected layer, which outputs the probability of occupancy.

Although the rotation equivariant aspect of this model is interesting, it encounters issues
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concerning global feature representation and handling complex scenes containing multiple
objects. Moreover, the advantages of rotation equivariance may not apply when object
orientations vary randomly since it’s very unlikely for a collection of objects to possess
identical poses, but rotated by R, where R ∈ SO(3). Furthermore, the model’s high
computational and memory usage demands may impede its performance, leading to slower
processing times than alternative models.

Convolutional occupancy network (Conv-ONet)
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Figure 2.12. The convolutional occupancy network encoder uses a PointNet with local
pooling to map 3D coordinates to the feature space. The resulting features are then
projected and aggregated onto the 3 canonical planes xy, yz, and xz using a small grid
(e.g., in this example, a resolution of 2 × 2). Finally, these feature planes are projected
using a shared UNet models to aggregate local and global information. For simplicity in
this figure c∗∗(P) is written as c∗∗.

The architecture proposed by Peng et al. [17] is specifically designed to address issues
of previous models such as inadequate global feature representation and lack of inductive
bias, such as translation. In contrast to other neural network architectures [14, 35], this
architecture makes it possible to obtain information on local features by discretizing the
3D space using three canonical planes of a given resolution onto which the features of
each point are projected. Moreover it exploits the translation equivariance property of
convolutional neural networks [36].

The encoder consists of a fully connected layer followed by 5 residual blocks similar to the
PointNet of the occupancy network [14] (Figure 2.8). However, instead of pooling over
individual points, the points falling within the same voxel of the 3D grid are aggregated.
These features are then projected onto three canonical planes: cxy, cxz and cyz, based on
the points’ original coordinates. Finally, a shared 2D U-Net is applied to each feature
plane to aggregate local and global information. A schematic of the architecture is shown
in Figure 2.12.

18



ResNet Block

y

z

x

Fc-32

Figure 2.13. The convolutional occupancy network decoder, where c∗∗(P)(x) is simplified
as c∗∗ for better readability.

The occupancy probability at a given point x ∈ R3 given P is determined by aggregating
the features cxy(P)(x), cxz(P)(x), and cyz(P)(x) from the corresponding locations in the
three features maps, where c∗∗(P)(x) represents a bilinear interpolation that computes
the feature at coordinate x∗∗ using the discretized feature plane c∗∗(P). The resulting
features are then summed to form the feature vector c, as follows:

c = cxy(P)(x) + cxz(P)(x) + cyz(P)(x).

Subsequently, the point coordinates x pass through a fully connected layer, followed by a
block that incorporates the feature vector c at each iteration. In each iteration, the output
of the previous block is added to the output of the current block, resulting in a refined
feature vector that encodes both local and global features. This process is repeated five
times, and the hidden layer has a feature dimension of 32 (Figure 2.13).

Although this model incorporates interesting properties such as local and global infor-
mation and translational equivariance, the major drawback comes from the slowness of
operations applied to feature planes such as aggregation or interpolation.
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Figure 2.14. In this illustration, the concept of rotation equivariance is demonstrated
by querying the k (k = 6) nearest neighbors (k-NN) of a query point (colored orange)
from a point cloud P. The k-NN operation generates a graph which exhibits equivariance
in rotation to a transformation Tg applied to P. This is expressed mathematically as
Tg(Φgraph(X)) = Φgraph(Tg(P)) (Figure from [37]).

Graph occupancy network (Graph-ONet)

Chen et al. [37] proposed a novel approach for implicit representation that leverages the
3D equivariant property of graphs, which are rotation, scaling, and translation invariant
(see Figure 2.14). This property enables generalization to unseen transformations, which
is important in the real world where objects are never in a fixed canonical pose.

To encode rotation equivariance through the layers, the authors adapted the vector neu-
rons from Deng et al. [35] by incorporating rotation invariance. They introduced a hybrid
feature equivariant layer (HL) (Figure 2.15), which takes scalar feature s ∈ RC and vec-
tor features V ∈ RC×3 as input and outputs scalar feature s′ ∈ RC′ and vector features
V′ ∈ RC′×3. This method is more effective and efficient than using only vector neurons
since the vector V encodes rotation equivariance, while the scalar feature s is rotation
invariant, resulting in more computational efficiency and transferring some of the learning
responsibility to the scalar features via standard neural layers.

The encoder/decoder architecture follows a multiscale approach. In the encoder phase,
features are extracted from the point cloud corresponding to the k nearest points and
their Euclidean distances, forming a graph structure (refer to Figure 2.14). These fea-
tures then pass through two hybrid linear layers, which extract both invariant features sl

and equivariant features Vl. Subsequently, max pooling is applied along the neighbors
dimension. This process maps each point of the point cloud to a latent dimension, result-
ing in features Vl ∈ RCl×3×N and sl ∈ RCl×N , where l represents the current scale. To
capture both local and global information, this process is repeated two more times using
subsets of points obtained through farthest point sampling (FPS) from the point cloud.
This iterative approach expands the receptive fields and enables feature extraction from
different scales. The initial scale consists of N points, which gradually decreases to N/4
and N/16, resulting in a total of three pairs of Vl and sl (see Figure 2.16).

In the decoding stage of the architecture, a query point x is taken as input and its k
nearest neighbors in the original point cloud are retrieved at different scaling factors.
The retrieved features, along with the corresponding point from the point cloud and

20



Figure 2.15. Hybrid feature equivariant layers. Visualization of how vector and scalar
features share information in linear and nonlinear layers. Vector features go through an
invariant layers Ω that is added to the scalar part. Scalar features are transformed with
normalizing ·/|| · || to scale the vector feature channels (Figure and caption from [37]).

their relative distance from the query point x, are concatenated, similar to the encoding
process. At each stage, the concatenated features go through a series of HN (Hybrid
Neural Networks), which are aggregated and sent to a five-residual-block. The output
from this block is then fed into a fully connected layer, followed by a sigmoid function
that outputs the probability of occupancy. For more detailed information, please refer to
the original paper [38] or the source code.

Although this method has strengths such as its 3D equivariant inductive bias and the
integration of local and global information, it has certain limitations. It requires a com-
plete representation of the point cloud and imposes significant memory requirements,
restricting scalability in terms of point cloud size and limiting the potential size of hidden
layers.

Figure 2.16. Farhest point sampling (FPS). This figure illustrates the various stages
of FPS sampling used during the encoding process to extract local and global features
(depicted in purple), as well as during the decoding phase with a query point p (depicted
in orange).(Figure from [37])
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Chapter 3

Experiments

3.1 Dataset

Figure 3.1. A subset of the YCB benchmark objects [39].

The dataset used in this study comes from Breyer et al.’s work [40] and consists of a blend
of established datasets such as the YCB benchmark [39] (Figure 3.1). It is made up of a
mixture of synthetic mesh objects divided into 303 training and 40 testing objects. Breyer
et al. [40] defined two distinct scenarios, "pile" and "packed" (Figure 3.2). In the first
scenario, objects are successively placed higher up at random locations in the workspace,
resulting in the formation of a stack of objects. The second scenario consists of iteratively
placing a subset of higher objects vertically at random locations in the workspace, while
avoiding positions that lead to collisions with objects already placed.

Figure 3.2. Example of a "pile" (left) and a "packed" (right) scene.
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Figure 3.3. Depth-wise convolution applies a single filter to each input channel separately.
This operation produces a set of feature maps, one for each input channel. Next, point-
wise convolution applies a 1x1 convolution to combine the output from the depth-wise
convolution. This 1x1 convolution acts as a linear combination of the features produced
by the depth-wise convolution, and it is used to mix the feature maps into a single output.
The advantage of using depth-wise separable convolution is that it can significantly reduce
the number of parameters and computational cost compared to traditional convolution.
Figure from [41].

During the data generation process, following the methodology described by the authors,
m objects, where m ∼ Pois(4), are randomly selected, with repetition, in the respective
train/test subset. Both the packed and pile scenarios are used with equal probability
of 50% to ensure robustness and generalization to any situation. A depth image of the
scene is captured from a fixed position of the camera, and a point cloud of the object is
extracted, as explained in Section 2.2.1. Then, to maintain a fixed number of points in
the point cloud (N = 2048), we sub-sampled or over-sampled random points of the point
cloud.

3.2 Segmentation
In this section, three different architectures are compared: two UNet models (described
in Section 2.2.1) and a TNet model [41]. The first UNet, called UNet 5 64, consists of
five layers with progressively increasing numbers of features (64, 128, 256, 512, and 1024)
in the encoding path, and symmetrically decreasing numbers of features (1024, 512, 256,
128, 64) in the decoding path. The second UNet model, named UNet 4 32, starts with 32
features and doubles the number of features at each downscaling layer for the first four
layers, followed by four upscaling layers where the number of features is divided by two
at each stage. The T-Net, on the other hand, is specifically designed for constrained and
mobile devices, achieving accurate results with significantly fewer parameters compared to
state-of-the-art models. One notable distinction between the T-Net and traditional UNet
models is the use of depth-wise separable convolution [42], which separates the standard
convolution operation into two separate steps: depth-wise convolution and point-wise
convolution (refer to Figure 3.3).

Each model is trained on a dataset of 250, 000 depth and mask images pairs, augmented
using techniques shown in Figure 3.4. The learning process aims to minimize the binary
cross-entropy loss, using Adam optimizer with a learning rate of 10−4. Prior to learning,
images are normalized in a per image strategy. Model performance is then evaluated using
two independent sets of 50, 000 samples consisting of unseen scenes and objects, without
any augmentation.
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Original Noisy camera position Random rotation Random flip Random zoom

Figure 3.4. The original depth image of a scene with five objects, along with the differ-
ent independent data augmentations used. The Noisy camera position augmentation
adds small amounts of noise to the camera’s transformation with respect to the real world,
simulating real-world imprecision. The Random rotation, Random flip, and Ran-
dom zoom augmentations are standard techniques used to improve model generalization
and facilitate sim-to-real transfer.

Quantitative results Table 3.1 provides a comparison of different models trained with
and without data augmentation and evaluated on the test set using IoU and Dice metrics.
The results indicate that models with a larger number of trainable parameters exhibit
better performance. However, it is important to note that all models show similar perfor-
mance, with only negligible differences observed between the UNet 5 64 and the UNet 4
32, despite the significant difference in the number of parameters (100 times less for the
UNet 4 32). Similarly, the TNet achieves comparable IoU and dice values with a much
smaller number of parameters.

Augmented IoU ↑ Dice ↑ # Params.
UNet 5 64 ✗ 0.9980 0.9989 138, 340, 417
UNet 4 32 ✗ 0.9977 0.9988 8, 632, 865

TNet ✗ 0.9962 0.9981 81, 694
UNet 5 64 ✓ 0.9959 0.9979 138, 340, 417
UNet 4 32 ✓ 0.9955 0.9977 8, 632, 865

TNet ✓ 0.9913 0.9957 81, 694

Table 3.1. Comparison of different models with decreasing numbers of parameters using
the Intersection over Union (IoU) and dice metrics. The evaluation is performed on a test
set comprising 50, 000 novel simulated scenes and objects. The models under consideration
are the UNet 5 64 and UNet 4 32, both of which follow the UNet architecture (see
Figure 2.5). The UNet 5 64 model consists of five upsampling and downsampling layers,
starting with 64 hidden dimensions. On the other hand, the UNet 5 32 model features four
upsampling and downsampling layers, starting with 32 hidden dimensions. Additionally,
we include the TNet model [41], which is a lightweight version of the UNet. The term
"Augmented" indicates that the training was conducted using data augmentation.

Overall, all models achieve high IoU and Dice values of approximately 0.99, with slight
differences in the thousandths place. It is worth mentioning that the discrepancy between
models trained with augmented and non-augmented data can be attributed to the absence
of data augmentation during testing. Models trained with data augmentation may have
better generalization capability for real-world scenarios, as observed in sim-to-real exper-
iments. However, they might slightly underperform on perfectly simulated data. This
suggests that the models trained without data augmentation may be more specialized in
handling ideal depth images from simulators. These high IoU and Dice values can be
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Figure 3.5. Evolution of Dice coefficient, Intersection over Union (IoU), and loss values
for the validation set during training. Both UNet models exhibit a rapid convergence
to a plateau, while the TNet model demonstrates a distinct learning pattern. Notably,
at around 22 epochs, the TNet model shows a significant improvement in performance.
This improvement is observed specifically when using augmented data, indicating that
the model does not have enough capacity to effectively learn object segmentation in the
presence of noise, permutations, and other variations.

25



Depth image True mask UNet 5 64 aug UNet 5 64 no aug UNet 4 32 aug UNet 4 32 no aug TNet aug TNet no aug

Figure 3.6. Comparison of different segmentation models trained with and without data
augmentation (aug) on synthetic depth images.

explained by the fact that the task is relatively simple since it only consists of separating
objects from a flat table while accounting for noise in the input data. Furthermore, by
analyzing the training progress of these models (Figure 3.5), we can observed that all
models reach a plateau relatively quickly during training, indicating that further training
may not significantly improve their performance. This observation is supported by the
train/val loss plots of the different models (Figure D.1).

Based on these results, the TNet shows the best trade-off between memory requirements
and performance. However, it is important to note that as demonstrated later, this model
does not possess sufficient capacity to generalize well to real depth images. Therefore, a
model with a higher capacity, is required.

Qualitative results The segmentation results presented in Figure 3.6 show remarkable
accuracy in various complex scenes of synthetic data for each of the models. However,
on closer inspection, we can see that the TNet model has difficulty obtaining fine detail,
as shown in the third and sixth figures. Although this discrepancy is noticeable, it is not
considered a severe issue. For their part, the two UNet achieve outstanding results, with
only a minor error observed in the sixth image. Overall, the segmentation performance of
the UNet models is near perfect, demonstrating robustness and accuracy in capturing ob-
ject boundaries and structures. The use or non-use of data augmentation during training
does not result in significant differences in performance on these simulated data.

Per-image normalization may overlook smaller objects in scenes where both small and
large objects are present. However, this is not a significant issue as segmentation is per-
formed when an object needs to be picked up, and the workspace is cleared incrementally.
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Depth image Predicted mask True mask

Figure 3.7. In this scene, there are three objects with varying heights. The UNet fails
to segment the hammer due to the significant difference in height with the highest object
(top). However, upon removing the tall object (bottom), the hammer is successfully
detected. This outcome is attributed to the per-image normalization of depth images,
enhancing the visibility of smaller objects when taller objects are absent, while reducing
their visibility when taller objects are present.

Additionally, it is often advantageous to prioritize picking larger objects first. Further-
more, the per-image normalization ensures that smaller objects become more noticeable
on the table after the larger objects are removed. Figure 3.7 provides an example illus-
trating this phenomenon.

Simulation to real To enhance the quality of the depth image captured by the depth
camera, a median filter with a kernel size of 9 is applied. This filtering technique helps
to smooth out the image and fill in any holes that may have occurred due to occlusion,
reflections, or other factors. An example illustrating the effect of the median filter can be
seen in Figure 3.8. Figure 3.9 provides a comparison of the segmentation results for the
three models, considering whether they were trained with or without augmented data. The
slight variations in depth observed on the table surface in the real depth images are due to

Figure 3.8. (left) The original raw depth image. (right) The same depth image after
applying a median filter with a kernel size of 9 for smoothing.
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a precision error in the exact position of the camera in relation to the table. Models that
have not been trained with augmented data have difficulty interpreting these variations
and misidentify them as objects. This is particularly evident in the second, fifth, and final
scenes, where some models incorrectly detect the lower left corner of the table as objects
due to its higher depth values. The TNet model, whether augmented or not, shows a
lack of generalization in this scenario. In contrast, UNet models trained with augmented
data show better performance in object segmentation, even for complex scenes such as
the fifth and last frames. Notably, the UNet 4 32 trained with augmentation performs
exceptionally well, consistently achieving near perfect object segmentation without the
artifacts observed using the larger UNet. It is worth mentioning that despite being trained
on scenarios involving piles and packed objects, the models perform better when applied
to objects generated using the packed scenario. This is due to the more pronounced
difference in depth between the table and the objects. Furthermore, although the models
were not trained with "corrupted" depth images containing unknown points, they still
process these images accurately.

Depth image UNet 5 64 aug UNet 5 64 no aug UNet 4 32 aug UNet 4 32 no aug TNet aug TNet no aug

Figure 3.9. Comparison between various segmentation models trained with and without
data augmentation (aug) using real depth images. It is evident that the utilization of
augmented data assists the model in bridging the disparity between simulation and real
scenarios.
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3.3 Implicit representation
In this section, once the training procedure has been established, the models are evaluated
quantitatively through a loss and metrics analysis, followed by a qualitative assessment. In
addition, a comparison is made between results obtained using reconstructed and partial
point clouds. Please note that the models presented in this section are the best-performing
versions of each model, fine-tuned for optimal performance.

3.3.1 Evaluation protocol
Training The models are trained on a dataset of 2, 048, 000 samples, then validated
and evaluated on a separate set of 200, 000 samples as described in Section 3.1. Each
sample consists of a point cloud with 2, 048 points, representing a scene of m objects,
along with 2, 048 query points uniformly sampled within the workspace, accompanied by
their respective occupancy values. The training process involved 100 iterations, with each
iteration consisting of 32, 000 samples and a batch size of 32. We used the Adam optimizer
with a learning rate of 0.0001, following the recommendations of the authors [14, 17, 35,
38], to minimize the BCE loss as previously defined.

Metrics The evaluation metrics used are the same as in the original paper introducing
occupancy networks [14]. Since most of these metrics require a mesh representation, the
MISE algorithm was used to extract the mesh by querying the occupancy network; the
algorithm is described in Appendix C.

• The volumetric Intersection over Union (IoU) is computed by randomly sampling
N (100k) points from the bounding volumes of the union of MGT and Mpred,
which represent the sets of points inside the ground truth and predicted meshes,
respectively. For each point, we determine if it is occupied in both the predicted
mesh (opred ∈ [0, 1]) and the ground truth mesh (oGT ∈ {0, 1}). Using a threshold
of 0.5 for the predicted occupancy, the IoU is calculated as follows:

ˆIoU(Mpred,MGT ) =
∑N

i=1 o
pred
i ∗ oGT

i∑N
i=1 o

pred
i + oGT

i

• The Chamfer-L1 distance measures the distance between two meshes. It is defined
as the average distance between each point of the predicted mesh and its nearest
point on the ground truth mesh, and vice versa:

Chamfer-L1(Mpred,MGT) = 1
2|∂Mpred|

ˆ
∂Mpred

min
q∈∂MGT

||p− q||dp

+ 1
2|∂MGT|

ˆ
∂MGT

min
q∈∂Mpred

||p− q||dq

Where ∂Mpred and ∂MGT denote the surface of the predicted and ground truth
meshes respectively. We approximate this metric by sampling 100k points from the
predicted and ground truth mesh surfaces.

• The normal consistency metric measures the alignment of surface normals between
the predicted and ground truth meshes:

Normal-Consistency(Mpred,MGT) = 1
2|∂Mpred|

ˆ
∂Mpred

|⟨n(p), n(proj2(p))⟩|dp
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+ 1
2|∂MGT|

ˆ
∂MGT

|⟨n(proj1(q)), n(q)⟩|dq

Here, n(p) and n(q) are the surface normal vectors of ∂Mpred and ∂MGT, respec-
tively. proj1(q) and proj2(p) denote the projection of q onto ∂Mpred and p onto
∂MGT.

To compute this metric, we find the nearest point in the ground truth mesh for
each point in the predicted mesh. Then, we calculate the dot product between their
surface normals and average the result over all points in the predicted mesh.

3.3.2 Quantitiative analysis
According to the loss in Figure 3.10, it appears that although the occupancy network could
have been trained a little longer, the Conv-ONet achieved the lowest loss and reached the
optimum very quickly, only after 18 iterations. Following closely behind are the Graph-
ONet and the ONet, while the VN-ONet reached a plateau at a significantly higher loss
value. This could be attributed to the Conv-ONet’s inductive bias, which enables it to
learn information more quickly. The Graph-ONet, which has full 3D equivariance, learned
slightly more slowly than Conv-ONet, but still faster than ONet and VN-ONet. It is
worth noting that both the Conv-ONet and VN-ONet have a tendency to overfit quickly.
However, looking only at the loss can be misleading, and it is better to consider different
metrics to evaluate the models’ performance, as defined in Section 3.3.1. Table 3.2 shows
that the Conv-ONet is the best performing model across all metrics, followed by the
Graph-ONet. The VN-ONet and ONet yield lower results, with a considerable difference
from the Conv-ONet. This disparity could be attributed to the fact that these models
store global embeddings of the scene, making them less suitable for scenes containing
multiple or complex objects.

PointCloud IoU ↑ Chamfer-l1 ↓ Normal consist. ↑
ONet partial 0.8072 ± 0.1905 0.0015 ± 0.001 0.9418 ± 0.0622

Conv-ONet partial 0.8687 ± 0.1115 0.0010 ± 0.0006 0.9626 ± 0.0333
VN-ONet partial 0.7854 ± 0.2072 0.0018 ± 0.0013 0.8507 ± 0.1781

Graph-ONet partial 0.8506 ± 0.1270 0.0013 ± 0.0006 0.9163 ± 0.0542
ONet reconstructed 0.8227 ± 0.1890 0.0013 ± 0.0009 0.9475 ± 0.0572

Conv-ONet reconstructed 0.8667 ± 0.1388 0.0011 ± 0.0007 0.9592 ± 0.0428
VN-ONet reconstructed 0.7883 ± 0.2135 0.0017 ± 0.0014 0.9369 ± 0.0753

Graph-ONet reconstructed 0.8603 ± 0.1335 0.0011 ± 0.0006 0.9574 ± 0.0427

Table 3.2. This table compares four models: Occupancy Network (ONet), Convolutional
Occupancy Network (Conv-ONet), Vector Neurons Occupancy Network (VN-ONet), and
Graph Occupancy Network (Graph-ONet). Evaluation metrics are used to assess these
models on both partial and reconstructed point clouds. The results, based on a test set
of 200,000 samples, show the average scores for each metric, along with their respective
standard deviations. The findings indicate that Conv-ONet outperforms the other models,
achieving a higher score on partial point clouds compared to reconstructed ones.
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Figure 3.10. Training and validation loss over 100 iterations for each model using partial
point clouds. Each iteration involves 32, 000 samples in batches of size 32, representing a
total of 3.2 million different samples. The models are trained to minimize binary cross-
entropy loss in order to determine whether or not a query point is inside an object. The
red dotted line represents the lowest validation loss obtained by each model.

Impact of Reconstructed Point Clouds (overview)

An attempt was made to improve the performance of occupancy networks by providing
them as input with reconstructed point clouds produced by PoinTr [43], a transformer-
based model that reconstructs a complete point cloud from a partial one. However,
this approach proved impractical due to severe GPU memory limitations, resulting in
excessive overhead. Consequently, this method was quickly abandoned, which explains
the brief mention of it. The model was initially pre-trained on the ShapeNet dataset [44]
by the authors, followed by fine-tuning for our specific task using a dataset consisting of
100, 000 pairs of partial and complete point clouds, fo 50, 000 iterations. The authors’
default hyperparameters were used for training. In the appendix, Figure D.2 presents
qualitative results, illustrating the high accuracy of the reconstructed objects.

Looking at the losses of occupancy networks using reconstructed point clouds (Figure 3.11)
shows that they do indeed enable us to learn a little faster, as the validation losses almost
directly reach a plateau. The significant difference between training loss and validation
loss may be due to the accumulation of errors in PoinTr and occupancy networks, both
of which are trained on objects from the same pool, but which, during the validation
phase, are confronted with unseen objects. Nevertheless, Graph-ONet achieved the lowest
learning rate, which was expected since it performs best on complete point clouds. This
is also reflected in the measurements (Table 3.2), as this model performed better using a
reconstructed point cloud than a partial one. The other models showed similar behavior,
with the exception of Conv-ONet, which obtained better results on partial point clouds,
showing that this model may be limited by reconstruction errors.
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Figure 3.11. Training and validation loss over 100 iterations for each model using point
clouds reconstructed by PoinTr [43]. Each iteration involves 32, 000 samples in batches
of size 32, representing a total of 3.2 million different samples. The models are trained
to minimize binary cross-entropy loss in order to determine whether or not a query point
is inside an object. The red dotted line represents the lowest validation loss obtained by
each model.

3.3.3 Qualitative analysis
In this analysis, we present a comparison of different occupancy network architectures
with respect to their performance in handling objects of varying complexity levels, as
illustrated in Figure 3.12. Upon analyzing the results, it is evident that the Conv-ONet
outperforms the other architectures across all scenes.

As mentioned earlier, the VN-ONet and ONet do not perform well in scenes with multiple
objects or complex structures with thin details. However, they perform reasonably well in
representing simple objects, as can be observed with the second object, where the vector
neurons architecture yields the best results. In contrast, Conv-ONet and Graph-Onet
are highly effective in handling scenes with various levels of complexity, owing to their
usage of both local and global embeddings, as well as powerful inductive bias. Although
Graph-Onet yields slightly less smooth results compared to Conv-ONet, it is important
to note that the former is not designed to handle partial point clouds. As Graph-ONet
creates a graph using the points in the point clouds, it may not be as meaningful for
incomplete point clouds. This could be a factor contributing to the slightly less smooth
results obtained with Graph-Onet.

Rotation equivariance of vector neurons To ensure that the rotation equivariance
properties of vector neurons hold, an experiment is conducted using a VN-Pointnet (Fig-
ure 2.11) applied to a point cloud to extract an embedding that represent the scene, and
rotate it by R ∈ SO(3). The resulting rotated embedding is compared with the embedding
of the same point cloud rotated by the same R matrix. The aim is to verify whether the
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Observation Ground truth mesh Conv-ONet VN-Onet

IoU: 0.9111
Chamfer-L1: 0.0010

Normal Consistency: 0.9608

ONet

IoU: 0.9636
Chamfer-L1: 0.0006

Normal Consistency: 0.9932

IoU: 0.9624
Chamfer-L1: 0.0007

Normal Consistency: 0.9904

IoU: 0.6270
Chamfer-L1: 0.0041

Normal Consistency: 0.8197

IoU: 0.3656
Chamfer-L1: 0.0046

Normal Consistency: 0.7148

IoU: 0.7759
Chamfer-L1: 0.0012

Normal Consistency: 0.9161

IoU: 0.5852
Chamfer-L1: 0.0055

Normal Consistency: 0.8078

IoU: 0.3364
Chamfer-L1: 0.0035

Normal Consistency: 0.7505

IoU: 0.2492
Chamfer-L1: 0.0023

Normal Consistency: 0.7102

IoU: 0.6912
Chamfer-L1: 0.0009

Normal Consistency: 0.9160

Graph-ONet

IoU: 0.8121
Chamfer-L1: 0.0072

Normal Consistency: 0.8819

IoU: 0.9337
Chamfer-L1: 0.0006

Normal Consistency: 0.9905

IoU: 0.8757
Chamfer-L1: 0.0006

Normal Consistency: 0.9727

IoU: 0.4455
Chamfer-L1: 0.0045

Normal Consistency: 0.7537

IoU: 0.4112
Chamfer-L1: 0.0033

Normal Consistency: 0.7561

IoU: 0.2218
Chamfer-L1: 0.0079

Normal Consistency: 0.6432

Figure 3.12. Comparison between four neural implicit representation models - Con-
volutional Occupancy Network (Conv-ONet) [17], Vector Neurons Occupancy Network
(VN-ONet) [35], Basic Occupancy Network (ONet) [14], and Graph Occupancy Network
(Graph-Onet) [37] - in their ability to reconstruct a mesh from a partial point cloud using
the marching cube algorithm, as detailed in Section C. The Conv-ONet is found to be
the best performing model, both quantitatively and qualitatively, when compared to the
ground truth mesh.
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Figure 3.13. This figure illustrates the rotation equivariance property of vector neurons.
A partial point cloud of an object and the same object after being rotated by R ∈ SO(3)
are both processed by a VN-Pointnet (Figure 2.11). The resulting feature spaces are
compared, revealing that the feature space of the rotated object is the same to the feature
space obtained by rotating the original features with the same matrix R.

rotation equivariance property f(R(x)) = R(f(x)) applies, where f is the encoder made
up of rotation equivariant layers as defined in Section 2.2.2. Visually, it seems that the ro-
tation equivariance property has been respected, as the latent dimensions appear to be the
same (Figure 3.13). However, for the sake of completeness, the norm one was computed
between the two latent dimensions, resulting in a negligible value of 8 ∗ 10−7 compared to
the range of values for the latent dimensions (-0.5 to 0.5). To further validate the rotation
equivariance, the meshes from the two latent spaces are compared. It is observed that
the mesh has indeed been rotated, and applying the inverse rotation retrieved the original
mesh, confirming the rotation equivariance property, at least empirically.

Additional analysis of convolutional occupancy network One of the advantages
of the Conv-ONet is the ease with which the extracted feature space can be inspected
(Figure 3.14). This enables us to diagnose any problems and ensure that the model is
well-trained. Additionally, we can interpret some of the results based on the feature space
analysis.

In addition to the features analysis, examining the logarithm of the predicted occupancy is
crucial for this project. As explained in Section 6.2, the log of the prior probability p(o =
1 | x,P) obtained from the Conv-ONet is employed alongside other networks to compute
the optimal pose through gradient descent. It is therefore essential to have smooth vector
fields (contours) to facilitate convergence. However, as shown in Figure 3.15, we observe
that while the density near the objects is high, it progressively becomes increasingly noisy
as we move further away from the objects. This noise, although having low values, can
introduce local minima. Additionally, due to the utilization of canonical planes in the
method, some density still remains above the objects, as illustrated in the figure.
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Encoder

Figure 3.14. This figure depicts three out of the thirty-two sets of feature planes extracted
by the feature extractor of the Conv-ONet applied to a point cloud of a scene. The feature
planes correspond to the three canonical coordinate systems: xz, xy, and yz.
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Figure 3.15. Predicted log occupancy slices extracted from a scene using a convolutional
occupancy network, displayed along the z axis. The image on the left shows the slice at
object level, while the image on the right shows the slice above the objects. Note that the
scales of the two images are different.
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Simulation to real Although the Conv-ONet shows good performance on point clouds
generated from real depth images as shown in Figure 3.16, it still has some limitations.
For example, in some cases, the model struggles to reconstruct objects accurately, as
can be seen with the sprayer cut in two parts. This issue may be due to insufficient
examples of such cases in the training data. One possible solution to this problem is to
add randomly placed unknown points (represented by dark purple colors) to the synthetic
depth images during training to account for real-world scenarios where certain points are
not observable. However, considering that the training was performed using simulated
data, the results are still quite satisfactory.
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Depth image Predicted mask Extracted mesh

Figure 3.16. Qualitative results for real data. We applied our Conv-ONet to objects avail-
able at the lab. Despite only trained on synthetic data, our model generalizes reasonably
well to real data.
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Chapter 4

Discussion

Segmentation The segmentation plays a crucial role in the project as it forms the foun-
dation for subsequent processes by extracting the point cloud to be fed into the occupancy
network. Thus, a high-performing model is required, which is not only accurate but also
fast and memory-efficient, as it will be used in conjunction with two other deep learn-
ing models in the final pipeline. Using a heavy model could significantly slow down the
overall process and affect the performance of other models sharing the same GPU. Dur-
ing evaluation on simulated data, all models demonstrated comparable and satisfactory
performance. In such cases, prioritizing the faster and lighter model would be beneficial.
However, it is important to note that the transition from simulation to real-world data
presents a significant challenge, their the TNet lacks the necessary capacity to generalize
effectively. Consequently, the choice narrows down to the two UNet models. On real data
both of them yield similar performance. However, the UNet 4 32 model shows better
performance when trained with data augmentation. Additionally, being the lighter of the
two models, it offers advantages in terms of memory savings and faster inference. There-
fore, the UNet 4 32 model trained with data augmentation will be selected for the next
part of the project.

Occupancy networks In this project, having a accurate representation of the object is
essential since the main goal is to provide prior knowledge for the robot’s object grasping
tasks, and having a poor representation will limit the grasping possibilities. However, it is
worth noting that the likelihood-to-evidence ratio (Chapter 5) updates this knowledge and
can mitigate any errors that may occur. Furthermore, considering the size of the gripper,
capturing fine details may not be critical, thereby reducing the impact of imperfect object
representations. Based on the quantitative and qualitative results, the convolutional
occupancy network (Conv-ONet) appears to be the most suitable model for our purpose.
It offers efficiency, speed, and demonstrates strong generalization capabilities in both
novel scenes and real-world scenarios. The outputs of the Conv-ONet provide accurate
object representations, serving as a reliable prior for our model. For simplicity, we will
refer to it as the "occupancy network" in Part II. In contrast, the simple occupancy
network and vector neurons models lack the ability to efficiently handle complex scenes,
despite the valuable rotation invariant property possessed by the vector neurons. The
graph occupancy network, while an option, produces less smooth results and consumes
excessive memory, making it an unfavorable choice.
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Part II

Robotic grasping
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Chapter 5

Grasping as inference

Building upon the concept of implicit representation discussed in Part I, this chapter
focuses on exploring the different components of the posterior and their estimation, with a
particular emphasis on how this approximated posterior can be used to extract an optimal
grasping pose. As a reminder, the posterior probability, denoted as p(h | S, o = 1,P),
represents the updated prior belief given observations. It can be expressed as:

p(h | S, o = 1,P) = p(S | h, o = 1,P)
p(S | o = 1,P) p(h | o = 1,P). (5.1)

5.1 Notations
The following notations are taken from [3] with slight modifications.

Frames: We use several reference frames in our work. The world frame F−→W and the
workspace frame F−→S can be chosen arbitrarily and are not tied to a physical location. The
world frame is used for the robot and the sensor, while the workspace frame is employed
for our inference system. F−→C and F−→E correspond to the camera and the tool center point,
respectively.

Hand Configuration: The hand configuration h ∈ R3 × S1 is defined as the pose
(x,q) ∈ R3 ×S1 of the hand. In this context, x represents the vector S⃗E and q represents
the planar rotation using complex numbers (cos β, sin β). Here, β corresponds to the
rotation of the gripper. Both x and q are expressed in the F−→S coordinate system.

Success: A binary variable S ∈ {0, 1} indicates whether the grasp fails (S = 0) or
succeeds (S = 1), i.e., whether an object is successfully grasped and held above the table
for at least 3 seconds.

Observation: Given the depth image I of a scene, along with its corresponding camera-
to-world transformation TWC and camera intrinsic matrix K, we construct a point cloud
P ∈ R2048×3 expressed in F−→S.

Occupancy: A binary variable o ∈ {0, 1} indicates whether a point p ∈ R3 is occupied
by an object in the scene.

Latent Variables: The unobserved variables z ∈ Z capture uncertainties about the
nonsmooth dynamics of contact, the sensor noise, as well as the number of objects and
their geometry.
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Figure 5.1. Probabilistic graphical model of the environment. Gray nodes correspond
to observed variables and white nodes to unobserved variables. Unobserved variables z
capture uncertainties about the dynamics of the system, the sensor noise, as well as the
geometry of the object. On the other hand, the variable h is deterministic given x and q.

5.2 Probabilistic modeling
The posterior given by Equation 5.1 can be further decomposed. Specifically, considering
that q is independent of the point cloud and occupancy, we have:

p(h | o = 1,P) = p(x | o = 1,P)p(q).

As discussed in Part I, by applying the Bayes rule to the prior over the position, we
obtain p(x | o = 1,P) = p(o=1|x,P)

p(o=1|P) p(x). This decomposition leads to the following expres-
sion:

p(h | S, o = 1,P) = p(S | h, o = 1,P)
p(S | o = 1,P)

p(o = 1 | x,P)
p(o = 1 | P) p(x)p(q).

Based on this complete posterior, we can construct the Bayesian network illustrated in
Figure 5.1. The variables S,P, o,x, and q are modeled as random variables to account
for noise and incorporate prior beliefs. The network structure is motivated by the depen-
dencies among the variables, including S depending on h, o,P, z and o depending on P
and x, and P depending on z.

Grasping problem Given our probabilistic graphical model (Figure 5.1), we approach
the grasping problem as a Bayesian inference task to determine the hand configuration
h∗. This configuration represents the most probable a posteriori, given a successful grasp
within an occupied region of the scene. In other words, we are seeking the maximum a
posteriori (MAP) estimate of the hand configuration:

h∗ = arg max
h

p(h | S = 1, o = 1,P).

The posterior can be expressed as the product of the likelihood-to-evidence ratio r and a
scene-dependent prior:

p(h | S, o = 1,P) = r(S | h, o = 1,P)p(h | o = 1,P),

With r(S | h, o = 1,P) = p(S|h,o=1,P)
p(S|o=1,P) . For brevity, let’s assume that the Boolean variables

S and o are set to 1 by default from now on.
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Figure 5.2. Graphical summary of neural ratio estimation for posterior approximation.

Both the likelihood function p(S | h, o,P) and the evidence p(S | o,P) are intractable.
This intractability comes from the fact that the likelihood is incomplete. Specifically,
it can be expressed as p(S | h, o,P) =

´
Z p(S, z | h, o,P)dz where the integral involves

summing over the latent space Z that has large cardinality. Similarly, the evidence
integrating over all possible hand positions can be computationally expensive and also
requires the evaluation of the intractable likelihood function: p(S | o,P) =

´
H p(S |

h, o,P)p(h | o,P)dh. However, it is still feasible to generate samples from physical
simulators, enabling the use of Bayesian likelihood-free inference algorithms [45].

5.3 Neural ratio estimation
To approximate the ratio r(S | h, o,P), we can use an amortized neural ratio estimation
(NRE) approach [45, 46]. This involves using a specific neural network rϕ designed for
ratio estimation. Let’s consider a simple scenario where our objective is to estimate the
posterior distribution of parameters p(θ | xobs), which explains the observed data xobs of
a complex phenomenon. For this purpose, we have a simulator that generates data x
based on parameters θ, formally denoted as x ∼ p(x | θ). By applying Bayes’ rule, we
can express the posterior p(θ | x) as follows:

p(θ | x) = p(x | θ)
p(x) p(θ).

However, evaluating the likelihood function p(x | θ) and the evidence p(x) may be com-
putationally or temporally impractical, or there might be no closed-form expression avail-
able. Introducing the likelihood-to-evidence ratio, r(x | θ) = p(x|θ)

p(x) , enables us to rewrite
posterior in the form of

p(θ | x) = r(x | θ)p(θ).
The likelihood-to-evidence ratio cannot be directly evaluated, but it can be approximated
using the likelihood ratio trick [47]. This trick involves training a classifier dϕ(x, θ) to
distinguish between positive tuples (labeled y = 1) sampled from the joint distribution
(x, θ) ∼ p(x, θ) and negative tuples (labeled y = 0) sampled from the product of marginals
(x, θ) ∼ p(x)p(θ). The Bayes optimal classifier that minimizes the binary cross-entropy
loss can be formulated as

d∗(x, θ) = p(x, θ)
p(x, θ) + p(x)p(θ) .

Applying the logit function to d∗ allows us to recover the log-likelihood-to-evidence ra-
tio:

logit(d∗(x, θ)) = log d∗(x, θ)
1 − d∗(x, θ) = log p(x, θ)

p(x)p(θ) = log p(x | θ)
p(x) = log r(x | θ).
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In practice, we approximate d∗ using a neural network that outputs log rϕ(x | θ). We
then apply the sigmoid function to obtain an approximate classifier dϕ, as illustrated in
Figure 5.2. This classifier estimates the probability of the positive class as:

σ(log rϕ(x | θ)) = 1
1 + exp(− log rϕ(x | θ)) = dϕ(x, θ).

Finally, by training dϕ, we obtain a more accurate estimate rϕ of r. This allows us to
approximate the posterior distribution as:

p(θ | x) ≈ p̂(θ | x) = rϕ(x | θ)p(θ).

NRE for grasping Back to our grasping problem we can frame it as a NRE by sampling
from two distributions, labelled as y = 0 and y = 1, respectively:

• S,h ∼ p(S,h | o = 1,P) = p(S | h, o = 1,P)p(h | o = 1,P),

• S,h ∼ p(S | o = 1,P)p(h | o = 1,P).

For which the optimal classifier is:

d∗(S,h, o,P) = p(S,h | o = 1,P)
p(S,h | o,P) + p(S | o,P)p(h | o,P) .

Applying the logit function to the optimal classifer allow to retrieve the log-ratio:

logit(d∗(S,h, o,P)) = log d∗(S,h, o,P)
1 − d∗(S,h, o,P)

= log
p(S,h|o,P)

p(S,h|o,P)+p(S|o,P)p(h|o,P)

1 − p(S,h|o,P)
p(S,h|o,P)+p(S|o,P)p(h|o,P)

= log
p(S,h|o,P)

((((((((((((
p(S,h|o,P)+p(S|o,P)p(h|o,P)

p(S,h|o,P)+p(S|o,P)p(h|o,P)−p(S,h|o,P)

((((((((((((
p(S,h|o,P)+p(S|o,P)p(h|o,P)

= log p(S,h | o,P)
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= log r(S | h, o,P).

Then, as explained earlier by training a classifier to approximate d∗ we can retrieve an
estimation of the ratio, named rϕ.
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5.4 Scene-dependent Prior
The last component of the model is the prior p(h | o,P), which can be decomposed into
two parts: the position p(x | o,P) and the orientation p(q), represented as p(h | o,P) =
p(x | o,P)p(q). This prior is scene-dependent as it depends on a point cloud P extracted
from a depth image of the current scene.

Treating grasping as a learning problem necessitates a well-balanced and exhaustive
dataset for training robots to effectively grasp objects, covering as much as possible all
the grasping poses. By approaching the problem as described in Section 5.3, we can take
advantage of an informed prior to sample promising grasping poses, enabling the network
to learn more efficiently.

5.4.1 Orientation
From Norman et al. paper [3] the prior of the orientation is defined as "q is a uniform
distribution over the unit circle S1. This prior is invariant to any rotation R ∈ SO(2)
applied to q, satisfying p(q) = p(Rq). This property enables free selection of the reference
frame on the table. Additionally, the prior can be extended to SO(3) by using quaternions
on S3."

5.4.2 Positions
The prior distribution over the position, denoted as p(x | o = 1,P), can be decomposed
as follows:

p(x | o = 1,P) = p(o = 1 | x,P)
p(o = 1 | P) p(x) ∝ p(o = 1 | x,P)p(x),

where p(o = 1 | x,P) refers to the Convolutional Occupancy Network discussed in Section
2.2.2, and p(x) is uniform over the workspace. Sampling from p(x | o = 1,P) is necessary
for training the ratio rϕ as described in Section 5.3. However, an analytical form of this
distribution is not available. To overcome this challenge, we use Markov chain Monte
Carlo methods [48], specifically the Hamiltonian Monte Carlo (HMC) [49]. HMC requires
a differentiable likelihood, which is satisfied by the differentiable properties of the neural
network representing the likelihood in our case. Figure 5.3 illustrates an example of the
posterior obtained by applying HMC to a specific scene.

Since objects generally occupy a small portion of the total workspace, the use of an
uninformed prior such as a uniform distribution over the object bounding box, as in the
previous model [2], does not scale well with an increasing number of objects in the scene.
It would require an impractically large number of samples to achieve a sufficient number
of successful grasps to allow rϕ to learn how to grasp objects. In contrast, our approach
allows direct sampling of grasping positions within the object volume using only a depth
image of the scene. However, our prior assumes that the grasping point lies inside the
object volume, which limits pose coverage, particularly for convex shapes.
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Figure 5.3. Corner plot representing the samples obtained from the distribution p(x | o =
1,P) using Hamiltonian Monte Carlo (HMC) for the given partial point cloud displayed
on the left.
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Chapter 6

Grasping pipeline
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Figure 6.1. Our grasp inference pipeline. It begins with a noisy depth image of the scene,
from which we first separate the objects from the background using a U-Net [27]. We then
generate three canonical feature planes following the approach in [17]. To evaluate a given
h, we extract point-wise ψ(P,x) and local Ψ(P,h) features and feed them to the ratio
and occupancy networks. Using the resulting differentiable posterior and Riemannian
optimization, we finally identify the most plausible hand configuration h∗.

In this chapter, we present the pipeline components for inferring a grasping position from
a depth image, taking advantage of a scene-dependent prior that incorporates object
occupancy. Here is an overview of the pipeline:

1. Input processing: The background is removed from a depth image, and only object
pixels are extracted using a segmentation model based on a U-Net architecture
The segmented depth image is then converted into a point cloud P. To ensure
consistency, P is preprocessed by uniformly downsampling and upsampling through
point repetition, resulting in 2048 points (refer to Section 2.2.1).

2. Posterior Approximation: The encoder part of the prior p(x | o = 1,P) also
serves as a feature extractor, generating three canonical feature planes from P. From
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these planes, point-wise features ψ(P,x) and local features Ψ(P,h) are extracted.
These features play a crucial role in evaluating both the occupancy and ratio net-
works, enabling us to approximate the posterior distribution p(h | S = 1, o = 1,P).

3. Maximum A Posteriori (MAP): The final step involves computing the MAP
estimate by maximizing the log posterior. Riemannian gradient ascent is used to
preserve the non-linearity of S1 during this estimation process.

For a visual representation of this pipeline, refer to Figure 6.1.

6.1 Density ratio estimation
In order to improve the reliability and conservativeness of our posterior approximations,
we follow the approach demonstrated by Hermans et al. [50] and use an ensemble of
neural ratio estimators. We employ five individual models and compute their average to
approximate the density ratio. Mathematically, this is expressed as:

log r̂ = log
(

1
5

5∑

i=1
exp(log r̂i)

)

To convert the logarithmic ratios obtained from the models into regular ratios, we apply
the exponential function. These five models are trained independently on the same dataset
and share the same architecture.

6.1.1 Architectures

ResNet BlockFc-32

Figure 6.2. The architecture of the ratio estimator rϕ involves taking the success S, hand
pose h, and feature representation of the point cloud P (consisting of point-wise ψ and
local Ψ features) as inputs. rϕ then processes these inputs to produce an estimation of
the logarithmic ratio rϕ.

In our work, we experimented with several ratio estimator architecture, denoted by rϕ(S |
h, o,P), which incorporate different levels of scene knowledge. The base architecture is
similar to the one of the Conv-ONet decoder (Figure 6.2), but the extracted features
are different. The ratio estimator takes three inputs: the success S (either 0 or 1), the
hand pose h, and the features representing the point cloud P. The features of P are
obtained using the encoder of the Conv-ONet, which uses the same weights as the prior
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p(o = 1 | x,P) and outputs three canonical feature planes: cxy(P), cxz(P), and cyz(P).
These global features do not enable the ratio to reason about the hand’s position and
orientation or estimate the potential success of a grasp, as they represent the entire scene
in different canonical planes. Instead, we extracted both point-wise ψ(P,x) and local
Ψ(P,h) information, which provide additional details about the scene while avoiding
unnecessary noise. It is worth noting that although the figures do not explicitly display
it, most of the fully connected layers are followed by a ReLU activation to account for
non-linearity. For further details, please refer to the source code.

Here is a list of models we considered, each with varying levels of information about the
scene extracted from the features planes:

Point-wise features

As a baseline, we used the simplest model that extracts features only at the 3D point level
(Figure 6.3). For a given query coordinate x, we extracted the local features as

ψ(P,x) = cxy(P)(xxy) + cxz(P)(xxz) + cyz(P)(xyz),

where c∗∗(P)(x∗∗) represents the bilinear interpolation at the precise 2D coordinate of
the feature plane as described in Section 2.2.2.

However, this model’s simplicity prevent its ability to reason about the scene as it does
not have local feature representation Ψ(P,h). With only a limited view of the scene, it
is difficult to understand the implication of the orientation and position of the gripper
for grasping an object. In addition, it cannot take into account the shape of the object
or anticipate potential collisions with other objects, since it has no explicit information
about them.

For the subsequent models, the point-wise feature ψ remains unchanged, while only the
local features Ψ vary

y

z

x

Figure 6.3. Point-wise features for a given point cloud. It is the sum of the bilinear
interpolations from the canonical feature planes at a coordinate x.

Hands features

To enhance the ratio’s understanding of the scene, incorporating features from the finger-
tips and palm of the hand at its grasping pose could prevent collisions with other objects
in the scene. However, this approach still does not enable reasoning about the scene as a
whole. Specifically, we denote

Ψ(P,x) = [ψ(P,xf1), ψ(P,xf2), ψ(P,xp)],
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where xf1, xf2, and xp are the coordinates of the fingertips and palm when reaching
the pose h. Figure 6.4 illustrates the locations where the features are extracted, with
green and blue representing the fingertips and red representing the palm. However, this
approach is limited to extremely localized information and does not allow a more global
understanding of the scene, indicating only whether the hand collides with an object or
not, leaving room for potential failures.

Figure 6.4. The two fingertips of the hand (blue, green) and the palm (red) of the gripper.

Graph features

This model, inspired by the Graph Occupancy Network [37], it uses the features ex-
tracted from the PointNet before the projection (See Figure 2.12). For a query point
x, the k-nearest neighbors’ features are taken, along with the relative distance to x and
concatenated, then passed through two fully connected layers as we can see in Figure 6.5
to produce the local features Ψ(P,x). However, due to the incompleteness of the point
cloud, these features may lack sufficient information, as demonstrated in Section 3.3.3
regarding the implicit representation of a partial view. Moreover, this model is quite time
and resource-consuming.

x

y

z

Fc-32 Fc-32

Figure 6.5. To obtain the local features Ψ(P,h), we use the features of the k nearest
neighbor points, which are processed by a PointNet. These features are combined with
the relative distance from the query point x and then fed through two fully connected
layers. The size of the receptive field primarily relies on the value of k.

Cropped features

As the robotic arm operates in a 4 degrees of freedom (DoF) configuration, objects are
grasped using a top-down approach. Therefore, in order to estimate the potential success
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of a grasp, the model needs to understand the effect of a specific hand position. Specifi-
cally, it requires an understanding of the object’s shape and potential collisions between
the hand and objects. To achieve this, the feature plane cxy is cropped to match the
size of the gripper and centered on xxy (Figure 6.6). This cropping approach enables the
model to gain a better understanding of the scene by providing features of the scene that
are focused around the expected hand position. To obtain Ψ(P,h), the cropped feature
plane undergoes two convolutional neural networks (CNNs) with 16 hidden layers and a
kernel size of 3, followed by two fully connected layers with a hidden size of 32.

CNN-16 CNN-16 Flatten Fc-32 Fc-32

Gsize

G
si
ze

y

x

Figure 6.6. To extract the local features Ψ(P,h) at the hand level, the canonical planes
cxy are first cropped to the size of the gripper (Gsize), which roughly represents 20% of
the workspace surface, centered at xxy.

Cropped & Rotated features

This model shares a similar architecture with the previous one but introduces a new
component to account for the rotation of the gripper. The rotation is incorporated
by applying a rotation transformation to the cropped feature planes. The rotation
angle, denoted as β, represents the gripper’s rotation on the unit circle embedded as
the complex number q = (cos(β), sin(β)). The angle β is calculated using the formula
β = atan2(cos(β), cos(β)). If any points fall outside the input boundaries, they are filled
with 0. By explicitly incorporating rotation into the features, rather than requiring the
model to learn how to rotate them based on q, the model benefits from an inductive bias
that facilitates faster learning and improves performance.

CNN-16 CNN-16 Flatten Fc-32 Fc-32

Gsize

G s
iz
e

y

q

Figure 6.7. In order to extract local features Ψ at the hand level while considering the
orientation, the canonical planes cxy are first cropped to match the size of the gripper and
centered at xxy. After the cropping process, these cropped planes are rotated according to
the gripper’s rotation q and subsequently passed through two CNN. The resulting feature
maps are then flattened and further processed by two fully connected layers.
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(a) Cropped features to the size of the gripper.

(b) Cropped & Rotated features, using a rotation
β set to 30°.

Figure 6.8. Comparison between "Cropped features" and "Cropped & Rotated features"
obtained from a specific scene’s xy feature planes.

For a better understanding, Figure 6.8 show an xy feature plane extracted from a scene.
The first plot (Figure 6.8a) illustrates the feature plane after it has been cropped based
on the dimensions of the gripper. The second plot (Figure 6.8b) demonstrates the same
feature plane after applying a rotation angle β to simulate the orientation of the grip-
per.

6.2 Maximum a posteriori estimation
Having defined the prior p(h | o,P) and estimated the likelihood-to-evidence ratio rϕ(S |
h, o,P), we can now compute the posterior distribution as the product of these two:

p̂(h | S, o,P) = rϕ(S | h, o,P)p(h | o,P).

To achieve a successful grasp, we aim to find the hand pose h that maximizes the posterior
probability given a successful grasp, occupancy o, and point cloud P. In other words, we
seek the maximum a posteriori (MAP) estimate:

h∗ = arg max
h

p̂(h|S = 1, o = 1,P). (6.1)

To ensure numerical stability, we minimize the negative logarithm of the posterior prob-
ability:

h∗ = arg max
h

log rϕ(S = 1 | h, o = 1,P) + log p(h | o = 1,P)

h∗ = arg max
h

log rϕ(S = 1 | h, o = 1,P) + log p(o = 1 | x,P)p(x)
p(o = 1 | P) + log p(q)

h∗ = arg min
h

− log rϕ(S = 1 | h, o = 1,P) − log p(o = 1 | x,P) − log p(x) − log p(q)
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Since an analytical form of this estimated posterior is not available, we rely on approxima-
tion methods to find the maximum. Gradient-based optimization methods are applicable
since the model is composed of neural networks. Hence, we use Adam optimizer with a
learning rate of 0.005 for x and 0.05 for q. However, as shown in Figure 3.15, the log
density of the prior is not smooth and contains many local minima, which will certainly
complicate the optimization. Although the likelihood-to-evidence ratio may smooth the
posterior to some extent, it is safer to use multiple starting points for optimization. Thus,
we sample K position and orientation pair from their respective prior x,q ∼ p(x)p(q)
and select the top-k points using two different strategies: the sampling-based and the
optimized-based strategy.

• In the Sampling-based strategy, the posterior is evaluated for each of the K
position and orientation pairs (x, q), and the top-k points with the highest values
are selected as starting points.

• In the Optimized-based strategy, the positions of the K samples are optimized
for 100 iterations to maximize p(o | x,P). The optimized points are then evaluated
on the conditioned posterior, and the top-k position and orientation pairs (x, q) are
selected. This strategy allows starting with points that are already on the object,
potentially close to the optimal position. Optimizing the prior helps speed up the
reasoning process compared to optimizing all K points on the posterior, which can
be computationally intensive.

Finally, the selected k points are optimized on the posterior for 300 iterations, and the
hand pose h that minimizes the negative log posterior is chosen as the final grasping
point. In practice K = 1000 and k = 10.

When optimizing the hand pose, the orientation q is represented as a point on the unit
circle S1. This representation poses a challenge as it is not defined in Euclidean space,
and using traditional gradient descent methods would violate geometric assumptions.
To address this issue, the approach of using Riemannian optimization, as proposed by
Norman et al. [2, 3], is adopted. For more detailed information on the implementation
of Riemannian optimization in this context, please refer to the original paper by Marlier
et al. as Riemannian optimization is not within my contributions. For completeness
Figure 6.9 schematically summarise this optimization process.

h*

Figure 6.9. The figure illustrates Riemannian optimization, where hk represents the previ-
ous optimization point and hk+1 denotes the next point. The Euclidean gradients ∇f(hk)
are transformed into their Riemannian counterparts grad f(h), which are computed and
projected onto the tangent space Thk

M . The update rule uses an exponential mapping
given by hk+1 = exp hk(−αkgrad f(hk)), where expx(v) : TxM → M .
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Chapter 7

Experiments

In this chapter, we carry out experiments using the different ratio architectures previously
defined. These experiments are conducted both in simulated environments and in real-
life scenarios, allowing us to compare our approach with state-of-the-art methods. In
addition, the posterior and prior distributions are examined in depth to provide insight
into our method of grasping and explaining how the model apprehends an object. Finally,
we provide a complete ablation studies to validate our design choices. As a reminder the
robot operates in a 4-degree-of-freedom (DoF) setting, which limits the grasping approach
to a top-down orientation.

7.1 Experiment protocol
The prior p(x | o = 1,P) uses the same Conv-ONet, as described in Part I, with a
resolution of 128 and a hidden layer feature dimension of 32.

Data generation process The structure defined in Figure 5.1 provides a direct and
straightforward method for generating data by conditioning on o = 1. Formally the data
generation process is:

z ∼ p(z)
I ∼ p(I | TW C , z)
P = f(I,TW C , K)

{x ∼ p(x | o = 1,P)}
{q ∼ p(q)}
{h = (x,q)}

{τ1:l ∼ Λ(τ0, IK(h),P)}
{S ∼ p(S | τ1:l, z)}

Grasping is successful when the robot holds an object above the table for a minimum of 3
seconds. This grasp is performed at pose h and is executed using trajectory τ1:l obtained
through a path planner Λ. The path planner takes into account P to avoid collisions and
uses an inverse kinematics solver IK to determine the robot’s motion required to reach
h. For a given P a set of pairs D(P) = {(hn, Sn) : n = 1 : N} are sampled.
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The data generation process takes place entirely in a simulated environment built with
PyBullet. The latent variable z follows the description described in [2].

Training The samples D(P) are drawn from the distribution p(S | h, o = 1,P)p(h |
o = 1,P), which are considered positive samples based on Section 5.3. However, to train
our model, we also require negative samples from p(S | o = 1,P)p(h | o = 1,P). To
obtain these negative samples, we randomly shuffle the hand poses h1,...,N from D(P).
This shuffling process ensures that the success labels and hand poses are independent
given P, enabling us to train our discriminator. We use the following loss function for
training the discriminator:

L = 1
|B| × 2N

|B|∑

i=1


 ∑

(S,h)∈D(Pi)
LBCE(dϕ(Pi,h, S), 1)

+
∑

(S,h′)∈shuffle(D(Pi))
LBCE(dϕ(Pi,h′, S), 0)




(7.1)

The occupancy value o is not explicitly provided as an input during training, as the model
is conditioned on samples drawn from o = 1, which treats it as a constant in this context.
However, P varies according to the scene.

The classifier is trained for 150 epochs using 10, 000 different scenes composed of two sets
of 4, 000 (h, S) pairs for a given P. The optimizer used is Adam with default parameters
β1 = 0.9 and β2 = 0.999, and the initial learning rate is 10−4, which is halved every 50
epochs but remains bounded to 10−5. Batch size vary according to the model used to
accommodate memory constraints: 32 for the "point-wise" and "hands" features, 1 for the
others. Each batch consists of a P and D(P). The objects used are the same as those
defined in section 3.1, but using only the packed scenario.

Metrics To evaluate and compare our models, we use metrics inspired by the work of
Breyer et al. [40] defined as follows:

• Success rate (SR): The success rate measures the percentage of successful grasps.
Since we are evaluating the grasping performance and not the path planner, we
allow for up to 3 failed attempts from the path planner before considering the grasp
as a failure.

• Percent clear (% clear): This metric assesses the model’s ability to clear objects
from a table. For a scene with m objects, we evaluate how well the model can grasp
and remove these objects. If the model successfully grasps k consecutive objects
without failure but fails to grasp the next one, the % clear for that particular scene
is calculated as m/k, where m ≤ k. The % clear for all scenes are then aggregated
to provide an estimate of the model’s performance in clearing objects from the table.

7.2 Training analysis
Figure 7.1 shows the mean loss and its standard deviation for the different models de-
scribed in Section 6.1.1. This plot indicates that the Graph features, Cropped features,
and Cropped & Rotated features models converge rapidly to their optimum, indicating
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Figure 7.1. Training and validation loss of different models with varying levels of scene
knowledge. Each model is trained five times, and the results presented here display the
average loss along with the standard deviation. The dashed red line indicates the step
for which the average validation loss is the lowest for each of the models. The training
process started with a learning rate of 10−4 and is halved every 50 steps.

that providing more information about the scene enables faster learning. Curiously, the
Cropped features model reaches its optimum faster than the Cropped & Rotated features,
whereas the latter has more meaningful features since the feature planes have been ro-
tated according to the gripper. Although the Cropped & Rotated features model achieves
a lower loss and exhibits slightly less overfitting. But overall, it seems that the increase in
inductive bias in the models leads to a greater tendency to overfitting and faster conver-
gence. However, it is important to note that the loss alone may not be a reliable metric
for model performance. For instance, the Hand features model achieves the lowest loss
but performs relatively poorly compared to the Cropped & Rotated features model, as
shown in Table 7.1. Finally, it is worth mentioning that the training of the Graph features
model seems to be more unstable and has a higher variance than the others. This high
variance can be explained by the fact that the point cloud is incomplete, which makes it
more difficult to learn patterns on the data.

7.3 Models evaluation
7.3.1 Simulation results
The quantitative results obtained from 200 rounds of experiments are shown in Table 7.1.
Each round involves a table with 5 objects randomly placed according to the packed
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Initial points strategy SR ↑ % cleared ↑
Point-wise features Optimized-based 71.26 43.15

Hands features Optimized-based 79.23 55.06
Graph features Optimized-based 85.58 63.82

Cropped features Optimized-based 88.16 67.45
Cropped & Rotated features Optimized-based 91.37 75.25

Point-wise features Sampling-based 70.62 40.95
Hands features Sampling-based 77.49 49.77
Graph features Sampling-based 85.01 61.45

Cropped features Sampling-based 89.12 68.03
Cropped & Rotated features Sampling-based 89.78 71.07

Table 7.1. We compared different models based on their success rates (%) and percent
cleared for picking experiments in the packed scenario. These experiments were conducted
in a simulated environment, involving 5 objects over 200 rounds.

scenario (Section 3.1). The end of a round occurs when there are no more objects left on
the table or in the case of an unsuccessful grasp.

Success rate Considering first the Optimized-based strategy for the choice of the initial
points, the Point-wise features model show the poorest performance, which is under-
standable since it only provide information about the grasping point without considering
the surrounding context. Consequently, the success rate (SR) is relatively low (71.26%).
However, incorporating information on fingertip and palm positions resulted in an 8%
improvement. This improvement may come from a reduction in gripper collision errors,
as the model has more information about the hand in space. The Graph features signifi-
cantly enhanced the performance, achieving a success rate of 85.58%. This indicates that
having more comprehensive global information about the scene and object structure is
beneficial. This observation is supported by the last two models, which provide a cropped
and centered view of the current scene based on hand position and size. Notably, the
introduction of rotation in feature space as a function of clamp orientation yields a suc-
cess rate of 91.37%, confirming its positive impact on ratio performance. In terms of the
choice between the Optimized-based strategy and the Sampling-based strategy, the perfor-
mance difference is negligible. However, the Optimized-based strategy slightly improves
the results..

Percent cleared The percent cleared achieved by each model is relatively low, but it
does show improvement with a higher success rate. These low values suggest that the
models struggle when multiple objects are present in the scene. When a failure occurs
and there are still many objects remaining, the percent cleared is penalized more severely.
This observation is supported by the data presented in Figure 7.2.

Failure rates at different stages of each round reveal interesting trends. The Cropped
features and Cropped & rotated features models show a decreasing failure rate as the
round progresses, suggesting limitations associated with the size of the gripper. On the
other hand, the remaining models exhibit an increasing failure rate as the number of
objects on the table decreases. This suggests that gripper size may not be the only factor
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Figure 7.2. Failure rates of the different models based on the number of objects remaining,
referred to as stages. The analysis was performed in a simulated environment, encom-
passing 200 rounds of experiments.

contributing to failure in these cases. Other factors, such as incorrect gripper position
and orientation, may also play a role. Also models may give priority to the easiest objects
and struggle with the more complex ones, resulting in a higher failure rate when fewer
objects remain. Ideally, the failure rate should remain constant regardless of the number
of objects remaining, assuming there is sufficient space between objects, as observed in
the "packed" scenario. However, closer examination of the Cropped & rotated features
and Cropped features models reveals that their failure rates stabilize when three or fewer
objects remain, but increase for four or five objects. This suggests that the size of the
gripper significantly affects these failures. To improve the percent cleared and success
rate, t might be useful to use a smaller gripper capable of not colliding with other objects
during grasping.

Comparison with Benchmarks Models To evaluate the effectiveness of our ap-
proach, we compared our best model with two existing methods: Grasp Pose Detection
(GPD) [51] and Volumetric Grasping Network (VGN) [40] in terms of success rate and
percentage cleared. The evaluation was carried out using the same dataset and a similar
scenario, and the results are summarized in Table 7.2.

Our model achieved a high success rate of 91.37%, which is very close to the best success
rate achieved by VGN (91.5%). However, it should be noted that our model operates in
a more constrained environment, with only 4 degrees of freedom (DoF) compared with
6 DoF for the other models. This limited range of motion for the gripper increases the
likelihood of collisions and significantly reduces the range of all possible poses. As a result,
our model has a slightly lower percent cleared than VGN.
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Furthermore, it is important to highlight that the gripper used in our approach is primarily
designed for large objects, which makes it more difficult to grasp smaller objects. This
design choice contributes for some of the limitations in our model’s performance.

Comparison with the Previous Model We achieved a success rate of 97% on a
single object, outperforming the previous model [2], which achieved a success rate of 91%.
In addition, the samples drawn for the prior distribution achieved a success rate of 17%,
whereas the previous model was below 1% [52].

7.3.2 Real-world results

Method Success rate (%) % cleared

Simulation results
GPD 73.7 72.8
VGN (ε = 0.95) 91.5 79
VGN (ε = 0.9) 87.6 80.4
VGN (ε = 0.85) 80.4 79.9
Ours 91.37 75.25

Real-world results
Ours 95.6 88

Table 7.2. Success rates (%) and percent cleared for picking experiments for the packed
scenario with 5 objects over 200 rounds. (Since the publication of our paper [3], our model
has been trained longer and with more data, which explains the increase in success rate).

Moving on to real-world results, we conducted 20 rounds of experiments with 5 objects
selected from a set of 13 unknown objects (see Fig. 7.3). We achieved an outstanding
success rate of 95.6% and a percent cleared of 88%. These results demonstrate the
strong adaptability and performance of our approach in real-world scenarios. In both
simulation and real-world settings, the majority of failure cases are due to insufficient
friction forces, causing the objects to slip.

Figure 7.3. (left) Object assets used in the real setup. (right) Successful grasp of a mug.

58



Figure 7.4. Gradient-based optimization is performed for 300 iterations to estimate the
maximum a posteriori h∗ = arg maxh p̂(h|S = 1, o = 1,P). Starting from a random
location, the path gradually converges towards the center of the object. The best estimate
is marked by a red dot, and the crosses represent the tips of the gripper’s finger. The
color of the path ranges from purple to yellow, indicating lower to higher values of the
posterior value.

7.4 MAP estimate
Figure 7.4 shows an example of posterior optimization for 300 iterations using Random
& Cropped features model to estimate h∗ = arg maxh p̂(h|S = 1, o = 1,P) as explained
in Section 6.2. The optimization process starts from a randomly chosen starting point in
the object’s bounding box. Throughout the iterations, the grasp position gradually moves
towards the center of the object, eventually reaching a convenient position. Additionally,
the orientation of the gripper fingers is aligned parallel to the object, to ensure successful
grasping.
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(a) Cereal box (b) Upside down mug (c) Upright mug

(d) Multi-object

Figure 7.5. Baseline Scenarios: Images (a), (b), and (c) are simulated scenarios, while
image (d) is a real depth image.

7.5 Prior and posterior analysis
Previous section provided a quantitative analysis of our model’s performance. However,
to gain a deeper understanding of how the model makes decisions based on its input,
further investigation is required. This section aims to compare the posterior and prior
distributions of four distinct scenes (refer to Figure 7.5) to provide insight into the model’s
decision-making process. Each scene represents a unique scenario, a rectangular box, an
upright and inverted convex shape (mug), and a multi-object scene. The first three scenes
are simulated, while the fourth scene is based on a real depth image.

7.5.1 Prior over the position
To sample x from p(x | o = 1,P), as explained in Section 5.4.2, we use HMC with specific
hyperparameters. These include 200 chains with 25, 000 transitions each, and a burn-in
of 1, 000. The integration parameters used are ϵ = 0.01 and L = 20. The initial points
for each chain are uniformly sampled within the bounding box of the objects.

Figure 7.6 illustrates the resulting distributions with a corner plot for the different scenar-
ios, and Figure 7.7 shows these samples in 3D. These distributions accurately reflect the
locations, shapes, and potential grasping points of objects in the four scenarios. Notably,
in the multi-object scene (Figures 7.6d, 7.7d), the distribution accurately represents all
five objects. This indicates that the prior distribution is informative and robust, even
when dealing with a real scene. However, for convex objects, it does not assign density
to the interior of the mug, as it is not an occupied area, showing the limitation of this
method. But when the convex area is hidden, as in Figure 7.7b, it does not recognize
that it is a convex shape and assigns a density to the interior of the convex region.
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Figure 7.6. Corner plot illustrating hand poses sampled from the Prior: x ∼ p(x | o =
1,P), obtained using HMC for the four baseline scenarios depicted in Figure 7.5.
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(a) Cereal box (b) Upside down mug (c) Upright mug

(d) Multi-object

Figure 7.7. 3D visualization illustrating the grasping points sampled from the Prior:
x ∼ p(x | o = 1,P), obtained using HMC for the four baseline scenarios depicted in
Figure 7.5.
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7.5.2 Posterior
Similarly to the prior distribution, we can sample from the posterior, conditioned on a
successful grasp and an occupied region. Specifically, we sample h from the distribution
p̂(h | S = 1, o = 1,P) = rϕ(S = 1 | h, o = 1,P)p(h | o = 1,P). However, since
the likelihood is not available, we use a likelihood-free version of HMC extended with
a geodesic integrator, following the approach proposed by Norman et al. [3], with the
following hyper-parameters: 250 chains with 100, 000 steps, a burn-in period of 5, 000
steps, and a thinning factor of 150. The integration parameters for HMC are set to
T = 20 and ϵ = 0.01. To gain insight into the importance of the features used in rϕ,
we compare the resulting posterior samples obtained from the Point-wise features and
Cropped & Rotated features models.

Corner plots and 3D visualizations are available for both models:

• Point-wise features: Figures 7.8, 7.9,

• Cropped & Rotated features: Figures 7.11, 7.12.

Position For both models, the estimated posterior tends to prioritize grasping objects
from the top rather than the bottom. However, the Point-wise features model does not
seem to take into account the presence of other objects in the surrounding, since it assigns
density to all objects, even when they cannot be grasped due to collision (Figure 7.9d).
In contrast, the Cropped & Rotated features model assigns a higher density to grasps
points located on the top of the highest objects, as shown in Figure 7.12d. This approach
minimizes the risk of collisions with other objects and ensures that the gripper’s palm
does not touch the object.

As expected, the limitations of the model become evident when examining the upright
cup scene (Figures 7.9c and 7.12c). The posterior distribution is conditioned to grasp the
object within an occupied region, and thus primarily considers grasping points located
within the object. However, in the case of the upright cup, the best way to grasp it would
be to put the grasping point at the center of the mug, which is not occupied. Instead, the
model puts densities on the walls of the cup. On the other hand, when the mug is turned
upside down (Figures 7.9b and 7.12b), the model perceives it as a filled object and allows
grasping points even in areas where there are empty space in the real world.

Orientation Additionally, Figure 7.10 and Figure 7.13 provides insights into the hand
orientation for the different grasping points in the multi-object scene, comparing the
Point-wise features and Cropped & Rotated features models. It shows that for the Point-
wise features model, the orientation is mainly uniform, even when objects are on the
path. This uniform distribution can also be observed in the corner plot (Figure 7.8d).
In the case of the Cropped & Rotated features model, the orientation is not uniform. For
example, for the large rectangular box, it assigns higher densities to grasp it by the thinner
side, because it knows that the other side of the box is larger than the size of the hand.
Moreover, in the right figure, where we see the scene from the side, for the small object
with low densities, it only allows the hand to rotate when there are no collisions with
other objects. This is not the case with the Point-wise features model, which remains
uniform even if the gripper collides with other objects.
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(c) Upright mug
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(d) Multi-object

Figure 7.8. Corner plot illustrating hand poses sampled from the Posterior: h ∼ p̂(h |
S = 1, o = 1,P), obtained using geodesic likelihood-free HMC for the four baseline
scenarios depicted in Figure 7.5. Using an ensemble of five Point-wise features ratio to
estimate the posterior.
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(a) Cereal box (b) Upside down mug (c) Upright mug

(d) Multi-object

Figure 7.9. 3D visualization illustrating grasping points sampled from the Posterior:
x ∼ p̂(h | S = 1, o = 1,P), obtained using HMC for the four baseline scenarios depicted
in Figure 7.5. Using an ensemble of five Point-wise features ratio to estimate the
posterior. The color gradient ranging from blue to red indicates the relative posterior
values assigned to each point. The grey-colored points correspond to the 3D point cloud
of the object reconstructed using the occupancy network.

Figure 7.10. Top and side view of the "Multi-object" scene, illustrating gripper pose
sampled from the Posterior: h ∼ p̂(h | S = 1, o = 1,P). Using an ensemble of five
Point-wise features ratio to estimate the posterior. The light blue points represent a
pair of fingertips, indicating the orientation of the hand.
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Figure 7.11. Corner plot illustrating hand poses sampled from the Posterior: h ∼ p̂(h |
S = 1, o = 1,P), obtained using geodesic likelihood-free HMC for the four baseline sce-
narios depicted in Figure 7.5. Using an ensemble of five Cropped & Rotated features
ratio to estimate the posterior.
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(a) Cereal box (b) Upside down mug (c) Upright mug

(d) Multi-object

Figure 7.12. 3D visualization illustrating grasping points sampled from the Posterior:
x ∼ p̂(h | S = 1, o = 1,P), obtained using HMC for the four baseline scenarios depicted
in Figure 7.5. Using an ensemble of five Cropped & Rotated features ratio to estimate
the posterior. The color gradient ranging from blue to red indicates the relative posterior
values assigned to each point. The grey-colored points correspond to the 3D point cloud
of the object reconstructed using the occupancy network.

Figure 7.13. Top and side view of the "Multi-object" scene, illustrating gripper pose
sampled from the Posterior: h ∼ p̂(h | S = 1, o = 1,P). Using an ensemble of five
Cropped & Rotated features ratio to estimate the posterior. The light blue points
represent a pair of fingertips, indicating the orientation of the hand.
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7.6 Ablation study

N° blocks - SR ↑
Point-wise features 3 71.26
Point-wise features 5 68.72

fingertips palm SR ↑
Hands features ✓ ✗ 78.25
Hands features ✗ ✓ 72.54
Hands features ✓ ✓ 79.23

k-NN. - SR ↑
Graph features 10 74.75
Graph features 1024 82.27
Graph features 2048 85.58

N° conv. SR ↑
Cropped features 0 72.54
Cropped features 1 85.52
Cropped features 2 88.16
Cropped features 3 69.24

N° conv. SR ↑
Rotated & Cropped features 0 75.99
Rotated & Cropped features 1 88.92
Rotated & Cropped features 2 91.37
Rotated & Cropped features 3 71.64

Table 7.3. Ablation study of our different architectures. SR is averaged over 200 rounds
using objects from the test set and the packed scenario.

We conducted an ablation study to validate the design parameters of our architecture,
as presented in Table 7.3. Starting with the Point-wise features the "N° blocks" column
indicates the number of residual blocks used in the architecture. Based on the table, we
determined that using three blocks yielded the best performance, and consequently, we
maintained this number for the other models.

Regarding the Hand features model, we explored different configurations by considering
only the finger tips or the palm. Our results indicate that incorporating these two features
results in better performance, and that using the palm alone in addition to the point
features does not bring much improvement, as it is simply a vertical translation. It
is worth noting that the increase in success rate compared to the Point-wise features
model across all three versions emphasizes the significance of integrating hand-related
information.

In the context of the Graph features, the "k-NN" column represents the number of points
in the point cloud used when querying a specific position x. Our findings suggest that a
larger number of points generally leads to improved success rate.

For the last two models, namely Cropped features and Rotated & Cropped features, we tried
varying the number of convolutions applied to the cropped feature planes cxy. Based on
the success rate, using two convolution layers produces the best results.
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7.7 Discussion
Building upon the previous method proposed by Marlier et al. [2], our improved model
surpasses its performance. Specifically, we achieve a 97% success rate on one object,
outperforming the 91% success rate of the previous model. Moreover, while the previous
model was limited to one object, ours can handle multiple objects while maintaining its
performance. Furthermore, the quality of the samples drawn from the prior distribution
improves significantly, with the sample success rate rising from 1% to 17%. However,
theses results must be interpreted with caution, as the previous model had 6 degrees
of freedom, which allows more ways of grasping the object but also makes the learning
process more difficult. In our experiments, we performed the grasp with 4 degrees of
freedom.

We demonstrate quantitatively and qualitatively that incorporating point-wise and local
information about the grasping position significantly improves the performance of our
method. The posterior estimated by the trained ratio and based on an occupancy prior is
both consistent and efficient, underlining the significance of our approach and providing
valuable explainability compared to other black box methods. Its stochastic nature can
be advantageous in cases where a grasp attempt fails, as it allows for the selection of an
alternative grasp point, whereas other methods usually predict a unique point.

In addition, our model achieves results comparable to those of benchmark methods, in-
dicating the effectiveness of our approach. Furthermore, our approach demonstrates re-
markable transferability from simulation to reality. Despite having been trained entirely
on simulated data, the ratio and the occupancy network successfully maintain, and even
improve, their performance when applied to real-world scenarios. This result underlines
the robustness and generalizability of our method.

Nevertheless, we observed that the gripper used in our experiments was not fully adapted
to the task, resulting in failures not due to predicted grasp points, but rather due to the
gripper colliding with objects. Furthermore, the main drawback of our method is the time
required to estimate the maximum a posteriori. Optimization involves making 300 passes
on the network, resulting in a considerable computation time of around 24 seconds using
a Quadro RTX 6000 GPU.
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Chapter 8

Conclusion

Our work directly addresses deficiencies of previous simulation-based inference methods
for robotic grasping, which relied on an uniform prior for the grasping position on the ob-
ject bounding box. By incorporating a more informative prior, we demonstrate significant
improvements in our results. In addition, our model achieves a success rate comparable
to that of the most recent method.

One notable weaknesses of the previous approach was the long acquisition time required.
We solved this problem by capturing a partial view of the scene which provides suffi-
cient information for our model to accurately represent the entire scene. This approach
significantly reduces the acquisition time while improving performance.

In addition to the aforementioned results, our method offers a high degree of transferabil-
ity from simulation to reality. This means that the model trained on simulated data can
be successfully applied to real-world scenarios, underlining the robustness and generaliz-
ability of our approach.

Nevertheless, there is still room for improvement in our approach. The development
of more efficient methods for determining the optimal hand pose is an area worthy of
further investigation. In addition, it is essential to address the challenges associated with
controlling the complete 6 degrees of freedom of the robotic hand. This could involve
the design of new features, such as the creation of a grid of voxels around the grasping
point, as an alternative to the current approach of using cropped and rotated features of
xy planes.
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Appendix A

Setup

The robotic arm is a UR5 with a three-finger adaptive robot gripper from Robotiq at-
tached to the end effector. However, for the purposes of this project, we opted to close the
two adjacent fingers to simulate a two-finger clamp. While the robot has the capability to
operate in 6 degrees of freedom (DoF), we specifically considered a 4 DoF configuration
for this master thesis.

In the setup, objects are placed on a tabletop, and the robotic arm captures the scene using
a depth camera (Intel RealSense) mounted on its flange. The depth image is captured
from a predefined pose. Prior to my involvement in the project, the real setup was
meticulously replicated in a simulation environment using PyBullet. Furthermore, the
real robot is controlled using ROS2, enabling smooth integration between simulation and
real-world execution.

Figure A.1. (left) Three finger adaptive robot gripper from Robotiq. (right) The UR5.
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Implicit representation priors meet Riemannian geometry
for Bayesian robotic grasping

Norman Marlier1∗ Julien Gustin2 Olivier Brüls3 Gilles Louppe4

Abstract— Robotic grasping in highly noisy envi-
ronments presents complex challenges, especially with
limited prior knowledge about the scene. In partic-
ular, identifying good grasping poses with Bayesian
inference becomes difficult due to two reasons: i) gen-
erating data from uninformative priors proves to be
inefficient, and ii) the posterior often entails a complex
distribution defined on a Riemannian manifold. In this
study, we explore the use of implicit representations
to construct scene-dependent priors, thereby enabling
the application of efficient simulation-based Bayesian
inference algorithms for determining successful grasp
poses in unstructured environments. Results from
both simulation and physical benchmarks showcase
the high success rate and promising potential of this
approach.

I. Introduction
Grasping is a fundamental skill for any robotic sys-

tem. While current methods are effective for highly
constrained tasks in structured environments, new and
complex applications require increased flexibility and
more advanced algorithms to account for the uncer-
tainties that emerge in unstructured and noisy environ-
ments. Bayesian inference offers a well-principled ap-
proach to address these uncertainties; however, robotic
tasks present unique challenges that make Bayesian
inference difficult to apply, particularly for sampling-
based algorithms. Firstly, many Bayesian approaches
assume that the likelihood is tractable and can be eval-
uated, which is seldom the case in robotics. Secondly,
parameters may span a vast space, leading to ineffi-
cient sampling strategies. Lastly, parameters of interest
often belong to smooth Riemannian manifolds, further
complicating the inference procedure. In this paper, we
address these challenges by designing informative scene-
dependent priors and using simulation-based inference
algorithms combined with geometric sampling methods.
Our contributions are summarized as follows:

• We integrate simulation-based Bayesian inference
methods [1] with 3D implicit representations for
robotic grasping.

• We adapt geodesic Monte Carlo [2] with a neural
ratio estimator to sample on Riemannian manifolds
with an intractable likelihood.

• We validate our method through simulated and
real experiments, demonstrating promising grasping
performance.

*The authors come from the University of Liège, Belgium
1norman.marlier@uliege.be

Fig. 1: Our benchmark scene. (left) The simulated envi-
ronment. (right) The real setup.

II. Problem statement
We consider the problem of planning 4-DoF hand

configurations for a robotic gripper handling various
unknown objects on a table, observed with a depth
camera. A benchmark scene is shown in Fig. 1.

A. Notations
Frames We use several reference frames in our work.

The world frame F−→W and the workspace frame F−→S
can be chosen freely and are not tied to a physical
location. The world frame is used for the robot and
the sensor, while the workspace frame is used for our
inference system. F−→C and F−→E correspond respectively
to the camera and the tool centre point.

Hand configuration The hand configuration h ∈
H = R3 × S1 is defined as the pose (x,q) ∈ R3 × S1

of the hand, where x is the vector S⃗E expressed in F−→S
and q is the planar rotation represented with complex
numbers defined in F−→S.

Binary metric A binary variable S ∈ {0, 1} indicates
if the grasp fails (S = 0) or succeeds (S = 1).

Observation Given the depth image I with its cor-
responding transformation camera to world TWC and
camera intrinsic matrix K, we construct a point cloud
P ∈ R2048×3 expressed in F−→S.

Occupancy A binary variable o ∈ {0, 1} indicates if
a point p ∈ R3 is occupied by any object of the scene.

Latent variables Unobserved variables z capture
uncertainties about the nonsmooth dynamics of contact,
the sensor noise, as well as the number of objects and
their geometry.



B. Grasping as inference
We formulate the problem of grasping as the Bayesian

inference of the hand configuration h∗ that is a posteriori
the most likely given a successful grasp, an occupancy
o and a point cloud P. That is, we are seeking the
maximum a posteriori (MAP) estimate

h∗ = arg max
h

p(h|S = 1, o = 1,P), (1)

from which we then compute the joint trajectory

τ1:m = Λ(τ0, ik(h∗),P), (2)

where ik is an inverse kinematic solver, τ1:m are way-
points in the joint space, τm = IK(h∗) with h∗ expressed
in F−→W and Λ is a path planner.

III. Implicit representation of priors and
posteriors for robotic grasping

From the Bayes rule, the posterior of the hand config-
uration is

p(h|S, o,P) = p(S | h, o,P)
p(S | o,P) p(h | o,P), (3)

which can be rewritten as the product of the likelihood-
to-evidence ratio r and a scene-dependent prior

p(h|S, o,P) = r(S | h, o,P)p(h | o,P). (4)

A. Priors
Position The scene-dependent prior over the position

x is the distribution p(x|o,P) = p(o|x,P)
p(o|P) p(x), where

p(o|x,P) is the likelihood of the occupancy o, p(x) is
uniform over the workspace, and p(x|P) is simplified to
p(x) by independence.

We model the occupancy likelihood p(o|x,P) using
a Convolutional Occupancy Network [3]. This network
computes the occupancy by first producing three canon-
ical features planes cxy(P), cxz(P) and cyz(P). Then, the
bilinear interpolations of the three planes are used to
compute ψ(P,x) = cxy(P)(x) + cxz(P)(x) + cyz(P)(x).
These point-wise features at point x are finally processed
by a fully connected network, outputting the occupancy
probability.

This implicit representation allows us to sample inter-
esting grasping positions from p(x|o,P) ∝ p(o|x,P)p(x).
We use Hamiltonian Monte Carlo (HMC) to take advan-
tage of the differentiability of the occupancy network.

Orientation The prior of the orientation q is a uni-
form distribution over the unit circle S1. This prior is
invariant to any rotation R ∈ SO(2) applied to q, satis-
fying p(q) = p(Rq). This property enables free selection
of the reference frame on the table. Additionally, the
prior can be extended to SO(3) by using quaternions on
S3.

Hand configuration Finally, the prior of the hand
configuration is p(h | o,P) = p(x | o,P)p(q).

B. Ratio

The likelihood function p(S | h, o,P) and the evidence
p(S | o,P) are both intractable. However, drawing sam-
ples from forward models remains feasible with physical
simulators, hence enabling likelihood-free Bayesian infer-
ence algorithms. In particular, the likelihood-to-evidence
ratio r(S | h, o,P) (Eq. (4)) can be approximated by a
neural network rϕ(S | h, o,P) using amortized neural
ratio estimation [5]. Here, instead of using only point-
wise features ψ(P,x) as input for the ratio, we add a crop
of the features plane cxy(P), centred at x, sized by the
gripper and rotated by q. These features Ψ(P,h) local
in the neighbourhood of the grasping point are nearly
equivariant to a 2D transformation applied to the object,
i.e TΨ(P,h) ≈ Ψ(TP,h),T ∈ SE(2).

C. Posteriors

Given our scene-dependent prior and our likelihood-
to-evidence ratio, we approximate the posterior over the
hand configurations as

p̂(h | S, o,P) = rϕ(S | h, o,P)p(h | o,P). (5)

This approximation defines an implicit function [6]
on the product of manifolds R3 × S1 that is both fully
tractable and differentiable, allowing the use of gradient-
based methods for computing the MAP and sampling.
Therefore, we can use Markov Chain Monte Carlo meth-
ods to sample from our posterior approximation p̂(h |
S, o,P). In particular, based on [5], we use a likelihood-
free version of HMC by replacing the intractable like-
lihood with the ratio. The potential energy function is
defined as U(h) ≜ − log p(S | h, o,P) and its difference
is U(ht)−U(h′) = log r(S | ht,h′). The gradient used in
the integration step is given by ∇hU(h) = −∇h log r(S |
h, o,P). To account for the geometry of the parameter
space, we then further extend our likelihood-free HMC
with a geodesic integrator. The geodesic Monte Carlo
scheme uses geodesic flow to perform the integration
while staying on the manifold. To this end, orthogonal
projections and geodesics are needed in a closed form. Fi-
nally, geodesic Monte Carlo can be applied to a product
of manifolds M1 ×M2 : {(x1, x2) : x1 ∈M1, x2 ∈M2},
such as R3 × S1 in our specific case. Geodesic flow can
be executed in parallel; only the evaluation of the ratio
requires both variables x and q. In this manner, we can
sample from the posterior density defined on a smooth
manifold with closed-form geodesic. The full sampling
procedure is summarized in Algorithm 1 of Appendix A.

IV. Experiments

We assess our approach on a robotic grasping task
in both simulation and real-world settings. We generate
data in a packed scenario, as defined in [7]. Additional
experiments can be found in Appendix B and C.
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Fig. 2: Our grasp inference pipeline, as run on the scene of Fig. 1. It begins with a noisy depth image of the scene, from
which we first separate the objects from the background using a U-Net [4]. We then generate three canonical feature
planes following the approach in [3]. To evaluate a given h, we extract point-wise ψ(P,x) and local Ψ(P,h) features
and feed them to the ratio and occupancy networks. Using the resulting differentiable posterior and Riemannian
optimization, we finally identify the most plausible hand configuration h∗.

A. Grasp inference pipeline
Starting from the depth image I, we remove the

background and extract only pixels of the objects with
a segmentation model based on a U-Net architecture [4].
Then, we convert I to a point cloud P with 2048 points,
which passes through an encoder and produces three
canonical feature planes. We then extract point-wise
ψ(P,x) and local Ψ(P,h) features to evaluate the occu-
pancy and the ratio networks. To smooth the posterior
approximation, we use an ensemble of 6 ratio models.
Finally, we compute the MAP by maximizing the log
posterior density [8]. To this end, we use a Riemannian
gradient ascent which preserves the nonlinearity of S1. A
visual summary of our method is given in Fig. 2.

Our likelihood-free geodesic Monte Carlo is used to
sample plausible hand configurations h ∼ p̂(h | S =
1, o = 1,P) for successful grasps, as shown in Fig. 3.
Although our conditional prior distributes density across
everywhere on the objects, the posterior assigns minimal
density to the bottom of objects when multiple objects
are present on the table. This occurs due to potential
collisions between the gripper and the table, or the grip-
per and other objects. Regarding rotation, the posterior
resembles the prior because multiple objects on the table,
some with axial symmetry, allow for a wide range of grasp
orientations. When only a single object is used, distinct
modes can be observed, indicating that our posterior
captures meaningful orientations, as shown in Fig. 4.

B. Simulation results
To compare our approach, we evaluated it against

Grasp Pose Detection (GPD) [9] and Volumetric Grasp-
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Fig. 3: Estimated posterior distribution p̂(h | S = 1, o =
1,P) of plausible successful hand configurations, for the
scene shown in Fig. 1.

ing Network (VGN) [7] in terms of success rate and
percent cleared [7] using the same dataset and a similar
scenario (Table I). Our model achieved a high success
rate of 91.1%, which is very close to VGN’s best success
rate of 91.5%. However, our model operated in a more
constrained setup with 4 DoF instead of 6, limiting
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Fig. 4: (left) Estimated posterior distribution of the
orientation p̂(q | S = 1, o = 1,P). (right) Single object.

TABLE I: Success rates (%) and % cleared for picking
experiments for the packed scenario with 5 objects over
200 rounds.

Method Success rate % cleared
Simulation results

GPD [9] 73.7 72.8
VGN (ε = 0.95) [7] 91.5 79
VGN (ε = 0.9) [7] 87.6 80.4
VGN (ε = 0.85) [7] 80.4 79.9
Ours 91.1 77

Real-world results
Ours 95.6 88

the gripper’s movement and increasing the risk of colli-
sions. This limitation resulted in a slightly lower percent
cleared compared to VGN. Furthermore, the gripper
used was primarily designed for larger objects, making
it challenging to handle smaller ones.

C. Real-world results
We adopt the setup from [8]. We perform 20 rounds

with 5 objects among 13 (see Fig. 5), using a protocol
similar to the simulation experiments. The objects are
chosen based on their availability in the lab and whether
they were seen or unseen during training. For novel
objects, we achieve a success rate of 95.6% and a percent
cleared of 88%, showing the strong adaptability and
performance of our approach. The discrepancy between
the simulation and real-world setup is overcome without
any decrease in performance. In both simulation and real-
world settings, the majority of failure cases are due to
insufficient friction forces, causing the objects to slip.

V. Related Work
Grasp sampling strategies that generate data for ma-

chine learning methods can be categorized based on their
coverage of the hand configuration space H [10]. Simple
strategies like uniform sampling provide direct density es-
timation but are highly inefficient. Heuristic methods, on
the other hand, mainly rely on object geometry. Notably,
the most efficient strategies [11], [12] are not suitable

Fig. 5: (left) Object assets used in the real setup. (right)
Successful grasp of a mug.

for complex settings such as multi-fingered grippers. Our
occupancy networks-based approach offers direct density
estimation, efficient sampling, and does not depend on
specific object or gripper assumptions.

Representing a 3D scene as a parameterized function
using neural networks has recently gained substantial
interest. Occupancy networks [13] determine whether a
point is occupied or not. However, they lack equivari-
ance for translations and rotations. To overcome this
limitation, translation-equivariant feature planes are de-
rived from convolutional networks, resulting in Convo-
lutional Occupancy Networks [3]. Achieving rotation-
equivariance is more challenging, but innovative solutions
have recently emerged [14], [15].

Various methods exist for sampling from a distribution
defined on a Riemannian manifold. Adapting Markov
Chain Monte Carlo methods [16] to Riemannian mani-
folds allows sampling from a differentiable and tractable
likelihood. Our approach eliminates the need for an
explicit likelihood. Normalizing flows [17] which target
density defined on manifolds can rapidly sample from
the posterior distribution. However, it remains unclear
how to use their gradients for Riemannian optimization.

Finally, probabilistic approaches for grasping problems
typically depend on explicit likelihood functions that
model the probability of success or a grasp quality metric
related to an observation and a grasp pose [7], [18]–[20].
Closer to our work, a similar study [8] uses simulation-
based inference to compute the maximum a posteriori
through Riemannian gradient ascent. However, this ap-
proach uses a heuristic prior and cannot accommodate
multiple objects.

VI. Conclusion

We have shown that Bayesian inference can be ef-
fectively applied to robotic grasping in complex and
noisy environments. Through innovative enhancements,
we have improved the sample efficiency of the inference
pipeline. Our approach can manage tasks with escalating
complexity and proves valuable for real-world robotic
applications. Future research will focus on controlling the
complete 6-DoF of the robotic hand.
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Appendix
A. Likelihood-free geodesic Monte Carlo

Algorithm 1: Likelihood-free geodesic Hamiltonian Monte Carlo
Input: A Manifold M

Initial parameters h0
Prior p(h | P)
Momentum distribution p(v)
Trained classifier dϕ(S,h,P)
Observations S,P

Output: Markov chain h1:T

1 t← 0
2 ht ← h0
3 for t <T do
4 vt ∼ p(v)
5 vt ← πht

(vt)
6 k ← 0
7 vk ← vt

8 hk ← ht

9 for k <L do
10 vk ← vk + ϵ

2∇hk
log r(S | hk,P)

11 vk ← πhk
(vk)

12 hk ← γ(ϵ), γ(0) = hk

13 vk ← γ̇(ϵ), γ̇(0) = vk

14 vk ← vk + ϵ
2∇hk

log r(S | hk,P)
15 vk ← πhk

(vk)
16 k ← k + 1
17 end
18 λk ← log r(S | hk,P) + log p(hk | P)− 1

2 vT
k vk

19 λt ← log r(S | ht,P) + log p(ht | P)− 1
2 vT

t vt

20 ρ← min(exp(λk − λt), 1)

21 ht+1 ←
{

hk with a probability ρ
ht with a probability 1− ρ

22 t← t+ 1
23 end
24 return h1:T



B. Sampling the orientation: toy problem
Given a model parameter sample qθ ∈ Sd, the forward generative process is defined as:

ν = qθ (6)
κ = 20 (7)
qx ∼ exp(κνT qx) (8)

with the prior p(qθ) ∆= SphericalUniform(d). It follows the true posterior p(qθ | qx) ∝ exp(κqT
x qθ). We use a MLP

of 3 layers with 64 neurons to approximate the likelihood-to-evidence ratio. All the activation functions are ReLU
except the last one which is linear. We train the ratio with 1000000 samples with a batch size of 8000 for 50 epochs.
For the geodesic HMC, we use 100 chains and 2000 transitions with a burn in of 1000. The integration parameters
are ϵ = 0.01, L = 20. The approximate posterior shares the same structure that the true posterior, demonstrating
its accuracy (Fig. 6). Moreover, we conduct a quantitative analysis by computing the Maximal Mean Discrepancy
(MMD) for S1 and S3. We obtain respectively 0.0028± 5.84e−6 and 0.01± 3e−5 for an identity kernel between the
two geodesic means for 10 different observations qx.

1.0 0.5 0.0 0.5 1.0

x1

1.0

0.5

0.0

0.5

1.0

x 2

1.0 0.5 0.0 0.5 1.0

x2

Fig. 6: Posterior for S1. In blue, the distribution obtained through GMC with the ratio and in grey, the ground truth
posterior.



C. Sampling the position: multiple objects scene
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Fig. 7: Approximate posterior p(x|o = 1,P) of a scene with 5 different objects.

In this experiment, we have a scene containing five objects with varying levels of difficulty, as shown in Fig. 2. We
use a convolutional occupancy network [3] that is trained for 120,000 iterations with a batch size of 32 samples. The
network has a resolution of 128 and a feature dimension of 32. To sample from the posterior p(x|o = 1,P) ∝ p(o =
1|x,P)p(x), as we previously explained, we employed HMC with specific hyper-parameters. These include 100 chains
of 5000 transitions and a burn-in of 1000. The integration parameters are ϵ = 0.01, L = 20. The chains’ initials
point are sampled uniformly in the bounding box of the objects. The corner plot in Fig. 7 illustrates the resulting
posterior, which aligns with the location and shape of four out of the five objects and the potential grasping point.
However, the occupancy of the fifth object cannot be recovered due to either being regarded as noise or having a
much smaller density compared to the other objects.
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Appendix C

Multiresolution IsoSurface
Extraction

Figure C.1. The Multiresolution IsoSurface Extraction (MISE) algorithm [14] marks
points as either occupied (red circles) or unoccupied (cyan diamonds). The active voxels
are subdivided into smaller sub-voxels until the desired resolution is reached. The resulting
structure is then processed using the marching cubes algorithm [53], along with refinement
techniques like mesh simplification and gradient refinement.

In their work, Meschder et al. [14] introduced the Multiresolution IsoSurface Extraction
(MISE) algorithm for extracting meshes from an implicit function fθ, where fθ : R3 ×P →
[0, 1]. The MISE algorithm begins by discretizing the three-dimensional space into a
resolution of 323, following the recommendation in the original paper [14]. Each point
x in R3 is then classified as occupied or unoccupied based on the value of fθ(x,P) and
a threshold value τ . Next, voxelization is performed, identifying voxels that contain at
least two adjacent grid points with different occupancy values. These voxels are marked as
active. The process continues by subdividing the active voxels into eight smaller voxels,
and this subdivision is repeated until the desired resolution is achieved. Finally, the
marching cubes algorithm [53] is employed to extract a watertight mesh from the active
voxels.
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Appendix D

Additional figures
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Figure D.1. Training and validation losses for different segmentation models with and
without data augmentation. The loss used is the binary cross-entropy.
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Reconstructed point cloud Ground truth Partial point cloud

Figure D.2. Examples of point clouds reconstructed with PoinTr [43].
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Figure D.3. 3D visualization of the prior and posterior distributions of potential grasping
points. Grasping points sampled from p̂(h | S = 1, o = 1,P) are colored with a gradient
from blue to red, indicating their relative posterior values. Grey points represent grasping
points sampled from the prior distribution p(x | o = 1,P). The ratio used for the posterior
estimation is an ensemble of 5 Cropped & Rotated features model.
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