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Abstract

This work focused on the study of tidal deformations in binary star systems. More specif-

ically, the first step is the complete development of the perturbative method, usually used

to model this kind of system, in order to highlight the approximation made for the calcu-

lations. The second step is a comparison between this method and MoBiDICT, a new non-

perturbative 3D static model that computes the deformation in binaries. Finally, those re-

sults will then be compared to a system already observed to assess them. The results show

that the perturbative method underestimates the total potential of the system where the

stars are highly distorted, and then underestimates different resulting parameters, such as

the apsidal motion rate. Comparing with observational data, MoBiDICT gives close results

concerning the apsidal motion rate. Finally, the influence of the αov parameter shows that

the modification of the internal structure of the stars will directly influence the apsidal mo-

tion.

Keywords: binary star system, tidal interaction, perturbative method, MoBiDICT
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Résumé

Ce travail s’est concentré sur l’étude des déformations de marée dans les systèmes d’étoiles

binaires. Plus spécifiquement, la première étape consiste en le développement complet de

la méthode perturbative, généralement utilisée pour modéliser ce type de système, afin de

mettre en évidence les approximations effectuées pour les calculs. La deuxième étape con-

siste en une comparaison entre cette méthode et MoBiDICT, un nouveau modèle statique

3D non perturbatif qui calcule la déformation dans les systèmes binaires. Enfin, ces résultats

seront ensuite comparés à un système déjà observé pour les évaluer. Les résultats montrent

que la méthode perturbative sous-estime le potentiel total du système lorsque les étoiles

sont fortement déformées, et sous-estime ensuite différents paramètres résultants, tels que

le taux de mouvement des apsides. En comparant avec les données observationnelles, Mo-

BiDICT donne des résultats proches en ce qui concerne le taux de mouvement des apsides.

Enfin, l’influence du paramètre αov montre que la modification de la structure interne des

étoiles influencera directement le mouvement des apsides.

Mots-clés : système d’étoiles binaires, interaction de marée, méthode perturbative, Mo-

BiDICT
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1
Introduction

Tidal deformation in binary star systems is a fascinating area of
study that involves the analysis of how the gravitational forces be-
tween two stars can cause them to become distorted. As the stars or-
bit around each other, they experience tidal forces that can stretch
or compress their shapes, leading to observable changes in their
brightness and spectral properties.
This phenomenon is particularly relevant for close binary systems,
where the stars are so close to each other that they can exchange
material and affect each other’s evolution. Tidal deformation can
cause the stars to lose angular momentum, which can lead to their
orbits decaying and eventually merging.
The study of tidal deformation in binary systems can provide im-
portant insights into stellar astrophysics, as it allows astronomers
to better understand the physical processes that govern the be-
haviour of stars. It has also practical applications for the study of
exoplanets, as the same tidal forces that affect binary stars can also
influence the orbits and evolution of planets around other stars.
Researchers use a variety of observational and theoretical tools to
study tidal deformation in binary star systems. This work devel-
oped in detail the perturbative method used to usually model bi-
nary systems. Then, a new non-perturbative method to compute
the deformation of binaries in three dimensions, MoBiDICT, will
be introduced. Finally, a comparison between observational data
and MoBiDICT’s results will be done to assess this new method.
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Binary systems of stars

In this introduction section, a general definition of binary star sys-
tems will be given. The classification, formation, and evolution
of this kind of system will be explained, as well as the case of
multiple-star systems and the possibility of the presence of planets.
The objectives and outlines of the work will then be given. Finally,
a literature review of previous work about tidal deformation and
apsidal motion in binary star systems will be done.

1.1 Binary systems of stars

1.1.1 Definition

A system of binary stars is a celestial system consisting of two stars that are gravitationally

bound to each other. These stars orbit a common center of mass, forming a binary system, as

presented in Figure 1.1, where the primary star, i.e., the brightest component of the system,

is presented in purple, and the secondary star, or the companion, is in blue. In this binary

star system, the two stars can have a range of characteristics, including similar or different

masses, sizes, and spectral types. They may be at various stages in their evolution, from pro-

tostars to main-sequence stars, giants, or even compact objects like white dwarfs, neutron

stars, or black holes.

Figure 1.1: Schematic representation of a binary system of stars. In purple is presented the
orbit of the primary star A, in blue the one of the secondary star B, and the CM in red is the
center of mass of the system.

The stars in a binary system are held together by their mutual gravitational attraction,

which determines their orbital motion. The orbit can have different shapes, ranging from

nearly circular to highly elliptical. The orbital parameters, such as the period, eccentricity

and inclination define the characteristics of the binary system. The gravitational interaction

between the stars can affect their individual evolution, leading to phenomena such as mass

2



Binary systems of stars

transfer, tidal deformation, stellar mergers, or the formation of compact binaries.

Binary star systems are prevalent in the universe, and they come in various types, includ-

ing detached binaries, where stars are well-separated, semi-detached binaries, with mass

transfer, and contact binaries, where the stars share a common envelope. The classification

of binary systems is based on factors such as the separation between stars, the degree of

interaction, and observational characteristics.

1.1.2 Classification

As already said, binary star systems can be classified based on various factors, mainly the

separation between the stars, the degree of interaction, or the way they have been observed.

Separation-based Classification : This classification is based on the distance between both

stars. One has:

⋆ Close Binaries: These systems have relatively small separations between the stars,

typically a few astronomical units (AU) to a fraction of an AU. The stars are in

close proximity and can interact strongly, often leading to phenomena like mass

transfer or tidal effects.

⋆ Wide Binaries: In these systems, the stars are relatively far apart, typically sep-

arated by several tens or hundreds of AU. The gravitational interaction between

the stars is relatively weak, and they typically evolve independently.

Interaction-based Classification : This classification is based on the type of interaction be-

tween the envelopes of both stars. In Figure 1.2 are illustrated the different configura-

tions that are explained just below.

⋆ Detached Binaries: The stars in these systems have separate, non-overlapping

Roche lobes and do not transfer mass between them. They have distinct shapes

and do not share a common envelope.

⋆ Semidetached Binaries: In semidetached systems, one star fills its Roche lobe

while the other does not. Mass transfer occurs from the overflowing star to its

companion, leading to accretion and potentially affecting the evolution of both

stars.

⋆ Contact Binaries: Contact binaries have stars that are so close that they share a

common envelope. The stars distort their shapes, and they may exchange mass.

3



Binary systems of stars

(a) Detached binaries (b) Semidetached binaries (c) Contact binaries

Figure 1.2: Illustration of the different interactions between stars in a binary system.

Observational Classification : This classification is generally the most used to classify bi-

nary stars as it considers their method of detection.

⋆ Visual Binaries: These binary systems can be directly resolved through telescopes,

and the two stars can be seen as separate entities, as presented in Figure 1.31.

These systems are characterized by the ability to visually distinguish the two stars

and measure their positions and motions independently. By tracking their mo-

tions, it is possible to derive their orbital parameters such as their periods, eccen-

tricities and inclinations.

Figure 1.3: CCD image of the visual binary α Cen A and B. Credit: CSU Remote Telescope.

⋆ Spectroscopic Binaries: Spectroscopic techniques are used to study these sys-

tems, as they are too distant to be resolved separately by telescope. Spectroscopic

binaries are identified by observing variations in the spectral lines of the com-

bined light, which indicate the presence of two or more stars in orbit around each

other. In a spectroscopic binary system, the motion of the stars along the line of

sight causes a Doppler shift in their spectral lines. As the stars move toward or

away from us during their orbital motion, the wavelengths of the spectral lines

are shifted to shorter (blueshift) or longer (redshift) wavelengths, respectively. By

measuring these Doppler shifts in the spectral lines, one can determine the ra-

dial velocity variations of the stars. The radial velocity curve, which shows how

1From http://www.csu.edu.au/telescope/ (10/07/23)
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Binary systems of stars

the radial velocity of the system changes over time, provides valuable information

about the orbital parameters of the binary system, including the period, eccen-

tricity, and mass ratio of the stars.

⋆ Eclipsing Binaries: Eclipsing binaries are systems where the stars orbit in such a

way that they periodically eclipse each other from our line of sight. During an

eclipse, one star passes in front of the other, partially or completely blocking its

light. This results in a decrease in the total brightness of the system. By observ-

ing the variations in the system’s light curve, one can derive valuable information

about the properties of the stars and their orbital parameters. The time between

consecutive eclipses corresponds to the orbital period of the system. The dura-

tion and depth of the eclipses provide insights into the relative sizes and shapes of

the stars and their proximity to each other. If the eclipses have different durations

or depths, it suggests that the orbit is not perfectly circular, indicating an eccen-

tric orbit. Finally, by analyzing the shape and duration of the eclipses, one can

determine the mass ratio of the stars, i.e. the ratio of the mass of the secondary

star to the mass of the primary star.

⋆ Astrometric binaries: By monitoring certain stars over a period of time, we may

notice a discernible deviation or "wobble" in their proper motion. When this de-

viation occurs periodically, it suggests that an invisible companion exerts a grav-

itational influence on the star. In such cases, we identify the presence of a binary

system, wherein a visible star and a fainter companion orbit a shared center of

mass. These binary systems, discovered through astrometric methods, are re-

ferred to as astrometric binaries. One can see in Figure 1.42 the proper motion of

Sirius system over 80 years. F. Bessell shows in 1844 a wobble in its proper motion,

suggesting the presence of a non-visible companion.

Figure 1.4: Diagram of the proper motion of the Sirius system over 80 years. The slight per-
turbations or wobble in the bright star, Sirius A, is due to the presence of its much dimmer
white dwarf companion, Sirius B. Credit: Courtesy of Mike Guidry, University of Tennessee.

These classifications provide a framework for organizing and studying binary star sys-

tems. It is worth noting that some systems can fall into multiple categories, as their proper-

ties and behaviours may change over time.
2From https://www.atnf.csiro.au/outreach/education/senior/astrophysics/binary_types.html (10/07/23)
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Binary systems of stars

1.1.3 Formation

Binary star systems can be formed through various mechanisms, depending on the spe-

cific circumstances of their formation.

Fragmentation of a Molecular Cloud

Molecular clouds are vast regions of interstellar gas and dust with high densities and

low temperatures. These clouds can undergo gravitational collapse, initiating the pro-

cess of star formation. As the cloud contracts under its self-gravity, it can fragment into

smaller clumps, each of which has the potential to collapse further and form individ-

ual stars.

During the fragmentation process, if the molecular cloud breaks into two or more

clumps of similar mass, these clumps can collapse and form binary, or multiple, star

systems. As proposed by J.E. Pringle [1], an external impulse will initiate the collaps-

ing, and produce wide binaries.

S. Offner & al. [2] [3] suggest that turbulence within a single core leads to the forma-

tion of multiple dense clumps. Each clump then collapses independently, resulting in

the formation of stars that orbit each other. Their team conducted a series of simula-

tions using this kind of turbulent fragmentation to investigate the formation of binary

star systems. They ran a total of twelve simulations, of which five produced single

stars, five produced binaries, and two produced triple-star systems. These simulations

started with a spherical core exhibiting random turbulent velocities and followed the

process of seed formation, mass accretion, and protostellar outflow launching. Their

results are consistent with the expectation of wide separations resulting from separate

gravitational collapse events.

Disk Fragmentation

It is a process by which a protostellar disk surrounding a young star becomes gravita-

tionally unstable and fragments into multiple clumps that can eventually form binary

star systems. As explained by Kratter and Lodato [4], the disk fragmentation occurs

when a protostellar disk becomes sufficiently massive and cool to reach a threshold for

gravitational instability. This instability leads to the formation of dense clumps within

the disk. These clumps can further contract and undergo gravitational collapse, po-

tentially forming binary systems or multiple-star systems. Several factors influence the

conditions under which disk fragmentation can occur, including the mass of the pro-

tostellar disk, its temperature, viscosity, and the presence of turbulence or magnetic

fields. Disk fragmentation can occur through different fragmentation modes, such as

gravitational fragmentation, gravitational instability in spiral arms, or disk fragmen-
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tation due to disk warping or tidal forces from companion stars. Each mode has its

specific conditions and outcomes.

Capture or Exchange

Binary systems can also form through capture or exchange interactions. The capture

or exchange process for the formation of binary star systems occurs when a passing

star interacts gravitationally with either a single star or an existing binary system, re-

sulting in the capture of the passing star and the formation of a binary configuration.

In the capture scenario, a single star encounters another star or a binary system closely

enough that their gravitational interaction leads to the capture of the passing star into

a binary system. The passing star’s trajectory is altered, and it becomes gravitationally

bound to the original star or binary, forming a new binary system. In the exchange

scenario, the gravitational interaction between a binary system and a passing star can

lead to the exchange of companions. During the interaction, one star from the binary

is ejected, while the passing star becomes gravitationally bound to the remaining star

in the binary, resulting in a new binary configuration. The likelihood of capture or ex-

change events depends on the stellar densities and velocities in stellar environments

such as stellar clusters. The higher the density and velocity dispersion, the more op-

portunities for encounters and gravitational interactions that can result in capture or

exchange events.

Stellar Collision

Binary star systems can sometimes form through stellar collisions, particularly in dense

stellar environments such as stellar clusters. Stellar collisions occur when two stars

physically collide with each other due to close encounters or interactions in dense

stellar regions. These collisions can result in the merger of the two stars, leading to

the formation of a more massive star or a binary star system. In dense stellar clusters,

the proximity of stars increases the likelihood of close encounters and, consequently,

stellar collisions. In the cores of such clusters, where stellar densities are highest, stel-

lar collisions can occur more frequently, potentially resulting in the formation of bi-

nary systems. The outcome of a stellar collision depends on the masses, velocities,

and impact parameters of the colliding stars. In some cases, the collision can lead to

the coalescence of the stellar cores, forming a single, more massive star. In other cases,

the collision can result in the formation of a binary star system, where the two stars

remain gravitationally bound after the collision.

Those processes of formation are generally considered for low-mass binary systems. How-

ever, for massive binaries, the fragmentation of molecular cloud as well as the disk frag-

mentation can be thought about at the condition that one has a massive molecular cloud or

protostellar disk. A competitive accretion scenario can also occur when multiple protostars
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within a clustered environment compete for the available gas and dust in their vicinity. The

most massive protostars can accrete material at a higher rate, which gives them a competi-

tive advantage over their companions. Finally, in dense stellar environments, such as stellar

clusters, close encounters and stellar collisions can occur. In some cases, collisions between

massive stars can result in the coalescence of their cores, leading to the formation of a mas-

sive binary or hierarchical multiple system.

The case of close binaries is also particular, as it involves the close proximity of the two

stars. The disk fragmentation process can lead to such a system, but other scenarios can

also be considered. The obvious situation is the capture by the gravitational interaction of a

passing star with another. A stellar collision can also be considered for the formation of close

binaries. Tidal interactions can cause two stars to migrate closer to each other, by the gravita-

tional influence of a third passing star. Finally, close binaries can also form through dynam-

ical interactions in stellar clusters. Interactions between stars can exchange companions,

leading to the formation of new binary systems with close separations. Additionally, gravita-

tional interactions can cause orbital decay, bringing initially wider binary systems into close

configurations.

While the exact mechanisms responsible for the formation of binaries are still being in-

vestigated, it is likely that a combination of these processes, as well as other factors such

as environmental conditions and dynamical interactions, play a role in the formation and

evolution of binary star systems.

1.1.4 Evolution

The evolution of a binary star system is influenced by several factors, including the masses

of the stars, their separation, their orbital eccentricity, and the presence of other nearby ob-

jects. The stellar evolution of both stars is affected by the presence of their companion, es-

pecially by the interactions between them.

Interactions between stars in binary systems can have significant consequences for their

stellar evolution. Depending on the type of interaction and the properties of the stars in-

volved, they can lead to various phenomena, including mass transfer, tidal effects, common

envelope evolution, and even stellar mergers.

⋆ Mass Transfer: In close binary systems, one star can transfer mass to its companion

through different mechanisms. In a Roche lobe overflow scenario, when a star expands

beyond its Roche lobe (see Fig. 1.2(c)), gas flows from the expanded star onto its com-

panion. This mass transfer can significantly affect the evolutionary paths of both stars,

altering their masses, luminosities, and evolutionary timescales.
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⋆ Tidal Effects: The tidal gravitational forces between stars in a binary system can induce

tidal effects, causing the stars to become tidally distorted. Tidal interactions can lead to

the transfer of angular momentum, orbital circularization, and synchronization of the

stars’ rotations with their orbital motion. These effects can impact the stars’ internal

structure, rotational velocities, and magnetic activity. It will also affect their apsidal

motion, as it will be developed and discussed in this work.

⋆ Common Envelope Evolution: In some cases, when a star evolves and expands, its

outer envelope can envelop the companion, leading to a common envelope phase.

During this phase, the outer envelope of the evolving star and the companion share

a common envelope of gas. The interaction between the envelope and the compan-

ion can result in orbital energy dissipation and the spiral-in of the companion. Com-

mon envelope evolution can lead to binary tightening, orbital shrinkage, and potential

mergers or the formation of close binary systems.

⋆ Stellar Mergers: In certain cases of extreme interactions, particularly in close bina-

ries, stars can merge, resulting in the formation of a single, more massive star. Stellar

mergers can have a significant impact on the properties and evolution of the resulting

merged star.

The consequences of these interactions on stellar evolution depend on various factors

such as the masses, separation, orbital eccentricity, and initial conditions of the binary sys-

tem. These interactions can lead to changes in the stars’ evolutionary paths, alter their sur-

face abundances, affect their nuclear burning rates, and influence the formation of exotic

objects such as cataclysmic variables, X-ray binaries, or even supernovae.

1.1.5 Multiple-star systems

Even if this work focused on binary star systems, it can exist systems of three or more

stars that are gravitationally bound to each other. These are called multiple-star systems.

They can have various configurations and, as for binary systems, they can exhibit various

forms of interaction and dynamics. The gravitational interactions between the stars can lead

to orbital changes, mass transfer, stellar collisions, and the exchange of companions. These

interactions can significantly impact the evolution and stability of the system, influencing

the stellar populations and leading to the formation of exotic objects.

A particular example of a multiple-star system is TYC 7037-89-1, a six-star system, dis-

covered by TESS and announced in January 2021. In Figure 1.53 is presented the system con-

figuration. This was the first system where the stars can be observed eclipsing one another,

because their planes of rotation point approximately towards the Earth.

3From https://universe.nasa.gov/stars/multiple-star-systems/ (10/07/23)
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Figure 1.5: This schematic shows the configuration of the sextuple star system TYC 7037-89-
1. The inner quadruple is composed of two binaries, A and C, which orbit each other every
four years or so. An outer binary, B, orbits the quadruple roughly every 2,000 years. All three
pairs are eclipsing binaries. The orbits shown are not to scale. Credit: NASA’s Goddard Space
Flight Center.

1.1.6 Planets

The formation of planets in binary systems can occur through similar processes as in

single-star systems. The protoplanetary disk around the stars can give rise to the formation

of planets through core accretion or gravitational instability. However, the presence of two

stars can also introduce additional dynamics that can influence planet formation, such as

perturbations from stellar companions or different disk structures.

It exists different types of planets depending on their orbits inside the binary system, as

illustrated in Figure 1.6.

⋆ P-Type Planets: These planets orbit around both stars in a binary system. They orbit

the binary center of mass, rather than an individual star. They can have complex and

dynamically challenging orbits due to the gravitational interaction between the stars.

⋆ S-Type Planets: S-type planets orbit around one of the stars in the binary system at a

closer separation. They are similar to planets in single-star systems and form within

the circumstellar disk around one of the stars. These planets can experience gravita-

tional interactions with the companion star, affecting their orbits over time.

The presence of two stars in a binary system can significantly affect the dynamics of plan-

ets. The gravitational interaction between the stars can result in complex orbital configura-

tions for planets, including stable, unstable, and dynamically evolving orbits. The gravita-

tional tug-of-war between the stars can cause orbital eccentricities and tilts, as well as in-

duce orbital precession. It is also possible that orbital instabilities provoke the ejection of

the planet. Known as rogue planets, they are not bound anymore to the binary system and
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roam through space as free-floating objects.

Figure 1.6: Simplified illustration of orbits of planets in a binary star system. Both stars are
orbiting on their own orbits and their center of mass is presented in red. The orbit of the
P-type planet is presented in green, while the S-type is in orange.

The habitability of planets in binary star systems depends on various factors. The amount

of stellar radiation received by a planet is influenced by the separation between the stars,

their masses, luminosities, and spectral types. Planets in close binary systems may expe-

rience strong tidal forces and intense stellar radiation, potentially affecting their climate,

atmosphere, and potential for life.
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1.2 Objectives and Outline of the current work

In close binary systems, tidal interactions and rotational effects are crucial in influenc-

ing stellar evolution through processes like mass transfer and common envelope phases.

However, accurately modelling these aspects requires improvements in theoretical models

to account for the breaking of spherical symmetry occurring in close binaries. The current

models of binary stars rely on the Roche model and the perturbative approach, both of which

involve several assumptions about gravitational, tidal, and centrifugal potentials.

The aim of the work is initially to completely develop the perturbative model to see where

the simplifications are located and what they will induce as an error on the binary star sys-

tem. In a second step, this perturbative model will be compared to MoBiDICT [5], a new

non-perturbative 3D static model that computes the deformation in binaries. Finally, those

results will then be compared to a system already studied, by S. Rosu [6] [7] to assess them.

In Chapter 2, the theoretical developments for the perturbative method, using spherical

harmonics, will be done, to determine the apsidal motion in the binary star system. To do

so, the Clairaut-Radau equation will be developed. Then, the different potentials, i.e. the

mutual gravitational potentials and the centrifugal potential, will be expanded. Finally, from

the precedent results, the expression for the apsidal motion will be determined.

Chapter 3 is dedicated to the MoBiDICT’s code. An explanation of its capabilities will be

given, as well as the preliminary results obtained by L. Fellay.

In Chapter 4 are given the different results obtained using MoBiDICT. First, the different

preliminary results explained in the previous section will be assessed using the theoretical

results. Then, the simulations will be done using parameters corresponding to the system

observed by S. Rosu [6] [7], in order to determine the correspondence between the simu-

lated and observed results.

Finally, in chapter 5 are discussed the obtained results, as well as the different assump-

tions made for this work.

12



Literature review

1.3 Literature review

Tidal deformations in binary star systems have already been studied, either theoretically

or using simulations. This section aims to give a general point of view of what has already

been done.

Several theoretical works have been conducted to study tidal deformation and apsidal

motion in binary star systems.

The study of close binary stars done by Kopal [8] [9] will be mainly used in this work.

Kopal investigates the complex interactions in close binary systems, aiming to unravel the

underlying dynamics and the effects of tidal forces, mass transfer and apsidal motion. He

developed theoretical models and computational methods to comprehend the behaviour of

binary stars, providing insight into their internal structure and the mechanisms governing

their evolution. To develop those mathematical models, he used a perturbative method, in

order to capture the effects of those perturbations on the different variables he had com-

puted.

Tassoul [10] discussed the theoretical modelling of apsidal motion in close binary sys-

tems and its significance as a diagnostic tool for understanding the internal structure of

stars. It explores the effects of stellar rotation, gravitational and tidal interactions, and gen-

eral relativity on the apsidal motion rate. Like Kopal before him, he develops mathematical

formalisms and equations to calculate the rate of apsidal motion in binary systems. He also

compared theoretical prediction with empirical data.

Shibahashi [11] has investigated the effects of stellar rotation on apsidal motion in close

binary systems. He explored the influence of rotation-induced deformation on the orbital

dynamics and the rate of apsidal motion. He has also developed theoretical models and

conducted numerical simulations to study the rotational effects on the apsidal motion. He

highlighted the importance of considering the impact of rotation in understanding the be-

haviour of binary systems.

Claret and Giménez [12] present a practical method for computing the rate of apsidal

motion in binary systems. The authors develop an analytical formula that takes into ac-

count factors such as stellar structure and general relativity effects. The method provides a

straightforward and efficient approach for calculating the apsidal motion rate in close binary

systems. In another paper [13], the authors create a grid of synthetic light curves and radial

velocities for detached binary systems. The paper focuses on the generation of synthetic ob-

servational data using theoretical models of binary stars. These synthetic datasets allow for

the study of various properties, including the apsidal motion, in a range of binary systems.
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Besides the theoretical work and the numerical simulations that have been reviewed pre-

viously, numerical codes specifically dedicated to the study of binary star systems have been

developed.

PHOEBE [14] (PHysics Of Eclipsing BinariEs) is a widely-used code for modelling and an-

alyzing the light curves and radial velocity curves of eclipsing binary systems. It includes

features to calculate the apsidal motion and other orbital parameters.

The Wilson-Devinney [15] (WD) code is a widely-used program for modelling and ana-

lyzing eclipsing binary systems. It allows for the determination of various parameters, in-

cluding the apsidal motion rate. It can also handle the complexities of eccentric orbits and

asynchronous rotation.

Siess & al. [16] developed BINSTAR, a stellar evolution code designed to study low- and

intermediate-mass binaries. They take into account the effect of tidal interactions, mass

transfer and angular momentum exchange within the system. They validate their code using

the calculation made by the Vrije Universiteit Brussel (VUB) group. They also led a study of

different masses and metallicities of stars to determine their influence on the evolution of

the system.
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Perturbative model of tidal deformations

This chapter contains the theoretical developments to evaluate the
apsidal motion of a binary system of stars, using the perturba-
tive method. This method implies several assumptions on the sys-
tem to make the calculations, which will be highlighted to un-
derstand where the differences with MoBiDICT are coming from.
First, an introduction about spheroid and its implications will be
done. Then, the system containing both stars will be described. The
Clairaut-Radau equation of the system will also be computed, us-
ing the spherical harmonics convention. After that, the different
potentials will be evaluated. Finally, the apsidal motion will be
determined, from the forces acting on the star.

2.1 Spheroid of a celestial body

Let’s first consider the equilibrium of an inhomogeneous self-gravitating celestial body,

made of incompressible fluid and rotating around a fixed axis passing through its center of

mass, as presented in Figure 2.1. A spheroid is a shape a celestial body will take due to its ro-

tation around the z−axis, considered as its rotation axis. Keeping only the l = 2 component,

the outer boundary of the spheroid is approximately given by:

r = Rθ(θ) = a

[
1− 2

3
ϵP2(cosθ)

]
, (2.1)

where ϵ is the ellipticity and P2(cosθ) the 2nd Legendre polynomial, defined as :

P2(x) = 1

2

(
3x2 −1

)
. (2.2)

This ellipticity is defined as:

ϵ= Re −Rp

a
, (2.3)

where Re = a(1+ ϵ/3) is the radius at the equator, Rp = a(1−2ϵ/3) is the radius at the poles
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Figure 2.1: Illustration of an inhomogeneous self-gravitating celestial body rotating around
a fixed axis passing through its center of mass CM.

(along the rotation axis), and a is the mean radius of the spheroid. In the case of ϵ = 0, the

spheroid is reduced to a sphere. However, for ϵ< 0, the spheroid is elongated along its rota-

tion axis and is called prolate, when, for ϵ> 0, the spheroid is squashed and is called oblate.

Those two cases are presented in Figure 2.2. Because of the centrifugal forces, the stars in

the binary system will be deformed as spheroids.

Figure 2.2: Representation of two spheroids: one prolate (left) and one oblate (right).

2.2 Binary stars system

The goal now is to compute the apsidal motion of a star in a binary configuration. In

Figure 2.3 is illustrated the coordinate system in which we will work during the theoretical

developments. For ease, we work in spherical coordinates, whose symmetry axis coincides

with the axis of rotation. The rotation axis of both stars is parallel to the orbit’s rotation axis.

For this problem, we will consider an inhomogeneous self-gravitating celestial body, made
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of an incompressible fluid, that rotates steadily about some fixed axis passing through its

center of mass. As defined before, the shape of the celestial body will be considered as a

spheroid, which will be in this case oblate. The hydrostatic equilibrium of this celestial body

can be written as:

∇p =−ρ∇U , (2.4)

where p is the fluid pressure, ρ the mass density, and U =Φ1+Φ2+χ is the sum of respectively

the gravitational potential from the first star, the gravitational potential from the second star,

and the centrifugal potential. It has to be mentioned that the centrifugal force does not al-

ways derive from a potential. It is the case for rigid or cylindrical rotations, that is why we

will assume a solid body rotation.

(a) Binary system coordinates
(b) Coordinate system in-
side a single star

Figure 2.3: Illustration of the coordinate system used for the theoretical developments. A is
the primary star, and B is the companion. P is the point at which we observe some param-
eters. a1 is the distance between the center of mass of the system and the center of star A.
R1 and R2 are the mean radius of respectively A and B. r 1 and r 2 are the distances from the
point P respectively to the center of star A and B. θ1 is the angle between the point P and the
perpendicular axis to the line relying upon both stars’ centers, passing through the center of
star A.

Taking the curl of equation 2.4, one has

∇ρ×∇U = 0 ⇐⇒U =U (ρ), (2.5)

such that we can deduce that the structure of each star is barotropic, which means that the

density and pressure are constant on a given equipotential. For a specified chemical compo-

sition, the configuration of stars adopts a thermotropic nature, signifying that the tempera-

ture remains also constant on the equipotentials.

As the stars are considered to be spheroids, the radius can be expressed as equation 2.1,

such that r = r (a). Then, as the mass density along a spheroid will depend on its mean ra-

dius (ρ = ρ(a)), the sum of potentials will also depend on a. Assuming that the eccentricity
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remains quite small, i.e. that the spheroids are nearly spherical, we will be able to compute

the Clairaut-Radau equation, which will give the deformation of the model. The second as-

sumption taking part in the simplification of the perturbation method is then:

ϵ<< 1. (2.6)

2.3 Clairaut-Radau equation

2.3.1 Development for the density

Using spherical harmonics instead of the Legendre polynomials, r can be developed as:

r (θ,φ) = a

[
1+ ∑

l ,m ̸=0
ϵl m(a)Y m

l (θ,φ)

]
, (2.7)

where Y m
l is the real spherical harmonic related to the associated Legendre polynomials via

the relation: Y m
l (θ,φ) = cos(mφ) P m

l (cosθ). As |ϵl m |≪ 1, at first order in ϵ, one has:

a(r (θ,φ)) = r

[
1− ∑

l ,m ̸=0
ϵlm(r )Y m

l (θ,φ)

]
(2.8)

The density inside the star can then be developed as follows:

ρ(r,θ,φ) = ∑
l ,m ̸=0

ρlm(r )Y m
l (θ,φ), (2.9)

where ρlm(r ) =
∫
θ

∫
φ
ρ(a(r,θ,φ)) Y m

l (θ,φ) dθdφ, (2.10)

with ρ(a(r,θ,φ)) the density on the equipotential passing through (r,θ,φ). Using the defini-

tion of a, given by Eq. 2.8, and Taylor development, one has:

ρ(a(r,θ,φ)) = ρ(r )+ ∂ρ(r )

∂r
(r −a)

= ρ(r )+ ∂ρ(r )

∂r

(
r

∑
l ,m ̸=0

ϵlm(a)Y m
l (θ,φ)

)
(2.11)

One has then:

ρlm(r ) =
∫
θ

∫
φ

[
ρ(r )+ r

∂ρ(r )

∂r

∑
l ′,m′ ̸=0

ϵl ′m′(a)Y m′
l ′ (θ,φ)

]
Y m

l (θ,φ) dθdφ (2.12)

The associated Legendre polynomials are orthogonal between them at first order such
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that:

Y m
l (θ,φ)×Y m′

l ′ (θ,φ) = 0 if

m ̸= m′

l ̸= l ′
(2.13)

Then, one has the expressions for the density, after integrating on θ and φ:ρl ,m ̸=0(r ) =−r
∂ρ(r )

∂r
ϵlm(r )

ρ0,0(r ) = ρ(r )
(2.14)

The density projected on the equipotential takes then the expression:ρl ,m ̸=0(a) =−a
∂ρ(a)

∂a
ϵl m(a)

ρ0,0(a) = ρ(a)
(2.15)

2.3.2 Poisson Integral

The solution of the Poisson integral will be used to compute the gravitational potential.

First, one has spherical coordinates as:
x =r sinθcosφ

y =r sinθ sinφ

z =r cosθ

(2.16)

The system is axially symmetric considering the deformation along the rotation axis.

Then, the density ρ( r ) does not depend on φ, the azimuthal angle. One can expect that

the gravitational potential Φ(r,θ) will also not depend on it. This potential has the expres-

sion:

Φ( r ) =−G
∫

ρ(r ′)
|r ′− r | d 3r ′ (2.17)

where d 3r ′ = r ′2 sinθ′dr ′dθ′dφ′ in spherical coordinates. One can then set φ= 0 to estimate

the gravitational potential:

Φ( r ) =Φ(r,θ,φ= 0) =−G
∫ R

0

∫ π

0

∫ 2π

0

(r ′)2 ρ(r ′,θ′) sinθ′∣∣ r ′ − r
∣∣ dφ′ dθ′ dr ′

⇐⇒Φ(r,θ) =−2πG
∫ R

0

∫ π

0
(r ′)2 ρ(r ′,θ′) sinθ′ < ∣∣ r ′ − r

∣∣−1 > dθ′ dr ′ (2.18)

with

< ∣∣ r ′ − r
∣∣−1 >≡

∮ ∣∣ r ′ − r
∣∣−1 dφ′

2π
(2.19)
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This expression can be developed such that:

∣∣ r ′ − r
∣∣−1 = (

r 2 + (r ′)2 −2 r ′ · r
)−1/2

= (
r 2 + (r ′)2 −2r r ′F

)−1/2
(2.20)

with F = sinθ sinθ′ cosφ′+cosθ′ cosθ. The expansion in convergent power series in r ′/r , for

r ′ > r , is: ∣∣ r ′ − r
∣∣−1 = 1

r

[
1+

(
r ′

r

)
F + 1

2

(
r ′

r

)2 (
3F 2 −1

)+O

(
r ′

r

)3
]

(2.21)

The mean of the expression of F with respect to φ is:

< F >= cosθcosθ′ (2.22)

< F 2 >= 1

2
sin2θ sin2θ′+cos2θ cos2θ′

= 1

3
+ 2

3

(
3

2
cos2θ− 1

2

) (
3

2
cos2θ′− 1

2

)
(2.23)

Then, inserting those expressions in 2.19:

< ∣∣ r ′ − r
∣∣−1 >= 1

r

[
1+

(
r ′

r

)
cosθcosθ′+

(
r ′

r

)2 (
3

2
cos2θ− 1

2

)(
3

2
cos2θ′− 1

2

)
+O

(
r ′

r

)3
]

(2.24)

One can introduce then the associated Legendre polynomials such that:

Φ(r,θ) =
∞∑

l=0

l∑
m=−l

Φlm(r )Y m
l (θ), (2.25)

with, as seen before, the associated Legendre polynomials that are orthogonal between them,

and

Φlm(r ) =−2πG

r l+1

∫ r

0

∫ π

0
(r ′)l+2 ρ(r ′,θ′) Y m

l (θ′) sinθ′ dθ′ dr ′

−2πG r l
∫ R

r
(r ′)1−l ρ(r ′) Y m

l (θ′) sinθ′ dθ′ dr ′ (2.26)

As seen in Eq.2.9, the expression of the density can also be developed with the associated

Legendre polynomials, with ρlm taking the expression:

ρlm(r ) = (l +1/2)
∫ π

0
ρ(r,θ)Y m

l (θ) sinθ dθ. (2.27)
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Then, one has finally:

Φlm(r ) = −2πG

(l +1/2)r l+1

∫ r

0
(r ′)l+2 ρl m(r ′) dr ′

− 2πG r l

l +1/2

∫ R

r
(r ′)1−l ρlm(r ′) dr ′ (2.28)

2.3.3 Spectral development on equipotential

We want now to develop this expression of the gravitational potential on the equipoten-

tial, such that:

Φr (r,θ,φ) →Φa(a,θφ) (2.29)

For this, we will expand the expression ofΦ such that:

Φa(a,θ,φ) =Φr (r (a,θ,φ),θ,φ)

=Φ0(r (a,θ,φ),θ,φ)+ ∑
l ,m ̸=0

Φlm(r )Y m
l (θ,φ)

=Φ0(a)+ ∂Φ0

∂r
(r −a)+ ∑

l ,m ̸=0
Φlm(a)︸ ︷︷ ︸

at first approximation

Y m
l (θ,φ)

=Φ0(a)+ ∑
l ,m ̸=0

(
Φl m(a)+a

∂Φ0

∂a
ϵlm(a)

)
Y m

l (θ,φ) (2.30)

as
∂Φ0

∂r
(r −a) ≈ ∂Φ0

∂a

[
a ϵlm(a) Y m

l (θ,φ)
]

Moreover, one hasΦa =Φ′
0(a)+∑

l ,m ̸=0Φ
′
lm(a)Y m

l (θ,φ), so that:
Φ′

0(a) =Φ0(a)

Φ′
lm(a) =Φlm(a)+a

∂Φ0

∂a
ϵlm(a) =Φlm(a)+ G m(a)

a
ϵl m(a) for l ̸= 0

(2.31)

As ∂Φ0(a)/∂a =G m(a)/a2 by definition of the gravitational potential.
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2.3.4 Insertion of the expression of density on equipotential

From Eq. 2.15, one has the expression of ρlm on the equipotential. One wants then to

insert it into Eq. 2.28. For this, one can develop separately, by parts:∫ a

0
(a′)l+2ρlmd a′ =−

∫ a

0
(a′)l+3 dρ

d a
ϵlm(a′)d a′

=−
[

(a′)l+3ρ ϵlm

]a

0
+

∫ a

0
ρ d

(
ϵl m (a′)l+3

)
(2.32)∫ R

a
(a′)1−lρlmd a′ =−

∫ R

a
(a′)2−l dρ

d a
ϵlm(a′)d a′

=−
[

(a′)2−lρ ϵlm

]R

a
+

∫ R

a
ρ d

(
ϵlm (a′)2−l

)
(2.33)

Then, one can insert in the expression of the potential as follow:

Φl m(a) = −2πG

(l +1/2)
a−l−1

{
−

[
(a′)l+3ρ ϵlm

]a

0
+

∫ a

0
ρ d

(
ϵlm (a′)l+3

)}
− 2πG

l +1/2
al

{
−

[
(a′)2−lρ ϵl m

]R

a
+

∫ R

a
ρ d

(
ϵlm (a′)2−l

)}
= −2πG

(l +1/2)

{
�����−a2ρϵlm +a−l−1

∫ a

0
ρ d

(
ϵlm (a′)l+3

)
+����a2ρϵl m +al

∫ R

a
ρ d

(
ϵlm (a′)2−l

)}
Because for R >> ϵlm , ϵl m(R) ∼ 0. The final expression for the potential, after simplifications,

is then:

Φlm(a) = −2πG

(l +1/2)

{
a−l−1

∫ a

0
ρ d

(
ϵlm (a′)l+3

)
+al

∫ R

a
ρ d

(
ϵlm (a′)2−l

)}
(2.34)

2.3.5 Total potential

The total potential will be constant along the equipotential, by definition. This total po-

tential is the sum of the potentials acting on the body, i.e.

Φtot =Φ1 +Φ2 +Φc (2.35)

where Φ1 is the potential generated by the first star, Φ2 by the second, and Φc results from

the centrifugal forces. For l ,m ̸= 0, one has:

Φtot,lm =Φ′
1,lm +Φ′

2,l m +Φ′
c,l m (2.36)
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Taking into account Eq. 2.31, one can multiply Eq. 2.34 by al+1/4πG such that:

−1

2l +1

{∫ a

0
ρ d

(
ϵlm (a′)l+3

)
+a2l+1

∫ R

a
ρ d

(
ϵl m (a′)2−l

)}
+ al m(a)

4π
ϵlm + al+1

4πG

(
Φ2,lm +Φc,lm

)= 0 (2.37)

Considering that at first approximation,Φ′
2,l m +Φ′

c,l m ≈Φ2,lm +Φc,lm

2.3.6 Derivation

To obtain the Clairau-Radau equation for this system, one has first to derive Eq. 2.37 with

respect to a, such that:

d

d a

[ −1

2l +1

∫ a

0
ρ d

(
ϵlm (a′)l+3

)]
= −1

2l +1
ρ

d
(
ϵlm (a′)l+3

)
d a

= −1

2l +1

(
ρ

dϵ

d a
al+3 +ρϵ (l +3) al+2

)
= −al+2

2l +1

(
ρ

dϵ

d a
a +ρϵ (l +3)

)
(2.38)

d

d a

[ −1

2l +1
a2l+1

∫ R

a
ρ d

(
ϵl m (a′)2−l

)]
= −(2l +1)

2l +1
a2l

∫ R

a
ρ d

(
ϵlm (a′)2−l

)
+ 1

2l +1
a2l+1ρ

d(ϵ a2−l )

d a

=−a2l
∫ R

a
ρ d

(
ϵlm (a′)2−l

)
+ a2l+1

2l +1

(
ρ

dϵ

d a
a2−l +ρϵ(2− l )a1−l

)
=−a2l

∫ R

a
ρ d

(
ϵlm (a′)2−l

)
+ al+2

2l +1

(
ρ

dϵ

d a
a +ρϵ(2− l )

)
(2.39)

d

d a

[
al m(a)

4π
ϵ

]
= 1

4π

d

d a

[
al m(a) ϵ

]
= 1

4π

(
l al−1 m ϵ+al dm

d a
ϵ+al m

dϵ

d a

)
= 1

4π
al−1

(
l m ϵ+a

dm

d a
ϵ+a m

dϵ

d a

)
= al−1

(
l m ϵ

4π
+ρ a3 ϵ+ a m

4π

dϵ

d a

)
as m = 4π

3

∫ a

0
ρa′2d a′ (2.40)

d

d a

[
al+1

4πG

(
Φ2,l m +Φc,l m

)]= 1

4πG

d

d a

[
al+1 (

Φ2,lm +Φc,lm
)]

(2.41)
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Putting everything together, one has:

d

d a

[
Eq. 2.37

]= −al+2

2l +1

(
�
�
��

ρ
dϵ

d a
a +ρϵ (l +3)

)
−a2l

∫ R

a
ρ d

(
ϵlm (a′)2−l

)
+ al+2

2l +1

(
�

�
��

ρ
dϵ

d a
a +ρϵ(2− l )

)
+al−1 m

4π

(
l ϵ+a

dϵ

d a

)
+ρ al+2 ϵ+ 1

4πG

d

d a

[
al+1 (

Φ2,lm +Φc,lm
)]

= −a2l
∫ R

a
ρ d

(
ϵlm (a′)2−l

)
+al−1 m

4π

(
l ϵ+a

dϵ

d a

)
+ 1

4πG

d

d a

[
al+1 (

Φ2,lm +Φc,lm
)]

+al+2
(−ρϵ(l +3)

2l +1
+ ρϵ(2− l )

2l +1
+ρϵ

)
︸ ︷︷ ︸

=0

= 0 (2.42)

The mean value of the density is given by ρ = 3 m/4π a3 ←→ m al−1/4π = ρ al+2/3.

Replacing this expression in Eq. 2.42, one has:

−a2l
∫ R

a
ρ d

(
ϵlm (a′)2−l

)
+ 1

3
ρal+2

(
l ϵ+a

dϵ

d a

)
+ 1

4πG

d

d a

[
al+1 (

Φ2,lm +Φc,lm
)] = 0 (2.43)

Dividing this equation by a2l and then derivating with respect to a, one has:

d

d a

[
−

∫ R

a
ρ d

(
ϵlm (a′)2−l

)]
= ρ d

(
ϵlm (a′)2−l

)
d a

= ρ
(
(2− l )a1−l ϵ+a2−l dϵ

d a

)
= ρ a1−l

(
(2− l ) ϵ+a

dϵ

d a

)
(2.44)

d

d a

[
1

3
ρa−l+2

(
l ϵ+a

dϵ

d a

)]
= 1

3

d ρ

d a

(
l a−l+2ϵ+a−l+3 dϵ

d a

)
+ 1

3
ρ

[
(3− l )a2−l dϵ

d a
+a3−l d 2ϵ

d a2

+l a1−l (2− l )ϵ+ l a2−l dϵ

d a

]
= 1

3

d ρ

d a

(
l a−l+2ϵ+a−l+3 dϵ

d a

)
+ 1

3
ρ

(
a3−l d 2ϵ

d a2
+3a2−l dϵ

d a
+ l (2− l )a1−lϵ

)
(2.45)
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d

d a

[
1

a2l

1

4πG

d

d a

[
al+1 (

Φ2,l m +Φc,l m
)]]= 1

4πG

d

d a

[
1

a2l

d

d a

[
al+1 (

Φ2,lm +Φc,lm
)]]

(2.46)

Then, adding every term and multiplying by 3al−1/ρ:

3
ρ

ρ

(
(2− l ) ϵ+a

dϵ

d a

)
+ 1

ρ

d ρ

d a

(
l aϵ+a2 dϵ

d a

)
+

(
a2 d 2ϵ

d a2
+3a

dϵ

d a
+ l (2− l )ϵ

)
+ 3 al−1

4πG ρ

d

d a

[
1

a2l

d

d a

[
al+1 (

Φ2,l m +Φc,l m
)]]

︸ ︷︷ ︸
†

= 0. (2.47)

However, one has the relation:

ρ

ρ
= 1+3

a

ρ

dρ

d a
→ 1

ρ

dρ

d a
=

(
ρ

ρ
−1

)
3

a
. (2.48)

Simplifying with this expression, we obtain:

3
ρ

ρ

(
(2− l ) ϵ+a

dϵ

d a

)
+3

ρ

ρ

(
l ϵ+a

dϵ

d a

)
−3

(
l ϵ+a

dϵ

d a

)
+

(
a2 d 2ϵ

d a2
+3a

dϵ

d a
+ l (2− l )ϵ

)
+† = 0. (2.49)

⇐⇒ a2 d 2ϵ

d a2
+6

ρ

ρ

(
a

dϵ

d a
ϵ

)
− l (l +1)ϵ+† = 0. (2.50)

At first order, the termΦ2,lm +Φc,lm is proportional to al if the companion star is treated

as a punctual source (see section 2.5). With the derivative inside the term †, the whole term

can be neglected.

It is possible to define the structural coefficient by the parameter ηlm , such that:

η= a

ϵ

dϵ

d a
, (2.51)

where we note ηl m as η and ϵlm as ϵ. One has then:

dϵ

d a
= ηϵ

a
and

d 2ϵ

d a2
=

(
dη

d a

1

a
+ η(η−1)

a2

)
ϵ. (2.52)

We can replace this expression in equation 2.50, taking into account that the term † can
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be neglected, so that:

ϵ a2
(

dη

d a

1

a
+ η(η−1)

a2

)
+ 3ρ

ρ̄
a

(ηϵ
a

)
+ 3ρ

ρ̄
lϵ–(l +1)lϵ= 0.

Dividing by ϵ, we obtain:

a
dη

d a
+η(η−1)+ 3ρ

ρ̄
(η+ l )− l (l +1) = 0. (2.53)

This last equation is known as the Clairaut-Radau equation.

2.4 Potential evaluation inside 1

From equation 2.37, we will be able to compute the expression for the potential inside

the first star. One has to divide this equation by a2l+1 and derive it with respect to a. Taking

into account that m(a)/4π= ∫ a
0 ρa′2d a:

d

d a

[ −1

2l +1

1

a2l+1

∫ a

0
ρ d

(
ϵlm (a′)l+3

)]
= 1

a2l+2

∫ a

0
ρ d

(
ϵlm (a′)l+3

)
+ −1

2l +1

1

a2l+1
ρ

d(ϵ al+3)

d a

= 1

a2l+2

∫ a

0
ρ d

(
ϵlm (a′)l+3

)
+ −1

2l +1

1

a2l+1
ρ

(
al+3 dϵ

d a
+ϵ(l +3)al+2

)
. (2.54)

d

d a

[ −1

2l +1

∫ R

a
ρ d

(
ϵlm (a′)2−l

)]
= 1

2l +1
ρ

d(ϵa2−l )

d a

= 1

2l +1
ρ

(
a2−l dϵ

d a
+ϵ(2− l )a1−l

)
. (2.55)

d

d a

[
a−l−1 m(a)

4π
ϵlm

]
= − m(a)ϵ

4π
(l +1)a−l−2 + a−l−1ϵ

4π

d(m(a))

d a
+ a−l−1m(a)

4π

dϵ

d a

= − ϵ

al+2
(l +1)

∫ a

0
ρa′2d a + ϵ

al+1

d

d a

(
m(a)

4π

)
+ 1

al+1

dϵ

d a

∫ a

0
ρa′2d a

= − ϵ

al+2
(l +1)

∫ a

0
ρa′2d a + ϵ

al+2
ρa3 + ϵ

al+2

a

ϵ

dϵ

d a

∫ a

0
ρa′2d a

= ϵ

al+2
(η−1− l )

∫ a

0
ρa′2d a +a1−lρϵ. (2.56)
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d

d a

[
al+1

4πG

(
Φ2,l m +Φc,l m

)]= 1

4πG

d

d a

[
Φ2,lm +Φc,lm

al

]
∼ 0, (2.57)

as we consider at first approximation that both potentials are proportional to al . Regrouping

those results together, one has:

d

d a
[a−2l−1(Eq 2.37)] = 1

a2l+2

∫ a

0
ρ d

(
ϵl m (a′)l+3

)
+ −1

2l +1

1

a2l+1
ρ

(
al+3 dϵ

d a
+ϵ(l +3)al+2

)
+ 1

2l +1
ρ

(
a2−l dϵ

d a
+ϵ(2− l )a1−l

)
+ ϵ

al+2
(η−1− l )

∫ a

0
ρa′2d a +a1−lρϵ

= 1

a2l+2

∫ a

0
ρ d

(
ϵl m (a′)l+3

)
+ ϵ

al+2
(η−1− l )

∫ a

0
ρa′2d a = 0. (2.58)

One can then multiply this equation by 2πG al+1/(l+1/2) to replace the integrals in equa-

tion 2.34. Such calculations will give an expression for the potential inside the first star as:

Φ1,l m(a) = 2πG

(l +1/2)

{
ϵ m(a)

4πa
(η−1− l )−al

∫ R

a
ρ d

(
ϵlm (a′)2−l

)}
. (2.59)

Keep going with the first-order approximation, and considering that we are on the sur-

face of the star, where a = R:

Φ1,l m(R) ≃ ϵGM

(2l +1)R
(η−1− l ). (2.60)

From equation 2.42 on the surface, one has:

ϵGM =−(2l +1)
Φ2,l m +Φc,lm

η+ l
R, (2.61)

where all variables that depend on a, i.e. ϵ,η and both potential, are also evaluated at the

surface of the star. Inserting this result in the previous equation, one has:

Φ1,lm(R) = 1+ l −η
η+ l︸ ︷︷ ︸
2kl ,1

(
Φ2,l m +Φc,lm

)
. (2.62)

The first factor can be defined as kl ,1 corresponds to the apsidal motion’s constant.

2.5 Potential generated by 2 inside 1

As it has been developed and explained by Kopal [8] [9], the second star can be treated

as a punctual source by the first star. Then, the potential generated by the second star inside

27
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the first one can be developed as:

Φ2(r1,θ1,φ1) =− G M2

r2

=− G M2

a

∑
l

(r1

a

)l
Pl (λ), (2.63)

where λ is defined as λ= cosφ1 sinθ1.

2.6 Centrifugal potential

In a non-synchronous case, the centrifugal potential can be computed as the sum of the

contribution from the rotation of the star around its center, and the contribution from the

rotation of the star around the center of mass of the system. In Figure 2.4 is illustrated this

configuration. The vectors a0 and aR1 are the centripetal acceleration vectors, respectively

given by the expressions:

a⃗0 =Ω2
0a1ex =∇(

Ω2
0a1x1

)
, (2.64)

a⃗R1 =−ΩR1ses =∇
(
−Ω2

R1
x2 + y2

2

)
. (2.65)

(a) (b)

Figure 2.4: Illustration of the rotations present in the binary system for the primary star. aR1

is the vector direction of the rotation with respect to the center of the star. a0 is the vector
direction of the rotation with respect to the center of mass (CM) of the system. ΩR1 and Ω0

are respectively the angular rotational velocities of the rotation around the star’s center and
the rotation around CM. s2 = x2

1 + y2
1 is the distance between the point P and the center of

the star A, es is its directional vector. x1 and y1 are the coordinate of the point P following
the coordinate system shown on the figure.
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The total centrifugal potential can be then computed as:

Φ1,c =Ω2
0a1x1 − 1

2
Ω2

R1(x2
1 + y2

1). (2.66)

One can put λ= cosφ1 sinθ1 = x1/r1 and ν= cosθ1 = z/r1. Then, one has:

x1 = r1 P1(λ), (2.67)

x2
1 + y2

1 = r 2
1 − z2 = 2

3
r 2

1 −
2

3
r1 P2(ν). (2.68)

The centrifugal potential is then re-expressed as:

Φ1,c =Ω2
0a1r1 P1(λ)−Ω

2
R1

3
r 2

1 +
Ω2

R1

3
r1 P2(ν),

= G M2

a

r1

a
P1(λ)−Ω

2
R1

3
r 2

1 +
Ω2

R1

3
r1 P2(ν). (2.69)

This last step corresponds to the application of Kepler’s law.

2.7 Potential inside 1

Now that the last unknowns have been computed, we can come back to the expression of

the potential inside 1, in equation 2.62, and replace the expressions obtained for Φ2,lm and

Φc,lm :

Φ1(R1,λ,ν) =Φ1,0 +2k2,1

(
−G M2

a
P1(λ)+Ω

2
R1a2

3
P2(ν)

)(
R1

a

)2

. (2.70)

Similarly, one has the expression for the potential inside the second star:

Φ2(R2,λ2,ν2) =Φ2,0 +2k2,2

(
−G M1

a
P1(λ2)+Ω

2
R2a2

3
P2(ν2)

)(
R2

a

)2

. (2.71)
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2.8 Influence of 2 on 1, itself influenced by the deformation

of 1

From Kopal’s developments [9]1, one has the following expressions:

(
R

r2

)3

= 1+3
r

R
P1(λ)+ r 2

R2 (5 P2(λ)+1)+ ... (2.72)

P2(λ2) = 1+ r 2

R2 (P2(λ)−1)+ ... (2.73)

For j > 2 → P j (λ2) = 1. (2.74)

One has also the associated Legendre polynomials:

P2(λ) = 1

4
Y 2

2 − 1

2
Y 0

2 , (2.75)

P2(cosθ) = Y 0
2 . (2.76)

For l = 2, with m = 0 and m = 2, the potential in the second star can be estimated as, by

replacing k2,2 by its expression:

Φ0
22 =

3−η2

η2 +2

(
1

2
+ 1

3

M

M1

)
G M1

a

(
R2

a

)5 (
a

r2

)3

, (2.77)

Φ2
22 =−3−η2

η2 +2

1

4

G M1

a

(
R2

a

)5 (
a

r2

)3

(2.78)

(2.79)

Replacing with the expressions given by Kopal, and neglecting the higher order terms,

one has:

Φ2(r2,θ2,φ2) =Φ0
22(r2)Y 0

2 (θ2,φ2)+Φ2
22(r2)Y 2

2 (θ2,φ2)

= 3−η2

η2 +2

G M1

a

(
R2

a

)5

︸ ︷︷ ︸
X

(
a

r2

)3 [(
1

2
+ 1

3

M

M1

)
Y 2

0 − 1

4
Y 2

2

]

= X

(
a

r2

)3 [
−P2(λ2)+ 1

3

M

M1
P2(cosθ2)

]
(2.80)

One can then develop:

P2(λ2)

(
a

r2

)3

≃
[

1+
(

R1

a

)2

(P2(λ)−1)

][
1+ 3R1

a
P1(λ)+

(
R1

a

)2

(5P2(λ)+1)

]
,

≃ 1+ 3R1

a
P1(λ)+6

(
R1

a

)2

P2(λ)+O

(
R1

a

)3

. (2.81)

1Equations 3.8, 3.9 and 3.10, p.38
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P2(cosθ2) = 1
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(
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And finally:

P2(cosθ2)

(
a

r2

)3

= −1

2
− 3

2
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a
P1(λ)+

(
R1

a

)2 [
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P2(λ)

]
+O

(
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)3

(2.83)

Inserting those expressions into equation 2.80, one has:

Φ2(r2,θ2,φ2) =−X

[
1

3

M

M1

{
1

2
+ 3

2

R1

a
P1(λ)− R2

1

a2

[
P2(cosθ1)− 5

2
P2(λ)

]}
,

+
{

1+ 3R1

a
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R2
1

a2
P2(λ)

}]
. (2.84)

From Kepler’s law, one has:

Ω2
R2a2 = G M

a

(
P̃0

PR2

)2

, (2.85)

where P̃0 = 2π/Ω0 is the orbital period and PR2 the rotational period of the second star.

Developing X, one has the expression for the potential:

Φ2(r2,λ,ν) =Φ20 +2k22

(
R2

a

)5
[

G M1

a

{
1+3

R1

a
P1(λ)+6

R2
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a2
P2(λ)

}

+ Ω2
R2a2

3

{
1

2
+ 3

2

R1

a
P1(λ)− R2

1

a2 [P2(ν)−P2(λ)]

}]
. (2.86)
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Now, let’s see the influence ofΦ2 with respect to r1:

Φ2(r1,λ,ν) =Φ̃20 −2k22

(
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)5 r1

a
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3G M1
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2
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]
,

=Φ̃20 + Φ̃2. (2.87)

The same reasoning can be done forΦ1.

2.9 Apsidal motion

Now that we have the complete expression for the potential, it is possible to compute

the apsidal motion of the system. The apsidal motion is the time variation of the periastron

argument, ω, which corresponds to the shift in the position of the apsidal line within the

eccentric system. We will begin by calculating the force from the gravitational potential of

the second star on the first one that is considered as non-perturbated. One has, for l = 2,

F2′10 =−
∫

V1

∂Φ′
2

∂x1
ρ10dV1 ≃−∂Φ

′
2

∂x1
(0) M (2.88)

where the notation "’" stands for perturbated and "0" for non-perturbated. V1 corre-

sponds to the volume of the first star. The partial derivative is evaluated at the center of the

first star. The potential Φ2 depends on x1 through the relation r1P1(λ)/a = x1/a. Then, the

only component that will have a non-zero gradient from the point of view of the first star is

the term l = 1, such that:

Φ′
2 ≃ Φ̃20 −2

GM1

a
k22

(
R2

a

)5 x1

a

(
3+ 1

2

M

M1

(
P̃0

PR2

)2
)

, (2.89)

→ ∂Φ′
2

∂x1
(0)M1 ≃ 2

GM 2
1

a2
k22

(
R2

a

)5
(

3+ 1

2

M

M1

(
P̃0

PR2

)2
)

. (2.90)

On another side, we can consider the relative acceleration inside the system as:

¨⃗r =
[
−GM

r 2
+R

]
e⃗x = ¨⃗r2 − ¨⃗r1, (2.91)

where R is the perturbed acceleration that produces the apsidal motion. From Newton’s law,

32



Apsidal motion

one has that:

R =R12 −R21 = F12

M2
− F21

M1
= F12

µ
= −F21

µ
, (2.92)

where µ= M1M2/M is the reduced mass. The densities of both stars are the combination

of a non-perturbed and a perturbed term such that ρi = ρi 0 +ρ′
i . Using the same reasoning,

the force exerted by the second star on the first can be developed as:

F21 = F2′10 +F201′ +F2′1′ , (2.93)

with the last term negligible at the first order. By action=reaction, one has:

F201′ =−F1′20. (2.94)

One has then:

F21 = F2′10 −F1′20. (2.95)

Inserting equations 2.90 and 2.95 inside the expression 2.92:

R =−F21

µ
= 1

µ
(F1′20 −F2′10)

=−2
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[
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2q
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P̃0

PR2

)2
)]

, (2.96)

where q = M1/M2 is the mass ratio. It has already been mentioned that the orbital period

depends on the separation distance a between both stars. Then, it is possible to define, with

A the semi-major axis of the elliptical orbit:

(
P̃0

PR2

)2

= 4π2a3

GM

1

P 2
R

=
( a

A

)3
(

P0

PR2

)2

(2.97)

The equation 2.96 becomes then:

R =−2
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[{
k22

q
3

(
R2

A

)5
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)5}(
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=−
(
Rtides

(
A

a

)7

+Rc

(
A

a

)4) GM

A2
,

where Rtides is the contribution from the tidal deformations and Rc the contribution from

the centrifugal deformations. According to the Gauss planetary equations, the apsidal mo-
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tion rate is given by:

dω̄

d t
=−

p
1−e2

e

√
A

GM

∫
R cosθ

P0
d t . (2.99)

⇐⇒ dω̄

d t
=−

p
1−e2

e

√
A

GM
<R cosθ > . (2.100)

We want to compute the mean value <R cosθ >:

1

P0

∫ P0

0

(
A

a

)4

cosθd t = X−4,1
0 = e(1−e2)−5/2, (2.101)

1
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∫ P0

0
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cosθd t = X−7,1
0 = 5

2
e(1−e2)−11/2

(
1+ 3

2
e2 + 1

8
e4

)
, (2.102)

where the X n,m
k coefficients are the so-called Hansen coefficients, given by the expres-

sion:

X n,m
0 (e) = 1

P0

∫ P0

0

( r

a

)n
cos(mθ) d t . (2.103)

Then, one will have, from equation 2.98:

<R cosθ >=−
(
RtidesX−7,1

0 +Rc X−4,1
0

) GM

A2
(2.104)

The apsidal motion inside the binary system is then given by:
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, (2.105)

where f (e) and g (e) are defined as:

f (e) =
(
1+ 3

2
e2 + 1

8
e4

)
/(1−e2)5 (2.106)

g (e) = 1/(1−e2)2 (2.107)
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Those theoretical developments finally gave us an expression for the apsidal motion rate

inside the binary system. Several assumptions have been made to reach this result:

⋆ Solid body rotation, such that the centrifugal force derives from a potential.

⋆ Small eccentricity so that the spheroids are nearly spherical

⋆ Second star is treated as a punctual source by the first one

⋆ Several expressions approximate at first order

As it will be explained in the next section, this expression obtained for the perturbative

method will be compared to the new non-perturbative method implemented in MoBiDICT.
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3
(New) non-perturbative models of tidal deformation

In this chapter will be explained the MoBiDICT code, developed
by L. Fellay and M.-A. Dupret [5]. This code is used to simulate
binary star systems using a new non-perturbative method. Their
results for the comparison of the new model with Roche model and
perturbative model are briefly described, and future perspectives
expected for the development of the code are explained.

3.1 MoBiDICT

To address the limitations of existing models, L. Fellay and M.-A. Dupret [5] have devel-

oped a new non-perturbative method capable of precisely computing the structural defor-

mation of binary systems in three dimensions, even in highly distorted cases. Their new

approach was then compared with the Roche and perturbative models for various orbital

separations and binary components.

Their computational tool, known as Modelling Binary Deformation Induced by Centrifu-

gal and Tidal forces (MoBiDICT), is implemented in Fortran 95 for computational efficiency.

MoBiDICT iteratively solves Poisson’s equation, incorporating centrifugal and tidal forces in

a non-perturbative manner, i.e. it does not consider the small deformation approximation

made by the perturbative method. By not assuming spherically symmetric density distribu-

tions, their method considers the redistribution of mass and its impact on the structure and

deformation of the stars and their companions. These non-perturbative models provide not

only accurate surface quantities but also offer access to the precise 3D structure of each bi-

nary system component.

The initial model for the stars’ structures inside the binary system is obtained via the

"Code Liegeois d’Evolution Stellaire" (CLÉS) developed by R. Scuflaire & al.[18]. Every star

can have its own structure such that it is possible to study binary systems with stars of dif-
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ferent masses and compositions. They assume that both stars have a rotation axis aligned

to the orbital rotational axis, so that the system will have two symmetry plans, which are the

orbital plan and the plan including the three rotation axis. Utilizing these two symmetries, it

is only needed to describe one-quarter of each star to model the entire 3D system.

CLÉS will give a 1-dimensional density profile, spherically symmetric, of each star i ,

ρi ,1D (r,µ,φ), that will be imposed along a characteristic direction (µcr i t ,φcr i t ) inside each

star. This critical direction is chosen to verify the mass conservation, for a mass mp enclosed

under an isobar of pressure p, at each layer of the star, such that:

d mp

d rp
= 4πρr 2

p , (3.1)

where rp is the average radius so that Vp = 4
3πr 3

p is the volume under this isobar. Here, one

defines µ= cos(θ), to have simplifications in the computation thanks to the symmetries. To

compute the different parameters, a mesh of µ and φ based on the Gauss-Legendre quadra-

ture method is employed. After the computation of this initial density profile in 3 dimen-

sions, MoBiDICT will iteratively solve Poisson’s equation in 3D space to rigorously calculate

the gravitational potential, the deformation and the density in this 3D space.

Initial density

Potential computation

Density interpolation

Convergence ?

Post-processing

no yes

From the initial density profiles, MoBiDICT will compute the total potential inside each

star using Poisson’s equation for each star. This equation is given as:

1

r 2
i

d

dri

(
r 2

i

dΦm
i ,ℓ

dri

)
− ℓ(ℓ+1)

r 2
i

Φm
i ,ℓ = 4πGρm

i ,ℓ, (3.2)
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with the boundary conditions:
Φm

i ,ℓ(0) = 0 if ℓ ̸= 0

(ℓ+1)Φm
i ,ℓ+ ri

dΦm
i ,ℓ

dri
= 0 at ri = Ri ,0,

(3.3)

where Ri ,0 is the radius at the surface of the star i . When integrating this equation, and using

the boundary conditions, we can find the expression given by Equation 2.28, developed in

the theory part. The total potential of each star is given by the sum:

Φtot =Φ1 +Φ2 +Φc, (3.4)

where both Φ1 and Φ2 are obtained via Equation 3.2. The centrifugal potential is computed

through the expression:

Φc(r,µ,φ) =−Ω
2
⋆

2
ϖ2(r,µ,φ)

=−Ω
2
⋆

2

[(
xCM − r sin(θ)cos

(
φ

))2 + (r sin(θ)sin
(
φ

)
)2

]
,

(3.5)

where ϖ(r,µ,φ) is defined as the distance of the element considered to the orbital rotation

rate. Ω⋆ is the stellar and orbital rotation rate and xC M is the distance of the star from the

centre of mass of the system.

Once the total potential inside each star is computed, the corresponding density will be

interpolated. To do so, they take advantage of the barotropic nature of each star’s structure,

where the density remains constant on equipotential surfaces. Assuming that the density of

star i along a given direction µcr i t and φcr i t is the same as the density of the corresponding

averaged 1D input model, they establish the functions ρi (Φi ,tot (ri ,µcr i t ,φcr i t )) = ρi ,1D (ri )

for each star. Through simple function composition and interpolation, they estimate the

density of the entire star using the total potential at each point of the grid.

Finally, a convergence criterion is defined to end the iteration process. It is guided by the

variations in density and gravitational potential between two successive iterations. These

variations quantify the contribution of each iteration to the deformation of each point in

a star, providing direct control over the convergence of the modelling process. The region

where significant deformation is expected to occur is the point nearest to the Lagrangian

point L1 in each star i : (Rs,i ,µ = 0,φ = 0). Therefore, if the changes in potential and den-

sity at this point become negligible compared to the previous iteration, the entire model is
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considered to have converged. The convergence criterion is then, for the j th iteration:

δρm
i , j ,ℓ =

ρi , j
(
Rs,i , j ,0,0

)−ρi , j−1
(
Rs,i , j−1,0,0

)
ρi , j

(
Rs,i , j ,0,0

) , (3.6)

or,

δΦm
i , j ,ℓ =

Φi , j
(
Rs,i , j ,0,0

)−Φi , j−1
(
Rs,i , j−1,0,0

)
Φi , j

(
Rs,i , j ,0,0

) . (3.7)

They have set the criterion for convergence as δρm
i , j ,ℓ < 10−8 and δΦm

i , j ,ℓ < 10−8 for each

star. This choice is based on the normalized precision we achieve with the 1D average input

models, which is approximately 10−8 on the density. If the model has not converged, the to-

tal potential is once again computed using the newly determined density.

To compute the apsidal motion rate, MoBiDICT will use a numerical integration on the

orbit. As for the perturbative method, the Gauss planetary equation will be used for a per-

turbed acceleration along the apsidal line:

dω

d t
=−

p
1−e2

e

√
a

GMtot
<R cosϕ>, (3.8)

withϕ the true anomaly and <R cosϕ> the time average of the perturbed acceleration such

that:

<R cosϕ>=
∫

R cosϕ d t∫
d t

(3.9)

To derive the apsidal motion of a system in a non-perturbative manner, their approach

only requires the computation of the time average of the resulting force. To do so, they took

several snapshots of stellar deformations at various points along the binary orbits. Then,

from those snapshots, they derive the time-averaged perturbed acceleration by reformulat-

ing its expression using the second Kepler’s law:

d t = r 2

na2
p

1−e2
dϕ, (3.10)

where r represents the separation between the stars, expressed using the first Kepler’s Law

as

r = a(1−e2)

1+e cos
(
ϕ+) (3.11)

By combining those four latest equations, the apsidal motion rate can be computed as:

dω

d t
=π (1−e2)

e

√
a

GMtot

∫ π

0

R cosϕ

(1+e cos
(
ϕ

)
)2

dϕ, (3.12)

where the integrals are restricted to half of an orbit due to symmetry considerations. It might

be presumed that a substantial number of snapshots taken over an entire orbit is neces-
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sary to attain a reasonable level of precision in calculating the apsidal motion. Neverthe-

less, through our method’s implementation, they have observed that utilizing fifteen evenly

spaced ϕ values across half of an orbit is adequate to achieve a relative precision of 10−4 to

10−5 for the apsidal motion in the vast majority of scenarios.

3.2 Results

3.2.1 Comparison with Roche model

The Roche model is a traditional approach for describing the total potential in a binary

system. While this model relies on strong assumptions about the stellar structure, it offers

the advantage of providing straightforward analytical expressions for the total potential at

any specific point within the binary system, taking into account the gravitational interac-

tions between two point-like bodies and the associated centrifugal potential. Its main ad-

vantage lies in the ability to obtain simple analytical expressions for the total potential. How-

ever, to derive these expressions, several assumptions are made. Firstly, the stars’ orbits are

assumed to be circular, and their rotational periods are synchronized with the orbital pe-

riod. Additionally, for the determination of the potentials, the stars are treated as point-like

objects instead of deformed bodies occupying a significant volume. Finally, the Roche model

assumes that the stellar density profiles are spherically symmetric, even in highly distorted

cases.

The total potential for the Roche model is then given by the expression:

Φtot,1 =Φ1 − GM2

r2
−Ω

2
⋆

2
ϖ2, (3.13)

with:

Φ1 =
∫ r1

Rs

Gm1(r )

r 2
dr − GM1

Rs
. (3.14)

It has to be mentioned that this expression, called refined Roche model, is a derivation of

the usual Roche model such that it guarantees that the gravitational potential is a solution of

Poisson’s equation while keeping it untouched outside of the star. The surface corresponds

to an equipotential. Therefore, the surface deformation of binary stars is directly influenced

by the total potential of the system. In Figure 3.1 are compared the positions of the surfaces

predicted by the Roche model and the new model for a 0.2M⊙ star with an orbital separation

of 2.8R1D . Here, R1D represents the radius of the 1D spherically symmetric model. The com-

parison reveals a noticeable difference in surface deformation between both models.

To quantify this difference, a new quantity is introduced: the difference in deformation

at the closest point normalized by the deformation between the Roche model and the 1D
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input model, given by:

∆R = Rs,MoBiDICT(µ= 0,φ= 0)−Rs, Roche (µ= 0,φ= 0)

Rs, Roche (µ= 0,φ= 0)−R1D
. (3.15)

For the system shown in Figure 3.1, this factor, denoted as ∆R, is equal to 0.368, indicat-

ing that MoBiDICT predicts 36.8% more deformation than the Roche model at the closest

surface point to the Lagrangian point L1.

Figure 3.1: Surface deformation of a twin binary system of a 0.2M⊙ star with an orbital sep-
aration of 2.8R1D . The black curve corresponds to the Roche lobe of the system, the yellow
curve is the surface of each star given by the Roche model while the purple curve corresponds
to the surface of each star given by the modelling with MoBiDICT. This Figure is directly taken
from the article by L. Fellay [5] (Fig.2 p.7).

3.2.2 Comparison with perturbation method

The perturbative models are based on treating the centrifugal and tidal forces as per-

turbations of the spherical symmetry, considering only the leading terms in the expansion.

Both the potentials and densities of these models are projected onto a basis of spherical har-

monics, accounting only for the l = 0 and l = 2 terms.

Figure 3.2 depicts the amplitude hierarchy of gravitational potential spherical terms. As

assumed by the perturbative model, the leading order terms are the l = 0 and l = 2 terms.

However, the next most significant term is the dipolar term (l = 1), especially outside of the

star. Although the perturbative model neglects this l = 1 term, it is found to be less than one

order of magnitude smaller than the l = 2 term. Consequently, the assumption to neglect

the l = 1 term is not justified for the perturbative models in highly distorted cases. The next-

order terms (l = 3,4) have similar amplitudes to the l = 1 term inside the star, but they are

one order of magnitude smaller than this dipolar term outside the star.
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Figure 3.2: Normalized gravitational potential projected on the spherical harmonics of a star
of 0.2M⊙ in a twin binary system with an orbital separation of a = 2.8R1D . The dotted lines
are corresponding to the surface of each star of the system in the direction including the
most distorted point of each star and the Lagrangian point L1 (µ = 0,φ = 0). This Figure is
directly taken from the article by L. Fellay [5] (Fig.9 p.12).

In Figure 3.3 is presented the Clairaut-Radau parameter, for l = 2, as defined by Equa-

tion 2.51. Its value is assumed to be the leading contribution by the perturbation model

to the apsidal motion of binary systems. When comparing the Roche model to other mod-

els, both perturbative and MoBiDICT models predict significant differences in η2 for all stars.

These differences indicate the limitations of the Roche model in accurately representing stel-

lar deformations due to assumptions about the stellar gravitational potential. In the less

distorted regions of the star (when r < 0.5R1D ), similar results are obtained with both mod-

els, suggesting that the new modelling provides a good representation of stellar deforma-

tion in these regions, where the perturbative modelling is expected to be valid. However,

as r > 0.5R1D (i.e., in the upper layers of the star), significant differences between the two

models emerge, with discrepancies increasing with r, as the stellar deformations become

more pronounced. These differences can be attributed to the limitations of the perturba-

tive approach in regions of high deformation, whereas this new non-perturbative model is

specifically designed to study such cases.

42



Perspectives

Figure 3.3: Evolution of η2 as a function of the average radius for the different models studied
in this work. The system studied here is a twin binary system composed of two 0.2M⊙ stars
with an orbital distance of 2.8R1D . This Figure is directly taken from the article by L. Fellay [5]
(Fig.10 p.12).

3.3 Perspectives

Numerical noise arising from higher spherical orders of the potential and densities has

been observed, which affects the accuracy of the derived ηl coefficients. To address this is-

sue, it is planned to implement a coupling of MoBiDICT with a refined perturbative approach

in the least distorted regions of the binary system. This refined approach will consider all the

spherical orders and include terms of the tidal and centrifugal potential that are typically ne-

glected in the classical perturbative models.

Moreover, several assumptions have been made for the computation of this code. The

rotation axis of both stars is aligned with the orbital rotation axis, and we work in a syn-

chronous configuration. A future plan is then to implement MoBiDICT such that it can sup-

port non-synchronized systems, as well as the misalignment of the axes of rotation of the

systems. It has to be mentioned that this latest goal will destroy the symmetry inside the

system.
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4
Results

In this section will be presented the results obtained through the
simulations using MoBiDICT, for a specific system that will be
described. They will be compared first to the results obtained with
the perturbative method, and then to the results computed from
observations. Finally, the influence of the alpha overshooting on
the apsidal motion will be shown.

4.1 System studied

In order to assess the results obtained through MoBiDICT simulations, it has been de-

cided to study a system already observed experimentally by S. Rosu & al. [6]. This system,

called HD152248, is a massive eccentric binary located in the core of the open cluster NGC

6231. It contains two twin stars, in a close binary configuration, which makes this system

ideal to be simulated by MoBiDICT. Different parameters, determined by both spectroscopic

and photometric observations, are given in Table 4.1.

Absolute masses 29.5+0.5
−0.4M⊙

Orbital period 5.816498+1.6e−6
−1.8e−6 d

Eccentricity 0.130±0.002

Inclination 67.6+0.2
−0.1°

Effective temperature 34000±1000 K

Bolometric luminosities (2.73±0.32)×105L⊙
Mean stellar radii 15.07+0.08

−0.12R⊙
Apsidal motion rate 1.843+0.064

−0.083°/yr

Table 4.1: Parameters of the twin stars inside the binary system HD152248, obtained through
spectroscopic and photometric observations. Those parameters come from Rosu& al. arti-
cle [6].
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From those parameters, Rosu & al. aimed to construct stellar evolution models using the

Clés code, and incorporate various prescriptions for internal mixing within the stars. They

try to identify models that best fit the observationally determined properties of the compo-

nents of HD 152248, including their internal structure constants and apsidal motion rate.

Several models are already presented in their article, but this chapter will aim to examine

the impact of the more accurate calculation made by the non-perturbative method on the

determination of some parameters, comparatively to the perturbative method.

To compute the initial properties of the system that will be used in MoBiDICT, we choose

to study a system with mass loss. The input parameters are presented in Table 4.2. They

result from the latest model presented by Rosu & al. [6] in their Table 1, page 7. Moreover,

mixing in convective regions is parameterized using the mixing length theory, where the pa-

rameter αov will be defined. It is the overshooting parameter chosen by the user that will

displace the boundary of the mixed region inside the star structure, such that:

rov = rc +αov min(Hp (rc ),h), (4.1)

with rc the Ledoux limits’ radius of the convective zone, rov the new boundary radius, h is

the thickness of the convective layer, and Hp (rc ) = P (rc )/ρ(rc ) g (rc ) represents the pressure

scale height taken at the edge of the convective core as determined by Ledoux criterion. A

study of the influence of αov on several parameters inside the system will be done in the last

section, but for the first comparisons, we will consider αov = 0.4. In addition to convective

mixing, turbulent diffusion is considered inside the star.

Initial mass 32.8 (M⊙)

Mass loss rate 1.17e −6(M⊙/yr)

Metallicity 0.015

Hydrogen mass fraction 0.715

Turbulent diffusion coefficient −1.6e7

Table 4.2: Input parameters to the CLÉS code for the computation of the stellar evolution
models.

Once the stellar evolution of the star is computed, the exact model we will use is deter-

mined via the value of the mean radius. We choose the step for which the radius of the star

is the closest possible to 15.07R⊙, and take the structure of the star at this specific step. We

have then the initial model for the density profile that we will enter as initial conditions to

MoBiDICT.
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4.2 Comparison between MoBiDICT and perturbative method

It has been shown by L. Fellay that both MoBiDICT and perturbative methods give the

same results in the less distorted regions. Another way to assess this conclusion is to study

the potential obtained via both methods with respect to the distance between both stars. In-

deed, if the stars are further away, the distortion of their shape will be less important. This

can be seen in Figure 4.1 and 4.2, where the gravitational potential evaluated at the surface

is shown for the dominating terms Φ2,0 and Φ2,2, depending on the distance between both

stars, normalized with respect to the radius of the star. For large distances, both potentials

seem to be the same. On the contrary, for closer systems, we directly see a difference between

them. The minimal distance considered here is a = 2R1 as, under this distance, MoBiDICT is

not able to compute a numerical solution, essentially because the two stars are in contact.

2 3 4 5 6
a/R1

0.0000

0.0001

0.0002

0.0003

0.0004

2,
0

pert

MOBI

Figure 4.1: Φ2,0 with respect to a/R1. a is the distance between both stars’ centers, and R1,
the radius of the star. The blue dash line corresponds to the distance in the system HD152248
studied.

The difference between dominant potentials is illustrated in Figure 4.3, where is shown

the relative difference between the MoBiDICT potential and the perturbative potential. This

figure allows us to notice that even for high distances systems, there is a variance of 1 and

2%, respectively for Φ2,0 and Φ2,2. This difference is all the greater as the distance between

the stars decreases, reaching respectively 5 and 17%. In the HD152248 system, the distance

between both stars is 3.5169 R1, and the corresponding error between both methods is equal

to 1.5% forΦ2,0 and 3.6% forΦ2,2.
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Figure 4.2: Φ2,2 with respect to a/R1. a is the distance between both stars’ centers, and R1,
the radius of the star. The blue dash line corresponds to the distance in the system HD152248
studied.
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Figure 4.3: Relative difference between the potential computed by MoBiDICT and via the
perturbative method, for the dominant spherical terms, with respect to a/R1. a is the dis-
tance between both stars’ centers, and R1, the radius of the star. The blue dash line corre-
sponds to the distance in the system HD152248 studied.

A last spherical term of the potential to study is the dipolar term, for l = 1. The pertur-

bative method assumes that it is negligible. However, when looking at Figure 4.4, one can

see the ratio between the dipolar term and the term for l ,m = 2, as a function of the distance

between the stars. For high distances, this dipolar term is negligible. However, for close sys-

tems, it has to be taken into account, as this ratio tends to be 10%.
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Figure 4.4: Φ1,1/Φ2,2 with respect to a/R1. a is the distance between both stars’ centers,
and R1, the radius of the star. The blue dash line corresponds to the distance in the system
HD152248 studied.

Those results conclude with the same deductions as obtained by L. Fellay. For wide bi-

nary systems, the perturbation method is enough to model the distortion of the stars. How-

ever, for close binaries, the dipolar term takes more importance such that it can be neglected

anymore, as it is usually done in the perturbative method. To determine which method is

best able to represent the deformations in the system, a comparison with observational data

will be done in the next section.

4.3 Comparison with observational data

The value of the apsidal motion rate has already been computed for the system HD152248,

as written in Table 4.1. The value R can be computed from the potentials obtained via Mo-

BiDICT or the perturbation method. This R is the perturbation that will provoke the apsidal

motion inside the system, as presented for the perturbation method in Equation 2.96. How-

ever, in MoBiDICT, the value of R will be normalized by GM/a. In Figure 4.5 are shown those

values. Once again, for close binaries, the perturbative method will give an inferior result to

the one computed by MoBiDICT.

It is also possible to compute the value of the apsidal motion rate via Equation 3.12 using

MoBiDICT. This value is equal to ω̇MoBi = 1.80°/yr. However, the value computed from ob-

servational data contains a relativistic term that must be taken into account. This relativistic

term can be expressed as:

ω̇GR =
(

2π

Porb

)5/3 3[G(M1 +M2)]2/3

c2(1−e2)
. (4.2)
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Figure 4.5: R as a function of a/R1. R is the perturbation that will induce the apsidal motion,
a is the distance between both stars’ centers, and R1, the radius of the star. The blue dash
line corresponds to the distance in the system HD152248 studied.

Replacing inside this equation the value from Table 4.1, and considering the value M1 =
M2 = 29.5M⊙, we obtain for the relativistic component the value:

ω̇GR = 0.163°/yr. (4.3)

If we subtract this contribution from the total apsidal motion rate observed, given in

Table 4.1, we have ω̇= 1.68°/yr, for the observational data. It is only 7.1% difference from the

results obtained with MoBiDICT. This new non-perturbative method will then overestimate

the value of the apsidal motion rate, even if this difference is not that high. In the next section

will be shown how the apsidal motion will be impacted by the parameter αov .

4.4 Influence of the alpha overshooting

We search here how the αov will influence the results obtained via the simulations, as the

internal structure of the stars will be different. These differences in internal structures will

be reflected through the apsidal motion rate, but also via the parameter k2 and the estimated

age of the system.

As said, the first and most important parameter to look at is the apsidal motion rate. In

Figure 4.6 is presented the apsidal motion rate obtained from the perturbation method, from

MoBiDICT, but also the value from the observation of the system HD152248, as a function

of the alpha overshooting. It is clearly seen that the perturbation method underestimates

the value of the apsidal motion rate. This will induce also an underestimation of the inter-

nal characteristics of the stars. As the parameter αov increases, the apsidal motion rate will

49



Influence of the alpha overshooting

decrease. A possible explanation for this phenomenon could be that the increasing of αov

could decrease the efficiency of tidal interactions, asαov will affect the outer layer of the star.

This reduced tidal interaction may lead to a slower apsidal motion rate.

Figure 4.6: Evolution of the apsidal motion rate with respect to αov .

To analyze the influence ofαov, we also compute the value of k2 and of the Age of the sys-

tem for values between 0.2 and 0.6. Those estimations are presented in Figure 4.7 and 4.8.

It can be seen that an increase of αov , i.e. a displacement of the boundary of the convection

region, will decrease the value of k2. This number is related to the distribution of mass within

the star and provides then insights into its internal density and the deformations caused by

tidal forces. A decrease in k2 indicates that the star’s internal structure is less affected by tidal

forces. This might be the result of a more compact and centrally concentrated mass distribu-

tion. A more massive and denser core compared to the outer layers could lead to a decrease

in k2, as the central region dominates the overall tidal response.

On the other end, the estimated age will also provide details concerning the internal

structure of the stars. By comparing the observed value of k2 to theoretical models of tidal

evolution, astronomers can estimate the age of the binary star system. The process involves

backward modelling to determine how much time would have been required for the sys-

tem to evolve from a more eccentric state to its current state with the observed k2 value. In

Figure 4.8, we can see that this estimated age will increase as we increase the boundary of

the convection zone. Different internal structures lead to different tidal evolution rates and,

consequently, different age estimates. Systems with more centrally condensed masses or

lower deformability may have longer tidal circularization timescales, resulting in older age

estimates.

The αov directly influences the internal structure of the stars inside the binary system. It
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Figure 4.7: Evolution of the apsidal motion’s constant with respect to αov .

Figure 4.8: Evolution of the estimated age of the system with respect to αov .

is observed through, in particular, the apsidal motion’s constant and the estimated age of the

system. By observing a system, as it has been done for HD152248, it is possible to estimate

the internal structure of the stars, and then have a better comprehension of the phenomenon

appearing inside this kind of system.
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5
Conclusion

In binary star systems with close proximity, the interplay of tidal interactions and rota-

tional effects plays a crucial role in influencing stellar evolution. This work embarks on a

two-fold mission. Initially, it involves a comprehensive expansion of the perturbative model

to highlight simplifications and gauge their impact as potential errors on binary systems’

parameters. Subsequently, a comparison is drawn between this perturbative model and Mo-

BiDICT [5], an innovative non-perturbative 3D static model designed to calculate deforma-

tions in binary systems. Furthermore, these findings are juxtaposed with those of a previ-

ously studied system by S. Rosu [6] to validate their relevance.

In the first section of this work is presented a general definition of a binary star system.

The different types of classification for those systems are discussed. The first one is based

on the separation distance between both stars. The second one refers to the interaction

between them, depending on the filling of their respective Roche lobe. Finally, the third clas-

sification is based on their method of detection. The formation of this kind of system is then

explored, as the exact conditions of formation are still investigated. Subsequently, the evo-

lution of binaries is discussed, as it depends on several interactions between both stars, i.e.

mass transfer, tidal effects, common envelope evolution and even stellar merger. The case of

multiple-star systems is then considered. Finally, the possible presence of planets in binary

systems is reviewed. The objectives and outlines of the current work are then given, and fi-

nally, a quick literature review is presented on the theoretical and numerical works already

done.

Thereafter, the second section is dedicated to theoretical advancements within the per-

turbative method. Using spherical harmonics, the derivation of apsidal motion within the

binary star system is undertaken. This entails the development of the Clairaut-Radau equa-

tion, along with the expansion of various potentials including mutual gravitational poten-

tials and the centrifugal potential. Afterwards, the expression for apsidal motion is derived

based on the preceding outcomes. Several simplifications are highlighted by those develop-

52



ments. We consider the rotation of the stars as a solid body rotation, such that the centrifu-

gal force derives from a potential. We also assume a small eccentricity, so that the spheroids,

shaping both stars, are nearly spherical. The second star is treated as a punctual source by

the first one. Finally, several expressions are approximated at first order.

In the third section is presented MoBiDICT, a new non-perturbative method used to

compute the structural deformations in close binary systems in three dimensions. A general

description of the code’s working is given, as well as the computation of the apsidal motion

rate. A first comparison with Roche and perturbative models has been done by L. Fellay and

is resumed. It is shown that for close binaries, Roche model does not predict the deforma-

tion as well as MoBiDICT does. Concerning the perturbative model, it appears to be close to

MoBiDICT’s results when the stars are not highly deformed. Finally, the perspectives of Mo-

BiDICT are discussed, notably a possible coupling with the perturbative model in the least

distorted regions in order to save some numerical noise.

Finally, the last section is dedicated to the results obtained through the simulations using

MoBiDICT. The first part introduces an existing system that has been observed by S. Rosu [6],

HD152248. This system is a twin binary system, and the parameters characterising both stars

and the orbit are given.

The second part is a comparison between MoBiDICT and the perturbative method. The

dominant spherical terms, Φ2,0 and Φ2,2 are computed for different value of a, the distance

between stars’ centers. We can see that for closer systems, the relative difference between

the perturbative and MoBiDICT calculations is higher than for further systems. In the clos-

est cases, we can reach a difference of 5% and 17% for respectively Φ2,0 and Φ2,2. In the case

of HD152248, for which the separation distance is equal to 3.5169R1, those errors are respec-

tively equal to 1.5% and 3.5%. Finally, the influence of the dipolar term is studied. In the

perturbative method, this term is assumed as negligible. However, we showed that for close

binaries, i.e. for high distortions, it cannot be neglected as it is equivalent to 10% of the Φ2,2

term.

The third part is a comparison between the simulations by MoBiDICT of the system

HD152248 and its observational data. With MoBiDICT, we obtain an apsidal motion rate

equal to 1.80°/yr, which has a difference of only 7.1% with the observational data.

Finally, the fourth part shows the influence of the parameter alpha overshooting. First,

we present the apsidal motion rate computing with the perturbative method and with Mo-

BiDICT. On one side, we see that the perturbation method underestimates the value of this

apsidal motion rate, and we conclude that this is due to the approximation made by the

perturbation method. On the other side, we see that the apsidal motion decreases as αov

increases. We explain this by the fact that αov modifies the outer layer of the stars, so that

it will decrease the efficiency of tidal effects. The apsidal motion’s constant k2 as well as the
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estimated age have also been studied depending on the value ofαov . k2 is also inversely pro-

portional to alpha overshooting. As this number directly relies on the internal density of the

stars, we conclude that an increase in the convective region zone will lead to reduced tidal

interactions. Finally, the estimated age has also been investigated, and as αov increases, the

age will also increase. Systems exhibiting greater central mass concentration or reduced de-

formability might experience extended tidal circularization timescales, leading to the deriva-

tion of older age estimations.
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