
https://lib.uliege.be https://matheo.uliege.be

Optimization of Bluetooth transfer towards a lite-tech head-up display

Auteur : Bellafqih, Reda

Promoteur(s) : Boigelot, Bernard

Faculté : Faculté des Sciences appliquées

Diplôme : Master : ingénieur civil en informatique, à finalité spécialisée en "computer systems security"

Année académique : 2023-2024

URI/URL : http://hdl.handle.net/2268.2/20017

Avertissement à l'attention des usagers :

Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément

aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger,

copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les

indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation

relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite.

Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre

et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira

un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que

mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du

document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit.

University of Liège

Faculty of Applied Sciences

Master thesis conducted for obtaining the

Masters degree in Computer Science Engineering

Optimization of Bluetooth

Transfer With a Lite-Tech

Head-Up Display

Author:

Reda Bellafqih

Supervised by:

Bernard Boigelot

Antoine Malherbe

Academic year 2023-2024

Abstract

This master's thesis addresses the problem of optimizing Bluetooth Low Energy (BLE)
technology in the development of aRdent smart glasses, with the end goal of elevating
the user experience by ensuring e�cient data transfer, minimal power consumption, and
robust connection stability [30]. This research focuses on examining and adjusting the
settings of BLE 4.1 [20], and exploring the improvements of BLE 5.0. Through a series
of empirical research [44] and testing, the study rigorously benchmarks [14] performance
enhancements, with a particular focus on the trade-o�s between energy usage and data
throughput. The comprehensive analysis extends beyond mere technical re�nements,
incorporating user-centric considerations to enhance in the practical application of wear-
able technology. The results of this research o�er a substantive contribution to the �eld,
showcasing the potential for substantial performance gains in BLE-enabled devices while
paving the way for future innovations in smart eyewear technology.

Acknowledgments

I want to sincerely thank my internship supervisor, Antoine Malherbe, for guiding and
supporting me in this work. I am grateful for his huge generosity of knowledge and know-
how because he really helped render the experience I have had meaningful. Furthermore,
Antoine was not only a project supervisor but also made me feel an important part of
his team. Needless to say, I also thank my academic supervisor, Bernard Boigelot, who
not only gave me the �nest piece of advice and insights but also became an important
character in developing this thesis. His remarks and advice have been of a great in�uence
on my work and, in turn, of a great in�uence on the choice of approach to the project.
I would also like to sincerely thank the team at Get Your Way for the support and help
during my work.

i

Contents

1 Introduction 1
1.1 Get Your Way . 1

1.1.1 The Company . 1
1.1.2 The Product . 2
1.1.3 Use Cases Example . 2

1.2 Project Statement and Objectives . 3
1.3 Approach and Methodology . 3

2 Product Description 5
2.1 Hardware Description . 5
2.2 Software Implementation Details . 7

3 Principles and Implementation of Bluetooth and BLE 9
3.1 Understanding Bluetooth and BLE . 9
3.2 Communication Channels . 10
3.3 Protocol Stack Layers . 10

3.3.1 Controller . 10
3.3.2 Host Controller Interface (HCI) . 11
3.3.3 Host . 11
3.3.4 Applications . 11

3.4 Detailed BLE Packet Structure . 12
3.5 Connection Establishment . 12
3.6 Data Transfer in BLE . 14
3.7 BLE parameters . 15

3.7.1 Connection Interval . 15
3.7.2 Inter Frame Space . 16
3.7.3 Attribute Maximum Transmission Unit 16
3.7.4 Connection Event . 17
3.7.5 Data Transmission Modes: Write With and Without Response . . . 17

3.8 Theoretical Bluetooth Throughput Limitations 17

4 Preliminary Performance Evaluation 19
4.1 Tools . 19
4.2 Initial Throughput . 22
4.3 Modi�able BLE Parameters in aRdent 1 23
4.4 Analysis of Throughput Across Di�erent Devices 23

4.4.1 Methodology . 23
4.4.2 Results . 23
4.4.3 Interpretation . 24

ii

5 Optimizing BLE Parameters 25
5.1 Optimizing the CI . 25

5.1.1 Modifying the CI . 25
5.1.2 Strategies for Optimizing the CI . 27
5.1.3 Experimental Setup . 27
5.1.4 CI Modi�cation on Di�erent Devices 28
5.1.5 Analysis of Test Results . 29
5.1.6 Analysis of Test Results: Throughput 31
5.1.7 Analysis of the CI in mobile phone 32
5.1.8 Analysis with ST electronic software tool 33
5.1.9 Theoretical Data Rate Evolution and Practical Data Rate Evolution

Based on CI . 37
5.2 Optimizing ATT MTU . 37

5.2.1 Modifying ATT MTU . 38
5.2.2 Analysis with ST electronic software tool 38

5.3 Optimizing Number of Packets per CE . 44
5.3.1 Modifying Number of Packets per Connection Event 46
5.3.2 Analysis with ST electronic software tool 46
5.3.3 Interpretation of the results . 54

5.4 Data Length Extension (DLE) . 55
5.5 LE 2M PHY . 57

6 Optimizing Write Without Response 58
6.1 Analyzing Data with PacketLogger . 58
6.2 Investigating the Root Cause and Exploring Potential Solutions 58
6.3 Investigating the Reception Bu�er Capacity as a Potential Cause 59
6.4 Continuous Monitoring and Dynamic Control of Data Transmission 60
6.5 Modulating Transmission Speed to Enhance Data Handling 60
6.6 Throughput Testing for Data Transmission 61
6.7 Optimal Delay Determination for High Volume Data Transmission 62
6.8 Focus on Disconnect Functionality . 63
6.9 Initial Problem and Mode Operation . 63
6.10 Understanding the Requirement for a 0.003 Second Delay 64
6.11 Veri�cation of Data Display on the Device 65
6.12 Investigating the Source of Data Display Issues: Interference vs. Memory . 66
6.13 Testing Write Without Response Mode in Flutter 67
6.14 Assessing BLE Behaviors on Alternate Devices 67
6.15 Exploration of MCU Clock Speed Adjustments on Arduino 68
6.16 Factors In�uencing Write Without Response Mode Performance 69
6.17 Note on BlueNRG-MS Chip Behavior in aRdents Glasses 70
6.18 Challenges in Accurately Measuring BLE Throughput in Write Without

Response . 70
6.19 Identifying and Resolving Firmware-Related Instabilities in Throughput

Measurement . 72
6.20 BLE Throughput Analysis . 73

6.20.1 aRdent Glasses: . 73
6.20.2 Arduino: . 74

6.21 Data Transmission Strategy on aRdent Glasses 76
6.22 Identi�cation of Hardware Limitation on aRdent Glasses 77
6.23 Investigation into Delay Requirement on MacOS 78

iii

7 aRdent 2 Setup and Optimization 79
7.1 Introduction to BLE Performance Enhancement at Get Your Way 79
7.2 Historical Context and Rationale for Advancement 79
7.3 Technical Enhancements and Setup . 79
7.4 Challenges and Diagnostic Approaches . 80
7.5 Concluding Remarks and Future Steps . 82

8 Interference in BLE Protocol and GYW Auto-Certi�cation 83
8.1 Introduction to Interference in BLE . 83
8.2 Sources of Interference . 83
8.3 Engineering and Scienti�c Tools for Managing Interference 83
8.4 Concluding Thoughts on Interference Management 84
8.5 Interference Management in aRdent and aRdent 2 Glasses 84
8.6 Potential Improvements and Challenges in Interference Management Algo-

rithms . 85
8.6.1 Proposed Enhancements in Interference Management 85
8.6.2 Limitations in Current Interference Management Strategies 85

8.7 Auto-Certi�cation Strategy for aRdent Glasses 86
8.7.1 Objective of Auto-Certi�cation . 86
8.7.2 Planned Testing Procedure . 86
8.7.3 Detailed Testing Procedure for Data Integrity and Interference As-

sessment . 87
8.7.4 ECM Testing Procedure During Data Transmission Phase 87
8.7.5 Representation and Setup of the ECM Testing Procedure 89
8.7.6 Impact of Logging on BLE Performance 90
8.7.7 Results . 90

9 Conclusion 93

iv

Acronyms

GYW Get Your Way

HMD Head-Mounted Display

HMI Human-Machine Interaction

BLE Bluetooth Low Energy

HCI Host Controller Interface

ATT MTU Attribute Maximum Transmission Unit

BR/EDR Bluetooth Basic Rate/Enhanced Data Rate

GATT Generic Attribute Pro�le

ISM Industrial, Scienti�c, and Medical

PHY Physical Layer

AFHSS Adaptive Frequency Hopping Spread Spectrum

L2CAP Logical Link Control and Adaptation Protocol

ATT Attribute Protocol

GAP Generic Access Pro�le

MIC Message Integrity Code

LL Link Layer

CCCD Client Characteristic Con�guration Descriptor

UUID Universally Unique Identi�er

SM Security Manager

CI Connection Interval

IFS Inter Frame Space

DLE Data Length Extension

CE Connection Event

IAS Interference Avoidance Schemes

AFH Adaptive Frequency Hopping

CSA Channel Selection Algorithms

IoT Internet of Things

ST Supervision Timeout

PL Packet Loss

v

EMC Electromagnetic Compatibility

MCU Microcontroller

vi

Chapter 1

Introduction

1.1 Get Your Way

1.1.1 The Company

Get Your Way is a Belgian-based start-up founded by three ambitious entrepreneurs
during their studies at the University of Liège. The team started with its idea of connected
smart glasses guiding cyclists and runners during their activities. In the context of the
StarTech program, they got a �rst prototype that enabled them to win the �rst prize in
the �nal of the competition.

Following that success, the founders joined VentureLab in March 2020. With the
important backing of VentureLab, they developed the �rst version of the product, as well
as the application for their �rst client. That is how Get Your Way was o�cially founded
in 2020.

GYW develops aRdent, connected smart glasses designed to increase the comfort,
safety, and e�ciency [41] of workers in various industries. aRdent is di�erent from most
of its competitors because it tries to give a simple and comfortable user experience. This
assisted reality (aR) [10] helps the user in completing tasks without causing distractions.

aRdent eyes is made of an optical module to be put within the peripheral vision of
users, displaying information while they are performing their work. According to the
application requirements, this information may be textual or graphical. In order to have
a very simple and fast communication with other devices like computers, smartphones,
or portable keypads, using BLE, aRdent are controlled through a Bluetooth API [5].
Therefore, it is possible to o�oad the computing power available and the software's func-
tionalities onto another device.

Despite these accomplishments, Get Your Way continued its journey with its o�cial
launch. This strategy distinguished the company in a market dominated by tech giants.

In 2022, Get Your Way received �nancing from industrial and Belgian actors and
entrepreneurs, something that greatly increased its ability to develop its product. And
so, thanks to the Walloon technology accelerator WSL, the company kept on growing.

1

In January 2023, Get Your Way achieved signi�cant milestones with the development
of the Minimum Viable Product for its aRdent smart glasses. The latter created the
conditions for a �rst on-site deployment and participation in numerous projects with Pole
Mecatech.

Today, Get Your Way continues to push the envelope. The team is on the lookout for
projects where they can replicate the success of this solution in general. He sets his focus
on becoming the simplest and most valuable assisted reality device at a valuable price.

1.1.2 The Product

The primary product developed by Get Your Way (GYW) is the aRdent smart glasses.
These glasses are designed as a versatile Head-Mounted Display (HMD) that can provide
information directly in the user's �eld of vision with maximal comfort.

Figure 1.1: aRdent smart glasses overview.

The aRdent smart glasses are designed based on several must-haves. The �rst is a
focus on comfort. Professionals have to wear it for long periods. For example, a delivery
person should be able to wear the glasses the entire workday without discomfort.

Second is e�ciency. Being a wearable connected device, the smart glasses have to be
small in size and highly e�cient. The glasses last for at least 4 hours continuously with a
single small battery. An impressive feature that the aRdent glasses have is the fact that,
after a battery has run out, it can be replaced very quickly, causing no down time.

Lastly, it is designed keeping user-friendliness in mind. It should provide a simple and
straightforward HMI that makes it easy for professionals to adopt and use.

As seen in Figure 1.1, aRdent smart glasses have been designed with simplicity and
minimalism. This approach ensures that the glasses are lightweight and comfortable for
long-term wear.

1.1.3 Use Cases Example

Order preparation, or picking, can be a complex task. It involves picking in the warehouse
a number of items, each identi�ed with its position, barcode, batch number and count.
Information handling when picking items proves to be di�cult and, in most cases, will
require a paper list. aRdent smart glasses solve this problem by displaying the needed
information in the user's �eld of vision, making the order assembly process hands-free.

Either when the worker is walking, or when using a forklift, they can focus on picking
items without the need to check the paper list periodically. Each kind of item is picked
one after the other, so no item is missed and a high safety level is maintained. As it can

2

be seen in the display of Figure 1.2, all needed details are shown, such as the location of
the item, code of the item, its description and quantity. The worker can quickly see this
information and start working right away. If the quantity he needs is not available, they
can easily change the quantity with the digital keypad.

When the picking is over, the list can be uploaded on the company's system directly, so
the error possibility generated by transcriptions is removed, and digitalization can occur
right away.

Figure 1.2: Display example shown on aRdent smart glass for order assembly.

1.2 Project Statement and Objectives

The objectives of this research project are threefold. The �rst is to optimize low-rate data
transfer via Bluetooth to be able to increase throughput. A greater throughput allows
for a wider range of applications for smart glasses and enables the transfer of larger �les
without signi�cantly degrading the user experience. Additionally, higher throughput and
lower latency improve the responsiveness of command transmission, which enhances and
improves the user experience.

The second objective is to optimize energy utilization to extend the operational lifespan
of devices. As smart glasses are worn on the head and rely on a battery, better energy
e�ciency will enable users to enjoy longer usage sessions, thus enhancing the overall user
experience.

The third objective is focused on optimizing the stability of Bluetooth connections to
increase reliability and improve the user experience. A stable and fast connection ensures
that the glasses can be used seamlessly and comfortably.

1.3 Approach and Methodology

To optimize BLE for the aRdent smart glasses, a systematic methodology was followed.
This methodology is comprised of distinct stages, each one derived from the �ndings of
the preceding stage, ultimately leading to the practical realization of theoretical �ndings.

The project started with an important �rst step: the review of basic principles that
operate behind Bluetooth and its low-energy versions. This included reading technical
and multimedia documentations in order to derive baseline knowledge about Bluetooth
technologies. The detailed working of BLE, and the improvements it brought over con-
ventional, classic Bluetooth, were studied.

An in-depth analysis of available literature was done in this stage to gain knowledge
out of some scienti�c articles dealing with BLE optimization techniques for di�erent ver-
sions. This stage consisted of the reading of some academic paper systematically, in order

3

to identify the already applied optimization methods along with their corresponding re-
sults. A BLE versions comparison study was also conducted to demarcate the scope of
improvements.

With the theoretical bounds well established, the research proceeded towards making
informed predictions about BLE performance. This was done by predicting the outcomes
of optimizing some of the documented BLE parameters. Hypotheses were generated about
the potential improvements in data transfer e�ciency and power consumption.

The changes were suggested, and actual experiments were conducted to test the theo-
retical hypothesis. A cycle of iterations was performed to re�ne the parameters based on
di�erences between expected and observed results.

The last step of the research methodology was a synthesis of the �ndings. The practical
test results were compared to the theoretical predictions to measure the e�ciency of the
optimization. The implications that the �ndings have analyzed for understanding the
future implications of the development of the BLE technology in wearable devices.

4

Chapter 2

Product Description

2.1 Hardware Description

The performance of the aRdent glasses comes from the embedded Renesas RZ/A2M MCU
[66]. This MCU utilizes the power of an ARM Cortex-A9 core, capable of reaching speeds
up to 528MHz, and includes a dedicated DRP to enhance processing for image-related or
AI-centric tasks. The device is equipped with a non-expandable 4MB of onboard SRAM
[84], complemented by an additional 64MB of Macronix �ash memory externally pro-
visioned for both �rmware [45] and application data. For connectivity, it employs the
BlueNRG-M0A BLE module from ST Microelectronics, which aligns with BLE 4.2 proto-
cols but lacks independent processing and memory, thereby relying on the primary MCU
to handle security operations through an SPI [81] link. A JTAG port is also integrated
for developmental purposes. However, it is not designed for consumer use as it necessi-
tates a physical cable connection. Details of the MCU and connectivity components are
illustrated in Figures 2.1, 2.2, 2.3 and 2.4 .

Figure 2.1: Design on the MCU side.

Figure 2.2: Design on the non-MCU side.

5

Figure 2.3: 3D rendering on the MCU side.

Figure 2.4: 3D rendering on the non-MCU side.

Bluetooth Module Overview

The aRdent glasses are powered by the BlueNRG-M0 Bluetooth module, a single-mode
network processor that adheres to the Bluetooth 4.1 standard. This module serves as the
communication core for the glasses, enabling both master and slave roles within the BLE
protocol and supporting key features as illustrated in Figure 2.5:

� Role versatility with support for central, peripheral, observer, or broadcaster GAP
roles.

� Comprehensive ATT/GATT client and server capabilities for �exible data manage-
ment.

� Robust security protocols through the SM [80], including privacy, authentication,
and authorization.

� E�cient data handling via the L2CAP [60].

� Reliable encryption and decryption at the Link Layer with AES-128 [4].

6

Figure 2.5: Bluenrg_ms application block diagram.

BLE Module Consumption

The energy e�ciency of the aRdent glasses' BLE module was closely examined, yielding
valuable insights into the device's power management. The key �ndings are summarized
in Table 2.1, which details the power consumption components:

Component Power Consumption
Display Average 525mW
MCU at 55MHz Reduction 355mW saved
BLE O� 0.051W saved (10mA at 5.1V)
Display Brightness Reduction 0.051W saved
Baseline (BLE O�, Display O� at 66MHz) 0.510W
Display Impact 0.559W (with BLE On at 66MHz)
BLE Impact 0.051W (with Display O� at 66MHz)

Table 2.1: Summary of power consumption components for aRdent glasses.

In a scenario where the total power draw is 1.120W with the display and BLE active at
66MHz, the display consumes approximately 49.91% of the total energy consumed, while
the BLE module accounts for 4.55% of the total energy use. This delineation underscores
the BLE module's comparative e�ciency within the device's overall power architecture.

2.2 Software Implementation Details

Firmware Overview

The �rmware for the aRdent smart glasses is built on the Free Real-Time Operating Sys-
tem (FreeRTOS). This system begins with a bootloader that checks for updates available
via Bluetooth and applies them if possible, before launching the main operating system.

The �rmware runs two primary tasks continuously. The �rst task is responsible for
initializing the peripherals. After initialization, it signals success by blinking the green
LED, or signals an error by blinking the red LED. The second task is dedicated to man-
aging Bluetooth communications. It waits for noti�cations from the Interrupt Service

7

Routine (ISR), which is triggered whenever a Bluetooth packet is ready to be processed,
and then handles the packet accordingly.

This structure ensures that the system e�ciently manages peripheral initialization and
Bluetooth communication using the FreeRTOS framework.

aRdent Data Transfer

We delve into the speci�cs of how the aRdent smart glasses communicate with external
devices via Bluetooth. This advanced capability enables the transmission of various data
types, empowering users with real-time information and control. Key aspects of data
transfer, including data types, their respective sizes, and command speci�cs, are outlined
below:

� Text Display: Text data is UTF-8 [92] encoded and sent to the Data Charac-
teristic. Each message is followed by a control command that speci�es the display
parameters. The control command consists of 1 byte for the instruction type, 4
bytes each for horizontal and vertical positions, 3 bytes for font selection, 1 byte for
font size, and 4 bytes for color, totaling 17 bytes.

� Icon Display: Icons use prede�ned names written to the Data Characteristic. The
control command for displaying an icon includes 1 byte for the instruction, 4 bytes
each for horizontal and vertical positions, 8 bytes for color, and 1 byte for scale,
amounting to 18 bytes.

� Image Display: Images, either prede�ned or custom, are sent similarly to icons.
The control commands mirror those of icons, accommodating the same sizes for
positioning, color, and scaling.

� Basic Commands: Commands for screen manipulation, such as turning on the
screen or resetting it, typically require only the control byte (1 byte) and, in some
cases, additional parameters like color (8 bytes for screen reset).

� Rectangles: To draw rectangles, a control command comprising 1 byte for the
instruction, 4 bytes each for position, 2 bytes each for width and height, and 4 bytes
for color is used, totaling 15 bytes.

� Spinners: Displaying a spinner involves sending the spinner's name to the Data
Characteristic and a control command that includes 1 byte for the instruction,
4 bytes each for position, 4 bytes for color, 1 byte for scale, and 1 byte for the
animation timing function, summing up to 15 bytes.

The BLE protocol for the aRdent 1 glasses necessitates dividing larger payloads into
blocks of 20 bytes for the Data Characteristic and constrains the Control Characteristic
to 20 bytes per instruction due to their BLE module. This detailed breakdown clari�es
the data management and display capabilities provided by the aRdent Bluetooth API,
showcasing the versatility and precision of data transmission to these innovative smart
glasses.

8

Chapter 3

Principles and Implementation of

Bluetooth and BLE

3.1 Understanding Bluetooth and BLE

The primary distinction between classic Bluetooth and BLE lies in their operational
paradigms and consumption pro�les. Classic Bluetooth, or Bluetooth Basic Rate/En-
hanced Data Rate (BR/EDR), was designed to facilitate continuous wireless connections
with high data throughput. This makes it ideal for applications requiring steady streams
of data, such as �le transfers, audio streaming for headsets, or voice communication for
hands-free calls.

On the other hand, BLE was introduced with the Bluetooth 4.0 version and is speci�-
cally tailored for applications that need to transmit small amounts of data intermittently
while conserving energy. This low power consumption allows devices to run for months
or even years on a small battery.

From a technical standpoint, these two technologies di�er in various aspects:

� Power Consumption: BLE is optimized for low power consumption, using a
fraction of the power required by classic Bluetooth during idle periods, which sig-
ni�cantly extends battery life.

� Communication Protocol: BLE operates on a di�erent protocol stack [74] that
is much simpler than classic Bluetooth, with a reduced overhead that allows for
quicker connections, which are established in a few milliseconds.

� Data Throughput: Classic Bluetooth o�ers higher data throughput compared
to BLE, making it suitable for applications like streaming multimedia where large
amounts of data are transferred continuously.

� Range and Frequency: While both technologies operate in the 2.4 GHz ISM band
[53], BLE typically has a shorter range but can use frequency hopping to combat
interference [93], making it robust in crowded wireless environments.

� Application Pro�les: BLE does not support the wide range of pro�les available
with classic Bluetooth, focusing instead on a generic attribute pro�le (GATT) [49]
which is more suited to its use-cases.

Understanding the di�erences between these two branches of Bluetooth technology is
crucial for optimizing device performance for the intended application, whether it be for
continuous data streaming or for the low-power, periodic transfer of small data packets.

9

3.2 Communication Channels

BLE operates within the Industrial, Scienti�c, and Medical (ISM) radio bands, occupying
frequencies between 2400.2 and 2483.5 MHz.

This range is segmented into 40 distinct 2-MHz channels, numbered 0 through 39.
This channelization is designed to mitigate potential signal interference with other devices
sharing the ISM frequencies, such as traditional Bluetooth and Wi-Fi [94] technologies.

Speci�cally, the spectrum's tail end is reserved for primary advertising purposes, with
channels 37 (2402 MHz), 38 (2426 MHz), and 39 (2480 MHz) dedicated to this role.
Devices have the �exibility to broadcast their presence on any combination of these three
channels, with the capability to be con�gured to limit advertising to only certain selected
channels.

Figure 3.1: Distribution of BLE channels in the 2.4 GHz spectrum.

3.3 Protocol Stack Layers

The BLE Protocol Stack is an architecture that orchestrates the operation of BLE devices.
Illustrated in the Figure 3.2, the stack is segmented into the Controller, the Host, and the
application each containing multiple layers with distinct functionalities.

Figure 3.2: The BLE Protocol Stack.

3.3.1 Controller

Physical Layer (PHY): The Physical Layer [73] is tasked with the modulation and
demodulation of radio signals, crucial for BLE's adaptive frequency hopping spread spec-

10

trum (AFHSS) [3], which mitigates interference and enhances robustness against multi-
path fading.

Link Layer (LL): The Link Layer [59] implements the BLE Link Layer protocol, man-
aging role switching between Central and Peripheral, connection initiation, parameter
negotiation, encrypted data transfer, and supervision timeout [88] for link loss termina-
tion.

3.3.2 Host Controller Interface (HCI)

The HCI [51] provides a standardized command interface for accessing the BLE baseband
capabilities and controlling various aspects of the lower layers of the BLE stack, such as
link control, baseband, and link manager. Essentially, it serves as a bridge between the
host system, which could be a smartphone or computer, and the BLE module's controller.
This separation allows for the host to send commands and process data without needing
to manage the intricate details of BLE communication protocols, contributing to ease of
development and system integration.

3.3.3 Host

Logical Link Control and Adaptation Protocol (L2CAP): L2CAP provides mul-
tiplexing of higher-level protocols, segmentation and reassembly of packets, and quality
of service (QoS) [77] information, crucial for data encapsulation in variable-sized payloads
[29].

Attribute Protocol (ATT): ATT lays the groundwork for client-server communica-
tion in BLE, de�ning a structured framework for data storage and transmission, which
serves as the backbone for the GATT.

Security Manager (SM): At the core of BLE's security architecture, the SM adminis-
ters pairing methods, key distribution, and encryption routines, employing Elliptic Curve
Di�e Hellman (ECDH) for key agreement and AES-CCM for data protection.

Generic Access Pro�le (GAP): GAP [48] de�nes how BLE devices �nd and connect
to each other, including advertising types, connection steps, security levels, and roles,
which determine the device's visibility and interaction abilities.

GATT: GATT operates on top of ATT, organizing and managing services and charac-
teristics, which are the basic data elements for BLE communication, allowing applications
to exchange data in a standardized way.

3.3.4 Applications

The application layer [8] interacts directly with GATT, translating user actions into BLE
operations and managing the presentation, manipulation, and storage of GATT data in
a user-centric format.

11

3.4 Detailed BLE Packet Structure

BLE's e�cient communication relies on its well organized data packets. As shown in in
Figure 3.3, the structure of these packets is crucial for BLE operations.

Figure 3.3: Detailed structure of a BLE packet.

Preamble: An important synchronization and modulation identi�er that is 1 byte long.
It signals receivers to demodulate the data correctly.

Access Address: A 4-byte unique identi�er for each BLE advertising channel or con-
nection, ensuring data is correctly recognized and �ltered by the intended recipient.

CRC: A 3-byte Cyclic Redundancy Check sums up this structure, o�ering error checking
to ensure data integrity [39] during transmission.

LL Header: This 2-byte Link Layer Header [28] contains control �elds that delineate the
structure and status of the data payload, such as its length and message integrity
information.

MIC (Optional) [65]: For encrypted communications, an optional 4-byte Message In-
tegrity Check may follow, providing authentication and integrity veri�cation.

L2CAP Header: Positioned above the Link Layer, the 4-byte L2CAP Header speci�es
the length and channel ID, directing the data payload to the correct higher-layer
protocol.

ATT Data: Within the L2CAP payload, the ATT Data is segmented into a 1-byte Op
Code and a 2-byte Attribute Handle, followed by the ATT Payload, which can carry
up to a maximum number of bytes de�ned by the ATT MTU parameter, allowing
for rich and complex client-server interactions.

The packet layout is a detailed plan that ensures reliable, e�cient, and secure data
transmission in BLE networks, meeting the diverse needs of modern wireless communica-
tion.

3.5 Connection Establishment

The establishment of a BLE connection is a systematic process that involves both the
central device (often referred to as the master) and the peripheral device (also known as
the slave). The procedure ensures secure and e�cient communication between the two
entities. Below is an overview of the steps involved, as illustrated in Figure 3.4:

12

Figure 3.4: Illustration of the BLE connection procedure.

1. The GAP Central (master) device begins by scanning for available devices, speci�-
cally looking for advertising packets in active mode.

2. Once the desired advertising packet is received, the central device sends a connection
request to the peripheral with the speci�c name and connection parameters.

3. The GAP Peripheral (slave) device, after broadcasting the advertising packet and
receiving a connection request, transitions to a connected state, ceasing to advertise.

4. Following a successful connection, the central device halts the scanning process.

5. Both the GATT Client (in the central device) and the GATT Server (in the periph-
eral device) then exchange settings to improve their communication.

6. The GATT Client starts the service discovery process to determine the services
provided by the GATT Server.

13

7. The GATT Server responds with the UUIDs [91] of the available services after
receiving the discovery request.

8. Following service discovery, the GATT Client may further request to discover char-
acteristics for the identi�ed services. The GATT Server responds with the char-
acteristics, each including its UUID, properties, handle, and optionally its initial
value.

9. The GATT Client may also request to discover descriptors associated with the
characteristics. The GATT Server responds with the descriptors, including their
UUIDs, handles, and value information.

10. The GATT Client writes to the Client Characteristic Con�guration Descriptor
(CCCD) on the GATT Server to enable noti�cations or indications for speci�c char-
acteristics.

11. The GATT Server acknowledges the write request to the CCCD, con�rming that
noti�cations or indications are enabled for the speci�ed characteristics.

12. The GATT Server, now in a fully established communication state, can send noti�-
cations or indications to the GATT Client whenever the characteristic value changes.

13. The GATT Client receives the data updates, completing the connection establish-
ment phase and enabling ongoing communication.

3.6 Data Transfer in BLE

BLE is a wireless communication technology designed for short-range communication,
ideal for applications requiring periodic or intermittent data exchange with minimal power
usage. The core concept of BLE data transfer involves �characteristics�, which are foun-
dational elements in the BLE version for managing data.

Characteristics Explained: In conceptual terms, a characteristic can be thought of
as a distinct data point. It's akin to a variable in programming that holds a value. For
instance, if the BLE device is a smart thermostat, one characteristic might be the current
room temperature, while another could be the target temperature set by the user.

In computer science terms, a characteristic is a data structure that contains a value
and several descriptors that describe the value's properties. These properties include
permissions (e.g., read, write, notify) and metadata (e.g., whether the value represents
temperature in Celsius or Fahrenheit).

Each characteristic has a UUID, which is a standardized format for a string ID used
to uniquely identify information. It ensures that data points are distinguishable from one
another across di�erent devices and applications.

Data Transfer Mechanism: The process of data transfer in BLE involves interac-
tion with these characteristics within a prede�ned structure known as the GATT. The
GATT speci�es how two BLE devices exchange data using concepts of �services� and
�characteristics�.

Here is a simpli�ed step-by-step explanation of how data transfer typically occurs in
BLE:

14

Services and Characteristics: A service is a group of characteristics. Each service
has a UUID, making it recognizable across di�erent devices and applications.

Establishing a Connection: Two BLE devices establish a connection. One acts as
the �central� device and the other as the �peripheral� device. The central device discovers
available services and their characteristics on the peripheral device.

Interacting with Characteristics: The central device can read or write to available
characteristics based on permissions. Reading a characteristic asks the peripheral for its
current value. Writing updates the peripheral with new information.

Noti�cations and Indications: Characteristics with the notify property can alert
the central device when their value changes, providing real-time updates. Indications are
similar but need the central device to acknowledge that the message was received.

3.7 BLE parameters

3.7.1 Connection Interval

The Connection Interval (CI) is a crucial parameter within BLE technology that de�nes
the duration between two successive connection events [31]. It is essential for balancing
energy e�ciency and communication responsiveness. The CI determines when data is
exchanged between two devices in a BLE network. While each connection is strictly one-
to-one, a central device can maintain multiple such one-to-one connections simultaneously,
as depicted in Figure 3.5.

Figure 3.5: The CI principle.

This interval is adjustable, beginning at a minimum of 7.5 milliseconds and increasing
in increments of 1.25 milliseconds. This framework allows for exact control over the timing
of Communication Events. In these events, the central device starts the transmission and
the peripheral device prepares to receive it, which is then followed by a response from the
peripheral to the central device.

15

In essence, the CI is a dynamic and negotiable value post-connection that �nely tunes
the balance between power conservation and data transfer speed, ranging from 7.5ms up to
4 seconds, o�ering a variety of operational modes �t for di�erent application requirements.

3.7.2 Inter Frame Space

The Inter Frame Space (IFS) [89] in BLE communication is essentially a pause or gap
between the transmission of consecutive data packets. This brief interval is crucial for
ensuring that devices have su�cient time to process each packet before receiving the next
one. In BLE, the standard duration for the IFS is precisely 150 microseconds. This
speci�c time frame helps to maintain orderly and e�cient communication between BLE
devices, allowing for the necessary processing and preparation for subsequent data packet
receptions or transmissions.

3.7.3 Attribute Maximum Transmission Unit

The ATT MTU [11] is an important parameter within the BLE version that outlines the
maximum size of data that the application layer can transfer during a single attribute
protocol (ATT) [12] operation. It essentially dictates the maximum data payload that
both transmitting and receiving devices can process and store in their bu�ers [38] during
communication. Initially, the ATT MTU is set to a default size of 23 bytes, which includes
the operation code and the attribute handle, allowing it to �t easily within a single Link
Layer (LL) packet. This default setting permits an application data payload of 20 bytes,
factoring in the 3-byte overhead for the ATT header, as illustrated in Figure 3.6.

Figure 3.6: ATT packet format

However, the ATT MTU can be extended up to 247 bytes, enhancing data throughput
by enabling longer payloads across multiple packets. It's important to note that leverag-
ing the Data Length Extension (DLE) [40] feature allows for even more e�cient use of
available bandwidth, optimizing payload sizes to �t within the constraints of the MTU
and LL packet sizes.

The process of determining the e�ective ATT MTU involves a negotiation phase after
establishing a connection, where both client and server exchange their supported MTU
sizes via the Exchange MTU Request/Response mechanism. The operational ATT MTU

16

for the session is then set based on the minimum value supported by both devices. This
negotiation ensures compatibility and optimizes communication e�ciency, balancing be-
tween the desire for larger data payloads and the need to minimize energy consumption.

3.7.4 Connection Event

In BLE communications, a connection event is a regular exchange of data between the
Central and Peripheral devices. It happens at speci�c intervals, known as Connection
Intervals (CI). During a connection event, the Central device sends a packet to the Pe-
ripheral device, and the Peripheral responds with its own packet. This exchange can
include actual data, control information, or simply be an empty packet. Connection
events are crucial for keeping the devices synchronized and ensuring the connection is
maintained.

Importantly, a single CE can facilitate the exchange of multiple packets. This ca-
pability is signi�cant for optimizing data throughput and e�ciency. Speci�cally, the
BlueNRG-MS chip exempli�es this by allowing up to 8 packets to be transmitted within
a single CE, thus signi�cantly enhancing the potential for data exchange within each
interval.

Moreover, it is important to note that extending the CI can help save battery life by
reducing the frequency of communication. However, this bene�t must be balanced with
the risk that packet loss could cause delays until re-transmission. This situation requires
careful planning in BLE system design, especially when making dynamic adjustments to
the length of connection events or using strategies to extend event lengths.

3.7.5 Data Transmission Modes: Write With and Without Re-
sponse

In BLE communication, data can be transmitted between devices using two primary
methods of writing: �Write with Response� and Write without Response.

The �Write with Response� method ensures that the sender receives an acknowledg-
ment from the receiver once the data packet has been successfully delivered and processed.
This mode provides reliability in data transmission, ensuring data integrity by con�rming
receipt.

Conversely, Write without Response allows for data to be sent to the receiver without
waiting for any acknowledgment. This method increases the speed of data transmission
but does not guarantee that the data has been successfully received or processed by the
target device.

Both of these transmission modes o�er distinct advantages and trade-o�s in terms of
data transfer speed and reliability. These methods will be explored in greater detail later
in this work, examining their impact on application performance and e�ciency in BLE
communications.

3.8 Theoretical Bluetooth Throughput Limitations

Understanding why theoretical BLE speeds are not fully achievable in practice requires a
comprehensive look at the various factors that in�uence actual data throughput. While
the Bluetooth version outlines data rates of 1 Mbps (LE 1M PHY [57]) and 2 Mbps
(LE 2M PHY [58]) as the peak speeds for radio transmission, several inherent limitations
prevent these rates from being realized for application data throughput.

17

Firstly, there is a restriction on the number of packets that can be transmitted within
each CI. This limit restricts the amount of data that can be exchanged during these
windows, directly a�ecting throughput.

Secondly, the IFS, a mandatory delay of 150 microseconds between packets, further
reduces the e�ciency of data transmission. This delay is crucial for device synchronization
and data integrity but comes at the cost of continuous data �ow.

Additionally, BLE devices are required to send �empty packets� when there's no ap-
plication data to transmit. These packets, while necessary for maintaining a connection,
occupy transmission time without conveying useful information.

Moreover, packet overhead presents another challenge. Not all bytes in a BLE packet
carry user data. A signi�cant portion is used for headers and other protocol information,
reducing the payload capacity of each packet.

Environmental interference also plays a pivotal role in diminishing BLE throughput.
Wireless signals can be degraded by obstacles, other wireless devices, and various forms
of electronic interference in the surrounding area. This degradation can lead to retrans-
missions and further reduce e�ective throughput.

Lastly, the hardware con�guration of the involved devices in�uences throughput ca-
pabilities. The processing power, antenna quality, and BLE stack implementation can all
vary signi�cantly, a�ecting how e�ciently data is transmitted and processed.

18

Chapter 4

Preliminary Performance Evaluation

4.1 Tools

In this section, the tools used to optimize the aRdent smart glasses are described. These
tools include both hardware and software that help evaluate and improve the performance
of the BLE module.

SEGGER J-Link

The SEGGER J-Link is a widely-used debug probe known for its high performance and
reliability. It is used for debugging and programming the �rmware on microcontrollers.
The J-Link supports a variety of processors and microcontrollers, providing an essential
interface for development and troubleshooting.

As shown in Figure 4.1, the SEGGER J-Link debug probe has a compact and robust
design, making it suitable for various development environments.

Figure 4.1: SEGGER J-Link Debug Probe.

JLinkRTTViewer

JLinkRTTViewer is a tool that allows real-time terminal output from the microcontroller
to be viewed on a PC. This is particularly useful for debugging and logging purposes,
providing insights into the running state of the �rmware.

19

As shown in Figure 4.2, the JLinkRTTViewer interface provides a clear and detailed
view of the terminal output, facilitating e�ective debugging and analysis.

Figure 4.2: JLinkRTTViewer Interface.

PacketLogger

PacketLogger is a software tool from Apple used to capture and analyze Bluetooth packets.
It helps in understanding the communication between devices and diagnosing any issues
related to data transfer, and it is only available for Apple devices.

As shown in Figure 4.3, the PacketLogger tool provides a detailed view of the captured
Bluetooth packets, allowing for in-depth analysis and troubleshooting.

Figure 4.3: PacketLogger Tool.

Wireshark

Wireshark is a powerful network protocol analyzer used for network troubleshooting and
analysis. It can capture and display the data traveling back and forth on a network in
real-time, including Bluetooth tra�c.

20

Figure 4.4: Wireshark Network Protocol Analyzer.

ESP32-S3 with Arduino

For some applications, GYW uses an ESP32-S3 chip with the Ardunio framework. This
dual-core XTensa LX7 MCU runs at 240 MHz and includes 512 KB of internal SRAM.
It also supports 2.4 GHz 802.11 b/g/n Wi-Fi and Bluetooth 5 (LE) connectivity. The
ESP32-S3 has 45 programmable GPIOs and supports high-speed SPI �ash and PSRAM,
making it versatile for various applications.

Figure 4.5: Arduino with ESP32-S3.

Nordic nRF52840

The Nordic nRF52840 is a multiprotocol Bluetooth 5.4 System on Chip (SoC) that sup-
ports Bluetooth Low Energy, Bluetooth mesh, NFC, Thread, and Zigbee. It is built
around a 32-bit ARM Cortex-M4 CPU running at 64 MHz with a �oating point unit.
The nRF52840 includes the ARM TrustZone CryptoCell cryptographic unit and supports
various digital peripherals, making it suitable for complex applications requiring high
security and multiple communication protocols.

21

Figure 4.6: Nordic nRF52840 SoC.

Current Consumption Estimation Tool by ST Electronics

ST Electronics [36] has developed a sophisticated software utility known as the Current
Consumption Estimation Tool, depicted in Figure 4.7. This software provides users with
the ability to select from a range of ST's BLE chips and to con�gure various parameters
for simulation purposes. Users can hold certain parameters constant while varying others,
enabling them to observe the resultant e�ects on several key performance metrics.

Figure 4.7: Current Consumption Estimation Tool by ST Electronics.

4.2 Initial Throughput

Before discussing the optimization parameters and improvements in this research, it is
important to �rst establish a baseline for throughput. This initial throughput will act as
a reference point, allowing for a comparative analysis of the improvements achieved.

At the start of this study, the throughput was measured under controlled conditions.
On an Asus PC running a Linux operating system, the initial throughput recorded was

22

0.2 kilobytes per second (KB/s). In contrast, a measurement taken on a 2019 MacBook
Pro yielded a slightly higher throughput of 0.3 KB/s.

These observed disparities raise intriguing questions: What factors contribute to the
di�erences in throughput across devices? How can these rates be augmented? These
questions, along with how they were investigated and the results, will be fully covered in
the next sections of this thesis.

4.3 Modi�able BLE Parameters in aRdent 1

The BLE 4.1 chip in the aRdent glasses allows for changes to a few key settings that a�ect
communication and power use. The adjustable settings are:

Connection Interval: This setting controls how often two BLE devices communicate
when connected.

Write Modes: This setting lets you choose between �Write with response� and �Write
without response�, which a�ects the speed and reliability of data transmission.

These limitations highlight the chip's design focus on e�cient and �exible communi-
cation. Therefore, optimization e�orts for the aRdent glasses aim to make the best use
of these adjustable settings.

4.4 Analysis of Throughput Across Di�erent Devices

This section presents an empirical investigation into how �xed parameters namely, CI
set to 30ms, ATT MTU at 23 bytes, and the �Write with Response� method impact
the throughput of data transmission across devices with varying operating systems and
programming languages. A notable aspect of this study is the observation of the maximum
number of packets per CE, with the BlueNRG_MS chip supporting up to 8 packets.

4.4.1 Methodology

The experiment measured the time and associated throughput for transmitting a payload
of 1000 bytes across di�erent devices. The analysis tried to understand how the operating
system, development framework, and device capabilities a�ect the achievable data rates.

4.4.2 Results

The following devices were tested:

� Macbook Pro 2019 (MacOS 13.1, Python): Achieved a throughput of 0.2949
KB/s over 6.273 seconds, using 8 packets per CE.

� iPhone 12 (iOS 16.6, Flutter): Achieved a throughput of 0.1412 KB/s over
13.10 seconds, using 4 packets per CE.

� PC Asus Linux (Ubuntu 20.4 LTS, Python): Achieved a throughput of 0.29086
KB/s over 6.306 seconds, using 8 packets per CE.

� OnePlus 6 (Lineage OS Android 13, Flutter): Achieved a throughput of 0.292
KB/s over 6.33 seconds, using 8 packets per CE.

23

4.4.3 Interpretation

The experiment reveals that, with �xed parameters, the throughput across devices is
largely similar, suggesting that neither the operating system nor the programming lan-
guage signi�cantly in�uences the data rate. The crucial determinant of throughput under
these conditions is the maximum number of packets per CE. This was particularly evident
in the case of the iPhone 12, where the lower number of packets per CE (a factor not
directly controllable) resulted in reduced throughput. It's also noted that di�erent OSs
might have distinct limitations on parameters like CI, as observed with MacOS, indicating
an area for further investigation.

24

Chapter 5

Optimizing BLE Parameters

5.1 Optimizing the CI

5.1.1 Modifying the CI

At the beginning of establishing a connection, there's a crucial negotiation phase between
the central and peripheral devices. This phase aims to agree on a CI that balances the
needs for e�cient data transmission with energy savings.

The CI's adaptability is key, allowing adjustments to meet the evolving demands of
the operation or speci�c application needs. This project takes advantage of a feature from
ST Electronics that enables the renegotiation of connection parameters, including the CI,
at any time after the initial connection. The update connection parameter function is
used right after establishing the connection to improve BLE communications for both
e�ciency and speed.

Typically, the central device has the �nal say in setting the connection parameters,
including the CI, leaving the aRdent glasses with limited direct in�uence. However, to
ensure �exibility for the aRdent glasses, the project uses the update connection parameter
function. This strategy is important because it is impractical to customize the BLE stack
for every possible central device. Therefore, using this function from the aRdent glasses
side o�ers a practical way to in�uence connection settings, improving both performance
and power management.

The ability to adjust connection parameters before establishing a connection varies by
operating system. For example, Linux may allow changes to the central device's param-
eters through system commands, whereas macOS lacks an interface for pre-connection
adjustments. This variance highlights the importance of the peripheral device's ability to
use the `update connection parameter` function. It e�ectively bypasses restrictions from
speci�c operating systems, ensuring optimizations are possible, independent of the master
device's operating system.

25

Implementation of Dynamic Connection Parameters:

Listing 5.1: BLE Connection Parameter Update Example

1 void GAP_ConnectionComplete_CB(uint8_t* peer_bdaddr, uint16_t conn_handle)

2 {

3 debug_printf("Connection complete callback\r\n");

4

5 // Request connection parameter update

6 tBleStatus ret = aci_l2cap_connection_parameter_update_request(

7 conn_handle, // connection handle

8 54, // conn_interval_min (54 * 1.25 ms = 67.5 ms)

9 55, // conn_interval_max (55 * 1.25 ms = 68.75 ms)

10 0, // slave_latency (number of connection events that

can be skipped)

11 800 // supervision_timeout (800 * 10 ms = 8000 ms or 8

seconds)

12);

13

14 if (ret != BLE_STATUS_SUCCESS) {

15 error_printf("Connection Parameter Update Request failed: 0x%x\r\n",

ret);

16 } else {

17 debug_printf("Connection Parameter Update Request sent

successfully\r\n");

18 }

19 }

Parameter Explanation:

� conn_interval_min and conn_interval_max: These parameters specify the
minimum and maximum intervals between two consecutive connection events. Ad-
justing these values allows for balancing energy e�ciency and data transmission
delay.

� slave_latency: This parameter determines the number of connection events the
aRdent glasses can skip without a�ecting the connection. A higher slave latency
can improve power consumption but may increase data delay.

� supervision_timeout: This parameter speci�es the maximum time between two
received data packets before the connection is considered lost. A longer timeout
is bene�cial for devices that expect intermittent communication but increases the
time to detect a lost connection.

Based on the JLinkRTTViewer [54] output, as shown in Figure 5.1, the successful
execution of the connection parameter update is con�rmed. The initial CI set at 12 tran-
sitions to 54 after the update. These values represent the number of 1.25 ms intervals,
translating the intervals from 15 ms (12 * 1.25 ms) to 67.5 ms (54 * 1.25 ms) for the
updated CI. This change illustrates a signi�cant shift in the timing of data exchanges,
indicating a strategic move to balance energy consumption against communication fre-
quency.

26

Figure 5.1: JLinkRTTViewver view after an update function call.

5.1.2 Strategies for Optimizing the CI

Determining the optimal strategy for modifying the CI involves considering whether ad-
justments should be initiated by the master, the slave, or the slave post-connection estab-
lishment. While the negotiation process at the start of a connection aims for a consensus
on CI, allowing for subsequent adjustments by the slave via the `update connection pa-
rameter` function provides �exibility and dynamic adaptability to changing requirements
or conditions. This method requires careful timing and consideration of the impacts on
both power consumption and data transmission latency.

Furthermore, when proposing a range for the CI, with a speci�ed minimum and maxi-
mum interval, the ultimate selection within this range often aligns with the master device's
operational objectives. For instance, on mobile devices, there is a tendency to favor the
higher end of the CI range. This preference aims to maximize energy e�ciency and extend
device battery life, demonstrating a strategic compromise between maintaining a reliable
connection and optimizing power usage.

5.1.3 Experimental Setup

To carefully evaluate the e�ects of CI adjustments, we designed a series of tests, each
intended to show di�erent aspects of BLE communication under varying CI settings. The
tests were conducted with the following �xed BLE parameters across all experiments:
ATT MTU size at 23 bytes, and utilizing the �Write with Response� mode for data
transmission. These constants make sure that our �ndings are due to changes in the CI
and not other factors.

Test Descriptions

The tests were structured to measure both the temporal e�ciency and throughput ca-
pacity of BLE communication under di�erent CIs. Here is a brief overview of the tests
conducted:

27

1. Display Interface Commands: This test measured the time taken to send simple
display commands like adjusting contrast and brightness settings. The goal was to
assess the e�ciency of basic BLE operations with small data payloads.

2. Screen Drawing Operations: This test measured the time taken to send com-
mands to draw elements on a screen, such as text, icons, and color changes, which
require larger data packets.

3. Mixed Media Transfer: This test measured the time taken to send a combination
of text and graphical icons in various con�gurations, simulating a common use case
in smart device interfaces to assess the communication overhead for mixed content
types.

Test Setup

The testing protocol was executed using a MacBook Pro from 2019, serving as the central
device to interface with the aRdent glasses under examination. Throughout the testing
phase, BLE parameters were uniformly maintained to ensure consistency in the results.
The ATT MTU was �xed at 23 bytes within the �rmware of the BLE devices, and the
�Write with Response� mode was persistently employed. This controlled setup allowed
us to accurately assess the impact of the CI on the BLE communication process, re-
moving potential variability from changing BLE parameters or di�erent host hardware
capabilities.

Assessment Metrics

The primary metrics for assessment will include:

� Transmission Time: The duration required to complete each test case, providing
insight into the temporal e�ciency of BLE communication under di�erent CIs.

� Data Throughput: Calculated as the total amount of data successfully transmit-
ted per unit of time, o�ering a measure of communication capacity.

5.1.4 CI Modi�cation on Di�erent Devices

The adjustment of the CI is subject to the constraints and versions of the device in use.
While the CI typically starts at a minimum of 7.5 ms and increases in increments of 1.25
ms, device manufacturers may impose their own limits and increment steps.

For instance, when the aRdent glasses request an update of the CI on a Linux PC, the
device faces no restrictions and can accept any value that meets the minimum threshold
of 7.5 ms, incrementing in steps of 1.25 ms.

On Apple computers, the behavior depends on the macOS version. For macOS versions
preceding Sonoma, the CI behaves similarly to that on Linux PCs, adhering to the same
minimum value and increment steps.

However, with macOS Sonoma and beyond, the rules change. The minimum CI begins
at 15 ms and increments are �xed at steps of 15 ms.

Android devices exhibit a behavior similar to Linux PCs, with the minimum CI set at
11.25 ms, and no restrictions on increment steps.

On iPhones, the parameters for a successful CI update are quite speci�c. The general
guidelines for connection parameter requests on Apple devices are as follows:

28

� Peripheral Latency should not exceed 30 CIs.

� Supervision Timeout (ST) must be within 6 to 18 seconds.

� Interval Min should be at least 15 ms.

� Interval Min must be a multiple of 15 ms.

� One of the following conditions must be met:

� Interval Max is at least 15 ms greater than Interval Min.

� Interval Max and Interval Min are both set at 15 ms.

� Interval Max does not exceed the product of (Peripheral Latency + 1) and 6
seconds.

� ST should be greater than the product of Interval Max and (Peripheral Latency +
1) times 3.

This behavior across di�erent devices and operating systems highlights the importance
of understanding device-speci�c BLE implementations when attempting to modify CIs for
optimal performance.

5.1.5 Analysis of Test Results

Transmission Time

The conducted experiments produced useful data on the relationship between the CI and
BLE transfer times for various screen con�gurations. The graphical analysis below shows
the detailed interaction between CI values and the associated transfer times, revealing
patterns and performance implications.

Figure 5.2 compares transfer times for a plain white screen and various text con�g-
urations. The trend suggests that more complex screen elements directly contribute to
longer transfer times as the CI increases. This is indicative of the added data payload and
processing required for rendering text and images, which escalates with the complexity of
the screen content.

Figure 5.3 elucidates how the spacing of texts impacts the transfer time. Interestingly,
multi-spaced texts exhibit a notable increase in transfer time, highlighting the overhead
introduced by additional data formatting requirements.

Figure 5.4 focuses on combinations of white screen con�gurations with text and icons.
It's observed that the inclusion of icons, either preceding or following the text, causes an
uptick in transfer times, suggesting a discernible impact of graphical data on transmission
e�ciency.

29

Figure 5.2: BLE Transfer Time for Various Screen Con�gurations.

Figure 5.3: BLE Transfer Time for Spaced Texts.

30

Figure 5.4: BLE Transfer Time for Various White Screen Con�gurations.

5.1.6 Analysis of Test Results: Throughput

To calculate the data rate, the payload is broken into chunks of 20 bytes, the maximum
size per BLE packet. If the total data length isn't a multiple of 20 bytes, an extra packet
is needed to send the remaining data. The data rate is calculated based on the total time
taken to send the payload and the extra time needed for control commands. For every
20-byte data packet, an additional 17 bytes of overhead are considered for the control
command, as mentioned earlier in the document.

The formula used to calculate the throughput is:

Throughput =
(len(data)+ (num_chunks× 17))

time_taken

where time_taken is the time to send the data, and num_chunks is the number of
data chunks.

The practical data rates obtained from our tests are shown in the table below:

31

CI (ms) Data Rate (KB/s) Data Rate (Kb/s)
7.5 1 8
11.25 0.77 6.16
15 0.61 4.88
30 0.30 2.4
45 0.20 1.6
60 0.15 1.2
75 0.115 0.92
90 0.099 0.79
105 0.086 0.69
120 0.074 0.6
135 Timeout Timeout
150 Timeout Timeout

Table 5.1: Practical Data Rates at Di�erent CIs

For the CIs of 135 and 150 ms, the BLE module from ST Electronics does not allow
these values, resulting in a timeout during our tests.

All tests were conducted by transmitting a 10 KB data payload using the �Write with
Response� mode.

Figure 5.5: Practical Data Rate Variation Based on CI.

From the practical standpoint, as the CI increases, there is a noticeable decline in the
data rate. Longer intervals between data transmission events lead to lower data rates.
This outcome is consistent with the expected behavior, where lengthier intervals result in
reduced data rates.

5.1.7 Analysis of the CI in mobile phone

In the case of the iPhone, practical throughput improvements were not observed when
attempting to optimize the CI. This is primarily because the iPhone's BLE implementa-
tion defaults to a CI of 30ms, which is already at the minimum threshold that the device
permits without invoking the `update connection parameter` function. As a result, even

32

with attempts to optimize, the CI remains �xed at this base value, yielding no practical
improvement in data transmission rates.

On the other hand, with Android devices, there was a noticeable improvement. Ini-
tially, the Android system set a default CI of 48.75ms. However, by using the update
connection parameter function, it was possible to reduce the CI to 11.25ms. This change
led to a signi�cant increase in performance.

This di�erence between the two operating systems' BLE behaviors shows the im-
portance of understanding each platform's limitations and capabilities when optimizing
BLE performance. The ability to adjust the CI can lead to signi�cant improvements, as
demonstrated by the Android example, but this depends on the �exibility provided by
the device's operating system and its BLE stack implementation.

5.1.8 Analysis with ST electronic software tool

In advancing our examination of BLE performance, we will be utilizing the Current Con-
sumption Estimation Tool provided by ST Electronics. While the tool's simulations are
based on an isolated BLE module, distinct from the comprehensive hardware ecosystem
of the aRdent glasses, it serves a pivotal role in our test protocol.

The primary utility of this software in our testing framework is not to extract exact
comparative values but to understand the behavioral trends of the BLE chip in response
to varying CIs. It's important to note that the simulation ignores real-world complexities
like interference from other devices and extra hardware components, focusing only on the
BLE module's performance.

Despite these limitations, the software is important for predicting the relationships
between the CI and various parameters of interest. By simulating these parameters,
we gain insights into the theoretical underpinnings of BLE performance, which aids in
drawing parallels with observed tendencies during physical testing. This comparative
analysis will allow us to discern the intrinsic patterns of BLE behavior and identify optimal
con�gurations for the CI, contributing to the overall optimization of BLE functionality
within the aRdent glasses.

It is important to note that the software only simulates unanswered data communi-
cation. It therefore does not take packet acknowledgement into account, resulting in a
higher throughput than can be expected in practice.

For the test simulations, a battery capacity of 450mA was assumed, consistent with the
actual versions of the aRdent glasses. The increments of the CI were set at 15ms, a value
in�uenced by the operational characteristics of Apple mobile devices. Tables 5.2, 5.3, and
5.4 illustrate the e�ects of di�erent CI settings on theoretical autonomy, average current
during the active phase and total average current, and payload data rate, respectively.

33

CI (ms) Autonomy (time)
7.5 19 days
11.25 28 days
15 38 days
30 75 days
45 112 days
60 148 days
75 183 days
90 217 days
105 251 days
120 284 days
135 317 days
150 349 days

Table 5.2: Autonomy at Di�erent CIs

CI (ms) Current (active phase)
(mA)

Total Current (µA)

7.5 5.14 974.55
11.25 5.15 651.53
15 5.16 490.02
30 5.16 247.58
45 5.16 166.67
60 5.16 126.36
75 5.16 102.11
90 5.2 86.03
105 5.2 74.48
120 5.2 65.81
135 5.2 59.07
150 5.2 53.68

Table 5.3: Current Consumption at Di�erent CIs

CI (ms) Data Rate (Kbit/s)
7.5 21.33
11.25 14.22
15 10.67
30 5.33
45 3.56
60 2.67
75 2.13
90 1.78
105 1.52
120 1.33
135 1.19
150 1.07

Table 5.4: Data Rate at Di�erent CIs

34

The graph displayed in Figure 5.6, created based on the data presented in Table 5.2,
illustrates the relationship between the device autonomy and the CI. As the CI increases,
there is a clear trend indicating a rise in device autonomy. This pattern suggests that a
higher CI, while reducing the frequency of communication events, signi�cantly conserves
energy, thus extending the device's operational life before a recharge is needed.

Figure 5.6: Evolution of the autonomy according to the CI.

The gradual rise of the graph from lower CIs to higher CIs shows a nearly steady
improvement in battery life.

It's important to consider that while the extension in battery life is advantageous, it
may come at the cost of increased latency in data transmission. Hence, a balance must
be found between the desired device battery life and acceptable communication delays.
The optimal CI setting would therefore depend on the speci�c requirements of the use
case and the importance of power consumption versus data speed.

The graph depicted in Figure 5.7, created based on the data presented in Table 5.3,
demonstrates the theoretical changes in total average current as the CI is varied. The
trend shown indicates a sharp decline in current consumption as the CI increases from
the lowest value up to around 30 ms. Beyond this point, the current stabilizes and the
reduction becomes more gradual.

35

Figure 5.7: Evolution of the total average current according to the CI.

This substantial decrease at lower intervals can be attributed to the higher rate of
connection events, which necessitates more frequent radio activity and, consequently,
higher energy usage. As the CI extends, the radio is active less often, leading to a
decrease in the total average current required by the device.

While the initial sharp decline in current use suggests a rapid gain in power e�ciency,
the leveling o� at higher intervals indicates a point of diminishing returns. Beyond a
certain CI, further increases result in negligible improvements in current consumption,
implying that there exists an optimal CI range where power e�ciency is maximized with-
out compromising the device's operational requirements.

The chart illustrated in Figure 5.8, created based on the data presented in Table 5.4,
exhibits a noticeable decline in data rate as the CI is extended. The data rate experiences
a precipitous fall-o� initially as the CI moves away from its minimum value, before the
rate of decline slows and the curve starts to �atten out beyond a CI of approximately 30
ms.

Figure 5.8: Evolution of the data rate according to the CI.

36

This trend can be interpreted as a re�ection of the inverse relationship between CI
and data rate. As the interval lengthens, the opportunity for data transmission within a
given time frame diminishes, resulting in a lower data rate. This reduction is particularly
pronounced at lower CIs, where data packets are sent more frequently, allowing for higher
throughput. However, as the CI increases, the reduced frequency of transmissions becomes
less impactful, and the data rate settles into a gradual decrease.

For applications where a high data rate is very important, this graph suggests that
keeping a shorter CI is bene�cial. However, since the CI is a compromise between energy
e�ciency and latency, the optimal CI setting must be determined based on speci�c appli-
cation requirements and power constraints. A balance must be found to ensure that the
CI provides the necessary data rate without quickly draining the battery.

This analysis will inform subsequent decisions about the CI con�guration in BLE
devices, particularly those that are energy-sensitive or require rapid data exchanges, such
as real-time monitoring systems.

5.1.9 Theoretical Data Rate Evolution and Practical Data Rate
Evolution Based on CI

The graphs show the theoretical and practical data rates at di�erent CI. When comparing
the theoretical data rates with the practical data rates, several observations can be made:

� Both graphs show high data rates at lower CIs. This means that when the time
between data transmissions is short, the data rate is high.

� As the CI increases, both graphs show a steady decline in data rates. This indicates
that longer intervals between data transmissions lead to lower data rates.

� The practical data rates closely follow the trend of the theoretical data rates, showing
that the theoretical model accurately predicts real world performance.

The comparison between the theoretical and practical data rates shows that the the-
oretical predictions are reliable. The trends observed in the practical tests con�rm the
accuracy of the theoretical model. This validation is important for future optimization
of BLE communication parameters in the aRdent smart glasses, ensuring they operate
e�ciently at di�erent connection intervals.

5.2 Optimizing ATT MTU

In the context of BLE communication for the aRdent glasses, the ATT MTU plays a sig-
ni�cant role in data transmission. As previously mentioned in the 4.3 section, ATT MTU
is not among the parameters that can be adjusted by the glasses. Thus, the ATT MTU
remains �xed at 23 bytes, leaving no room for optimization from the glasses' �rmware.

According to the information obtained from [24] [62] resources on maximizing BLE
throughput, the data moves through the BLE protocol stack in a speci�c way. At the
GATT layer, application data is structured into attributes and characteristics which are
then encapsulated within ATT packets. These packets are subsequently packaged into
L2CAP messages with a �xed header size of 4 bytes, before being transmitted over the
Link Layer. The BLE packet's data �eld contains the L2CAP message, which includes
the ATT packet with the application data.

37

The key takeaway is that the ATT MTU de�nes the maximum size of an ATT packet
and can be negotiated between the client and peripheral during connection establishment.
For instance, an iPhone 6 or 6S has an ATT MTU of 185 bytes, allowing for a payload of
182 bytes after including the L2CAP and ATT headers, leading to reduced overhead and
potentially higher throughput.

In essence, leveraging larger ATT MTUs can diminish the frequency and necessity of
sending multiple ATT layer overhead bytes, e�ectively replacing them with usable data.
This not only increase the throughput by enabling the transfer of more application data in
fewer packets but also can contribute to lower power consumption due to reduced packet
transmission.

In conclusion, adopting larger ATT MTUs can provide a throughput and autonomy
increase. The e�ciency gain comes from minimizing the overhead of the ATT layer and
optimizing the payload capacity per packet.

5.2.1 Modifying ATT MTU

As previously mentioned, the version of BLE used by the aRdent smart glasses is 4.1.
This version does not allow for the modi�cation of the ATT MTU. Consequently, we are
unable to conduct practical tests to evaluate the impact of modifying the ATT MTU
directly on the device.

Despite this limitation, we will simulate the e�ects of changing the ATT MTU param-
eter in our subsequent analysis. By doing so, we aim to study its behavior and understand
how di�erent MTU sizes could in�uence the performance of data transfer in Bluetooth
communication. This simulation will help us gain insights into the potential bene�ts and
drawbacks of varying the ATT MTU, even though we cannot alter this parameter in the
current hardware setup of the aRdent smart glasses.

These simulations will provide valuable information that can be applied in future
versions of the device or in other systems where the ATT MTU can be modi�ed, thus
contributing to our overall understanding of BLE performance optimization.

5.2.2 Analysis with ST electronic software tool

Despite the �xed ATT MTU size of 23 bytes in the aRdent glasses, the ST Electronics
Current Consumption Estimation Tool o�ers a platform for theoretical examination and
simulation of potential enhancements. This software tool is pivotal in assessing the impact
of varied ATT MTU sizes on energy consumption and data throughput, despite the lack
of this feature in the glasses' current BLE chip.

By allowing the simulation of di�erent ATT MTU sizes, the tool provides a glimpse
into the potential improvements in performance and e�ciency that could be achieved with
an upgraded BLE chip capable of adjusting the ATT MTU.

The theory suggests that larger ATT MTU values could lead to more e�cient data
transmissions, as they decrease the number of packets required for sending equivalent
amounts of data. This, in turn, suggests a reduction in power consumption and an
increase in battery life, thus extending the device's autonomy. While these bene�ts are
currently theoretical for the aRdent glasses, the observations are invaluable for strategic
planning concerning future hardware upgrades.

In essence, the Current Consumption Estimation Tool by ST Electronics equips us
with analytical observation. It provides a predictive model for evaluating the potential
advantages of adjustable ATT MTU sizes and supports informed decision-making for
future developments in the aRdent glasses' BLE capabilities.

38

Variations of the ATT MTU will be simulated and its impact on data throughput
and device autonomy analyzed. Initially, the CI is set to 7.5 ms to allow for the highest
possible data rate. Fixing the CI at a de�ned value is strategic as it maximizes throughput
by using the best settings of both parameters (CI and ATT MTU) and isolates the impact
of ATT MTU on throughput.

For the test simulations, a simulated battery capacity of 800 mA will be used. The
results of these simulations provide a detailed view of how di�erent ATT MTU settings
a�ect autonomy, current consumption, and data transmission rates. Table 5.5 details the
autonomy for di�erent ATT MTU values, Table 5.6 presents the corresponding average
current during the active phase and total average current, and Table 5.7 illustrates the
payload data rate achievable at each ATT MTU setting.

ATT MTU Value Autonomy (days)
20 34
30 30
40 26
50 24
60 22
70 20
80 18
90 17
100 16
110 15
120 14
130 13
140 12
150 12
160 11
170 11
180 10
190 10
200 9
210 9
220 8
230 8
240 8

Table 5.5: ATT MTU and Associated Autonomy

39

ATT MTU Value Average Current (Ac-
tive Phase) (mA)

Total Avg Current (µA)

20 4.73 971.86
30 5.12 1106
40 5.47 1240.49
50 5.79 1374.77
60 6.08 1508.44
70 6.35 1643.13
80 6.6 1778.18
90 6.82 1910.18
100 7.03 2043.95
110 7.23 2179.2
120 7.41 2312.47
130 7.58 2446.36
140 7.74 2580.53
150 7.89 2714.68
160 8.04 2852.04
170 8.17 2985.28
180 8.29 3117.54
190 8.41 3252.36
200 8.52 3385.76
210 8.63 3521.51
220 8.73 3655.43
230 8.83 3791.47
240 8.92 3925.25

Table 5.6: ATT MTU and Current Consumption Metrics

40

ATT MTU Value Payload Data Rate (Kbit/s)
20 21.33
30 32
40 42.67
50 53.33
60 64.0
70 74.67
80 85.33
90 96
100 106.67
110 117.33
120 128.0
130 138.67
140 149.33
150 160
160 170.67
170 181.33
180 192
190 202.67
200 213.33
210 224
220 234.67
230 245.33
240 256

Table 5.7: ATT MTU and Associated Data Rate

Autonomy

In theoretical terms, increasing the ATT MTU is often expected to enhance device auton-
omy within BLE communications. This expectation stems from the e�ciency gained in
transmitting larger amounts of data per packet, which can reduce the number of packets
needed for a given amount of data. Fewer packets mean fewer transmissions, which nat-
urally consume less power due to decreased radio usage and reduced overhead for packet
headers.

However, the simulations from the ST Electronics Current Consumption Estimation
Tool present a di�erent scenario where autonomy decreases with increasing ATT MTU
sizes, as shown in Figure 5.9, created based on the data presented in Table 5.5. This
outcome can be attributed to the simulation parameters, which assume continuous data
transmission until the battery is theoretically depleted. In real-world applications, BLE
devices do not continuously transmit data; instead, they operate intermittently, send-
ing data as required by the application's functionality. Therefore, the simulation might
not accurately re�ect practical usage patterns where increased ATT MTU could indeed
improve autonomy by reducing the energy cost per byte of transmitted data.

41

Figure 5.9: Theoritical Autonomy Variation Based on ATT MTU.

These results highlight a critical aspect of using simulation tools they can provide
valuable insights into the hardware's capabilities and limitations under speci�c conditions
but might not fully capture the nuances of real-world device operation. As such, while
the theoretical bene�ts of a larger ATT MTU suggest improvements in power e�ciency,
the practical impact on autonomy will signi�cantly depend on the actual usage pattern
of the BLE device.

Current Consumption

After examining the graph that shows the ATT MTU value against the average current
in the active phase, as illustrated in Figure 5.10, created based on the data presented in
Table 5.6, a clear upward trend is observable. This indicates that as the ATT MTU value
increases, so does the average current consumed during the active transmission phase.
The trend can be explained by understanding that a larger ATT MTU allows for more
data to be sent in a single BLE packet. While this may reduce the total number of packets
sent and potentially decrease overhead, each packet with a larger payload consumes more
energy to transmit.

42

Figure 5.10: Theoretical Average Current In Active Phase Variation Based on ATT MTU.

As the ATT MTU value increases, the total average current consumed by the BLE
module also rises, as shown in Figure 5.11, created based on the data presented in Ta-
ble 5.6. This pattern suggests that with each increment in ATT MTU, which allows for
more data to be sent in a single packet, the BLE module must maintain its active state
for longer periods to handle the larger data volumes. Consequently, this results in higher
overall power consumption, re�ected in the increase in average current.

Figure 5.11: Theoretical Total Average Current Variation Based on ATT MTU.

This behavior is consistent with the understanding that larger data packets necessitate
more energy for processing and transmission. Each increase in the ATT MTU demands
more from the battery as the BLE module engages in more extended periods of high power
activity. Therefore, while larger ATT MTUs can improve data throughput e�ciency
by reducing the number of required packets, they concurrently elevate power demands,
potentially diminishing the device's battery life if such transmissions are frequent.

43

Data Rates

Analyzing the graph depicted in Figure 5.12, created based on the data presented in
Table 5.7, we observe a clear linear correlation: as the ATT MTU size increases, so does
the data rate. This trend is in line with expectations, as larger ATT MTU sizes enable
the transmission of more bytes of data per packet, e�ectively enhancing the throughput.

Figure 5.12: Theoretical Data Rates Variation Based on ATT MTU.

With smaller ATT MTU sizes, the data rate is constrained, limiting the e�ciency of
data transfer. Each packet can carry only a modest amount of application data, with a
larger percentage of the communication being occupied by headers and other overhead.

As the ATT MTU size grows, however, the ratio of application data to overhead in
each packet improves, leading to more e�cient utilization of the available bandwidth.
This is because a �xed amount of overhead is spread over a larger payload, reducing the
relative impact of that overhead on the total data transferred.

This relationship has signi�cant implications for the design of BLE devices like the
aRdent glasses, especially in applications where high data rates are crucial. It suggests
that selecting a larger ATT MTU size can be a valid strategy for boosting throughput,
provided the device's BLE chip supports such con�gurations.

5.3 Optimizing Number of Packets per CE

In this section, the relationship between the number of packets per connection event and
data throughput is explored. Various sources [24] [18] [61] have observed that increasing
the number of packets per connection event leads to an increase in data throughput.

This observation indicates a direct correlation between the e�ciency of packet trans-
mission during connection events and overall data throughput. By maximizing the num-
ber of packets transmitted per connection event, the data transfer rate can be e�ectively
increased, optimizing the Bluetooth communication system for higher performance.

In the �gures presented below, Figure 5.13 shows a connection event with a single
packet, and Figure 5.14 illustrates a connection event with multiple packets. These visual
representations help to understand why increasing the number of packets per connection
event results in higher throughput.

44

Figure 5.13: Single Packet per CE.

Figure 5.14: Multiple Packets per CE.

Firstly, when a connection event involves only a single packet, there's typically a sig-
ni�cant overhead associated with establishing and maintaining the connection, compared
to the actual data transmission. This overhead includes processes such as channel initial-
ization, frequency hopping, and acknowledgment mechanisms. As a result, the e�ective
data transmission time within the connection event is relatively low, limiting the overall
throughput.

However, when multiple packets are transmitted within a single connection event, the
overhead remains constant while the actual data payload increases. This means that
a larger portion of the connection event duration is used for transmitting useful data,
resulting in a more e�cient allocation of the available bandwidth and consequently higher

45

throughput.
Furthermore, transmitting multiple packets per connection event allows for better

use of packet aggregation techniques. Packet aggregation refers to combining multiple
smaller packets into a single larger packet, reducing overhead and making better use of the
available bandwidth. This optimization becomes particularly advantageous in scenarios
where short data packets are common, such as in IoT applications.

Therefore, by maximizing the number of packets per connection event, we not only
reduce the relative overhead but also exploit packet aggregation mechanisms more e�ec-
tively, resulting in higher data throughput and overall system performance.

The objective of this section is to understand the behavior of the parameter �number of
packets per connection event� and to explore methods for optimizing it both theoretically
and practically for the aRdent smart glasses.

By combining theoretical insights with practical experimentation, the goal is to achieve
an optimal balance between data throughput, energy e�ciency, and reliability, ensuring
seamless and robust Bluetooth communication for the aRdent smart glasses in diverse
usage scenarios.

5.3.1 Modifying Number of Packets per Connection Event

The ability to modify the number of packets per Connection Event (CE) in BLE com-
munication depends on the shared capacity between the master and the slave devices. In
the case of the aRdent smart glasses, the number of packets is limited by the Bluetooth
chip to 8

The master device dictates the number of packets that can be exchanged in each
Connection Event based on its own capabilities and the capabilities of the slave device,
which in this case are the aRdent smart glasses.

This means that, in some scenarios, fewer than 8 packets may be used if the master
device decides on a lower number during the negotiation.

Understanding and modifying the number of packets per Connection Event is crucial
for optimizing data transfer e�ciency and ensuring reliable BLE communication between
devices. This parameter plays a signi�cant role in achieving the desired performance levels
in various applications of the aRdent smart glasses.

5.3.2 Analysis with ST electronic software tool

In this section, it was discovered that the two parameters that have been analysed pre-
viously, namely CI and ATT MTU, drive what is the maximum packet per connection
event.

As a result of this observation, the subsequent parts of this section will further explore
how this parameter evolves in relation to the ATT MTU and CI. It will be investigated
whether it is always preferable to maximize the number of packets per connection event
to achieve the best throughput.

By analyzing how changes in ATTMTU and CI a�ect the maximum number of packets
per connection event, strategies can be devised to adjust these parameters to speci�c
requirements and constraints.

Moreover, it will be examined whether maximizing the number of packets per connec-
tion event consistently leads to improved throughput or if there are trade-o�s to consider
in terms of power consumption, latency, or other performance metrics.

Here are a few intuition that explain the relationships between these parameters:

46

� ATT MTU vs Number of Packets: If the ATT MTU is large, each packet can
accommodate more data, potentially reducing the need to send multiple packets.

� CI vs Number of Packets: A shorter CI increases data exchange opportunities
but may limit the number of packets per connection event due to the shorter interval
duration.

� Energy Consumption Optimization: To optimize battery life, increasing the
CI to reduce device wake-ups may be desired, but this reduces throughput and
increases latency.

� Throughput Optimization: To increase throughput, reducing the CI and in-
creasing the number of packets per connection event may be favorable, but this will
raise energy consumption.

In practice, there's often a trade-o� between throughput, latency, and energy con-
sumption. Hardware capabilities and limitations, as well as device-speci�c BLE stack
constraints (e.g., some devices may not support large ATT MTU values or high data
exchange frequencies), must also be considered.

In preparation for the integration of a new BLE chip in the system, the BlueNRG-
2, simulations were conducted using the ST Electronics Software Tool at the request of
GYW to understand the potential performance enhancements this new chip can bring.
The study aimed to analyze the data rate and autonomy changes when varying the number
of maximum packets per connection event while keeping the ATT MTU �xed. The ATT
MTU was set at 23, corresponding to a payload data of 20 bytes as speci�ed by the
BLE standard. Table 5.8 showcases the outcomes of this simulation, assuming an 800mA
battery capacity for the aRdent 2 glasses.

CI (ms) Max Packets per
CE

Data Rate
(Kb/s)

Autonomy
(800mA)

7.5 9 192 5 days
11.25 15 213.33 4 days
15 20 213.33 4 days
30 42 224 4 days
45 65 231.11 4 days
60 87 232 4 days
75 109 232.53 4 days
90 131 232.89 4 days
105 153 233.14 4 days
120 176 234.67 4 days
135 198 234.67 4 days
150 220 234.67 4 days

Table 5.8: Data Rate and Autonomy Variation with Fixed ATT MTU and Varied Packet
Numbers per CE

These results highlight the direct impact of the number of packets per connection
event on the data throughput and battery life.

The initial observation from the Figure 5.8 is that as the CI increases, so does the data
rate. This appears contradictory since previous tests yielded the best data rates with the

47

lowest CI settings. This could indicate an interaction between the maximum number of
packets per connection event and the CI that warrants further investigation.

Figure 5.15: Theoritical Maximum Number of Packet per CE Based on CI for ATT MTU
= 23.

In Figure 5.15, a linear relationship between the CI and the maximum number of
packets that can be sent per CE is observed. As the CI increases, there is a proportional
increase in the number of packets that can be accommodated in each CE.

This trend can be explained by the fact that a larger CI allows more time between
connection events, which in turn can be utilized to transmit a greater number of pack-
ets. This suggests that if the system is designed to optimize data transmission within a
given power budget, increasing the CI can be an e�ective strategy to maximize the data
throughput per CE.

It's important to note, however, that while increasing the CI may allow for the trans-
mission of more packets per CE, it can also result in a lower overall data rate and poten-
tially increased latency. The optimal setting would, therefore, be a balance between the
desired data rate, acceptable latency, and power consumption constraints.

The graph illustrates that adjustments to the CI have a direct and predictable impact
on the number of packets per CE, which is a crucial parameter in optimizing BLE commu-
nication for applications like the aRdent glasses, where e�ciency and power management
are essential.

The Figure 5.16, created based on the data presented in Table 5.8, illustrates the
relationship between the data rate and the number of packets per connection event. It
reveals that the data rate rapidly increases as the number of packets rises, up to a certain
point. Beyond this point, the increase in data rate begins to slow down despite further
increases in packet numbers. This suggests that there is a level of saturation where
adding more packets per connection event yields diminishing returns in terms of data rate
improvements. This plateau could be due to a variety of factors, including limitations of
the BLE chip's processing power, maximum data rates, or even the overhead involved in
managing a larger number of packets.

48

Figure 5.16: Theoritical data rates Based on Number of Packet per CE for ATT MTU =
23.

Now, by holding the CI at 15 ms, let's examine the relationship between ATT MTU
and the maximum number of packets per connection event. This will demonstrate how
variations in ATT MTU a�ect both the data rate and the autonomy of the system with
a �xed CI. The results are summarized in Table 5.9.

Initially, it is observed that the data rate increases as the ATT MTU size increases,
which is typical behavior indicating that larger packet sizes can transmit more data per
connection event, thus enhancing throughput. However, beyond a certain MTU size, the
trend becomes irregular with �uctuations in the data rate. This suggests that while larger
MTUs generally facilitate higher data rates, there may be a threshold beyond which in-
creases in MTU size do not consistently result in higher data rates. These irregularities
could be attributed to potential ine�ciencies or limitations in the system, such as proto-
col overhead or hardware constraints, which begin to negate the bene�ts of larger data
packets. This pattern highlights the complexity of optimizing data transmission in BLE
systems and the need for careful consideration of MTU size in relation to overall system
performance.

The Figure 5.17 shows the Maximum Packets per CE against the ATT MTU Value
for a BLE system.

49

ATT MTU Max Packets per
CE

Data Rate (Kbit-
s/s)

Autonomy
(800mA bat-
tery)

20 20 213.33 4 days
30 18 288 4 days
40 16 341.33 4 days
50 15 400 4 days
60 14 448 3 days
70 13 485.33 3 days
80 12 512 3 days
90 11 528 3 days
100 10 533.33 3 days
110 10 586.67 3 days
120 9 576 3 days
130 9 624 3 days
140 8 598.33 3 days
150 8 640 3 days
160 7 597.33 3 days
170 7 634.67 3 days
180 7 672 3 days
190 6 608 3 days
200 6 640 3 days
210 6 672 3 days
220 6 704 3 days
230 5 613.33 3 days
240 5 640 3 days

Table 5.9: ATT MTU Variations with Fixed CI of 15 ms (bluenrg_2)

Figure 5.17: Theoritical Maximum Number of Packet per CE Based on ATT MTU for
CI = 15ms.

The graph presents a clear downward trend as the ATT MTU value increases, the
maximum number of packets per connection event decreases. This inverse relationship

50

is as expected because with a larger MTU, each packet can carry more data, so fewer
packets are needed or can be sent within each connection event given the �xed bandwidth
and time constraints.

The trend appears to be quite linear at the start, with a steeper slope from the lowest
ATT MTU values, indicating a rapid decrease in the number of packets per connection
event as the ATT MTU size initially increases. This steep decline starts to level o�
gradually, which can be seen as the curve becomes less steep after the ATT MTU value
exceeds approximately 100. The line begins to become steady, indicating that the rate of
decrease in packets per connection event slows down as the ATT MTU value gets larger.

This behavior could suggest that, at lower MTU values, increments in MTU size have
a more signi�cant impact on the number of packets that can be sent in each connec-
tion event. As the MTU value continues to rise, each additional increase in MTU size
has a proportionally smaller e�ect on the number of packets per connection event. The
graph does not show any anomalies or unexpected spikes or dips, which implies consistent
performance across the range of MTU sizes tested.

This information could be valuable in optimizing BLE performance, as it suggests there
may be a �sweet spot� where increasing the ATT MTU size provides a bene�cial trade-o�
between the amount of data per packet and the number of packets per connection event.
Beyond a certain point, further increases in MTU size may yield diminishing returns in
terms of packet count e�ciency.

The next step of the investigation consists in reviewing how the data rates are a�ected
when we utilize the maximum number of packets per connection event.

Figure 5.18: Theoritical Data rates Based on the Maximum Number of Packet per CE
for CI = 15ms.

Analyzing Figure 5.18, which shows the theoretical data rates versus the maximum
number of packets per connection event with a �xed CI of 15 ms, the following observations
can be made:

The data rate shows a �uctuating pattern as the maximum number of packets per
connection event increases. Initially, the data rate increases, then decreases, then increases
again, and continues this oscillating behavior. However, when observing the overall trend,
the data rate shows a general decline.

This pattern can be explained by several theoretical factors:

51

� Initial Increase: At the beginning, increasing the number of packets per connection
event allows more data to be transmitted within the same time frame, leading to
higher data rates.

� Fluctuations: The observed �uctuations in the data rate can be attributed to the
complexities of the BLE protocol and the interaction between di�erent parameters.
For instance, handling more packets might temporarily improve throughput but
could also introduce overhead and processing delays that reduce e�ciency.

� Overall Decline: Despite the short-term increases, the overall decline in data
rate suggests that as the number of packets per connection event continues to rise,
the overhead and ine�ciencies become more signi�cant. This could be due to the
increased time needed to manage and process each packet, resulting in a net decrease
in data rate.

� Complex Interactions: The observed pattern highlights the complex interactions
between BLE parameters, where the theoretical bene�ts of increasing packet num-
bers are mitigated by practical limitations such as protocol overhead and processing
delays.

In conclusion, Figure 5.18 illustrates that while increasing the number of packets per
connection event can sometimes boost the data rate, the overall trend shows a decline
due to the ine�ciencies introduced.

Both graphs show an initial increase in data rate as the number of packets per con-
nection event rises. This is expected as more data can be transmitted within the same
time frame when more packets are sent.

For the �xed CI graph (Figure 5.18), the data rate peaks early and then declines with
�uctuations, suggesting ine�ciencies and overhead associated with managing more pack-
ets. In contrast, the �xed ATT MTU graph (Figure 5.16) shows the data rate continues to
rise and then stabilizes without signi�cant decline, indicating better e�ciency in handling
multiple packets.

The �xed CI graph shows a general decline in data rate after an initial peak, high-
lighting the limitations of increasing the number of packets per connection event beyond
a certain point. On the other hand, the �xed ATT MTU graph shows a leveling o� after
a steady increase, suggesting that the system can handle a larger number of packets more
e�ectively when the ATT MTU is �xed.

The �xed CI scenario suggests that there is an optimal number of packets per connec-
tion event, beyond which performance degrades due to overhead and ine�ciencies. The
�xed ATT MTU scenario suggests that increasing the number of packets per connection
event can be bene�cial up to a higher limit, after which the performance stabilizes but
does not degrade signi�cantly.

Initially, by adjusting the ATTMTU in increments of 10, we discern that the maximum
data throughput is achieved with an ATT MTU of 220. This speci�c con�guration, which
corresponds to a payload of 220 bytes and a maximum of 6 packets per connection event,
yields a data rate of 704 Kbits/s. This represents the highest data rate achievable within
the current system constraints without signi�cantly increasing the CI, which would lead
to undesirable latency.

However, further re�nement and precision in tuning the ATT MTU value reveal that
an even higher data throughput is possible. By employing a simulation software that
allows for �ner adjustments, a superior data rate is attained with an ATT MTU of 247
(which equates to a payload of 244 bytes) and a CI of 30 ms, as is standard on devices like

52

the iPhone. This more granular approach results in a data rate of 761.6 Kbits/s, which
stands out as a more optimal con�guration, balancing high throughput with acceptable
latency within the parameters of the simulation.

The autonomy behavior in relation to the number of packets per connection event
remains the same whether we �x the CI at 15 ms or the ATT MTU at 23.

The CI will be �xed at 15 ms and the ATT MTU at 220 to theoretically study BLE
behavior and explore potential optimizations. The results are summarized in Table 5.10.

Number of Packets per
CE

Data Rate (Kbits/s) Autonomy (800mA)

1 117.33 18 days
2 234.67 9 days
3 352 6 days
4 469.33 4 days
5 586.67 3 days
6 704 3 days

Table 5.10: BLE Performance Metrics with Fixed CI at 15 ms and ATT MTU at 220

The CI is �xed at 15 ms and the ATT MTU at 220 to theoretically study how BLE
would behave and explore potential optimizations. The evolution of data rates as a
function of the number of packets per connection event is shown in Figure 5.19, based on
the data presented in Table 5.10.

Figure 5.19: Theoritical Data rates Based on the Maximum Number of Packet per CE
for CI = 15ms and ATT MTU = 23.

The data rate increases linearly with the number of packets per connection event. This
linear relationship indicates that there is a direct proportionality between the number of
packets and the data rate, with no apparent signs of diminishing returns within the range
shown. For each incremental packet added per connection event, there is a corresponding
increase in the data rate, which suggests an e�cient utilization of bandwidth.

There is no indication of leveling o� or decrease in data rate, which would be expected
if there were any ine�ciencies or limitations being reached in the system. This implies

53

that, up to six packets per connection event, the system is likely not hitting any signi�cant
protocol or hardware constraints that would prevent the linear increase in data rate.

This trend shows that data throughput can be optimized by increasing the number of
packets per connection event within the speci�ed range. It also o�ers a way to predict
data rates for a given number of packets, assuming other factors stay the same and the
system continues to behave consistently beyond the shown range.

Figure 5.20: Theoritical Autonomy Based on the Maximum Number of Packet per CE
for CI = 15ms and ATT MTU = 23.

From the Figure 5.20, there is a steep decline in autonomy as the number of packets
per connection event increases from 1 to 2. This suggests that doubling the number of
packets signi�cantly impacts the system's energy consumption. However, after this initial
drop, the rate of decrease in autonomy slows down between 2 and 4 packets per connection
event.

As we move from 4 to 6 packets per connection event, the autonomy seems to stabilize,
indicating that the additional packets have a negligible impact on autonomy. This could
mean that the energy cost per packet decreases when adding packets to a connection event
after a certain point, or it could indicate that the system has reached an e�cient state
where the energy usage stabilizes despite the increased number of packets.

The initial steep drop followed by a leveling o� suggests that there's a threshold of
energy e�ciency gains to be had by increasing the number of packets per connection
event. After this threshold, the bene�ts in energy e�ciency become less pronounced.

5.3.3 Interpretation of the results

The extensive testing conducted provides valuable insights into the optimization of BLE
parameters for devices with constrained connection events, such as an iPhone, which
limits the number of packets per connection event to four. These �ndings will be crucial
in determining the optimal ATT MTU size or CI to employ for the best throughput under
such limitations.

Moreover, it is important to recognize that altering the number of packets per connec-
tion event would require the capability to adjust the connection event length parameter on

54

both devices involved in the communication. However, in practical scenarios, this adjust-
ment is often not feasible as we typically do not have control over the device acting as the
BLE master, such as phones or computers, where direct programming of the Bluetooth
chip is not possible.

On the other hand, the chip used by Get Your Way is designed to support up to eight
packets per connection event, working to maximize this potential for both the current
chip and the forthcoming BLE 5.0 chip.

Given these constraints, for the current card with a maximum ATT MTU of 23, the
most optimized data rate is achieved with a CI of 7.5 ms, aligning with the results observed
in our previous throughput tests.

Looking forward to the capabilities of the new card, if it supports an ATT MTU of
247, then the combination of an ATT MTU of 247 and a CI of 7.5 ms would likely yield
a signi�cant improvement in BLE performance.

5.4 Data Length Extension (DLE)

The DLE feature is a key enhancement in the BLE speci�cation introduced with version
4.2. It allows for an increase in the maximum length of data packets transmitted over the
link layer, signi�cantly improving data throughput and energy e�ciency of transmissions
[63].

The DLE enables the extension of the maximum length of BLE data packets. Tradi-
tionally, the size of BLE data packets was limited to 27 bytes. With the introduction of
DLE, this limit can be increased up to 251 bytes. This extension reduces the number of
transmissions needed to send large amounts of data, thereby decreasing protocol overhead
and improving overall throughput.

55

Figure 5.21: Comparison of packet sizes with and without DLE

It is crucial to distinguish between increasing the size of the ATT MTU and enabling
DLE, as these two mechanisms enhance data throughput in di�erent ways.

The ATT MTU concerns the maximum payload size of ATT protocol packets (used
for data exchanges between BLE devices). By default, this size is 23 bytes, but it can
be negotiated between devices to reach higher values. Increasing the ATT MTU allows
more user data to be transmitted in a single ATT packet, reducing the number of packets
needed to transfer large amounts of data.

On the other hand, DLE a�ects the maximum length of data packets at the link layer.
By enabling DLE, the length of BLE packets at the link layer can increase from 27 bytes
to 251 bytes.

In our speci�c case, we were unable to utilize this parameter on the aRdent 1 glasses,
which aligns with the fact that the ATT MTU is locked at 23 on these devices. However,
the aRdent 2 glasses take advantage of this DLE feature, allowing for a larger ATT MTU
and signi�cantly better data throughput, as will be discussed later in this report.

By combining these two techniques, it is possible to signi�cantly optimize the data
transmission performance over a BLE link. Increasing the ATT MTU allows more data to
be encapsulated in each ATT packet, and enabling DLE allows these packets to be larger
at the link layer, further reducing the total number of necessary transmissions.

The combination of these two improvements enables maximum data throughput, while

56

optimizing energy usage and reducing transmission latency. Readers should understand
that although these two mechanisms are distinct, they complement each other and align
to o�er optimal performance in BLE communications.

5.5 LE 2M PHY

The LE 2M PHY is an enhancement introduced in the Bluetooth 5.0 speci�cation, allowing
devices to communicate using a physical layer that supports a 2 Mbps data rate. This
represents a signi�cant improvement over the standard 1 Mbps rate provided by the LE
1M PHY, e�ectively doubling the data throughput [71] [64].

The LE 2M PHY is a high-speed data rate mode in BLE communication, capable of
achieving a maximum data rate of 2 Mbps. This mode is designed to enhance the speed
of data transmissions, thereby improving the e�ciency and performance of BLE devices.

The primary advantage of LE 2M PHY is its ability to transmit data at twice the
speed of the standard LE 1M PHY. This increase in data rate directly translates to higher
throughput, allowing for faster data transfers between devices. Additionally, the reduced
transmission time for the same amount of data can lead to lower power consumption, as
the radio can be turned o� more quickly after each transmission. This makes LE 2M
PHY not only a performance enhancement but also a potential improvement in energy
e�ciency for BLE devices.

Unfortunately, for both the aRdent 1 and aRdent 2 glasses, the current chipsets do
not support the activation of the LE 2M PHY mode. This limitation restricts the devices
to using the standard 1 Mbps rate, preventing them from taking advantage of the poten-
tial throughput improvements o�ered by LE 2M PHY. However, this mode remains an
interesting consideration for future versions of the aRdent glasses, where updated chipsets
could incorporate this feature to enhance performance.

Adding LE 2M PHY in future versions of the aRdent glasses could signi�cantly boost
data transfer rates, leading to smoother and faster communication. This upgrade would be
particularly bene�cial for applications requiring high data throughput, such as real-time
video streaming or large data transfers, increasing the overall user experience.

57

Chapter 6

Optimizing Write Without Response

6.1 Analyzing Data with PacketLogger

In practice, the initial attempts to optimize the Write Without Response mode did not
proceed as expected. When attempting to send a payload of 1000 bytes consisting of
the character string �AAA...�, only the �rst few bytes were visible. Speci�cally, instead of
seeing the character �A� repeated 1000 times on the screen, only about ten characters were
displayed. This indicates that the majority of the packets were missing in the transmission.
Therefore, simply enabling the Write Without Response mode on both devices was not
su�cient to ensure proper functionality, highlighting the need for a more in-depth study.

By using PacketLogger, the goal was to capture the messages sent during the test
transmissions to understand why only a fraction of the intended data was being received.
The analysis of these packets would help identify the exact cause of the failure in data
transmission under the Write Without Response mode.

The comparison between the two test scenarios reveals signi�cant details about the
data transmission issues. In the �rst scenario, where the device operates in �Write With
Response� mode, all data packets appear to be sent and acknowledged as expected. This
suggests that the system is initially capable of handling the intended transmission method.

However, in the second scenario, although the �rst 12 data packets are transmitted
successfully without acknowledgment, the transmission stops abruptly after these packets.
No further data are visible, and the device disconnects. This sudden stop and the absence
of more data packets indicate a potential issue in maintaining long transmissions without
acknowledgments, highlighting a critical area for further investigation and adjustment in
the communication protocol or device con�guration.

6.2 Investigating the Root Cause and Exploring Poten-

tial Solutions

To understand why only a limited number of packets are being transmitted and to �nd
a solution to this issue, a series of tests will be performed to investigate what causes this
unusual behavior.

The �rst test involves altering the Python script running on the MacBook. Speci�cally,
the call to the `disconnect` function within the script will be removed to observe any
changes in behavior. This modi�cation aims to assess whether the premature termination
of the connection is a contributing factor to the incomplete data transmission observed.

After modifying the Python script to omit the `await disconnect` call, a signi�cant

58

change was observed in the packet reception. This alteration allowed for more packets
to be received, showing more than just the initial 12 packets of the �AAA...� character
string on the display.

Furthermore, if the command to update the parameter forcing the CI to 7.5 ms is not
issued, the quantity of �AAA...� displayed on the screen is also greater. This suggests
that the default communication interval may be allowing for a more e�cient transfer of
data.

These observations resulted to the hypothesis that in the Write Without Response
mode, where there is no acknowledgment requirement, if an issue arises, the master device
continues to send data to the slave. This could mean that data is being sent too rapidly
to the glasses, potentially over�lling the reception bu�er and causing subsequent packets
to be refused by the glasses. Additionally, the decision not to send the parameter update
command likely allowed the device's bu�er to accumulate less �unnecessary� data, enabling
it to receive more raw data before the reception bu�er became full.

This scenario is further illustrated in Figure 6.1, which depicts the representation of
a full bu�er as per my initial intuition.

Figure 6.1: Bu�er full representation for my �rst intuition

Based on these �ndings, the next series of tests will transition from using �AAA...� to
numbers. This change will allow for a more precise indication of where packet reception
halts, providing clearer insights into the bu�er capacity and transmission limits.

6.3 Investigating the Reception Bu�er Capacity as a

Potential Cause

To determine if the reception bu�er is indeed the underlying cause of the data transmission
issues, modi�cations were made directly in the �rmware code of the glasses. Initially, the
reception bu�er was set with a capacity of 5. Under these conditions, when sending 1000
bytes of numerical data, the transmission process halted after successfully receiving and
displaying the number 63 on the glasses.

In response, the bu�er size was increased to 200 to observe any changes in behavior.
With this adjustment, the numbers displayed and received extended up to 96, marking a
clear improvement in the capacity to handle more data. This experiment con�rms that
the size of the reception bu�er in the �rmware signi�cantly impacts the problem being
faced.

59

However, increasing the bu�er size alone does not completely resolve the issue, as not
all expected numbers are being displayed. It is important to note that the maximum
capacity for this bu�er is 255. Pushing the bu�er size close to this maximum has occa-
sionally caused the device to freeze and cease functioning. Consequently, the bu�er size
is maintained around 200 to balance improved data reception and system stability.

6.4 Continuous Monitoring and Dynamic Control of

Data Transmission

Following the bu�er size tests, an idea emerged. Given that the glasses appeared unable
to handle rapid data transmission, a viable strategy could involve continuously monitoring
the bu�er's �ll level. When the bu�er approaches full capacity, a signal could be sent to
the master device (in this case, the MacBook) to slow down or halt data transmission
until the slave device (the aRdents glasses) requests a resumption at full speed.

To implement this, the plan was to monitor the bu�er �ll status in real-time and
display the �ll percentage using the JLinkRTTViewer application. However, contrary to
expectations, when a large amount of data was sent and the data transfer was prematurely
cut o� as previously described the bu�er was never more than 10% full.

This observation was perplexing as it contradicted the expected behavior of an over-
�owing bu�er that fails to process incoming data. Further investigations using the Pack-
etLogger software suggested that the issue might not be due to bu�er over�ow [23] but
rather due to a communication being truncated too early. This unexpected �nding has
led us to explore the principles of disconnection, which will be detailed in future section.

Additionally, the role of issuing a `disconnect` command in this scenario is questioned.
Speci�cally, how could sending a `disconnect` after the data transmission is complete
potentially interrupt the reception of the data? Furthermore, when the `disconnect` com-
mand is removed from the script, the glasses still disconnect, although slightly later, yet
still before all data has been received. This behavior raises further questions about the un-
derlying mechanisms controlling device disconnection and data reception integrity under
these conditions.

6.5 Modulating Transmission Speed to Enhance Data

Handling

Given that rapid data transmission in Write Without Response mode appeared to cause
issues with the aRdents glasses, regardless of the speci�c cause of this problem, it was
decided to experiment with slowing the data transfer rate a bit.

To moderate the pace of data transmission, the Python script that generates and sends
20-byte packets was modi�ed by introducing a delay between each send operation. This
was achieved by incorporating an await asyncio.sleep() statement with a delay of 0.1
seconds between each packet transmission. This method simulates a slower data transfer
from the computer to the device.

The outcome of this adjustment was signi�cantly positive, enabling the complete trans-
mission of all data in Write Without Response mode without any issues. This suggests
several potential explanations for why adding a delay facilitated successful data reception
and transmission:

60

The �rmware on the glasses may have limitations in terms of how quickly it can pro-
cess incoming data. Additionally, the management of system resources such as memory
and CPU plays a crucial role. If data arrives too rapidly, these resources might be over-
whelmed, leading to data loss and diminished e�ectiveness of data handling.

In Write Without Response mode, there is no built-in mechanism to control the �ow of
data between the master and the slave. Consequently, it falls to the application to manage
this �ow to prevent overwhelming the slave device. Furthermore, BLE is optimized for
low-energy data transmission and may not be ideal for high-throughput data streams
without proper �ow management.

6.6 Throughput Testing for Data Transmission

To assess the impact of transmission speed on data handling, throughput tests were
conducted on a 2019 MacBook Pro using a Python script. The tests varied the inter-
send delay in a Write Without Response mode with and without the `await disconnect`
command. The CI was set at 15ms and the ATT MTU at 23 bytes.

Test Con�guration

� CI: 15ms

� ATT MTU: 23 bytes

� Data sent: Numerical data ranging from 1 to 1000 for throughput measurement.

Delay (s) Throughput (KB/s) Observations
0.05 0.7227 Full transmission
0.04 0.8992 Full transmission
0.03 1.1891 Full transmission
0.02 1.7378 Full transmission
0.01 3.2911 Full transmission
0.009 3.6519 Full transmission
0.008 4.0365 Full transmission
0.007 4.5785 Full transmission
0.006 5.2685 Stops at 897
0.005 6.1921 Stops at 682
0.004 7.6876 Stops at 732
0.003 9.6861 Stops at 677
0.002 14.5009 Stops at 682
0.001 24.9228 Stops at 461

Table 6.1: Throughput Test Results Without `await disconnect`

61

Delay (s) Throughput (KB/s) Observations
0.05 0.7187 Full transmission
0.04 0.8938 Full transmission
0.03 1.1812 Full transmission
0.02 1.7333 Full transmission
0.01 3.3106 Full transmission
0.009 3.6607 Full transmission
0.008 4.1228 Full transmission
0.007 4.5103 Stops at 997
0.006 5.2309 Stops at 781
0.005 6.1021 Stops at 668
0.004 7.6456 Stops at 714
0.003 9.6387 Stops at 645
0.002 15.6789 Stops at 698
0.001 23.6238 Stops at 454

Table 6.2: Throughput Test Results With `await disconnect`

The data reveal that reducing the delay between packet transmissions consistently
increases throughput. However, at very short delays (below 0.007 seconds), we observe
an abrupt stop in data transmission, indicating potential bu�er over�ow or processing
limitations in the aRdents glasses. Interestingly, the inclusion of the `await disconnect`
command does not signi�cantly alter throughput but slightly improves the reliability of
data transmission at higher speeds.

Although the transmission stops after transmitting a certain amount of data, which
is not an expected behavior, the Write Without Response mode is currently functional
for smaller data sizes. This could be practical for applications that do not require large
continuous data streams.

The throughput values reported here may not represent the absolute performance
metrics and should be interpreted with caution. Later sections of this thesis will explain
the reasons behind these discrepancies. For now, the main point to focus on should be
the relative improvement in throughput as the inter-send delay decreases, rather than the
absolute values.

6.7 Optimal Delay Determination for High Volume Data

Transmission

In the quest to optimize data transmission in Write Without Response mode, a series of
tests were conducted to determine the best delay setting for transmitting a large dataset
without interruption. The primary goal was to successfully send numerical data ranging
from 1 to 10,000.

Initial tests revealed that any delay shorter than 0.008 seconds was insu�cient to
transmit the full range from 1 to 10,000 without issues. Delays of 0.008 seconds and
longer, however, consistently allowed for complete and uninterrupted transmission.

After further investigation into delays shorter than 0.008 seconds, a recurring issue
was identi�ed: data transmissions were consistently halting just short of completion. This
interruption occurred regardless of the exact number of data points sent, and interestingly,
it persisted even when the `disconnect` command was omitted from the master script. This

62

phenomenon suggested an underlying limitation or blockage in the transmission process
that was not immediately attributable to any obvious system parameters.

For more detailed analysis, the numbers from 1 to 10,000 were sent again under various
shorter delays to identify when the sending process would stop. At a delay of 0.007
seconds, the transmission was unpredictable, sometimes completing successfully, but more
typically stopping around an average of 9980. Delays of 0.006 seconds consistently stopped
at about 9600. For both 0.005 and 0.004 seconds, the process halted around 9100. A delay
of 0.003 seconds resulted in stopping at 8400. At 0.002 seconds, the transmission ceased
at 6800. The shortest tested delay of 0.001 seconds saw the process halt at 4100.

Further tests were conducted to send numbers from 1 up to 1,000,000 to examine the
consistency of these stopping points under various delays. Surprisingly, with a delay of
0.005 seconds, it was possible to send all numbers up to 20,000 without interruption. This
result was perplexing, as it suggested that if the issue were related to bu�er capacity or
slave device processing speed, the stopping point would remain consistent regardless of
the total number of digits sent. This anomaly reinforced the suspicion that the problem
might be related to the timing of the `disconnect` signal, although the issue remained
unclear since the problem persisted even without the `disconnect` command in the script.

6.8 Focus on Disconnect Functionality

The initial step in addressing the suspected issues with the disconnect command was to
remove it from the code to observe the changes in behavior. This modi�cation allowed
more data to be sent, but the reason for this improvement was not immediately clear.

Closer inspection, aided by tools such as PacketLogger, revealed that when the discon-
nect command was removed from the master side, the disconnect still occurred, although
slightly later than if the command had been left in the code. Interestingly, the subsequent
disconnect originated from the slave device, in this case, the aRdents glasses.

The time between the last data received and the disconnect initiated by the glasses was
measured. This measurement highlighted a direct correlation with the supervision timeout
set in the update function, which adjusts the CI. It was noted that approximately three
seconds elapsed between the last reception of data and the disconnect, exactly matching
the supervision timeout duration. However, this did not explain why the timeout was
triggered while signi�cant amounts of data were still pending transmission.

The next test involved increasing the supervision timeout to �ve seconds while con-
tinuing to omit the disconnect command from the master script. This change allowed for
the transmission of signi�cantly more data, successfully sending numbers from 1 to 10,000
with a delay of 0.005 seconds.

These �ndings con�rmed that premature disconnection was indeed a limiting factor in
the utilization of the Write Without Response mode, in addition to previously identi�ed
limitations related to bu�er capacity.

Despite these adjustments, the question remained why the master device would dis-
connect before sending all the data. After further re�ection, we addressed this issue with
the following comprehensive explanation.

6.9 Initial Problem and Mode Operation

Using �Write Without Response� mode in BLE to send data from 1 to 10,000 resulted in
only the �rst 100 numbers being received by the remote device.

63

The primary issue was not a full bu�er but the timing of how data send commands
and disconnect commands were processed by the BLE device:

� Commands are processed sequentially by the BLE device. If the disconnect com-
mand is processed before all data has been transmitted, it can prematurely interrupt
the transmission process.

Introducing a delay (sleep) before the disconnect command ensures that all sent data
is transmitted before the disconnection is initiated. This delay compensates for the lag in
processing between sending data and executing the disconnect command.

The introduced delay acts as a temporal bu�er ensuring the disconnect command
does not execute until data transmission is complete, preventing premature data transfer
interruption.

Strategic use of delays can be adjusted based on BLE device performance charac-
teristics to ensure all data is transmitted before any connection management commands
are executed. Implementing checks to con�rm all data has been sent before issuing a
disconnect command can also help prevent premature interruptions.

By focusing on the timing and synchronization of commands, this approach maxi-
mizes the e�ciency of data transmission in �Write Without Response� mode, avoiding
disruptions caused by premature disconnect commands.

After extensive testing and adjustments, it has been determined that the Write With-
out Response mode functions optimally on a MacBook Pro with a delay of 0.003 seconds.
This con�guration allows for an unlimited amount of data to be sent e�ciently with-
out encountering the issues previously noted at lower delay settings. This delay ensures
that data transmission is fast yet stable enough to prevent bu�er over�ow and premature
disconnection, facilitating a seamless data transfer experience.

This �nding is signi�cant as it demonstrates the practical upper limit of performance
within the current hardware and software constraints, ensuring reliable data transfer in
applications requiring continuous high-volume data streams without response acknowl-
edgment.

6.10 Understanding the Requirement for a 0.003 Sec-

ond Delay

A pertinent question arises: why is a 0.003-second delay necessary when using the Mac-
Book Pro? To investigate further, additional tests were conducted using an alternative
device for data transmission. A Linux-based Asus laptop was chosen to determine whether
the delay requirement was a broader issue or speci�c to the MacBook.

Surprisingly, the �Write Without Response� mode functioned perfectly on the Asus
laptop without any need for a delay. This �awless operation led us to hypothesize that
the behavior requiring a delay might be speci�c to the MacBook Pro.

Despite extensive searches, no relevant information could be found in Apple support
documentation or elsewhere that directly addressed this discrepancy. This lack of in-
formation suggested that the issue might come from an inherent limitation or a unique
operational characteristic of the MacBook hardware when handling rapid data transmis-
sions.

While the �Write Without Response� mode is now fully functional, the implementation
di�ers signi�cantly between devices. On a MacBook Pro, a delay of 0.003 seconds between
each packet of data is necessary to ensure all data is transmitted. On the other hand,

64

the Linux system requires no such delay, highlighting a notable di�erence in how these
devices manage rapid data transmissions.

The adjustments made to the bu�er size and the introduction of inter-packet delays
were crucial in resolving the issues previously encountered with the �Write Without Re-
sponse� mode. These modi�cations allowed for the complete transmission of all data,
thereby enhancing the reliability and e�ectiveness of this mode.

These �ndings not only highlight the variability in BLE performance across di�erent
hardware platforms but also emphasize the importance of adjusting system parameters
to the speci�c characteristics of the device in use. By understanding and addressing the
unique needs of each device, it is possible to optimize data transmission processes to
achieve consistent and reliable performance across various platforms.

6.11 Veri�cation of Data Display on the Device

Having successfully sent all numeric data to the glasses in �Write Without Response�
mode, the next step was to ensure that the data was displayed correctly to the user. To
this end, multiple identical strings of characters were sent consecutively to be displayed
one after the other on the device.

Figure 6.2: Data received in Write With
Response mode

Figure 6.3: Data received in Write Without
Response mode

From the comparative analysis of the two images (Figure 6.2 and Figure 6.3), it is
evident that the �Write With Response� mode is stable and signi�cantly slower, without
any noticeable data integrity issues. However, discrepancies are apparent when examining
the display of the glasses that received data in Write Without Response mode, where some
data seem to disappear.

Our initial assumption was that the missing data could be due to interference, leading
to data loss. This was considered because the practical di�erence between the two modes
is the presence or absence of packet acknowledgment, which ensures that each packet is
received before the next one is sent.

Several questions arose from the presence of these issues. Could the use of CRC [37]
checks that request the retransmission of erroneous data resolve the issue? Are these
truly interference problems? Subsequent tests revealed that it is always the same lines
that exhibit issues when they occur. By de�nition, if interference were the cause, the
behavior should be random and a�ect data randomly. Is there a problem with the data
bu�er managing high-speed packet arrival incorrectly, potentially leading to overwrite
issues?

65

These questions laid the groundwork for further investigation, aiming to eliminate
these possibilities and identify the exact cause of the discrepancies observed.

6.12 Investigating the Source of Data Display Issues:

Interference vs. Memory

To determine whether the issues observed were due to interference or memory-related
problems, tests were conducted by manipulating the delay between transmissions. The
hypothesis was that if interference was causing the artifacts, changes in the delay should
not impact the occurrence of these artifacts, since there is no acknowledgment in �Write
Without Response� mode that could mitigate interference e�ects.

Here are the �ndings from the delay tests:

� Delay of 0.5 seconds: No artifacts observed on the display.

� Delay of 0.05 seconds: No artifacts observed on the display.

� Delay of 0.005 seconds: Artifacts present.

These results, alongside the non random appearance of artifacts, allowed the inter-
ference hypothesis to be con�dently dismissed. This suggests that the problem likely
comes from issues related to bu�er handling or memory when dealing with high-speed
data transmission.

To determine whether the issue was speci�cally related to text data bu�er handling or
a more general problem with high-speed data management, an experiment was conducted
by sending an image instead of text.

An entire image was successfully transmitted in �Write Without Response� mode with
a delay of 0.003 seconds (the delay that allows uninterrupted sending on a MacBook),
and the glasses were commanded to display it. The displayed image was perfect, with no
signs of data loss or corruption.

This experiment has thus not only eliminated the possibility of interference but also
ruled out the hypothesis of poor data handling in memory when receiving data at high
speed. If this were the case, the same problem observed with text data would have
occurred with the image.

The �nal hypothesis considered was a potential race condition [78] in the �rmware
related to text display. However, further investigation into �rmware-level issues was not
pursued because GYW's priority was to optimize the BLE performance of the glasses,
and due to time constraints, nothing was done to address this problem.

During the image transmission experiment, the transmission times for an image of
38,193 bytes in both modes were also compared:

� Write With Response mode: 58.33 seconds

� Write Without Response mode: 21.17 seconds

These comparative results further demonstrate the e�ciency gains achievable with the
�Write Without Response� mode, con�rming its e�ectiveness for high-speed data transfer
while underscoring the necessity of optimizing system parameters to prevent data display
issues.

66

6.13 Testing Write Without Response Mode in Flutter

Expanding the scope of the investigation, the performance of the Write Without Response
mode was evaluated using Flutter, a popular mobile development framework. This test
aimed to understand how the mode performs under di�erent programming environments
and settings.

The con�guration for the test in Flutter was set with a CI of 30 ms and allowed for
sending 4 packets per connection event, instead of the maximum of 8 packets. This setup
was chosen to examine the behavior under constrained conditions speci�c to the iPhone
12 used in the test.

The throughput in various scenarios was measured as follows:

� Write With Response: 0.141.22 KB/s

� Delay of 10 milliseconds: 0.23 KB/s

� Delay of 9 milliseconds: 0.236 KB/s

� Delay of 8 milliseconds: 0.238 KB/s

� Delay of 0 milliseconds: 0.27 KB/s

Notably, a delay of 0 milliseconds was the most e�ective, suggesting that the larger
CI might have contributed to a lower data rate, allowing for stable transmissions without
any delay. Furthermore, the gradual increase in throughput with decreasing delays was
not as signi�cant as expected, hinting at potential underlying factors in�uencing the
performance.

The key question remains: why does the Write Without Response mode with zero
delay provide a better throughput, but not as high as expected and only slightly better
than the �Write With Response� mode? This is especially puzzling when compared to
the values observed on a computer using Python. Potential factors could include the
language's runtime management, how Flutter handles BLE operations, or the speci�cs of
the device's Bluetooth hardware.

The di�erences in behavior depending on the CI, delay, and whether the update func-
tion is applied or not, suggest that the Write Without Response mode exhibits variable
performance characteristics based on several parameters.

6.14 Assessing BLE Behaviors on Alternate Devices

To determine if the observed characteristics of the �Write Without Response� mode were
exclusive to the aRdents glasses or inherent to the BLE protocol itself, tests were initiated
using a BLE server con�gured on alternative hardware. This approach aimed to provide
a broader understanding of BLE behaviors across di�erent devices.

The initial attempt to establish a BLE server was made on an Asus PC running Linux.
The complexity involved in managing BlueZ [21] the o�cial Linux Bluetooth stack which
supports all core Bluetooth protocols and layers proved prohibitive. BlueZ con�guration
and low-level Bluetooth chip programming presented signi�cant challenges, prompting us
to seek simpler alternatives.

Next, existing GitHub projects that promised ready-made BLE server functionalities
on Linux were explored. While these projects allowed successful device connections, they

67

fell short in supporting functional data transmissions or manipulations, which were critical
for the tests.

Given the shortcomings of the previous attempts, an Arduino [9] was used for its ease
of setting up a BLE server. This choice allowed for the quick implementation of a basic
server to explore if packet handling on the aRdents glasses speci�cally in�uenced BLE
behavior.

The Arduino was con�gured with the following BLE parameters:

� CI: 15ms

� MTU: 517

� ATT MTU: 247

With these parameters, we conducted throughput tests:

� Write Without Response: Only 36,864 bytes of a 100KB data transfer were
received.

� By reducing packet size to 514 bytes, all data was successfully transmitted, achieving
a throughput of 11.3 KB/s.

Further tests in the Write Without Response mode included:

� Without delay, not all data was transmitted, similar to issues observed with the
aRdents glasses.

� A delay of 0.018 seconds was required for complete transmission of 100KB data,
resulting in a throughput of 26.8 KB/s.

� For 1KB data, transmission was successful even without delay, with a throughput
of 721 KB/s.

These results suggested that factors such as the slave device's memory capacity, RAM
speed, and the number of packets sent signi�cantly in�uenced the required delay for
successful data transmission. Optimizing packet size was e�ective in reducing the need
for delays, suggesting that memory management and bu�er handling played crucial roles.

The investigation con�rmed that the Write Without Response mode's performance
can vary signi�cantly based on hardware and con�guration. The need for delays and the
successful transmission of data packets are greatly in�uenced by hardware capabilities
and BLE settings. These insights underscore the importance of customized system con-
�gurations to achieve optimal BLE performance across di�erent devices. Further tests
will focus on re�ning these con�gurations to enhance reliability and e�ciency in BLE
communications.

6.15 Exploration of MCU Clock Speed Adjustments on

Arduino

Suspicions arose that the speed at which packets are processed during reception could
prevent the bu�er from emptying quickly if it becomes full, leading to potential packet loss
in �Write Without Response� mode. The possibility that adjusting the clock frequency of
the Arduino's MCU might in�uence these symptoms was explored. It was hypothesized

68

that a lower MCU clock frequency might necessitate an increase in the delay imposed
between data transmissions to ensure all data is sent successfully.

To test this hypothesis, experiments were conducted where the clock [27] frequency of
the Arduino's MCU was varied. These tests were designed to observe whether changes
in the processing speed of the MCU would a�ect the required delay for successful data
transmission without packet loss.

Contrary to expectations, the tests concluded that the necessary delay for complete
data transmission remained consistent, regardless of the MCU clock frequency. Even with
signi�cant variations in clock speed, the delay required to ensure all packets were sent did
not change.

These �ndings eliminate the MCU clock speed as a parameter in�uencing the behavior
of the �Write Without Response� mode. This result suggests that the packet loss issues
are not directly related to the speed at which the MCU processes the incoming data,
indicating that other factors may be contributing to the observed packet loss. As such,
the focus will shift to exploring these other potential in�uences, which may include factors
like Bluetooth stack implementation speci�cs, data handling e�ciencies at the software
level, or even hardware-related limitations not directly tied to the MCU's clock speed.

6.16 Factors In�uencingWrite Without Response Mode

Performance

Ongoing e�orts to optimize the Write Without Response mode for BLE communications
have identi�ed several parameters that may in�uence its performance. These parameters
range from controllable aspects of the communication setup to inherent device-speci�c
limitations.

Several of the critical factors a�ecting theWrite Without Response mode are inherently
tied to the hardware characteristics of both the master and the slave devices. These
include:

� Slave Bu�er Size: The capacity of the data bu�er on the slave device is crucial.

� Packet Processing Speed at Reception: The speed at which the slave device
processes received BLE packets directly impacts performance, especially in scenarios
where data arrives faster than it can be handled.

� Packet Sending Speed from Master's Bu�er: This is in�uenced by the CI,
which dictates how often the master device can send packets. A shorter CI allows
for faster data transmission.

� Data Quantity: The total amount of data being sent a�ects both the bu�er ca-
pacities and the timing before a disconnect command might be issued. Larger data
transfers are more susceptible to encountering Packet Loss issues.

� Number of Packets: Sending smaller payload packets increases the total number
of packets required to transmit the same amount of data. This can increase bu�er
and processing limitations, as each packet incurs overhead for handling.

Understanding these parameters helps in diagnosing issues related to Write Without
Response mode and guides the development of strategies to mitigate potential problems.

69

For instance, optimizing the size of the data packets and adjusting the CI can help manage
the data �ow more e�ectively, reducing the likelihood of bu�er over�ow and packet loss.

Future work will focus on exploring additional controllable factors and re�ning the
approach to BLE communication to ensure more reliable data transmission. The impact of
potentially adjusting other parameters, such as enhancing bu�er management algorithms
or dynamically adjusting packet sizes based on real-time performance metrics, will also
be considered.

6.17 Note on BlueNRG-MS Chip Behavior in aRdents

Glasses

The BlueNRG-MS chip in the aRdents glasses handles packet transport integrity at the
Link Layer, which is crucial for ensuring reliable data transmission. In this layer, the
client (or master device) cannot proceed to push packet N+1 unless packet N has been
successfully received. This mechanism ensures that from the client to the BlueNRG-MS,
data transmission is sequential and no packets are missing, a�rming the integrity of the
data sent.

The primary concern, however, arises in the interaction between the BlueNRG-MS
chip and the host MCU of the glasses. The operational �ow within the system is such
that once a packet is received, it is immediately stored in RAM. Simultaneously, a signal
is sent to the main MCU to prompt the reading and processing of this packet. The MCU
then requests the BLE module if it has a received packet in its bu�er to process it.

If the MCU is engaged in other intensive activities, it may not process the incoming
packet promptly. This delay can result in the packet remaining in RAM without being
�ushed. Over time, if the MCU does not address these packets swiftly enough, the RAM
may become overwhelmed with unprocessed data, leading to potential packet loss. This
situation underscores a critical bottleneck in the system where data integrity at the Link
Layer does not necessarily equate to data preservation at the application level.

This understanding of the behavior of the BlueNRG-MS chip highlights the importance
of not only ensuring data transmission integrity at the Link Layer but also ensuring
that the host MCU is adequately optimized to handle incoming data e�ciently. It is
crucial for the overall system design to facilitate swift data handling by the MCU to
prevent data over�ow and loss in RAM, ensuring reliable data communication in real-
world applications.

6.18 Challenges in Accurately Measuring BLE Through-

put in Write Without Response

The throughput measurements mentioned so far do not accurately represent the �on-air�
packet transmission rates of BLE. Instead, they incorporate the overhead associated with
packet management both on the master's side during transmission and on the slave's side
after reception.

Estimating the exact on-air transmission rate is complex due to the intricacies of packet
management at the reception. To approximate the on-air rate more closely, one strategy
is to reduce the packet management load at reception when calculating throughput.

In �Write With Response� mode, the method for calculating throughput is considered
accurate because it measures the real transmission time. This measurement is taken from

70

the moment the �rst packet is sent to the moment the last acknowledgment packet is
received. This encompasses the entire duration required for all packets to be transmitted
and acknowledged.

Conversely, in �Write Without Response� mode, since there are no acknowledgment
packets, the timing function that surrounds the write operation only accounts for the
time it takes for data to move from the application layer to the transmission bu�er or
even during lower layers like the link layer. For the application layer, once the data is
o�oaded to the transmission bu�er, it is considered as sent, resulting in a signi�cantly
underestimated transmission time.

This miscalculation was evident during practical tests where data sent in �Write With-
out Response� mode appeared to complete instantly from the perspective of the Python
script, while the aRdents glasses continued to receive data for a considerable duration
afterward. This is illustrated in Figure 6.4.

Figure 6.4: Packet travel representation

To address this discrepancy and achieve a more accurate throughput measurement in
�Write Without Response� mode, the following procedure is proposed:

� Send a sequence of packets consisting of �AAA...� with the �nal character being a
�B�.

� Once this �nal character �B� is received, the slave device will send a noti�cation
back to the master indicating that the last packet has been successfully received.

71

Figure 6.5: Throughput solution representation

This approach ensures that the timing measurement includes not just the data o�oad-
ing to the bu�er but also acknowledges the actual reception of the data on the slave side,
thus providing a more complete and accurate measure of the transmission duration and
throughput. This is illustrated in Figure 6.5.

6.19 Identifying and Resolving Firmware-Related In-

stabilities in Throughput Measurement

During the establishment and optimization of the �Write Without Response� mode, it
was observed that the throughput calculations were less consistent when compared to
the stable measurements recorded on an Arduino, speci�cally in relation to the aRdents
glasses. The consistent performance on the Arduino suggested that the issue of variability
might not come from the BLE protocol itself but rather from a �rmware-related problem
within the system being developed.

After thorough investigation, the source of this instability was identi�ed. Originally,
the MCU was programmed to check 1,000 times per second to determine if a packet had
been received and was available in the bu�er. This approach meant that in the worst-case
scenario, there could be a delay of 1 ms due to the time taken for each check. Moreover,
since this checking process was implemented twice within the code, it accumulated to a
total potential delay of 2 ms in the worst-case scenario.

To address and eliminate this source of delay and instability, the �rmware was modi�ed
to use hardware interrupts instead of the continuous checking loop. By implementing
interrupts, the system could respond immediately to the event of data reception, thereby
reducing the response time and eliminating the unnecessary delays previously caused by
the frequent checking. This change signi�cantly stabilized the throughput measurements,
aligning them more closely with the consistent performance observed on the Arduino
platform.

This discovery and subsequent modi�cation underscored the critical impact of �rmware
behavior on the performance and reliability of BLE communication systems. By shifting
from a polling method to an interrupt-driven approach, we not only optimized the system's
responsiveness but also enhanced the overall data handling e�ciency. This improvement
has broader implications for similar BLE applications, suggesting that careful attention
to �rmware design can lead to substantial enhancements in system performance.

72

6.20 BLE Throughput Analysis

The BLE throughput performance of the aRdent glasses and an Arduino board is analyzed,
considering various test scenarios and conditions.

6.20.1 aRdent Glasses:

The analysis was initiated by examining the BLE throughput performance on a MacBook
Pro 2019 running MacOS and an Asus laptop running Linux.

MacBook Pro 2019 (MacOS) Parameters:

� CI: 15ms

� ATT MTU: 23

The throughput results for the MacBook Pro are shown in the tables below. The �rst
table (Table 6.3) presents throughput values in di�erent modes, while the second table
(Table 6.4) shows how throughput varies with di�erent transmission delays.

Mode Throughput (KB/s)
With response (Notify) 0.6022
Without response, delay 0.003 5.5

Table 6.3: BLE Throughput on MacBook Pro 2019 (MacOS)

Delay (s) Throughput (KB/s)
0.003 5.5
0.004 5
0.005 4.3
0.006 3.6
0.007 2.8
0.008 2.5
0.009 2
0.010 1.7

Table 6.4: BLE Throughput on MacBook Pro 2019 (MacOS) with Di�erent Delays

Asus Laptop (Linux) Parameters:

� CI: 7.5ms

� ATT MTU: 23

The tables below detail throughput results for the Asus laptop. The �rst table (Ta-
ble 6.5) provides throughput measurements in di�erent modes, and the second table (Ta-
ble 6.6) explores the e�ects of varying transmission delays on throughput.

Mode Throughput (KB/s)
With response (Notify) 1.20
Without response, delay 0 6

Table 6.5: BLE Throughput on Asus Laptop (Linux)

73

Delay (s) Throughput (KB/s)
0 6
0.001 6
0.002 5.4
0.003 5.2
0.004 4.8
0.005 4.5
0.006 4
0.007 3.3
0.008 2.5
0.009 2
0.010 1.5

Table 6.6: BLE Throughput on Asus Laptop (Linux) with Di�erent Delays

The throughput remains relatively consistent across di�erent delays despite the CI
being twice as small, which should ideally result in higher throughput. This observation
raises a question: how can the maximum throughput achieved on MacOS with a delay of
0.003 (required for the operation of the mode without response on MacOS) be 5.5 KB/s
with a CI of 15 ms, while on the Linux PC, only 6 KB/s is achieved with a CI of 7.5 ms,
even after removing the delay? This suggests that there might be a limiting factor on the
device that is beyond the scope of BLE.

The same tests will now be conducted on the Arduino for comparison.

6.20.2 Arduino:

We further examined the BLE throughput performance on an Arduino board to compare
its performance against the aRdent glasses.

MacBook Pro 2019 (MacOS) Parameters:

� CI: 15ms

� ATT MTU: 23

The throughput results for the Arduino on a MacBook Pro are detailed in Table 6.7
for di�erent modes and Table 6.8 for various delays, illustrating how throughput changes
with the introduction of response delays.

Mode Throughput (KB/s)
With response (Notify) 0.64
Without response, delay 0.003 6

Table 6.7: BLE Throughput on Arduino (MacOS)

74

Delay (s) Throughput (KB/s)
0.003 6
0.004 5.5
0.005 4.8
0.006 4
0.007 3.4
0.008 2.7
0.009 2.3
0.010 3

Table 6.8: BLE Throughput on Arduino (MacOS) with Di�erent Delays

Asus Laptop (Linux) Parameters:

� CI: 7.5ms

� ATT MTU: 23

Throughput results on an Asus Laptop are shown in Table 6.9 and Table 6.10, demon-
strating the performance of the Arduino with and without response delays.

Mode Throughput (KB/s)
With response (Notify) 0.89
Without response, delay 0 10.1

Table 6.9: BLE Throughput on Arduino (Linux)

Delay (s) Throughput (KB/s)
0.000 10.1
0.001 8.2
0.002 7.8
0.003 7
0.004 5.9
0.005 4.7
0.006 3.8
0.007 3
0.008 2.3
0.009 2
0.010 1.3

Table 6.10: BLE Throughput on Arduino (Linux) with Di�erent Delays

On the MacBook Pro 2019 (MacOS), the Arduino showed a slightly higher average
throughput compared to the aRdent glasses, both with and without response. Interest-
ingly, despite having a smaller CI, the Arduino exhibited higher throughput.

On the Asus laptop (Linux), the Arduino signi�cantly outperformed the aRdent
glasses, especially in the mode without response. The impact of a lower CI on throughput
was evident, with higher throughput observed at reduced CI values.

The notable di�erence in throughput between the aRdent glasses and the Arduino,
especially on Linux, suggests potential hardware limitations a�ecting BLE performance,
as even with identical BLE parameters, the Arduino demonstrated superior throughput.

75

The analysis of BLE throughput on di�erent devices revealed varying performance
under di�erent conditions. Despite similar parameters, di�erences were observed be-
tween MacOS and Linux environments, suggesting potential hardware limitations a�ect-
ing throughput. Further investigation is warranted to understand these discrepancies and
optimize BLE performance across platforms.

6.21 Data Transmission Strategy on aRdent Glasses

As a reminder, data is transmitted based on �data� and �control� as explained in Section
5.4 (aRdent Data Transfer).

Here, the current data transmission approach of the aRdent glasses will be addressed,
focusing on alternately sending data on di�erent characteristics and with di�erent pro-
cessing for these data types.

It is worth noting that this test and its results will be speci�c to the aRdent glasses.
Tests on Arduino show no di�erence between writing to one or two characteristics.

First, alternate transmission (i.e., sending on two characteristics alternately, one for
data and one for control) and continuous transmission (i.e., sending all data on one char-
acteristic with a single control command at the end) will be compared.

A high delay will be used in this test to ensure stable transmission and simply observe
if there is any di�erence. A 10 KB data transfer will be tested. It is essential to note that
although in practice, more data is sent due to control commands after each data command
in alternate mode, this additional data is considered in the throughput calculation for a
fair comparison.

Here are the results of the two comparisons on a MacBook Pro 2019, with a CI of 15
ms and an ATT MTU of 23, using the mode of writing without response:

� Alternate transmission: 2.5 KB/s

� Continuous transmission: 2.8 KB/s

Next, the percentage di�erence in throughput will be stated.
Testing if the imposed delay on MacBook varies depending on whether the mode is

alternate or continuous: According to the tests, the required delay for all the data to
be sent on a MacBook in alternate and continuous mode is 0.003 seconds, as mentioned
previously.

However, it is important to note a di�erence in throughput: For a delay of 0.003
seconds in alternate mode, a throughput of 5.5 KB/s was obtained. For a delay of 0.003
seconds in continuous mode, a throughput of 5.9 KB/s was obtained.

This achieves the same average throughput as in the Arduino tests in continuous mode
without response.

It is noteworthy that during data transmission in continuous mode, text processing
still occurs after each reception. This processing can be intensive and slow down the data
throughput.

Next, continuous data transmission on a characteristic with lighter data processing,
which is the characteristic for sending images from the device, will be tested.

Here are the results: The throughput remains the same, around 5.9 KB/s. Thus, it
can be concluded that the data processing on the aRdent glasses is not intensive enough
to slow down the BLE data throughput.

76

6.22 Identi�cation of Hardware Limitation on aRdent

Glasses

Based on extensive studies, tests, and results, it is believed that the limiting factor of
the aRdent glasses originates from a hardware source. With all the gathered clues, it is
strongly suspected that it stems from a limitation in the device's bu�er.

To demonstrate this phenomenon, consider the tests conducted using the Asus laptop
running Linux, which allows for the highest throughput in mode without response and
without applying any delay. The results are as follows:

� Delay of 0.001: 6 KB/s

� Delay of 0.000: 6 KB/s

To analyze and con�rm this, the following procedure will be performed. Firstly, the
Python script will be modi�ed to display when the transmission of data from the ap-
plication layer is completed. If the bu�er is overwhelmed with data, the data will be
retransmitted in mode without response, but only via the Link Layer and invisible to the
application layer. Thus, any delay between when all data has been sent from the applica-
tion layer and when it is received on the aRdent glasses can be compared and observed.
If this delay is unusually long, it indicates retransmissions. However, in mode without
response, there are no acknowledgment packets, so how could packets be retransmitted?
If they are, there must be a lower-level retransmission process.

After a closer examination of the BLE packet structure, a layer allowing for data
integrity preservation is identi�ed. The Nordic Nrf 52840 [67] tool, which enables packet
sni�ng in the environment and can be used as a port for software like Wireshark [95],
will then be used. This allows for observation of what is happening on all layers of
transmission.

Using this tool, retransmissions after a certain number of packets sent have been ob-
served. Subsequently, on Wireshark, all BLE devices will be �ltered to con�rm these
retransmissions. Additionally, the �rmware code will be modi�ed to alert when the inter-
nal bu�er is �lled.

Through this procedure, the following observations are made:

� A signi�cantly long latency is observed between the completion of data transmission
at the application layer and the completion of data reception at the aRdent glasses.

� Using Wireshark with the Nordic Nrf 52840 as a detection tool, retransmissions are
observed.

� At the moment when retransmissions are observed on Wireshark, the bu�er is �lled
on the �rmware side.

What happens is that as the reception bu�er �lls up, packets are not rejected on the
aRdent glasses. The Link Layer, responsible for managing data integrity, will resend the
unacknowledged data until it's accepted on the aRdent glasses, i.e., until the reception
bu�er is emptied.

The limiting factor here explaining the di�erence in throughput between the Arduino
and the aRdent glasses for exactly the same BLE parameters is that the reception bu�er
�lls up faster on the aRdent glasses, and the MCU needs time to process all packets for
the bu�er to empty and accept new data.

77

6.23 Investigation into Delay Requirement on MacOS

To conclude the examination of the mode without response, the goal is to understand why
a delay of 0.003 seconds is needed on MacOS. The data structure is analyzed using the
Nordic NRF 52840. When the data is sent with a delay of 0.003 seconds and any packet
is analyzed, the MORE DATA section is set to true.

The term �MORE DATA� in BLE indicates whether more data is expected in sub-
sequent packets. In the last packet, the MORE DATA is false. Next, the packets are
analyzed if a delay of 0 seconds is set. After a few packets, the MORE DATA is found to
be false. However, the reason for this remains undetermined.

To further understand why a delay of 0.003 seconds is needed on MacOS, the frame-
work used was investigated. The Bleak library [16] is utilized for sending BLE data. Bleak
works across di�erent operating systems, including MacOS and Linux.

The compatibility of Bleak on both OS was intriguing. After attempting to create
a BLE server, complexities in managing drivers and the BLE hardware speci�c to the
computer being used were encountered. For instance, on Linux, Bluez had to be used.
On MacOS, it was even more complex as it had to be done using only the Objective C
language and the CoreBluetooth [33] framework.

CoreBluetooth is Apple's framework for interacting with Bluetooth peripherals on
MacOS and iOS.

After delving deeper into how the Bleak library operates, it was discovered that it
utilizes a bridge to translate Python code and adapt it to the respective OS. For instance,
to translate Python code and use the Apple framework, the library developer employs
PyOBJ [75].

PyOBJ is a Python package that provides tools for interfacing Python with the
Objective-C language and Cocoa framework on MacOS.

By using PyOBJ, Bleak enables the utilization of Bluetooth on MacOS via Python.
Thus, an attempt was made to create PyOBJ code without relying on the Bleak

library to determine if this delay was due to a programming error or compatibility issue
with Bleak and MacOS.

Custom PyOBJ code was created and data was sent to the glasses. The result was
exactly the same as when using Bleak, indicating that the delay is inherent to MacOS.

Therefore, the data sending systems were con�gured to recognize when the device is
running MacOS and impose a delay of 0.003 seconds if that is the case.

78

Chapter 7

aRdent 2 Setup and Optimization

7.1 Introduction to BLE Performance Enhancement at

Get Your Way

The strategic decision to adopt the BlueNRG-2 chip, certi�ed under the latest Bluetooth
5.3 standards, marks a pivotal advancement in product development. This transition
not only signi�es a move towards more robust hardware but also re�ects an ongoing
commitment to optimizing communication e�ciency in wearable devices.

7.2 Historical Context and Rationale for Advancement

In previous iterations, particularly with the aRdent glasses, notable success was achieved
in maximizing data throughput, reaching up to 6 KB/s by meticulously tuning the BLE
parameters and optimizing the �write without response� mode. These optimizations were
pivotal in achieving reliable performance under constraints typical of real-world condi-
tions.

After receiving the BETA version of the new electronic board featuring the BlueNRG-2,
e�orts have been made to integrate and re�ne these optimizations further on the aRdent2
board, aiming to exceed previous benchmarks.

7.3 Technical Enhancements and Setup

To harness the full capabilities of the BlueNRG-2, we implemented several advanced set-
tings:

� The ATT MTU was increased to 244 to allow larger packets of data to be transmit-
ted, reducing the overhead and increasing the e�ciency of our communications.

� The smallest possible CI of 7.5 ms was utilized, enhancing the responsiveness and
potential data transfer rate.

� The activation of the Write Without Response mode and DLE further maximized
the throughput by minimizing the acknowledgment overhead for transmissions.

This comprehensive approach led to a breakthrough, with the new setup achieving a
remarkable data rate of 40 KB/s, a substantial increase from our previous capabilities.

79

7.4 Challenges and Diagnostic Approaches

Despite the improved throughput, the implementation faced challenges with packet losses
observed during transmission. Unlike issues faced with aRdent 1, where packet loss oc-
curred at the end of the data streams, the aRdent 2 experienced losses intermittently
throughout the stream. This phenomenon was initially evident from the analysis using
JLinkRTTViewer, as depicted in Figure 7.1, showing oscilloscope readings from aRdent
1 that illustrate the packet reception and the data transfer process.

Figure 7.1: Oscilloscope readings from aRdent 1 illustrating the packet reception and the
data transfer process.

When applying the changes and optimizations from aRdent 1 to aRdent 2, data losses
were noticed. This time, the data losses were not identical to those previously encountered
during the BLE optimization of aRdent 1, which occurred at the end of the data stream.
Instead, certain packets disappeared in the middle of the data.

First, an explanation of how aRdent 2 uses SPI communication between its MCU and
its BLE module to exchange data is needed. When a BLE packet is received at the BLE
module, the Interrupt pin is raised. When this interrupt occurs, the MCU asks the BLE
module how many bytes it needs to read. The module then responds with the number of
bytes, and the MCU reads the data.

In aRdent 1, this process was di�erent as an interrupt mechanism was not used.
Instead, a polling mechanism was employed, which checked every millisecond if a packet
was available. This mechanism was implemented twice in the code. This process can
be seen in the �rst �gure (Figure 7.1), representing an oscilloscope analyzing the SPI
communication.

To further investigate, an oscilloscope connected to key SPI interface pins on the
BlueNRG-2 was used, observing both the packet reception interrupts and the signal vari-
ations representing the data bits being transmitted. Notably, the aRdent 2 uses an
interrupt-driven approach for packet detection, which is a shift from the polling method

80

used in aRdent 1. The subsequent �gure, Figure 7.2, displays oscilloscope readings from
aRdent 2, providing a comparative analysis of how packet detection and data transfer
have evolved.

Figure 7.2: Oscilloscope readings from aRdent 2 illustrating the packet reception and the
data transfer process.

However, it should be noted that if the queue of the BLE module is too full, it drops
the received packet and places a much smaller �packet loss� equivalent in its queue instead.
Therefore, if the MCU reads a packet loss, it will know that a BLE packet has been lost.
This can be seen in the third image (Figure 7.3), where a packet loss is highlighted in red.

Further analysis revealed regular data packet loss occurring when the MCU failed
to read data fast enough from the BLE chip's queue, suggesting an SPI throughput
limitation. This was puzzling, given that the SPI bus speed of 1 MBps should be more
than adequate to handle the observed data rate of 40 KB/s. Figure 7.3 shows a detail of
an anomaly, highlighted in red, that is crucial for understanding the underlying issues in
packet transfer.

81

Figure 7.3: Detail of an anomaly indicating packet loss (highlighted in red), crucial for
understanding the underlying issues in packet transfer.

The reason for this packet loss is not understood, as the SPI communication on aRdent
2 is faster than on aRdent 1. Additionally, the interrupt mechanism reduces the delay for
packet reception detection.

It is unclear why the BLE queue in aRdent 2 is too full, as if the communication to
read packets from the BLE module to the MCU were slower than in aRdent 1, but this
is not the case. Attempts to resolve and understand the origin of the problem have been
made, but no solution has been found so far.

7.5 Concluding Remarks and Future Steps

E�orts to increase the SPI bus speed were constrained by the �xed capabilities of the Rene-
sas driver, highlighting a potential area for future hardware and driver enhancements. The
ongoing challenges and our methodical approach to diagnosing and addressing these un-
derscore the complexity of real-world applications of BLE technology in high-performance
consumer electronics.

82

Chapter 8

Interference in BLE Protocol and GYW

Auto-Certi�cation

8.1 Introduction to Interference in BLE

Interference in BLE refers to the disruption of the wireless communication signals by
external or internal noise sources. These disruptions can degrade the performance of a
BLE network, causing reduced data rates, increased error rates, and even complete loss
of connectivity. Understanding and mitigating interference is crucial because it directly
impacts the reliability and e�ciency of BLE devices in complex environments.

8.2 Sources of Interference

The primary sources of interference in BLE are typically categorized into two types: co-
channel interference and adjacent channel interference [71].

Co-Channel Interference: Co-channel interference occurs when multiple devices op-
erate on the same frequency channel. In BLE, this is particularly common in places with
many wireless devices, such as urban areas, o�ces, or industrial settings, where di�erent
devices might be using the same part of the wireless spectrum.

Adjacent Channel Interference: Adjacent channel interference happens when de-
vices operate on nearby frequency channels. The signal from one channel can bleed into
the next, especially if the frequency separation between the channels is not adequate.
This type of interference is common in densely populated electronic environments where
the spectrum is heavily utilized.

8.3 Engineering and Scienti�c Tools for Managing In-

terference

Interference Avoidance Schemes (IAS) [52]: IAS are techniques designed to pre-
vent interference before it can a�ect communication. This strategy includes dynamic
channel selection, which involves constantly scanning the wireless spectrum to �nd and
use channels with the least congestion and interference. By choosing these channels ahead
of time, IAS prevents the system from encountering problematic frequencies, avoiding the

83

degradation of communication quality before it happens. This approach helps maintain
clear communication by anticipating and avoiding potential interference sources.

Adaptive Frequency Hopping (AFH): In contrast to the proactive nature of IAS,
AFH uses a reactive approach to managing interference in BLE communications. AFH
constantly monitors the wireless environment and reacts to changes in real-time. When it
detects interference on a currently used channel, AFH quickly switches to another channel
that is clearer. This method allows BLE devices to adapt to the changing conditions of
the spectrum, ensuring continuous communication without a pre-selected channel plan.
The reactive nature of AFH makes it very e�ective in environments where interference
levels can change quickly and unpredictably.

Power Control: Power control is another e�ective way to manage interference, espe-
cially in crowded environments. By adjusting the power level of the transmission, devices
can reduce the chance of causing interference to other devices while keeping the signal
strong enough for communication. This approach is mostly proactive, as it involves set-
ting transmission power at levels that are less likely to interfere with other nearby devices
from the start.

Channel Selection Algorithms (CSA) [26]: CSA 1 [34] and CSA 2 [35] play criti-
cal roles in managing the use of communication channels e�ciently. CSA 1, the original
algorithm, operates with a �xed pseudo-random hopping sequence and does not adapt
based on interference data, making it universally compatible with all BLE devices follow-
ing earlier versions. CSA 2, introduced with Bluetooth 5.0, enhances this by dynamically
selecting channels based on real-time interference assessments, thus requiring both com-
municating devices to support this newer standard for optimal performance. The retro-
compatibility of CSA 2 with older devices is limited, as these devices do not support the
dynamic channel adjustments o�ered by the newer algorithm.

8.4 Concluding Thoughts on Interference Management

E�ective management of interference in BLE requires a mix of these techniques, suited
to the speci�c environment and application needs. By using both proactive and reactive
strategies, engineers and designers can ensure that BLE technology stays reliable and
e�cient in the growing complexity of global wireless communications. Balancing these
approaches helps create strong communication networks that can both anticipate potential
disruptions and respond quickly to existing ones.

8.5 Interference Management in aRdent and aRdent 2

Glasses

While both models share many similarities in terms of design and basic functionalities,
they di�er signi�cantly in their approach to handling interference, primarily due to the
di�erences in the Bluetooth standards and CSA they employ.

The original aRdent glasses, compliant with Bluetooth 4.1, utilize CSA 1 for channel
selection. This standard approach, while e�ective in general usage scenarios, does not
dynamically adjust to �uctuating interference patterns. As a result, the aRdent glasses are

84

somewhat limited in their ability to proactively avoid interference, leading to occasional
retransmissions and slightly reduced data transmission e�ciency in environments with
high electronic activity.

In contrast, the aRdent 2 glasses are equipped with the newer Bluetooth 5.3 certi-
�cation, which enables the use of CSA 2. This advanced channel selection algorithm
o�ers enhanced interference management by dynamically adapting to the current state
of the spectrum. CSA 2 allows aRdent 2 glasses to actively avoid congested channels
and minimize the likelihood of interference, resulting in fewer retransmissions and more
stable communication performance. The use of CSA 2 marks a signi�cant upgrade in the
aRdent 2's ability to maintain robust and reliable connectivity, even in densely populated
electronic environments.

8.6 Potential Improvements and Challenges in Interfer-

ence Management Algorithms

8.6.1 Proposed Enhancements in Interference Management

As wireless communication technologies evolve, particularly within the IoT sector, the
robustness of BLE connections becomes increasingly crucial. Recent advancements, as
discussed in the academic paper by Bozheng Pang et al., propose signi�cant improvements
in the BLE link layer for interference detection and channel selection that could be adapted
for future enhancements in devices like the aRdent glasses.

Recent research introduces a novel Interference Avoidance System (IAS) and an Im-
proved Channel Selection Algorithm (CSA) [71] aimed at enhancing connection robustness
under various interference conditions. The IAS is designed to detect interference more ac-
curately and swiftly by monitoring metrics such as Signal-to-Noise Ratio (ST) and Packet
Loss (PL), which indicate the quality and integrity of the communication channel.

One of the key improvements is the dynamic nature of the proposed CSA, which incor-
porates real-time environmental data into the channel selection process. This approach
allows the device to adapt its channel selection based on the probability of interference,
rather than merely reacting to interference after it has impacted the connection. Such a
method could signi�cantly reduce the incidence of retransmissions due to interference in
the aRdent 2 glasses, which already utilize CSA 2 to great e�ect.

For the aRdent and aRdent 2 glasses, incorporating an advanced version of IAS in
conjunction with CSA 2 could provide a competitive edge by further minimizing interfer-
ence impacts. This integration could lead to even fewer retransmissions, lower latency,
and improved overall communication reliability, particularly in environments with high
electronic device density.

8.6.2 Limitations in Current Interference Management Strategies

In the ongoing e�ort to enhance BLE devices' resistance to interference, signi�cant chal-
lenges persist, primarily due to the architectural and access limitations of the BLE hard-
ware and �rmware. One of the critical constraints involves the accessibility and modi�abil-
ity of the Link Layer, where crucial decisions about packet transmission and interference
management are made.

The BlueNRG series, which includes BlueNRG_MS and BlueNRG_2 modules, comes
equipped with a BLE stack that includes both the host and link layer components. This

85

stack is compliant with the Bluetooth versions, which means it implements the CSA
directly as part of the BLE standard. CSA1 or CSA2 are integrated depending on the
product's Bluetooth release version. However, these stacks are not open-source, and
modi�cations at the Link Layer are restricted due to the need to keep the stack compliant
with o�cial BLE versions.

The closed nature of the Link Layer means that it is not possible for developers to
access or modify the CSA directly. This limitation is signi�cant for those looking to
implement custom algorithms or adaptations, such as the improved CSA or Interference
Awareness Schemes (IAS) that are proposed in some academic research. Such enhance-
ments could potentially allow devices to better adapt to real-time interference conditions
by dynamically selecting channels based on comprehensive environmental data, rather
than relying solely on the prede�ned algorithm.

Given these restrictions, testing and observing the actual impact of interference and
the e�ectiveness of CSAs become challenging. Developers can monitor high-level packet
transmissions and HCI (Host Controller Interface) events, but they cannot access detailed
Link Layer operations where retransmissions and error handling due to interference occur.
This situation complicates e�orts to calculate packet error rates or to directly observe the
e�ects of interference on packet loss and retransmission rates.

8.7 Auto-Certi�cation Strategy for aRdent Glasses

8.7.1 Objective of Auto-Certi�cation

The goal of this auto-certi�cation is to ensure that the entire product, not just individual
parts, is strong and reliable in places with high potential for interference, such as industrial
warehouses. This certi�cation aims to show that the glasses can work well and handle
real-world conditions where electronic interference is common.

8.7.2 Planned Testing Procedure

To achieve this certi�cation, GYW plans to conduct a series of thorough EMC [42] tests.
These tests are crucial for checking the electromagnetic �elds emitted by the glasses and
their ability to withstand external electromagnetic interference. The University of Liège
has been chosen as the testing location due to its advanced laboratory facilities and its
strong reputation for conducting detailed and reliable EMC testing.

The EMC tests will be carried out in a controlled environment within the university's
laboratories, designed to simulate various levels of electromagnetic interference. These
settings will imitate the conditions typically found in industrial warehouses, where the
presence of heavy machinery and electronic equipment can lead to signi�cant electromag-
netic disturbances.

The results from these EMC tests are expected to provide valuable insights into the
electromagnetic characteristics of the aRdent glasses. Successfully passing these tests
will not only a�rm the product's compliance with international EMC standards but
also enhance its marketability by certifying its performance in demanding environments.
Furthermore, this testing will help identify any potential areas of improvement, allowing
GYW to optimize the glasses for even better performance and reliability.

86

8.7.3 Detailed Testing Procedure for Data Integrity and Interfer-
ence Assessment

The choice to use diverse data types is driven by the need to comprehensively assess
the glasses' performance across all potential use cases. By including a broad range of
data, the tests can more e�ectively imitate the multifaceted nature of user interactions,
ranging from low-bandwidth text communications to high-bandwidth �le transmissions.
This approach ensures that the testing is not only robust but also highly relevant to the
glasses' intended operational contexts.

Procedure for Data Transmission and Comparison

During the transmission phase, prede�ned sets of data representing typical user interac-
tions will be sent to the aRdent glasses. This phase will test the glasses' ability to receive
data accurately and promptly in the presence of simulated interference.

Following the transmission, the data received and processed by the glasses will be
captured and analyzed. This phase is critical as it provides insights into the e�ectiveness
of the glasses' internal processing and error-correction mechanisms under stress conditions.

A comparative analysis will be conducted between the data sent to the glasses and
the data received and processed by them. This comparison is essential for identifying
any discrepancies caused by interference, which may manifest as data corruption, loss, or
delay in reception.

The expected outcome of this testing is a detailed report highlighting the aRdent
glasses' capabilities to handle di�erent types of data under varying levels of electro-
magnetic interference. This report will not only validate the product's versions against
real-world conditions but also identify potential areas for further enhancement in future
iterations of the product.

8.7.4 ECM Testing Procedure During Data Transmission Phase

The data integrity testing phase is designed to rigorously assess the accuracy and com-
pleteness of data transmission under electromagnetic interference. This phase involves
a series of specialized Python scripts that each transmit a di�erent type of data to the
aRdent glasses, including text, �les, and various graphical commands such as displaying
spinners, rectangles, and icons.

Each test script is responsible for sending a speci�c type of data and simultaneously
recording detailed logs on the computer about the transmitted data. These logs are crucial
for later analysis and are stored in text �les, which capture the speci�cs of each data type
sent during the tests. Figure 8.1 shows an example of these log �les, illustrating the
detailed recording of data transmission.

87

Figure 8.1: Example of a log �le recording data transmission details

After the execution of each script, a Python library is used to calculate the CRC32
checksum of the text �le at that speci�c test phase. Concurrently, a command is sent
to the aRdent glasses to calculate the CRC32 checksum of its own logs. The checksums
from the glasses and the computer are then compared to ensure that the data integrity is
maintained from end to end, with no corruption occurring during transmission.

The performance testing phase focuses on quantifying the operational characteristics
of the BLE communication under various conditions.

The throughput of the BLE connection is measured �ve times to assess the data
transfer rate under potential interference. This metric helps evaluate the e�ciency of
data handling by the aRdent glasses.

Connection stability is tested by attempting to connect and disconnect the glasses ten
times in succession. Each connection attempt is logged, and the success rate is recorded to
evaluate the reliability of the BLE connection in maintaining continuous communication
links.

A latency test measures the time it takes for a read operation on a random character-
istic of the glasses. This test is crucial for understanding the responsiveness of the system
under test conditions.

The results from these tests are meticulously documented in a text �le, which records
all performance metrics obtained during the testing phase. This �le serves as a compre-
hensive reference for analyzing the operational capabilities of the aRdent glasses under
simulated real-world interference conditions. Figure 8.2 shows an example of this results
�le, providing a visual representation of the BLE performance metrics documented during
the tests.

88

Figure 8.2: Text �le recording BLE performance metrics

8.7.5 Representation and Setup of the ECM Testing Procedure

The ECM testing for the aRdent glasses is designed to ensure that both the transmission
and reception of data are robust against electromagnetic interference. The following
details the test setup and procedure executed in a controlled laboratory environment at
the University of Liège.

The test is conducted in a specially equipped laboratory at the University of Liège,
designed to simulate high-interference environments typically found in industrial settings.
This setup allows for precise control over the electromagnetic conditions, ensuring con-
sistent test results. Figure 8.3 provides a schematic diagram of the ECM testing setup,
illustrating how the environment is structured to facilitate these tests.

Figure 8.3: Schematic diagram of the CEM testing setup

To facilitate the test, the computer that initiates the data transmission is connected
via SSH [79], allowing remote operation and monitoring. This setup enables the test
operator to manage the test from a secondary location.

The second computer, which serves as the control unit, initiates the transmission of
various types of data including text, �les, and graphical commands to the aRdent glasses.
During transmission, this computer also logs detailed information about the data sent in
a text �le.

After receiving the data, the aRdent glasses record similar logs in their internal mem-
ory. These logs are crucial for later comparison and analysis of data integrity.

After each data transmission session, the control computer calculates the CRC32
checksum of the data logs. Simultaneously, a command is sent to the aRdent glasses

89

to calculate the CRC32 checksum of the data they have received. The checksums from
both the control computer and the aRdent glasses are compared to verify data integrity.

8.7.6 Impact of Logging on BLE Performance

During the CEM testing of the aRdent glasses, each received data packet is logged into a
text �le, signi�cantly loading the device's MCU. This logging consumes processing power
and memory, which otherwise would be dedicated to managing BLE communications. As
a result, the MCU's ability to process incoming BLE packets e�ciently is compromised.

The e�ect of logging on data throughput is substantial. With logging enabled, through-
put decreases from 5.4 KB/s to 3.9 KB/s�a 27.8% reduction. This drop re�ects the
resource-intensive nature of logging operations and their impact on the real-time data
handling capabilities of the glasses.

To mitigate these performance impacts, a macro has been introduced in the �rmware
that allows logging to be enabled or disabled as needed. This feature enables the aRdent
glasses to operate without logging during performance-critical tasks, ensuring optimal
BLE throughput. Logging can be activated during testing or when detailed diagnostics
are necessary, providing �exibility and maintaining device e�ciency.

8.7.7 Results

During the tests, several issues occurred. First, short circuit problems were discovered
on aRdent 2, which caused a postponement of the tests. Additionally, the �rmware was
slightly modi�ed before the ECM tests. Speci�cally, a merge combined work on Bluetooth
optimization and integration into the �nal version of the aRdent glasses. This led to last-
minute issues where continuous data transmission over long periods caused the glasses to
crash.

As a result, calculating the data rate was complicated and subject to many failures.
Integrity tests could not be e�ectively performed because the text �les containing data
descriptions were unusable due to consecutive stops and di�erences between the text �le
content on the computer sending the data and those on the card.

However, for certain antenna powers used in the University of Liège laboratory, we
were able to obtain some measurements. Here are the measurements:

90

Test Face Orientation Time to
Send (s)

Throughput
(KB/s)

Frequency
(MHz)

3 Front Horizontal 228.578 1.285 600.0
4 Front Vertical 261.831 1.295 600.0
5 Right Vertical 271.691 1.248 600.0
6 Right Horizontal 276.904 1.224 600.0
7 Right Horizontal 274.522 1.235 140.0
8 Right Vertical 276.777 1.225 140.0
9 Back Vertical 275.321 1.231 140.0
10 Back Horizontal 274.952 1.233 140.0
12 Back Vertical 276.112 1.228 600.0
15 Left Horizontal 283.860 1.194 140.0
16 Left Vertical 273.401 1.240 140.0
17 Front Vertical 18.625 1.213 2633.333
18 Front Vertical 19.247 1.174 5000.0
19 Front Horizontal 18.857 1.198 5000.0
20 Front Horizontal 18.975 1.191 2633.333
21 Right Horizontal 19.886 1.136 2633.333
22 Right Horizontal 20.017 1.129 5000.0
23 Right Vertical 19.851 1.138 5000.0
24 Right Vertical 19.759 1.144 2633.333
25 Back Vertical 18.732 1.206 2633.333
26 Back Vertical 23.963 0.943 5000.0
27 Back Horizontal 18.515 1.221 5000.0
28 Back Horizontal 18.904 1.196 2633.333
29 Left Horizontal 18.644 1.212 2633.333
30 Left Horizontal 18.849 1.199 5000.0
31 Left Vertical 19.084 1.184 5000.0
32 Left Vertical 18.975 1.191 2633.333

Table 8.1: Measurement Results of Data Throughput under Di�erent Frequencies

The data from Table 8.1 was analyzed to understand the relationship between the
frequency and the throughput.

91

Figure 8.4: Relationship between Frequency and Throughput

The plot in Figure 8.4 shows that throughputs vary depending on the applied fre-
quencies. There appears to be an inverse relationship between frequency and average
throughput, where higher frequencies tend to have lower average throughputs.

Figure 8.5: Average and Standard Deviation of Throughput by Frequency

Figure 8.5 presents the average and standard deviation of throughput for each fre-
quency group. For example, at 140 MHz, the average throughput is 1.226 KB/s with
very low variation, indicating stability. At 600 MHz, the average throughput is slightly
higher at 1.256 KB/s, also showing low variation. However, at 2633.33 MHz, the average
throughput decreases to 1.186 KB/s, and at 5000 MHz, it is the lowest at 1.148 KB/s
with greater variability.

Although these di�erences are noticeable, the induced interferences during the tests
showed that retransmissions indeed slow down the throughput, but not signi�cantly. This
reinforces the fact that the aRdent glasses can support high interference environments
without signi�cantly a�ecting their performance.

92

Chapter 9

Conclusion

The primary objective of this thesis was to enhance the Bluetooth Low Energy (BLE)
performance for GYW's aRdent glasses. This involved optimizing various aspects of the
embedded software running on FreeRTOS to improve the e�ciency and reliability of the
device's communication capabilities. The focus was on re�ning the BLE communication
parameters, enhancing data transfer processes, and improving the methods used to receive
data within the embedded software.

Through targeted optimizations, the data throughput was signi�cantly increased from
0.3 KB/s to 6 KB/s, representing an increase of 1900%. This enhancement not only
demonstrated the e�ectiveness of the optimizations but also marked a substantial im-
provement in the device's performance, making it more reliable and e�cient in real-world
applications. The improvements in data throughput had several positive impacts. Firstly,
the speed of data transmission was greatly enhanced, allowing for faster and more e�cient
data exchanges between devices. This was particularly bene�cial for applications requir-
ing real-time data transfer, where the reduced latency and higher throughput contributed
to smoother and more responsive interactions.

Secondly, the increased throughput facilitated quicker �rmware updates, reducing the
time required for maintenance and upgrades. Faster �rmware updates are crucial for main-
taining device security and performance, as they allow for timely application of patches
and new features. This not only enhances the longevity of the device but also ensures that
users bene�t from the latest improvements without signi�cant downtime. The overall user
experience was signi�cantly improved due to faster and more reliable connections. Users
could enjoy a more seamless interaction with the device, as the optimizations led to more
stable connections and quicker data transfer rates. This improvement in user experience is
critical in various scenarios, ranging from everyday consumer use to specialized industrial
applications where reliability and e�ciency are paramount.

Furthermore, applying these modi�cations to the aRdent 2 glasses resulted in an even
greater data throughput of 40 KB/s. This substantial increase further validates the e�ec-
tiveness of the applied optimizations and highlights the potential for continued improve-
ments in future iterations of the device. The advancements achieved with the aRdent 2
glasses not only demonstrate the scalability of the optimizations but also suggest a promis-
ing pathway for future enhancements that could further elevate the device's performance
and user satisfaction.

Preparation for the Electromagnetic Compatibility (CEM) tests equipped GYW with
robust tools to continuously assess and compare the performance of their glasses. This
setup is crucial for maintaining high standards in product quality and performance across
di�erent iterations. This project was an invaluable opportunity to apply the rigorous prin-
ciples of �rmware development and deepen understanding of BLE protocols. It enhanced

93

problem-solving skills, particularly in diagnosing and addressing issues related to data
throughput. Working in a startup environment emphasized the importance of teamwork
and adaptability in achieving project goals.

Throughout the course of the thesis, multiple frameworks and various purposes were
utilized, enriching software development skills. The initial phase involved learning the
initial environment, Python libraries, and modi�cations to the �rmware of the aRdent
glasses. Following this, C++ programming was utilized for Arduino, focusing on low-level
control and data acquisition tasks, ensuring e�cient and precise hardware functioning.

The work then involved modifying an existing Flutter application to meet speci�c
needs during BLE tests and optimizations. Flutter's versatility and cross-platform capa-
bilities allowed for seamless interaction with BLE-enabled devices, ensuring robust testing
environments across di�erent platforms.

The core of the project revolved around �rmware development for the aRdent glasses,
coded in C. This involved deep engagement with embedded systems programming, where
performance optimization and e�cient resource management were crucial. Writing the
�rmware required a thorough understanding of the hardware speci�cs and BLE protocols
to ensure reliable and e�cient operation.

Additionally, Python scripts were developed to automate the testing process, simulate
various data transmission scenarios, and analyze the performance of the BLE communi-
cation. Python's simplicity and powerful libraries made it an ideal choice for scripting
and testing purposes. Overall, these endeavors culminated in a total of 2420 lines of code,
providing a comprehensive understanding of di�erent programming paradigms and their
applications. Working across these diverse platforms and languages was both challenging
and rewarding, signi�cantly contributing to the successful completion of the thesis.

The advancement of BLE technologies, particularly through the Bluetooth Higher
Data Throughput project, suggests promising avenues for further enhancing the product.
Future implementations could consider integrating a BLE chip capable of supporting a
2 Mbps LE PHY, potentially doubling the current data transfer rates. Additionally,
exploring e�cient data compression methods and utilizing open-source BLE tools for
testing interference mitigation strategies could further optimize performance.

94

Bibliography

[1] A Developer's Guide to Bluetooth. [Online]. url: https://www.bluetooth.com/
blog/a-developers-guide-to-bluetooth/.

[2] A Developer's Guide to Bluetooth. [Online]. url: https://www.bluetooth.com/
blog/a-developers-guide-to-bluetooth/.

[3] Adaptive Frequency Hopping Spread Spectrum (AFHSS). [Online]. url: https://
en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum.

[4] Advanced Encryption Standard (AES-128). [Online]. url: https://fr.wikipedia.
org/wiki/Advanced_Encryption_Standard.

[5] API. [Online]. url: https://en.wikipedia.org/wiki/API.

[6] Apple Developer Forum. url: https://developer.apple.com/forums/.

[7] EMEA Application. BlueNRG family MTU_DLE_2Mpbs_data_rate_improvement.
Available online. Oct. 2020.

[8] Application Layer. [Online]. url: https://en.wikipedia.org/wiki/Application_
layer.

[9] Arduino. [Online]. url: https://www.arduino.cc/en/Guide/Introduction.

[10] Assisted Reality. [Online]. url: https : / / blog . amaxperteye . com / what - is -
assisted-reality-here-is-what-you-need-to-know#:~:text=Abbreviated%

20as%20aR%2C%20assisted%20Reality,without%20blocking%20the%20user's%

20vision..

[11] Attribute Maximum Transmission Unit (ATT MTU). [Online]. url: https : / /
punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-

mtu-2/.

[12] Attribute Protocol (ATT). [Online]. url: https : / / www . bluetooth . com / wp -
content/uploads/Files/Specification/HTML/Core-54/out/en/host/attribute-

protocol--att-.html.

[13] Augmented Reality. [Online]. url: https : / / www . techtarget . com / whatis /

definition/augmented-reality-AR#:~:text=Augmented%20reality%20(AR)

%20is%20the,overlaid%20on%20top%20of%20it..

[14] Benchmark. [Online]. url: https://www.investopedia.com/terms/b/benchmark.
asp.

[15] M. EL-Benday et al. �Power-E�cient of Image Transmission over Bluetooth System
Using Randomization Technique�. In: Third International Conference: E-Medical
Systems. Morocco, May 2010.

[16] Bleak Library. [Online]. url: https://bleak.readthedocs.io/en/latest/.

[17] Bluetooth. [Online]. url: https://en.wikipedia.org/wiki/Bluetooth.

95

https://www.bluetooth.com/blog/a-developers-guide-to-bluetooth/
https://www.bluetooth.com/blog/a-developers-guide-to-bluetooth/
https://www.bluetooth.com/blog/a-developers-guide-to-bluetooth/
https://www.bluetooth.com/blog/a-developers-guide-to-bluetooth/
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://fr.wikipedia.org/wiki/Advanced_Encryption_Standard
https://fr.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/API
https://developer.apple.com/forums/
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Application_layer
https://www.arduino.cc/en/Guide/Introduction
https://blog.amaxperteye.com/what-is-assisted-reality-here-is-what-you-need-to-know#:~:text=Abbreviated%20as%20aR%2C%20assisted%20Reality,without%20blocking%20the%20user's%20vision.
https://blog.amaxperteye.com/what-is-assisted-reality-here-is-what-you-need-to-know#:~:text=Abbreviated%20as%20aR%2C%20assisted%20Reality,without%20blocking%20the%20user's%20vision.
https://blog.amaxperteye.com/what-is-assisted-reality-here-is-what-you-need-to-know#:~:text=Abbreviated%20as%20aR%2C%20assisted%20Reality,without%20blocking%20the%20user's%20vision.
https://blog.amaxperteye.com/what-is-assisted-reality-here-is-what-you-need-to-know#:~:text=Abbreviated%20as%20aR%2C%20assisted%20Reality,without%20blocking%20the%20user's%20vision.
https://punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-mtu-2/
https://punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-mtu-2/
https://punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-mtu-2/
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/attribute-protocol--att-.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/attribute-protocol--att-.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/attribute-protocol--att-.html
https://www.techtarget.com/whatis/definition/augmented-reality-AR#:~:text=Augmented%20reality%20(AR)%20is%20the,overlaid%20on%20top%20of%20it.
https://www.techtarget.com/whatis/definition/augmented-reality-AR#:~:text=Augmented%20reality%20(AR)%20is%20the,overlaid%20on%20top%20of%20it.
https://www.techtarget.com/whatis/definition/augmented-reality-AR#:~:text=Augmented%20reality%20(AR)%20is%20the,overlaid%20on%20top%20of%20it.
https://www.investopedia.com/terms/b/benchmark.asp
https://www.investopedia.com/terms/b/benchmark.asp
https://bleak.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Bluetooth

[18] Bluetooth 5 Speed - Maximum Throughput. Jan. 2024. url: https://novelbits.
io/bluetooth-5-speed-maximum-throughput/#:~:text=If%20you%20know%

20that%20the,two%20birds%20with%20one%20stone!.

[19] Bluetooth 5 Speed Maximum Throughput. Jan. 2024. url: https://novelbits.io/
bluetooth-5-speed-maximum-throughput/.

[20] Bluetooth Low Energy (BLE). [Online]. url: https://www.bluetooth.com/learn-
about-bluetooth/tech-overview/.

[21] BlueZ. [Online]. url: https://www.bluez.org/about/.

[22] Bottleneck (software). [Online]. url: https://en.wikipedia.org/wiki/Bottleneck_
(software).

[23] Bu�er Over�ow. [Online]. url: https : / / en . wikipedia . org / wiki / Buffer _
overflow.

[24] P. Bulic, G. Kojek, and A. Biasizzo. �Data Transmission E�ciency in Bluetooth
Low Energy Versions�. In: Sensors 19.3746 (2019).

[25] C (programming language). [Online]. url: https://en.wikipedia.org/wiki/C_
(programming_language).

[26] Channel Selection Algorithms (CSA). [Online]. url: https://it.mathworks.com/
help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_

rtc_BLEChannelHoppingExample_M_041FCD2E.

[27] Clock. [Online]. url: https://kb.iu.edu/d/aekt#:~:text=The%20clock%
20ensures%20that%20the,used%20to%20measure%20clock%20speed..

[28] Communication Protocol. [Online]. url: https : / / en . wikipedia . org / wiki /
Communication_protocol.

[29] Communication Protocol - Payload. [Online]. url: https://en.wikipedia.org/
wiki/Communication_protocol.

[30] Concepts Across the Sciences: Stability and Change. [Online]. url: https://blogs.
loc.gov/teachers/2023/03/concepts-across-the-sciences-stability-and-

change/#:~:text=Stability%20refers%20to%20the%20tendency,short%20or%

20long%20time%20intervals.

[31] Connection Event. [Online]. url: https : / / punchthrough . com / manage - ble -
connection/.

[32] Connection Interval. [Online]. url: https://punchthrough.com/manage-ble-
connection/#:~:text=The%20Supervision%20Timeout%20is%20a,scanning%

20in%20order%20to%20reconnect..

[33] CoreBluetooth. [Online]. url: https://developer.apple.com/documentation/
corebluetooth.

[34] CSA 1. [Online]. url: https : / / it . mathworks . com / help / bluetooth / ug /

bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_

M_041FCD2E.

[35] CSA 2. [Online]. url: https : / / it . mathworks . com / help / bluetooth / ug /

bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_

M_041FCD2E.

[36] Current Consumption Estimation Tool provided by ST Electronics. [Online]. url:
https://www.st.com/en/embedded-software/stsw-bnrg001.html.

96

https://novelbits.io/bluetooth-5-speed-maximum-throughput/#:~:text=If%20you%20know%20that%20the,two%20birds%20with%20one%20stone!
https://novelbits.io/bluetooth-5-speed-maximum-throughput/#:~:text=If%20you%20know%20that%20the,two%20birds%20with%20one%20stone!
https://novelbits.io/bluetooth-5-speed-maximum-throughput/#:~:text=If%20you%20know%20that%20the,two%20birds%20with%20one%20stone!
https://novelbits.io/bluetooth-5-speed-maximum-throughput/
https://novelbits.io/bluetooth-5-speed-maximum-throughput/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluetooth.com/learn-about-bluetooth/tech-overview/
https://www.bluez.org/about/
https://en.wikipedia.org/wiki/Bottleneck_(software)
https://en.wikipedia.org/wiki/Bottleneck_(software)
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://kb.iu.edu/d/aekt#:~:text=The%20clock%20ensures%20that%20the,used%20to%20measure%20clock%20speed.
https://kb.iu.edu/d/aekt#:~:text=The%20clock%20ensures%20that%20the,used%20to%20measure%20clock%20speed.
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Communication_protocol
https://blogs.loc.gov/teachers/2023/03/concepts-across-the-sciences-stability-and-change/#:~:text=Stability%20refers%20to%20the%20tendency,short%20or%20long%20time%20intervals
https://blogs.loc.gov/teachers/2023/03/concepts-across-the-sciences-stability-and-change/#:~:text=Stability%20refers%20to%20the%20tendency,short%20or%20long%20time%20intervals
https://blogs.loc.gov/teachers/2023/03/concepts-across-the-sciences-stability-and-change/#:~:text=Stability%20refers%20to%20the%20tendency,short%20or%20long%20time%20intervals
https://blogs.loc.gov/teachers/2023/03/concepts-across-the-sciences-stability-and-change/#:~:text=Stability%20refers%20to%20the%20tendency,short%20or%20long%20time%20intervals
https://punchthrough.com/manage-ble-connection/
https://punchthrough.com/manage-ble-connection/
https://punchthrough.com/manage-ble-connection/#:~:text=The%20Supervision%20Timeout%20is%20a,scanning%20in%20order%20to%20reconnect.
https://punchthrough.com/manage-ble-connection/#:~:text=The%20Supervision%20Timeout%20is%20a,scanning%20in%20order%20to%20reconnect.
https://punchthrough.com/manage-ble-connection/#:~:text=The%20Supervision%20Timeout%20is%20a,scanning%20in%20order%20to%20reconnect.
https://developer.apple.com/documentation/corebluetooth
https://developer.apple.com/documentation/corebluetooth
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://it.mathworks.com/help/bluetooth/ug/bluetooth-le-channel-selection-algorithms.html#mw_rtc_BLEChannelHoppingExample_M_041FCD2E
https://www.st.com/en/embedded-software/stsw-bnrg001.html

[37] Cyclic Redundancy Check. [Online]. url: https://en.wikipedia.org/wiki/
Cyclic_redundancy_check.

[38] Data Bu�er. [Online]. url: https://en.wikipedia.org/wiki/Data_buffer.

[39] Data Integrity. [Online]. url: https://en.wikipedia.org/wiki/Data_integrity.

[40] Data Length Extension (DLE). [Online]. url: https://software-dl.ti.com/
lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/

ble-stack-3.x/data-length-extensions.html.

[41] E�ciency. [Online]. url: https://en.wikipedia.org/wiki/Efficiency.

[42] Electromagnetic Compatibility (EMC) Tests. [Online]. url: https://www.intertek.
com/emc/#:~:text=EMC%20testing%20helps%20identify%20potential,risk%

20of%20harm%20to%20users..

[43] Embedded software. [Online]. url: https://en.wikipedia.org/wiki/Embedded_
software.

[44] Empirical research. [Online]. url: https://en.wikipedia.org/wiki/Empirical_
research.

[45] Firmware. [Online]. url: https://en.wikipedia.org/wiki/Firmware.

[46] Flutter (software). [Online]. url: https://en.wikipedia.org/wiki/Flutter_
(software).

[47] FreeRTOS. [Online]. url: https://en.wikipedia.org/wiki/FreeRTOS.

[48] Generic Access Pro�le (GAP). [Online]. url: https : / / www . bluetooth . com /
bluetooth-resources/intro-to-bluetooth-generic-access-profile-gap/.

[49] Generic Attribute Pro�le (GATT). [Online]. url: https://www.bluetooth.com/
bluetooth-resources/intro-to-bluetooth-gap-gatt/.

[50] C. Gomez, J. Oller, and J. Paradells. �Overview and Evaluation of Bluetooth Low
Energy: An Emerging Low-Power Wireless Technology�. In: Sensors 12 (2012),
pp. 11734�11753. doi: 10.3390/s120911734.

[51] Host Controller Interface (HCI). [Online]. url: https://software-dl.ti.com/
lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/

ble-stack-3.x/hci.html.

[52] Interference Awareness Scheme (IAS). [Online]. url: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC8037550/.

[53] ISM radio band. [Online]. url: https://en.wikipedia.org/wiki/ISM_radio_
band.

[54] JLinkRTTViewer. [Online]. url: https://www.segger.com/products/debug-
probes/j-link/tools/rtt-viewer/.

[55] R. Katila, T. Nguyen Gia, and T. Westerlund. �Analysis of Mobility Support Ap-
proaches for Edge-based IoT Systems Using High Data Rate Bluetooth Low Energy
5�. In: Computer Networks 209 (2022), Art. no. 108925.

[56] Latency (Engineering). [Online]. url: https://en.wikipedia.org/wiki/Latency_
(engineering).

[57] LE 1M PHY. [Online]. url: https://punchthrough.com/crash-course-in-2m-
bluetooth-low-energy-phy/.

97

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Data_buffer
https://en.wikipedia.org/wiki/Data_integrity
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/data-length-extensions.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/data-length-extensions.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/data-length-extensions.html
https://en.wikipedia.org/wiki/Efficiency
https://www.intertek.com/emc/#:~:text=EMC%20testing%20helps%20identify%20potential,risk%20of%20harm%20to%20users.
https://www.intertek.com/emc/#:~:text=EMC%20testing%20helps%20identify%20potential,risk%20of%20harm%20to%20users.
https://www.intertek.com/emc/#:~:text=EMC%20testing%20helps%20identify%20potential,risk%20of%20harm%20to%20users.
https://en.wikipedia.org/wiki/Embedded_software
https://en.wikipedia.org/wiki/Embedded_software
https://en.wikipedia.org/wiki/Empirical_research
https://en.wikipedia.org/wiki/Empirical_research
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Flutter_(software)
https://en.wikipedia.org/wiki/Flutter_(software)
https://en.wikipedia.org/wiki/FreeRTOS
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-generic-access-profile-gap/
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-generic-access-profile-gap/
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-gap-gatt/
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-gap-gatt/
https://doi.org/10.3390/s120911734
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/hci.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/hci.html
https://software-dl.ti.com/lprf/simplelink_cc2640r2_latest/docs/blestack/ble_user_guide/html/ble-stack-3.x/hci.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037550/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037550/
https://en.wikipedia.org/wiki/ISM_radio_band
https://en.wikipedia.org/wiki/ISM_radio_band
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Latency_(engineering)
https://punchthrough.com/crash-course-in-2m-bluetooth-low-energy-phy/
https://punchthrough.com/crash-course-in-2m-bluetooth-low-energy-phy/

[58] LE 2M PHY. [Online]. url: https://punchthrough.com/crash-course-in-2m-
bluetooth-low-energy-phy/.

[59] Link Layer. [Online]. url: https://developerhelp.microchip.com/xwiki/bin/
view/applications/ble/introduction/bluetooth-architecture/bluetooth-

controller-layer/bluetooth-link-layer/#:~:text=The%20Bluetooth%C2%

AE%20Low%20Energy,%2C%20and%20creating%2Fmaintaining%20connections..

[60] Logical Link Control and Adaptation Protocol (L2CAP). [Online]. url: https :
//www.bluetooth.com/wp- content/uploads/Files/Specification/HTML/

Core-54/out/en/host/logical-link-control-and-adaptation-protocol-

specification.html.

[61] Maximizing BLE Throughput on iOS and Android. Dec. 2023. url: https : / /
punchthrough.com/maximizing-ble-throughput-on-ios-and-android/.

[62] Maximizing BLE Throughput Part 2: Use Larger ATT MTU. url: https : / /

punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-

mtu-2/.

[63] Maximizing BLE Throughput Part 3: Data Length Extension (DLE). url: https:
//punchthrough.com/maximizing- ble- throughput- part- 3- data- length-

extension-dle-2/.

[64] Maximizing BLE Throughput Part 4: Everything You Need to Know. url: https:
//punchthrough.com/ble-throughput-part-4/.

[65] Message Authentication Code. [Online]. url: https://en.wikipedia.org/wiki/
Message_authentication_code.

[66] Microcontroller. [Online]. url: https://en.wikipedia.org/wiki/Microcontroller.

[67] Nordic nRF52840. [Online]. url: https : / / www . nordicsemi . com / Products /
nRF52840.

[68] Nordic Semiconductor Information Center. Jan. 2024. url: https://infocenter.
nordicsemi.com/index.jsp?topic=/sds_s140/SDS/s1xx/ble_data_throughput/

ble_data_throughput.html.

[69] Operating System. [Online]. url: https://en.wikipedia.org/wiki/Operating_
system.

[70] PacketLogger. [Online]. url: https://developer.apple.com/bluetooth/.

[71] B. Pang et al. �Bluetooth Low Energy Interference Awareness Scheme and Improved
Channel Selection Algorithm for Connection Robustness�. In: Sensors 21.2257 (2021).

[72] E. Park et al. �AdaptaBLE: Adaptive Control of Data Rate, Transmission Power,
and Connection Interval in Bluetooth Low Energy�. In: Computer Networks 181
(2020), Art. no. 107520.

[73] Physical Layer (PHY). [Online]. url: https://developerhelp.microchip.com/
xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/

bluetooth-controller-layer/physical/#:~:text=The%20Bluetooth%C2%AE%

20Low%20Energy,services%20to%20the%20link%20layer..

[74] Protocol Stacks Layered Architecture. [Online]. url: https : / / novelbits . io /
protocol-stacks-layered-architecture/.

[75] PyOBJC. [Online]. url: https://pyobjc.readthedocs.io/en/latest/.

98

https://punchthrough.com/crash-course-in-2m-bluetooth-low-energy-phy/
https://punchthrough.com/crash-course-in-2m-bluetooth-low-energy-phy/
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/bluetooth-link-layer/#:~:text=The%20Bluetooth%C2%AE%20Low%20Energy,%2C%20and%20creating%2Fmaintaining%20connections.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/bluetooth-link-layer/#:~:text=The%20Bluetooth%C2%AE%20Low%20Energy,%2C%20and%20creating%2Fmaintaining%20connections.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/bluetooth-link-layer/#:~:text=The%20Bluetooth%C2%AE%20Low%20Energy,%2C%20and%20creating%2Fmaintaining%20connections.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/bluetooth-link-layer/#:~:text=The%20Bluetooth%C2%AE%20Low%20Energy,%2C%20and%20creating%2Fmaintaining%20connections.
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/logical-link-control-and-adaptation-protocol-specification.html
https://punchthrough.com/maximizing-ble-throughput-on-ios-and-android/
https://punchthrough.com/maximizing-ble-throughput-on-ios-and-android/
https://punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-mtu-2/
https://punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-mtu-2/
https://punchthrough.com/maximizing-ble-throughput-part-2-use-larger-att-mtu-2/
https://punchthrough.com/maximizing-ble-throughput-part-3-data-length-extension-dle-2/
https://punchthrough.com/maximizing-ble-throughput-part-3-data-length-extension-dle-2/
https://punchthrough.com/maximizing-ble-throughput-part-3-data-length-extension-dle-2/
https://punchthrough.com/ble-throughput-part-4/
https://punchthrough.com/ble-throughput-part-4/
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Message_authentication_code
https://en.wikipedia.org/wiki/Microcontroller
https://www.nordicsemi.com/Products/nRF52840
https://www.nordicsemi.com/Products/nRF52840
https://infocenter.nordicsemi.com/index.jsp?topic=/sds_s140/SDS/s1xx/ble_data_throughput/ble_data_throughput.html
https://infocenter.nordicsemi.com/index.jsp?topic=/sds_s140/SDS/s1xx/ble_data_throughput/ble_data_throughput.html
https://infocenter.nordicsemi.com/index.jsp?topic=/sds_s140/SDS/s1xx/ble_data_throughput/ble_data_throughput.html
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Operating_system
https://developer.apple.com/bluetooth/
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/physical/#:~:text=The%20Bluetooth%C2%AE%20Low%20Energy,services%20to%20the%20link%20layer.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/physical/#:~:text=The%20Bluetooth%C2%AE%20Low%20Energy,services%20to%20the%20link%20layer.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/physical/#:~:text=The%20Bluetooth%C2%AE%20Low%20Energy,services%20to%20the%20link%20layer.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-controller-layer/physical/#:~:text=The%20Bluetooth%C2%AE%20Low%20Energy,services%20to%20the%20link%20layer.
https://novelbits.io/protocol-stacks-layered-architecture/
https://novelbits.io/protocol-stacks-layered-architecture/
https://pyobjc.readthedocs.io/en/latest/

[76] Python (programming language). [Online]. url: https://en.wikipedia.org/
wiki/Python_(programming_language).

[77] Quality of Service (QoS). [Online]. url: https://en.wikipedia.org/wiki/
Quality_of_service.

[78] Race Condition. [Online]. url: https://en.wikipedia.org/wiki/Race_condition.

[79] Secure Shell (SSH). [Online]. url: https://en.wikipedia.org/wiki/Secure_
Shell.

[80] Security Manager (SM). [Online]. url: https://www.bluetooth.com/wp-content/
uploads / Files / Specification / HTML / Core - 54 / out / en / host / security -

manager-specification.html#UUID-193f95ea-7252-1b51-853b-a1999393dddf.

[81] Serial Peripheral Interface (SPI). [Online]. url: https://en.wikipedia.org/
wiki/Serial_Peripheral_Interface.

[82] C. Shao and S. Nirjon. �Demo Abstract: Image Storage and broadcast via Bluetooth
Low Energy Beacons�. In: Proceedings of the 2nd ACM/IEEE International Confer-
ence on Internet-of-Things Design and Implementation. Pittsburgh, PA, USA, Apr.
2017, pp. 1�2. doi: 10.475/123_4.

[83] ST Electronics Community Forum. Dec. 2023. url: https://community.st.com/.

[84] Static Random Access Memory (SRAM). [Online]. url: https://fr.wikipedia.
org/wiki/Static_Random_Access_Memory.

[85] STMicroelectronics. BlueNRG BlueNRG-MS Stacks Programming Guidelines. Pro-
gramming Manual, DocID027104 Rev 7. Available online: www.st.com. Nov. 2018.

[86] STMicroelectronics. Slot Allocation and Multiple Connection Timing Strategy for
BlueNRG, BlueNRG-MS, BlueNRG-1, and BlueNRG-2. Design Tip DT0107, Rev
2. Available online: www.st.com. Nov. 2018.

[87] A. K. Sultania, C. Delgado, and J. Famaey. �Enabling Low-Latency Bluetooth Low
Energy on Energy Harvesting Batteryless Devices Using Wake-Up Radios�. In: Sen-
sors 20.5196 (2020).

[88] Supervision Timeout. [Online]. url: https://punchthrough.com/manage-ble-
connection/.

[89] The Inter Frame Space (IFS). [Online]. url: https://novelbits.io/bluetooth-
5-speed-maximum-throughput/.

[90] K. Townsend et al.Getting Started with Bluetooth Low Energy: Tools and Techniques
for Low-Power Networking. 1st ed. O'Reilly Media, Incorporated, 2014. isbn: 978-
1491949511.

[91] Universally Unique Identi�er (UUIDs). [Online]. url: https://developerhelp.
microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-

architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-

gatt/UUIDs/#:~:text=A%20Universally%20Unique%20Identifier%20(UUID,

for%20shortened%2016%2Dbit%20UUIDs..

[92] UTF-8. [Online]. url: https://en.wikipedia.org/wiki/UTF-8.

[93] Wave interference. [Online]. url: https : / / en . wikipedia . org / wiki / Wave _
interference.

[94] Wi-Fi. [Online]. url: https://en.wikipedia.org/wiki/Wi-Fi.

[95] WireShark. [Online]. url: https://www.wireshark.org/about.html.

99

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/Quality_of_service
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Secure_Shell
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/security-manager-specification.html#UUID-193f95ea-7252-1b51-853b-a1999393dddf
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/security-manager-specification.html#UUID-193f95ea-7252-1b51-853b-a1999393dddf
https://www.bluetooth.com/wp-content/uploads/Files/Specification/HTML/Core-54/out/en/host/security-manager-specification.html#UUID-193f95ea-7252-1b51-853b-a1999393dddf
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://doi.org/10.475/123_4
https://community.st.com/
https://fr.wikipedia.org/wiki/Static_Random_Access_Memory
https://fr.wikipedia.org/wiki/Static_Random_Access_Memory
www.st.com
www.st.com
https://punchthrough.com/manage-ble-connection/
https://punchthrough.com/manage-ble-connection/
https://novelbits.io/bluetooth-5-speed-maximum-throughput/
https://novelbits.io/bluetooth-5-speed-maximum-throughput/
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-gatt/UUIDs/#:~:text=A%20Universally%20Unique%20Identifier%20(UUID,for%20shortened%2016%2Dbit%20UUIDs.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-gatt/UUIDs/#:~:text=A%20Universally%20Unique%20Identifier%20(UUID,for%20shortened%2016%2Dbit%20UUIDs.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-gatt/UUIDs/#:~:text=A%20Universally%20Unique%20Identifier%20(UUID,for%20shortened%2016%2Dbit%20UUIDs.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-gatt/UUIDs/#:~:text=A%20Universally%20Unique%20Identifier%20(UUID,for%20shortened%2016%2Dbit%20UUIDs.
https://developerhelp.microchip.com/xwiki/bin/view/applications/ble/introduction/bluetooth-architecture/bluetooth-host-layer/bluetooth-generic-attribute-profile-gatt/UUIDs/#:~:text=A%20Universally%20Unique%20Identifier%20(UUID,for%20shortened%2016%2Dbit%20UUIDs.
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Wave_interference
https://en.wikipedia.org/wiki/Wave_interference
https://en.wikipedia.org/wiki/Wi-Fi
https://www.wireshark.org/about.html

