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Résumé

La mission PRISMA est une mission spatiale hyperspectrale entièrement financée par l’Agence
Spatiale Italienne. Cette mission scientifique et expérimentale a été lancée en 2019 et vise à
fournir des images hyperspectrales à haute résolution à la communauté scientifique. Les études
menées jusqu’à présent ont mis en évidence l’utilité de ces données mais très peu ont souligné
leurs limites. Des écarts ont été identifiés sur les images hyperspectrales géocodées PRISMA lors-
qu’elles sont comparées à des cartes de référence. Par conséquent, la précision de géolocalisation
de ces images est remise en question. Ce mémoire vise à apporter des corrections géométriques
aux images hyperspectrales PRISMA dans le but de fournir des images géolocalisées précises
pour une surveillance exacte et fiable d’un écosystème forestier. Pour effectuer ces corrections,
la méthode proposée implique un processus d’orthorectification qui repose sur l’utilisation de
points de contrôle au sol. Les résultats ont montrés que la méthodologie proposée permettait
d’améliorer la précision de géolocalisation de toutes les images hyperspectrales PRISMA. Il a
également été observé qu’une amélioration de 166 m pouvait être atteinte, illustrant ainsi le po-
tentiel de la méthodologie à être utilisée pour une surveillance précise d’un écosystème forestier.
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Abstract

The PRISMA mission is a spaceborne hyperspectral mission fully funded by the Italian Space
Agency. This scientific and demonstrative mission launched in 2019 aims at providing high-
resolution hyperspectral images to the research community. The studies conducted so far have
highlighted the usefulness of the hyperspectral data delivered by this mission but very few have
pointed out their limitations. Shifts have been identified in PRISMA geocoded hyperspectral
images when compared to reference maps. Consequently, this raises question about the accuracy
of the geolocation of these images. This master thesis aims at providing geometric corrections
to the PRISMA hyperspectral images in the perspective of delivering accurately geolocated
images for an accurate and reliable monitoring of forest ecosystem. To perform these corrections,
the suggested method involves an orthorectification process that relies on the use of ground
control points. The results showed that the suggested methodology allowed to increase the
geolocation accuracy of all the PRISMA hyperspectral images and that improvement up to
166m can be achieved, which indicates the potential of the methodology to be used for accurate
forest ecosystem monitoring.
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Chapter 1

Introduction

Hyperspectral imagery is an advanced tool that offers detailed information about the composition
and characteristics of features. Numerous studies have emphasized about the richness and
the benefits of hyperspectral data. Recent technological advancements have resulted in the
development of advanced hyperspectral sensors such as DESIS, PRISMA, HISUI and EnMAP.
These next generation spaceborne hyperspectral sensors enable to collect data with greater
precision and spectral resolution thereby further arising opportunities in various applications.

Given the pressing need to monitor the impact of global warming on ecosystems, the richness
of the hyperspectral data can be invaluable tool. Specifically, the detailed spectral information
they offer can enable to estimate ecosystem health by tracking changes in photosynthetic activity
over time. The photochemical reflectance index, which reveals stress patterns on leaf level, can
be a useful indicator to track such changes. By using hyperspectral data to compute the index,
which can only be computed with sufficiently narrow spectral bands, can allow mapping canopy
stress in forest areas, and identify areas that may require further attention.

The latest hyperspectral data, such as the PRISMA data, can be used to compute the photo-
chemical reflectance index. The PRISMA data are the products of the PRISMA mission, which
is one of the latest spaceborne hyperspectral missions. Fully funded by the Italian Space Agency,
the PRISMA satellite was launched on 22 March 2019 and has an expected operational lifetime
of 5 years. This scientific and demonstrative mission aims at providing high-resolution hyper-
spectral images to the research community. Several studies have acknowledged the usefulness
of these data in a variety of fields, which has broadly motived the interest to exploit the lat-
est spaceborne hyperspectral to evaluate canopy stress in forest areas. Mapping photosynthetic
changes in forest areas over time with the latest hyperspectral data can enable better monitoring
of such areas and highlights the benefits of using hyperspectral remote sensing to detect and
monitor stress phenomena in forests.

The upcoming sections will provide an overview about hyperspectral remote sensing. Moreover,
a presentation about the photochemical reflectance index and the PRISMA mission will be
provided. The objectives of this master thesis will also be presented in greater detail.
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Chapter 2

Overview of Hyperspectral Remote
Sensing

2.1 Principles of Hyperspectral Imaging

2.1.1 Spectroscopy

Spectroscopy be defined as the study of the absorption and emission of light and other radiation
by matter (Chu et al., 2023)

Materials reflect radiation differently across the electromagnetic spectrum when exposed to it.
Indeed, the spectral response by a material as a function of the wavelength is unique and this is
called its spectral signature. Such spectral measurements can be measured by devices such as
spectrometers, spectrophotometers, spectrographs, and spectral analysers (Pu, 2017). Analyses
of those measurements can enable for the detection and characterisation of materials. As a
result, spectroscopy can be used in a wide range of fields including the remote sensing of the
Earth.

2.1.2 Imaging Spectroscopy

Also called hyperspectral imaging, imaging spectroscopy is the combination of spectroscopy
and imaging. Imaging spectroscopy refers to the art and science of designing, evaluating, and
applying instrumentation capable of simultaneously capturing spatial and spectral attributes
of a scene with enough fidelity to preserve the fundamental spectral features that provide for
object detection, classification, identification, and characterization (Eismann, 2012). Imaging
spectroscopy can also be described as the acquisition of images where for each spatial resolution
element in the image a spectrum of the energy arriving at the sensor is measured (Imaging
Spectroscopy, n.d.).

Imaging spectrometers, which may also be known as hyperspectral imagers, capture both spatial
and spectral information from each element within an image. These devices have the ability to
acquired multiple wavelength ranges, commonly referred to as spectral bands, thereby enable
the construction of a complete and continuous reflectance or radiance spectrum for every pixel
in an image (Pu, 2017). To record spectral information, imaging spectrometers are equipped
with an optical dispersing element which splits light into narrow, adjoining wavelength bands
and the energy of each band is measured by a separate detector (Ortenberg, 2011).
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In fact, the commonly used detectors in spectrometers are tipically identified as Charged-Coupled
Devices (CDD). Upon completing their data captures, imaging spectrometers generate a three-
dimensional dataset referred to as a data cube. This dataset encompasses spatial (x,y) and
spectral information (λ) for every pixel found in an image. The data cube is depicted in figure
2.1, with X and Y coordinates representing the spatial dimensions and λ representing the spectral
dimension. Thus, a data cube can be viewed as a collection of images acquired in narrow and
contiguous spectral bands or a collection of many spectral values at each pixel (Garini et al.,
2006).

Figure 2.1 – Three-dimension dataset of an imaging spectometer (Garini et al., 2006).

Hyperspectral imagers are able to scan ground images through the use of two distinct scanning
modes: whiskbroom and pusbhroom. As a result, there are two methods for constructing data
cubes from these scans. In the whiskbroom mode, a rotating scan mirror sweeps from one side
to the other a scene and passes the radiations in the different wavelength ranges of every pixel
in this scene onto the different elements of a CDD-linear array (Pu, 2017). Simultaneously, the
imaging spectrometer platform moves in parallel with the motion of the mirror therefore leading
to a sequential pixel-by-pixel and line-by-line scanning mode. Consequently, data cubes are
built by sequentially recording one narrow image (one-pixel wide, multiple pixels long) swath
after another with the corresponding spectral signature for each pixel in the swath. Pushbroom
scanning mode uses a two-dimensional CDD-area array of detectors (Qian, 2021). The scanning
mode is done in the along-track direction and one line is being scanned at a time without a
rotating mirror. Therefore, data cubes are produced by the sequentially recording of one full
spatial image after another, each at different wavelength (Pu, 2017). Pusbroom spectrometers
have several advantages over their wishkbroom counterparts as they are lighter, smaller and
have fewer moving parts (Ortenberg, 2011). Furthermore, this scanning has a high signal-to-
noise ratio compared to the whiskbroom mode which has a low one (Pu, 2017). Nevertheless,
pushbroom mode presents some drawback as much more detectors subject to calibration than
the other scanning mode (Ortenberg, 2011).
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2.1.3 Hyperspectral Remote Sensing

The ability of imaging spectrometers to be mounted on aircrafts and satellites has enabled the
development of hyperspectral remote sensing. By relying on the imaging spectroscopy technique,
this technology enables the collection of spectral information for each pixel in an image therefore
offering another way of observing spatial phenomena on the surface of the Earth and in the
atmosphere. The concept and principle of hyperspectral remote sensing are illustrated in the
figure 2.2.

Figure 2.2 – Illustration of the concept and principle of a hyperspectral satellite (Qian, 2021).

A hyperspectral imager/sensor records hyperspectral images in narrow and continuous spectral
bands usually ranging from the VIS to the SWIR region (380-2500 nm). As a result, the
instrument generates a data cube composed of a series of images at different wavelengths. The
spatial dimensions of this cube are determined by the cross-track and along-track directions of
the imager. The along-track refers to the flight direction of the hyperspectral sensor platform
whereas the cross-track refers to the perpendicular to this flight direction (Qian, 2021). The
spectral dimension is determined by the complete and continuous range of radiance or reflectance
values measured at each pixel.

The ability of hyperspectral sensors to acquire a complete and continuous radiance or reflectance
spectrum enables the identification and characterisation of materials, and consequently the de-
termination of their physical and chemical properties. The acquisition of subtle spectral infor-
mation is essential for identifying the physical and chemical characteristics of materials and this
can only be achieved by using a complete radiance or reflectance spectrum with a high spectral
resolution.
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As multispectral sensors only acquire data within a few broad spectral bands in certain wave-
length ranges, they can not provide the same level of detailed information as hyperspectral
sensors. Therefore, hyperspectral sensors can offer information which are not possible to acquire
with the tradition remote sensing technologies such as multispectral. With such asset, hyper-
spectral imagery has been used up to now in various areas of interest such as minerals, water,
vegetation, soils, ecosystems and the atmosphere (Pu, 2017).

2.1.4 Distinction between Hyperspectral and Multispectral Remote Sensing

The difference between hyperspectral and multispectral remote sensing lies in the acquisition of
spectral bands. Hyperspectral sensors can acquire image data in dozens to a few hundred narrow
and continuous spectral bands whereas in multispectral, sensors are able to acquire image data
in a few wide and discrete spectral bands (Pu, 2017). The determining factor to be considered
as a hyperspectral sensors is not the number of spectral bands but the spectral resolution. As
a matter of fact, hyperspectral sensors have a finer spectral resolution than their multispectral
counterparts. Figure 2.3 illustrates the spectral and spatial resolution of selected airborne and
spaceborne hyperspectral and multispectral sensors, providing an overview of the different levels
of spectral resolution offered by each type of sensor.

Figure 2.3 – Overview of the spectral and spatial resolution of selected airborne and spaceborne
hyperspectral and multispectral sensors (Guanter et al., 2016).

As previously mentioned, the great potential of hyperspectral remote sensing derives from its fine
spectral resolution. The acquisition of numerous narrow and continuous spectral bands enables
to have continuous spectral measurements across the electromagnetic spectrum, and therefore
allowing to obtain much more spectral information.
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2.2 Brief History of Hyperspectral Remote Sensing

The development of hyperspectral imaging, also known as imaging spectrometry, has expanded
over the last decades and has emerged has a new generation of technology for earth observation.

Imaging spectrometry has emerged following the launch of the Landsat-1 satellite in 1972 (Pu,
2017). The Landsat multispectral scanner (MSS) recorded data in four wide spectral bands:
green, red and infrared (Landsat 1, 2021 ). However, it was not able to discriminate minerals on
the surface of the earth during data analysis due to its 100-200 nm wide spectral bands (Qian,
2021). To address this issue, the first portable field spectrometer, called the portable field
reflectance spectrometer (PFRS), was developed in 1974 to cover spectral range from 400 to
2500 nm of the solar reflected radiance (Pu, 2017). The introduction of this field spectrometer
has sparked a rise in interest in imaging spectrometry and has led to the developments of
airborne hyperspectral imagers. . In the early 1980s, the first airborne hyperspectral imager,
known as the airborne imaging spectrometer (AIS), was developed (Qian, 2021). The AIS was
a pushbroom hyperspectral imager using 2D detector arrays which contained 32 x 32 pixels
(Pu, 2017). This spectrometer had the ability to acquire data spanning from 900 to 2100 nm
(“tree mode”) to 1200 to 2400 nm (“rock mode”) wavelengths. The first images captured by the
AIS were obtained in late 1982. These images are considered as the first hyperspectral images
acquired onboard an aircraft (Pu, 2017). Since these images provided useful information to the
scientific community, this technology had pursued its development and a second generation of
the AIS (AIS-II) was built. The AIS-I flew from late 1982 to 1985 and the AIS-II flew from 1986
to 1987 (Pu, 2017). The AIS-II had a swath of 64 pixels whereas the first generation had only
a swath of 32 pixels. The images from the second generation of the AIS had been widely used
and had further arisen interest in hyperspectral remote sensing. Consequently, new airborne
imaging spectrometers were designed by NASA with the help of the Jet Propulsion Laboratory
(JPL). One of them was the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) whose
development began in 1984. This whiskbroom sensor covered a spectral range from 400 to 2500
nm with a swath of 614 pixels. AVIRIS was first flown on board an aircraft in 1986 and was
fully operational in 1989 (Qian, 2021). Since its development, this airborne imaging spectrometer
has undergone modifications over the years especially in terms of spectral coverage and spatial
resolution. In the late 1980s, the marketing of airborne hyperspectral imagers began with the
Compact Airborne Spectrographic Imager (CASI) which was first introduced to the market in
1989 (Qian, 2021). The CASI has a total of 288 bands available, however the precise number
could vary due to the ability to program the number of bands during flight. As a result, it
became the first commercially programmable airborne hyperspectral imager. In the early 1990s,
other airborne hyperspectral imagers were designed such as the Hyperspectral Digital Image
Collection Experiment (HYDICE) in 1994 and the airborne hyperspectral mapper (HyMap)
series.

The early 1990s were also marked by the launch of spaceborne hyperspectral imagers design.
Regarded as the first spaceborne hyperspectral imager, Hyperion was launched in 2000 and was
on board the NASA Earth Observing-1 (EO-1) satellite. This pushbroom hyperspectral imager
contained 220 bands ranging from 400 to 2500 mm and had a 30-meter spatial resolution. Fol-
lowing the launch of Hyperion, the European Space Agency (ESA) launched its first spaceborne
hyperspectral imager in 2001 on board the PROBA satellite. The Compact High Resolution
Imaging Spectrometer (CHRIS) carried on board the ESA’s satellite covered the VIS and the
NIR region: 400-1050 nm (Pu, 2017). However, the number of spaceborne hyperspectral imagers
has significantly increased over time. In 2019, the PRISMA satellite was launched. Funded by
the Italian Space Agency (ASI), this satellite offers high-spectral resolution hyperspectral data
(ASI, 2020). The same year, the Hyperspectral Imager Suite (HISUI) was launched.
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This spaceborne hyperspectral Earth imaging system was developped by the Japanese Ministry
of Economy, Trade, and Industry (Japan Space Systems, n.d.). In 2022, the highly anticipated
Environmental Mapping and Analysis Program (EnMAP) satellite was launched. This satellite
is part of a German hyperspectral satellite mission with the aim to provide high-quality, region
scale hyperspectral data for better understanding of environmental processes (DLR, n.d.).

In the future, additional hyperspectral data will be available with the upcoming launch of the
Fluorescence Explored (FLEX) in 2024, the Spaceborne Hyperspectral Applicative Land and
Ocean Mission (SHALOM) in 2025, and the Copernicus Hyperspectral Imaging Mission for the
Environment (CHIME) in 2028. FLEX is an Earth observation mission which aims to provide
detailed measurement of chlorophyll fluorescence from vegetation on land. This hyperspectral
mission will be the first space mission to focus on the estimation of fluorescence emission on a
global scale (ESA, 2017). Moreover, the SHALOM mission will provide high-resolution hyper-
spectral data at a 10-meter-spatial resolution. Furthermore, the CHIME mission will provide
further hyperspectral data to support the monitoring, implementation, and improvement of a
range of policies (ESA, 2020).

Table 2.1 provides an overview of past, present and future spaceborne hyperspectral imagers.

Sensor/ Mission Launch Spatial Resolution (m) Number of Bands Spectral Range (nm) Spectral Resolution (nm) References

Hyperion (U.S.A) 2000 30 220 400-2500 10 (Pu, 2017)
CHRIS (ESA) 2001 18-36 Up to 63 400-1050 1.5-11 (Pu, 2017)
MERIS (ESA) 2002 300 15 390-1040 1.8 (Pu, 2017)
GLI (Japan) 2002 250-1000 36 380-11950 10-1000 (Pu, 2017)
HySI (India) 2008 505.6 64 450-950 8 (Qian, 2021)

ARTEMIS (U.S.A) 2009 4 400 400-2500 5 (Pu, 2017)
VNIS (China) 2013 - 100 450-950 5 (Qian, 2021)

900-2400
OLCI (ESA) 2016 300 520 390-1040 1.25 (Qian, 2021)

DESIS (Germany) 2018 30 235 400-1000 2.55 (Qian, 2021)
PRISMA (Italy) 2019 30 239 400-1010 12 (ASI, 2021)

920-2505
HISUI (Japan) 2019 20 185 400-2500 10-12.5 (Japan Space Systems, nd.)

EnMAP (Germany) 2022 30 242 420-2450 6.5-10 (DLR, n.d.)
FLEX/FLORIS (ESA) Planned in 2024 300 434 500-780 0.1 – 2 (ESA, 2017)

SHALOM (Italian – Israeli) Planned in 2025 10 Unknown 400-2500 ≤10nm (Feingersh and Dor, 2015)
CHIME (ESA) Planned in 2028 20-30 Over 200 400-2500 ≤ 10 nm (ESA, 2020)

Table 2.1 – Overview of spaceborne hyperspectral imagers.

2.3 Hyperspectral Remote Sensing and Photochemical Reflectance
Index

Understanding vegetation health is an essential for its monitoring. There are several factors that
can be used to evaluate this, such as the photosynthetic activity. One way to track changes in
photosynthetic activity is by using the vegetation index called Photochemical Reflectance Index
(PRI). The PRI is determined with the 531 and 570 nm reflectance wavelengths (Gamon et al.,
1992) 1:

PRI =
R531 −R570

R531 +R570
(2.1)

The PRI is a narrow-band index which is often calculated using hyperspectral data due to
their ability to provide the high spectral resolution required for determining this index. This
index measures the relative reflectance on either side of the green reflectance “hump” at 550nm
(Garbulsky et al.., 2011; Sobhan, 2007).

1. R represents reflectance while the numbers indicate wavelength in nanometers.
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As a matter of fact, this index encompasses the absorption wavelengths of chlorophylls and
carotenoids (Garbulsky et al., 2011). These plant pigments are essential components in pho-
tosynthesis since they absorb the light required for the process to take place. Furthermore,
carotenoids are responsible for the protection of the photosynthetic machinery from damage due
to excessive light exposure (Zulfiqar et al., 2021). Consequently, the PRI can be referred to as
an indicator of chlorophyll - carotenoid content. Overall, the index can serve as an indicator of
chlorophyll - carotenoids ration and for both photosynthetic activity and vegetation health as-
sessment due the importance of these pigments in the photosynthetic activity and their direction
connection to this index.

This index has been used in various studies. For example, the PRI was used to assess the diurnal
responses of photosynthesis to warming and drought (Zhang et al., 2017). The results of this
index was able to assess such changes in evergreen plants subjected to drought and warming
conditions. The PRI can also been used for the detection of water stress in vegetation. A study
focused on the evaluation of the effectiveness of this index for water stress detection in maize
(Chou et al., 2017). This study reported that the index, linked to chlorophyll and carotenoid
pigments, showed a correlation with measured chlorophyll-carotenoid ratios at different water
stress levels R2=0.58). Furthermore, the study provided further explanation about the behavior
of this index under water stress. As a matter, the study reported that under water stress, the
carotenoid content increased while the chlorophyll content decreased, leading to a decrease in
the chlorophyll-carotenoid radio and thereby to a decrease in the PRI value (Chou et al., 2017).
Moreover, the use of the PRI to be used as an indicator to study seasonal processes in forest
areas. A study evaluated the response of the PRI to several ecohydrologic dynamics in a mixed
conifer forest in the Coronado National Forest (Arizona, U.S.A). The outcomes of this results
revealed that the PRI can be used as a proxy for plant response to ecohydrologic 2 variability
of monsoon season in forest areas (Yang et al., 2020). Another study investigated about the
response of the PRI when wheat is subjected to elevated CO2 and drought (Mulero et al., 2023).

These studies are just few examples of how the PRI can be used with hyperspectral data to
monitor changes in vegetation due to different stress factors like drought, heat, water stress, and
elevates CO2 levels. These studies assessed the impact of several stress factors on the PRI in
order to better understanding how vegetation will response to environmental changes. Overall,
computing this index will allow to detect how vegetation respond to changes in the environment
over time.

2. Ecohydrology research investigates the effects of hydrological processes on the distribution, structure, and
function of ecosystems, and on the effects of biotic processes on elements of the water cycle (Nuttle, 2021).
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Chapter 3

The PRISMA Italian Hyperspectral
Mission

3.1 PRISMA - The Italian Hyperspectral Mission

The PRISMA mission is an Italian Satellite Earth Observation hyperspectral mission led and
fully funded by the Italian Space Agency (ASI) (Loizzo et al., 2016). PRISMA (PRecursore
IperSpettrale della Missione Applicative) was launched on 22nd March 2019 and has an ex-
pected operational lifetime of 5 years. The payload of the PRISMA satellite is composed of
a hyperspectral spectrometer ranging from 400 to 2500 nm with a spatial resolution of 30m
combined with a medium resolution panchromatic camera ranging from 400 to 700 nm with a
spatial resolution of 5m (ASI, 2020).

The PRISMA mission is a follow-on of the discontinued Hyperspectral Satellite for Earth Obser-
vation (HypSEO) mission and the Joint Hyperspectral Mission (JHM) mission in collaboration
with the Canadian Space Agency (ESA, 2012). The hyperspectral mission started in 2007 with
the signature of the formal agreements between the Italian Space Agency and the contractor
which consists of a consortium of Italian industries (Lopinto and Ananasso, 2013). The consor-
tium is made up of industries that already have knowledge and experience in the development
of satellites and panchromatic/hyperspectral sensors (ASI, 2009). Alongside the consortium
of experienced industries, the scientific community and the future users were actively involved
throughout the definition and development stages of the PRISMA mission. Specifically, the
scientific community contributed to calibration and validation activities, algorithm definition,
strategy formulation along with the research and development of applications that will exploit
the hyperspectral data. Furthermore, the future users were involved in the definition of the
mission specifications. As a result, the PRISMA mission is primarily focusing on meeting the
requirements of Italian research and institutional entities. Beyond the definition and develop-
ment phases, the scientific community is still involved in the mission as it is currently part of a
program of scientific studies led by the ASI. The program is focused on researching specific prod-
ucts and applications while providing support to the mission in areas such as data processing
algorithm evaluation, sensor calibration and independent verification of the system performances
(Loizzo et al.., 2016).
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The Italian hyperspectral mission is conceived as a pre-operative mission, aiming at qualifying
the technology, developing new applications and providing products for institutional and scien-
tific users for both environmental observation and risk management (Loizzo et al., 2016). In
addition, the mission is viewed as a scientific and demonstrative mission. The main objectives
of the PRISMA mission are as follows (ASI, 2009):

• Implementation of an Earth Observation pre-operative mission.
• In orbit demonstration and qualification of an Italian state-of-the-art hyperspectral and

panchromatic technology.
• Validation of end-to-end data processing able to develop new applications based on high

spectral resolution images.
• Capitalisation of Italian Space Agency heritage, considering the HypSEO mission, the

Italian-Canadian JHM study.

The overall objective of the mission is to provide institutional and research entities with high-
resolution hyperspectral images of land, vegetation, inner waters, and coastal zone to support
Earth Observation as well as the natural resource monitoring and management.

3.2 Space Segment

The PRISMA mission consists of a single satellite on a sun-synchronous Low Earth Orbit at
614.8km with a repeat cycle of approximately 29 days (Loizzo et al., 2016). The PRISMA satel-
lite 1 has a daily imaging capability of 200 00km2 across an area of interest between 180°W-180°E
and 70°S-70°N. The payload is composed of a high spectral resolution imaging spectrometer in
the spectral range 400 - 2500 nm optically integrated with a medium resolution panchromatic
camera in the spectral range 400 - 700 nm (Guarini et al., 2018). Specifically, the hyperspectral
instrument is composed of two imaging spectrometers. One is dedicated to the VNIR spectral
range (400-1010nm) and the other is dedicated to the SWIR spectral range (920-2505nm). The
panchromatic data are co-registered with the hyperspectral data to allow testing of image fusion
techniques (ESA, 2012). At Nadir, the hyperspectral and panchromatic instruments have spatial
resolutions of 30m and 5m, respectively. Based on a pushbroom technique, the satellite is able
to collect images on areas of 30km swath width (Guarini et al., 2018).

The table 3.1 presents the main features and properties of the PRISMA satellite.

The components of the satellite include the following elements:

• The platform.
• The payload.
• The Payload Data Handling and Transmission subsystem (PDHT).

The Payload is composed of the hyperspectral and panchromatic instruments and is responsible
for the acquisition of hyperspectral and panchromatic images across the area of interest (180°W-
180°E and 70°S-70°N). In addition to these instruments, the payload also contains an Internal
Calibration Unit (ICU) which is responsible for the in-flight calibration. This unit allows oper-
ations of absolute and relative radiometric calibration as well as spectral calibration (Lopinto
and Ananasso, 2013). The PDHT unit is responsible for storing the images collected by the
sensors of the payloads in its internal memory. It is also in charge of transmitting these images
to a ground station via a X-band link (ASI, 2021).

1. The mission and the satellite have the same name.
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The PRISMA system can operate in a primary and a secondary mode. The primary mode refers
to the collection of hyperspectral and panchromatic data of specific areas requested by end users.
In other words, the acquisition of data by the satellite is driven by the user requests which can
submit new image acquisition request on the PRISMA web portal. In the secondary mode, the
satellite has an established ongoing ‘background’ task to acquire images in order to fully exploit
the satellite resources (ASI, 2021). During an acquisition, the primary and the secondary modes
can be used simultaneously or alternatively.

PRISMA Orbit Characteristics
Orbit Altitude 614.8km

Inclination 98.19°
Nadir Revisit Time 29 days

Re-look Time 7 days
Local Time of Descending Node 10:30 AM

PRISMA Satellite Main Characteristics
Swath 30km

FOV (Field of View) 2.77°
GSD (Ground Sampling Distance) Hyperspectral : 30m

Panchromatic : 5m
Spatial Pixels Hyperspectral : 1000

Panchromatic : 6000
Pixel Size Hyperspectral: 30x30µm

Panchromatic : 6.5x6.5µm
Spectral Range VNIR : 400-1010nm (66 bands)

SWIR : 920-2505nm (173 bands)
PAN : 400-700nm

SSI (Spectral Sampling Interval) ⩽ 12 nm

Spectral Width ⩽ 12 nm

Radiometric Quantisation 12 bit
SNR (Signal-to-Noise Ratio) VNIR : > 200 : 1

SWIR : > 100 : 1

PAN : > 240 : 1

Absolute Radiometric Accuracy Better than 5%

Table 3.1 – Main characteristics of PRISMA space segment (ASI, 2020;ASI, 2021).

25



3.3 Ground Segment

The PRISMA ground segment is composed of:

• The Satellite and Mission Control Centre.
• The Instrument Data Handling System (IDHS).

The Satellite and Mission Control centre is located in Fucino and is subdivided in the Satellite
Control Centre (SCC) and the Mission Control Centre (MCC) subsystems. Within the ground
segment, the MCC handles mission planning and management, while the SCC is responsible for
the monitoring and the controlling of the satellite (Loizzo et al., 2016). The SCC includes several
subsystems, including the Satellite Control System (SCS), the Flight Dynamics System (FDS),
and the Tracking, Telemetry and Command station (TT&C). Specifically, the FDS is supervising
the orbit/ attitude operations and the TT&C is in charge of establishing and maintaining the
two-way communication link between the satellite and the ground station through a S-band
link (ASI, 2021). The IDHS is dedicated to the satellite data acquisition, processing, archiving
and distribution. It is also responsible for the PRISMA users interfacing and support (Lopinto
and Ananasso, 2013). The IDHS the PRISMA products by processing the hyperspectral data
acquired via the X-band antenna of the National Multimission Centre (CNM) (Guarini et al.,
2018).

3.4 PRISMA Products

3.4.1 Levels of PRISMA Products

The PRISMA mission delivers three levels of products to the users in the PRISMA web portal 2.
The different products available in the portal are listed in the table 3.2.

Level Sub-Level Description
Level-0 (L0) / Raw data stream including instrument and satellite ancillary data

Level-1 (L1) / Calibrated and coregistered Top of Atmosphere (TOA) radiance

Level-2 (L2)
Level-2B (L2B) Geolocated at-ground spectral radiance
Level-2C (L2C) Geolocated at-surface reflectance
Level-2C (L2D ) Geocoded at-surface reflectance

Table 3.2 – PRISMA products (ASI, 2021).

2. Registration is needed to have access to the PRISMA web portal. The portal can be accessed through the
ASI website(https://www.asi.it/scienze-della-terra/prisma/).
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3.4.2 Level - 0

The PRISMA Level – 0 products contain the following data:

• L0a Earth-Observation data (surface-observation file, surface-observation special file).
• L0a calibration data (dark calibration file, internal calibration file, internal calibration

special file, sun calibration file, sun flux calibration file, moon-calibration file, and flat-
field calibration file).

• Processing report file.
• Catalogue metadata files.

The Earth-Observation and calibration data files are saved in binary format. The processing
report file describes is an XML file which describes the L0 processing execution. The catalogue
metadata files are also in XML format and are available for each file included the L0 product
(ASI, 2020).

3.4.3 Level - 1

3.4.3.1 Product Generation Process

The processing chain to obtain the L1 product is outlined in the figure 3.1.

Figure 3.1 – Production chain of the Level - 1 products (ASI, 2021; modified).

The first processing step applied to the L0 product is frame construction. It transforms the L0a
files contained in the L0 product into two lists of cubes, one for the VNIR/SWIR channel and
the other for the panchromatic channel. The next step is radiance generation which converts
the digital numbers of the L0a files to spectral radiances. The radiance cubes are then subjected
to a coregistration process. Following the coregistration process, data masks such as cloud
coverage, sun glint, and generic land covers are generated. The output of this processing chain
is the PRISMA L1 product, which provides calibrated and registered Top of Atmosphere (TOA)
radiance data.
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3.4.3.2 Product Description

The PRISMA L1 files deliver calibrated and coregistered Top of Atmosphere (TOA) radiance
data. This product level is stored as HDF5 files and contains the following layers of data:

• Radiometrically calibrated hyperspectral cube.
• Radiometrically calibrated coregistered hyperspectral cube.
• Radiometrically calibrated panchromatic image.
• Radiometrically calibrated coregistered panchromatic image.

The hyperspectral layers are arranged in a cube format, creating a three-dimensional dataset
whose dimensions are presented in the table 3.3. The (X, Z) plane denotes as a monochromatic
image whereas the (X, Z) denotes as a hyperspectral frame.

Axis Description Value
X Spectral direction 66 bands for VNIR

173 bands for SWIR

Y Along-track direction 1000 pixels

Z Across-track direction 1000 pixels

Table 3.3 – Dimensions of the hyperspectral data of the L1 products (ASI, 2020).

The dimensions of the panchromatic images are presented in the table 3.4.

Axis Description Value
X Along-track direction 6000 pixels

Y Across-track direction 6000 pixels

Table 3.4 – Dimensions of the panchromatic data of the L1 products (ASI, 2020).

In addition to the four layers mentioned previously, the L1 product files also include data about
the cloud coverage, sun glint and land cover masks. The cloud and sun glint masks highlight the
pixels in an image that contain clouds or sun glint, while the land cover mask delivers a land
cover map. Furthermore, the L1 product contains details regarding the processing conditions
and the quality of the products. General information about the products is also archived in the
L1 product files.
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3.4.4 Level - 2

3.4.4.1 Product Generation Process

The processing chain of the three L2 products is described in the figure 3.2. The first stage
of the production of the L2 products is the atmospheric corrections. This process aims at
removing the effect of atmospheric components from the measured TOA radiance. Specifically,
this step aims at removing molecules and aerosols scattering as well as gaseous absorption.
Following the implementation of the corrections, the geolocation process is initiated. This process
updates the metadata section that refers to the geolocation of the input product and does
not involve processing on the raster data (ASI, 2020). Subsequently, the water vapour and
cloud optical thickness products as well as the aerosol optical thickness and Angstrom exponent
product are generated. The water vapour product gives an insight of the moisture content,
while the cloud optical thickness product delivers a measure of attenuation of the light passing
through the atmosphere due to scattering and absorption by cloud droplets (SVS, 2013). After
the generation of these products, further atmospheric corrections are applied to obtain the
L2B product. Following additional processes including in particular a radiance-to-reflectance
conversion step, the L2C product is produced. Once the conversion step is completed, the
L2C product undergo an orthorectification process to generate the geocoded at-surface radiance
L2D product. This process applied to the L2C product involves using auxiliary data, a Digital
Elevation Model (DEM) as well as GCPs if available. As a result, the L2D product is an
orthorectified at-surface radiance product projected on a cartographic UTM refence system.

Figure 3.2 – Production chain of the Level - 2 products (ASI, 2021; modified).

3.4.4.2 Product Description

The PRISMA Level – 2 has three types of products:

• Level – 2B: Geolocated at-ground spectral radiance product.
• Level – 2C: Geolocated at-surface reflectance product.
• Level – 2D: Geocoded at-surface reflectance product.
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The hyperspectral layers of L2 products are arranged in a cube format and share the same dimen-
sions as the L1 products. Furthermore, the panchromatic images have the identical dimensions
to those in the L1 products.

The L2 products obtained from PRISMA are delivered with their corresponding orthorectifica-
tion model (also called geocoding model) which which may be performed with or without the
use of Ground Control Points (GCPs). The geolocation accuracy of the L2 products has been
evaluated at five reference sites by the ASI and the resulting accuracy values are provided in the
table 3.5 .

Parameter CE90
Geolocation accuracy without GCPs < 200m

Geolocation accuracy with GCPs < 15m

Table 3.5 – Geolocation accuracy of Level - 2 products (ASI, 2021).

3.4.4.3 Level - 2B

The Level-2B product is a geolocated at-surface radiance product stored in the HDF5 format.
The product consists of two layers:

• At-surface hyperspectral radiance cube.
• At-surface panchromatic radiance image.

Each layer included in the L2B product file has appended attributes such as the geographic lo-
calisation (latitude/longitude), the quality of the atmospheric correction applied, the GCPs and
the orthorectification process attributes. The information related to GCPs in the L2B product
is dependent on whether or not these points were used during the geolocation process. The
orthorectification model is stored as a list of attributes for the hyperspectral and panchromatic
layers but the model has not yet been applied at this level. Beyond these layers, the L2B product
also contain information related to the product in general.

3.4.4.4 Level - 2C

The Level – 2C product provides geolocated at-surface reflectance data and maps related to
atmospheric constituents. This product is formatted according to the HDF5 format and includes
the layers that follow:

• At-surface hyperspectral reflectance cube.
• At-surface panchromatic reflectance image.
• Aerosol Optical Thickness map.
• Angstrom exponent map.
• Water Vapour map.
• Cloud Optical Thickness map.

Like the L2B product, the L2C product includes the geographic localisation, the quality of the
atmospheric correction, the GCPs as well as the orthorectification model. As mentioned earlier,
the section related to the GCPs is only available if these points were used during the geolocation
process. Furthermore, general information about the product is also included in the L2C product
files.
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3.4.4.5 Level - 2D

The Level-2D product delivers geocoded surface reflectance data and encompasses the layers
that follow:

• Geocoded surface reflectance hyperspectral cube .
• Geocoded surface reflectance panchromatic image.

The attributes available in the L2D product are the same to those found in previous levels. Nev-
ertheless, the product also provides additional information about the orthorectification process.
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3.5 PRISMA Applications

Since the availability of PRISMA data, several studies have been conducted to show their use-
fulness in several areas. In fact, PRISMA data can be used in a wide range of areas including
soils, vegetation, agriculture, forestry, the atmosphere, coastal and inland waters, snow and ice
as well as natural and anthropogenic hazards.

Several studies drew attention on the potential of the PRISMA hyperspectral data for vegetation
traits retrieval. Tagliabue et al. (2022) developed a methodology for estimating leaf and canopy
traits over an agricultural area in North-East Italy using PRISMA images collected in 2020 and
2021. Leaf and canopy level indices were obtained by using radiative transfer models that rely on
PRISMA reflectance data. This study provides an insight of the usefulness of the hyperspectral
data in the monitoring of vegetation over time. Another study investigated about the ability of
these hyperspectral data to estimate topsoil properties over agricultural areas in Italy (Mzid et
al., 2022). The ability of the PRISMA data to approximate topsoil properties was assessed to
compare the results of Landsat-8, Sentinel-2 data and field measurements. This study reported
that soil property estimation models built with PRISMA resampled spectra have the most
accurate estimations compared to multispectral and field data for the detection of clay, silt, sand,
and organic carbon. As a matter of fact, the R2 coefficients were equal to 0.92, 0.90,0.93 and
0.77, respectively (Mzid et al., 2022). The results showed by this study hence encouraging the
exploitation of imagery acquired by PRISMA for the quantitative estimation of soil properties.
The spectral information contained in this sensor can also be used for the detection of non-
photosynthetic vegetation (e.g. dead vegetation, surface plant litter and crop residues). A study,
conducted over agricultural areas in Italy, reported that non-photosynthetic vegetation can be
detected through the analysis of the behaviour of PRISMA reflectance spectra in the wavelength
interval 2000-2200nm 3 (Pepe et al., 2020). Furthermore, another recent study used PRISMA
images for sol fertility mapping. Their research project focused on using PRISMA reflectance
data for soil nutrients mapping over cultured area in Norther Morocco (Gasmi et al., 2022). The
study depicted that the values of the soil fertility maps created with PRISMA reflectance data
were close to the measured values of soil nutrient contents over the study area. In addition, the
PRISMA reflectance spectra showed similar behavior to the reflectance spectral obtained from
soil samples analyses. Regarding the mapping of soil properties, another investigation evaluated
the effectiveness of airborne HySpex 4 and spaceborne PRISMA hyperspectral data to map
soil organic matter and carbonates (Angelopoulou et al., 2023). According to this study, both
hyperspectral sensors yielded comparable outcomes for the retrieval of sol organic matter over
the study area in Northern Greece. However, the authors of this study suggested that further
research should be carried out in order to improve carbonates estimation with PRISMA data. A
recent study also employed PRISMA and Landsat-9 data for land use/land cover classification
in a selected area in Turkey (Tuzcu Kokal et al., 2022). The authors noted that the use of
PRISMA images into classification models resulted in a slightly improvement in their accuracy.
Specifically, the Landsat – 9 and PRISMA models achieved Kappa coefficient scores of 0.88 and
0.91, respectively. As a result of these findings, the classification models with PRISMA data
were found to have a higher accuracy.

3. The 2000-2000nm spectral interval is referring to as the cellulose absorption band (Pepe et al., 2020).
4. The HySpex sensor consists of two pushbroom hyperspectral cameras: HySpex VNIT-680 and HySpex

SWIR-320. The sensor was created by the Norsk Elektro Optikk. The airborne hyperspectral sensor has a
spectral range of 400-2500nm and a spectral sampling of 3.7nm for VNIR and 6.0nm for SWIR (Angelopoulou
et al., 2023).
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Apart from the retrieval of crop traits, PRISMA hyperspectral data can be useful for forest types
discriminations. A study found that PRISMA data outperform the Sentinel – 2 multispectral
instrument in recognition of forest types (Vangi et al., 2021). This study revealed that PRISMA
data achieved a better discrimination of forest types due to their high spectral resolution. As
a matter of fact, some forest types could only be differentiated through specific spectral ranges
that were only by the PRISMA sensor.

The spectral information offered by the PRISMA hyperspectral sensor can also contribute to the
management and monitoring of natural as well as anthropogenic hazards. The SAP4PRISMA 5

project, one of the five research projects funded by the Italian Space Agency, proposed a damage
severity index (DSI) to assess the extent of damages on vegetated area (Bonis and Laneve, n.d.).
Moreover, Seydi et al. (2021) conducted research about the usefulness of the PRISMA data in
the detection of burned areas in Southern Australia. This study used pre-event and post-event
data for predictions of burned areas. When Sentinel-2 data were used as pre-event data and
PRISMA data as post-event data, an accuracy of 97.46 % was achieved over one study site in
Southern Australia (compared to field measurements). However, an accuracy of 90.24% was
achieved on the same study site when Sentinel-2 data were both used as pre- and post-event
data. This study aimed to demonstrate the potential of PRISMA satellite images for accurate
mapping of burned areas. Besides post-fire events, hyperspectral data can also be used for the
characterisation of active fires. A research project evaluated PRISMA data for active wildfire
detection during the Australian bushfires of 2019 in New South Wales (Amici and Piscini, 2021).
The authors adapted three fire detection indices to PRISMA data to produce active fire detection
maps. Two of the adapted indices obtained detection rates above 80% whereas the third index
was reported as underperforming in comparison with the others. However, hyperspectral data
demonstrated that they could offer accurate active fire predictions.

Recent studies also assessed PRISMA satellite data for water applications. For example, one
research compared the TOA radiances from PRISMA L1 product with those from Sentinel-2
and a radiative transfer model (Giardino et al., 2020). In this study, data were collected from
various inland and coastal water across the globe. The comparison of the PRISMA radiances
with the simulated radiances showed a R2 higher than 0.99 for all the investigated locations.
In terms of comparing PRISMA with Sentinel – 2, the study reported a R2 value about 0.90
except at longer wavelengths where the correlation is weaker (R2=0.589 at 740nm). According
to the authors, the decrease of the correlation might be explained by the fact that PRISMA data
appeared to be slightly more scattered at longer wavelengths (Giardinoet al., 2020). Another
research exploited the hyperspectral data from the PRISMA mission to map aquatic parameters
in the aim of water quality monitoring (Bresciani et al., 2022). Conducted over four lakes in
Italy, the study presented some examples of water quality maps produced with the PRISMA
data.

Beyond the applications already mentioned, PRISMA hyperspectral data can also be used for the
retrieval of atmospheric constituents. A study drew attention on the potential of PRISMA data
to be exploited for CO2 emission retrieval at local scale. Romaniello et al. (2021) presented a
methodology to retrieve CO2 emission from PRISMA radiance data. It consisted of choosing the
best PRISMA bands to compute the Continuum Interpolated Band Ration (CIBR) index and
then to convert the value of the index into CO2 emission. One more study used PRISMA data
to quantify methane emission over an industrial area in Turkmenistan (Nesme et al., 2021). This
research project investigated about the development of an approach to quantify CH4 emission
while using the radiance values from the PRISMA data.

5. SAP4PRISMA project has the objective of developing algorithms and products for supporting the PRISMA
mission (Bonis and Laneve, n.d.)
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The hyperspectral data from the PRISMA sensor can also be useful for cryosphere monitoring.
A research investigated about the potentiality of the PRISMA images to retrieve snow properties
in the Nansen Ice Shelf in East Antarctica (Kokhanovsky et al., 2022). Snow properties were
computed and then compared with values reported in the literature. Furthermore, another
study focused on the use of PRISMA hyperspectral data for the retrieval of some ice and snow
properties in the South-West Greenland ice sheet (Angelopoulou et al., 2023). Ice and snow
grains, ice and snow liquid water as well as glacier and snow algae were among the properties
that have been retrieved during this study.

In addition to the studies focusing on the use of PRISMA data in various fields, several studies
investigated about the radiometric performances of the PRISMA products. Indeed, a study
compared the PRISMA radiance and reflectance values acquired over the Pignola site (Italian
Southern Appenines) with modelled radiance and reflectance values obtained with field mea-
surements (Pignatti et al., 2022). The results indicated that there was a strong correlation
between the PRISMA radiance values and the modelled radiance values as the R2 coefficient
was above 0.98. With respect to reflectance values, a strong relationship was also observed
until 2300nm. The study highlighted that the recognition of materials in wavelengths higher
than 2300nm may cause issues for PRISMA L2C product. Another study also assessed the
radiometric performances of the PRISMA products, acquired from July to August 2019, on the
“Piazzo delle Concazze” on Mount Etna in Italy (Romaniello et al., 2020). The study compared
the PRISMA data with model simulations, data collected by the Hyperion sensor from 2001 to
2009, and field measurements acquired during field campaigns in July 2003. The outcomes of
the comparisons revealed that PRISMA radiance and reflectance values were close to those from
the model simulations, the Hyperion mission, and the field campaigns despite the difference in
time acquisition between the datasets.

Overall, the usefulness of the PRISMA hyperspectral data have been acknowledged in many
studies but very few highlighted the limitations of these data. Even though the PRISMA mission
delivered geocoded hyperspectral images, shifts have been detected between the geocoded images
and the references maps. A study depicted that a shift in all the PRISMA images was observed
when compared to a reference map (Hamzeh et al., 2023). This study mentioned that the
images were geometrically correctly but did not specify the methodology used to achieve it.
Another study also reported that a shift up to 5 pixels was observed in all PRISMA images
(Mzid et al., 2022). To geometrically correct the images, the authors resampled the images
based on a reference grid using a Nearest Neighbour algorithm available in the ENVI software.
This issue was also notified during the evaluation of the geometric correction capabilities of
the PRISMA sensor over four years of operation (2019-2022). During this evaluation, it was
reported that a shift of about 8 pixels in the longitudinal direction and 3 pixels in the latitudinal
direction was observed between an image acquired in 2019 and one acquired in 2022 over the
same study area (Pearlshtien et al., 2023). Upon the above-mentioned studies, the methodologies
used to correct the detected shifts have been briefly outlined. However, a study was entirely
focused on the geometric correction of these displacements in the PRISMA panchromatic images
(Baiocchi et al., 2022). The suggested approach to achieve geometric correction of these images
involves enhancing their orthorectification process applied to the images. To achieve this, some
orthorectification techniques were experimented on the PRISMA panchromatic images.
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Chapter 4

Objective of the Master Thesis

The previously studies have shown that PRISMA hyperspectral data are opening unprecedented
opportunities in a wide range of areas including soils, vegetation, agriculture, forestry, the atmo-
sphere, coastal and inland waters, snow, and ice as well as natural and anthropogenic hazards.
This has broadly motived the interest to exploit these data for estimating vegetation traits and
more precisely for tracking changes on photosynthetic activity in a forest area in Belgium. As
previously mentioned, the PRI has been identified as an indicator of such activity. Thus, the
objective of this master thesis is to use PRISMA hyperspectral data to compute the PRI to keep
track of changes in photosynthetic activity over a Belgian forest area.

The selection of the study area was based on the availability of PRISMA imagery near Integrated
Carbon Observation System (ICOS) stations 1 in forest sites in Belgium. It was chosen to use
PRISMA images near an ICOS station to assess the results of this work with field measurements
obtained from this station. Following some on the PRISMA web portal, 7 PRISMA images were
found to be available in Vielsam at a mixed forest type site. Specifically, geocoded at-surface
reflectance data were retrieved which correspond to the PRISMA L2D products.

In order to obtain precise measurements of photosynthetic activity in the study area, it is
essential to ensure that the used PRISMA hyperspectral images in the context of this work
are accurately geolocated. The previous mentioned studies have pointed out that the PRISMA
images may exhibit shifts despite being geocoded. Geolocation accuracy is crucial for accurate
retrieving vegetation traits from PRISMA reflectance spectra. Inaccurate geolocation can result
in measurements that do not correspond the actual ground conditions truth, leading to incorrect
results. Therefore, this master thesis will also propose a methodology for geometrically correct
the PRISMA hyperspectral images to obtain accurate and reliable results.

The objectives of this master thesis are therefore to firstly correct the geocoded PRISMA hyper-
spectral images to ensure accurate geolocation and then to track photosynthetic activity over
the Vielsam ICOS with a focus on the PRI as indicator of this activity. However, the tracking
of the photosynthetic activity using PRISMA geocoded hyperspectral images could not be ac-
complished due to technical limitations linked to the PRISMA products during their geometric
corrections.

1. A ICOS station is a monitoring station which is part of the ICOS station network. This network is a Euro-
pean research infrastructure with the mission to produce standardised, high-precision and long-term observations
and facilitate research to understand the carbon cycle and to provide necessary information on greenhouse gases
(The ICOS Station Network, n.d.). ICOS stations within the network can measure greenhouse concentrations in
the atmosphere, meteorological parameters as well as other environmental variables.
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Therefore, this master thesis will be focusing on developing a methodology to correct the
PRISMA hyperspectral images as a first step towards providing accurate geolocated hyper-
spectral images for the monitoring of a forest area.

The methodology to correct these images will be presented in the following sections. The next
section will focus on introducing the study area and the data used in the context of this work.
Following this, a detailed presentation of the methodology used to correct the PRISMA hyper-
spectral images will be available. The outcomes obtained using this approach will be presented
and discussed. Finally, the work will be concluded by summarising the results of the proposed
methodology and discussing about the potential uses of the corrected PRISMA hyperspectral
images including their use to monitor photosynthetic activity over a forest area.
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Chapter 5

Study Area and Dataset

5.1 Area of Interest

The area of interest in the scope of this work centers around the forest area surrounding the
Vielsam ICOS station. Due to the availability of PRISMA imagery near this station, this has
become the study area. A presentation of the location of the ICOS station is available in the
figure 5.1.

Figure 5.1 – Location of the Vielsam ICOS station.
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5.2 PRISMA Imagery

Seven images have been obtained over the area of interest since the PRISMA satellite was
launched. These images were captured between April 2020 and November 2023.

Since the launch of the PRISMA satellite, seven images are available over the area of interest.
These images were captured between April 2020 and November 2022. Each hyperspectral image
a have been downloaded on the PRISMA web portal at different processing levels: L1, L2B,
L2C and L2D. The different hyperspectral images used in the context of this work are described
in table 5.1.

ID of Hyperspectral Image Acquisition Date Cloud Coverage (%) Acquisition start time Acquisition stop time

1 20 April 2020 0.035 10:49:16 10:49:20
2 29 June 2020 25.059 10:55:38 10:55:42
3 27 February 2021 0.742 10:44:03 10:44:08
4 15 April 2022 3.013 10:49:20 10:49:25
5 5 July 2022 7.895 10:46:10 10:46:14
6 30 September 2022 7.380 10:46:03 10:46:07
7 10 November 2022 13.003 10:52:49 10:52:54

Table 5.1 – PRISMA imagery acquired over the study area.

The acquired PRISMA hyperspectral images have a spatial resolution of 30m and a cover area of
30 x 30km. Each image includes 239 bands ranging from the VNIR to the SWIR spectral regions,
which span from 400 - 2505nm. Specifically, 66 bands are available for the VNIR spectral region
and 173 bands for the SWIR spectral region.

To compute vegetation indices, such as the PRI, it is necessary to use at-surface reflectance
data. Therefore, the focus of this work will be on using L2C (at-surface reflectance) and L2D
(geocoded at-surface reflectance) from the PRISMA hyperspectral imagery.

5.3 Sentinel - 2 Imagery

As mentioned earlier, there is a possibility of shift in the PRISMA geocoded images. To deter-
mine whether this issue is present in the collected images, it is necessary to have a reference
map. In the context of this work, the global and cloudless Sentinel – 2 map from 2021 will be
used as the reference map. The Sentinel - 2 can be a useful tool for evaluating the geolocation
accuracy of the geocoded PRISMA images, as it provides a 2m spatial resolution, cloud free
view of the surface of the Earth (table 5.2 ). This map was obtained using the QGIS software
and the QuickMapServices plugin.

Name Sentinel-2 cloudless 2021 by EOX
Spatial Resolution 2m

CRS EPSG:3857
Last Update 2 June 2022

Table 5.2 – Characteristics of Sentinel - 2 Imagery
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5.4 Digital Elevation Model

Digital elevation models were also used in this work. These models are used to retrieve the
elevation of the GCPs that will be used to correct the PRISMA hyperspectral images. The
30-meter-resolution Shuttle Radar Topography Mission (SRTM) data were used. Specifically,
the N50EOO5 and N50E006 data tiles were used 1.

1. https://dwtkns.com/srtm30m/
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Chapter 6

Methodology

6.1 Proposed Methodology to Correct the PRISMA Hyperspec-
tral Images

To correct the PRISMA hyperspectral images, two solutions were proposed. The first one
involved applying a translation process to the PRISMA L2D geocoded hyperspectral images.
The second solution suggested making adjustments to the orthorectification process and subse-
quently applying this adjusted process on the PRISMA L2C hyperspectral images. Following
some discussion, it was decided to implement the second solution. Accordingly, the PRISMA hy-
perspectral images will be corrected by proposing an alternative approach to orthorectify them
than the one currently proposed. Orthorectification aims to geometrically correct an image to
remove relief distortions, sensor artifacts, earth curvature and other perspectives distortions,
and to align the image with coordinates on the ground (Orthorectification, n.d.). Thus, this
process includes the orientation of the images and their projection onto a cartographic reference
system. The orthorectification process currently being applied to the PRISMA Level-2 products
(hyperspectral and panchromatic images) 1 can be described as shown in the figure 6.1.

Upon the completion of the process, the PRISMA Level – 2 processor delivers an orthorectified
image that is projected onto a cartographic UTM reference system. The L2D panchromatic and
hyperspectral images coordinates are specified in units of pixels, whereas the ground coordinates
are given in decimal degrees of latitude and longitude. The images are referenced according to
the WGS-84 reference system. Furthermore, the geodetic elevation is given in units of meters.
It is worth to mention that the orthorectification process is only applied to the L2D products
and is appended as metadata information to the L2B and L2C products.

The figure 6.1 indicates that the PRISMA products undergo orthorectification using a Rational
Function Model (RFM) approach. This orthorectification approach uses polynomial ratios to
link ground coordinates to their corresponding image pixel coordinates (Zhou et al., 2018). In
other words, the model associates the ground coordinates (latitude, longitude, and elevation)
of specific points to their corresponding images coordinates (row, column). By coupling ground
coordinates to image coordinates, the model allows for the correction of perspective distortions
and terrain relief as well as georeferentiation.

1. Both the hyperspectral and panchromatic images are subjected to the same orthorectification process, but
there are some variations in the steps taken for each type of image.
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Figure 6.1 – Flowchart of the PRISMA orthorectification process.

For an individual PRISMA image, the ratios of the polynomials are expressed as:
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Where (rn, cn) are the normalized row and column index of pixels in image space; (Xn, Yn, Zn)
are the normalized longitude, latitude, and elevation of object points in ground space; aijk, bijk,
cijk,dijk are the rational polynomial coefficients (RPC); pA, pB, pD, pD are the third-degree
polynomials (ASI, 2021).

Specifically, one polynomial can be expanded as 2:

pA(Xn, Yn, Xn) =a0 + a1 ×X + a2 × Y + a3 × Z

+ a4 ×XY + a5 ×XZ + a6 × Y Z + a7 ×X2

+ a8 × Y 2 + a9 × Z2 + a10 ×XY Z + a11 ×X3

+ a12 ×XY 2 + a13 ×XZ2 + a14 ×X2Y + a15 × Y 3

+ a16 × Y Z2 + a17 ×X2Z + a18 × Y 2Z + a19 × Z3

(6.3)

2. (ASI, 2021).
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Considering the above formulas, normalized coordinates are used in the polynomial ratios. The
use of normalized coordinates is necessary as it allows to reduce errors during the model com-
putation (ASI, 2021). To achieve the normalization process, scale factors (S) as well as offsets
(O) are applied to the ground coordinates. The coordinates are then normalize according to
equations 6.4, 6.5 and 6.6.

Xn =
X −X0

XS
(6.4)

Yn =
Y − Y0
YS

(6.5)

Zn =
Z − Z0

ZS
(6.6)

Following the normalization of the ground coordinates, the image coordinates are normalized
according to the equations 6.1 and 6.2 using the RPC provided in the PRISMA L2C products.

In general, the rational function model is solved by estimating the RPCs with a least-square
process. Within the context of the PRISMA mission, the model appended to the L2B and L2C
products supplies the coefficients and the parameters for normalizing the row, column, latitude,
longitude and ellipsoidal height values (Baiocchi et al., 2022). As a matter of fact, the model is
computed based only on the Lines of Sight (LoS) information 3 read from the L1 products, and
it does not rely on the use of a DEM or GCPs (ASI, 2021). As this model relies solely on the LoS
information, it can suffer from a lack of accuracy (ASI, 2021). To address this issue, the Level-2
processor can enhance the accuracy of the model by using GCPs. However, it may not be possible
to obtain GCPs for all PRISMA images due to limitations of the automatic GCPs matching
procedure developed in the context of this Italian hyperspectral mission. In other words, such
points may not be available for all images since the matching procedure can be unsuccessful.
Consequently, the availability of GCPs has a significant impact on the geolocation accuracy of
the PRISMA products. Indeed, the use of GCPs during the orthorectification process leads to
a CE90 geolocation accuracy of less than 15m, whereas without their use a CE90 geolocation
accuracy of less than 200m is obtained (ASI, 2021). As a result, using GCPs is essential to
the enhancement of the geolocation accuracy of the PRISMA products. Consequently, it was
proposed to collect manually GCPs on each L2C hyperspectral image and to use them to refine
the rational function model of each image.

In the PRISMA processing context, the L2C products are orthorectified, resulting in the creation
of L2D products that represent the geocoded versions of the L2C products. The methodology
being proposed will use the same approach except that GCPs will be used to refine the rational
function model. As a results, the methodology will deliver alternative versions of the PRISMA
L2D hyperspectral products. It is worth mentioning that only the hyperspectral images will be
orthorectified. The proposed methodology in the scope of this work can be summarised as the
flowchart in the figure 6.2.

3. The sensor Line of Sight (LoS) describes how a point on the ground is projected onto the pixel in a satellite
image (ASI, 2021).
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Figure 6.2 – Flowchart of the proposed methodology.

6.2 Evaluation of the PRISMA Geocoded Hyperspectral Images

Considering that some studies highlighted that shifts can be detected between PRISMA geocoded
hyperspectral images and correctly georeferenced maps, it could be useful to detect the potential
ones and to estimate them. By doing so, it will also be possible to calculate the geolocation
accuracy of the geocoded hyperspectral images. Furthermore, the effectiveness of the orthorec-
tification process of the PRISMA products can be determined.

Estimating the shifts involves comparing the coordinates of points in the PRISMA geocoded
hyperspectral images and their corresponding coordinates on the Sentinel – 2 map. To achieve
this, reference points were collected. In the context of this work, 5 reference points were selected
on each hyperspectral image. These points were selected by considering that they must be
different from the points that will be used for the refinement of the RFM. Furthermore, these
points were selected by considering that they must be homogeneously distributed across the area
delimited by the PRISMA hyperspectral images. Following these criteria, a total of 5 reference
points were manually collected on both the reference map and the hyperspectral images using
the EnMAP – Box plugin and the QGIS software.

The table 6.1 lists the 5 reference points collected in each hyperspectral image.

ID of Hyperspectral Image ID of Reference Points
1 1,2,3,4,5
2 1,4,6,7,8
3 2,4,6,9, 10
4 4,11,12,13,14
5 1,4,15,16,17
6 2,17,18,19,20
7 5,10,21,22,

Table 6.1 – List of the reference points.
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The figure 6.3 presents the reference points collected on the Sentinel – 2 reference map (EPSG:4326)
and the PRISMA geocoded hyperspectral images.

Figure 6.3 – Location of the reference points.

Once the reference points were collected on the QGIS software and the EnMAP – Box plugin,
their North – East coordinates were retrieved in the WGS84 reference system 4. Specifically, the
coordinates were retrieved in meters using the UTM zone 31N and UTM zone 32N coordinates
reference system according to the WGS84 datum (EPSG:32631 and EPSG:32632, respectively) 5.
Afterwards, the shifts can be estimated by computing the difference between the GCPs coordi-
nates collected on the PRISMA geocoded hyperspectral images and the Sentinel – 2 reference
map. The North and East shifts are computed based on the equations 6.7 and 6.8, respectively.

∆N(m) = PRISMA North coordinate(m)− Sentinel − 2 North coordinate(m (6.7)

∆E(m) = PRISMA East coordinate(m)− Sentinel − 2 East coordinate(m) (6.8)

Following this, the Root Mean Square Error can be determined. This measure is the square
root of the mean of the difference between the estimated coordinates and the actual coordinates.
Computing the RMSE on the East and North coordinates will allow to compute the error on
each coordinate (eq. 6.9 and eq. 6.10).

4. The EnMAP-Box plugin allowed to visualise the L2D hyperspectral images on the QGIS software.
5. The coordinates were retrieved in these reference systems because they are the systems according to which

the PRISMA hyperspectral images are geocoded.
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Where ∆Ni is a North shift, ∆Ei is a East shift and n is the number of reference points.

After the computation of the RMSE of all the PRISMA geocoded hyperspectral images, the
geolocation accuracy can be computed. As the geolocation accuracy is expressed as the Circular
Error at the 90th percentile (CE90) in the PRISMA mission document, the accuracy of the
hyperspectral images will also be expressed according to the same expression. The CE90 was
computed using the following expression (Pagnutti, 2006; Dolloff and Carr, n.d.):
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(6.11)

The Circular Error at the 90th percentile expresses the positional accuracy of an image, and it
defined as the radius of the circle within which 90% of the localisation of a point will fall. In
other words, this metric indicates that the location of a point will fall at 90% within the radius
of the stated CE90.

A summary of the steps mentioned above can be found in the figure 6.4.

Figure 6.4 – Flowchart of the processing steps to compute the RMSE and CE90.
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6.3 Orthorectification Process

6.3.1 Collection of Ground Control Points

To orthorectify the images according to the proposed methodology, GCPs must be collected man-
ually on each hyperspectral image, which differ from the automatic GCPs matching procedure
implemented in the PRISMA products 6.

In the context of this work, a minimum of four GCPs were collected in each hyperspectral image
using the EnMAP- Box plugin available on QGIS. During the collection process, it was ensured
that the GCPs are distributed throughout the area delimited by the PRISMA hyperspectral
images 7. To retrieve the necessary image and ground coordinates of the GCPs intended for
improving the rational function model, they were marked on both the hyperspectral images and
the Sentinel – 2 reference map. Specifically, the hyperspectral images will be used to obtain the
image coordinates (row and column), while the ground coordinates (latitude and longitude) will
be retrieved from the Sentinel – 2 reference map. Regarding the elevation values of the GCPs,
they are retrieved from the 30-meters-resolution Shuttle Radar Topography Mission data.

The table provides the details about the specific GCPs that were collected in each hyperspectral
image. In the context of this work, the ground coordinates of the GCPs were acquired in
the EPSG:4326 coordinate reference system. The image coordinates (row and column) were
retrieved from the L2C hyperspectral images. The location of the different GCPs are provided
in the figure 6.5.

ID of Hyperspectral Image ID of Ground Control Points
1 2,4,5,6,7,8,10,11,12,13,14,16,17,18,20
2 3,6,15,20,22,23
3 1,2,3,4,5,8,9,10,11,13,14,16,18,20
4 2,4,5,6 7,8,11, 14,15,16,17,18,19,20
5 1,3,9,11,12,13,15,16,17,18,19
6 2,3,4,5, 7,9,13,14,17,18
7 2,3,15,19,24

Table 6.2 – List of the ground control points.

The image and ground coordinates of the GCPs of a single hyperspectral image are stored in
single CSV file. As a matter of fact, each CSV file has the following data: longitude, latitude,
height, column, row and id. The header line of each file must match the format: "Lon, Lat, H,
Col, Row, id”.

6. This matching procedure links image points to corresponding GCPs with exact geolocation with the use of
a registration algorithm based on Fourier-Mellin Transformation (ASI, 2021).

7. It is worth noting that the collected points were not the same as the ones used for the assessment of the
geolocation accuracy of the geocoded hyperspectral images.
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Figure 6.5 – Location of the ground control points.

6.3.2 Rational Function Model

Following the collection of GCPs, they are used for the refinement of the RFM. The refinement
of the RFM is performed with a Python script that has been especially developed in the scope of
this master thesis 8. The script enables the refinement of the model and the orthorectification of
the PRISMA L2C hyperspectral images. The output product is an orthorectified hyperspectral
image within the EPSG:4326 coordinate reference system in GeoTIFF format. The images are
converted into this format as it is a widely recognized and conventional format for the exchange
of geographic data.

The refinement of the RFM involves the following main steps:

1. Assessment of the initial RFM.

2. Refinement of the RFM.

3. Assessment of the refined RFM.

The procedures that will be describe in the following sections are applied to each hyperspectral
image separately, indicating independent refinement for every image. In fact, a model will un-
dergo refinement based on the coordinates of GCPs which indicates that the suggested approach
involves refining each model individually.

8. The script has been developed by the promoters of this master thesis. Additionally, the Python script
as well as a CSV file and a PRISMA L2C hyperspectral image will be provided on MatheO for to testing the
proposed methodology.
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6.3.2.1 Assessment of the Initial Rational Function Model

The inputs of the Python script are the PRISMA L2C hyperspectral images in HDF5 format
and the CSV files containing the image and ground coordinates of the GCPs. To correct one
hyperspectral image, both the image itself and the corresponding GCPs file are required. It is
worth noting that at least three GCPs must be available to perform this operation.

The first step of the model refinement is the retrieval of the information about this model which
are appended to the L2C hyperspectral images. The following information has been retrieved:

• Line, row, latitude, longitude, and height offsets.
• Line, row, latitude, longitude, and height scales.
• Rational polynomial coefficients (RPCs).

Once the relevant information has been obtained, an assessment of the model is performed using
the GCPs provided as inputs. The assessment involves determining the difference between the
actual image coordinates and the ones estimated with the RFM. Estimated image coordinates
are obtained following the computation of the normalized ground coordinates of the GCPs (eq.
6.4, eq. 6.5, eq. 6.6) and the computation of the normalized image coordinates using the
provided RPCs (eq. 6.1, eq. 6.2). Following this, the model can be evaluated on the basis of the
image coordinate residual errors of the GCPs. The row and column residual errors are computed
following the equations 6.12 and 6.13. Afterwards, the mean and the standard deviation of these
errors are calculated.

Row Residual Error(RRE) = Observed Row Index− Computed Row Index (6.12)

Column Residual Error(CRE) = Observed Column Index− Computed Column Index
(6.13)

6.3.2.2 Refinement of the Rational Function Model

Once the residual errors have been calculated, the normalized image coordinates are adjusting
accordingly to these errors. Then, the RPC are updated to ensure that the polynomials predict
the corrected image coordinates. In other words, the coefficients are recalculated based on the
adjusted coordinates, so that the polynomials will determine the correct image coordinates.
Beyond the GCPs, a DEM is also used during the refinement process. As a result, the rational
polynomial coefficients are updated, and the rational function model is refined.

6.3.2.3 Assessment of the Refined Rational Function Model

A leave-one-out procedure is conducted to evaluate the effectiveness of the refined model. Also
called the leave-one-out cross validation, this procedure is used for the assessment of models.
In the context of this work, the leave-one-out validation method consists of selecting one GCP
as a test sample, and then computing the RFM with the remaining GCPs. Following this, the
selected GCP is used to assess the prediction errors of the computed model with the other GCPs.
In other words, the initial model is refined using the training sample and then its predictions
errors are evaluated with the test sample. This procedure is iteratively performed until every
GCP has been used once as test sample. After computing the prediction errors on the image
coordinates of all the GCPs, the mean and standard deviation of these errors are calculated.
Thus, the mean and standard deviation of the residual errors on image coordinates of the GCPs
are given. During this processing step, it was made sure that the prediction errors do not exceed
2.5 pixels.
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If a GCP exceeds this threshold, it is automatically removed and the entire orthorectification
process is repeated without the GCP identified as outlier. In the context of this work, all the
collected GCPs meet this criterion.

6.4 Evaluation of the Hyperspectral Images Orthorectified with
the Proposed Methodology

Upon the completion of the orthorectification process, the reference points that were collected
on the PRISMA geocoded hyperspectral images are also collected on the orthorectified hyper-
spectral images. Considering the same reference points will allow to assess the level of correction
as well as the level of geolocation accuracy improvement that can be achieved with the proposed
orthorectification process. Following this, the shifts and the related errors can be determined.
The geolocation accuracy of the orthorectified hyperspectral images can also be computed. The
aforementioned measures can be computed according to earlier presented steps in the figure 6.4.

6.5 Assessment of the Orthorectification Process

Assessing the effectiveness of the proposed methodology for correcting the PRISMA hyperspec-
tral images and enhancing their geolocation accuracy involves a comparison of the shifts and
geolocation accuracy before and after the methodology has been applied. Therefore, the differ-
ences in the values of the shifts before and after the orthoretification process will be presented.
The differences between the geolocation accuracies will alsobe depicted.

Evaluating the proposed process will provide an indication of its effectiveness to correct the
images and improve their geolocation accuracy. It will also enable to know to which extent the
methodology can correct and enhance the geolocation accuracy of the PRISMA hyperspectral
images.
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Chapter 7

Results

7.1 Manual Collection of the Reference Points and the Ground
Control Points

Prior to discussing the results, it is important to note that the reference points and the GCPs
were collected manually using the EnMap – Box plugin and the QGIS software. During the
collection of these points, some difficulties were faced. Firstly, the identification of the same
point locations on both the Sentinel – 2 map and the hyperspectral images was challenging
due to the differences in their spatial resolutions. The Sentinel-2 reference map has a 2m
spatial resolution, whereas the PRISMA hyperspectral images have a 30m spatial resolution.
Moreover, the presence of cloud coverage in some hyperspectral images added difficulties for
both the accurate collection of points and the collection of the minimum required number of
points. The presence of cloud coverage higher than 10% on hyperspectral images leads to an
obscuration of their background of and reduces visibility on them, making it difficult to discern
details. Furthermore, the clouds and their shadows decrease the collection area of points on
these images. Nevertheless, by adjusting the visualisation parameters 1 of these images, it was
possible to collect points.

Given the difficulties encountered during the collection of the points, the results presented in
the following sections may have been to some extend impacted by inaccuracies. However, the
points were collected as accurately as possible in order to limit the potential inaccuracies in
these results. Consequently, it is important to consider the impact of the previously mentioned
difficulties when interpreting the results.

7.2 Evaluation of the PRISMA Geocoded Hyperspectral Images

7.2.1 Detected shifts

The shifts are estimated through the computation of GCPs coordinates difference between the
PRISMA geocoded hyperspectral images and the Sentinel – 2 reference map. The shifts detected
on each geocoded image is presented in table 7.1.

1. Adjusting the visualisation parameters of the images involved to visualise the images in shortwave infrared.
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Firstly, it can be observed that the greatest shifts were reported on hyperspectral image 7. In
contrast, the hyperspectral image 1 has the smallest shifts. As a matter of fact, it is observed
that the image with the greatest cloud coverage percentage has the greatest shifts, while the
image with the smallest cloud coverage has the lowest shifts. Considering that the 30m spatial
resolution of the PRISMA hyperspectral images, the shifts range between 0.5 pixel to 6 pix-
els. Furthermore, it can be noted that non-constant shifts have been detected in all PRISMA
geocoded hyperspectral images. This suggests that the geolocation accuracy of these images will
vary, and that there will be notable differences of the geolocation accuracy between two images
acquired over the same area. Furthermore, it can be observed that the North shifts are more
important than the East shifts considering all the hyperspectral images.

ID of Hyperspectral Image East shift (m) North shift (m)
1 12.5920 46.7764
2 171.5912 118.9626
3 21.6914 41.5566
4 92.2380 107.6369
5 89.2236 118.2865
6 106.1430 119.6149
7 128.1338 107.0038

Table 7.1 – Coordinates shifts of the PRISMA geocoded hyperspectral images.

7.2.2 Root Mean Square Errors

The outcomes indicate that the errors range between 14m and 128m on the North coordinate
and between 45m and 120m on the East coordinate (table 7.2). Considering that the PRISMA
hyperspectral images has a 30m spatial resolution, the errors of the geocoded images are ranging
between about 0.5 pixel and 5 pixels on the North coordinate, while errors between 1 pixel and
4 pixels have been observed on the East coordinate. Furthermore, it can be observed that errors
are greater on the East coordinate than on the North coordinate. It can also be noted that the
geocoded hyperspectral image 2 obtained the highest errors considering both coordinates. This
image is followed by the hyperspectral images 7 and 6 which had the second and third highest
errors (table 7.2). As a matter of fact, the images with highest percentages of cloud coverage
have the highest errors, while the images with cloud coverage close to 0% have the lowest errors.
However, it can be noted that the geocoded hyperspectral image which obtained the smallest
shifts does not have the smallest errors.

ID of Hyperspectral Image RMSE - North (m) RMSE – East (m)
1 14.20461 59.50732
2 172.39410 120.94575
3 22.61114 45.15926
4 94.49388 107.98996
5 89.9113 119.32336
6 108.59911 120.85481
7 128.55604 107.71304

Table 7.2 – Root mean square errors on the North - East coordinates on the PRISMA geocoded
hyperspectral images.
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7.2.3 Geolocation Accuracy

The geolocation accuracy of the PRISMA geocoded hyperspectral images are specified in table
7.9 .

ID of Hyperspectral Image CE90 (m)
1 100.63975
2 346.41840
3 83.07856
4 236.04991
5 245.77270
6 267.27910
7 275.89330

Table 7.3 – Geolocation accuracy of the PRISMA geocoded hyperspectral images.

The second hyperspectral image has the least accurate geolocation, which was expected since
this image obtained the highest shifts and errors on the North and East coordinates. Moreover,
hyperspectral images 7 and 6 have the second and third least accurate geolocation, respectively.
Although some hyperspectral images have geolocation accuracies lower than 200m, it should be
noted that two of the hyperspectral images achieved geolocation accuracy of 100.63975m and
83.07856m. In fact, the hyperspectral images that have the least cloud coverages are the ones
that exhibit the highest geolocation accuracies.

7.3 Orthorectification

7.3.1 Assessment of the Rational Function Models

The initial rational function model is assessed by computing the discrepancies between the
observed and computed image coordinates of the GCPs. The GCPs used in the context of the
assessment vary depending on the hyperspectral image. Table 7.4 lists details the number of
GCPs collected on each hyperspectral image.

ID of Hyperspectral Image Number of GCPs
1 15
2 6
3 14
4 14
5 11
6 10
7 5

Table 7.4 – Number of GCPs collected on eahc PRISMA hyperspectral images.

The standard deviation and the mean of row and column residual errors of GCPs are presented
in table 7.5. It worth to remind that the residual errors presented in the table may have been
affected by the inaccuracies of the image coordinates collected manually on the QGIS software.
Nevertheless, the table gives an overview of the performances of the different models to predict
the image coordinates of GCPs.
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ID of Hyperspectral Image Standard Deviation (pixel) Mean (pixel)
Row Column Row Column

1 1.010 95 1.130 59 −1.585 98 0.342 59

2 0.958 55 0.692 36 −6.068 87 4.554 69

3 0.740 861 1.053 75 −0.720 47 0.410 48

4 0.967 63 1.057 51 −1.827 25 −2.889 57

5 0.940 16 1.528 34 −2.410 54 −3.300 81

6 0.846 97 0.9996 −2.402 05 −3.479 36

7 0.666 81 1.077 38 −1.381 76 −4.528 49

Table 7.5 – Standard deviation and mean of row and column residual errors of the initial rational
function models.

Based on the table 7.5, the mean row residual error values are negative considering all the
models. This indicates that the computed row coordinates are underestimated by these models.
The highest row residual error was obtained by the rational function model linked to the PRISMA
hyperspectral images acquired on 29 June 2020 (ID 2). The mean row residual value is equal to
-6.06886 pixels which indicates that the mean row error is about 180m. This observation suggests
that the model was unable to accurately estimate the coordinates of the Ground Control Points
(GCPs). In addition, this model produced the highest column residual error (table 7.5). It
can also be observed that the last four models are underestimating the column coordinate.
Furthermore, it can be noted that the column residual errors of six models are higher than 2
pixels meaning their mean error on the column is higher than 60 m.

The standard deviations of the residual errors are ranging between 0.66681 and 1.52833 pixels.
Regarding the model with the highest mean residual errors, its standard deviation values sug-
gested that, on average, the residual errors are falling within approximately 1 pixel from the
mean row and column residual error. Such observation indicates that significant residual errors
have been obtained when assessing the RFM of the hyperspectral image acquired on 29 June
2020. The models linked to the hyperspectral images with the lowest cloud coverage percentages
exhibit higher standard deviations which indicates that, on average, residual errors deviate more
from the mean residual errors.

Based on the above-mentioned observations, it seems that the model with the greatest residual
errors is associated with the hyperspectral image that have the highest cloud coverage percentage.
In fact, the second hyperspectral image has the largest cloud coverage percentage (25.06%) and
the highest residual errors. Furthermore, the hyperspectral images with the least cloud coverage
percentages have the lowest residual errors. Therefore, it seems that the performance of the
rational function models might be influenced by the percentage of the cloud coverage.

7.3.2 Assessment of the Refined Models

Once the different rational function models have been refined, they are evaluated through a
leave-one-out validation process. This process provides a way to estimate the accuracy of the
predictions of the different models. The prediction errors of each refined model are available in
the appendixes 2. The residual errors of the refined models are presented in table 7.6.

2. The appendixes contain tables that present the row and column errors obtained from the leave-one-out
procedure of each refined model
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ID of Hyperspectral Image Standard Deviation (pixel) Mean (pixel)
Row Column Row Column

1 0.554 72 1.255 05 0.022 23 0.050 78

2 1.365 70 1.060 34 0.416 37 −0.183 35

3 0.604 74 0.877 56 −0.056 87 0.052 55

4 0.709 95 1.049 82 −0.023 72 0.050 36

5 0.611 01 1.222 07 0.075 86 0.168 43

6 0.826 09 1.041 80 0.007 65 0.102 99

7 0.451 45 1.488 20 −0.110 50 0.302 97

Table 7.6 – Standard deviation and mean of row and column residual errors of the refined rational
function models.

The mean prediction errors over the rows and the columns are less than 1 pixel. Such values
indicate that the refined models can achieve accuracy greater than 1 pixel and thereby greater
than 30m on both axes. The highest mean prediction errors were obtained with the models using
5 and 6 GCPs during the model refinement process. The model that used 6 GCPs achieved
mean prediction errors of 0.41637 and -0.18335 pixels on the row and column axis, respectively.
Moreover, the model that used 5 GCPs reached mean prediction errors of -0.11050 and 0.30297
pixels on the same axes. Although these two models are less accurate than the others, they still
manage to offer accuracy greater than 1 pixel on both axis. In contrast, the model refined with
15 GPCs achieved mean prediction errors of 0.02223 and 0.05078 pixels for the row and column
axis, respectively. Consequently, the accuracy of a refined model on both row and column axes
is impacted by the number of control points used during its refinement.

7.4 Evaluation of the PRISMA Hyperspectral Images Orthorec-
tified with the Proposed Methodology

7.4.1 Detected Shifts

The table 7.7 depicts the shifts in the North - East coordinates detected on the PRISMA
hyperspectral images corrected with the suggested approach.

ID of Hyperspectral Image East shift (m) North shift (m)
1 21.85040 40.35528
2 20.70880 100.78790
3 27.15920 8.12282
4 14.62280 93.19440
5 20.73986 40.07855
6 19.67300 50.88060
7 51.06880 145.46826

Table 7.7 – Coordinates shifts of the PRISMA hyperspectral images orthorectified with the
suggested methodology.

The highest shifts were obtained on the last hyperspectral image and the lowest shifts were
obtained on the third hyperspectral image. This image obtained a shift of 27.15920m on the
East and a shift of 8.12282m on the North coordinate. Furthermore, it can be observed that
the North shifts are greater than the East shifts for all images, with the exception of the third
image.
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7.4.2 Root Mean Square Errors

The outcomes indicate that the errors range between 17m and 56m on the North coordinate
and between 11m and 146m on the East coordinate (table 7.8). The hyperspectral image 3 is
the image which has the lowest errors considering both North and East coordinates, in contrast
to the hyperspectral image 7 obtained the highest errors. Actually, errors of 56.16811m and
146.88992m were obtain on the North and East coordinate, respectively. In addition, there is
a difference close 100m between the North -East coordinate errors on this hyperspectral image,
which is the highest difference observed between the North - East errors. Furthermore, the errors
on the East direction appear to be greater than the North ones.

ID of Hyperspectral Image RMSE - North (m) RMSE – EAST (m)
1 25.82730 42.43891
2 32.92046 107.17140
3 27.40884 11.31149
4 17.67571 94.92659
5 25.40891 43.52378
6 27.99757 54.58162
7 56.16811 146.88992

Table 7.8 – Root mean square errors on the North - East coordinates on the PRISMA hyper-
spectral images orthorectified with the suggested methodology.

7.4.3 Geolocation accuracy

The table 7.9 depicts the geolocation accuracy of hyperspectral images orthorectified with the
suggested methodology.

ID of Hyperspectral Image CE90 (m)
1 81.72373
2 184.18092
3 48.77625
4 158.83863
5 82.90428
6 100.90995
7 118.61810

Table 7.9 – Geolocation accuracy of the PRISMA hyperspectral images orthorectified with the
suggested methodology.

The third hyperspectral image has the most accurate geolocation, while the second hyperspectral
image has the least accurate geolocation. This suggests that the level of geolocation accuracy
varies across the different hyperspectral images. Overall, it can be observed that the proposed
process has been successful in achieving a geolocation accuracy of less than 200m. However,a
CE90 geolocation accuracy of 15 meters has not been achieved despite using GCPs.
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Chapter 8

Discussion

8.1 PRISMA Geocoded Hyperspectral Images

8.1.1 Shifts and Root Mean Square Errors Evaluation

Although there is a limited number of studies that have addressed the shifts in the PRISMA
geocoded images, two studies were available, and some comparisons can be made with the
identified shifts.

A study reported that a non-constant shift up to 5 pixels has been observed in all PRISMA
geocoded images when compared to an ancillary digital cartography of Central and Southern
Italy (Mzid et al., 2022). All detected shift in this work are within ths limit, except for hyper-
spectral image 2 which has a shift of approximately 6 pixels. In addition, shifts of varying values
were obtained which indicate that the PRISMA geocoded images exhibit a non-constant shift,
which is consistent with the findings of the study conducted by Mzid et al. (2020).

Furthermore, the shifts identified in the context of this can evaluated with the studies conducted
by Pearlshtien et al.(2023). As part of a validation – calibration approach for hyperspectral
sensors, the study investigated about the geometric correction performance of the PRIMSA
satellite. It was reported that shifts were observed between PRISMA geocoded images acquired
over the same areas. In fact, a shift of 238.6m in the longitudinal direction and 95.1m in the
latitudinal direction were observed between PRISMA images taken in 2019 and 2020 (detected
shifts with 200 GCPs coordinates) (Pearlshtien et al., 2023). Based on these results, it can be
observed that East shifts are more important than the East shifts. The same observation can
be made when comparing two PRISMA geocoded hyperspectral images acquired at different
times over Vielsam. As a matter of fact, a shift of 158.9992m in the East direction and a shift
of 72.1862m in the North direction were detected between PRISMA images taken in June 2020
(ID2) and April 2020 (ID1). Furthermore, shift of -149.8998m in the East direction and a shift
of -77.406m in the North direction were detected between PRISMA images taken in February
2021 (ID3) and June 2020 (ID2) in Vielsam. As a result, the detected shifts are consistent with
the outcomes of this study.
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According to the aforementioned observations, it can be further noticed that there is a non-shift
between the PRISMA geocoded hyperspectral images and that there is a non – constant shift
between these images and Sentinel – 2. This indicates that the geometric correction performances
of the PRISMA sensor is not consistent and stable which rises questions of the geolocation
accuracy of these images.

8.1.2 Geolocation accuracy

The computed geolocation accuracies of PRISMA geocoded hyperspectral images revealed that
five of them obtained lower accuracies than those specified in the PRISMA Algorithm Theoretical
Basis Document (table 7.9). The document states that the CE90 geolocation accuracy of L2
images should be lower than 15m when GCPs are used and lower than 200 m when GCPs are
not used. As five images do not meet the declared geolocation accuracies, it can be inferred
that the orthorectification process that relies only on the LoS information is not that effective
in achieving the levels of geolocation accuracy specified in the PRISMA mission document.

Furthermore, is important to note that the PRISMA geocoded hyperspectral images studied in
the context of this work were not orthorectified with GCPs. Initially, it was thought that the
GCPs matching procedure was unsuccessful for these images. However, a recent study indicates
that the automatic method of GCPs searching has not been carried out yet (Baiocchi et al.,
2022). This means that the method is not yet operational, suggesting that the operational level
of the PRISMA mission may not be as high as anticipated and that the geocolocation accuracy
of the current available PRISMA images might not be accurate as the ones specified in the
document.

8.2 Evaluation of the Refinement Process

To evaluate the effectiveness of of the refinement process with the use of GCPs, a residual
error analysis of the refinement modelling can be made. The analysis involves computing the
differences between the absolute mean residual errors before and after the refinement process.
The outcomes of these differences are displayed in table 8.1 .

ID of Hyperspectral Image N. of GCPs Used Mean Row (pixel) Mean Column (pixel)
1 15 1.56376 0.29181
2 6 5.65249 4.37134
3 14 0.66360 0.35793
4 14 1.80353 2.83921
5 11 2.33468 3.13238
6 10 2.39440 3.37637
7 5 1.27126 4.22552

Table 8.1 – Differences between the absolute mean residual errors before and after the refinement
process.
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A positive value indicates that the refinement process has led to a reduction in the residual
errors whereas a negative value indicates an increase in the residual errors. As a result of this,
it can be concluded that refining the models with GCPs reduce the mean residual errors of all
the models. Furthermore, the highest reductions are observed within the models which had the
highest residual errors. Following the refinement of the model associated to the hyperspectral
image 2, decrease of 5.65249 and 4.37135 pixels has been observed for the row and column
axes, respectively. As a matter of fact, a decrease of approximately 169.5147m and 131.1405m
have been observed, respectively. Such reductions have been possible even tough only 6 GCPs
were collected (table 8.1). Furthermore, reductions of 1.27126 and 4.22552 pixels were obtained
for the model associated to the hyperspectral image 7. Specifically, reductions of 38.1378m
and 127.7656m have been obtained. Despite the use of fewer GCPs, the above models were
successfully refined and showed the greatest improvement in terms of errors reduction. These
outcomes also demonstrate that the proposed methodology is effective in reducing the residual
errors, especially for the models with high residual errors.

8.3 Evaluation of the Orthorectfication Process

The orthorectification technique introduced in this study can be compared with a study that as-
sessed three different orthorectification models for the geometric correction of PRISMA panchro-
matic images (Baiocchi et al., 2022). The rigorous model 1, the rational polynomial coefficients
model and the rational polynomial functions model were the models investigated for the cor-
rection of the PRISMA panchromatic images. The last two models follow the same approach
except that polynomial coefficients are provided to the first, while the second estimated them
with GCPs. In the context of this work, it was proposed to not use the provided coefficients
appended to the PRISMA products but to estimate them with manually collected GCPs. There-
fore, an analysis between the rational polynomial function model and the suggested approach
can be made. As the proposed approach is close to the Rational Polynomial Function model, a
comparison between their results can be made. The maximum accuracy obtained by the rational
polynomial function model on threes test sites in Central Italy are presented in table 8.2 2.

N. of polynomial coefficients N. of GCPs (N. of CP) East RMSE Value North RMSE Value
estimated of CP discrepancies (m) of CP discrepancies (m)

Rome 6 4.811 4.173
Fucino 6 4.792 5.009
Ischia 5 4.404 4.105

Table 8.2 – Maximum accuracy obtained by the rational polynomial function model on three
test sites (Baiocchi et al., 2022).

In the context of this work, none RMSE of such values were obtained. Indeed, the values of the
RMSE are twice or fifty times greater than these values. The third hyperspectral image had the
lowest RMSE values (27.15920m on the East direction and 8.12282m on the North direction)
and the last hyperspectral image has the highest RMSE values (51.06880m on the East direction
and 145.46826 on the North direction). However, it should be noted that the results in the study
conducted by Baiocchi et al. (2022), only 6 coefficients were estimated in contrast to 20 in the
context of this work. The study investigated about the potential link between the number of
coefficients estimated and the best obtained accuracy. The study reported that the accuracy of
the rational polynomial function model decreases as the number of coefficients increases.

1. Model defined on the basis of the sensor characteristics Baiocchi et al., 2022).
2. In the table, "CP" is referred to as CheckPoint)
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In particular, it was revealed that the highest accuracy in the East and North coordinates was
obtained by estimating only 6 or 5 polynomial coefficients (Baiocchi et al., 2022). As a result
of this, the number of computed coefficients could be a potential explanation for the differences
observed in the computed accuracy between this work and the study. In the case of the study,
6 or 5 polynomial coefficients were estimated using 6 and 5 GCPs, respectively. In contrast, 20
coefficients were estimated with 4 to 15 GCPs in this work. Based on these findings, it can be
inferred that the coefficients were estimated with greater precision in the study compared to this
research, resulting in lower RMSE values. As better results are obtained with the methodology
proposed, such approach could be interesting. In particular, it was revealed that the highest
accuracy in the East and North coordinates was obtained by estimating only 6 or 5 polynomial
coefficients (Baiocchi et al., 2022). As a result of this, the number of computed coefficients could
be a potential explanation for the differences observed in the computed accuracy between this
work and the study. In the case of the study, 6 or 5 polynomial coefficients were estimated using
6 and 5 GCPs, respectively. In contrast, 20 coefficients were estimated with 4 to 15 GCPs in this
work. Based on these findings, it can be inferred that the coefficients were estimated with greater
precision in the study compared to this research, resulting in lower RMSE values. To achieve
a similar level of precision as that described in the study, it would be worthwhile to examine
the optimal number of coefficients to be estimated, and to include this in the orthorectification
process. With such improvement that suggested methodology could provide more accurate
results.

In order to further evaluate the effectiveness of the suggested orthorectification process, the
RMSE values obtained from this method can be compared with the the RMSE values obtained
from the geometric correction of the EnMAP Level - 1C images. Based on the latest findings
from the third EnMAP mission Quarterly Report, The assessment of the geometric accuracy
of the EnMAP Level – 1C products is done by matching these images against Sentinel – 2
reference images using matching techniques. Following the matching procedure, checkpoints can
be obtained and Mean Deviation as well as RMSE values can be computed (DLR, 2023).

The figure 8.1 depicts the RMSE values of a random sample of 292 Level -1C tiles that have
been acquire between 1 January 2023 and 31 March 2023.

Figure 8.1 – RMSE values for EnMAP L1C products in pixel (DLR, 2023).

59



The results show that the applied geometric correction lead to RMSE values between 0.15
pixel and 1.4 pixels in the x direction and between 0.2 pixel and 1.85 pixels in the y direction.
Considering the 30m spatial resolution of the EnMAP products, it can be said that much lower
RMSE values are observed on these data. However, it should be noted that the geometric
correction method applied on the EnMAP images is not the same as the one proposed in the
context of this word. Following the application of the suggested approach, it was not possible
to reach the same results as the ones obtained on EnMAP. In fact, the lowest RMSE value is
17.67571m (0.5 pixels) and the highest RMSE value is 56.16811m (1.5 pixels) considering the
North direction. Furthermore, the lowest RMSE value is 11.31149m (0.4pixel) and the highest
is 146.88992m (5 pixels) in the East direction. Based on these findings, the proposed correction
for the PRISMA hyperspectral images need to be improved.

Even though the suggested methodology do not reach the accuracy obtained in the study con-
ducted by Baiocchi et al. (2022) and the accuracy of the EnMAP data, the suggested method-
ology has been effective to geometrically correct the PRISMA hyperspectral images. Indeed, a
decrease of 78.20795m on the North shift and a decrease of 68,48374m in the East shift have been
observed following the application of this methodology. Furthermore, a decrease of 68,7343m
on the North shift and a decrease of 86.4700m in the East shift have also been observed. The
suggested methodology also achieved to decrease the RMSE values in both the North and East
direction. Specifically, the methodology allowed a decrease up to 139.47364m in the North
direction and a decrease up to 75.79958m in the East direction. Regarding the geolocation ac-
curacy, the applied geometric correction on the PRISMA hyperspetral images has succeeded in
enhancing the geolocation accuracy of all hyperspectral images. Specifically, geolocation accu-
racy improvement between 18m and 166m was achieved. This further indicates the effectiveness
of the orthorectification process to improve the geolocation accuracy of these images. However,
the computed geolocation accuracies still do not match the stated accuracies of the PRISMA
mission document despite the use of GCPs.
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Chapter 9

Conclusion

The objective of the master thesis was to geometrically correct the PRISMA hyperspectral
images for accurate monitoring of changes in photosynthetic activity over forest areas. The
proposed methodology for achieving this objective involved an orthorectification process that
used ground control points (GCPs).

The approach has been demonstrated to be effective in correcting the PRISMA hyperspectral
images. The proposed methodology has resulted in a reduction of errors between these images
and the Sentinel – 2 reference map. Specifically, the errors were reduced by up to 139m in
the North direction and up to 75m in the East direction. The proposed methodology has also
improved the geolocation accuracy of all the hyperspectral images, with the most significant
improvement being up to 166m.

However, despite the improvements achieved, the geolocation accuracy of the PRISMA hyper-
spectral images is still below the accuracy stated in the PRISMA mission document, even with
the used of GCPs. Therefore, further improvements are required to obtain higher accurate im-
ages. Nevertheless, the developed methodology can serve as a starting point for research aimed
at improving the geolocation of the PRISMA hyperspectral images. Furthermore, it can be
made available to the scientific community to raise awareness about the geolocation accuracy
issue and encourage the development of new methodologies for more accurate correction of these
data.

PRISMA hyperspectral data offer a wealth of information that can be used in a wide range of
applications. However, the potential use of these data can be limited by the low operational level
of the PRISMA mission and the associated issues such as the shift problem, which significantly
affects the geolocation accuracy and reliability of the PRISMA hyperspectral images. Although
efforts have been made to mitigate this issue, such as the proposed methodology in this work,
the problem remains a significant challenge for the accurate mapping and monitoring of forest
areas. Therefore, despite the potential benefits offered by PRISMA data, their use is limited by
the operational constraints and the related issues linked to the PRISMA mission.
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Chapter 10

Future Perspectives

Nowadays, there has been an increase in the number of software programs that support the
hyperspectral data from the PRISMA mission. The ENVI software has undergone several im-
provements to enable it to handle PRISMA data format and perform operations on these data.
The latest version of the software (5.7 version) contains advanced tools like the RPC orthorec-
tification tool that uses RPC, (x,y,z) coordinates from GCPs and elevation data from a DEM
to create an orthorectified image. Further investigation could be done to explore the potential
of this tool to correct the PRISMA hyperspectral data. Additionally, the ERDAS IMAGINE,
a plugin developed by Planetek Italia, is another program that can be used to explore the po-
tential of PRISMA hyperspectral data. Although licensing constraints prevented the used of
the two aforementioned programs, it can still be beneficial to explore what they could offer for
processing the PRISMA data. Another software program that can be used to process these data
is the EnMAP – Box plugin. Developed in the framework of the imaging spectrometer EnMAP,
this plugin allows for spectral analysis and computation of various vegetation indices, but dot
enable correction of these data.

Although different software programs support the PRISMA data, given the limitations and the
low operational level of the PRISMA mission, it would be more advisable to shift focus towards
the use of data from the next-generation hyperspectral missions. The highly anticipated ENMAP
hyperspectral mission was launched in April 2022 and will soon deliver its first hyperspectral
data. The main objective of this German mission is to provide high quality hyperspectral
data at regional scale. Hyperspectral data will be delivered at 30m spatial resolution within
the 420 – 2450nm spectral range with a sampling distance of 6.5nm between 420 – 1000nm
and 10nm between 900 – 2450nm. Furthermore, the data will be provided with geolocation
accuracy of 30m when GCPs will be used and 100m when not used. However, daily assessment
of these data revealed that they can achieved geolocation of 55m without GCPs and 20m with
GCPs (Storch et al., 2023). Moreover, based on the first results of the mission, the EnMAP
hyperspectral data have the potential to be used in various applications. The upcoming FLEX
mission could also be very useful in the context of monitoring the photosynthetic activity. The
Fluorescence EXplorer satellite is planned to be launched in 2024 and will provide global data
about vegetation fluorescence which can be used as an indicator of their photosynthetic activity.
The hyperspectral data of this mission will range between the 500 – 780nm spectral with spectral
sampling between 0.1nm and 2nm.
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The upcoming hyperspectral data of the EnMAP and FLEX missions have the potential to
provide valuable information for the monitoring of vegetation photosynthetic activity due to
their high spectral resolution and ability to capture data in narrow spectral bands. Specifically,
the EnMAP data have the advantage that they would be easily processed using the EnMAP –
Box that is already available. However, it is important to acknowledge the limitations of the
temporal resolution of these data which might not be sufficient to capture short-term changes
in vegetation. To address this limitation, it might be worthwhile to explore the potential of
coupling EnMAP data with FLEX data or other sources. This approach could potentially
provide a more complete and accurate picture of photosynthetic activity, and thereby helping
to better understand the impacts of climate change on ecosystem health and developing more
effective management strategies for mitigating its effects.

63



Chapter 11

Appendixes

11.1 Appendix 1

The Python scripts developed in the context of this master thesis are available on the MatheO
website. The following scripts are available:

• init.py
• cly.py
• main.py
• PRISMAtoolbox.py
• rpcmodel.py

A data sample is available for testing the scripts, which includes:

• CSV file containing the coordinates of GCPs.
• Digital Elevation Model.
• PRISMA hyperspectral image at Level -2

In order to execute the scripts, it is necessary to adjust the folder path names and file names.
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11.2 Appendix 2

Test sample (GCP ID) Column error (pixel) 2 Row error (pixel) Mod (pixel)
2 1.081096 -0.168947 1.094218
4 -1.789248 -1.457879 2.307990
5 -1.512844 1.089821 1.864512
6 1.022396 0.108633 1.028151
7 -1.310496 -0.220952 1.328992
8 0.259111 -0.021257 0.259982
10 -0.115862 -0.211827 0.241443
11 1.444022 -0.115041 1.448597
12 2.156272 0.396431 2.192411
13 -0.897068 -0.066208 0.899508
14 -0.895378 0.011616 0.895453
16 -0.531428 -0.158178 0.554469
17 1.950436 0.672969 2.063271
18 -0.328781 0.010579 0.328951
20 0.229475 0.463633 0.517315

RFM model prediction errors for the GCPs collected on the hyperspectral image acquired on 20
April 2020 (ID 1).

11.3 Appendix 3

Test sample (GCP ID) Column error (pixel) Row error (pixel) Mod (pixel)
3 -0.564513 1.974684 2.053790
6 0.057439 0.277238 0.283126
15 1.552222 -1.758747 2.345759
20 -1.613982 1.676205 2.326929
22 0.150245 -0.300746 0.336187
23 -0.681501 0.629602 0.927816

RFM model prediction errors for the GCPs collected on the hyperspectral image acquired on 29
June 2020 (ID 2).
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11.4 Appendix 4

Test sample (GCP ID) Column error (pixel) Row error (pixel) Mod (pixel)
1 0.056845 0.425770 0.429548
2 2.176358 -0.110503 2.179162
3 -1.150743 0.281213 1.184606
4 -0.550629 -0.448692 0.710293
5 -0.402386 0.834291 0.926259
8 -0.283592 0.272270 0.393135
9 0.771722 -1.373610 1.575550
10 0.195624 0.010593 0.195910
11 1.311199 0.659474 1.467702
13 -0.722968 -0.541172 0.903078
14 -0.614089 -0.911621 1.099162
16 -0.369701 0.239447 0.440470
18 0.173453 -0.214093 0.275539
20 0.144552 0.080489 0.165450

RFM model prediction errors for the GCPs collected on the hyperspectral image acquired on 27
February 2021 (ID 3).

11.5 Appendix 5

Test sample (GCP ID) Column error (pixel) Row error (pixel) Mod (pixel)
2 1.275703 -0.105322 1.280043
4 -0.433980 -1.006021 1.095635
5 -1.491578 1.439660 2.073023
6 1.855320 -1.127515 2.171061
7 -0.796591 -0.160923 0.812683
8 -0.130231 -0.171097 0.215022
11 1.212782 0.298396 1.248952
14 -0.565388 -0.096073 0.573492
15 -0.330193 -0.583140 0.670135
16 -1.239205 0.470001 1.325342
17 1.445976 -0.626183 1.575738
18 0.067646 -0.092836 0.114867
19 0.502411 0.545505 0.741615
20 -0.667622 0.883454 1.107344

RFM model prediction errors for the GCPs collected on the hyperspectral image acquired on 15
April 2022 (ID 4).
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11.6 Appendix 6

Test sample (GCP ID) Column error (pixel) Row error (pixel) Mod (pixel)
1 -1.308401 -0.572817 1.428297
3 -1.637295 0.171478 1.646250
9 1.045115 0.572116 1.191462
11 0.987378 1.114387 1.488883
12 1.664595 0.711849 1.810416
13 -1.102778 -0.397182 1.172123
15 0.379227 0.120460 0.397900
16 -1.216404 -0.749139 1.428583
17 0.962814 -0.039744 0.963634
18 0.827836 -0.606819 1.026421
19 1.250625 0.509837 1.350554

RFM model prediction errors for the GCPs collected on the hyperspectral image acquired on 5
July 2022 (ID 5).

11.7 Appendix 7

Test sample (GCP ID) Column error (pixel) Row error (pixel) Mod (pixel)
2 1.994395 -0.388221 2.031828
3 -0.980544 0.380787 1.051887
4 -0.920411 -1.367320 1.648248
5 -0.966858 1.540689 1.818939
7 -0.391234 0.231000 0.454340
9 0.544819 -0.840603 1.001720
13 -0.396932 0.054598 0.400669
14 0.985425 -0.206935 1.006918
17 1.251593 0.870809 1.524728
18 -0.090398 -0.198262 0.217898

RFM model prediction errors for the GCPs collected on the hyperspectral image acquired on 30
September 2022 (ID 6).

11.8 Appendix 8

Test sample (GCP ID) Column error (pixel) Row error (pixel) Mod (pixel)
2 1.228701 -0.374355 1.284464
3 2.230620 -0.737250 2.349298
15 -0.892867 0.184291 0.911688
19 0.335134 -0.022827 0.335911
24 -1.386738 0.397650 1.442625

RFM model prediction errors for the GCPs collected on the hyperspectral image acquired on 10
November 2022 (ID 7).
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