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Abstract

The semantic priming paradigm, involved in language comprehension, refers to the facil-
itated processing and retrieval of a word (known as target) following the previous pro-
cessing of another semantically related word (known as prime). Literature on semantic
priming reveals a vivid debate about the nature of priming: it can be associative (e.g.
afraid-scared), semantic, that is “true relations of meanings”, (e.g. sheep-goat) or a com-
bination of both (e.g. cat-dog). This debate impacts then how the semantic memory,
coding words’ meaning, is modeled and how the priming is thought to occur.

Brunel and Lavigne (2009) designed a network model that studies semantic priming
as a function of a set of parameters. In addition, they used an input-output relation-
ship that is mathematically good-looking but rather difficult to manipulate numerically.
This master thesis thus focuses on assessing whether using a more standard and a more
numerically stable input-output relationship, such as a sigmoid function, would give a
qualitatively similar dynamic behavior to the original model. Furthermore, the thesis
investigates the parameter sensitivity. To these ends, the network model is simplified into
a one-dimensional model and the dynamic behavior is investigated for both input-output
relationships. The modified model is then tested with experimental-like stimuli to mimic
real psychology experiments and to understand semantic memory functioning.

Dynamical analysis performed on the derived one-dimensional model reveals that the
dynamic behavior remains qualitatively the same when using one or the other input-
output relationship. Results also suggest parameter sensitivity of the original model. The
modified model with experimental-like stimuli suggests that the semantic memory sys-
tem should be in a bistable regime to observe semantic priming. Activation of a word
in semantic memory depends then on the amplitude and the duration of the stimulus.
Extension to higher-order dimensions is also discussed.

Keywords: semantic priming, network model, rate model, phase portrait, bifurcation,
psychology experiments
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dashed line represents the stationary state ẋ = 0. Vector field of the model
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form is ẋ = αx + x3. Stability of branches (x∗ = 0 and x∗ = ±

√
−α) is

indicated by the colored strings. Pitchfork point (PF) is illustrated by the
purple dot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.11 Bifurcation diagram of the combination of subcritical and supercritical
pitchfork bifurcations: ẋ = αx+x3−x5. Stability of the different branches
is indicated by the colored strings. Pitchfork point (PF) and saddle-node
points (SN) are shown with the purple dots. . . . . . . . . . . . . . . . . . 28

2.12 Hysteresis phenomenon happening along the bifurcation diagram of ẋ =
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Introduction

Motivations

Language is a key tool for human beings’ real-time interactions and verbal communica-
tion with each other. Verbal communication implies a flow of information between two
individuals: the speaker sends information whereas the listener receives that information,
and potentially responds to it. In order to speak coherent sentences or to understand
these sentences, the knowledge or meaning of each word should be retrieved from seman-
tic memory since it contains general knowledge such as vocabulary, facts, . . . , shared by
a large number of individuals (Schacter 2000). However, it is still unclear how semantic
memory exactly represents the knowledge of words or other concepts such as pictures
(Hutchison 2003; Kumar 2021; Sperber et al. 1979).

In addition, it happens that the processing of a word is facilitated by the previous
processing of another semantically related word. For example, if one transiently sees the
word cat, the processing of that word facilitates the processing of the following word dog
in the sense that the word dog is already pre-activated in memory before seeing explicitly
the word dog. This facilitation occurs because the words cat and dog are related. This
phenomenon is known as semantic priming. Literature on semantic priming highlights a
vivid debate on the nature of semantic priming: associative, semantic or both (the term
"semantic" in "semantic priming" encompasses all types). The nature of priming, in turn,
has an impact on the semantic memory modeling (Hutchison 2003; Kumar 2021). Brunel
and Lavigne 2009 designed a network model that studies semantic priming effects as a
function of several key parameters. However, Brunel and Lavigne 2009 use a rather large
number of parameters and their assigned values seem to be very specific to that model,
suggesting that the model is potentially sensitive to changes in parameter values. More-
over, their input-output relationship (also known as transfer function) is mathematically
good-looking but seems rather unpractical to use and manipulate numerically. Also, the
physiological interpretation of that transfer function remains unclear.

A closer look at this model and its transfer function seems appropriate to investigate
the dynamics of semantic memory and semantic priming.

1



Structure of this thesis Introduction

Contributions of this master thesis

My master thesis revisits the model of Brunel and Lavigne 2009 and attempts to deter-
mine whether the same model with another more standard transfer function could be
used, that is, the modified model would give the same qualitative dynamic behavior as
the original model. In other words, a first contribution of my master thesis is to assess
the Brunel and Lavigne’s model equivalence. If this equivalence is successful, then the
modified model would allow similar results with a greater numerical stability. To assess
model equivalence, a simplified one-dimensional version of the original model is used and
the full dynamic behavior is explored and explained using engineering tools.

Another contribution of my master thesis is the evaluation of the sensitivity of the
model’s parameters. My master thesis explores whether parameter values could be changed
without changing the global behavior and properties of the model and if so, to what extent
they can be varied.

Finally, stimuli similar to those used in real psychology experiments are applied to the
simplified model to observe how the latter responds to them. This final step also explores
the condition(s) to observe semantic priming, constituting then the last contribution of
my thesis.

Code availability

The whole computational study has been performed using the Julia programming lan-
guage (v1.9.0; https://julialang.org/) within a Jupyter Notebook environment (v6.5.2 from
Anaconda https://www.anaconda.com/). All the source codes can be found on the follow-
ing GitHub repository: https://github.com/CarolineDejace/ATFE0016-1-master-thesis.

Structure of this thesis

This master thesis is divided into four main parts:

Part I is composed of three chapters and reviews the theory on dynamical system
modeling. Chapter 1 defines the concepts that are the basis for mathematical modeling.
It explains what are signals, what are their properties, how can they be transformed and
how to extend the concepts to systems. Chapter 2 reviews the complete analysis of a
one-dimensional model. It addresses the topics of phase portrait analysis and bifurcation
analysis, two common engineering tools that are used in this master thesis. Chapter 3
talks about network models, also often referred to as rate models. Different topologies
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are discussed notably those of a recurrent network model and a Wilson-Cowan network
model, that are of great importance in this master thesis.

Part II addresses the more psychological side of this work. It includes a review on
memory classification (Chapter 4) and the link between language and memory is also
discussed. Chapter 5 reviews in turn literature on semantic priming: how to observe it,
how to measure it, what are the possible semantic relationships and how can semantic
priming be modeled.

Part III is made of two chapters and outlines the computational study that was per-
formed. Chapter 6 focuses on the assessments of the model equivalence and the parameter
sensitivity. It uses phase portrait and bifurcation analyses to investigate in details the
dynamic behavior of the model using one or the other transfer function. Chapter 7 con-
tinues the study with an application of the model to experimental-like stimuli.

A last chapter then concludes the work with a summary of the study and the results.
Perspectives on potential improvements and extensions to higher-order dimensions are
discussed as well.
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Chapter 1

Signal and System Basics

This chapter aims at understanding the very basic concepts and terminology of the com-
monly called dynamical system modeling.

1.1 What is dynamical system modeling?

To understand what is dynamical system modeling, the concepts of signal, system, dy-
namics and modeling should be properly understood first.

Palani 2022a defines a signal as any “physical phenomenon that carries some infor-
mation or data”. The signal is in general time-dependent, that is, a function of variable
t where t does not depend on any other variable and usually encodes for the time. The
variable t is then said to be independent. Such signals are for instance temperature,
chemical concentration, number of individuals in a population, . . .

Palani 2022a then defines a system as a “set of interconnected objects or components
with a definite relationship between objects and attributes”. For example, a mass m

attached to a spring with stiffness k that is itself attached to a fixed wall (Figure 1.1)
constitutes with the spring a system. The objects are the mass and the spring, and their
attributes are their respective displacements and speeds. A definite relationship links the
objects and the time evolution of their attributes (see hereafter).

In simpler terms, a system can be seen as a black box that transforms or converts an
input signal into an output signal (Drion 2019-2020). Put differently, a system receives a
signal, acts on it and outputs a modified version of the input signal.

The third concept to understand properly is the dynamics. When a system evolves
with time, it is said to be dynamic (Strogatz 1994). The system then outputs a signal that
depends on the input signal evaluated at the current time instant t∗ but can also depend
on the input signal evaluated at past and/or future time instants (Drion 2019-2020).

7
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Figure 1.1: Horizontal single mass m-spring (stiffness k) system oscillating around the
zero-displacement position (x = 0) with an amplitude A > 0. The force

−→
F

generates this oscillation. Extracted from Marting and Ng n.d.

Finally, modeling can be seen as the process of finding a mathematical law that de-
scribes the temporal behavior (or evolution) of the system (Drion 2019-2020). It thus con-
sists actually in finding the definite relationship between the objects and their attributes.
Taking again the example with the mass-spring system, this definite relationship is given
by Newton’s law stating that the mass-spring system will be in equilibrium when the sum
of all external forces acting on it is equal to zero (Drion 2019-2020; Strogatz 1994):

m
d2x

dt2
+ k · x = 0 (1.1)

with x = x(t), the time-dependent variable coding for the displacement of the mass and
the spring, and d2(.)

dt2
, the second time derivative operator or in other words, differentiation

of the variable x(t) with respect to the independent variable t has been applied twice.
The first term in (1.1) accounts for the acceleration or gravity force whereas the second
term accounts for the restoring force from the spring.

Combining all the above-mentioned concepts, dynamical system modeling is thus the
process of finding a set of a finite number n of equations describing the time evolution of
each individual variable as relationships between the n time-dependent variables and the
r inputs (r ≤ n).

1.2 Signal properties

Signals can have several of the following properties simultaneously. Here below are the
most common properties that can be found in signals. The list is thus non-exhaustive.

Page 8 of 133



1.2. Signal properties Chapter 1. Signal and System Basics

1.2.1 Continuous Time VS Discrete Time

A signal x(t) is said to be a continuous time signal if and only if x(t) is defined for any
value of the independent variable t (coding for time usually). On the contrary, a signal
x[n], where n is an integer, is said to be a discrete time signal if and only if it is defined
at discrete values of time only. These discrete times are then indexed by an integer. A
discrete time signal can be seen as a sampled version of a continuous time signal (Drion
2019-2020; Palani 2022a).

This master thesis will deal with continuous time signals only.

1.2.2 Periodic VS Non-periodic

A continuous time signal x(t) is periodic if it satisfies

x(t+ nT ) = x(t) for all t (1.2)

with n an integer and T > 0 the period, that is, the signal repeats itself after a time
period T . In case x(t) does not satisfy Eq. (1.2), the signal is said to be aperiodic or non-
periodic. A similar definition can be applied to discrete time signals (Drion 2019-2020;
Palani 2022a).

1.2.3 Even VS Odd

A continuous time signal x(t) is even if it satisfies

x(−t) = x(t) for all t (1.3)

that is, the signal is symmetric with respect to the y-axis (ordinate axis). On the contrary,
the signal x(t) is odd if it satisfies

x(−t) = −x(t) for all t (1.4)

that is, the signal x(t) is a central symmetry about the time origin. A similar definition
can be applied to discrete time signals. It should be noted then that any signal can be
expressed as the sum of its even and odd parts (Drion 2019-2020; Palani 2022a).

x(t) = xeven(t) + xodd(t) =
1

2
[x(t) + x(−t)]︸ ︷︷ ︸

even

+
1

2
[x(t)− x(−t)]︸ ︷︷ ︸

odd

(1.5)
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1.3 Signal transformation

A signal can undergo various transformations. Here below is a non-exhaustive list of
these possible transformations for continuous time signals but these transformations can
be transposed to discrete time signals as well.

1.3.1 Time shifting

The transformation t → t − t0, where t0 is a real constant, results in a linear shift of a
signal u(t) by t0 time units. This shift will be to the right (time delay) if t0 is strictly
positive, to the left (time advance) if t0 is strictly negative and no shift if t0 = 0 (Drion
2019-2020; Palani 2022a).

1.3.2 Time scaling

The transformation t → a · t, where a is a strictly positive real constant, results in a
contraction of the signal u(t) if a is greater than one, and in a dilatation (or expansion)
if a is smaller than one. The amplitude of the signal does not change but the signal is
accelerated (a > 1) or slowed down (a < 1) over time (Drion 2019-2020; Palani 2022a).

1.3.3 Folding

A folded (or reflected) signal u(−t) is obtained when the signal u(t) is reflected on the
y-axis (vertical axis or ordinate axis), that is, the y-axis acts as a mirror between the
positive and the negative times t (Drion 2019-2020; Palani 2022a).

1.3.4 Inversion

An inverted signal −u(t) is obtained when the amplitude of the signal u(t) is inverted. For
this transformation, the x-axis (horizontal axis or abscissa axis) acts as a mirror between
the positive and the negative values of u(t) for all t (Drion 2019-2020; Palani 2022a).

1.3.5 Combined transformations

When several transformations are applied simultaneously to a signal u(t), the order of
the different transformations matters! If not carefully followed, the resulting transformed
signal might be very different from the expected signal. The order to follow is the reverse
order of the priority of basic arithmetic operations. Put differently, the order to follow
for signal transformations is

1. Addition and subtraction: + and −
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2. Multiplication and division: ∗ and /

3. Powers and exponents

4. Parentheses

For example, the transformed signal y(t) = u(−t−t0
a

) (adapted from Palani 2022a p.26) is
obtained by

1. Time scaling the signal u(t) by a factor a: u1(t) = u( t
a
)

2. Time shifting the signal u1(t) by t0 time units to the right: u2(t) = u1(t − t0) =

u( t−t0
a
)

3. Folding the signal u2(t): y(t) = u2(−t) = u(−t−t0
a

)

In this case, another order could have been applied (i.e. 1. folding, 2. time scaling by a,
3. time shifting by t0 units to the left) (Drion 2019-2020; Palani 2022a).

1.4 System properties

Similarly to signals, (dynamical) systems can also have several properties simultaneously.

1.4.1 Continuous VS Discrete

A system is continuous if it deals with continuous input and output signals. Similarly,
a system is discrete if it deals with discrete input and output signals. If a system deals
with discrete (continuous) input signals and continuous (discrete) output signals, then
the system is said to be hybrid (Drion 2019-2020).

Dynamical systems are modeled using differential equations when the systems are con-
tinuous, and modeled with difference equations when they are discrete (Strogatz 1994).
Also, in continuous systems, depending on whether there exist one or more independent
variables, the systems are modeled using ordinary differential equations (ODE) (one in-
dependent variable only and so ordinary derivatives only) or partial differential equations
(PDE) (more than one independent variable and so partial derivatives). For example, Eq.
(1.1) describing the single mass-spring system is an ODE because the time t is the only
independent variable, hence ordinary derivatives are used. However, if the heat equation
is considered

∂u

∂t
=

∂2u

∂x2
(1.6)

with u the heat, then Eq. (1.6) is a PDE because both time t and space x are independent
variables (Strogatz 1994).
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This master thesis will deal with continuous systems with one independent variable
(time t) only. As a result, differential equations will be used. A general framework for
this master thesis can thus be given by the system (or set) of ODEs

ẋ1 = f1(x1, . . . , xn, u1, . . . , ur)
...

ẋn = fn(x1, . . . , xn, u1, . . . , ur)

(1.7)

where ẋ is equivalent to dx
dt

, (x1, . . . , xn) are the time-dependent variables (or state vari-
ables), (u1, . . . , ur) (r ≤ n) are the time-dependent external input signals, and the func-
tions f1, . . . , fn are the definite relationships linking all (state) variables and input signals
together. The functions are determined according to the problem that is considered (Stro-
gatz 1994). The integer n describes the number of variables and consequently corresponds
to the dimension or the order of the system (Drion 2019-2020; Strogatz 1994).

1.4.2 Linear VS Non-linear

The system (1.7) is said to be linear when all functions f1, . . . , fn are linear functions of
the variables xi and inputs uj (i = 1, . . . , n; j = 1, . . . , r). Put differently, the system
(1.7) is linear if all its equations satisfy the additivity and the homogeneity properties
(Drion 2019-2020; Palani 2022b). The additivity property is given by

z1(t) = S{y1(t)}

z2(t) = S{y2(t)}

z(t) = S{y1(t) + y2(t)} = S{y1(t)}+ S{y2(t)} = z1(t) + z2(t)

(1.8)

with S{.} the system function, yi the input signals and zi the output signals.
The additivity property of a linear system states that the total output signal resulting

from the system function applied to the sum of each individual input signal is equal to
the sum of each individual output signal resulting from the system function applied to
each individual input signal (Drion 2019-2020).

The homogeneity property is given by

z1(t) = S{y1(t)}

z(t) = S{a · y1(t)} = a · S{y1(t)} = a · z1(t)
(1.9)

with a a scaling factor, S{.} the system function, yi the input signals and zi the output
signals.

The homogeneity property of a linear system states that the output signal resulting
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from the system function applied to an input signal scaled by a factor a is equal to a scaled
version by a factor a of the output signal resulting from the system function applied to
the individual input signal (Drion 2019-2020).

If at least one equation of (1.7) is non-linear, then the whole system is non-linear. Non-
linearities are for example products (xi · xj, i ̸= j), powers (x2

i ) and non-linear functions
(exp(−xi)) of the variables (Strogatz 1994). Non-linear systems are very difficult and
often impossible to solve analytically ("by hand"). Moreover, even when a solution of the
non-linear system can be found, it gives little meaningful information (Drion 2019-2020).
The usual way to proceed is to find numerically an approximate solution and/or to adopt
a geometric/graphical perspective to have a global and qualitative behavior of the system,
and/or to consider an operating point of the system and linearize the system around it,
that is, considering a small neighbourhood around that operating point where the system
will locally behave as a linear one and can therefore be solved easily using the additivity
and the homogeneity properties (Strogatz 1994).

1.4.3 Time Varying VS Time Invariant

Palani 2022b defines a continuous time invariant system as a system where “the parameters
of the system do not change with time”. This definition also implies that the input-
output relationship does not change with time, that is, the input-output relationship is
independent of the time origin: a time shift applied in the input signal results in the same
time shift in the output signal given by the system. Mathematically, the time invariance
property is expressed as follows

z(t) = S{y(t)}

z(t− τ) = S{y(t− τ)}
(1.10)

with τ a time shift, S{.} the system function, y the input signal and z the output signal.

Systems can also have other properties such as causality, stability, invertibility, . . .
(Palani 2022b) but these are more involved in a more advanced signal and image processing
topic, which is not the point in this background. These properties will not therefore be
further investigated.
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Chapter 2

One-dimensional system analysis

This chapter aims at explaining in details the dynamic behavior of a one-dimensional
(1D) system. This chapter also focuses on the mathematical and graphical (or geometric)
approaches to analyze such a system. Basic concepts of dynamical system analysis such as
trajectory, vector field, fixed point, stability, bifurcation, . . . are explained. This chapter
is highly based on Strogatz 1994 Chapter 2 pp 15 – 35 and Chapter 3 pp 44 – 78.

2.1 1D model

As mentioned in section 1.4.1, the general framework for this master thesis is given by Eq.
(1.7). As a first step, the simplest case where n = 1 is considered. The set of equations
(1.7) then reduces to

ẋ = f(x, u) (2.1)

with x = x(t) a real-valued function of independent time variable t, u = u(t) the input
signal and f(x, u) a smooth real-valued function of variable x and input u. The function
f can be linear or non-linear (Drion 2019-2020; Strogatz 1994).

Equation (2.1) is called a one-dimensional or first-order system1 (or model). The
dimension associated to this model is thus one. A solution to Eq. (2.1) is given by the
time evolution of variable x (i.e. x(t)) and is called a trajectory. Trajectories allow to
know the value of each variable at each time instant (Drion 2019-2020; Strogatz 1994).

1The word "system" means a dynamical system in this context, not a set of equations as used in the
classical sense. It should therefore be noted that a single equation can model a system.
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2.2 Graphical approach

A practical example is always better than words to understand concepts. The following
differential equation is considered:

ẋ = cosx (2.2)

with x = x(t) a time-dependent variable.
This equation is non-linear since f(.) = cos(.) is non-linear. Moreover, Eq. (2.2)

possesses a closed form, that is, an explicit relationship between x and t where x is a
function of t only (and vice-versa). The analytical solution to Eq. (2.2) is given by (see
Appendix B.1 for calculation details)

t =
1

2
ln

(
|1 + sin x|
|1− sinx|

· |1− sinx0|
|1 + sin x0|

)
(2.3)

with x(t = 0) = x0 an initial condition.
The result given by Eq. (2.3) is exact but does not give meaningful or at least clear

information. For instance, what is the (qualitative) behavior of the trajectory x(t) as
time t tends towards infinity for any arbitrary initial condition x0 or even for a fixed x0?
Based on the analytical solution alone, it is not easy to answer that question (Strogatz
1994).

On the other hand, by adopting a geometric point of view and thus using a graphical
analysis, the interpretation of Eq. (2.2) becomes clear, simple and easy. If one thinks
of t as time and x as the position of some object moving along the real line (i.e. one
direction only), then ẋ corresponds to the velocity of that object. In other words, ẋ

indicates how fast or how slow the variable x evolves with time and in which direction
(increases/decreases) the position will evolve. For a 1D model, the graphical analysis con-
sists in plotting ẋ VS x, also known as the phase portrait or the phase plane. Equation
(2.2) can then be interpreted as a vector field on the line, that is, ẋ indicates the velocity
vector at each x (Strogatz 1994). Arrows can thus be drawn on the line (or x-axis) to
illustrate these velocity vectors at each x. When ẋ > 0 (ẋ < 0), the arrows point to the
right (left) indicating that the variable x will increase (decrease) if it is in that state (Fig-
ure 2.1). At points where ẋ = 0, no evolution of the variable x (and so the corresponding
system) will be observed because the velocity vector is the null vector. These points are
therefore called fixed points (FP), equilibria or attractors if a psychological context is used
(Brunel and Lavigne 2009; Drion 2019-2020; Strogatz 1994).

In Figure 2.1, two kinds of FPs can be observed. Since the vector field points towards
them, blue dots attract trajectories whose initial condition lies in the region bounded
by the two red dots on each side of a blue dot. These blue dots are then called stable
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Figure 2.1: Phase portrait ẋ VS x for the 1D model ẋ = cosx. Horizontal black dashed
line represents the stationary state ẋ = 0. Vector field of the model is
illustrated by black arrows. Fixed points (i.e. cosx = 0) are blue (→ stable
FP) and red (→ unstable FP) dots. Inspired from Strogatz 1994 Ch2 p17.

fixed points. On the contrary, since the vector field points away from them, the red dots
repel any trajectory whose initial condition stands nearby them. These red dots are then
unstable fixed points (Strogatz 1994). More details about stability of fixed points will be
discussed in the next section but it should be noted that the stability of the fixed points
can already be determined graphically even though no formula for the fixed points are
available (Strogatz 1994).

The graphical information given by the phase portrait (Figure 2.1) of the 1D model
ẋ = cosx allows one to easily understand the qualitative behavior of the solution(s) of
the model for any initial condition x0. For an initial condition x0 such that ẋ < 0, the
trajectory x(t) will decrease more or less fast (depending on the exact location of x0).
The movement of x in Figure 2.1 is thus to the left. As time goes by, x(t) asymptotically
approaches and reaches the nearest stable FP from a greater position (or right if one
considers Figure 2.1). Similarly, if ẋ > 0 initially, x(t) will increase and the movement of
x in Figure 2.1 is to the right. The solution x(t) asymptotically approaches and reaches
the nearest stable FP from a lower position (or left if one considers Figure 2.1). When
ẋ = 0, the system does not evolve anymore and x(t) remains constant (Drion 2019-2020;
Strogatz 1994).

The graphical technique developed in this section can be applied to any 1D system
ẋ = f(x). All that is needed is the graph of f(x) that can then be used to deduce and
sketch the vector field on the x-axis (Strogatz 1994).

2.2.1 Limitations

Drawing the phase portrait is an easy way to get meaningful and clear information about
the dynamical system. However, three major limitations of this graphical technique can
be identified.
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1. The phase portrait can only give qualitative information and not quantitative infor-
mation.

The information given by the phase portrait is very qualitative in the sense that
it helps to have an idea of the time evolution of a trajectory but no figures are
given. The quantitative information such as the time at which the FP is reached,
the time at which the speed |ẋ| is the greatest or the rate of growth/decay can not
be obtained from the phase portrait (Drion 2019-2020; Strogatz 1994).

2. The phase portrait is a global point of view.

One looks at the evolution of the system for all possible values of the variable x when
using the phase portrait. It does not give local information around an operating
point for instance (Drion 2019-2020).

3. When uniqueness of the solution x(t) (if it exists) fails, the geometric/graphical
approach does not help any longer because (infinitely) many solutions (and so tra-
jectories) could start from the same initial condition but give different behaviors.
Consequently, the graphical approach with such an initial condition would not help
in determining which behavior has been taken (Strogatz 1994).

2.3 Stability analysis

As explained in the previous section, fixed points can be obtained graphically by drawing
the phase portrait of the 1D model and finding the intersection(s), if any, with the x-axis.
Mathematically, the fixed points are thus points x∗ defined by

ẋ = f(x∗) = 0 (2.4)

These points correspond then to steady states of the system; no time evolution of the
system can be observed in these states and x(t) remains constant. In addition, as seen in
Figure 2.1, the fixed points can be of different kinds which can also be determined using
the phase portrait: if the vector field points towards (away from) a fixed point then the
latter is stable (unstable). Expressed differently, a fixed point is defined to be stable if
all sufficiently small disturbances away from it decay in time. On the contrary, FPs or
equilibria are defined to be unstable when disturbances grow in time (Drion 2019-2020;
Strogatz 1994).

An important note to make is that stability can be local or global. Thus far, stability
was based on small disturbances but it happens that in some cases, certain large distur-
bances may fail to damp out or could change the fixed point towards which a trajectory
x(t) eventually converges. For example, in Figure 2.2, if the disturbances are contained
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Figure 2.2: Phase portrait ẋ VS x for the 1D model ẋ = cosx. Horizontal black dashed
line represents the stationary state ẋ = 0. Vector field of the model is
illustrated by black arrows. Stable fixed points are represented by blue dots
whereas unstable fixed points are represented by red dots. Their respective
basins of attraction are the gray-shaded and orange-shaded area.

in a bounded region, called the basin of attraction, around a FP (π
2

for instance), then
these disturbances damp out and any trajectory starting in this basin indeed converges
to π

2
. However, if the disturbances are large enough to push an initial condition or even

the value of x(t) at some time instant t from the basin of attraction of π
2

into the basin of
attraction of −3π

2
, then x(t) eventually converges to a FP other than that initially planned

without disturbances. The stable fixed points of the 1D model ẋ = cos x are therefore
locally stable but not globally stable. Using another example such as ẋ = −x + 1, one
immediately sees that the graph of f(x) (Figure 2.3) is a straight line with a negative
slope. Thus, the associated vector field has a single FP at x∗ = 1. Since the vector field
points towards it, the FP is stable. More than that, since the FP is reached from all
initial conditions, this FP is globally stable. Any trajectory monotonically converges to
the FP with a speed decreasing linearly as stated by ẋ = −x+ 1 (Strogatz 1994).

Figure 2.3: Phase portrait ẋ VS x for the 1D model ẋ = −x + 1. Horizontal black
dashed line represents the stationary state ẋ = 0. Vector field of the model
is illustrated by black arrows. Stable fixed point is represented by blue dot.
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2.3.1 Linear stability analysis

An advantage of the graphical method is the possibility to determine the stability of a
fixed point without having to calculate anything. Conversely, a drawback of this method
is that it does not give any quantitative information. However, it is common to want a
quantitative measure of stability such as the rate of decay to a stable fixed point (Stro-
gatz 1994). Using a more mathematical approach, called the small perturbation study,
this quantitative information can be obtained by considering an operating point and lin-
earizing the system about it. Since one wants to know about the stability of the fixed
points, the operating points to choose should be the corresponding fixed points.

If one finds x∗ to be a fixed point, that is ẋ|x=x∗ = f(x∗) = 0, and considers

η(t) = x(t)− x∗ (2.5)

as a small perturbation away from x∗, the small perturbation study consists in determining
whether the perturbation will grow or decay in time. In order to answer this question,
one needs to find a differential equation for η(t) describing the time evolution of the
perturbation (Drion 2019-2020; Strogatz 1994). Differentiation of Eq. (2.5) on both sides
yields

η̇ =
d(x− x∗)

dt
= ẋ− ẋ∗ = ẋ (2.6)

using the definition of a fixed point (x∗ is a constant). Also, one has

η̇ = ẋ = f(x) = f(x∗ + η) (2.7)

Now one can use the Taylor’s expansion to approximate Eq. (2.7). Taylor’s expansion
(see Appendix B.2 for a summary of this formula) gives

η̇ = f(x∗ + η) ≈ f(x∗) + ηf ′(x∗) +O(η2) = ηf ′(x∗) +O(η2) (2.8)

with f ′(x∗) the first derivative, with respect to variable x, of function f evaluated at the
fixed point x∗. O(η2) denotes quadratic terms in η (Drion 2019-2020; Strogatz 1994).

If f ′(x∗) ̸= 0 in Eq. (2.8), then the O(η2) terms are negligible. Indeed, since η is a
small perturbation, its squared value will be even smaller and close to zero. One can thus
approximate

η̇ ≈ ηf ′(x∗) (2.9)

Equation (2.9) is now linear in variable η hence the name linearization about x∗ (Drion
2019-2020; Strogatz 1994). The solution of Eq. (2.9) is given by

η(t) = η0 exp (f
′(x∗) · t) (2.10)
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Thus, thanks to Eq. (2.10), one can easily determine the time evolution of the small
perturbation η:

• If f ′(x∗) < 0, then the perturbation decays exponentially fast and the fixed point
x∗ is, at least, locally stable.

• If f ′(x∗) > 0, then the perturbation grows exponentially fast and the fixed point x∗

is unstable.

• If f ′(x∗) = 0, then η̇ ≈ ηf ′(x∗) + O(η2) = O(η2) so that the quadratic terms are
not negligible anymore and a non-linear stability analysis is needed.

The key message in this subsection is that the slope f ′(x∗) = dẋ
dx
|x=x∗ at the fixed point

x∗ gives the stability of x∗. The sign of f ′(x∗) is thus of crucial importance and can be
immediately identified using the graphical approach, by looking at the slope of function
f at the fixed point. With the small perturbation technique, one can have access to a
measure of how (un)stable a fixed point is in addition to the sign of f ′(x∗). This degree
of stability is given by the magnitude of f ′(x∗): the larger |f ′(x∗)|, the more (un)stable
the fixed point is and the faster η(t) and x(t) evolve with time (Drion 2019-2020; Strogatz
1994).

The computation of f ′(x∗) = dẋ
dx
|x=x∗ actually amounts to compute the eigenvalue of

the system at the fixed point. The sign of the eigenvalue gives the stability and the mag-
nitude gives the degree of stability.

A limitation of the small perturbation technique should still be noticed. The lineariza-
tion about a fixed point is only valid for a small neighborhood or perturbation around
the fixed point. This technique can therefore be applied locally only (Drion 2019-2020).

2.4 Bifurcations

For a 1D model, the dynamics of vector fields on the (real) line is very limited: the tra-
jectory either converges monotonically to a stable fixed point (or equilibrium) or diverges
monotonically to ±∞ if the initial condition is not contained in any basin of attraction
of a finite-value fixed point (Strogatz 1994). As a result, the interesting part about 1D
models is not their vector fields but rather the dependence of the solution of the model on
model parameters. Indeed, it happens that by varying the values of the model parameters
the structure or behavior of the solution changes completely. The most common examples
are the creation or destruction of fixed points and the change in stability of a fixed point.
These changes in behavior are called bifurcations and the parameter values for which bi-
furcation happens are referred to as bifurcation points (Strogatz 1994). In other words, a
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“bifurcation point creates a frontier between two different behaviors” (Drion 2021-2022).
At bifurcation point(s), the following two conditions should be met (Strogatz 1994)ẋ|x=x∗ = 0 x∗ is a fixed point

dẋ
dx
|x=x∗ = 0 the eigenvalue at the fixed point is zero

(2.11)

From a geometric point of view, the second condition means that the graph of ẋ = f(x)

is tangent to the x-axis.

Bifurcations are thus of crucial importance because they allow to understand any
behavior a model could have as control parameters vary. More importantly, bifurcations
give information about when these changes in behavior occur.

Here below is a summary for each of the three basic bifurcations that can be encoun-
tered for 1D models and that can even be extended to higher-order models.

2.4.1 Saddle-node bifurcation

Creation or destruction of fixed points happens through what is called a saddle-node
bifurcation (SN) or fold bifurcation. The basic mechanism is that as a parameter is
varied, two fixed points move towards each other, merge and disappear. The canonical
(or normal) forms2 of the SN bifurcation for a 1D model are given by

ẋ = α + x2 (2.12)

and
ẋ = α− x2 (2.13)

where α is a real parameter (Drion 2021-2022; Strogatz 1994).
By varying the value of α, three case studies can be observed. The parameter α is

then called a bifurcation parameter (Drion 2021-2022; Strogatz 1994). Considering the
normal form ẋ = α− x2, these three case studies are the following (Figure 2.4)

• If α < 0 (Figure 2.4a), then no real fixed points can be observed. Indeed, the fixed
points are given by x∗ = ±i

√
−α with i the imaginary unit3. Moreover, since ẋ is

always negative for all x, the associated vector field is unidirectional (and points to
the decreasing x’s).

• As α increases, the parabola (i.e. −x2) moves up. If α = 0 (Figure 2.4b), then the
parabola is tangent to ẋ = 0 (dashed line) and a fixed point appears at x = 0. This

2The SN bifurcation admits two normal forms because fixed points have two different ways to be
created and destroyed: the vector field is unidirectional but has two possible directions (right or left).

3The imaginary unit i is defined by i2 = −1.
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(a) α < 0 (b) α = 0 (c) α > 0

Figure 2.4: Phase portrait of the saddle-node bifurcation ẋ = α − x2 for all possible
values of the real parameter α. Horizontal black dashed line indicates the
states ẋ = 0. Vector field is represented by black arrows. Stable fixed point
is illustrated by the blue dot, unstable fixed point is shown with the red dot
and the purple dot stands for the saddle-node. Inspired from Strogatz 1994
Ch3 p45.

FP is attractive from one side and repulsive from the other side as observed with
the vector field. This is the reason why this FP is called a saddle-node.

• As α still increases (Figure 2.4c), two separate fixed points appear, one stable (blue
dot) and one unstable (red dot). The vector field is thus not unidirectional anymore.

It is said that a bifurcation occurred at x = 0 because the vector fields for α < 0 and
α > 0 are different (Strogatz 1994).

In order to have a better view of the effect of parameter changes on the fixed point
values, a bifurcation diagram can be drawn. This bifurcation diagram consists in plotting
x∗ VS α, that is the fixed point values against the parameter values (Figure 2.5) (Drion
2021-2022; Strogatz 1994).

If the other normal form were used, then the vector field of the phase portrait (Figure
2.4) would change direction so that fixed points exchange their stability. Figure 2.5 would
undergo a central symmetry with respect to (0, 0) (i.e. α→ −α and x∗ → −x∗).

2.4.2 Transcritical bifurcation

It happens that a fixed point always exists whatever the value of a model parameter, and
can never be destroyed. Nevertheless, such a fixed point may still change its stability as
the parameter varies (Strogatz 1994). This mechanism is called a transcritical bifurcation.
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Figure 2.5: Bifurcation diagram of the saddle-node bifurcation using the normal form
ẋ = α − x2. Horizontal black dashed line stands for x∗ = 0. The upper
branch (x∗ =

√
α) of the bifurcation diagram represents stable fixed points

whereas the lower branch (x∗ = −
√
α) represents unstable fixed points.

Saddle-node point is illustrated by the purple dot.

The transcritical bifurcation normal form is given by

ẋ = αx− x2 (2.14)

with α a real-valued parameter.
One can immediately see that x∗ = 0 is always a fixed point whatever the value for

α. By varying the value of α, three setups can be observed (Drion 2021-2022; Strogatz
1994):

• If α < 0 (Figure 2.6a), then two real fixed points can be observed. Based on the
vector field, the leftmost FP (i.e. x∗ = α with α < 0; red dot) is unstable whereas
the rightmost FP (i.e. x∗ = 0; blue dot) is stable.

• As α increases, the unstable FP approaches the origin. If α = 0 (Figure 2.6b), then
only one fixed point is left at x = 0 (purple dot). This FP is attractive from one
side and repulsive from the other side as observed in the SN bifurcation. The vector
field is unidirectional and points to the decreasing x’s.

• As α still increases (Figure 2.6c), an exchange of stability has occurred: the leftmost
FP (i.e. x∗ = 0; red dot) is unstable while the rightmost FP (i.e. x∗ = α with α > 0;
blue dot) is stable.

Again, one can also draw the associated bifurcation diagram (Figure 2.7) to determine
the fixed point values for all possible parameter values (Drion 2021-2022; Strogatz 1994).
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(a) α < 0 (b) α = 0 (c) α > 0

Figure 2.6: Phase portrait of the transcritical bifurcation ẋ = αx − x2 for all possible
values of the real-valued parameter α. Horizontal black dashed line indicates
the states ẋ = 0. Vector field is represented by black arrows. Stable fixed
points are illustrated by the blue dots, unstable fixed points are shown with
the red dots and the purple dot stands for the transcritical point. Inspired
from Strogatz 1994 Ch3 p50.

Figure 2.7: Bifurcation diagram of the transcritical bifurcation whose normal form is
ẋ = αx− x2. Stability of branches (x∗ = 0 and x∗ = α) is indicated by the
colored strings. Transcritical point (TC) is illustrated by the purple dot.
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2.4.3 Pitchfork bifurcation

When the considered problem has symmetry, this symmetry may be reflected in the
bifurcation diagram. More precisely, fixed points are created and destroyed in symmetrical
pairs (Strogatz 1994). Two types of pitchfork bifurcation can be discussed.

Supercritical pitchfork bifurcation

The normal form of this first type of pitchfork bifurcation is given by

ẋ = αx− x3 (2.15)

The symmetry feature can be assessed by checking invariance of Eq. (2.15) under the
transformation x → −x. If one gets back Eq. (2.15) after this transformation, then the
vector field (Figure 2.8) is said to be equivariant (Strogatz 1994). Again, by varying the
parameter α, the phase portrait adopts three different configurations:

• If α < 0 (Figure 2.8a), then only one FP (x∗ = 0; blue dot) can be observed. Based
on the vector field, this FP is stable.

• If α = 0 (Figure 2.8b), then the slope at the origin becomes really close to zero. The
FP at x = 0 is still stable based on the vector field but the sensitivity to variations
in α has become very large.

• As α still increases (Figure 2.8c), the FP at the origin becomes unstable (red dot)
and two new fixed points (x∗ = ±

√
α) appear symmetrically about the origin. These

new FPs (blue dots) are both stable.

(a) α < 0 (b) α = 0 (c) α > 0

Figure 2.8: Phase portrait of the supercritical pitchfork bifurcation ẋ = αx − x3 for
all possible values of the real-valued parameter α. Horizontal black dashed
line indicates the states ẋ = 0. Vector field is represented by black arrows.
Stable fixed points are illustrated by the blue dots, unstable fixed point is
shown with the red dot and the purple dot stands for the pitchfork point.
Inspired from Strogatz 1994 Ch3 p56.
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Figure 2.9: Bifurcation diagram of the supercritical pitchfork bifurcation whose normal
form is ẋ = αx − x3. Stability of branches (x∗ = 0 and x∗ = ±

√
α) is

indicated by the colored strings. Pitchfork point (PF) is illustrated by the
purple dot.

The word "pitchfork" takes on its full meaning when looking at the bifurcation diagram
(Figure 2.9).

Subcritical pitchfork bifurcation

The cubic term in the supercritical pitchfork (i.e. ẋ = αx − x3) is stabilizing in the
sense that as x(t) increases and becomes very large, the cubic term becomes dominant
with respect to αx so that ẋ < 0. As a result, x(t) decays and is "pulled back" towards
x = 0; the cubic term exerts a negative feedback. (Drion 2021-2022; Strogatz 1994). The
subcritical pitchfork bifurcation uses a destabilizing or positive feedback cubic term:

ẋ = αx+ x3 (2.16)

The same reasoning as for the supercritical pitchfork can be applied and one would
find that all the results are inverted: stable fixed points become unstable (or vice-versa)
and exist below the bifurcation point, and the bifurcation diagram is inverted as well
(Figure 2.10) (Drion 2021-2022; Strogatz 1994).
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Figure 2.10: Bifurcation diagram of the subcritical pitchfork bifurcation whose normal
form is ẋ = αx + x3. Stability of branches (x∗ = 0 and x∗ = ±

√
−α) is

indicated by the colored strings. Pitchfork point (PF) is illustrated by the
purple dot.

Application

In decision-making, supercritical pitchfork bifurcations are used to illustrate flexible rep-
resentations, that is, showing the transition from a faithful (or analog) representation of
a stimulus, to a categorical (or digital; high or low for instance) representation of the
same stimulus (Franci 2023a). A faithful representation will therefore be associated with
a regime with a single stable fixed point whereas categorical representations will be asso-
ciated with regimes with multiple stable fixed points of the system.

In the categorical part of the supercritical pitchfork, that is values of α above the
bifurcation point, two branches of stable equilibria coexist; in this region the system
is said to be bistable. The initial condition and the external inputs/stimulus (if any)
determine together which of the two stable steady states will be reached. A drawback
of the supercritical pitchfork is that even tiny values of external inputs/stimulus may be
mapped to one of the two stable branches in the bistable region; there is no possibility
to remain somehow uncertain for a while (Franci 2023a). However, it can be seen even in
human behavior that remaining uncertain is a desirable feature depending on the context.
A way to model this possibility of remaining uncertain is to add a stable "neutral" state
coexisting with the stable upper and lower branches of the supercritical pitchfork (Franci
2023a). One needs then to use a subcritical pitchfork with a stabilizing higher-order term
that opposes the destabilizing effect of the positive feedback due to the cubic term. Thus,
the normal form of such a flexible system is given by

ẋ = αx+ x3 − x5 (2.17)
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Figure 2.11: Bifurcation diagram of the combination of subcritical and supercritical
pitchfork bifurcations: ẋ = αx+x3−x5. Stability of the different branches
is indicated by the colored strings. Pitchfork point (PF) and saddle-node
points (SN) are shown with the purple dots.

where the higher-order term x5 is used to keep symmetry of the system under the trans-
formation x→ −x (Strogatz 1994). The associated bifurcation diagram is given in Figure
2.11.

A last note about bistability is the possible absence of reversibility, also known as
hysteresis (Strogatz 1994). Hysteresis means that the path followed by a trajectory is
different as the parameter varies in one direction or the other (Franci 2023a). Hysteresis
also implies jumps in the bifurcation diagram as the parameter is varied (Strogatz 1994).
For example (Figure 2.12), assuming the system starts in the state x∗ = 0 with α < 0, the
system remains at x∗ = 0 as α increases slightly. When α becomes greater than PF by a
tiny bit, the system jumps to a stable branch (the upper branch for example) because the
state x∗ = 0 has become unstable and a tiny noise is assumed. If the parameter α starts
decreasing, then the system does not jump back but rather follow the path of the upper
stable branch. It is only when α becomes smaller than the SN value that the system
jumps back to x∗ = 0.
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Figure 2.12: Hysteresis phenomenon happening along the bifurcation diagram of ẋ =
αx + x3 − x5. Evolution of the system state as parameter α varies is
illustrated by the orange arrows. Inspired from Strogatz 1994 Ch3 p60.

Page 29 of 133



Chapter 3

Network models

This chapter aims at reviewing the class of models used in this master thesis, namely
the network models also referred to as firing-rate models or simply rate models. Since
this master thesis takes place in a neuroscience-oriented context, a quick summary of the
underlying neurobiology and neurophysiology is provided as a beginning. The goal is not
to go deep into the details but rather to give the basic concepts in order to understand
how the network models operate.

3.1 Context

The elementary unit of (human) brain is called the neuron. Neurons are morphologically
and functionally specialized cells (Vandewalle 2020-2021) made of three parts (Dayan and
Laurence F. Abbott 2001a; Vandewalle 2020-2021):

1. A dentritic tree or simply dendrites receiving information from other neurons, brain
areas, . . .

2. A cell body, also known as soma, containing notably the nucleus with the genetic
inheritance (i.e. the so-called DNA).

3. An axon conveying electrical signals to other neurons, brain areas, . . .

In addition, like any other cells, neurons have a cell membrane separating the intracellular
medium from the extracellular medium. Moreover, this membrane has a membrane poten-
tial due to the difference in both the concentration and the number of charged molecules,
called ions, between the interior of the neuron and the surrounding extracellular medium
(Dayan and Laurence F. Abbott 2001a; Vandewalle 2020-2021). Under resting condi-
tions, the difference of potential between the inside and the outside of a neuron is about
−70 mV . The neuron is then said to be polarized (Dayan and Laurence F. Abbott 2001a;
Vandewalle 2020-2021).
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Neurons are excitable because they respond to input stimuli (chemical, mechanical,
. . . ) by generating (or firing) characteristic electrical pulses called action potential (AP)
or simply spikes (Dayan and Laurence F. Abbott 2001a). This generation of AP is made
through a transient depolarization (i.e. increase) of the membrane potential (Dayan and
Laurence F. Abbott 2001a; Vandewalle 2020-2021). Neurons then represent and transmit
information by firing sequences of spikes in various temporal patterns. It should be noted
that the AP generation may depend on the recent history of firing of a neuron. Spikes
are essential for the communication between neurons because they are the only form of
membrane potential fluctuation that can propagate over large distances (Dayan and Lau-
rence F. Abbott 2001a).

Once generated, spikes are propagated unidirectionally along the axon from the soma
to the axon terminals of a neuron. Transmission of information between two neurons
effectively occur at synapses (Dayan and Laurence F. Abbott 2001a; Vandewalle 2020-
2021). Synapses couple one (or sometimes several) axon terminal(s) of one (or several)
neuron(s) sending information, called presynaptic neuron(s), to a dendrite of a neuron
receiving that information, called the postsynaptic neuron (Dayan and Laurence F. Ab-
bott 2001a; Vandewalle 2020-2021). When the AP of a presynaptic neuron arrives at the
axon terminal, it usually triggers the release of molecules, called neurotransmitters, into
the synaptic cleft, the tiny space between the presynaptic axon terminal and a dendrite
of a postsynaptic neuron. These neurotransmitters diffuse and then bind to proteins,
called receptors, in the membrane of a postsynaptic dendrite. The bond between a neuro-
transmitter and its associated receptor results in an excitatory or inhibitory postsynaptic
current (or potential by using Ohm’s law), the so-called EPSC (EPSP) and IPSC (IPSP),
respectively (Gerstner et al. 2014 Ch 3). Depending on the nature and the strength of this
postsynaptic signal, the postsynaptic neuron will generate or not a spike and propagate
it to another neuron (Dayan and Laurence F. Abbott 2001a; Vandewalle 2020-2021).

3.2 Network models

Network models allow one to explore the computing power of complex connectivity schemes
between several neurons or even populations of neurons. Moreover this exploration can be
done using both mathematical analysis and simulations on computers (Dayan and Lau-
rence F. Abbott 2001b). When building or designing a network model, a few questions
about the architecture (or topology) and the components of the model should be answered
first because the dynamics produced by one specific architecture with specific components
will be different from another architecture with other components (Brunel 2021).

Regarding the architecture of the model, three typical questions arise (Brunel 2021):
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1. How many neurons or populations are considered?

2. How many types of neurons? → One (excitatory E or inhibitory I), two (E and I),
more than two (subtypes, different layers, . . . ), . . .

3. How are the neurons or populations connected? → Fully connected (i.e. all-to-
all), randomly connected with fixed connection probability or with fixed number of
connections per neuron/population (Gerstner et al. 2014 Ch 12), connected with a
temporal structure imposed by learning (i.e. synaptic plasticity), . . .

For the components of the network, three questions arise as well (Brunel 2021):

1. What are the external inputs? → Constant, stochastic (e.g. Poisson process4, . . . ),
time-dependent, space-dependent, . . .

2. Which neuron/population model should be used? → Binary model, rate model
(output = rate), spiking model (output = membrane potential), . . .

3. Which synapse model should be used? → Constant number (i.e. synaptic weight;→
usually for binary or rate models), temporal kernel (i.e. a time-dependent function
specifying how synaptic currents are triggered by a presynaptic AP and then evolve
with time; → usually for spiking models), current-based or conductance-based (i.e.
voltage-dependent), . . .

3.3 Network of single neurons

The most direct way to model and simulate neural networks (or systems) is to gather
data on the currents in each individual neurons, that is, to synaptically connect models
of spiking neurons. The information on the currents is then used to compute the mem-
brane potential of each neuron in the network. However, this approach represents a great
challenge and the resulting model is difficult to analyze and understand. Instead, neural
activity can be described using firing-rates of the neurons (L. F. Abbott 1991; Dayan and
Laurence F. Abbott 2001b).

Firing-rate models have several advantages:

• They are simple and easy to analyze and simulate (L. F. Abbott 1991) because they
work at a longer time scale than action potentials (Dayan and Laurence F. Abbott
2001b).

4A Poisson process generates a sequence of spikes where the probability of firing a spike at the current
time instant is independent of all previous spikes. All the spikes in the sequence are then statistically
independent (Dayan and Laurence F. Abbott 2001a).
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• The number of free parameters is usually smaller for the firing-rate models than for
the spiking models. Setting these free parameters becomes then easier (Dayan and
Laurence F. Abbott 2001b).

• Spiking models can accurately predict the spike sequences of a neuron only if all
the inputs to that neuron are known, which is usually not the case especially when
the network is complex. This precision about spike times may not be realizable in
practice. On the other hand, firing-rate models can be used to generate stochastic
spike sequences with a constant firing rate (Dayan and Laurence F. Abbott 2001b).

• When considering populations of neurons, firing-rate models at the neuron-level can
be easily adapted to population-level by using a mean-field approach (L. F. Abbott
1991), that is, by simply averaging the firing rates of the neurons constituting the
populations. This mean-field approach works as long as the populations have a large
number of neurons constituting them and are homogeneous, that is, the populations
are constituted of neurons with similar properties, that respond similarly to a given
stimulus and that receive the same inputs (Gerstner et al. 2014 Ch 12). If the re-
sponses of neurons were spikes, then how should these spikes be averaged to have a
signal adapted to the population-level? Can these spikes even be averaged? (Dayan
and Laurence F. Abbott 2001b).

Since any model is never perfect, rate models also have their limitations:

• The major drawback of rate models is that voltage-dependent quantities (such as
the membrane potential) are not computed (L. F. Abbott 1991).

• Rate models determine how often and not when APs are fired. Rate models cannot
therefore account for precise spike timing and/or spike correlations (L. F. Abbott
1991; Dayan and Laurence F. Abbott 2001b).

• For a rate model to work, the number of inputs that a neuron in the network receives
should be high so that the firing rate of each network unit approximates well the
effect of actual spike sequences of each network unit on the network’s dynamic
behavior (L. F. Abbott 1991; Dayan and Laurence F. Abbott 2001b).

• Rate models are thus restricted to cases where the firing from one neuron or another
is uncorrelated, is asynchronous or at least little synchronous, and where precise
sequences of spikes are not important (L. F. Abbott 1991; Dayan and Laurence F.
Abbott 2001b).
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3.3.1 What does "firing rate" mean?

As explained in section 3.1, neurons represent and transmit information using temporal
sequences of spikes. If the spikes are treated as instantaneous, identical and idealized
events, then these sequences can be completely characterized by what is called the neural
response function defined as

ρ(t) =
n∑

i=1

δ(t− ti) (3.1)

with 0 ≤ ti ≤ T the time of the ith spike (i = 1, 2, . . . , n), T the total duration of the
sequence and δ(t) the Dirac function, that is

δ(t) =

0 for all t ̸= 0∫ +∞
−∞ δ(t)dt = 1 for t = 0

In other words, the neural response function is a binary list of the n spike times (Dayan
and Laurence F. Abbott 2001a).

In rate models, the exact time course of ρ(t) is replaced by the approximate description
given by the firing rate (Dayan and Laurence F. Abbott 2001b). However, what is implied
by the terms "firing rate"? Unfortunately, there is no unique definition. The terms "firing
rate" can actually have at least four different definitions depending on the averaging
procedure that is used (Gerstner et al. 2014 Ch 7).

Rate as a spike count (average over time)

The most commonly used definition for the firing rate is the temporal average. For a
given neuron generating a sequence of spikes in a given trial k, the spike-count rate r is
the total number of spikes fired by that neuron in trial k, divided by the total duration
T of trial k (Eq. (3.2)). Put differently, the spike-count rate is the time average of ρ(t)
over the duration of trial k (single neuron, single trial) (Dayan and Laurence F. Abbott
2001a; Gerstner et al. 2014).

r =
n

T
=

1

T

∫ T

0

ρ(t)dt (3.2)

A drawback of this computation is that all the time resolution in the time course of
the trial is lost (Dayan and Laurence F. Abbott 2001a).

Rate as a firing probability (average over trials)

A time-dependent (or instantaneous) firing rate can be defined as “the average number
of spikes (averaged over trials) appearing during a short interval between t and t + ∆t,
divided by the duration of the interval” (Dayan and Laurence F. Abbott 2001b). Also,
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the average number of spikes over trials occurring during ∆t is obtained by the integral
of the trial-averaged neural response function. The firing rate r(t) is then given by the
following equation (single neuron, repeated trials)

r(t) =
1

∆t

∫ t+∆t

t

⟨ρ(s)⟩ ds = 1

K∆t

∫ t+∆t

t

K∑
k=1

ρk(s) ds (3.3)

with K the total number of trials and ρk the sequence of spikes in trial k (Dayan and
Laurence F. Abbott 2001b; Gerstner et al. 2014).

If ∆t is sufficiently small, then the number of spikes in any sequence k over an interval
∆t will be at most one so that

∫ t+∆t

t
ρk(s) ds is either equal to zero or one. Consequently,

r(t)∆t is the probability of firing a spike during an interval ∆t. Similarly, r(t)∆t is the
proportion of trials in which a spike occurred between t and t+∆t. Due to this relation-
ship between this fraction and the firing rate, it is allowed to replace the trial-averaged
neural response function ⟨ρ(s)⟩ with the firing rate r(t) within any integral (Dayan and
Laurence F. Abbott 2001b).

When no additional specifications are explicitly stated, the terms "firing rate" refer
to this meaning.

Rate as an average firing rate (average over time and trials)

If the spike-count measure is performed on repeated trials, then the value might vary
from one trial to the next due to the stochastic nature of neurons. Their associated spike
sequences might vary from one trial to the next as well (Gerstner et al. 2014). An average
firing rate can then be obtained by averaging the spike-count rate over the total number
of trials (Eq. (3.4)) (Dayan and Laurence F. Abbott 2001b). The averaging procedure
looks like a "mean of means".

⟨r⟩ = ⟨n⟩
T

=
1

T

∫ T

0

⟨ρ(t)⟩ dt = 1

T

∫ T

0

r(t)dt (3.4)

Based on Eq. (3.4), one can observe that the average firing rate corresponds to the time
average of the instantaneous firing rate r(t).

Rate as a population activity (average over several neurons)

When considering populations of neurons, the firing rate can be seen as an average over
the neurons in the population (Gerstner et al. 2014):

r̄(t) =
1

N∆t

∫ t+∆t

t

N∑
j=1

ρj(s) ds (3.5)
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with N the size of the population (i.e. the number of neurons within a population) and
∆t a short time interval around time t. One can actually see that formulations for r(t)

and r̄(t) are the same; the only difference lies in the context of the formula.

3.3.2 Rate models derivation

To construct a rate model, one needs to follow two steps (L. F. Abbott 1991; Dayan and
Laurence F. Abbott 2001b):

1. First, one needs to determine how the total synaptic input current (or voltage (Ger-
stner et al. 2014)) to a neuron depends on the firing rates of its presynaptic affer-
ents. This is the step where r(t) approximates ρ(t) (Dayan and Laurence F. Abbott
2001b). In other words, the relation rpre(t)→ Isyn(t) is modeled.

2. Secondly, the firing rates of the postsynaptic neurons as a function of their total
synaptic currents are determined (L. F. Abbott 1991; Dayan and Laurence F. Abbott
2001b). Expressed differently, it amounts to find the relation Isyn(t)→ rpost(t).

In order to better visualize the derivation of a rate model, a simple network with
P presynaptic neurons (i.e. presynaptic inputs) and a single postsynaptic neuron (i.e.
postsynaptic output) can be found in Figure 3.1. Presynaptic neurons make feedforward
connections with the postsynaptic neuron, that is, the connections bring inputs to a neu-
ron from neurons located at an earlier stage (Dayan and Laurence F. Abbott 2001b). The
firing rate of input p (p = 1, 2, . . . , P ) can be denoted by rpre,p(t)

5. The firing rates of
all inputs together can be denoted by the input vector rpre having P components. Also,
an input neuron makes connection onto the output neuron with a synaptic strength (or
synaptic weight or simply weight) wp. All synaptic weights can be collectively denoted by
the synaptic weight vector w (Dayan and Laurence F. Abbott 2001b).

Input vector rpre

Synaptic weight vector w

Output rpost

Figure 3.1: Feedforward network with P input (or presynaptic) rates rpre, 1 output
(or postsynaptic) rate rpost, and a feedforward synaptic weight vector w.
Squares represent connections from inputs to output. The connections can
be either excitatory or inhibitory. Inspired from Dayan and Laurence F.
Abbott 2001b.

5The firing rates that are used hereafter are the time-dependent firing rate defined in section 3.3.1.
However, to avoid an overload of notations, the notation r will often be used. This notation should not
be understood as the spike-count rate! It should rather be understood as an abuse of language to simplify
notations.
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As a reminder, the first step consists in modeling how the total synaptic current Isyn

received at the postsynaptic neuron depends on the presynaptic firing rates rpre. If a spike
arrives at the presynaptic neuron p at time t = 0, then the synaptic current received by
the postsynaptic neuron at time t is modeled as

Isyn,p(t) ≈ wpKsyn(t) (3.6)

with wp the weight as described above and Ksyn(t) the synaptic kernel (Dayan and Lau-
rence F. Abbott 2001b) or filter (Gerstner et al. 2014 Ch 15).

The synaptic kernel Ksyn(t) ≥ 0 represents the time course, that is the time evolution,
of the synaptic current of an input neuron in response to a presynaptic spike occurring
at time t = 0. Moreover, the kernel is assumed to be the same for all input neurons and
normalized to 1 for all positive times, that is∫ +∞

−∞
Ksyn(t) dt =

∫ +∞

0

Ksyn(t) dt = 1

(Dayan and Laurence F. Abbott 2001b).
The amplitude and the sign of the synaptic current Isyn,p are then determined by the

weight wp. If the coupling is excitatory (inhibitory), then wp > 0 (wp < 0) (Dayan and
Laurence F. Abbott 2001b; Gerstner et al. 2014; Gjorgjieva et al. 2021b; Wilson and
Cowan 1972).

Assuming that the effects of the spikes in the spike sequence of input neuron p can be
summed linearly, the total synaptic current received by the postsynaptic neuron at time
t due to the spikes that occurred at times ti < t in input neuron p is given by

I totsyn,p(t) = wp

∑
ti<t

Ksyn(t− ti) = wp

∫ t

−∞
Ksyn(t− τ)ρp(τ) dτ (3.7)

with ρp(τ) the neural response function of input neuron p (Dayan and Laurence F. Abbott
2001b). Moreover, if no non-linear interactions between synaptic currents from different
input neurons exist, then the total synaptic current received by the postsynaptic neuron
at time t from all input (or presynaptic) neurons is obtained by summing over the input
neurons,

Isyn(t) =
P∑

p=1

wp

∫ t

−∞
Ksyn(t− τ) · ρp(τ) dτ (3.8)

Since the neural response function ρp(τ) can be approximated by the firing rate rpre,p(τ),
the total synaptic current can be expressed using the firing rates of the presynaptic neurons

Page 37 of 133



3.3. Network of single neurons Chapter 3. Network models

as

Isyn(t) =
P∑

p=1

wp

∫ t

−∞
Ksyn(t− τ) · rpre,p(τ) dτ (3.9)

(Dayan and Laurence F. Abbott 2001b).

For rate models, the synaptic kernel is usually a decaying exponential

Ksyn(t) =
1

τsyn
exp

(
− t

τsyn

)
with τsyn the synaptic time constant (Brunel 2021; Dayan and Laurence F. Abbott 2001b;
Gerstner et al. 2014; Wilson and Cowan 1972). Using this kernel, the synaptic current Isyn
at the postsynaptic neuron can be described with a differential equation (by differentiating
Eq. (3.9) with respect to time on both sides)

τsyn
dIsyn(t)

dt
= −Isyn +

P∑
p=1

wprpre,p = −Isyn(t) + w · rpre (3.10)

with w · rpre the dot product between weight and input vectors (Dayan and Laurence F.
Abbott 2001b).

The second step for building a rate model consists in determining the output rate of
the postsynaptic neuron based on the knowledge of Isyn.

For constant synaptic current (Isyn(t) = Isyn, ∀t), the firing rate of the postsynaptic
neuron is expressed as a function of this current, that is

rpost = Φ(Isyn) (3.11)

with Φ(.) the activation function (Dayan and Laurence F. Abbott 2001b) or static trans-
fer function (Brunel 2021; Brunel and Lavigne 2009) or again gain function (Gerstner
et al. 2014) or f − I curve (Brunel and Lavigne 2009; Gerstner et al. 2014). The transfer
function is usually a sigmoid function (Dayan and Laurence F. Abbott 2001b; Gjorgjieva
et al. 2021a; Gjorgjieva et al. 2021b; Wilson and Cowan 1972) but it can be (threshold)
linear (L. F. Abbott 1991; Gjorgjieva et al. 2021a), a hyperbolic tangent (Franci 2023a;
Gjorgjieva et al. 2021a) or others (Gjorgjieva et al. 2021a). The tranfer function indicates
how a neuron (or a population) integrates its presynaptic inputs in order to determine
how it should respond; what decision should be made (Gjorgjieva et al. 2021a; Gjorgjieva
et al. 2021b).

For a time-dependent synaptic current Isyn(t), the firing rate of the postsynaptic

Page 38 of 133



3.3. Network of single neurons Chapter 3. Network models

neuron is modeled as a low-pass filtered version of the steady state firing rate rpost =

Φ(Isyn(t)). In simpler terms, the output firing rate evolves as

τ
drpost(t)

dt
= −rpost(t) + Φ(Isyn(t)) (3.12)

with τ the time constant determining how rapidly rpost averages Φ(Isyn(t)) (Dayan and
Laurence F. Abbott 2001b).

Thus, as a summary, the rate model is given byτsyn
dIsyn(t)

dt
= −Isyn(t) + w · rpre

τ drpost(t)

dt
= −rpost(t) + Φ(Isyn(t))

(3.13)

If τ ≪ τsyn, then the dynamics of rpost is extremely fast so that rpost can be considered
to be instantaneously equal to its steady state value, i.e. rpost = Φ(Isyn(t)). The model
(3.13) reduces to

τsyn
dIsyn(t)

dt
= −Isyn(t) + w · rpre with rpost = Φ(Isyn) (3.14)

On the other hand, if τ ≫ τsyn, which is usually the case, then the dynamics of Isyn(t) is
extremely fast so that Isyn(t) can be considered to be instantaneously equal to its steady
state value, i.e. Isyn(t) = w · rpre. The model (3.13) reduces to

τ
drpost(t)

dt
= −rpost(t) + Φ(w · rpre) (3.15)

(Dayan and Laurence F. Abbott 2001b).
When referring to rate models, one usually refers to Eq. (3.15).

3.3.3 Feedforward networks

What happens if the network has Q output neurons as in Figure 3.2?

In that case, the scalar output becomes an output vector rpost and the vector of weights
becomes a Q× P matrix W whose element wqp represents the connection strength from
input neuron p to output neuron q. The rate model (Eq. (3.15)) then becomes

τ
drpost
dt

= −rpost +Φ(W · rpre) or τ
drpost,q
dt

= −rpost,q +Φ

(
P∑

p=1

wqprpre,p

)
(3.16)

with p = 1, 2, . . . , P and q = 1, 2, . . . , Q (Dayan and Laurence F. Abbott 2001b; Gjorgjieva
et al. 2021a; Gjorgjieva et al. 2021b).
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Input vector rpre

Weight matrix W

Output vector rpost

Figure 3.2: Feedforward network with P input (or presynaptic) rates rpre, Q output
(or postsynaptic) rates rpost, and a feedforward synaptic weight matrix W.
Squares represent connections from inputs to outputs. The connections can
be either excitatory or inhibitory. Inspired from Dayan and Laurence F.
Abbott 2001b.

Feedforward models are extensively used to study synaptic plasticity and learning but
they can be used to model and compute coordinate transformations involved in reaching
tasks (Dayan and Laurence F. Abbott 2001b).

3.3.4 Recurrent networks

Similarly to feedforward networks, recurrent networks have input neurons making feed-
forward connections to output neurons but, in addition, output (or input) neurons make
recurrent connections with each other. In other words, recurrent connections intercon-
nect neurons that are considered to be at the same stage (Dayan and Laurence F. Abbott
2001b). An example is provided in Figure 3.3. The rate model then becomes

τ
drpost
dt

= −rpost+Φ(W·rpre+M·rpost) = −rpost+Φ(M·rpost+I) = −rpost+Φ(W̃·r) (3.17)

with M the weight matrix of the recurrent connections, I = W ·rpre the total feedforward
input to each output neuron in the network, W̃ = (W,M) the "agglomerate" weight
matrix and r = (rpre, rpost)

T the vector of all neurons.

Input vector rpre

Weight matrix W

Output vector rpost

Recurrent weight matrix M

Figure 3.3: Recurrent network with P input (or presynaptic) rates rpre, Q output (or
postsynaptic) rates rpost, a feedforward synaptic weight matrix W, and a
recurrent weight matrix M. Squares represent connections from inputs to
outputs and from outputs to other outputs. The connections can be ei-
ther excitatory or inhibitory. Inspired from Dayan and Laurence F. Abbott
2001b.
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Recurrent networks offer more complex dynamics than feedforward networks, but in
return they are more difficult to analyze. Advantages of recurrent networks are that they
can perform selective amplification of a stimulus feature along eigendirection(s) of the
network or they can be used to model memory (Dayan and Laurence F. Abbott 2001b).

3.3.5 Excitatory-Inhibitory networks

Neurons are usually categorized as either excitatory or inhibitory because their effect on
the postsynaptic neurons is excitatory or inhibitory. In that case, the output vector is
typically partitioned into two vectors: vE, the firing-rate vector of the excitatory neurons
and vI , the firing-rate vector of the inhibitory neurons. Their dynamics is then modeled
separately as well but the equations remain nevertheless coupledτE

dvE

dt
= −vE + ΦE(MEE · vE + MEI · vI + IE)

τI
dvI

dt
= −vI + ΦI(MIE · vE + MII · vI + II)

(3.18)

There are now four different weight matrices describing the four types of connections:
E → E (MEE whose elements are positive), I → E (MEI whose elements are negative),
E → I (MIE whose elements are positive), I → I (MII whose elements are negative).
Also, due to the different nature of the neurons, the latter may have different time con-
stants, transfer functions and feedforward inputs (Dayan and Laurence F. Abbott 2001b;
Wilson and Cowan 1972).

This type of networks is particularly useful to analyze oscillatory phenomena (Dayan
and Laurence F. Abbott 2001b).

3.4 Network of interacting populations

The concepts for a network of neurons can be easily transposed to a network of populations.
Instead of using a vector of firing rates of neurons, one needs to use a vector of firing rates
of populations, that is, a single scalar will describe the firing rate of an entire population
made of a large number of neurons. As seen in subsection 3.3.1, the firing rate of the
population will thus be an average over the neurons making up the population. In order
for this method to be valid, the population must be homogeneous. This implies that

• Only neurons with similar properties should be grouped together, that is, they have
similar parameters and are statistically indistinguishable (Gerstner et al. 2014 Ch
12).

• The number of neurons within a population should be large (and finite) (Gerstner
et al. 2014 Ch 12).
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• Each neuron within a population receives inputs from many other neurons, either
from the same population, or from other populations, or both (Gerstner et al. 2014
Ch 12).

• All neurons within a population receive the same (external) input (Gerstner et al.
2014 Ch 12).

When the populations are homogeneous, then the rate model (3.15) and its variants
(Eqs. (3.16, 3.17, 3.18)) can be transposed to populations by replacing r(t) by r̄(t), the
population activity or equivalently, the firing rates of the entire populations (Gerstner
et al. 2014; Gjorgjieva et al. 2021a; Gjorgjieva et al. 2021b).

3.4.1 Wilson-Cowan models

When the rate model uses populations of excitatory neurons and populations of inhibitory
neurons, the model is often referred to as a Wilson-Cowan (WC) rate model. The original
Wilson-Cowan model uses two variables, each coding for a population:

• E(t) = proportion of excitatory cells firing per unit time at the instant t.

• I(t) = proportion of inhibitory cells firing per unit time at the instant t.

Their dynamics is then modeled as (Wilson and Cowan 1972)τE
dĒ
dt

= −Ē + (1− sĒ)ΦE(wEEĒ − wEI Ī + IE)

τI
dĪ
dt

= −Ī + (1− sĪ)ΦI(wIEĒ − wII Ī + II)
(3.19)

with Ē and Ī the average firing rates, ΦE(.) and ΦI(.) two sigmoid functions and s the
fraction of cells that are unavailable for firing at time t. All weights here have positive
values. The premultiplicative factors (1 − sĒ) and (1 − sĪ) do not actually make too
much difference in the analysis of (3.19). The fraction is therefore often set to zero
(s = 0) (Ermentrout and Terman 2010). The WC model then reduces toτE

dĒ
dt

= −Ē + ΦE(wEEĒ − wEI Ī + IE)

τI
dĪ
dt

= −Ī + ΦI(wIEĒ − wII Ī + II)
(3.20)

which corresponds to a 2-population case of (3.18), hence the reference to a Wilson-Cowan
model when using excitatory and inhibitory populations.
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Chapter 4

Language and Memory

This chapter aims at introducing the concept of memory in order to understand why
memory is an important component of one’s behavior. The link between language and
memory is also discussed.

Memory is the general term accounting for the ability to acquire, retain and make use
of skills and/or knowledge (Tulving 2000). More important than that, memory is crucial
in human beings’ life because it allows them to adapt their behavior to what they have ex-
perienced previously (Schacter 2000; Vandewalle 2020-2021). For this reason, the concept
of memory is often linked to that of learning. The distinction between the two concepts
is often blurry but learning should be thought of as the process of acquiring slowly a
new skill or knowledge, whereas memory should be thought of as acquiring "instantly",
making use of, expressing that new skill or knowledge that has been learned (Thompson
2000; Tulving 2000).

Describing memory is difficult because it can take many forms and kinds. The usual
classification is then made using memory systems (Schacter 2000) and, in a more inte-
grated fashion, brain systems (Thompson 2000).

4.1 Memory systems

Schacter 2000 uses the terms "memory system" as “a set of interrelated brain processes
that allow one to store and retrieve a specific type of information”, and as a system “that
can be characterized using lists of properties that describe its mode of operation”. As a
result, (at least) five memory systems can be distinguished.
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4.1.1 Episodic memory

Conscious (or aware) recollection of personal past events that occurred at a particular
time and place is referred to as episodic memory (Schacter 2000). In other words, episodic
memory contains all memories that are unique to one’s life. It is a self-centered point of
view.

4.1.2 Semantic memory

Unlike episodic memory, semantic memory refers to the knowledge that could be shared
by anyone or at least by a significant number of individuals. Put differently, semantic
memory refers to facts and (verbal) concepts that are not linked to a specific time and/or
place of one’s life (Kumar 2021; Schacter 2000). A typical example would be the language
spoken by individuals belonging to a population. More simply, knowing that the Eiffel
Tower is located in Paris is part of semantic memory. Semantic memory is therefore an
allocentric point of view. Moreover, semantic memory is involved in the representation
of associative and conceptual (or featural) information (Schacter 2000). In other words,
semantic memory is involved in the identification of the meaning of words, objects, . . .

4.1.3 Perceptual representation system

The perceptual representation system is involved in identifying words, objects, . . . based
on their form and structure. This identification occurs before any further processing
within the semantic memory (Schacter 2000).

4.1.4 Procedural memory

Acquiring new skills and habits, that is, knowing how to do a task rather than knowing
what is the task, is often referred to as procedural memory. Repetition in doing the task
is the key to construct procedural memories (Schacter 2000).

4.1.5 Working memory

Finally, working memory focuses on the retention of a small amount of information over
a period of a few seconds (Schacter 2000; Vandewalle 2020-2021). Since working memory
can only serve short-term purposes, typical applications are basic cognitive activities such
as reasoning, problem solving, . . . (Schacter 2000). For instance, memorizing a phone
number before writing it down is in the scope of working memory.
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4.2 Brain systems

Similarly to memory systems, memory can be categorized based on the brain systems that
are responsible for a particular type of memory, but also based on the purpose(s) served
by a particular type of memory as being embodied into the brain.

4.2.1 Short-term VS Long-term memory

A first distinction appears according to the time scale of the retention of information.
Short-term memory, whose time scale goes from seconds to minutes, retains infor-

mation briefly. For this reason, short-term memory is sometimes referred to as working
memory as seen above. Moreover, short-term memory contains all the information that
one is aware at any given moment in time. In addition, short-term memory also contains
information that is retrieved from other types of memory. This retrieved information is
then used directly after retrieval (Thompson 2000).

On the other hand, long-term or (relatively) permanent memory contains information
that is retained over periods of days, weeks, months and years. Long-term memory can
further be categorized as follows (Thompson 2000).

4.2.2 Declarative VS Non-declarative memory

Declarative and non-declarative memories are both long-term memories but the distinc-
tion appears when the access to these types of memories is made consciously (also known
as explicit) or unconsciously (also referred to as implicit) (Thompson 2000).

Declarative memory is said to be an explicit memory and usually includes episodic
and semantic memories (Schacter 2000; Thompson 2000; Vandewalle 2020-2021).

On the other hand, non-declarative memory is said to be an implicit memory and
is assumed to contain everything that is neither in declarative memory nor in short-
term/working memory (Thompson 2000).

4.2.3 Nonassociative memory

Nonassociative memory is a type of non-declarative long-term memory that refers to the
phenomena of habituation and sensitization (Thompson 2000). Put differently, this type
of memory accounts for the changes in already existing responses to stimuli. Habituation
will decrease the response to a repeated stimulus whereas sensitization will increase the
response (Thompson 2000).
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Memory

Short-term/Working
memory

Long-term memory

Non declarative

Nonassociative
learning

Habituation,
Sensitization

Basic
associative
learning

Conditioning

Priming
Skills,
Habits

Procedural

Declarative

Semantic

Facts

Episodic

Events

Figure 4.1: Memory classification. Adapted from Thompson 2000.

4.2.4 Basic associative memory

Basic associative memory contains associations between stimuli and/or associations be-
tween stimuli and responses. The most known process that makes up these associations is
the conditioning (Thompson 2000). Conditioning is the process of associating a response
A, initially due to a stimulus A, to a stimulus B, that was initially associated to a response
B (usually a neutral response). For instance, listening to a tone (stimulus B) is associated
to a neutral response (response B), but seeing a spider (stimulus A) is associated with fear
(response A). Conditioning consists in repeatedly presenting together the stimuli "spider"
and "tone" (that will give a "fear" response). Once conditioning is over, listening to the
tone is then associated to fear (Vandewalle 2020-2021).

4.2.5 Priming

Priming is the phenomenon that appears when processing a concept/stimulus enhances
the processing of a following related concept/stimulus (compared to when the following
concept/stimulus is unrelated) (Heyman, De Deyne, and Storms 2013; McNamara 2005;
Thompson 2000). Priming is thus important for human beings when interacting with
their peers using language (see next).

4.3 Summary of memory classification

A summary of the classification of memory and brain systems can be found in Figure 4.1.
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4.4 Link between language and memory

Language is not (absolutely) needed to have sophisticated learning and/or memory capa-
bilities (Tulving 2000). For instance, even though bees do not talk, they remember and
know how to go back to the hive once they fly in the outside world and pollinate flowers.
However, when language comes into play as in human beings, memory and language cer-
tainly and greatly influence each other (Tulving 2000).

In order to interact with their peers, human beings use, among other things, language:
either one listens or one speaks. When listening, one has first to encode the informa-
tion received from the speaker and then process it. When speaking, one has to retrieve
information (i.e. making use of vocabulary, grammar, . . . ) from memory, in particular
semantic memory, in order to produce a coherent speech. Also, when being exposed to
the same stimulus such as words (nouns, verbs, . . . ), sentences, . . . , (semantic) memory
becomes "updated" as well in the sense that new words with their meaning become part
of the mental lexicon stored in memory.

In addition, this interaction happens in real-time in the sense that processing infor-
mation does not take more than seconds (and usually take less). This efficiency is made
possible through processes such as priming that speeds up the reaction to a stimulus.
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Chapter 5

Semantic priming

This chapter aims at making an overview of the semantic priming paradigm, used as the
context for the core computational study. Tasks, semantic relations and models are dis-
cussed.

As explained in subsection 4.1.2, semantic memory contains general knowledge (Hutchi-
son 2003; Kumar 2021; Schacter 2000). Considering language, semantic memory would
thus contain information about identity, spelling, pronunciation and especially meaning
of a concept (Hutchison 2003; Kumar 2021); the most commonly used concepts being
words and pictures (Sperber et al. 1979). However, it is still unclear how semantic mem-
ory is structured, that is, how this knowledge is represented in semantic memory exactly
(Hutchison 2003; Kumar 2021).

The usual experimental procedure to investigate the semantic memory structure is
called the semantic priming paradigm (Hutchison 2003). In this paradigm, participants
are transiently presented a first concept (usually a word), called prime, that is followed
after a controlled delay by another semantically (un)related concept, called target (Brunel
and Lavigne 2009; Heyman, Bruninx, et al. 2018; Heyman, De Deyne, and Storms 2013;
Hutchison 2003; Kumar 2021; Lavigne, Dumercy, and Darmon 2011; McNamara 2005;
Sperber et al. 1979). Participants are then asked to perform a task on the target concept
usually (see section 5.1) (Brunel and Lavigne 2009; Heyman, De Deyne, and Storms 2013;
Hutchison 2003; Kumar 2021; Lavigne, Dumercy, and Darmon 2011).

The semantic priming effect comes then from the observation that participants process
faster the target concept when it is related to the prime than when the target concept is
unrelated to the prime. In other words, the reaction time of participants for related targets
is smaller than that for unrelated targets (Brunel and Lavigne 2009; Heyman, Bruninx,
et al. 2018; Heyman, De Deyne, and Storms 2013; Hutchison 2003; Kumar 2021; Lavigne,
Dumercy, and Darmon 2011; McNamara 2005; Sperber et al. 1979). The priming effects
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are then usually computed by subtracting the average reaction time (RT) for the related
targets from the average reaction time for the unrelated targets (i.e. RTU − RTR), al-
though this computation does not give highly reliable figures (Heyman, Bruninx, et al.
2018). Thus, the larger the difference, the larger the priming effects and the faster the
processing of related targets.

The "semantic" in "semantic priming" refers to semantic (i.e. “true relations of mean-
ing” McNamara 2005) and/or associative relationships between the prime and the target
(Heyman, Bruninx, et al. 2018; McNamara 2005). For instance, the concepts dog and goat
are semantically related (because both belong to the same category animal and share fea-
tures) whereas the concepts light and dark (antonyms) are associatively related (because
when presenting the prime light, the primary concept that comes to mind is often dark).
Actually, it is very rare to find pure semantic or associative relationships; these two act
more like the extremes of a whole spectrum of relatedness (Heyman, Bruninx, et al. 2018;
Hutchison 2003; Kumar 2021; McNamara 2005).

There are a few reasons why semantic priming is used to investigate the semantic
memory structure and even used in general. First, when participants perform semantic
priming tasks, semantic priming often occurs automatically, that is, the participants are
not aware of this processing; they do not use it consciously. This is the fundamental
reason why semantic priming is thought to reflect the semantic memory structure (Hey-
man, Bruninx, et al. 2018; Heyman, De Deyne, and Storms 2013; Hutchison 2003; Kumar
2021; McNamara 2005). Then, semantic priming occurs in wide variety of cognitive tasks
such as lexical decision, pronunciation, . . . (see section 5.1) (McNamara 2005). Finally,
semantic priming can serve as a tool to explore other aspects of cognition and perception,
namely word recognition, sentence comprehension, . . . (McNamara 2005).

Unfortunately, priming effects are difficult to evaluate reliably (Heyman, Bruninx,
et al. 2018) because they depend on the cognitive task, the timing of the experimental
procedure, the pool of participants that is considered, the type and the (association)
strength of the relationship between primes and targets, . . . (Brunel and Lavigne 2009;
Hutchison 2003; Kumar 2021; Lavigne, Dumercy, and Darmon 2011). Models of priming
attempt to take into account all or some of these factors to explain the dynamics of
semantic memory (see section 5.3).

Page 52 of 133



5.1. Experimental tasks Chapter 5. Semantic priming

5.1 Experimental tasks

As already introduced above, a wide variety of tasks can be used to assess priming effects
experimentally. The most frequently used task is called the lexical decision task (LDT)
(Brunel and Lavigne 2009; Heyman, De Deyne, and Storms 2013; Hutchison 2003; Ku-
mar 2021; McNamara 2005; Sperber et al. 1979). In this task, the stimuli are existing
and correctly spelled words, and non existing and meaningless letter strings called non-
words or pseudo-words. On each trial, participants first have to read (silently or aloud)
the prime. Secondly, they have to decide whether the following target is a word or a
non-word (Heyman, De Deyne, and Storms 2013; McNamara 2005). The finding is thus
that responses are faster and more accurate when the target is semantically related to
the prime, as predicted by the semantic priming effect. However, this task is prone to
participants making use of strategies to increase their performance (Heyman, De Deyne,
and Storms 2013; Hutchison 2003). Since these strategies cause an artefact in the results,
variants of the LDT have been designed, notably a continuous LDT (cLDT) and a let-
ter decision task (Heyman, De Deyne, and Storms 2013) to control for the possibility of
strategies. A continuous LDT requires participants to decide, in addition to the target,
whether the prime is a word or a non-word. The letter decision task requires participants
to fill in a one-letter gap in the prime and the target words (e.g. tom_to-lett_ce would
give tomato-lettuce) (Heyman, De Deyne, and Storms 2013).

The secondly most used task is the so-called word naming or pronunciation (Brunel
and Lavigne 2009; Hutchison 2003; McNamara 2005). In this task, the stimuli are cor-
rectly spelled words and participants have to read aloud the target (and sometimes the
prime as well) as fast and accurately as possible. The performance is again better when
the target is semantically related to the prime (McNamara 2005).

5.2 Semantic relationships

Priming effects depend on the type of relationship that exists between a prime and a
target. A non-exhaustive list of these relationships, categorized as "semantic" or "asso-
ciative", is given in Table 5.1 with prime-target examples in parentheses.

More simply, the type of relationship between a prime and a target can be categorized
as direct or indirect. Moreover, the number of steps (or, in a similar way, the number of
associated concepts) separating the target from the prime further qualifies the relation-
ship.
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"Associative" "Semantic"

Synonyms (afraid-scared) Category members/coordinates (natu-
ral: sheep-goat ; artificial: table-chair)

Antonyms (light-dark) Supraordinate (dog-animal)

Property relations (perceptual: canary-
yellow ; functional: broom-sweep)

Subordinate (animal-dog)

Instrument relation (broom-floor)

Script relation (orchard-apple)

Phrasal associate (forward: baby-boy ;
backward: boy-baby)

Table 5.1: Classification of prime-target relationships. Relationships are labeled as ei-
ther "associative" or "semantic" but one should keep in mind that purely
semantic or associative relations rarely exist. Inspired and adapted from
Hutchison 2003.

 

Large 

Carnivore 

feline 

tiger Lion 

mane 

africa 

Asia 

Stripes 

Step 23 

Step 2 

Step 1 

Semantic field s Common associate 

Figure 5.1: Types of prime-target relationships using an example of a semantic network.
Concepts are represented by nodes. The links between the concepts repre-
sent the relations. Blue nodes account for the common associates to both
the prime lion and the target tiger. Black lines illustrate direct (Step 1) re-
lations between concepts. Purple lines illustrate indirect (Step 2) relations
between concepts. Green lines account together for the semantic field s of
the concept lion. Orange dash-dotted rhombus delimits a subnetwork ac-
counting for a Step 23 priming for the prime-target pair lion-tiger. Example
of semantic network adapted from McNamara 2005.
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Step 1 priming (Figure 5.1 black lines) is a direct association/relation between a prime
and a target (e.g. carnivore-tiger). The strength of this relation can be quantified using
the association strength, defined as the percentage of people responding primarily with a
given target word when given a prime cue (Hutchison 2003). Thus, the magnitude and the
onset of Step 1 priming effects depend on the association strength a (Brunel and Lavigne
2009; Lavigne, Dumercy, and Darmon 2011).

Step 2 priming (Figure 5.1 purple lines), also known as mediated priming (Hutchison
2003; Kumar 2021), corresponds to an indirect association/relation through a common
associate (or mediator (Hutchison 2003; Kumar 2021)) (e.g. lion(-carnivore)-tiger). Since
the semantic distance separating the target from the prime is larger in two-step priming
than in one-step priming, two-step priming effects are reported to be weaker than those
of one-step priming but stronger than those of three-step priming (involving two interme-
diate associates) (Brunel and Lavigne 2009; Lavigne, Dumercy, and Darmon 2011).

Actually, two-step priming effects can also depend on the total number n of common
associates to both the prime and the target, and is usually referred to as Step 2n priming
(Figure 5.1 orange dash-dotted rhombus including the nodes and edges within it). This
priming is sometimes reported to be equivalent as, or even stronger than one-step priming
(Brunel and Lavigne 2009; Lavigne, Dumercy, and Darmon 2011).

Generalization to N steps would give Step N s
n with n the number of common associates

to both the prime and the target, and s the semantic field (Figure 5.1 green lines) of a
given word, that is the total number of associates that this given word has (Brunel and
Lavigne 2009; Lavigne, Dumercy, and Darmon 2011).

5.3 Models of priming

All studies agree with the fact that semantic priming exists and should reflect the or-
ganization and the structure of semantic memory. However, a vivid debate about the
nature (or source) of the semantic priming effects can be found in the semantic priming
literature (Brunel and Lavigne 2009; Hutchison 2003; Kumar 2021; Lavigne, Dumercy,
and Darmon 2011). This debate is reflected in the different models of priming that are
used to explain the representation of semantic memory, and to bridge the gap between
the observed behaviors and the cellular levels responsible for these behaviors (Brunel and
Lavigne 2009; Heyman, De Deyne, and Storms 2013).

According to association theories of semantic memory, the latter is assumed to be
represented by a semantic network where concepts and features are encoded as whole
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units, that is nodes. The network adopts more of a localist point of view (Brunel and
Lavigne 2009; Hutchison 2003; Kumar 2021; Lavigne, Dumercy, and Darmon 2011). A
node makes a connection with another node if they are associated in some way. The link
between these two nodes is then weighted with the association strength a characterizing
the connection between the two nodes. Semantic priming effectively occurs in this net-
work through a spreading activation mechanism. If the prime node is activated, then it
leads to the activation of its direct neighboring nodes (if the weight of these connections
is strong enough), and the network is traversed until the target node is reached and a
response (i.e. activated or not) is made. The semantic distance separating the target
from the prime reflects the reaction time needed to make a decision (Brunel and Lavigne
2009; Hutchison 2003; Kumar 2021; Lavigne, Dumercy, and Darmon 2011).

On the other hand, feature-based distributed models represent concepts in semantic
memory as a binary collection of features. Thus, nodes in a distributed network encode
for single features that are either activated or not activated. Moreover, the network is
fully connected. Activation or recall of a given concept in memory corresponds then to
the convergence of the network to a particular pattern of activated features, that is an at-
tractor state (Brunel and Lavigne 2009; Hutchison 2003; Kumar 2021; Lavigne, Dumercy,
and Darmon 2011). The distributed model is therefore similar to a Hopfield net (Gerst-
ner et al. 2014 Ch 17). Semantically related concepts would then share common features,
and the degree of overlap between two concepts’ patterns would determine how similar
the meaning of these two concepts is (Brunel and Lavigne 2009; Kumar 2021; Lavigne,
Dumercy, and Darmon 2011). Semantic priming thus occurs through the facilitation of
processing the target concept because the prime and the target concepts largely overlap.
Two important remarks should be kept in mind as well: first, a concept is distributed over
many different features but, in turn, a single feature can be contained in multiple con-
cepts’ representation. Second, priming occurs with direct associations between features
rather than direct associations between concepts (Brunel and Lavigne 2009; Hutchison
2003; Kumar 2021; Lavigne, Dumercy, and Darmon 2011).

A drawback and limitation shared by both association-based and feature-based models
is that they are unable to explain how knowledge of individual concepts and features was
learned initially. For this reason, a third class of models, that is the distributional semantic
models (DSM), attempts to overcome this issue.

“Distributional semantic models refer to a class of models that provide explicit mecha-
nisms for how words or features for a concept may be learned from the natural language”
(Kumar 2021). In other words, DSMs directly build representations of concepts and/or
features by extracting co-occurrence of patterns and inferring associations between con-
cepts and/or features, from texts with "natural language" (i.e. books, newspapers, arti-
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cles, . . . ) (Hutchison 2003; Kumar 2021). Two learning mechanisms, known as error-free
and error-driven mechanisms, can be used by DSMs. An error-free learning mechanism
is similar to a classic Hebbian learning mechanism (“Fire together, wire together”) where
learning of concepts/features occurs by identifying events that tend to co-occur in tem-
poral proximity. On the other hand, an error-driven learning mechanism “posits that
learning is accomplished by predicting events in response to a stimulus, and then ap-
plying an error-correction mechanism to learn associations” (Kumar 2021). Typically,
words/features are represented by "environmental vectors" based on the texts and this
representation is updated when co-occurrences are identified. Priming occurs via vector
representation similarity (Kumar 2021).
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Chapter 6

Model equivalence and parameter
sensitivity assessment

6.1 Introduction

In section 4.4 and Chapter 5, it has been stressed that semantic priming is a cognitive
process of crucial importance for the real-time and efficient interactions of human beings
with their peers, and for the linguistic knowledge representation in semantic memory.

Brunel and Lavigne 2009 designed a cortical network model of priming that attempts
to reproduce and explain behavioral findings on semantic priming experiments in humans.
They investigated the magnitude of priming effects as a function of three key experimental
parameters: the association strength between the concepts, the type of relationship be-
tween a prime and a target, and the time elapsed between the onset of the prime stimulus
and the onset of the target stimulus, also referred to as the stimulus onset asynchrony
(SOA). Their model also includes other (non-experimental) parameters but their values
were kept constant.

In addition, in their model, Brunel and Lavigne 2009 used a transfer function that
was computed analytically by N. Brunel and P.E. Latham6, and that is thought to be
qualitatively similar to that of cortical excitatory neurons. However, the shape of this
transfer function significantly differs from the shape of a usual sigmoidal transfer function
(as seen in subsection 3.3.2) and its use in numerical operations and manipulations is
rather difficult. Moreover, it is unclear how and why this shape would be used physiolog-
ically.

For these reasons, this chapter focuses on assessing whether using a sigmoid transfer
6N. Brunel and P. E. Latham, "Firing Rate of the Noisy Quadratic Integrate-and-Fire Neuron," in

Neural Computation, vol. 15, no. 10, pp. 2281-2306, 1 Oct. 2003, DOI: 10.1162/089976603322362365.

61

https://doi.org/10.1162/089976603322362365


6.2. Brunel and Lavigne’s full model
description

Chapter 6. Model equivalence and
parameter sensitivity assessment

function (henceforth Method 2 with Φ2) would give qualitatively the same dynamic be-
havior as the original model of Brunel and Lavigne 2009 (henceforth Method 1 with Φ1).
Moreover, this chapter will investigate the parameter sensitivity of the model of Brunel
and Lavigne 2009 by varying the parameter values.

The structure for this chapter is as follows. As a first step, the full model of Brunel
and Lavigne 2009 will be described, including its transfer function and its parameters.
Then, the model will be simplified to a one-dimensional version and the exploration of its
dynamics will be carried out. Finally, phase-portrait and bifurcation analyses will help
determining the equivalence and the sensitivity of the model.

6.2 Brunel and Lavigne’s full model description

Brunel and Lavigne 2009 (B&L) consider populations of cortical neurons that are selective
to the same objects or concepts, that is, the population shows maintained or persistent
activity following the presentation of those objects or concepts. They designed a simplified
rate model: the dynamic behavior of a single population is described by the time evolution
of its average firing rate (= dynamic variable) in a Wilson-Cowan type equation (Eq.
(6.1a)). Moreover, the following assumptions are made.

Assumptions

1. The model consists of p non-overlapping populations of excitatory neurons coding
for p distinct stimuli. In other words, neurons within a population are selective to
a single object/concept, and each population codes for a different object/concept.

2. The global inhibitory current regulating the activity of all excitatory populations is
proportional to the average activity of excitatory populations.

Assumption n° 2 actually implies that the transfer function for the global inhibitory
population is linear. It also implies that the time scale of inhibitory population dynamics
is much shorter than that of excitatory population dynamics. As a consequence, the in-
hibitory average firing rate can be set to its steady state value, that is the average activity
of all excitatory populations.

All in all, the full model is mathematically expressed with Equations (6.1a), (6.1b),
(6.1c) and Table 6.1, that describes the parameters7.

7The model from Brunel and Lavigne 2009 was reused by Lavigne, Dumercy, and Darmon 2011 to
investigate the spike frequency adaptation phenomenon. This phenomenon is not of interest here but the
same parameters had their value changed with respect to those in Brunel and Lavigne 2009. A comparison
of values between these two studies seemed appropriate when considering parameter sensitivity.
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Symb. Description Brunel and Lavigne
2009 value

Lavigne, et al (2011)
value

p
(pgpi)

Number of selective (excitatory)
populations

100 99

pg Number of groups of selective (ex-
citatory) populations

10 33

pi Number of selective (excitatory)
populations within a single group

10 3

τ Time constant of rate dynamics 10 [msec] 10 [msec]

a Association strength between as-
sociated items

0.001-0.02 (0 < a < 1) 0.00675-0.00825 (0 <
a < 1)

JE Average excitatory synaptic
strength

3 3

JS Strength of synaptic potentiation
(i.e. connection reinforcement)

3.65 3.65

J1 Intrapopulation synaptic efficacy JE + JS = 6.65 JE + JS = 6.65

J0 Synaptic efficacy between nonas-
sociated (or unrelated) popula-
tions (or items)

JE − JS
a(pi−1)+1

(1−a)(pi−1)+p−pi

(< J1)
JE − JS

a(pi−1)+1
(1−a)(pi−1)+p−pi

(< J1)

Ja Synaptic efficacy between associ-
ated (or related) populations (or
items)

JE+JS
a(p−pi+1)−1

(1−a)(pi−1)+p−pi
=

J0 + a(J1 − J0)

JE+JS
a(p−pi+1)−1

(1−a)(pi−1)+p−pi
=

J0 + a(J1 − J0)

JI Synaptic efficacy of global inhibi-
tion (non-selective)

JE = 3 JE = 3

rspont Spontaneous (or background) ac-
tivity of each population

5 [Hz] 5 [Hz]

Iexti Non-selective external input cur-
rent (i.e. bias current) to popula-
tion i

set to get rspont = 5 [Hz]
in the absence of selec-
tive external stimuli

set to get rspont = 5 [Hz]
in the absence of selec-
tive external stimuli

Iseli Selective external input current
to population i

150 [µA] 10-200 [µA]

Table 6.1: Default parameters of the full model (Brunel and Lavigne 2009).
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I

E2E1 E3

JII

JE1I

JE2I

JE3IJIE2

JIE1

JIE3

J1

J1

J1
Ja or J0 Ja or J0

Ja or J0Ja or J0

(a) Basic architecture.

E1

E3

E2
J1−JI

3
J1−JI

3

J1−JI

3

Ja−JI

3 or J0−JI

3

Isel1 Isel2

Isel3

Iext1 Iext2

Iext3

(b) Model example with p = 3 and assump-
tions are made.

(c) Brunel and Lavigne 2009’s transfer function

Figure 6.1: (a) Architecture of the excitatory-inhibitory network for p = 3. Inhibitory
population (blue node I) is non-selective and applies global inhibition
(flat blue arrows) to itself and to all excitatory populations (red nodes
Ei, i ∈ {1, 2, 3}) selective to three distinct items. Black square arrows repre-
sent either excitatory (strength Ja) or inhibitory (strength J0) connections
depending on the relatedness between the corresponding items. Red arrows
represent self excitatory feedback with strength J1. (b) Same full model
example as in (a) with assumptions made. Each population is character-
ized by its average firing rate ri (Equation (6.1a)) and receives synaptic
input from all populations, as well as from external sources. Purple arrows
represent a non-selective external input current Iexti , that is a bias current,
applied to obtain a spontaneous activity of rspont = 5 Hz in each population.
Green arrows stand for selective external input current Iseli . (c) Population
f − I curve (Equation (6.1c)). Adapted from Brunel and Lavigne 2009.
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Eq. (6.1a) describes the time evolution of the average firing rate for each excitatory
population i = 1, . . . , p; Eq. (6.1b) mathematically expresses assumption n° 2, and Eq.
(6.1c) describes the transfer function that Brunel and Lavigne 2009 used (Figure 6.1c).
It specifies how the average firing rate of a population of excitatory neurons depends on
the total synaptic inputs the population receives (as previously discussed in subsection
3.3.2). An example of the basic architecture of the excitatory-inhibitory network for
p = 3 is shown in Figure 6.1a, and Figure 6.1b shows the corresponding network once the
assumptions are made.

τ
dri
dt

= −ri + Φ1

(
1

p

p∑
j=1

Jijrj + Iexti + Iseli − Iinh

)
(6.1a)

Iinh =
JI
p

p∑
j=1

rj (6.1b)

Φ1(x) =
1

τm
√
π

[∫ +∞

−∞
exp

(
−xz2 − σ4z6

48

)
dz

]−1

(6.1c)

with Jij ∈ {J0, Ja, J1} the total synaptic strength from population j to population i,
σ = 0.5 and τm = 10 msec the membrane time constant. The other parameters can be
found in Table 6.1. J1, J0 and JI are chosen so that both the background state and the
attractor states (i.e. single or multiple items activated) can be equilibria of the model.

6.3 Simplified one-dimensional version

To investigate the equivalence and the parameter sensitivity of the model from Brunel
and Lavigne 2009, the corresponding one-dimensional model is derived. Thus, setting
parameter p to one, the model from Brunel and Lavigne 2009 reduces to (Figure 6.2a)

τ
drT
dt

= −rT + Φ((J1 − JI)︸ ︷︷ ︸
w

·rT + Iext + Isel︸ ︷︷ ︸
I

) = −rT + Φ(w · rT + I) (6.2)

where T stands for target population, τ is the time constant of rate dynamics (same value
as in Table 6.1), w is the recurrent connection weight, I is the total external input current
the population receives and Φ is a transfer function.

The model (6.2) actually amounts to study the behavior of a single population of ex-
citatory neurons coding for a single (target) item.

The use of the 1D model is motivated by several reasons:

• No assumptions, in particular a minimum value, were made on parameter p. Thus,
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varying p (and setting it to one) allows to investigate the model sensitivity to pa-
rameter p.

• A 1D model is the simplest model one can analyze without it to be trivial.

• This 1D model allows one to understand the dynamics and the behavior of a one-
dimensional model but also of higher-order models since any model can usually
be reduced to a 1D model (i.e. dominant eigendirection where all the dynamics
happens).

To assess model equivalence, two different transfer functions will be considered. The
first transfer function will be that of Brunel and Lavigne 2009 (Φ1(x); Figure 6.2b) while
the second transfer function will be a more standard sigmoidal function (Φ2(x); Figure
6.2c). The main difference between these two functions is the presence or absence of an
upper saturation, and it will be assessed whether this property qualitatively has an impact
over the behavior of the 1D model. The absence of upper saturation is not a problem as
long as the range of input is restricted to a range giving a physiologically plausible firing
rate output (L. F. Abbott 1991). Having an upper saturation in the transfer function is
thus somehow a mark of safety, ensuring that the model cannot give unbounded values.

Another difference is the range of outputs: Φ1(x) gives values in [0; +∞[ while Φ2(x)

gives values in
[
− 1

1+exp(αθ)
; 1− 1

1+exp(αθ)

]
. However, a scaling factor can be applied to

Φ2(x) in order to get the desired range of firing rates.

The default parameter values used with Φ2(x) are the same as in Gjorgjieva et al.
2021a and Gjorgjieva et al. 2021b, and can be found in Table 6.2.

Symbol Description Gjorgjieva et al. 2021a
value

τ Time constant of rate dynamics 1 [msec]

α Gain/Slope of f − I curve 1.2

θ Threshold of f − I curve 2.8

w Recurrent connection strength 9

R Spontaneous activity 0

Ibias Bias current 0

Iapp External applied current 0

Table 6.2: Default parameters of the 1D alternative model from Gjorgjieva et al. 2021a
and Gjorgjieva et al. 2021b.
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Ew

I

(a) 1D model

(b) Φ1(x) =

1
τm

√
π

[∫ +∞
−∞ exp

(
−xz2 − σ4z6

48

)
dz
]−1 (c) Φ2(x) = 1

1+exp(−α(x−θ)) −
1

1+exp(αθ) , α =
1.2, θ = 2.8

Figure 6.2: Setup for the model sensitivity assessment. (a) One-dimensional model. A
single population of excitatory neurons coding for a single (target) item. The
population makes a recurrent connection with itself with weight w (black
arrow) that can either be excitatory (w > 0) or inhibitory (w < 0). The pop-
ulation also receives external synaptic input I (green arrow). (b) Transfer
function from Brunel and Lavigne 2009 (see Appendix C.1 for an analy-
sis of its behavior). (c) More standard sigmoidal transfer function from
Gjorgjieva et al. 2021a and Gjorgjieva et al. 2021b. Parameters α and θ al-
low the modeler to tune the gain/slope and the midpoint of Φ2(x) as desired
(see Appendix C.2 for an analysis of its behavior).
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6.4 Spontaneous activity

6.4.1 Method 1

In their paper, Brunel and Lavigne use the non-selective external currents Iexti , that
actually act as bias currents, to get a spontaneous activity of rspont = 5 [Hz] for each pop-
ulation8 in the absence of any other external input. However, they do not specify these
values. Using the 1D model (6.2), conditions on parameters w and I are investigated in
order to reproduce this background activity.

In order to get a spontaneous activity of rspont [Hz], the model must satisfy two con-
ditions (as previously discussed in Chapter 2):

1. The spontaneous activity rT (t) = rspont must be a fixed point (or equilibrium) of
the model (6.2). That is

ṙT = 0 ↔ rspont = Φ1(w · rspont + Iext + 0) (6.3)

2. This spontaneous activity state must be stable. In other words, the eigenvalue
evaluated at rT = rspont must be negative:

dṙT
drT

∣∣∣
rT=rspont

< 0 ↔ 1

τ
(−1 + wΦ′

1(w · rspont + Iext)) < 0 (6.4)

with Φ′
1(x) the first derivative of transfer function Φ1(x). The factor 1

τ
can be

ignored since τ > 0.

Equations (6.3) and (6.4) form together a system of two non-linear equations with two
unknowns (w and Iext). It can be solved graphically and/or numerically with a non-linear
solver. However, Eq. (6.4) requires first the computation of Φ′

1(x). One can find

Φ′
1(x) =

1

τm
√
π
· (−1) ·

[∫ +∞

−∞
exp

(
−xz2 − σ4z6

48

)
dz

]−2

· d

dx

[∫ +∞

−∞
exp

(
−xz2 − σ4z6

48

)
dz

]
= − τm

√
π

(τm
√
π)2
·
[∫ +∞

−∞
exp

(
−xz2 − σ4z6

48

)
dz

]−2

·
[∫ +∞

−∞

d

dx

[
exp

(
−xz2 − σ4z6

48

)]
dz

]
= −τm

√
π · (Φ1(x))

2 ·
[∫ +∞

−∞
−z2 exp

(
−xz2 − σ4z6

48

)
dz

]
Finally, one has

Φ′
1(x) = τm

√
π · (Φ1(x))

2 ·
[∫ +∞

−∞
z2 exp

(
−xz2 − σ4z6

48

)
dz

]
(6.5)

8This background activity is very common in the brain since any cortical area has a resting state
greater than 0 [Hz].
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Figure 6.3: First derivative of the transfer function from Brunel and Lavigne
2009. Its expression is given by Φ′

1(x) = τm
√
π · (Φ1(x))

2 ·[∫ +∞
−∞ z2 exp

(
−xz2 − σ4z6

48

)
dz
]

Its behavior is shown in Figure 6.3.

Considering again Eqs. (6.3) and (6.4), one can find the conditions on w and I:Φ−1
1 (rspont) = w · rspont + Iext

w < 1
Φ′

1(w·rspont+Iext)

such that

Iext = Φ−1
1 (rspont)− w · rspont (= Iext,w=0) (6.6a)

w <
1

Φ′
1(Φ

−1
1 (rspont))

(6.6b)

with Φ−1
1 (x) the inverse transfer function of Φ1(x). The inverse function is guaranteed

to exist because Φ1(x) is a monotonically increasing and continuous function. Thus, Eq.
(6.6a) tells the bias current to apply in order to make the state rT (t) = rspont a fixed
point (whatever it is stable or not). Eq. (6.6b), in turn, makes sure that the fixed point
rT (t) = rspont is stable.

For rspont = 5 [Hz] (default value from B&L), the numerical solution gives w ⪅ 0.04

(see Appendix C.3.1 for a less accurate graphical approach). Thus, for default values of
parameters J1 and JI , i.e. w = J1 − JI = 3.65, the spontaneous activity rspont = 5 [Hz]
would be unstable (i.e. dṙT

drT
≈ 8.95 > 0)! One needs to change the default value of w
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(thus J1 and JI) to get back this property. For example, using w = 0.02, one would get
a stable spontaneous activity with dṙT

drT
≈ −0.05 < 0 (see Appendix C.3.2 for graphical

examples). Therefore, by varying p, other parameters such as w need to change as well
to get back desired properties.

It is true that Eqs. (6.6a) and (6.6b) give the conditions for an arbitrary value of rspont
[Hz]. Moreover, these conditions simply indicate that the spontaneous activity is a stable
equilibrium but they do not tell anything else with respect to other stable equilibria that
could be associated to the pair (w, I). In other words, the stable spontaneous activity
ensured by Eqs. (6.6a) and (6.6b) could potentially be part of a bistable system, that is,
for the same w, there could exist another (stable) equilibrium r∗T at I = Iext. One could
therefore wonder what are the conditions to have a single fixed point at rspont [Hz] or even
further, what are the conditions to have a single fixed point for any rspont value.

The first requirement amounts to constrain Iext from Eq. (6.6a) to be outside of the
bistable region bounded by the saddle-nodes [ISN,2; ISN,1] associated with the chosen w.
Thus, the conditions are

w <
1

Φ′
1(Φ

−1
1 (rspont))

(6.7a)

Iext = Φ−1
1 (rspont)− w · rspont < ISN,2(w) or Iext > ISN,1(w) (6.7b)

with ISN,1 and ISN,2 obtained by solving (numerically) the conditions for a saddle-node
point (see subsection 2.4.1): rSN = Φ(w · rSN + ISN)

1 = wΦ′(w · rSN + ISN)

for a fixed w and trying different initial conditions.

The second requirement amounts to determine the conditions to have a monostable
system. A sufficient condition is that w should be less than the maximum value of Φ′

1(x),
that is

w <
1

Φ′
1,max

(6.8)

For Method 1, the recurrent connection weight should satisfy w ⪅ 0.034 to have a monos-
table system.
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6.4.2 Method 2

Similarly to Method 1, the same methodology can be applied to Method 2 with Φ2(x) in
order to have a spontaneous activity R. Conditions (6.6a) and (6.6b) are still valid; one
just needs to replace rspont by R, Φ1(x) by Φ2(x), and Φ′

1(x) by Φ′
2(x) whose behavior is

given in Figure 6.4 while its expression is given by

Φ′
2(x) =

α · exp (−α · (x− θ))

[1 + exp (−α · (x− θ))]2
(6.9)

Figure 6.4: First derivative of the transfer function from Gjorgjieva et al. 2021a. Its
expression is given by Φ′

2(x) = α·exp(−α·(x−θ))

[1+exp(−α·(x−θ))]2
. Illustrated with default

parameter values: α = 1.2, θ = 2.8.

Again, Φ−1
2 (x) is the inverse transfer function of Φ2(x) and it exists since Φ2(x) is a

monotonically increasing and continuous function.

Equations (6.7a), (6.7b) and (6.8) can be easily transposed to Method 2 by changing
all Φ1 by Φ2. For example, to have a stable resting state activity R = 0, w should satisfy
w ⪅ 25.69. Any R, in turn, will be stable if w < 1

0.3
≈ 3.33 (monostable system).

6.4.3 Comparison between both methods

The same methodology can be applied to both methods suggesting that the transfer
function does not play a crucial role as long as it can be differentiable and possesses an
inverse function. Also, a single constraint on rspont or R is that the value should be in the
range of outputs of Φ. In other words, rspont or R should satisfy

Φ(−∞) ≤ rspont or R ≤ Φ(+∞)
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All in all, it is possible to choose a desired stable spontaneous activity by applying a
bias current and by choosing w and Ibias appropriately.

6.5 Linear filter dynamics

As a first step, in order to explore the temporal dynamics of Eq. (6.2), the recurrent
connectivity w is set to zero. In other words, the target population only receives an
external input current I, and the temporal behavior rT (t) in response to that current is
investigated. If w = 0, then the model reduces to a linear low-pass filter, meaning that the
target population simply integrates its input current linearly. Thus, the model becomes

τ
drT
dt

= −rT + Φ(I) (6.10)

Since this equation is linear, it can be solved analytically. The solution is therefore
given by

rT (t) = rT (0) + (Φ(I)− rT (0)) ·
[
1− exp

(
− t

τ

)]
(6.11)

with rT (0) an initial condition (chosen by the user) for rT (t).

Thus the individual effects of rate dynamics τ and external input current I can be
investigated numerically, and the numerical solution can then be compared with the an-
alytical one.

6.5.1 Effect of the time constant τ of rate dynamics

It can be seen in Figure 6.5 that the effect of τ is similar for both methods. First, it can
be observed that varying τ does not affect the final attractor (black dashed line), given
by Φ(I), to which the firing rate converges. On the other hand, the speed of convergence
is affected by changes in τ . Indeed, as τ increases, rT (t) needs more and more time to
converge to the steady state. It can be explained by τ being at the denominator in the
exponential function (Eq. (6.11)): if τ increases (decreases), then the argument of the
exponential becomes slightly (largely) negative, suggesting therefore a slow (fast) decay
towards Φ(I). Also, it can be seen that the analytical solution (gray dash-dotted curve)
matches with the numerical solution.

6.5.2 Effect of external input current I

Similarly to the effect of τ , the effect of external input current I in a linear regime (i.e.
w = 0) can be investigated (Figure 6.6). Parameter I tunes the final attractor to which
the firing rate converges (black dashed lines), as anticipated with previous section. As I
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(a) Method 1; Iext set for rspont = 5 [Hz];
Isel = 0

(b) Method 2; I = 0

Figure 6.5: Effect of the time constant parameter τ on the temporal dynamics of the
1D model (6.2) when no recurrent connectivity exists (w = 0). The model
reduces to a linear low-pass filter. Parameter τ has an impact on the speed
of convergence but not on the final steady state (black dashed line), given
by Φ(I), that is reached. Gray dash-dotted curves represent the analytical
solution given by Eq. (6.11).

(a) Method 1 (b) Method 2

Figure 6.6: Effect of external input current parameter I on the temporal dynamics of
the 1D model (6.2) in the linear regime (w = 0). Parameter I has an impact
on the final steady state (black dashed lines), given by Φ(I), that is reached.
If Φ(x) is bounded from above (below), then Φ(I) becomes independent of I
(i.e. saturates) as I becomes largely positive (negative). Gray dash-dotted
curves represent the analytical solutions given by Eq. (6.11).
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increases, the steady state firing rate Φ(I) increases as well since Φ(x) is a monotonically
increasing function in both methods. However, a difference between Method 1 and Method
2 can be observed. In Method 1 (Figure 6.6a), as I increases, Φ1(I) increases and it
can potentially increase indefinitely. On the other hand, in Method 2 (Figure 6.6b),
as I increases, Φ2(I) increases until it becomes independent of I, that is, Φ2(I) always
outputs the same value if I is large; it saturates. This observation is due to the presence
(Method 2) or absence (Method 1) of and upper saturation in the transfer function. Since
Φ1(x) has no upper saturation, Φ1(I) can potentially increase to infinity whereas Φ2(x)

will be bounded from above due to the presence of an upper saturation. In addition,
both transfer functions are bounded from below, hence Φ(I) saturates as I decreases and
becomes largely negative. Again, it can be observed that the analytical solution (gray
dash-dotted curve) matches the numerical solution.

6.6 Phase portrait & Bifurcation analyses

Unfortunately, the simple linear behavior applies only with a strongly restricted set of
values (a single one actually) for the recurrent connectivity w. However, the general case
makes no assumption on the value of w. As a consequence, one should study the dynamics
of the non-linear model (6.2) as a function of I (the total external input current) and w

(the recurrent connection strength). The non-linear feature of

τ
drT
dt

= −rT + Φ(w · rT + I) (6.12)

does not make it possible to solve the system analytically. A dynamical analysis, such
as phase portraits and bifurcations, is thus considered in order to have an idea of the
qualitative behavior of the solution as explained in Chapter 2.

Geometric approach

The cleaner approach to explore the dynamics of (6.12) is to adopt a geometric point
of view, that is, one should plot the curves y = rT and y = Φ(w · rT + I) in the same
graph and study the effect of parameters w and I. The intersection(s) of these two curves
correspond(s) then to the fixed point(s) (or attractor(s)) of the model. When the line
y = rT is above (below) the curve y = Φ(w · rT + I), it implies that ṙT is negative
(positive) and the firing rate rT (t) will thus decrease (increase).

6.6.1 Geometric approach: Effect of external input current I

The effect of external input current I = Ibias + Iapp in the non-linear model is first inves-
tigated. As seen in section 1.3, this effect corresponds to a "time" shifting of the curve
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y = Φ(w ·rT +I) by I units. This shift will be to the right (left) if I is negative (positive).
This effect is observed for both methods and for different fixed values of w (Figures 6.7
and 6.8).

Method 1

As expected, when the external input current I is positive (yellow shades), the curve
y = Φ1(w · rT + I) is shifted to the left with respect to the curve y0 = Φ1(w · rT + 0)

(yellow-orange shade). On the contrary, the curve y = Φ1(w · rT + I) is shifted to the
right with respect to y0 when I is negative. Moreover, one can observe different behaviors
depending on the fixed value for w. For some values of w (i.e. w < 1

Φ′
1,max

; Figure 6.7 top
panels), the two curves y = Φ1(w · rT + I) and y = rT (black line) intersect at exactly
one point, suggesting therefore the existence of a single attractor in the model; the model
is thus monostable. For the other values of w (Figure 6.7 bottom panels), the variation
in the external input current I makes the curves intersect at either one point (at least
yellow and dark blue shades) or at three points (curves in the gray shaded area bounded
by the dash-dotted curves). Thus, for these values of w, there exist two particular values
of I at which two equilibria are created/destroyed and where the two curves are tangent
(i.e. their slopes are equal). These specific values of I correspond therefore to saddle-
nodes (green dash-dotted curve y = Φ1(w · rT + ISN,1) and light blue dash-dotted curve
y = Φ1(w ·rT +ISN,2)). In addition, the gray shaded area, indicating where the two curves
intersect three times, becomes larger as w increases because the large positive feedback
given by w · rT is compensated by the strongly negative current I.

To determine graphically the stability of the attractor(s), one should look at the vector
field given by the sign of ṙT . When Φ1(w · rT + I) > rT (i.e. the curve is above the line
for a fixed rT ), the difference Φ1(w · rT + I) − rT > 0 is positive giving ṙT > 0 positive
as well. Since the vector field is positive in this region, the solution rT (t) will grow if
an initial condition is put into that region. In other words, if the solution rT (t) starts
initially below an equilibrium and in a region where ṙT > 0, then rT (t) will approach (and
converge to) that equilibrium from below. Similarly, when Φ1(w · rT + I) < rT (i.e. the
curve is below the line for a fixed rT ), the vector field is negative because the difference
Φ1(w · rT + I) − rT < 0 is negative giving ṙT < 0 negative as well. As a consequence, if
the solution rT (t) starts initially above an equilibrium and in a region where ṙT < 0, then
rT (t) will decay (and converge to) that equilibrium from above. Thus, when the system
is monostable (top panels), the single equilibrium is a stable attractor. When the system
admits three fixed points (bottom panels), the leftmost (or low) and rightmost (or high)
intersections (i.e. attractors) are stable whereas the middle intersection is unstable. The
model is thus bistable. The unstable equilibrium plays therefore the role of separator or
threshold between the two stable attractors. Since Φ1(w · rT + I) is shifted to the left as
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Figure 6.7: Effect of external input current I on the temporal dynamics of the model
(6.12) for Method 1 with different fixed values of the recurrent connectivity
w. Parameter I shifts the curve y = Φ1(w · rT + I) to the left as I increases.
For a fixed value of w, varying I makes up to three intersections with the
line y = rT (black line). Green (ISN,1) and light blue (ISN,2) dash-dotted
curves are tangent to y = rT therefore corresponding to saddle-node equi-
libria. Gray shaded area, bounded by saddle-node curves, corresponds to
the bistable region where three fixed points coexist.
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Figure 6.8: Effect of external input current I on the temporal dynamics of the model
(6.12) for Method 2 with different fixed values of the recurrent connectivity
w. Parameter I shifts the curve y = Φ2(w · rT + I) to the left as I increases.
For a fixed value of w, varying I makes up to three intersections with the
line y = rT (black line). Green (ISN,1) and light blue (ISN,2) dash-dotted
curves are tangent to y = rT therefore corresponding to saddle-node equi-
libria. Gray shaded area, bounded by saddle-node curves, corresponds to
the bistable region where three fixed points coexist.
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I increases, the middle intersection is getting closer and closer to the low stable attractor
(i.e. leftmost intersection). As I increases, the threshold is thus lowered at the same time
(see also Chapter 7).

Method 2

The exact same results as with Method 1 can be observed:

• For values of w such that w < 1
Φ′

2,max
(top-left panel), only one intersection between

y = Φ2(w · rT + I) and y = rT . This equilibrium is a stable attractor based on the
vector field.

• For other values of w, either one or three (in gray shaded area) intersections. There
must therefore exist two values of I making the curves y = Φ2(w · rT + I) and
y = rT tangent to each other. These values correspond to saddle-nodes (ISN,1 →
green curve, ISN,2 → light blue curve). When three intersections occur (bistable
region), the leftmost and the rightmost intersections are stable attractors whereas
the middle intersection is an unstable fixed point (similar to a threshold between
both attractors).

• If the model is in a bistable regime, the threshold between both stable attractors is
lowered as I increases.

• As w increases, the bistable region gets wider.

6.6.2 Geometric approach: Effect of recurrent synaptic weight w

Similarly to the effect of I, the effect of recurrent connectivity strength w can be inves-
tigated. This effect corresponds to a "time" scaling of the curve y = Φ(w · rT + I) (as
seen in section 1.3). The curve will be contracted if |w| > 1 and expanded if 0 < |w| < 1.
Moreover, if w < 0, then a "time" folding occurs in addition to the "time" scaling, that
is, the curve y = Φ(w ·rT +I) undergoes an orthogonal symmetry (i.e. mirror effect) with
respect to y-axis. The effect of w is observed for both methods and for different fixed
values of I (Figures 6.9 and 6.10).

Method 1

As expected, the curve Φ1(w · rT + I) is horizontally contracted ("accelerated" over the
range of rT ) when |w| > 1 (light purple to yellow shades) and expanded (or dilated over
the range of rT ) when 0 < |w| < 1 (dark purples and blues). Moreover, when w < 0, the
y-axis reflects the curves; they are folded. For a fixed value of I, the behavior of the model
again depends on the value of the other parameter. For some values of I (Figure 6.9 top
panels), the curve y = Φ1(w · rT + I) and the line y = rT (black line) either intersect at
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Figure 6.9: Effect of recurrent connection strength w on the temporal dynamics of the
model (6.12) for Method 1 with different fixed values of the external current
I. Parameter w contracts (expands) the curve y = Φ1(w · rT + I) if |w| > 1
(0 < |w| < 1). If w < 0, then the curve is also folded. For a fixed value of I,
varying w makes up to three intersections with the line y = rT (black line).
Green (wSN) dash-dotted curve is tangent to y = rT therefore corresponding
to a saddle-node equilibrium. Gray shaded area corresponds to the bistable
region where three fixed points coexist.
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one point (dark blue and dark purple shades) or at three points (brighter shades). Again,
it implies that a particular value of w makes the curve y = Φ1(wSN · rT + I) (green dash-
dotted curve) and the line y = rT tangent to each other. The tangent point (wSN , rT,SN)
is then a saddle-node. Unlike what has been observed with the effect of I, the three fixed
point region (gray shaded area) is unbounded in the sense that as w tends towards infinity
(w → +∞), the model still displays three fixed points. For other values of I (Figure 6.9
bottom panels), the model possesses a single equilibrium (i.e. single intersection between
y = Φ1(w · rT + I) and y = rT ).

Regarding the stability of the fixed points, using the vector field approach once again
(i.e. y = Φ1(w · rT + I) above (below) y = rT ⇒ ṙT > 0 (ṙT < 0) ⇒ rT (t) grows
(decays)), the single fixed point of the model in a monostable regime is always a stable
attractor. When the model admits three fixed points, then the leftmost and the rightmost
intersections are stable attractors whereas the middle intersection is an unstable fixed
point, exactly as seen with the effect of I. This unstable fixed point plays once again the
role of threshold between both stable attractors.

Method 2

The exact same results as seen in Method 1 can be found in Method 2 as well (Figure
6.10). However, two additional observations, that cannot be found in Method 1, should
be made: first, in Method 2, a saddle-node strength wSN always exists, that is, the model
always possesses a bistable region, starting from y = Φ2(wSN · rT + I) (green dash-dotted
curve). It is true though that this bistable region can be reduced to a single curve (i.e.
binary switch or step function) as the considered value of I increases. Thus, this differ-
ence is only minor with respect to the model in Method 1. Second, for some values of
I, the model admits two bistable regions (bottom-left panel, gray shaded areas bounded
by green, light blue and light green dash-dotted curves). This observation can be ex-
plained by the choice of parameter θ in Φ2(x). This parameter breaks the symmetry of
the sigmoid with respect to the origin when θ > 0. The appearance of another bistable
region is the consequence of this asymmetry9. This second bistable region has not been
found in Method 1. However, the shape of Φ1(x) does not make it easy to manipulate it
numerically (the non-linear solver has difficulties in solving systems involving Φ1(x) and is
extremely sensitive to initial conditions). It must be admitted that each individual value
of current has not been tested, thus the existence of this second bistable region cannot be
completely refuted.

9If one uses θ = 0, then the sigmoid is symmetric again and graphs show that this second bistable
region disappears. However, using θ = 0 implies that the output range of values of Φ2(x) is [−0.5, 0.5].
The user/modeler should therefore choose his/her parameter values carefully and according to his/her
goals.
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Figure 6.10: Effect of recurrent connection strength w on the temporal dynamics of
the model (6.12) for Method 2 with different fixed values of the external
current I. Parameter w contracts (expands) the curve y = Φ2(w · rT + I)
if |w| > 1 (|w| < 1). If w < 0, then the curve is also folded. For a fixed
value of I, varying w makes up to three intersections with the line y = rT
(black line). Green (wSN,1), light blue (wSN,2) and light green (wSN,3) dash-
dotted curves are tangent to y = rT therefore corresponding to saddle-node
equilibria. Gray shaded area(s) correspond(s) to the bistable region(s)
where three fixed points coexist.
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All in all, both models behave globally similarly for the effects of w and I with minor
differences between them.

Bifurcation diagrams

The geometric approach is a very useful tool to understand the global behavior of the
vector field, and to determine the number of intersections (thus equilibria of the model).
This approach is also useful to investigate the individual effects of each parameter con-
sidering the others as frozen. Based on this approach, it has been seen that the model,
in both methods, changes completely its behavior (monostable ↔ bistable) for a range
of parameter values. A drawback of this geometric point of view though is that it does
not give clear information about the exact values of the equilibria; having access to the
values at which both the curve and the straight line intersect is rather inaccurate based
only on the geometric approach graphs. This the reason why bifurcation diagrams are
drawn. Bifurcation diagrams show the equilibria values as a function of one parameter,
the others being considered as frozen again. In other words, bifurcation diagrams show the
curve(s) ṙT = 0 as a function of a parameter. These diagrams give thus complementary
information to the geometric approach/phase portrait graphs.

6.6.3 {I, r∗T}−Bifurcation diagrams

The bifurcation diagrams are once again drawn for both methods and for different fixed
values of w (Figure 6.11). The considered values of w are actually the same as in Figures
6.7 and 6.8.

Bifurcation diagrams (black lines) show consistent information with respect to that of
the geometric approach. Indeed, when w < 1

Φ′
max

(Figure 6.11 (a) and (b)), each single
value of current I corresponds to exactly one value of r∗T thus exactly one equilibrium.
Moreover, in these cases, one can see that the value of the equilibrium increases as I

increases, and the relationship between r∗T and I looks like a "time" scaled version of the
corresponding transfer functions. For the other values of w (middle and bottom panels),
the bifurcation diagrams show a transition from one equilibrium (I < ISN,2) to three
equilibria (ISN,2 < I < ISN,1) to one equilibrium again (ISN,1 < I). This transition is
once again coherent with what has been found in the geometric approach (Figures 6.7 and
6.8). In addition, the saddle-node values (violet dots) correspond as well to the values
found in the geometric approach, and therefore define the bistable region. This bistable
region becomes wider as w increases. The shape of the bifurcation diagrams for values
of w allowing a bistable regime, confirms a saddle-node bifurcation (or fold) as seen in
subsection 2.4.1. Thus, the behavior of the model is similar with both methods giving
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(a) Method 1; w < 1
Φ′

1,max
(i.e. w = 0.02) (b) Method 2; w < 1

Φ′
2,max

(i.e. w = 2)

(c) Method 1; w > 1
Φ′

1,max
(i.e. w = 0.5) (d) Method 2; Default value for w (i.e. w = 9)

(e) Method 1; Default value for w (i.e. w =
3.65)

(f) Method 2; w > 1
Φ′

2,max
(i.e. w = 50)

Figure 6.11: {(I, r∗T )}−Bifurcation diagrams (black line) for Method 1 ((a), (c) and
(e)) and Method 2 ((b), (d) and (f)) with different fixed values of w
(increasing from top to bottom panels). Stability of branches, indicated by
nearby colored letter strings, is determined by one-shot simulations (light
blue lines) starting all at the same initial condition within a graph (light
blue dots). Saddle-nodes (violet dots) define the bistable region and the
values correspond to those found in Figures 6.7 and 6.8. The information
from bifurcation diagrams is thus complementary to that of the geometric
approach.
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further evidence that the two methods are equivalent.

Link between stability of branches and initial conditions

A drawback of the bifurcation diagrams is that the stability of the different branches is
not obvious right away. However, one can easily determine this stability by simulating
the model with values of I that lie in different regimes (for convenience, the same initial
condition (light blue dot) is used for all simulations). From these simulations, it appears
that when the model has only one equilibrium (i.e. monostable system or bistable system
with I < ISN,2 or ISN,1 < I), this equilibrium is stable. The model is thus in a monostable
regime. When I lies in the range giving a bistable regime, then depending on the value of
I, the solution converges to the lower branch (e.g. (e) I = −2000) or the upper branch
(e.g. (e) I = −1000)10. The lower and upper branches are thus stable while the middle
branch is unstable. These results are in agreement with those of the geometric approach.
Thus, the unstable branch of the bistable region acts as a separator or threshold between
the two other stable attractors. More than that, it is also a boundary between the basins
of attraction of stable attractors. In other words, any initial cue lying above (below) the
unstable branch will give an output corresponding to the high (low) stable attractor.

All in all, both methods give similar results, and the bifurcation diagrams give comple-
mentary information to that of the geometric approach in the sense that with bifurcation
diagrams, one has immediate access to the values of the equilibria and to the behavior of
these equilibria as a function of I.

6.6.4 {w, r∗T}−Bifurcation diagrams

Similarly to the {I, r∗T}−bifurcation diagrams, the {w, r∗T}−bifurcation diagrams can also
be drawn for both methods and for different fixed values of I (Figure 6.12). The considered
values of I are actually the same as in Figures 6.9 and 6.10 except for one value (Figure
6.12c).

When I < 0 (Figure 6.12 (a), (b) and (c)), both methods behave similarly, that is,
bifurcation diagrams (black curves) show a transition from one equilibrium (w < wSN)
to three equilibria (wSN < w). The region with three equilibria is also unbounded, that
is, the model still displays three equilibria as w tends towards infinity. These results are
consistent with the results from the geometric approach. Regarding the stability of the
different branches, one-shot simulations suggest the same results as seen before: when the
model displays a single equilibrium, this equilibrium is stable, and the upper and lower

10The same result could also have been obtained by considering the same value of I (e.g. I = −2000)
but with different initial conditions (e.g. rT (0) = 500 and rT (0) = 1000).
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(a) Method 1; I ≪ 0 (i.e. I = −4000) (b) Method 2; I < 0 (i.e. I = −1)

(c) Method 1; I < 0 (i.e. I = −10) (d) Method 2; I = 0

(e) Method 1; I ≥ 0 (i.e. I = 0) (f) Method 2; I > 0 (i.e. I = 0.5)

Figure 6.12: {(w, r∗T )}−Bifurcation diagrams (black line) for Method 1 ((a), (c) and
(e)) and Method 2 ((b), (d) and (f)) with different fixed values for I (in-
creasing from top panels to bottom panels). Stability of branches, denoted
by colored letter strings, is determined by one-shot simulations (light blue
lines) starting at different initial conditions (light blue dots). Saddle-nodes
(violet dots) define the bistable region and the values correspond to those
found in Figures 6.9 and 6.10. The information from bifurcation diagrams
is thus complementary to that of the geometric approach.
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branches of the bistable region are stable as well. The middle branch in the bistable
region is therefore unstable and acts at the same time as a threshold between both stable
attractors, and as a frontier between basins of attraction of these attractors. Moreover,
considering I < 0 implies that the model is biased towards the low stable attractor. For
example, in Figure 6.12b, if w = −50 at first, the corresponding equilibrium is the low
stable attractor rT (t) = 0. As w increases, the equilibrium smoothly goes from 0 to
−0.034, the low stable attractor of the bistable region. It is true though that this bias
is not huge and is somehow counterbalanced by the wide basin of attraction of the high
stable attractor in the bistable region.

When I = 0, Method 1 and Method 2 seem to display different behaviors. In par-
ticular, when I = 0, Method 1 (Figure 6.12e) displays a monostable model for any w

whereas Method 2 (Figure 6.12d) displays a monostable model for some values of w and
a bistable model for other values of w. Method 2 even displays a transcritical bifurca-
tion point (wTC). This transcritical bifurcation point is due to the shape of the transfer
function Φ2(x). For Method 2, Φ2(0) = 0 thus zero is always an equilibrium when I = 0

(ṙT = 0 = −0 + Φ2(0 + 0)) but changes stability at w = 1
Φ′

2(Φ
−1
2 (0))

≈ 26. Theoretically,
Method 1 should also display this transcritical point with I ≈ −1.5 rather than I = 0

because ṙT = 0 = −0+Φ1(0−1.5). Moreover, this bifurcation should appear at w → +∞.
The difference in behavior regarding the presence/absence of transcritical bifurcation is
therefore due to the choice of parameters for Φ2(x). Theoretically, there should exist
a pair (α, θ) giving the same behavior as Φ1(x) regarding the transcritical bifurcation.
Both methods can thus display similar behaviors but with different values of I (Method
1 → I ≈ −1.5; Method 2 → I = 0).

When I > 0 (or I > −1.5 for Method 1 strictly speaking), both methods seem to
display again different behaviors (Figures 6.12e and 6.12f). Method 1 shows a monostable
system whereas Method 2 shows monostable and bistable systems depending on the value
of w. It should be noted that as I increases (I > 1), the second bistable region identified
earlier in Method 2, defined by wSN,2 and wSN,3, disappears and only wSN,1 remains. As
a consequence, both methods show similar behaviors (i.e. monostable system) as long as
w < wSN,1 for such values of I in Method 2. Since the value of wSN,1 is rather large and
further increases as I increases, both methods are equivalent most of the time.

6.6.5 Stability diagrams

A drawback common to both the geometric approach and the bifurcation analysis is that
one of the two parameters must be frozen in order to assess the effects of the other pa-
rameter. In addition, it has been seen that both parameters influence the number and
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(a) Method 1 (b) Method 2

(c) Method 1; zoom in on bistable region’s
start

(d) Method 2; zoom in on bistable region’s
start

Figure 6.13: Stability diagrams for the model ṙT = −rT +Φ(w ·rT +I). Blue dots region
illustrates a monostable behavior whereas light gray dots region illustrates
a bistable behavior. Violet dots should have accounted for bifurcation
curves (i.e. 2-fixed points curves) but it appears that the violet dots seen
here are actually artefacts. (c) and (d) zoom in on the start of the bistable
region.

the values of equilibria of the model. One could therefore wonder how does the number
of fixed points behave as both parameters vary? The answer to this question lies in the
stability diagram (Strogatz 1994) that shows the number of equilibria as a function of the
two independent parameters (w and I).

In order to determine this stability diagram, one needs to compute numerically the
fixed point(s) for a particular pair (w, I) and repeat for a large number of different pairs.

The stability diagrams for both methods are shown in Figure 6.13.

For Method 1 (Figures 6.13a and 6.13c), the stability diagrams indeed show a transi-
tion from a monostable regime (1 FP; blue dots) to a bistable regime (3 FP; light gray
dots). Unfortunately, due to the complex shape of the transfer function Φ1(x) and the high
sensitivity of the solver to initial conditions, artefacts (violet dots) are present in Figure
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6.13a. Violet dots were initially meant to illustrate the frontier between the monostable
regime and the bistable regime, that is, showing the bifurcation curves where the model
possesses two equilibria and where one of the two equilibria is a saddle-node. Due to the
considered discretization of the (w, I) grid, these curves did not show. However, violet
dots, thus indicating the presence of two FPs, appeared randomly in the gray-dotted re-
gion that, in turn, indicates clearly the bistable region. These violet dots are therefore
actually artefacts of the solver that did not manage to find the third fixed point (usually
the unstable one) of the model.

The gray uppermost point on the left in Figure 6.13c ((w, I) ≈ (0.04,−0.4)) that
starts the bistable region is close to a point called the cusp point, that is, the point at
which both bifurcation curves meet tangentially and create a co-dimension 2 bifurcation
(which is different from a saddle-node or transcritical bifurcation!).

For Method 2, similar results can be observed. Stability diagrams also show a tran-
sition from a monostable regime to a bistable regime. The frontiers between these two
regimes are the bifurcation curves along which the model displays saddle-nodes. Again,
due to the discretization of the (w, I) grid, these curves did not show in the stability
diagrams. The gray uppermost point on the left in Figure 6.13d is again close to the cusp
point where bifurcation curves meet tangentially.

A difference between both models still persists though. When I ≥ 0, Method 1 always
displays a monostable regime whereas Method 2 always displays at least one bistable
region. As a consequence, when I ≥ 0, both models can be considered equivalent only
when w lies in a restricted range, that is w < wSN,1.

A note on stability of fixed points

Thus far, the stability of fixed points in the analyses using a geometric approach and in the
bifurcation analyses was assessed graphically only. However, as explained in subsection
2.3.1, having a quantitative measure of how stable a fixed point is, is very common and
often desired. Since the fixed points can be computed numerically using a non-linear
solver (as done in this section to determine the number of equilibria), their stability can
then be assessed mathematically by computing the eigenvalues of the jacobian evaluated
at a fixed point’s value. In other words, for a 1D model, one needs to compute

λ =
dṙT
drT

∣∣∣∣∣
rT=r∗T

=
1

τ
(−1 + wΦ′(w · r∗T + I))
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(a) Method 1 (b) Method 2

Figure 6.14: Cusp catastrophe surface of the model ṙT = −rT + Φ(w · rT + I) for both
methods.

and look at the sign of the real part to determine whether the fixed point is stable
(Re{λ} < 0) or unstable (Re{λ} > 0). If Re{λ} = 0, then the system is said to be
marginally stable (Drion 2019-2020; Strogatz 1994) in the sense that there is no evolution
of rT (t); it simply remains constant. This mathematical computation, performed on the
fixed points found numerically for Figure 6.13, confirms the monostable and the bistable
regimes.

6.6.6 Cusp catastrophe surface

Stability diagrams are useful to investigate the effects of both parameters w and I to-
gether but unfortunately, they loss the information about the values of the corresponding
equilibria. A last way to plot all the effects and results together is then to draw the
cusp catastrophe surface, that is, a three-dimensional surface illustrating the values of the
equilibria as a function of w and I.

The surfaces are drawn for both methods in Figure 6.14. Exceptionally, these surfaces
were drawn using the package11 GLMakie.jl (Danisch and Krumbiegel 2021) for Method 2,
or drawn using the MATLAB software12 (MathWorks 2023; https://nl.mathworks.com/)
for Method 1.

As expected, both methods show qualitatively similar results in the sense that each
surface folds over on itself in certain places. These folds show the transition from a

11Traditional plotting tools did not allow to draw such complex 3D surfaces. Other more sophisticated
visualization tools were thus needed.

12For an unknown reason, GLMakie did not produce any output for Method 1, although the same
procedure as for Method 2 has been used. Hopefully, MATLAB managed to produce an output graph
but at the cost of a well larger amount of computing time: ≈ 3 h.
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monostable to a bistable system. With this single surface, one can actually obtain the
bifurcation and the stability diagrams. The projection of the folds of the surface onto
the (w, I) plane yields the stability diagram with the bifurcation curves. A slice (or cross
section) at fixed w yields the {I, r∗T}−bifurcation diagram whereas a slice at fixed I yields
the {w, r∗T}−bifurcation diagram (Strogatz 1994). The term catastrophe illustrates the
fact that the state rT of the model can be carried over the edge of the upper surface as
the parameters are varied, and can then abruptly (or discontinuously) jump to the lower
surface (Strogatz 1994).

The major difference between both surfaces is the presence/absence of upper sat-
uration, as already discussed. This difference is thus explained by the shape of each
individual transfer function. Method 1 uses a transfer function unbounded from above,
allowing thus the equilibria to grow (potentially) to infinity. On the other hand, Method 2
uses a sigmoid-shaped transfer function that saturates as its argument becomes too large.

6.7 Conclusion on model equivalence and parameter

sensitivity

The purpose of this chapter was to assess whether using a standard sigmoidal transfer
function would give qualitatively the same dynamic behavior as the original model of
Brunel and Lavigne 2009. Moreover, this chapter investigated the parameter sensitivity
of the model of Brunel and Lavigne 2009 by varying the parameter values. To simplify the
analyses and have a good understanding of the underlying dynamics, a one-dimensional
model coding for a single target word was derived and used.

All the analyses of this chapter suggest that using a sigmoidal transfer function is
equivalent, from a dynamic behavior perspective, to using the original transfer function.
Both transfer functions allow the model to display monostable and/or bistable regimes. It
is true, however, that this equivalence is only qualitative in the sense that the cusp point
(i.e. start of bistable regime) occurs at different (w, I) pairs between the two methods.
The monostable and bistable regimes occur therefore for different (w, I) pairs in general.
Since these transfer functions are equivalent, it could be recommended to use a more
standard transfer function that is easy to manipulate numerically and that gives a greater
numerical stability.

In addition, the analyses suggest that the model from Brunel and Lavigne 2009 is
sensitive to the parameter values of p, J1, JI(→ w) and I. Indeed, by varying parameter
p (the total number of populations or words), other parameters must change as well in
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order to get back some properties (e.g. spontaneous activity). Moreover, the model is
"sensitive" to parameters J1, JI and I because depending on their values, the model settles
in one regime or another (monostable ↔ bistable).
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Chapter 7

Application to an experimental-like
stimulus

Thus far, the dynamics of the 1D model was investigated using a constant input current.
However, Chapter 5 discussed about different experimental tasks used to assess semantic
priming. These tasks usually consist in the transient presentation of a prime word followed
after a controlled delay by the transient presentation of a semantically (un)related target
word. The presentation of a word acts therefore as an external excitatory stimulus/input
for the population of neurons coding for that word. This experimental protocol can then
be modeled by two current pulses of width width and amplitude ampli. Moreover, the two
pulses are separated by a time delay delay (Figure 7.1). The stimulus onset asynchrony
(SOA) is then computed as SOA = widthP + delay. The parameters ampli, width and
delay can be tuned for both the prime (P) and the target (T) words (→ 5 parameters in
total). For a 1D model, a single pulse remains since only one word is coded.

Figure 7.1: Traditional experimental protocol for semantic priming tasks. A prime word
(P) is transiently presented with a strength ampli and a duration width. The
transient presentation of a target word (T) follows that of the prime after
a controlled delay delay. Parameters ampli, width and delay can be tuned
according to the modeler/user’s needs.

This chapter aims at investigating the response of the model to an input current pulse
rather than a constant input current. The goal is to understand what changes with re-
spect to simulations with a constant input. Moreover, since Chapter 6 suggested that the
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model is equivalent when using Φ1(x) or Φ2(x), the investigation will be performed using
Φ2(x) due to its easier numerical manipulation. Using Φ1(x) would still give the same
results of course (see Appendix D).

This chapter is structured as follows. First, the effects of the current pulse are assessed
as a function of its amplitude. The effects are explored in the monostable regime as well
as in the bistable regime. Then, the effects of the duration alone are examined again in
both regimes. Furthermore, the combined effects of the amplitude and the duration are
illustrated using a graph similar to a stability diagram. Finally, the evolution of response
time as a function of the amplitude but for a fixed duration is shown as well.

7.1 Effect of current pulse amplitude

The effect of the amplitude of the pulse is shown in Figure 7.2a for a monostable system,
and in Figure 7.2b for a bistable system.

For the monostable system, when the pulse is OFF at first (i.e. I = Ibias+0), the pop-
ulation activity converges to the stable equilibrium associated to the bias current value.
As long as the pulse is OFF, the system remains in this steady state. When the pulse
becomes ON (i.e. I = Ibias + ampli), the system responds as an integrator, that is, the
population activity evolves almost linearly and increases in order to reach the stable equi-
librium associated to the new value of I. If the pulse is ON long enough, then the system
reaches that stable equilibrium and remains constant as long as the pulse is ON. When
the pulse ends, the system converges back to the stable equilibrium associated to the bias
current. Since the system is monostable, the stable equilibrium that is reached at the end
of the pulse is the same as that before the pulse became ON. This result can indeed be
observed in the time evolution graph and the corresponding bifurcation diagram. Also,
as the amplitude ampli increases, the steady state associated to I when the pulse is ON
also increases according to the bifurcation diagram.

When the bias current is chosen so that the system lies in its bistable regime, the
response of the system to the current pulse changes. When the pulse is OFF at first, the
behavior is similar to that of a monostable system. When the pulse becomes ON, then
depending on the amplitude of the applied current pulse, the system displays either the
behavior of a monostable system ((b) purple and dark blue shades in bifurcation diagram
and time evolution of the population activity) or it displays persistent (or maintained,
retrospective) activity when the pulse becomes OFF again (brighter shades). In the se-
mantic priming paradigm, this persistent activity would mean that the word is activated
and retrieved from semantic memory. Two conclusions can therefore be made when the
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(a) Monostable (w = 2)

(b) Bistable (w = 9)

Figure 7.2: Effect of input current pulse amplitude Iapp(t) for (a) a monostable system
and (b) a bistable system. The input current pulse Iapp(t) (bottom left
of a subfigure) is applied for a fixed duration of 10 [msec] from t = 20 to
t = 30. The amplitude of the pulse is color-coded. The time evolution of
the population activity for the different amplitudes (top left of a subfigure)
shows a difference in behaviors between monostable and bistable regimes.
The associated {I, r∗T}−bifurcation diagram (dark-blue/black curve; right
of a subfigure) allows one to make the link between variations in I = Ibias+
Iapp and the activity to which the population converges. Colored straight
lines in the bifurcation diagram illustrate the rT (t) VS I(t) trajectory. For
visualization purposes, a constant negative bias current (Ibias = −2) has
been applied. Green dot stands for the initial condition of all trajectories.
Diamond markers spot the end of the applied current pulse (i.e. t = 30
[msec]).
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system is in a bistable regime:

1. The high stable attractor can only be reached if the amplitude of the applied current
pulse allows the system to go beyond the saddle-node value of the bistable region.
In other words, the amplitude of the applied current must satisfy Iapp > Ithresh =

ISN,1 − Ibias.

2. Semantic priming can only occur if the semantic memory system is in a bistable
regime for the prime and the target at least. Otherwise, word representation could
not display persistent activity after the presentation of the word.

The bifurcation diagram in Figure 7.2b suggests that when the pulse ends, the system
converges to the stable equilibrium associated to Ibias, but in addition it converges to the
stable equilibrium whose basin of attraction includes the value of the population activity
at the end of the pulse. Put differently, rT (t) converges to the high stable equilibrium if
rT (t = 30) > r∗T,unstable and to the low stable equilibrium otherwise. Moreover, this result
suggests an influence of the pulse duration. This influence is thus investigated hereafter.

7.2 Effect of pulse duration

Similarly to the effect of amplitude, the effect of pulse duration is shown in Figure 7.3a
for a monostable system and in Figure 7.3b for a bistable system.

For a monostable system, the duration only affects whether the system will reach the
stable equilibrium associated to I = Ibias + Iapp when the pulse is ON. When the pulse
is too short (dark blue shades), the system does not have the time to reach that stable
equilibrium and thus converges back, from where it managed to go, to the state associated
to Ibias when the pulse ends. On the other hand, if the pulse lasts long enough (purple
and brighter shades), then the system manages to reach the stable steady state associated
to I = Ibias + Iapp and remains in that state as long as the pulse is ON. When the pulse
ends, the system converges back to its original steady state as usual.

For the bistable system, the duration has an impact on whether the high stable attrac-
tor is reached. For visualization purposes, a bias current (Ibias = −3) has been applied
and the amplitude of the applied input current pulse is chosen to satisfy Iapp > Ithresh.
The pulse can thus potentially make the system reach the high stable attractor. When
looking at the time evolution of the population activity (Figure 7.3b top left), one can
see that only the pulse width affects the final steady state. When looking at the as-
sociated bifurcation diagram, one can then understand that the duration of the pulse
should make the population activity rT (t) greater than the value of the unstable fixed
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(a) Monostable (w = 2)

(b) Bistable (w = 9)

Figure 7.3: Effect of duration of the input current pulse Iapp(t) for (a) a monostable
system and (b) a bistable system. The input current pulse Iapp(t) (bottom
left of a subfigure) has a fixed amplitude and is applied for a variable dura-
tion. The fixed amplitude is chosen to be greater than the threshold value
ISN,1 − Ibias. The duration of the pulse is color-coded. The time evolution
of the population activity for the variable durations (top left of a subfigure)
shows a difference in behaviors between monostable and bistable regimes.
The associated {I, r∗T}−bifurcation diagram (dark-blue/black curve; right
of a subfigure) allows one to make the link between variations in duration
and the activity to which the population converges. Colored straight lines
in the bifurcation diagram illustrate the rT (t) VS I(t) trajectory. For visu-
alization purposes, a constant negative bias current (Ibias = −3) has been
applied. Green dot stands for the initial condition of all trajectories. Dia-
mond markers spot the end of the applied current pulse (i.e. t = 20+width
[msec]).
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Figure 7.4: Combined effects of pulse duration and pulse amplitude for a bistable system
(w = 9) with a bias current (Ibias = −2) in the bistable region. Red area
indicates that the system did not jump to the high stable state associated
to Ibias whereas green area indicates that the system did jump to that high
state.

point at the end of the pulse. The perfect illustration is for width = 7 (light purple) with
rT (t = 27) being a tiny below the unstable fixed point. This study of the pulse duration al-
lows one to conclude that there exist two thresholds actually: one for the pulse amplitude
(Ithresh = ISN,1−Ibias) and the other for the pulse duration (rT (t = end pulse) > r∗T,unstable
associated to Ibias).

7.3 Combined effects of pulse duration and amplitude

For a monostable system, the combined effects of pulse duration and amplitude only make
the system remain more or less long in the stable equilibrium associated to I = Ibias+Iapp.
When the pulse ends, the population activity inevitably converges back to the steady state
associated to Ibias.

For a bistable system, in turn, it has been seen that both the duration and the am-
plitude affect whether the system jumps to the high stable attractor or not. Figure 7.4
shows both effects together (similarly to a stability diagram). With this Figure, one can
indeed see the threshold on the current amplitude because the system jumps to the high
stable state (green area) associated to Ibias = −2 only from ampli ⪆ 2.4 = ISN,1 − Ibias.
In addition, for amplitudes greater than this threshold, one can observe that for a fixed
value of pulse amplitude, a minimum duration for the pulse is required in order for the
system to reach the high steady state. Put differently, a minimum duration for the pulse
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(a) Response criterion: rSN,2 associated to
ISN,2

(b) Response criterion: 98% of the high stable
state associated to Ibias

Figure 7.5: Evolution of response times of a bistable system (w = 9) as a function of
pulse amplitude. The pulse duration is fixed to 15 [msec]. A fixed bias
current Ibias = −2 is applied to study the bistable regime. (a) The response
criterion corresponds to the value of the saddle-node activity associated to
the low saddle-node current ISN,2. (b) The response criterion is 98% of the
final value of the population activity when the system jumps.

is required to cross the unstable fixed point associated to Ibias. Moreover, the relationship
between the pulse amplitude and the minimum pulse duration seems to be inverse, that is,
as the pulse amplitude increases, the minimum pulse duration that is required decreases.
This result suggests that the pulse amplitude has an impact on the speed of convergence
to the high stable state. Indeed, if the amplitude increases, then Φ(w · rT + I) increases
making then ṙT larger. Crossing the unstable fixed point occurs then earlier thus making
the minimum duration shorter.

7.4 A look at response times

Response or reaction times are often used in psychology experiments to measure cogni-
tive abilities of participants. In the semantic priming paradigm, this response time is
measured from the target onset until the population activity of a item reaches a response
criterion. Figure 7.5 shows the evolution of response times (RT) when the response cri-
terion is the saddle-node activity rSN,2 associated to the lowest saddle-node current ISN,2

(left), or when the response criterion is set to 98% of the final high steady state value
(right). Moreover, this evolution is observed as a function of pulse amplitude. The pulse
duration is fixed to 15 [msec].

Using one or the other criterion gives actually the same trend: as the amplitude in-
creases, the response time decreases. Put differently, the response criterion changes the
quantitative value of response time but not its qualitative evolution. In addition, if the
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pulse amplitude does not satisfy the threshold value, then the response time tends to-
wards infinity because the system does not jump to the high stable state. Furthermore,
response times seem to become independent of the pulse amplitude as the latter becomes
very large. This result suggests that a minimum amount of time is necessary to process
information.

Using rSN,2 as response criterion has the advantage that the response time value is
independent of the bias current value that is applied. In other words, the trend and the
value of response times will be the same no matter what the x-axis is precisely (due to
a change in Ibias). However, if the transfer function is not saturated from above, then
the high stable state could potentially be far away from rSN,2, suggesting therefore the
potential need for an extra amount of time to process information. This is the reason why
choosing a high percentage of the high steady state value as a response criterion can be
used as well. The response time is then specific to the high steady state that is considered
(and therefore to the bias current that is considered). A drawback of this second response
criterion is that any percentage can “do the trick” a priori (i.e. the value of the percentage
is totally arbitrary).

7.5 Conclusions on the application of the model to a

pulse-shaped stimulus

This chapter aimed at investigating the response of the 1D model to a pulse-shaped stim-
ulus. The pulse-shaped stimulus mimics the real experimental protocol (i.e. transient
presentation of a word) that is followed during psychology experiments. The amplitude
and the duration of the pulse are two parameters that can be tuned independently to the
experimenter’s desires.

Analyses revealed that both the amplitude and the duration determine together the
final steady state to which the system converges, especially for a bistable system. When
the system is biased in the bistable region, the amplitude must be greater than the thresh-
old value Ithresh = ISN,1− Ibias in order for the system to potentially reach the high stable
state. If the amplitude satisfies this condition, then the pulse should still be long enough
to allow the system to cross the unstable fixed point associated to the bias current value.
This unstable fixed point is thus a key player in the sense that it is a separator between
both stable attractors and their basins of attraction in the bistable region, but it is also
a threshold for the pulse duration. In addition, these analyses suggested that semantic
priming can only occur if the semantic memory system is in a bistable regime in order for
the word representations to show persistent (or retrospective) activity.
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The last part of this chapter focused on the response time computation when the
system is in a bistable regime. Although several and different response criteria can be
used, the evolution of response times as a function of the pulse amplitude is always the
same: as the amplitude increases, the response time decreases. When the amplitude
does not satisfy the threshold value, the response time tends towards infinity because
the system never jumps to the high stable state. On the other side, the response time
becomes independent of the amplitude as the latter becomes very large. The strictly
positive response times suggest that a minimum amount of time to process information
is always required.

Page 100 of 133





Conclusions and Perspectives

This master thesis revisited the network model of Brunel and Lavigne 2009 in order to
assess whether the same model with the same assumptions but using a different transfer
function would give a qualitatively similar dynamic behavior. In addition, this mas-
ter thesis investigated the parameter sensitivity. These two components were motivated
by the facts that Brunel and Lavigne used a transfer function that is mathematically
good-looking but rather difficult to manipulate numerically, and by the highly specific
definitions for some parameters. In order to assess this model equivalence and this pa-
rameter sensitivity, the one-dimensional version of Brunel and Lavigne’s model has been
derived and used, and a more standard sigmoid transfer function has been considered.

Part I and Part II reviewed the literature on mathematical modeling, 1D model
analysis, rate models, memory and semantic priming. They gave all the tools, notably
the phase portrait and the bifurcation tools, that were necessary to carry out the dynam-
ical analysis of Brunel and Lavigne’s model.

Phase portrait and bifurcation analyses suggest that both transfer functions are quali-
tatively equivalent from a dynamic behavior perspective. Both allow the model to display
monostable and/or bistable regimes, the latter being induced by particular ranges of val-
ues for the recurrent connection strength w and the total external input I. Using the
sigmoid function would therefore give the same qualitative result with greater numerical
stability.

In addition, phase portrait and bifurcation analyses also suggest that the model from
Brunel and Lavigne 2009 is rather sensitive to parameter values because by varying one
parameter (e.g. p), others should vary as well in order to get back some properties (e.g.
spontaneous activity).

To be complete, a pulse-shaped experimental-like stimulus has been applied to the
one-dimensional model to observe its response. The results show that both the amplitude
and the duration of the input current pulse determine together the final steady state to
which the system converges especially for a bistable system. When the system is biased in
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the bistable region, the amplitude and the duration must be greater than their respective
threshold (Ithresh = ISN,1−Ibias and long enough to cross the unstable fixed point) in order
for the system to reach the high stable attractor. The key role of the unstable fixed point
has been stressed. Regarding response times, several response criteria can be used but the
trend is always the same: the response time decreases as the pulse amplitude increases.
Moreover the response time is bounded by infinity (i.e. amplitude below threshold) and
by a strictly positive value (i.e. necessary amount of time to process information).

Perspectives

Several limitations and thus perspectives can be noticed in this work.

First, the 1D model is very useful to investigate the full dynamic behavior of the
model but it does not allow to study semantic priming as such. Indeed, semantic priming
requires at least a pair of words (prime and target) such that priming of the target word
can effectively occur. By adding one variable (and thus one word) to the 1D version, the
model would become a two-dimensional model where semantic priming can be studied
as such. Also, this 2D model should have extended versions of the tools (phase portrait,
bifurcations, . . . ) used in this work. An introduction of this 2D model can be found as a
bonus chapter in Appendix A.

Then, why limit oneself to two words? A common associate to the prime and the tar-
get words could be added to form a three-dimensional model. This 3D model could then
be studied considering the slow and fast dimensions, that is, the dimensions associated
to slightly negative eigenvalues (→ slow) and to strongly negative eigenvalues (→ fast).
The slow dimension(s) is (are) usually where all the dynamics happens since the other
fast dimensions are exponentially contracting (Franci 2023b).

Also, this work used the same assumptions as those of Brunel and Lavigne: the global
inhibitory current regulating the activity of all excitatory populations has a linear transfer
function and the time scale of inhibitory dynamics is much shorter than that of excitatory
populations. However, this master thesis did not check whether these assumptions are
still valid when p = 1. It is actually common that inhibitory populations have a different
transfer function and a different time scale from excitatory populations (Gjorgjieva et al.
2021a), but the validity of the assumption of the inhibitory firing rate being proportional
to the mean of excitatory average firing rates could be further explored. In particular,
determining the minimum value for p such that this assumption is valid could be useful.
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Finally, Brunel and Lavigne used symmetric connectivity matrices (see Appendix A
for the 2D matrices) suggesting that the association between words is symmetric. This
symmetry also enables to determine the conditions to have the same spontaneous activity
for each node. However, their model does not therefore take into account pairs of words
that are strongly associated in a forward or in a backward direction. For example, baby-
boy has a strong forward association whereas boy-baby has a weaker backward association.
The need for such a model is therefore present.
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Appendix A

Bonus chapter: A glimpse at the
two-dimensional model

A drawback of the 1D model is that it cannot be used as such to investigate semantic
priming since the cognitive process requires at least a pair of words. This bonus chapter
aims then at introducing the two-dimensional (2D) model and explaining how concepts
and tools seen in 1D can be extended to higher-order dimensions.

Similarly to the 1D model, by setting p = 2, the Brunel and Lavigne’s model reduces
to 

τ drP
dt

= −rP + Φ

J1 − JI
2︸ ︷︷ ︸

wPP

·rP +
JPT − JI

2︸ ︷︷ ︸
wPT

·rT + IPext + IPsel


τ drT

dt
= −rT + Φ

JTP − JI
2︸ ︷︷ ︸

wTP

·rP +
J1 − JI

2︸ ︷︷ ︸
wTT

·rT + IText + ITsel


(A.1)

where P and T stand for prime and target, respectively, and JPT (and JTP ) ∈ {Ja, J0}
are the connection weights from T (P) to P (T). The other parameters have the same
meaning as for the 1D model and their values can be found in Table 6.1.

This 2D model can be written more compactly using matrix and vector notations
(denoted by uppercase and bold lowercase letters, respectively):

τ ṙ = −r + Φ


wPP wPT

wTP wTT


︸ ︷︷ ︸

W

·r + Iext + Isel

 (A.2)

with r = (rP , rT )
T (T stands for the transpose), Iext = (IPext, I

T
ext)

T and Isel = (IPsel, I
T
sel)

T .

The network model in Eq. (A.2) amounts to two non-overlapping populations of
excitatory neurons being selective to a single word or item. Each population or word is
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P TJ1−JI

2
J1−JI

2Ja−JI

2 or J0−JI

2

IPsel ITselIPext IText

Figure A.1: Prime-Target network model. Each node receives synaptic inputs from itself
and the other node (red and black arrows). Each node also receives exter-
nal inputs that are either selective (green arrow) or non-selective (purple
arrows) to the word encoded by each node.

then modeled as a node in a graph. The two nodes make connections to themselves (wPP ,
and wTT ) and to each other (wPT , and wTP ). In addition, the nodes receive non-selective
external inputs (I iext) that bias them into a specific spontaneous activity. They also receive
selective external inputs (I isel) that excite or activate the word to which they are selective.
Figure A.1 illustrates the 2D model. Furthermore, the two words can be considered as
belonging within the same semantic group (i.e. p = pg · pi with pg = 1, pi = 2) or into
two different semantic groups (i.e. pg = 2, pi = 1).

A.1 Spontaneous activity
Similarly to the 1D model, the conditions to have spontaneous activities rPspont and rTspont
in the absence of any other external input can be extended to a 2D model. In order to
have these spontaneous activities, the model should satisfy several conditions:

1. The state rspont = (rPspont, r
T
spont) should be a fixed point (or equilibrium) of the

model (A.2). That is
ṙP = 0 ↔ rP = Φ

(
wPP · rP + wPT · rT + IPext

)
ṙT = 0 ↔ rT = Φ

(
wTP · rP + wTT · rT + IText

)
ṙP = ṙT = 0 ↔ wPP · rPspont + wPT · rTspont + IPext − Φ−1(rPspont)

= wTP · rPspont + wTT · rTspont + IText − Φ−1(rTspont)

(A.3)

When either ṙP = 0 or ṙT = 0 (first two equations), then the corresponding curves
are called nullclines or null isoclines. The fixed points are therefore the intersections
of nullclines. The last statement is actually valid for any higher-order dimension.

2. The spontaneous activities should be stable, that is, the so-called Jacobian matrix

dṙ
dr

∣∣∣∣
r=(rPspont,r

T
spont)

=

dṙP
drP

dṙP
drT

dṙT
drP

dṙT
drT

∣∣∣∣∣
r=(rPspont,r

T
spont)

evaluated at the spontaneous activities should have eigenvalues with a negative real
part to ensure the decay of small perturbations nearby the fixed point. This 2 by 2
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matrix is the 2D extension of the slope f ′(x) in 1D (see section 2.3.1). The N by
N square matrix would then be the N -D extension of that 1D slope f ′(x).

When rPspont = rTspont = rspont, the following sufficient conditions ensure that this
spontaneous activity for each node is a fixed point (but they do not say anything about
the stability!) 

wPP = wTT = w1

wTP = wPT = w2

IPext = IText = Iext

Iext = Φ−1(rspont)− (w1 + w2) · rspont

(A.4)

with Φ−1(x) the inverse transfer function that is guaranteed to exist since Φ(x) is a con-
tinuous and monotonically increasing function. The last expression in Eq (A.4) reminds
that found for the 1D model (see Eq. (6.6a)) with w = w1 + w2.

Condition 2. amounts to computing the eigenvalues of

dṙ
dr

∣∣∣∣
r=(rPspont,r

T
spont)

= −I2×2 + diag (Φ′ [W · rspont + Iext]) ·W (A.5)

with I2×2 the 2D identity matrix, rspont = (rPspont, r
T
spont) and diag(.) a 2D diagonal matrix

whose entries are

Φ′(wPP · rPspont + wPT · rTspont + IPext) and Φ′(wTP · rPspont + wTT · rTspont + IText)

The identity matrix simply shifts the eigenvalues λ of diag (Φ′ [W · rspont + Iext]) ·W
by one unit. Thus, computing the eigenvalues λ̃ of Eq. (A.5) amounts to computing the
eigenvalues λ.

Assuming that rPspont = rTspont = rspont, the problem reduces to finding

λ̃1,2 = −1 + f · λ1,2(W ) with f = Φ′(Φ−1(rspont))

One finds13

λ1,2(W ) =
(wPP + wTT )±

√
(wPP + wTT )2 − 4(wPPwTT − wTPwPT )

2

Considering the sufficient conditions from Eq. (A.4), the eigenvalues simplify into

λ1,2(W ) = w1 ± w2

As a result, the spontaneous activities rPspont = rTspont = rspont give a stable background

13As a reminder, the eigenvalues of a matrix A are found by solving the equation det(A−λI) = 0. For
a 2D matrix, the eigenvalues are thus given by λ1,2 = −τ±

√
τ2−4∆
2 with τ = a11 + a22 the trace of A and

∆ = a11a22 − a12a21 the determinant of A.
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P-T Associated (A) P-T Non associated (NA)

P-T within
same group
(pi = 2)

 JS
2 −JS

2

−JS
2

JS
2

  JS
2 −JS

2
(1+a)
(1−a)

−JS
2

(1+a)
(1−a)

JS
2


P-T within
different
groups
(pi = 1)

 JS
2

JS(2a−1)
2

JS(2a−1)
2

JS
2

  JS
2 −JS

2

−JS
2

JS
2


Table A.1: Possible configurations for the connectivity matrix W in the 2D network

model of Brunel and Lavigne 2009. JS is the synaptic potentiation strength
(> 0) and a is the association strength (0 < a < 1) between the prime (P )
and the target (T ) words (see Table 6.1).

state if all the following conditions are met

wPP = wTT = w1 (A.6a)
wTP = wPT = w2 (A.6b)
IPext = IText = Iext (A.6c)
Iext = Φ−1(rspont)− (w1 + w2)︸ ︷︷ ︸

w

·rspont (A.6d)

λ1,2(W ) = w1 ± w2 <
1

f
(A.6e)

To choose w1 and w2, one should first find

wmax =
1

f
=

1

Φ′(Iw=0)

(similarly to the 1D case), and then choose w1 satisfying

w1 <
1

2
(w +

1

f
)

The other connection weight w2 is then automatiquely determined as w2 = w−w1. These
conditions on w and w1 indeed satisfy Eqs. (A.6d) and (A.6e), and can be checked nu-
merically.

Thus far, the equations are actually valid for any 2D model but Brunel and Lavigne
2009 used very specific definitions for their connection strengths Ja and J0 (see Table 6.1).
Four possible configurations for W therefore arise (Table A.1).

From Table A.1, one can see that all configurations of W are symmetric suggesting
that the sufficient conditions (A.4) to have rPspont = rTspont = rspont can be met. The sta-
bility of that background activity state depends then on the values of JS (> 0; strength
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P-T Associated (A) P-T Non associated
(NA)

P-T within same
group (pi = 2)

0 < JS < 1
f

0 < a < 1

0 < JS < 1
f

0 < a < 1− fJS

P-T within differ-
ent groups (pi = 1)

0 < JS < 2
f

max{1− 1
fJS

, 0} < a

a < min{ 1
fJS

, 1}

0 < JS < 1
f

0 < a < 1

Table A.2: Stability conditions on synaptic potentiation strength JS and association
strength a. These conditions ensure that the background activity state
rPspont = rTspont = rspont is stable.

of synaptic potentiation) and a (0 < a < 1; association strength between prime P and
target T ). Based on Eq. (A.6e), one can then find the conditions on JS and a for each
W (Table A.2). These conditions can also be checked numerically.

The configurations with P−T belonging within the same group are the most commonly
encountered cases. Thus, similarly to the 1D case, it is possible to choose a desired stable
background activity state, and to bias each node accordingly using Eq. (A.6d) and Table
A.2. One will notice that the default value for JS (i.e. 3.65 > 1

f
≈ 0.04) still does not

allow the P − T network to have a stable background activity state at the default value
for rspont = 5 [Hz], suggesting again a parameter sensitivity.

A.2 Phase plane analysis
The vector (rP , rT ) is called the state of the system because it is the minimal information
that is necessary and sufficient to know in order to predict any future value of the solution
of Eq. (A.2) (Strogatz 1994).

The vector (ṙP , ṙT ) is in turn called the velocity vector at point (rP , rT ) on the (rP , rT )
plane because it indicates how fast or how slow each variable evolves with time. The length
of the vector is proportional to the magnitude of ṙP and ṙT (Strogatz 1994).

The solutions of Eq. (A.2) are thus the trajectories (rP (t), rT (t)) similarly to the one-
dimensional case. Moreover, the trajectories can also be visualized on the (rP , rT ) plane
called the phase plane. Equation (A.2) therefore represents the two-dimensional vector
field on the phase plane. The trajectories (rP (t), rT (t)) can thus be obtained by flowing
along the vector field from any point in the plane. The last statement also implies that
the entire phase plane is full of trajectories because each point in the plane can act as an
initial condition (Strogatz 1994).

Similarly to the one-dimensional case, one can sketch the phase plane of a 2D model
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Figure A.2: Inverse transfer function of Φ1(x). No analytical closed form can be ob-
tained but the inverse function can be numerically approximated using
interpolation methods.

in order to get an idea of the global pattern formed by the trajectories. It is often useful
to first draw the nullclines of the system onto the phase plane. As explained previously,
the nullclines indicate where r(t) is purely horizontal or vertical (Strogatz 1994). In other
words, the nullclines are the curves (for 2D models) where exactly one component of the
vector field is equal to zero. Considering the 2D model (A.2), the nullclines are given by
the curves where either ṙP = 0 or ṙT = 0, that is

˙rP = 0↔ rP = Φ
(
w1 · rP + w2 · rT + IPext + IPsel

)
(A.7)

and
ṙT = 0↔ rT = Φ

(
w2 · rP + w1 · rT + IText + ITsel

)
(A.8)

The P (T ) nullcline, i.e. Eq. (A.7) (i.e. Eq. (A.8)) can also be expressed in this case as
a function of one of the two variables only thanks to the inverse transfer function Φ−1(x)
(that exists since Φ(x) is a continuous and monotonically increasing function). One finds
for the P nullcline and the T nullcline, respectively

rT =
1

w2

[
Φ−1(rP )− w1 · rP − (IPext + IPsel)

]
(A.9)

rP =
1

w2

[
Φ−1(rT )− w1 · rT − (IText + ITsel)

]
(A.10)

It should be noted that if w2 = 0, then the system is a 2D decoupled system which
actually amounts to two 1D models. The variables then evolve independently of each
other and the nullclines do not have a closed form. In addition, for Method 1 with Φ1(x),
the corresponding inverse transfer function Φ−1

1 (x) has no closed form either but it can
still be approximated numerically using interpolation methods. As a result, the inverse
transfer function of Method 1 looks like in Figure A.2.

The nullclines therefore partition the phase plane into regions (Table A.3) (Drion 2019-
2020; Drion 2021-2022; Strogatz 1994).
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ṙT

ṙP
ṙP < 0 : ↓ ṙP = 0 : / ṙP > 0 : ↑

ṙT < 0 : ← ↙ ← ↖

ṙT = 0 : / ↓ FP ↑

ṙT > 0 : → ↘ → ↗

Table A.3: Vector field directions. On the nullclines (ṙP = 0 or ṙT = 0; blue row and
column), the movement is purely vertical or horizontal. Besides nullclines,
the global vector field is a combination of each individual vector field of each
variable. Fixed points (FP) are obtained when both nullclines intersect.

Similarly to the phase portrait, the stability of a fixed point can be assessed graphically
by looking at the vector field. If the vector field points towards the FP, then the latter is
stable, otherwise the FP is unstable if the vector field points away from it. The FP can be
a saddle node if a trajectory is attracted towards the FP whereas the other trajectories are
repelled from that FP. A simple example of 2D phase plane analysis can be seen in Figure
A.3 where the parameters have been chosen to have a monostable system (JS = 0.02 = a)
in the associated−one group case (top left of Table A.1).

Figure A.3: Example of phase plane analysis for the 2D system (A.2) in a monostable
regime. Prime and target words are associated and within the same group.
Nullclines’ and trajectories’ color code is explicit in the legend. Vector field
is represented by gray arrows.

From Figure A.3, it can be seen that trajectories, wherever they start (colored circles),
follow the vector field and converge to the intersection of nullclines (dark blue and red
curves).

Page 114 of 133



A.2. Phase plane analysis Appendix A. Bonus chapter: A glimpse at
the two-dimensional model

Since the prime and the target words are mostly encountered as belonging to the same
group, different phase planes (A VS NA; I = Iext + Isel varies) are shown hereafter.

A.2.1 Prime & Target associated

Figures A.4a and A.4b show the phase plane analysis for a monostable regime and a
bistable regime (with W being the top left matrix of Table A.1). When JS is chosen
so that the system is in a monostable regime, the selective currents simply shift that
stable equilibrium. It shifts up when Isel,P increases and it shifts to the right when Isel,T
increases. When JS is chosen so that the system is in a bistable regime, the system
actually behaves as a “Winner-Takes-All” model: either the prime or the target word is
activated. The equilibrium where both words are slightly activated is unstable (based
on the vector field). The change in behavior when JS varies suggests that a bifurcation
occurs.

(a) Monostable
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(b) Bistable

Figure A.4: Phase plane analysis for the Prime-Target network where the prime and the
target are associated within a semantic group. Red curve is the T nullcline
while the blue curve is the P nullcline. (a) Monostable regime (JS = 0.02).
(b) Bistable regime (Default JS = 3.65).
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A.2.2 Prime & Target non associated

The same behaviors as for the associated case can be observed when JS and a vary,
suggesting again that at least one bifurcation happens when varying JS and a.

A.3 Conclusions on the 2D model
This bonus chapter introduced the Prime-Target network, that is the two-dimensional
version of the Brunel and Lavigne’s model. Although the analysis was not complete (bi-
furcation diagrams and responses to pulse-shaped stimuli were missing), this introduction
still showed that all the concepts seen in the 1D model could be extended to the 2D
model . . . at the cost of longer and more complicated calculations, graphs, figures, . . . In
particular, the spontaneous activity for each node can still be chosen as the modeler de-
sires but the degrees of freedom rapidly increase if assumptions are not made. When the
spontaneous activity is the same for all nodes, sufficient conditions and ranges of values
for appropriate parameters could be found in order to guarantee this stable background
activity state.

Phase plane analysis allows one to graphically visualize the solutions’ behavior, that
is the trajectories, of the two-dimensional model. Phase plane analysis can actually be
applied to any higher-order dimension. Important components of the phase plane are the
nullclines where one variable does not evolve anymore. The intersections of nullclines are
the fixed points (or equilibria). In addition, the nullclines partition the phase plane into
different regions that display different evolving temporal behaviors. Phase plane analysis
for the Prime-Target network, where the prime and the target belong to the same seman-
tic group, suggests that a bifurcation is occurring when parameters JS and a vary because
the model goes from a monostable regime to a “Winner-Takes-All” bistable regime. The
symmetry of the phase plane suggests that this bifurcation would be a three-dimensional
pitchfork.

The next step would have been to investigate the semantic priming as such using
pulse-shaped stimuli and see whether the target is effectively primed by the prime word,
that is, the target would show prospective activity before the target word is presented.
The effects of pulse amplitude, pulse duration and stimulus onset asynchrony could also
have been explored.
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Modeling background details

B.1 1D model computation details
Here below is the mathematical development used to find the analytical solution to the
equation ẋ = cosx.

The solution is found by separating the variables and then by integrating on both
sides.

ẋ =
dx

dt
= cosx

↔ dt =
dx

cosx

↔
∫

dt =

∫
dx

cosx

↔ t+ C =

∫
dx

cosx
=

∫
cosx

(cosx)2
dx =

∫
cosx

1− (sinx)2
dx

where C is an integration constant. By making a change of variable u = sinx, one has

du = cosx dx

and thus

t+ C =

∫
1

1− u2
du =

∫
2

2(1− u)(1 + u)
du =

∫
(1− u) + (1 + u)

2(1− u)(1 + u)
du

↔ t+ C =
1

2

(∫
1

1 + u
du+

∫
1

1− u
du

)
↔ t+ C =

1

2
(ln |1 + u| − ln |1− u|)

↔ t+ C =
1

2
ln
|1 + sin x|
|1− sinx|

Assuming x = x0 at t = 0, one can find the constant C as

C =
1

2
ln
|1 + sin x0|
|1− sinx0|
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The final solution is thus

t =
1

2
ln

(
|1 + sin x|
|1− sinx|

· |1− sinx0|
|1 + sin x0|

)

B.2 Taylor’s expansion
The Taylor’s expansion formula allows one to approximate a function f(x) by a sum of
function f and its derivatives, all evaluated at some point a in the neighborhood of x. This
formula also gives an expression for the error associated to the approximation. Another
advantage of Taylor’s expansion is the possibility to improve the order of approximation
of function f , that is, it gives a formula to approximate the function f by a relation more
complicated than a simple line.

The formula here below is extracted from Delhez 2018-2019.

“If the real-valued function f is n times continuously differentiable on an interval [a, x]
(or [x, a]) and n + 1 times differentiable on the associated open interval ]a, x[ (or ]x, a[),
then there exist at least one point ξ ∈]a, x[ (or ]x, a[) such that

f(x) = f(a)+
(x− a)

1!
f ′(a)+

(x− a)2

2!
f ′′(a)+ · · ·+ (x− a)n

n!
f (n)(a)+

(x− a)n+1

(n+ 1)!
f (n+1)(ξ)

(B.1)
”

The error associated to the approximation is thus given by

ϵ =
(x− a)n+1

(n+ 1)!
f (n+1)(ξ) (B.2)
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Transfer functions and spontaneous
activity : Extra analyses

C.1 Understanding the transfer function of Brunel and
Lavigne

Considering the transfer function from Brunel and Lavigne 2009 (Figure C.1), this small
extra analysis attempts to understand the behavior of

Φ1(x) =
1

τm
√
π

[∫ +∞

−∞
exp

(
−xz2 − σ4z6

48

)
dz

]−1

when varying x.

Figure C.1: Φ1(x) = 1
τm

√
π

[∫ +∞
−∞ exp

(
−xz2 − σ4z6

48

)
dz
]−1

. Transfer function from
Brunel and Lavigne 2009.

One should first notice that the integrand

exp

(
−xz2 − σ4z6

48

)
is symmetric with respect to the integrated variable z. In other words, the integrand is
an even function (i.e. f(z) = f(−z) ∀z).
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(a) x ≥ 0

(b) x < 0

(c) x = −16.5

Figure C.2: Behavior of the integrand of the transfer function Φ1(x) =

1
τm

√
π

[∫ +∞
−∞ exp

(
−xz2 − σ4z6

48

)
dz
]−1

for different values of x.
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When x is positive (Figure C.2a), the integrand is always positive but, above all, it is
decaying. Thus, when z = 0, exp

(
−xz2 − σ4z6

48

)
= exp 0 = 1. As z increases/decreases,

the integrand decays exponentially towards zero. Now, if one varies x, then when x = 0

(Figure C.2a light blue curve), the integrand reduces to exp
(
−σ4z6

48

)
such that if σ4z6 <

48, then the integrand has a value close to 1 whereas if σ4z6 > 48, then it decays strongly.
If x > 0, then the integrand monotonically and continuously decays towards zero and this
decay is more pronounced as x increases. Thus, as x increases, the area under the curve
decreases. As a result, the whole integral in the expression of Φ1(x) decreases. However,
since it is at the denominator of Φ1(x), it implies that the value of Φ1(x) increases as x
is positive and increases.

When x is negative (Figure C.2b), the behavior is different. Since x < 0, the expo-
nent of the integrand has a growing term (−xz2) and a decaying term (−σ4z6

48
). As a

consequence, when z is small, the term −xz2 is dominant over −σ4z6

48
and the exponential

is thus growing. On the other hand, when z is large, it is the opposite; the term −σ4z6

48

dominates over −xz2 and the exponential is decaying. The growth and the decay are
even more pronounced as x becomes more and more negative. Thus, as x decreases in the
negative values, the area under the curve increases. The whole integral in the expression
of Φ1(x) increases and the corresponding value Φ1(x) converges towards zero rapidly.

An artificial trick must even be used when x becomes "too" negative. Indeed, when
x becomes smaller than roughly −16 (Figure C.2c), the integrand is not representable
numerically anymore because its maximum points are too high. However, since the value
of Φ1(x) theoretically exists and is equal to zero, Φ1(x) can be assigned the value zero for
such negative values of x.

C.2 Understanding the transfer function of Gjorgjieva
et al

Considering the transfer function of Gjorgjieva et al. 2021a and Gjorgjieva et al. 2021b
(Figure C.3), this small extra analysis attempts to understand the behavior of

Φ2(x) =
1

1 + exp(−α(x− θ))
− 1

1 + exp(αθ)

when varying x, α and θ.

Similarly to the transfer function of Brunel and Lavigne 2009, the sigmoidal f − I
curve from Gjorgjieva et al. 2021a; Gjorgjieva et al. 2021b is a continuous and monoton-
ically increasing function. Thus, as x increases, Φ2(x) increases as well until saturation.
For large x, Φ2(x) becomes independent of the exact value of x and saturates (or remains
constant) at the same value. The same phenomenon appears for largely negative x with
the lower saturation.

Parameter α tunes the linear gain (or slope) of the transfer function (Figure C.4a).
In other words, the larger α, the sharper the transition between the lower and the upper
saturations. Thus, as α increases, the slope becomes more and more vertical and Φ2(x)
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Figure C.3: Φ2(x) =
1

1+exp(−α(x−θ))
− 1

1+exp(αθ)
. Transfer function from Gjorgjieva et al.

2021a and Gjorgjieva et al. 2021b. The term − 1
1+exp(αθ)

allows one to get
Φ2(0) = 0 for convenience.

takes a switch-like shape.

Parameter θ, in turn, tunes the threshold (or the input giving the midpoint) of the
transfer function (Figure C.4b). In other words, the larger θ, the more the midpoint of
the transfer function is shifted to the right. Because of the requirement that Φ2(0) = 0,
Φ2(x) is shifted up to the right as θ increases.

Parameters α and θ can be tuned independently according to the modeler/user’s de-
sires. In the current work, the same values as in Gjorgjieva et al. 2021a and Gjorgjieva
et al. 2021b are used, i.e. α = 1.2 and θ = 2.8.

(a) Effect of α (b) Effect of θ

Figure C.4: Behavior of the transfer function Φ2(x) = 1
1+exp(−α(x−θ))

− 1
1+exp(αθ)

as a
function of parameters α and θ. (a) Parameter α tunes the slope (or gain)
of the sigmoid. (b) Parameter θ tunes the input value at which Φ2(x) is
half its final value.
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C.3 Spontaneous activity: supplementary figures

C.3.1 Graphical approach for estimating wmax in Method 1

In Method 1, the conditions on w and Iext to have a stable spontaneous activity rT (t) =
rspont are

Iext = Φ−1
1 (rspont)− w · rspont (= Iext,w=0)

w <
1

Φ′
1(Φ

−1
1 (rspont))

with Φ′
1(x) the transfer function derivative and Φ−1

1 (x) the inverse transfer function of
Φ1(x).

A graphical approach to estimate the maximum w allowing a stable spontaneous ac-
tivity is to plot the behavior of dṙT

drT

∣∣∣
rT=rspont

as a function of w = J1−JI and Iext (rspont is

fixed and Isel is assumed to be zero). For rspont = 5 [Hz] (default value from Brunel and
Lavigne 2009), this behavior looks like Figure C.5.

Figure C.5: Behavior of dṙT
drT

∣∣∣
rT=rspont

as a function of recurrent connection weight w and

bias current Iext. The spontaneous firing rate is set to default value from
B&L (rspont = 5 [Hz]) and Isel is assumed to be zero.

When looking at the projection onto the (dṙT
drT

, w) plane (Figure C.5 right), one could
roughly estimate that w should be smaller than ≈ 0.035 so that dṙT

drT
< 0, giving the state

rT = rspont stable.

C.3.2 Examples of temporal dynamics for assessing spontaneous
activity in Method 1

For a stable background activity rspont = 5 [Hz], the recurrent connection weight should
satisfy w ⪅ 0.04 and the bias current should be chosen such that Iext = Φ−1

1 (5)− w · 5.
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(a) w = 3.65; rT (0) = 3 (b) w = 0.02; rT (0) = 3

(c) w = 3.65; rT (0) = rspont
(d) w = 0.02; rT (0) = rspont

(e) w = 3.65; rT (0) = 6 (f) w = 0.02; rT (0) = 6

Figure C.6: Time evolution of rT (t) (blue curve) for the 1D model ṙT = −rT + Φ1(w ·
rT + Iext) with w = 3.65 (left) and w = 0.02 (right), with different initial
conditions rT (0) (3: top; 5: middle; 6:bottom), and with Iext set to have
rspont = 5 [Hz]. Black dashed curve shows the value that rT (t) tracks.
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Default values of J1 and JI (i.e. w = 3.65) violate the condition on w. Therefore,
"rspont = 5 [Hz]" is an unstable equilibrium as can be seen in Figures C.6a, C.6c and
C.6e. On the other hand, if w = 0.02, then rspont = 5 [Hz] is indeed a stable equilibrium
(Figures C.6b, C.6d and C.6f).

When w violates its condition, any initial condition (Figures C.6a and C.6e) will
make rT converge to a steady state other than rspont = 5 [Hz]. When rT (0) = rspont
exactly (Figure C.6c), rT remains in that equilibrium for a while before numerical error
accumulation becomes too big and makes rT converge to another stable steady state.
Thus, when w violates its condition, rT = rspont is an unstable FP.

Similarly, when w meets its condition, rT = rspont is a stable FP and any initial
condition rT (0) will make rT converge to rspont, assuming that Isel = 0 of course (Figure
C.6 right panels).

C.3.3 Examples of temporal dynamics for assessing spontaneous
activity in Method 2

For example, if R = 0.2, then w should satisfy w ⪅ 4.66 and the bias current should be
chosen such that Iext = Φ−1

2 (0.2)− w · 0.2.

Similarly to Method 1, default value of w (i.e. w = 9) violates the condition on w.
Therefore, "R = 0.2 [Hz]" is an unstable equilibrium as can be seen in Figure C.7a. On
the other hand, if w = 2, then R = 0.2 [Hz] is indeed a stable equilibrium (Figure C.7b).

(a) w = 9 (b) w = 2

Figure C.7: Time evolution of rT (t) for the 1D model ṙT = −rT +Φ2(w · rT + Ibias) with
(a) w = 9 and (b) w = 2, with different initial conditions (see legend in
graphs). The bias current Ibias is set to have a spontaneous activity R = 0.2
[Hz].

The methodology and the results are thus similar for both methods.
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Pulse-shaped stimulus and Method 1

Similarly to Method 2, the effects of pulse amplitude and pulse duration can be investi-
gated for Method 1. The same results will be found:

• For a bistable system, the amplitude of the pulse must satisfy Iapp > Ithresh =
ISN,1 − Ibias to potentially reach the high steady state associated to Ibias (Figure
D.1).

• The unstable fixed point associated to the bias current acts as a threshold on the
minimum pulse duration in order to reach the high stable state (Figure D.2).

• Pulse duration and pulse amplitude determine together whether the bistable system
reaches the high stable attractor and displays persistent activity (Figure D.3).

• For a monostable system, the final steady state is the same as before the pulse
became ON, whatever the duration and/or the amplitude. Pulse amplitude and
pulse duration only affect whether the monostable system reaches the new steady
state associated to I = Iapp + Ibias when the pulse is ON, and how long the system
remains in that state before converging back to its original state.

127



D.1. Effect of pulse amplitude Appendix D. Pulse-shaped stimulus and
Method 1

D.1 Effect of pulse amplitude

(a) Monostable (w = 0.02)

(b) Bistable (w = 0.5)

Figure D.1: Effect of pulse amplitude on the model in (a) a monostable regime or b
a bistable regime with Method 1. The layout is the same as in Chapter
7 with Method 2. Markers have also the same meaning. The dash-dotted
curve is the bifurcation diagram. Black dot in the bifurcation diagram is
the initial condition for all trajectories.
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D.2 Effect of pulse duration

(a) Monostable (w = 0.02)

(b) Bistable (w = 0.5)

Figure D.2: Effect of pulse duration on the model in (a) a monostable regime or (b)
a bistable regime with Method 1. The layout is the same as in Chapter
7 with Method 2. Markers have also the same meaning. The dash-dotted
curve is the bifurcation diagram. Black dot in the bifurcation diagram is
the initial condition for all trajectories.
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D.3 Combined effects

Figure D.3: Combined effects of pulse amplitude and pulse duration for Method 1 when
the system is in a bistable regime. Both parameters determine together
whether the system jumps to the high steady state (green area) or not (red
area).
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