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ABSTRACT
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Cardiovascular diseases are a leading cause of mortality in Belgium and worldwide, with pro-
jections indicating a concerning rise in related deaths. Understanding the hemodynamics and
biomechanical mechanisms underlying vascular failure is essential for advancing diagnostic and
therapeutic strategies. In this context, computational models offer a promising tool that can
really improve patient care. In particular, fluid-structure interaction algorithms have found sig-
nificant applications in cardiovascular engineering, in coupling simulations of blood flows with the
mechanical responses of blood vessels.

This thesis focuses on the computational modeling of the fluid-structure interaction of artery
walls and blood flows as a means of assessing different biomechanical aspects. For this, the flow-
structure interaction problem is addressed using a partitioned approach with a strong coupling of
PFEM (for the fluid) and FEM (for the solid) models. This work relies on the PFEM3D and Metafor
codes and exploits the synchronization and communication framework FSPC, all developed in the
LTAS-MN2L lab of ULiège. This marks the first application of the PFEM to such biomechanical
simulations.

Axisymmetric models of arteries are developed by incorporating both the Newtonian and Cas-
son fluid models, as well as linear elastic, Neo-Hookean, and Mooney-Rivlin hyperelastic models
for the deformation of blood vessels. The numerical simulations successfully describe a wide range
of situations and problems, from the ejection of blood from the left ventricle and the blood flow
in the healthy aortic artery to the dynamics of an abdominal aortic aneurysm and, ultimately, its
rupture. The different models provide valuable insights into the corresponding dynamics and help
to identify the different aspects that still need to be improved. In particular, the results explain
why local defects of the artery wall must be compensated by biological remodeling processes, with
the replacement of elastin by stiffer collagen, to avoid further development and rupture of an
aneurysm.

Overall, this work underscores the potential of PFEM3D, Metafor, and their coupling within the
FSPC framework to advance our understanding of hemodynamics and biomechanical processes,
and to contribute to the improved handling of cardiovascular diseases.





RÉSUMÉ

Mots-clés : maladies cardiovasculaires, biomécanique, anévrisme, valve aortique, contrainte de
cisaillement, athérosclérose, hémodynamique, paroi artérielle déformable, fluide de Casson, loi de
Mooney-Rivlin, interaction fluide-structure, PFEM, modélisation numérique.

Les maladies cardiovasculaires sont l’une des principales causes de mortalité en Belgique et
dans le monde, avec des projections indiquant une augmentation préoccupante des décès associés.
Une bonne compréhension de l’hémodynamique et des mécanismes biomécaniques sous-jacents à
l’insuffisance vasculaire est essentielle pour améliorer les stratégies de diagnostic et de traitement.
Dans ce contexte, les modèles numériques offrent un outil prometteur qui peut réellement améliorer
les soins apportés aux patients. En particulier, les algorithmes d’interaction fluide-structure sont
largement utilisés en ingénierie cardiovasculaire, en couplant des simulations de flux sanguins avec
les réponses mécaniques des vaisseaux sanguins.

Ce travail de fin d’études se concentre sur la modélisation numérique de l’interaction fluide-
structure des parois des artères et des écoulements sanguins afin d’évaluer différents aspects biomé-
caniques. Pour ce faire, le problème d’interaction fluide-structure est abordé en utilisant une ap-
proche partitionnée avec un couplage fort des modèles PFEM (pour le fluide) et FEM (pour le
solide). L’implémentation pratique est basée sur les codes PFEM3D et Metafor et exploite le cadre
de synchronisation et de communication FSPC, tous développés dans le laboratoire LTAS-MN2L
de l’ULiège. Ceci marque la première application de la méthode PFEM à de telles simulations
biomécaniques.

Des modèles axisymétriques d’artères sont développés en incorporant à la fois les modèles
de fluide newtonien et de Casson, ainsi que des modèles linéaires, Néo-Hookéen et Mooney-Rivlin
hyperélastiques pour la déformation des vaisseaux sanguins. Les simulations numériques décrivent
avec succès une large gamme de situations et de problèmes, depuis l’éjection du sang du ventricule
gauche et l’écoulement sanguin dans l’artère aortique saine jusqu’à la dynamique d’un anévrisme de
l’aorte abdominale et, finalement, sa rupture. Les différents modèles fournissent des informations
précieuses sur les dynamiques correspondantes et aident à identifier les différents aspects qui
doivent encore être améliorés. En particulier, les résultats expliquent pourquoi tout défaut local
de la paroi artérielle doit être compensé par des processus de remodelage biologique, avec le
remplacement de l’élastine par du collagène plus rigide, pour éviter le développement ultérieur et
la rupture d’un anévrisme.

Dans l’ensemble, ce travail souligne le potentiel de PFEM3D, de Metafor et de leur couplage
via FSPC pour faire progresser notre compréhension de l’hémodynamique et des processus biomé-
caniques, et ainsi contribuer à l’amélioration de la prise en charge des maladies cardiovasculaires.
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INTRODUCTION

General context.

Cardiovascular diseases are a significant threat to human health. Annually, they account for
31,000 deaths in Belgium, making them the leading cause of mortality in the country. Today,
nearly 754,000 Belgians suffer from a cardiovascular disease [87]. These statistics mirror global
trends: in 2021, cardiovascular conditions claimed the lives of 20.5 million people worldwide,
representing one-third of all deaths. Ischemic heart disease is the primary cause of premature
death in 146 countries for men and 98 countries for women. The upward trend is also alarming,
with projections suggesting that by 2030, cardiovascular diseases will cause over 23 million deaths
globally per year [199].

Improving our understanding of the hemodynamics and biomechanical mechanisms of vascular
failure is crucial to support the development of better diagnostic and therapeutic techniques for
cardiovascular diseases [172]. In this context, the use of computational models holds great promise
for advancing our knowledge and ultimately improving patient care [77]. Numerical models give
indeed access to parameters, such as Wall Shear Stress (WSS), strain, and pulse wave velocity,
that are difficult to measure directly but are critical for the assessment of the progression and
diagnosis of diseases. For instance, the wall shear stress is not directly measurable in a blood
vessel but is a well-known factor for the initiation and advancement of atherosclerosis and is also
associated to the risk of arterial complications such as rupture [103].

In addition to enabling in silico studies that provide greater insight into underlying mech-
anisms, numerical models can also be used to perform patient-specific analyses with important
clinical implications. When combined with advanced imaging techniques such as Computed To-
mography (including CT angiography), Magnetic Resonance Imaging (MRI), three-dimensional
ultrasound imaging, and 3D rotational angiography [150, 206], numerical models can be used
to generate detailed three-dimensional representations of patient-specific blood vessels and their
function [77, 113]. Such simulations can facilitate pre-operative planning, allowing surgeons to
assess the impact of interventions on blood flow patterns and vessel mechanics. The ability to
simulate patient-specific geometries and conditions has paved the way for personalized medicine,
allowing clinicians to gain insight into disease progression and to develop tailored treatments for
cardiovascular pathologies [17, 90].

Simulations can also guide the development and optimization of cardiovascular devices, leading
to improved designs and better patient outcomes [182]. By evaluating device performance under
realistic physiological conditions, simulations help refine designs and improve efficacy and safety.
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INTRODUCTION

Objectives.

Considering the potential of numerical simulations to shed new light on cardiovascular diseases, the
current study appears as a proof-of-concept to demonstrate the relevance of the Particle Finite
Element Method (PFEM) and of Fluid-Structure Interaction (FSI) modeling in this context.
While the PFEM has been developed and is generally applied to hydraulic engineering or additive
manufacturing, this study seeks to explore its potential application in the field of biomedical
engineering. To the best of the author’s knowledge, it is the first time that the PFEM is applied
to the simulation of blood flows and their interactions with artery walls.

As a proof-of-concept, the following study intends not only to examine the numerical aspects
of the PFEM and its use in coupled fluid-structure interaction models, but also and above all
to analyze the results from a biomechanical point of view. In particular, we will address various
hemodynamic problems associated with the functioning of heart valves and blood flows in arteries
and veins, as well as the development and rupture of aneurysms. It is through such an analysis,
based on the actual questions posed by biomechanics and medicine, that potential and limitations
of the method really become apparent. In this sense, this work is intended to explore the need for
new developments to make real use of the enormous potential of the method.

Outline.

Chapter 1 describes the cardiovascular system and its modeling. After an overview of two prevalent
cardiovascular diseases - aneurysms and Valvular Heart Diseases (VHDs) - it explores traditional
major approaches for modeling the mechanical behavior of blood vessels, blood flows, and their in-
teractions. The chapter covers structural modeling of blood vessels using Finite Element Analysis
(FEA), Computational Fluid Dynamics (CFD), and combined approaches such as fluid-structure
interaction and Fluid-Solid Growth (FSG).

An overview of the fluid-structure interaction strategy followed in this study is provided in
chapter 2. It includes a general introduction to the PFEM, the PFEM3D code, and the finite
element code Metafor used in this work. Additionally, the chapter outlines the key features of the
fluid-structure interaction algorithm FSPC (Fluid-Structure Partitioned Coupler) used to couple
the fluid and solid models.

Chapter 3 encompasses a thorough discussion on blood flow modeling, including the verification
of the Casson fluid model implemented as part of this work. Similarly, the chapter delves into the
modeling of the arterial wall and commonly utilized constitutive laws. The initial focus lies on
examining the propagation of a pressure pulse within a deformable straight artery. Subsequently,
the analysis progresses to simulate realistic pulsatile flow within a deformable straight artery.
This investigation considers the influence of constitutive models, fluid assumptions, and arterial
stiffness on blood flow dynamics, with a particular emphasis on the critical physiological parameter
of wall shear stress. A short study of the flow in the Inferior Vena Cava (IVC) demonstrates the
relevance of the the Casson model in this context.

In chapter 4, a two-dimensional model of the aortic valve is presented. Following a review
of state-of-the-art techniques in aortic valve modeling, the chapter extensively analyzes the flow
through the aortic valve. Additionally, the impact of calcification, one of the most prevalent
diseases affecting the aortic valve, is also investigated.

The simulation of an axisymmetric Abdominal Aortic Aneurysm (AAA) is considered in chap-
ter 5. Various modeling aspects are discussed, among which the choice of the constitutive law of
the aortic wall and its structure. The influence of the initial size of a fully developed aneurysm
and the heterogeneity of the aneurysm wall on flow and stresses are also investigated, in partic-
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ular in relation with the risk of rupture. Furthermore, the initiation and stability of developing
aneurysms are investigated. Lastly, results of the explicit simulation of the rupture of aneurysms
with two different geometries (a 2D Cerebral Aneurysm (CA) and an axisymmetric abdominal
aortic aneurysm) are reported.

The final section presents a summary of the main achievements of this work: the implemen-
tation and verification of the Casson model in PFEM3D and the first use of the PFEM in coupled
models to describe blood flows around the aortic valve, in the aortic artery, in an abdominal
aortic aneurysm, and the rupture of blood vessels. The discussion ends with a description of the
prospects and future work needed to progress more firmly towards the application of PFEM3D to
real biomedical problems and to reap the scientific results that the PFEM has to offer.
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CHAPTER 1
THE CARDIOVASCULAR SYSTEM AND ITS MODELING

1.1 The circulatory system: the basics.

The cardiovascular system comprises the heart and a complex network of blood vessels. The
heart serves as a muscular pumping organ responsible for circulating blood throughout the body.
Its function is crucial since the body’s tissues require a constant supply of oxygen, nutrients,
hormones, and other essential substances, and a continuous removal of metabolic waste products
to survive. It thus plays an essential role in maintaining homeostasis and ensuring the proper
functioning of various organ systems [178].

The circulatory system consists of different types of vessels with different sizes and functions:
arteries, capillaries, and veins (Figure 1.1). Heart contractions drive blood flow into the major
arteries emerging from the ventricles. The arteries carry oxygenated blood from the heart to
different body parts. They have thick elastic walls composed of smooth muscle and connective
tissue. This structural integrity enables them to withstand high blood pressure and pulsatile flow.
Arteries progressively divide into smaller vessels, arterioles, which then branch into capillaries.
Arterioles regulate blood flow and control blood pressure by constricting or dilating their smooth
muscle walls. Capillaries are the smallest blood vessels within the circulatory system. They
connect arterioles and venules. They form a network which facilitates the exchange of oxygen,
nutrients, waste products, and hormones between the blood and surrounding tissues. Their small
thickness makes it possible to have an efficient diffusion of substances. Venules then receive
deoxygenated blood from capillaries. They also contribute to the immune response by facilitating
the migration of white blood cells from the bloodstream to infected or injured tissues. Venules
then merge to form larger veins, which carry deoxygenated blood from tissues and organs back to
the heart. Veins have thinner walls and lower blood pressure than arteries. Veins progressively
merge to form larger vessels, returning blood to the heart through the superior and inferior venae
cavae, and entering the right atrium.

The heart, of course, plays a very important role in the circulatory system. It consists of four
chambers (Figure 1.2): two atria and two ventricles (left and right). The rhythmic contraction
(systole) and relaxation (diastole) of the heart generate the pumping action responsible for pro-
pelling blood throughout the circulatory system. Blood always flows in one direction within the
heart. Deoxygenated blood enters the right atrium via the vena cava, moves to the right ventricle
and is then pumped to the lungs for oxygenation via the pulmonary arteries. It circulates through
the lungs where gas exchange occurs. Oxygenated blood then returns to the left atrium via the
pulmonary veins, passes to the left ventricle, and is finally pumped into the systemic circulation
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CHAPTER 1. THE CARDIOVASCULAR SYSTEM AND ITS MODELING

to feed the body’s tissues. Pulmonary circulation is supplied by the right heart. It refers to the
pathway of blood from the heart to the lungs and back. Systemic circulation is supplied by the
left heart. It includes the vessels that transport blood to the tissues and return it to the heart.

Figure 1.1 – Human circulatory system (reproduced from
Syed et al. [173]).

Figure 1.2 – Structure of the heart [15].

This unidirectional flow of blood depends on the presence of four valves that open and close
according to the difference in pressure on each side of their surface. The atrioventricular valves
(tricuspid and bicuspid/mitral) ensure blood flows from respectively the left and right atria to
the ventricles, while the semilunar valves (aortic and pulmonary) are located at the base of the
arteries leaving the ventricles. The aortic valve controls the flow from the left ventricle to the
aorta (the largest artery in the body), while the pulmonary valve regulates the flow from the
right ventricle to the pulmonary artery. Their function is to prevent blood from flowing back
from the arteries into the ventricles. Indeed, these valves open when the ventricles contract, as
the intraventricular pressure exceeds arterial pressure, and close when the ventricles relax, as the
intraventricular pressure drops, thereby preventing the backward flow of blood into the heart.

1.2 Cardiovascular diseases.

Cardiovascular diseases form a group of disorders affecting the heart and blood vessels [87]. It
includes

• arrhythmia: abnormal heart rhythms or heart rates,

• coronary heart diseases: affecting the blood vessels that supply the heart muscle, such as
blockages,

• cerebrovascular diseases: affecting the blood vessels that supply the brain, such as blockages
or narrowing,

• peripheral arterial diseases: affecting the blood vessels supplying the arms and legs, such as
blockages or narrowing,

• rheumatic heart disease: affecting the heart muscle and valves and resulting from rheumatic
fever caused by streptococcus bacteria,

• aortic diseases: affecting the aorta, such as aneurysms,

6



1.2. CARDIOVASCULAR DISEASES

• congenital heart defects: malformations of the structure of the heart already present at
birth,

• valvular heart diseases: affecting the heart valves,

• deep vein thrombosis and pulmonary embolism: obstruction of the veins in the legs by a
blood clot that can break free and migrate to the heart or lungs,

• pericardial diseases: affecting the pericardium, the tissue surrounding the heart, such as
pericarditis (inflammation) or pericardial effusion (fluid buildup within the pericardium).

These problems frequently lead to heart attacks and strokes, in which blood no longer reaches the
heart or brain, with sometimes fatal results for the patient. In the following, we will concentrate
on two problems that will be tackled more specifically, namely Valvular Heart Diseases (VHDs)
and aneurysm rupture.

1.2.1 Valvular heart diseases.

Failure of the heart valve to open and close properly can seriously impair the heart’s ability to
effectively pump blood through the body. The heart will need to work harder to accomplish its
vital task.

Valvular heart diseases, i.e., diseases involving one or more of the heart valves, may be congen-
ital or develop later in life. Left untreated, they can lead to stroke, heart failure, and death due to
sudden cardiac arrest [147]. The aortic valve is the most susceptible to disease as it sustains the
largest pressure difference. About 61% of VHD-related deaths are due to aortic valve diseases [57].
The most common congenital one is the bicuspid aortic valve disease, which occurs in 1–2% of
the general population [165]. This is a common congenital heart defect in which the bicuspid
aortic valve contains two leaflets instead of the usual three. This can lead to degenerative changes
of the valve and is associated with dilatation of the aorta. Apart from congenital diseases, two
main acquired complications can occur. Regurgitation (valve leakage) occurs when a valve loses
its ability to close completely, leading to the backflow of blood. As a result, the heart’s chambers
have to work harder to pump the extra blood back through the valve. Aortic stenosis (valve
narrowing) happens due to inadequate aortic valve opening, probably due to underlying processes
such as calcification, thereby making the leaflets thicker and stiffer and obstructing blood flow out
from the left ventricle. Calcium deposition changes the material properties and geometry of the
leaflets, and affects their functionality during the cardiac cycle which leads to heart failure over
time [97, 111].

After treatment failure with heart-healthy lifestyle changes and medicine, there are mainly
two options available for solving the problem with the diseased valve: heart valve repair and
heart valve replacement. Heart valve repair is often the preferred treatment when there is enough
healthy tissue for reconstruction. Procedures may include fixing valve flaps, replacing cords that
support the valve helping it to close properly, inserting prosthetic rings to narrow a dilated valve, ...
However, in many cases of VHDs (70%), valve replacement is necessary [204]. Each year, over
290,000 patients undergo valve replacement surgeries worldwide. This number is expected to reach
850,000 by the year 2050 due to the rising average age of the population [161].

1.2.2 Aneurysms.

Arterial aneurysms are abnormal and irreversible focal dilations of arteries, typically of 50% of the
physiological diameter or more [121]. This condition involves inflammation and thickening of the
arterial walls, potentially leading to life-threatening complications [189]. Aneurysm complications
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CHAPTER 1. THE CARDIOVASCULAR SYSTEM AND ITS MODELING

include rupture, hypovolemic shock (i.e., a major blood loss), tissue compression, thromboem-
bolism (i.e., a blood clot causing obstruction), and ischemia (i.e., a condition in which blood flow
is reduced in a part of the body) [107].

In 2020, ruptured aneurysms resulted in approximately 25,000 deaths annually in the UK,
Germany, and the USA combined [198]. Aneurysms can develop in different locations within
the arterial system, including intracranial, aortic, abdominal, visceral, and peripheral arteries.
The two most common types of aneurysms are the Abdominal Aortic Aneurysm (AAA) and the
Cerebral Aneurysm (CA) [120]. AAAs and CAs combined account for over 80% of fatal aneurysm
incidences.

While AAAs typically develop in the infrarenal aorta, CAs are situated in and around the circle
of Willis, which provides blood to the brain and its surrounding structures. The rupture of a CA
results in subarachnoid hemorrhage (a fatal condition in the circle of Willis) with a mortality rate
of 45% [80]. Conversely, an AAA rupture leads to internal bleeding with mortality rates ranging
from 65% to 80% [86]. Additionally, apart from their distinct locations, most AAAs exhibit a
fusiform shape, while over 90% of CAs present a saccular (spherical or berry-like) morphology
(Figure 1.3).

2

Figure 1.3 – Two most common aneurysms (reproduced from Sun et al. [172]).

The formation and growth of an aneurysm is a long-term process, sometimes taking years. An
aneurysm is often detected by medical imaging and is usually asymptomatic until it ruptures [80].
An aneurysm occurs because of weakness of the vessel wall, an abnormality in the artery wall, or
an acquired disease. Few aneurysms are the direct result of specific causes such as trauma, acute
infection, inflammatory diseases, and connective tissue disorders (e.g., Marfan syndrome). There-
fore, the majority of aneurysms are considered non-specific [149]. Aneurysms are traditionally
considered as a consequence of atherosclerosis [142, 149]. Indeed, sediments such as fatty deposits
can cause blockage of the arteries and create an abnormality in the artery wall.

While surgical or endovascular procedures are available for patient treatment, they are in-
vasive and carry inherent risks [107]. These risks must therefore be compared with the risk of
rupture. To date, aneurysm diameter and expansion rates have served as the primary metrics for
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1.3. THE DIFFERENT MODELING COMPONENTS

evaluating the risk of rupture [57, 121]. However, this approach is clearly insufficient: many small
aneurysms rupture and some large or rapidly growing ones may not require surgical interven-
tion [38]. Computational models assessing aneurysm hemodynamics may aid in identifying more
accurate predictors of vessel rupture or thrombosis formation, facilitating better determination of
when clinical intervention is required.

1.3 The different modeling components.

Due to the multitude of processes involved, realistic modeling of blood flows and their interactions
with vessels is a complex task that usually requires a combination of different approaches adapted
from different scientific and technical fields [57]. Modeling the mechanical behavior of veins
and arteries is based on techniques developed in the field of structural engineering. Blood flow
modeling uses Computational Fluid Dynamics (CFD) approaches. These two aspects must then
be combined to describe the interplay between the vessels and the flow, using appropriate Fluid-
Structure Interaction (FSI) methods. Taking into account biomechanical processes also requires
the development of original approaches that integrate the specific behavior of living materials by
means of appropriate constitutive laws and empirical models.

1.3.1 Structural modeling of blood vessels.

Finite Element Analysis (FEA) is, by far, the most popular way for simulating the mechanical
deformation of the walls of blood vessels and the corresponding internal stresses [162, 167, 200].

Based on the geometric reconstructions and equations describing the wall stress-strain relation-
ship, FEA calculations can be used, for instance, to determine the circumferential stress across an
aneurysm wall at peak systolic pressure and determine the risk of aneurysm rupture. Studies have
shown that this peak wall stress has a higher sensitivity and specificity in predicting rupture risk
than other parameters [52]. The Finite Element Method (FEM) can also be used to simulate the
interaction between an inflated balloon catheter and a plaque deposit on a blood vessel wall [78].

The deformation of blood vessel walls plays an important role in the dynamics of the circulatory
system. The opening and closing of heart valves involve large deformations of the correspond-
ing tissues. During systole, the aorta also deforms elastically to provide a temporary reservoir
for about 70% of the blood injected with the heartbeat [20]. The development and rupture of
aneurysms are also characterized by large deformations of the vessels in which they develop.
The accurate modeling of these phenomena requires therefore appropriate numerical techniques
accounting for such large deformations and the associated geometrical nonlinearities. In this con-
text, purely Lagrangian implementations of the finite element method, in which the nodes of the
calculation mesh follow the movement of the underlying material, are inappropriate. The rapid
deterioration of the mesh must be compensated for by frequent and costly remeshing operations.

Due to their large deformations, the Arbitrary Lagrangian-Eulerian (ALE) formulation is
often presented as the most suitable approach for the modeling of biological soft tissues [159].
This approach involves either moving the nodes of the computational mesh with the continuum
in a normal Lagrangian fashion, keeping them fixed in an Eulerian fashion, or moving them in an
arbitrarily specified fashion to provide a continuous rezoning capability. Because of this freedom,
greater distortions of the continuum can be handled than would be allowed by a purely Lagrangian
method, with greater resolution than that afforded by a purely Eulerian approach [44].
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1.3.2 Computational fluid dynamics.

The mechanical models of blood vessel walls can be used, with an appropriate constitutive law, to
estimate their deformation and the risk of rupture. However, the pressure and Wall Shear Stress
(WSS) are determined by the flow in the artery [57]. In recent years, CFD has therefore emerged
as a complementary tool to describe and understand the biomechanical behavior of blood flows in
both normal and diseased vessels [129]. In particular, CFD models are commonly used to compute
the wall shear stress, which is an important indicator for aneurysm rupture, thrombus formation,
and prediction of disease progress [203].

The finite difference method is not suitable for describing the complex geometries encountered
in hemodynamics, so most studies of the flow in the arterial system use a finite volume or finite
element approach [108]. Commercial and open-source CFD software using one or the other ap-
proach are available and have been extensively used for various research projects [42, 91, 109, 152,
187, 207].

Eulerian formalism is widely used in CFD. In such a formulation, the nodes remain fixed
in space and the continuum is allowed to flow through the mesh, leading to convective effects.
While such algorithms simplify the treatment of complex material motion, they present numer-
ical challenges due to the non-symmetric nature of the convection operators and cannot easily
cope with the moving boundaries typical of problems with fluid-structure interactions, hence the
preference for Lagrangian/ALE approaches and Immersed Boundary Methods (IBMs) [104] that
allow interfaces (and free surfaces) to be easily tracked.

More recently, meshless methods have emerged as a valuable alternative. Instead of relying
on a grid, these methods use a set of scattered data points or particles to represent the geometry
and solve the governing equations [77]. Meshless methods have many advantages in that they
can handle large deformations and complex geometries without remeshing [106]. They also have
the ability to model damage to blood vessels (compared to mesh-based models which struggle to
simulate arterial damage) [77].

In the Smoothed Particle Hydrodynamics (SPH) method, all the properties of the fluid (veloc-
ity, density, ...) are attached to particles distributed throughout the domain [7]. The interaction
between the particles is described using a smoothing kernel to solve the fluid equations. Due to
its ability to model large deformations, SPH finds applications not only in arterial hemodynamics
but also in more complex flows [18, 184]. For instance, this approach has been successively applied
to study the flow in the heart cavity [157] and around the heart valves [158].

The SPH method appears attractive and versatile but suffers from consistency and stability
problems [12, 124]. Therefore, in this work, we explore the application of the Particle Finite
Element Method (PFEM) as an alternative method. To the best of our knowledge, the PFEM
has never been applied to the modeling of blood flows, although very promising results have been
reported for the simulation of free surface flows [35, 56, 102], geotechnical applications [208], and
fluid-structure interaction [88]. In essence, the PFEM is a particle method because all the proper-
ties of the flow are attached to the particles. However, the governing equations are integrated on
a mesh using the classical FEM in a purely Lagrangian manner. This provides both the flexibility
of meshless methods and the robustness of the finite element method. A detailed description is
left to section 2.1.

1.3.3 Fluid-structure interaction.

Mechanical models of the vessel walls and CFD models of the flow naturally provide complemen-
tary views of the dynamics of the arterial system. In reality, these two aspects are intimately
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linked and must be considered simultaneously using appropriate fluid-structure interaction algo-
rithms. These algorithms allow the simulation of blood flows to be coupled with the mechanical
behavior of blood vessels, taking into account the interactions between fluid dynamics and the
structural integrity and elasticity of the modeled vessel walls, heart walls, or valves [77]. Such
interactions are crucial, for example, for the realistic modeling of the propagation of pressure
waves through the cardiovascular system, since the speed of propagation depends critically on
the dilatation of the vessels. The interaction between the hemodynamics of the blood flow and
the stress and deformation of the solid structure is also of great importance for the prediction of
rupture of aneurysms [21].

FSI simulations involve solving a set of coupled partial differential equations describing both
the fluid flow and the structural mechanics equations [104]. Different approaches are available.

On the one hand, the monolithic approach involves the simultaneous solution of the equa-
tions for both media within a single computational framework [28]. The structural and fluid
domains are meshed and generic equations describing both dynamics are solved within the same
mathematical framework. This approach provides accurate and robust predictions, but can be
computationally intensive because the mathematical and numerical framework must be generic
enough to describe the dynamics of both the elastic solid and the fluid. On the other hand, parti-
tioned approaches treat the fluid and structural domains as independent, each with its own mesh,
set of governing equations, and dedicated solver. Each solver operates independently, exchanging
information through an interface at each time step. This approach requires an efficient communi-
cation and synchronization interface, but is interesting because the dedicated solvers can exploit
the specificities of the fluid and structural problems and implement detailed physics [197].

A further distinction of partitioned approaches can be made between one-way and two-way
coupling strategies. In one-way coupling, also referred to as loose coupling, the results of the CFD
simulations are used to estimate the loading to be applied to the solid (through the boundary
conditions) and to calculate its deformation. The exchange of information between the fluid and
structural domains is one-way, with the fluid driving the structural response. In cardiovascular
models, vessel compliance and distension are often investigated using one-way FSI. The fluid flow
is first solved using CFD to determine the pressure and shear stress at the vessel wall, and these
results are then used to calculate the wall deformation. While this approach is computationally
efficient, it assumes that structural deformation has a negligible effect on the fluid flow [98].

Two-way FSI, or fully coupled models, treat the fluid and structure as coupled systems that
interact in both directions, allowing the full mutual influence between the two domains to be taken
into account. Fluid forces affect the deformation of the structure, and the resulting deformation
changes the fluid flow patterns. FSI simulations require appropriate conditions at the interface
between the simulated blood flow and the solid structure, ensuring compatibility of fluid and
wall displacement and equilibrium of traction [57]. The bidirectional exchange of information
allows a more accurate representation of the fluid-structure interaction [5]. Fully coupled FSI
simulations are typically unsteady. They are also computationally more demanding than loosely
coupled studies as an iterative procedure between the fluid and solid solvers is often required to
reach an equilibrium at each time step. Given the significant dynamic and elastic behavior of the
cardiovascular system, particularly in the heart, two-way studies are more appropriate when a
transient solution is clinically relevant.

When dealing with two-way coupled models, it is often necessary to consider the so-called
added mass effect. This phenomenon occurs when the fluid and the structure have comparable
inertia or densities. When the structure deforms, its apparent inertia is greater than that of the
solid itself because the deformation of the latter displaces the fluid, increasing the mass that must

11



CHAPTER 1. THE CARDIOVASCULAR SYSTEM AND ITS MODELING

be accelerated or decelerated [83]. This phenomenon is relevant to cardiovascular biomechanics
when elastic arteries interact with blood [77]. The added mass effect is challenging as it adversely
affects the convergence of fluid and solid variables at their common boundary [183] and may lead
to non-convergence of the iterative solution.

Most CFD and structural models used in FSI simulations rely on a Lagrangian or Arbitrary
Lagrangian-Eulerian approach to ensure that the meshes of the two models follow the displacement
of the common boundary between the solid and fluid subdomains.

The Lagrangian and ALE approaches use body-fitted meshes of flow and structure where the
boundaries and interfaces are explicitly represented by element edges (in 2D) or faces (in 3D). The
IBM provides a completely different approach with overlapping fluid and structure components
whose (moving) interface does not coincide with the mesh [96]. The interface is not explicitly
modeled, but is introduced by an additional force term in the momentum budget. A major
advantage of the immersed boundary method is the representation of the equations on a fixed
Cartesian grid, which allows easy grid generation [92, 182]. The IBM was first introduced to study
flow patterns around heart valves [134] and is still used to simulate fluid-structure interactions
involving flexible structures such as heart valves or blood vessel walls [92]. However, the highly
localized forces that account for the presence of interfaces are very difficult to define and to express
in an appropriate mathematical formulation.

1.3.4 Fluid-solid growth.

The flow and solid models describe the mechanical behavior of blood and arteries in much the same
way that coupled simulations can address the dynamics of a rotor blade or a glider. However,
when dealing with living material, there is more to be done to account for the effects of flow
and mechanical stresses on the tissue. In their multiscale modeling of intracranial saccular and
abdominal aortic aneurysms, Humphrey and Taylor [86] paved the way for such an extended
approach by integrating not only the interaction between global hemodynamics and local wall
stress through FSI, but also the effects of molecular biochemical reactions through growth and
remodeling. They coined the term Fluid-Solid Growth (FSG) model, where "growth" refers to
changes in the size of the aneurysm and "remodeling" refers to changes in its structure [85].
While FSI calculations capture the state of the aneurysm over a cardiac cycle, the growth and
remodeling components operate on a longer timescale, ranging from weeks to years, to simulate the
evolution of the aneurysm. In an iterative process, wall stress values obtained from FSI calculations
serve as input to the growth and remodeling simulation, which links them to long-term wall
deformations through mechanobiological processes [85]. The resulting long-term wall deformation
influences fluid flow and structural behavior, which is then fed back into the FSI simulation
for the next iteration. By incorporating the influence of hemodynamics, structural properties,
and biochemical behavior of the aneurysm wall, FSG models represent a highly realistic and
sophisticated deterministic modeling approach. They could theoretically simulate the individual
evolution of an aneurysm from its initial imaging stage to a final state and predict whether it will
remain stable or lead to rupture.

Mechanobiological models aim at understanding how biological cells respond to mechanical
stimuli. When studying the response of arterial wall tissue, wall shear stress and wall pressure
are critical because they play a key role in driving elastin degradation and collagen synthesis.
Low WSS drives elastin degradation, resulting in reduced wall distensibility and increased wall
pressure. To counteract this effect, collagen is synthesized to stabilize the aneurysm, ultimately
driving aneurysm growth [196].
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While the concept of fluid-solid growth models and their potential implications are very promis-
ing, their practical use as a tool for predicting rupture risk in a clinical setting remains distant.
Current FSG models rely on a wide range of assumptions, and their experimental validation is
challenging and currently rather limited [57]. A major limitation of this approach is related to
the lack of appropriate modeling of the influence of smooth muscle cell behavior [66]. The bio-
chemical mechanisms involved in these processes are also not fully understood, which hinders the
development of reliable models. To date, no FSG model accounts for the possibility of rupture.

1.3.5 Challenges in computational modeling.

Despite their potential, FSI computational algorithms face several challenges and limitations. A
realistic representation of both the fluid and structural domains, which requires high-fidelity imag-
ing data and detailed constitutive models for vessel walls, is necessary for accurate and efficient
modeling of fluid-structure interactions. Solving the coupled equations is also computationally
demanding, especially for large-scale simulations and real-time clinical applications. In addition,
it is crucial to validate FSI models against in vitro experiments or clinical data to ensure their
reliability and to adapt them accordingly to better reflect physiological processes [77].

The intricate nature of the circulatory system, characterized by its pulsatile dynamics, multi-
scale interactions, and interplay with other organs, introduces additional challenges to accurately
model physiological behavior [48].

Blood and blood vessels exhibit rather complex mechanical behaviors [58], requiring elaborate
constitutive material models that can be challenging to formulate and validate. On the one hand,
blood is typically a non-Newtonian fluid. Its non-Newtonian properties are influenced by numerous
factors, including blood composition (especially red blood cell content), ambient temperature, and
vessel size. On the other hand, the mechanical behavior of blood vessels is even more complex, in
part due to their hierarchical structures spanning multiple scales, from microscale fiber-reinforced
configurations to macroscale multilayered arrangements. The anisotropy and nonlinear behavior of
biological tissues can also depend on the patient’s physiology, the location and type of vasculature,
and the disease state. The interactions between biological, chemical, mechanical, and physical
factors further complicate the modeling of blood vessels [171]. As a result, accurate representation
of blood flows, vascular mechanical responses, and their interactions poses significant challenges.
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CHAPTER 2
FLUID-STRUCTURE INTERACTION

While the previous chapter provides a review of the usual approaches for modeling blood flows and
their interactions with blood vessels, this master’s thesis focuses on one of these methods, namely
the Particle Finite Element Method (PFEM). A detailed description of the method and of its
particular implementation PFEM3D used in this study can be found in, respectively, Cremonesi et
al. [34] and Cerquaglia’s PhD thesis [27]. Here, we only offer a general introduction to the method.
Additionally, this chapter presents a brief introduction to the finite element code Metafor, along
with an outline of the fluid-structure algorithm FSPC utilized to couple the fluid and solid models.
All the different codes have been developed in the LTAS-MN2L lab of the University of Liège.

2.1 The Particle Finite Element Method (PFEM).
The PFEM can be applied to a wide variety of multiphysics problems. Here we consider its
application to the solution of the Navier-Stokes equations, written as

Dρ

Dt
+ ρ∇ · v = 0 in Ωf (t)×]0, T ] (2.1)

ρ
Dv
Dt

= ρb − ∇p + ∇ · τ in Ωf (t)×]0, T ] (2.2)

where ρ and v are the fluid density and its velocity, respectively, p is the pressure, τ is the viscous
stress tensor (deviatoric part of the Cauchy stress tensor), and b is the body force per unit mass.
The above equations must be solved in the fluid domain Ωf (t), which can change with time t due
to elastic deformation of the vessel walls or, in another context, due to motion of the free surface
of the fluid.

The above equations (2.1)-(2.2) are applicable to compressible flows. Since blood is generally
considered to be incompressible, the mass conservation simplifies into

∇ · v = 0 (2.3)

Note however that the compressible form of the continuity equation is sometimes used even if the
fluid is assumed incompressible. This allows for the efficient numerical modeling of the flow using
the so-called weakly compressible approximation. A popular approach in this context is to resort
to the Tait-Murnaghan state equation

p = K0
K ′

0

[(
ρ

ρ0

)K′
0

− 1
]

(2.4)
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where ρ0 is a reference density and where K0 and K ′
0 are appropriate constants describing a linear

dependency of the bulk modulus with pressure [110].

For a generalized Newtonian fluid, the viscous stress tensor is related to the deviatoric strain
rate tensor

D = 1
2(∇v + ∇Tv) (2.5)

by means of
τ = 2µ(D)D (2.6)

where the viscosity µ is allowed to depend on the strain rate. The viscosity is a constant if the
fluid is truly Newtonian.

2.1.1 Spatial discretization of the fluid domain and boundaries identification.

In the PFEM, the continuum is initially discretized using a set of points, referred to as particles,
which carry all the mathematical and physical information about the fluid. In that sense, the
PFEM can be considered as a particle method [89].

Unlike Smoothed Particle Hydrodynamics (SPH), where the interaction between particles is
modeled without reference to any underlying mesh [7], the PFEM relies on a finite element mesh
to evaluate the forces acting on each particle and to discretize and solve the differential problem.
While the classical Finite Element Method (FEM) makes use of different element types, the PFEM
mesh is composed only of triangles (in 2D) or tetrahedra (in 3D) built on the set of particles. Such
a mesh can be generated in an efficient way using any Delaunay triangulation algorithm [62].

The resulting mesh produced by the Delaunay triangulation suffers from an important short-
coming as it covers the entire convex hull of the particle cloud and only this region (Figure 2.1).
The method must therefore be adapted to deal with non-convex fluid domains or fluid domains
that are not connected. This issue is particularly significant for free-surface flows in which patches
and droplets of fluid detach from the main fluid body. Enhancements are therefore required both
to delete the non-physical elements produced by the triangulation algorithm and to identify the
actual boundary of the fluid domain.

This problem of identifying the fluid domain boundary is typical of the PFEM approach. It
does not exist in conventional finite element modeling, as the procedure is reversed here. In finite
element discretization, the domain contour is provided by the geometric modeling and the domain
is decomposed into finite elements using different strategies. The set of mesh nodes is then the
product of the discretization. In the PFEM approach, on the other hand, everything starts with
the particles. The mesh, the current fluid domain Ω(t), and its boundaries Γ(t) = ∂Ω(t) must be
derived from the spatial distribution of the particles.

The identification of the boundary of the fluid domain is typically done using the α-shape
technique [47]. This approach can be implemented in different ways but the basic idea is to
discard those elements that are too distorted or too large. This strategy is motivated by the
observation that spurious elements are usually much more elongated than those that are inside
the fluid domain. In the PFEM code used in this project (PFEM3D), the application of the α-shape
technique relies on the particular implementation available through the Computational Geometry
Algorithm Library (CGAL) [177]. A given element is removed from the mesh if the radius rcircum

of its circumcircle or circumsphere exceeds some multiple α of the characteristic mesh size h, i.e.,
if

rcircum > αh (2.7)
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(a) Cloud of particles (b) Delaunay triangulation

(c) Wrong (excessively distorded) tri-
angles are detected (in red)

(d) Boundaries are identified
(in green)

Figure 2.1 – Spatial discretization of a disconnected 2D domain (adapted from Cerquaglia’s PhD the-
sis [27]).

The value of the α parameter must be determined empirically. A value that is too small will
artificially create holes in the fluid domain, whereas a large value will artificially link separate
subdomains.

Figure 2.1, reproduced from Cerquaglia’s PhD thesis [27], shows the whole procedure of dis-
cretization of a 2D fluid domain by a cloud of particles (a), the Delaunay triangulation (b), the
application of the α-shape algorithm to discard non-physical elements (c), and the identification
of the boundaries (d).

2.1.2 Galerkin weak solution.

The adapted Delaunay tessellation defines the mesh on which a standard Galerkin approach can
be applied to solve the differential problem (2.1)-(2.2).

The different steps are identical to the classical finite element approach. First, weak forms of
(2.1) and (2.2) equations are obtained by multiplying the Navier-Stokes equations by appropriate
test functions and integrating over the fluid domain. Then, linear isoparametric finite element
discretizations are introduced for both velocity and pressure so that the state variables of the
discretized problems are the vectors v and p of the velocity and pressure at the nodes of the mesh,
i.e., of the particles. This leads to semi-discrete equations of the form (see Fevrier’s thesis [60] for
the detailed derivation of these equations)

Dopv = 0 (2.8)
Mv̇ + Kv + DT

opp = fext (2.9)

where M is the mass matrix, K accounts for the viscosity of the fluid, Dop is the discretized
divergence operator, and fext is the vector of body forces and boundary conditions.

The use of linear interpolation for both velocity and pressure is known to be prone to in-
stabilities as it violates the Ladyzhenskaya-Babuška-Brezzi condition [43]. The above approach
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must therefore be supplemented with appropriate stabilization procedures. To this end, a Petrov-
Galerkin pressure stabilization procedure is introduced [84]: some multiple of the residual of the
momentum equation is introduced into the mass conservation equation [176].

2.1.3 Mesh update.

The above semi-discrete equations (2.8)-(2.9) can be integrated forward in time using either an
explicit or an implicit method. Usually, an implicit first-order backward Euler scheme is used to
avoid the stability constraint set by the Courant-Friedrich-Levy (CFL) condition. In the weakly
compressible case, efficient explicit integration schemes are allowed, which can be very appealing
for fast dynamics problems and nonlinear problems that may suffer from numerical issues of
convergence [34]. This approach is not feasible in the incompressible case since the continuity
equation does not contain any time derivative in (2.8).

Equations (2.8) and (2.9) are expressed in a Lagrangian form, which explains why the con-
vective terms do not appear. This approach provides a great simplification since the complex
nonlinear nature of these terms does not need to be handled. This, however, relies on the under-
standing that the nodal variables v and p are attached to the particles moving with the flow. To
advance the solution forward in time, it is therefore necessary to update the position of the nodes
(or particles) according to

xn+1 = xn + ∆t vn+1 (2.10)

where xn and vn denote the vectors of position and velocity of the different particles at the n-th
time step and ∆t is the length of the time step.

The Lagrangian nature of the semi-discrete equations and the simplification of the convective
terms come however at the expense of some nonlinear difficulties. Since the various matrices
involved in the semi-discrete equations depend on the position of the particles, and since these
positions are part of the unknowns of the problem, the evaluation of these matrices at time n + 1
within the framework of an implicit discretization leads to a system of nonlinear equations that
must be solved by an iterative method. A few Picard iterations are usually enough to reach
convergence and advance the solution. Alternatively, a Newton-Raphson algorithm can be used.

The movement of nodes from one time step to the next naturally leads to mesh distortions.
Remeshing may therefore be necessary to ensure the quality of the solution. While the continuous
deterioration of the mesh cannot be avoided when the fluid starts to flow, the PFEM method offers
however two advantages in this respect. The first is that a complete new mesh does not need to be
introduced: the nodes of the old mesh are retained and it is therefore sufficient to implement a new
Delaunay triangulation procedure starting from these nodes. The second advantage comes from
the use of linear basis functions. With this type of interpolation, the complete solution is entirely
determined by the nodal values, i.e., the velocity, pressure, and density of the particles located at
the mesh nodes. Since the nodes are preserved in the case of remeshing, the solution does not need
to be projected onto the new mesh. A simple application of Delaunay triangulation algorithm
(with α-shape) therefore enables fast and efficient remeshing. It should be noted, however, that
remeshing may involve more complex operations if the PFEM is used to solve solid problems and
element information stored at Gauss points must be transferred from the old mesh to the new
one [34].

The application of Delaunay triangulation, enhanced by the α-shape technique, allows to
account for the detachment and reattachment of fluid patches in a completely natural and trans-
parent way. When the movement of a fluid particle or a group of fluid particles causes them
to move significantly apart from the main body, the triangular elements connecting them to the
main body of the fluid become highly deformed and are automatically removed by the α-shape
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technique. As a result, the particles are separated from the main body. Conversely, when fluid
patches initially separated from each other move closer, the elements created by Delaunay trian-
gulation appear between them and, if the particles are close enough, are maintained in the system
after the α-shape algorithm has been applied. In this way, the connectivity of the different parts
of the fluid domain is automatically adapted to the physics of the flow.

It should be noted, however, that this procedure does not preserve the total mass of the fluid,
since fluid elements are added or removed without any real control of the mass balance. It is
however not an issue in the open system considered in this work.

Even if it can be performed efficiently, remeshing can significantly increase the computation
time, especially in 3D simulations. Rather than implementing a mesh update at each time step,
it may therefore be advisable to implement a strategy that leads to updating the mesh only when
a certain measure of mesh distortion is exceeded.

From time to time, the simple call to a new Delaunay triangulation is not sufficient to ensure
the quality of the mesh. It can indeed happen that, as a result of the flow, the particles concentrate
too much in some regions while other regions are described by too few particles. In these cases, it
is necessary to remove particles or add new ones to get an accurate solution. This local remeshing
is controlled with two empirical parameters γ and ω that are, respectively, associated with the
suppression of particles in regions where they are too close to each other and with the addition of
new particles where the mesh is too coarse [50].

2.2 Metafor.
The accurate modeling of the large deformations of blood vessels and tissues ask for appropriate
numerical techniques accounting for the corresponding nonlinear processes. Metafor, the finite
element code developed at the LTAS-MN2L laboratory of the University of Liège, meets this
requirement and is used in this project [135]. It is an object-oriented finite element code for the
simulation of solids submitted to large deformations using an Updated Lagrangian or an Arbitrary
Lagrangian-Eulerian (ALE) formalism [135, 136]. Different material laws are implemented to
describe different physics (elasticity, elasto-plasticity, elasto-visco-plasticity, ...).

At any given time t, Metafor solves discrete versions of the momentum and mass conservation
equations (the Cauchy momentum equations)

ρ
D2x
Dt2 − ∇ · σ = ρb in Ωs(t)×]0, T ] (2.11)

ρJ = ρ0 in Ωs(t)×]0, T ] (2.12)

where Ωs(t) is the volume occupied by the solid in the current configuration, x is the current
position of the material particles, ρ(x, t) and ρ0(X, t) are the densities in the current and reference
configurations respectively, J is the Jacobian of the transformation (i.e., the determinant of the
deformation gradient tensor), σ(x, t) is the Cauchy stress tensor, and ρb(x, t) are the body forces.

Metafor uses a discretization of the Principle of Virtual Work on the deformed configuration.
This leads to the semi-discrete equations

Msa + fint = fext (2.13)
Ms = M0

s (2.14)

where a is the nodal accelerations vector, Ms is the mass matrix, and fint and fext are the vectors
of internal and external forces, respectively. The discretized mass conservation equation (2.14) is
automatically satisfied since the mass matrix remains constant during the simulation.
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On account of the dependency of both the internal forces fint and external forces fext on the
displacement field, the system (2.13)-(2.14) is nonlinear. It is solved using a Newton-Raphson
strategy as

Msa + Kt(xk)∆xk = fext − fint(xk) (2.15)
xk+1 = xk + ∆xk (2.16)

where
Kt(xk) = ∂fint

∂x (xk) (2.17)

is the (consistent) tangent stiffness matrix.

Time integration is performed with the Generalized-α method. The system of equations is
treated implicitly and solved using a predictor/corrector scheme based on the Newton-Raphson
algorithm.

2.3 FSI coupling through FSPC.
In this project, the flow-structure interaction problem is addressed through a partitioned approach
with the strong coupling of the PFEM and FEM models described in the previous section. The
practical implementation uses the synchronization and communication framework FSPC based on
CUPyDO, a flexible and versatile tool for coupling independent fluid and solid solvers [179]. FSPC
stands for Fluid-Structure Partitioned Coupler.

A subdomain partitioned coupling strategy is used in which the governing equations of the fluid
and solid are solved separately in the corresponding domains Ωf (t) and Ωs(t). The two domains
are considered as separate entities but share a common interface, Γ(t), at which the interaction
occurs. FSPC exploits the Dirichlet-Neumann paradigm: the displacements/velocities at the solid-
fluid interface resulting from the solution over the solid domain are used as Dirichlet boundary
conditions for the fluid domain while the surface tractions on Γ(t) computed by solving the fluid
problem are prescribed, as Neumann boundary conditions, to the solid. Mathematically, the
coupling conditions at the fluid-solid interface are defined by the continuity of the displacements
and surface tractions at the interface, i.e.,

uΓ
f = uΓ

s (2.18)
tΓ

f = −tΓ
s (2.19)

where uΓ
f and uΓ

s are the displacement field at the interface between the fluid and solid domains,
respectively, where the surface tractions on the fluid side are given by tΓ

f = (−pI + τ ) · nf , and
where tΓ

s = σ · ns denotes the corresponding surface tractions on the solid. The normal unit
vectors nf and ns are both pointing outwards from their respective domains so that, for a smooth
interface, nf = −ns.

In practice, since the PFEM and FEM solvers are independent, the fluid and solid problems are
solved in a staggered way and iterations are required to meet the coupling conditions (2.18)-(2.19).
Also, the different fields are not exchanged as continuous functions of space but only through the
nodal values of their finite element discretization. Therefore, the fluid and solid fields must be
interpolated from nodal values. The whole process can then be decomposed into four steps as
follows.

• The nodal positions of the solid at the interface uΓ
s are interpolated in space to compute the

corresponding positions at the nodes of the fluid domain,

uΓ
f = HSF uΓ

s (2.20)
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where HSF is the solid-to-fluid interpolation matrix. When the solid and fluid meshes are
conformal at the fluid-structure interface, each interface node viewed by the solid solver has
its equivalent on the fluid side and the meshes are said to be matching. In this case, HSF

is the identity matrix (or a permutation matrix if the interface nodes are not ordered in the
same way on the solid and fluid sides). However, in many situations, one may want to use
different levels of mesh refinement and an interpolation technique is required to transfer the
nodal data from one solver to another. For instance, the so-called Radial Basis Functions
(RBF) and K-Nearest Neighbours are commonly found in the literature [101].

• The surface traction on the interface are obtained from the solution of the fluid problem
under the prescribed displacement field (2.20), i.e.,

tΓ
f = F(uΓ

f ) (2.21)

where F denotes the general nonlinear Dirichlet operator associated to the fluid solver.

• These results are then projected on the solid discretization using an appropriate fluid-to-solid
interpolation matrix nodal HF S , which can be expressed as

tΓ
s = HF StΓ

f (2.22)

• The solution of the solid problem under this loading provides the new estimate of the position
of the interface

uΓ
s = S(tΓ

s ) (2.23)

where S is the general nonlinear Neumann operator associated to the solid solver.

Combining the above four steps, the coupling conditions (2.18)-(2.19) can be reformulated as
a fixed-point problem

uΓ
s = S

(
HF SF(HSF uΓ

s )
)

(2.24)

or
uΓ

s = T (uΓ
s ) (2.25)

where T is a global nonlinear transfer operator combining the interpolation matrices and the fluid
and solid solver operators.

Alternatively, the interaction problem could be expressed in terms of any of the fluid or solid
variables. In practice, the fixed-point problem is condensed on the solid side, since the number
of degrees of freedom of the solid interface is usually much smaller than the number of degrees of
freedom of the fluid interface.

In practice, the fixed-point problem (2.25) is solved iteratively, i.e., a first guess of uΓ
s is used

to compute the fluid solution, which allows the computation of surface tractions to be prescribed
to the solid. When injected in the solid problem, these provide a new estimate ûΓ

s of the nodal
displacements. The procedure is repeated until uΓ

s = ûΓ
s .

Many different iterative algorithms are available to solve the nonlinear fixed-point problem
(2.25). A block Gauss-Seidel method with dynamic under-relaxation, a Quasi-Newton algorithm
with inverse least-square, and a multi-vector Jacobian approach are for instance available in FSPC,
as detailed in Appendix A.

In terms of computer implementation, FSPC uses a high-level approach in which the fluid and
solid solvers are considered as abstract black boxes. The flexibility of the coupling environment
is achieved by wrapping the solvers in a Python layer that provides a driving and communicating
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channel. The wrapping procedure is implemented using the Simplified Wrapper and Interface
Generator (SWIG) tool [179]. The Python wrapper does not interfere with the libraries and
executables of the two solvers but provides all the necessary additional functionalities required to
synchronize them and exchange the information required to implement their interaction.
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3.1 Blood rheology.

Whole blood is a two-phase liquid, composed of cellular elements suspended in plasma, an aqueous
solution containing organic molecules, proteins, and salts. The cellular phase of blood includes
erythrocytes, leukocytes, and platelets. Erythrocytes, or Red Blood Cells (RBCs), are responsible
for the transport of oxygen. Platelets are cell fragments involved in coagulation. Leukocytes
(white blood cells) are part of the body’s defense mechanism. Normally, the volume of a blood
sample consists of less than 1% leukocytes and platelets, 55% plasma, and approximately 45%
erythrocytes. Blood is generally assumed to behave like an incompressible fluid with a density of
1050 kg/m3 [166].

Plasma itself is a Newtonian fluid but the presence of other cells induces a non-Newtonian
behavior. While white blood cells and platelets can impact blood rheology, under normal condi-
tions, red blood cells have the most significant influence [138]. The non-Newtonian characteristics
of blood is influenced by other factors including the ambient temperature and size of the blood
vessels [172]. Hematocrit, defined as the volume of RBCs compared to total blood volume (nor-
mal range: 35–45%), is the primary determinant of blood viscosity, especially at the lowest shear
rates: doubling of hematocrit results in a 3-to-4-fold increase in blood viscosity at high shear
rates, while it prompts an almost 10-fold increase within the lowest shear rate range [33]. The
reason for this is that, at low shear rates, the erythrocytes have the ability to form a primary
aggregate structure of rod-shaped stacks of individual cells called rouleaux [153]. The viscosity
of whole blood demonstrates a nonlinear decrease with increasing shear rate. Blood is therefore
a non-Newtonian, shear thinning fluid. Viscoelastic properties are also reported [166]. Beyond a
certain shear rate threshold however, the viscosity is nearly constant and blood can be considered
to behave as a Newtonian fluid.

The shear thinning behavior of whole blood and its viscoelastic properties can be described
using a variety of non-Newtonian models [125]. One of the most well-known approaches is the
Casson model [65]. It is commonly used for modeling blood flow in narrow vessels and at low shear
rates. In addition to the shear thinning properties, the Casson model also introduces a minimum
shear stress τy that must be applied for blood to flow [13]. The nonlinear relation between shear
stress τ and shear rate γ̇ is described mathematically by

τ = µ(γ̇)γ̇ if |τ | ⩾ τy

γ̇ = 0 if |τ | < τy

(3.1)
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with

µ =
(

√
µ∞ +

√
τy

|γ̇|

)2

(3.2)

The behavior is therefore described by two constants, the yield stress τy and the asymptotic
dynamic viscosity µ∞.

Both the yield stress τy and the dynamic viscosity at infinitely large shear rate µ∞ vary with
the hematocrit Ht [49]. As the hematocrit increases, the propensity of RBCs to form aggregates
increases, thereby making the fluid more viscous. One can write

τy = A(Ht − Htc)3

µ∞ = µp

(
1 + 0.025Ht + 7.35 · 10−4H2

t

)
(3.3)

where µp = 1.2 10−3 Pa · s, A = 0.9 10−7 Pa, Ht ∈ [0, 100] is expressed as a percentage, and Htc

= 6 [65]. Below Htc, there is no yield stress since the RBCs are too far apart to form rouleaux.
At a physiological hematocrit of 40 %, the yield stress is equal to 0.0035 Pa and the viscosity at
infinite shear rate is 0.0038 Pa · s. These values will be considered in the following once a Casson
fluid is employed.

Figure 3.1 shows the resulting variation of the apparent dynamic viscosity µ as a function of
the shear rate and the hematocrit. Both the strong influence of the hematocrit and the shear
thinning behavior of blood are clearly apparent.

Figure 3.1 – Influence of shear rate on effective blood viscosity for hematocrit values of 30% ( ),
40% ( ) and 50% ( ).

3.1.1 Implementation of the Casson model.

Two adaptations of (3.1) are required for the practical implementation of the Casson model in the
PFEM3D code.

The discontinuous nature of the Casson model associated with the yield stress makes it chal-
lenging to implement in a numerical code. To circumvent this problem, the strategy proposed
by Shahzad et al. [159] is implemented. The discontinuous constitutive law is replaced by the
continuous approximation

µ(γ̇) =
[
√

µ∞ +
√

τy

|γ̇|

(
1 − e−

√
m|γ̇|

)]2

(3.4)
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where m is a regularization coefficient. This viscosity is thus used without explicitly considering
any yield stress. If the shear rate γ̇ is large with respect to 1/m (where m has the dimension of
a time), then (3.4) is equivalent to the initial formulation (3.2). For γ̇ → 0, (3.4) introduces a
bounded finite viscosity

µ0 =
(√

µ∞ + √
mτy

)2 (3.5)

while the effective viscosity is infinite in the discontinuous formulation (3.1). In practice, the two
models are however expected to produce similar results since the effective viscosity at low strain
rate µ0 can be made arbitrarily large by adjusting the regularization coefficient m. The actual
shear rate can therefore be forced to be arbitrarily small, hence mimicking the effect of the yield
stress.

As a result, the Casson theoretical model can be approximated with arbitrary accuracy by
adjusting the regularization coefficient m. The value of m must be sufficiently large compared to
the characteristic value of 1/γ̇ encountered in the flow to reduce the discrepancy between the two
models, but small enough to avoid numerical problems associated with excessive nonlinearities at
low shear rate.

The 1D formulation of the Casson model considered so far must also be extended to a general
3D flow. This is easily done by applying (3.4) separately to each component of the viscous stress
tensor and assessing the total shear strain rate from the norm of the tensor. The final formulation
reads therefore

τ = 2µ(γ̇) D (3.6)

where D is the strain rate tensor, γ̇ =
√

2 D : D, and the continuous formulation (3.4) of the
effective viscosity is used.

3.1.2 Verification of the implementation of the Casson model.

In order to verify the implementation of the Casson fluid, we consider a simple 2D Poiseuille flow
between two rigid parallel plates. The flow is driven by a constant pressure difference ∆p = 2 Pa
applied between the inlet and outlet sections. The model is run until a steady fully developed flow
is obtained in the outlet section. The numerical data of the test case are listed in Table 3.1. Results
are also compared with that obtained with a Newtonian fluid. Note that the fluid parameters
used here are not the physiological values of blood discussed in the previous section but are merely
selected to verify the implementation of the Casson model.

Parameters Values Units

Height 2w 0.005 m
Length L 0.06 m
Longitudinal pressure gradient K 33.333 Pa/m
Asymptotic dynamic viscosity µ∞ (Casson) 0.0035 Pa · s
Yield stress τy (Casson) 0.03 Pa
Dynamic viscosity µ (Newton) 0.0035 Pa · s

Table 3.1 – Parameters of the case study used to verify the implementation of the Casson fluid model.

For a Newtonian fluid, the analytical solution of this problem is the classical parabolic velocity
profile

u = K

2µ
(w2 − y2), with K = − ∂p

∂x
(3.7)
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where y ∈ [−w, w] is the coordinate perpendicular to the two plates and w is the half-distance
between them [65]. The corresponding flow rate (per unit thickness) is given by

q = 2Kw3

3µ
(3.8)

The corresponding solution for a Casson fluid can be derived by considering the linear variation

τ(y) = −Ky (3.9)

of the shear stress between the two plates and, accordingly, a small region in the center of flow
where the shear stress is below the yield stress and the adjacent fluid filaments flow at the same
velocity. The full velocity profile is therefore described by

u(y) =


K

2µ∞
(w2 − y2) + K

µ∞

[
y0(w − y) − 4

3
√

y0
(
w3/2 − y3/2

)]
for |y| ⩾ y0

u(y0) for |y| < y0

(3.10)

where y0 = τy/K is the half-width of the central core moving as a solid body. Note that the
Newtonian parabolic profile is recovered if τy = 0. The corresponding flow rate is given by

q = 2Kw3

3µ∞
− K

15µ∞

[
y3

0 − 15w2y0 + 24w5/2y
1/2
0

]
(3.11)

The regularization parameter m controls the size of the fillet between the two parts of the
theoretical curve. As shown in Figure 3.2, a value of 200 s for the regularization coefficient m
provides an accurate approximation of the theoretical constitutive law in the whole range of shear
rate anticipated in the considered flow.

Figure 3.2 – Comparison between theoretical ( ) and numerical Casson laws. Numerical laws are for
different values of the regularization parameter: m = 100 s ( ), m = 200 s ( ) and m = 400 s ( ).

The numerical results of the Poiseuille flow are shown in Figure 3.3 where they are compared
with the analytical solutions (3.7) and (3.10). The model results nicely fit the analytical solutions,
which provides a sound verification of the implementation of the Casson model in PFEM3D.

Note that both models use 20 equidistant grid points across the section and the tiny differences
between the numerical and analytical results can be further decreased with a refined mesh. It is
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Figure 3.3 – Poiseuille profiles with Newtonian fluid model (theoretical ( ) and numerical ( )) and
Casson fluid model (theoretical ( ) and numerical ( )).

also worth noting that the theoretical profiles are computed using the actual pressure gradient
computed in the final section of the numerical model to compensate for the significant entry
length.

From a qualitative point of view, Figure 3.3 also illustrates the two effects of the Casson
model. First of all, the increased effective viscosity leads to a sharp reduction of the maximum
velocity with respect to the corresponding Newtonian model: the velocity maximum decreases
from 2.91 cm/s (Newton) to 0.23 cm/s (Casson). Second, while the typical parabolic profile of a
Newtonian fluid shows a distinct maximum at its center, the velocity profile for Casson remains
flat in a large central part. This is expected since, with the simulation parameters, the ratio y0/w
of the width of the no-shear zone to the channel width reaches 36%.

This sharp reduction of the velocity magnitude translates into a corresponding drop of the
flow rate across the model domain. The numerical estimates of the flow rates per unit length
of transverse direction for the two models are 94 mL/(s · mm) and 9 mL/(s · mm), respectively
for the Newtonian fluid and the Casson fluid: the flow rate is decreased by a factor of 10 when
the Newtonian model is replaced by a Casson one. Note that these numerical estimates are both
within 5% of the corresponding theoretical values.

3.1.3 On the relevance of the Casson model.

While the previous sections suggest that the use of a Casson model has a strong influence on both
the velocity profile and the flow rate, one must take into account the fact that the material param-
eters that were selected to verify the implementation of the Casson model have little in common
with the actual physiological values defined by (3.3). To assess the influence of the constitutive
model on blood flow, we consider now these physiological values and realistic geometries of blood
vessels.

It is widely known that the effective viscosity of blood changes with the hemodynamic con-
ditions. The apparent blood viscosity differs between the microcirculation and the large arteries,
where shear rate can vary from a few s−1 to more than 1000 s−1 [125]. At the high shear rates
encountered in large arteries, non-Newtonian models asymptote to the Newtonian limit, justifying
the Newtonian assumption [31].
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In this section, we investigate the relevance of the Newtonian assumption in vessels of different
sizes using the analytical velocity profiles of the steady, fully developed, viscous, axisymmetric
flow in a rigid straight artery of radius a.

The so-called Hagen-Poiseuille solution

v(r) = a2

4µ
K

(
1 − r2

a2

)
(3.12)

(where K is the longitudinal pressure gradient and r is the radial coordinate) describes the
parabolic profile obtained with a Newtonian fluid [65].

The corresponding solution for the Casson fluid can be shown to be described by

v(r) =


K

2µ∞

[
r0 (a − r) −

4√
r0

3
(
a3/2 − r3/2

)
+ 1

2
(
a2 − r2)] for r ⩾ r0

v(r0) for r < r0

(3.13)

where r0 = 2τy/K is the radius of the central core moving as a solid body.

We consider two situations with two different radii: a radius of 3 mm, typical of the middle
cerebral artery, and a radius of 2 cm, which is typical of the largest artery in the abdomen,
namely the abdominal aorta [20]. These two types of vessels are the most common locations
of aneurysms. Some researchers employed the Newtonian model for the blood in cerebral and
abdominal aneurysms [95, 163] and some others applied the non-Newtonian model in the same
situations [147, 169]. Our motivation here is to use the analytical results to determine when
significant differences can be anticipated.

Figure 3.4a shows the relation between the flow rate and the pressure gradient in the two types
of blood vessels. The pressure gradient is proportional to the flow rate for a Newtonian fluid (This
linear relation does not appear in Figure 3.4a because of the log scale.), but the existence of a yield
radial position r0 introduces a nonlinear relationship between the two parameters with a Casson
fluid. For a given pressure gradient, the flow rate is decreased in case of a Casson assumption as
the effective viscosity of the fluid is always greater than that of the Newtonian fluid. This effect
decreases however as the pressure gradient increases. The difference between the Newtonian and
non-Newtonian curves is also much more significant for the smallest artery.

The results for the narrow middle cerebral artery show also the effect of the yield stress. A
pressure gradient of 2.3 Pa/m is necessary to push the flow through the blood vessel. If the
pressure difference is lower than that, the fluid remains at rest.

Literature suggests that the abdominal artery of a healthy subject carries a flow rate of about
2000 mL/min [174]. A pressure gradient of 1.9 Pa/m is then required to drive such a steady
flow under the Newtonian assumption, while it reaches 4.2 Pa/m with the Casson model. This
difference in pressure drop is not that significant considering the pressure waves of thousands of Pa
traveling through the aorta. When the flow drops to 100 mL/min, the corresponding estimates
are of 0.9 Pa/m and 0.1 Pa/m, respectively for the Casson model and the Newtonian model,
which is of course much more significant in relative terms but is negligible in absolute figures. For
the middle cerebral artery, flow rates of 100 mL/min are typically reported [170]. An absolute
difference of 35 Pa/m between the pressure drops can then be anticipated, which is much more
significant.

The negligible difference between the results obtained for the Newtonian and non-Newtonian
models suggests that the assumption of Newtonian blood is acceptable for the abdominal aorta.
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(a) (b)

Figure 3.4 – Pressure gradient (a) and ratio between the peak and average velocity (b) as a function of
the flow rate for vessels radii of 3 mm ( ) and 20 mm ( ) with Newtonian ( ) and Casson ( ) fluid
models.

The model assumption must however be considered with more care when studying the blood flow
in the smallest blood vessels.

As shown in the previous section, the type of fluid also influences the shape of the velocity
profile. To document this aspect, Figure 3.4b shows the ratio of the maximum velocity to its
average value over the section of the blood vessel. For the Newtonian fluid, the maximum velocity
is always twice the average value. This ratio is independent of the pressure gradient driving the
flow and size of the blood vessel. For the Casson model however, the ratio is smaller since the
velocity profile is flat in the central region. At the smaller flow rates, a Newtonian assumption
may therefore overestimate the maximum velocity with respect to the Casson model. With the
physiological flow rates reported in the previous paragraph, the difference between the two models
is moderate. In pathological conditions (e.g., stenosis, where the artery becomes blocked due to
cholesterol deposits), the flow is reduced and the model assumption may however have more
influence on the predicted hemodynamics.

Note that the above conclusions apply to the steady fully developed profile. As it will be
shown later, the pulsatile nature of the flow in the blood vessels also play an important role.

3.2 Constitutive equations of biological tissues of the cardiovas-
cular system.

3.2.1 Properties of the arterial wall.

The mechanical behaviors of blood vessels are very complicated [58]. This complexity arises mainly
from the hierarchical structures across different scales, ranging from fiber-reinforced structures at
the microscale to multilayered structures at the macroscale [172]. Collagen fibers, in particular,
contribute significantly to the arterial wall strength and stability and, more generally, to the
mechanical behavior of the vascular wall.

The pressure-diameter relationship of an artery is highly nonlinear [20]. The compliance,
which plays a key role in propagating the pulsatile blood flow, is therefore not constant. The
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Figure 3.5 – Comparison of the different constitutive equations used in modeling biological tissues of the
cardiovascular system (reproduced from Owen et al. [131]).

nonlinear behavior is largely explained by the disorganized arrangement of elastin and collagen
fibers in the unpressurized state. With increasing pressure, these fibers progressively align. At
the lower end of physiological pressure (80 mmHg), elastin fibers are almost straight. Further
pressure increase leads to the elongation of elastin fibers and the ongoing alignment of collagen
fibers until the higher physiological limit (120 mmHg) is reached, where both fiber types are fully
extended. Thus, at lower pressures, the artery mechanical response is primarily determined by
the less rigid elastin. At higher pressures, the more rigid collagen fibers become predominant,
demanding greater force for any change in diameter and thereby safeguarding the blood vessels
from damage or rupture. Large arteries undergo significant deformations, necessitating the use of
nonlinear strain measures to accurately describe their behavior.

The wall of arteries and veins are made of three layers called the intima (inner layer), the media
(middle layer), and the adventitia (outer layer). This structure will be discussed in more detail
in chapter 5. The geometric arrangement of fibrous components in the circumferential direction,
especially in the media layer, results in anisotropic behavior. Blood vessels are generally stronger
along the fiber direction than perpendicular to it [20]. In the media layer, fibers are aligned
circumferentially, while in the adventitia layer, fibers are sparser and less organized.

Research has also shown that certain cardiovascular components, such as the myocardium,
exhibit viscoelastic properties. However, the importance of this characteristic is subject to debate
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because the added complexity to the model is hard to justify given the uncertainties about how
much viscous effects impact structural deformation [131]. It was already concluded that the
influence of viscoelasticity on quantities of interest such as the Wall Shear Stress (WSS) is rather
small [8].

Furthermore, the interplay between biological, chemical, mechanical, and physical factors con-
tributes to the complexity of blood vessel modeling [171]. Consequently, simulating blood flow
and the mechanical behavior of blood vessels, along with their interactions, presents significant
challenges. Additionally, the material properties vary depending on the patient, the specific vascu-
lature location/type, and the state of the disease. Therefore, it is necessary to develop and tailor
material models to the particular issue under investigation, which can be a complex task [77].

Figure 3.5, taken from Owen et al. [131], provides a general summary of the many different wall
models used in the literature to address the deformation of biological tissues. The deformation of
biomaterials is represented predominantly by models with reversible behavior to reflect the elastic
nature of the material. These include the linear or Hookean elasticity used in early cardiovascular
structural models, and a couple of hyperelastic models, like the simplest nonlinear or Neo-Hookean
elasticity, and a number of tailored nonlinear elasticity models, such as Mooney–Rivlin or Fung
elasticity models [131]. Comparing the dynamics of atherosclerosis using rigid, linear elastic, Neo-
Hookean, Mooney-Rivlin, and Holzapfel material models under both steady state and pulsatile
conditions, Kallekar et al. [93] have demonstrated that selecting an appropriate wall model is
crucial.

Before delving into the details of the various models, the following section will provide the
fundamental concepts of large deformation in continuum mechanics essential for understanding
these models [16].

3.2.2 Elements of continuum mechanics.

During its deformation, a body B occupies different configurations. Figure 3.6 illustrates the
transition of body B from a reference configuration at time t0 to a deformed state at time t =
t0 + ∆t.

Figure 3.6 – Reference and current deformed configurations of a body B [14].

The transformation can be described by the mapping

x = x(X, t) (3.14)

where X denotes the reference position of a particle and x is the current position at time t. The
deformation of a material vector dx is given by

dx = FdX (3.15)
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where
F = ∂x

∂X (3.16)

is the deformation gradient tensor or Jacobian matrix of the deformation. F is a second order
and non-symmetrical tensor that varies through the deformation process. The determinant of
the deformation gradient tensor is called the Jacobian and is denoted by J . It describes the
change of volume of an infinitesimal volume of material from the reference V0 to the current
configuration V(t).

By differentiating (3.15) with respect to time, a similar expression for the deformation velocity
field can be obtained as

dẋ = ḞdX = ḞF−1dx = Ldx (3.17)

where L is the velocity gradient tensor. This tensor can be decomposed into a symmetric part D
and an antisymmetric part W which respectively represent the strain rate and the spin.

The deformation gradient tensor describes both the rigid rotation of the body and its stretch-
ing. The latter can be extracted from F using either the right or left Cauchy-Green deformation
tensors, respectively defined as

C = FTF and B = FFT (3.18)

By construction, both C and B are symmetric tensors. The left Cauchy-Green deformation tensor
B is used in Metafor.

As any other tensor, the left Cauchy-Green deformation tensor can be expressed in various
coordinate systems and is then represented by a 3×3 squared matrix B. The mechanical behavior
and properties of an isotropic deformable solid must be independent of any particular direction
in space and must therefore depend on the invariants of B given by

I1 = tr(B) (3.19)

I2 = 1
2
[
tr(B)2 − tr(B2)

]
(3.20)

I3 = det(B) = J2 (3.21)

The purpose of the constitutive equation is to define the strain-stress curve or, more specifically
when large deformations are considered, to relate the elements of the Cauchy stress tensor σ (the
true stress tensor in the current configuration) to those of the left Cauchy-Green deformation
tensor B. Of specific interest are the so-called hyperelastic materials, i.e., materials for which
the work done by the stresses during a deformation process depends only on the initial and final
configurations (with no dissipation during the deformation process). This property allows the
definition of a strain energy density function W that identifies with the elastic energy per unit
volume stored during the deformation process. In the following, we will only consider isotropic
models (Metafor is currently limited to isotropic hyperelastic materials.). A thermodynamically
consistent formulation of the strain-stress relations for such hyperelastic isotropic materials can
be derived as

σ = 2
J

B∂W

∂B (3.22)

The hyperelastic formulation gives a linear or nonlinear relation between stress and strain. This
material model is mainly used to model the rubbery behavior of polymeric materials and polymeric
foams.
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The strain energy density function can be expressed in terms of the invariants of the left
Cauchy-Green tensor,

W = W (I1, I2, I3) (3.23)

which leads to some interesting simplifications for the implementation of the models.

The quasi-incompressibility of hyperelastic materials can be enforced by introducing the mod-
ified version of the deformation gradient tensor F̄ defined by

F̄ = J−1/3F (3.24)

This adjusted deformation gradient is such that

det F̄ = 1 (3.25)

and captures therefore the isochoric deformations. Using this volume preserving part of F, a new
left Cauchy-Green tensor can be defined by

B̄ = F̄F̄T = J−2/3B (3.26)

with the reduced invariants of B̄

Ī1 = J−2/3I1 (3.27)
Ī2 = J−4/3I2 (3.28)
Ī3 = 1 (3.29)

Finally, the strain energy function W is assumed to be the sum of two independent contribu-
tions: an isochoric deformation W̄ and a volume change deformation Kf(J), i.e.,

W (Ī1, Ī2, J) = W̄ (Ī1, Ī2) + Kf(J) (3.30)

where K is the bulk modulus or any penalty parameter and f is an appropriate function such
that f(1) = 0. For isotropic materials, the Cauchy stresses can then be expressed as

σ = pI + 2
J

dev

[
∂W̄

∂Ī1
B̄ − ∂W̄

∂Ī2
B̄−1

]
(3.31)

where dev denotes the deviatoric part of the tensor.

Fortunately, by an appropriate choice of f(J), this approach also avoids the Rivlin effect
associated with hyperelastic materials, i.e., the fact that a non-zero pressure is created even if no
change of volume occurs.

There exists many possibilities regarding the choice of the strain energy density function. Some
can describe complex material behaviors, but require many material parameters that have to be
experimentally identified: a trade-off between accuracy and complexity of the material model is
required. Some of them will be presented in the next section.

3.2.3 Constitutive equations of the arterial wall.

Because of their structural component supported by collagen, blood vessel walls exhibit a soft
and flexible structure, and the blood flow through the arteries can significantly modify the vessel
radius. Therefore, it is appropriate to use a hyperelastic model for simulating vessel walls [147].
Note that this approach allows for nonlinear stress-strain relationships but is inappropriate to
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describe irreversible processes, restricting the modeling capability to pre-growth and rupture phe-
nomena [131].

One of the simplest hyperelastic material models is the Saint Venant–Kirchhoff model, which
is just an extension of the geometrically linear elastic material model to the geometrically nonlin-
ear regime. The Saint Venant-Kirchoff model has been used in some biomechanical studies, for
example for the modeling of certain types of prosthetic (polymeric) valves, but is superseded by
the models below for realistic applications [81, 94].

Many more numerical studies rely on the Neo-Hookean model. This model can be fully defined
by its strain energy density function

W (Ī1, J) = C1(Ī1 − 3) + 1
2K

[
(J − 1)2 + ln2 J

]
(3.32)

where, for consistency with linear elasticity, the constant C1 must be taken as half the shear
modulus. This approach has been widely used to model the deformation of the aortic artery [8],
but also to describe atherosclerotic vessels and in aneurysms development study [144, 191]. For
small strains, the Neo-Hookean model yields similar stresses than the simple linear Hookean
elasticity. For large strains however, it provides a refined, nonlinear description of deformations.
A study by Parshin et al. [133] claims that it is the optimal approach for modeling the mechanics
of cerebral aneurysm wall and addressing fluid-structure interaction problems. More generally,
however, it is considered to be suitable for stretches up to 20% [131].

To model biological tissues at high strains, the one-parameter Neo-Hookean model is generally
replaced by more general models, such as the Mooney-Rivlin model. The two-parameter strain
energy function of this model can be expressed in terms of the reduced invariants as

W (Ī1, Ī2, J) = C1(Ī1 − 3) + C2(Ī2 − 3) + 1
2K

[
(J − 1)2 + ln2 J

]
(3.33)

where, for consistency with linear elasticity, it requires that

2(C1 + C2) = G = E

2(1 + ν) (3.34)

In the following, the penalty coefficient K will always be taken as the bulk modulus, i.e.,

K = E

3(1 − 2ν) (3.35)

The formulation (3.33) shows that the Mooney-Rivlin model can be considered as a natural
extension of the Neo-Hookean model including a dependency on the second reduced invariant of
the left Cauchy-Green deformation tensor.

The Mooney-Rivlin model has been originally developed for rubber-like materials. It is suitable
for materials that undergo large strains and exhibit isotropic, homogeneous, and nearly incom-
pressible properties. It is often employed in soft tissue mechanics and biomechanics. In particular,
it appears in the study of many cardiovascular structures across a number of scales and in models
of the deformation of the blood vessel, especially in scenarios where healthy tissues are not a
primary concern [99, 131].

In some studies of the deformation of blood vessels, the two-parameter formulation (3.33) is
extended into a 5-parameter hyperelastic Mooney-Rivlin model including quadratic terms of the
reduced invariants [147].
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CARDIOVASCULAR SYSTEM

A few biomechanical studies resort to the Ogden hyperelastic model to describe the nonlinear
stress–strain behavior of complex biological tissues [32]. The Ogden model differs from the above
Neo-Hookean and Mooney-Rivlin models in that it is expressed in terms of the principal stretches.
Note that for specific choices of its parameters, the Ogden model recovers both the Neo-Hookean
model as well as the Mooney–Rivlin model.

Raghavan and Vorp [139] developed one of the first models specific to abdominal aortic aneurys-
mal tissue. The isochoric deformation function can be written as

W̄ = C10(Ī1 − 3) + C20(Ī1 − 3)2 (3.36)

and reduces therefore to the Neo-Hookean model if C10 = G/2 and C20 = 0. Using experimental
data of the aortic aneurysm, they evaluated these coefficients to be equal to C10 = 17.4 N/cm2

and C20 = 188.1 N/cm2. These values are used in many studies where the specific behavior of
abdominal aortic aneurysms can therefore be taken into account [95, 163, 172]. Formulation (3.36)
can also be seen as a particular case of the more general Yeoh model

W̄ = C1(Ī1 − 3) + C2(Ī1 − 3)2 + C3(Ī1 − 3)3 (3.37)

with C3 = 0.

Fung investigated the mechanics of biological soft tissues, including blood vessels, and intro-
duced numerous phenomenological models [59]. The Fung’s hyperelastic constitutive relation has
been used extensively. Different mathematical formulations are available in the literature. Sun et
al. [172] for instance use

W̄ = G

2b

[
exp{b(Ī1 − 3)} − 1

]
(3.38)

where b is a material parameter. The exponential function of strain accounts for the steep stiffening
of the material thanks to the alignment of stretched collagen fibers.

Figure 3.7 shows the stretch-stress curves for different hyperelastic models of the aortic ma-
terial. Of course, the different models contain adjustable parameters that add to the variability
associated with the different models. Among the different hyperelastic models, the ones by Ragha-
van and Fung exhibit however the most pronounced nonlinear behavior [131].

The above models describe blood vessels as homogeneous and isotropic continuum and pay
therefore little attention to their multiscale hierarchical structure. Although isotropic models such
as the Neo-Hookean and Mooney–Rivlin have been shown to give reasonable representations and
are capable of capturing the large nonlinear elastic response of the artery, improvements can be
achieved by considering histological details of the artery wall. The walls of the human artery are
known to consist of two distinct symmetrical bands of collagen fibers that are helically wound
around the artery axis [93]. This arrangement, combined with the soft tissue nature of collagen
and the intervening non-collagenous matrix, results in an anisotropic nonlinear response of arteries
when subject to loading.

The Holzapfel model is the most accurate nonlinear elastic model leading to an anisotropic
response under loading. The model considers two layers, i.e., a thick-walled elastic circular cylin-
drical tube and fiber-reinforcements. Anisotropic models such as those proposed by Holzapfel et
al. require details of the arrangement of fibers within the wall which has traditionally been ob-
tained in vitro with varying degrees of difficulty depending on the artery location [131]. Holzapfel
et al. [79] also extended their multilayer arterial wall model for coronary arteries (including an
exponential isotropic term as proposed by Fung and an anisotropic term relating to the angle
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Figure 3.7 – Stretch-stress curves (shear mode) for some commonly used models of the aortic material.
Reproduced from Owen et al. [131].

between fiber reinforcement and circumferential direction in each layer). Only few studies have
however incorporated such representative models of arteries in Fluid-Structure Interaction (FSI)
simulations.

3.3 Modeling of a straight artery.

Besides the rheology of blood studied in the previous section, one of the most important aspects of
the flow in many blood vessels is the deformability of the wall, which motivates the use of numerical
models able to describe the corresponding flow-structure interactions. As a first example of these
processes, we consider here the blood flow in the segment of a straight artery.

An axisymmetric model is considered because it is the minimal configuration that accounts for
the typical balance of forces encountered in blood vessels. The vessel wall structure is designed

σyy

σxy

σzz
σxx

Y

XZ

Figure 3.8 – Stresses generated in the vascular wall from the physiological forces: hoop stress σzz, longi-
tudinal stress σyy, radial stress σxx, and shear stress σxy.

36



3.3. MODELING OF A STRAIGHT ARTERY

to resist and propagate the forces exerted by the blood flow that act radially and longitudinally:
the internal pressure produces a radial stress and an internal circumferential (or hoop) stress in
the vessel wall, the longitudinal distending force produces an internal longitudinal stress, and the
blood flow also induces a shear stress parallel to the vessel lumen (tangential to the flow axis). A
simple 2D plane strain model would not be appropriate to capture these different stresses [20]. The
axes and notations used in the model of the straight artery and the other axisymmetric models
are shown in Figure 3.8.

3.3.1 Propagation of a pressure pulse.

A first numerical experiment is performed to study the propagation of a pressure wave in the
deformable artery. For this simulation, the parameters are chosen according to the previous
studies of Sun et al. [172] and Formaggia et al. [55]. The geometrical data reported in Table 3.2
are typical of all medium arteries in the human body [20]. Table 3.3 lists the different parameters
describing the fluid and solid domains. The geometry is schematized in Figure 3.9.
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Figure 3.9 – Geometry of the axisymmetric straight artery with fluid domain ( ), solid domain ( ), and
boundary conditions (clamped ( ) and FSI interface ( )).

Parameters Values Units

Length L 6 cm
Length extension L∗ 3 cm
Radius R 0.5 cm
Thickness of artery wall t 0.1 cm

Table 3.2 – Geometrical parameters for the straight artery simulations used to study the propagation of
a pressure pulse.

Parameters Values Units

Fluid density ρf 1050 kg/m3

Arterial wall density ρs 1100 kg/m3

Dynamic viscosity µ 0.0038 Pa · s
Arterial wall Young’s modulus E 0.1 MPa
Arterial wall Poisson’s ratio ν 0.49 -

Table 3.3 – Material parameters for the straight artery simulations used to study the propagation of a
pressure pulse.

In line with the previous studies by Sun et al. [172] and Formaggia et al. [55], a pressure
pulse of 2000 Pa with a duration of 0.005 s is applied at the inlet (Fig. 3.10). A constant zero
pressure is prescribed at the outlet. Both the left and right ends of the artery are fixed. The fluid
is Newtonian. A simple Hookean law is used to describe the deformability of the solid material.
Although such a constitutive law cannot capture the complex physiological behavior of the arterial
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wall (see section 3.2.1), it is sufficient for the present purpose of demonstrating the ability of the
model to describe the propagation of pressure waves along blood vessels. More physiologically
realistic approaches will be considered later. Note however that the linear elasticity approach
used in this work relies on a hypoelastic formulation, which allows the appropriate consideration
of large rotations by resorting to the Jaumann (objective) rate of the Cauchy stress.

Figure 3.10 – Pressure pulse prescribed at the inlet of the straight artery.

The fluid domain is discretized with an initially uniform distribution of PFEM particles spaced
0.05 cm apart, while the solid domain is described by a transfinite mesh with 4 linear elements
across the artery wall and 40 elements along the axis. The flow-structure interaction occurs along
the common boundary of the two subdomains. The model is integrated forward in time for 30 ms
with a time step of 0.1 ms starting with zero pressure and velocity.

The results plotted in Figure 3.11 show the propagation of the pressure pulse with time.
The figure also depicts the artificial downstream extension of the fluid domain introduced to
avoid spoiling the solution by the reflection of the wave on the downstream boundary. Unless
appropriate absorbing or radiation boundary conditions are implemented, the incoming wave is
reflected on the downstream boundary where the pressure is kept at a constant value. Such a
reflection is clearly a numerical artifact that must be avoided. To delay this reflection and get
meaningful results about the forward motion of the pressure wave, an additional segment of blood
vessel of 3 cm long is introduced (called model extension in Figure 3.11), which is long enough to
delay the arrival of the reflected pressure wave in the domain of interest beyond the simulation
time limit.

Figure 3.11 shows how a pressure wave is generated upstream and induces the deformation
of the artery wall. The local increase of pressure accelerates the flow from the high pressure
region to the downstream lower pressure region. The blood vessel is also locally distended and
temporarily stores blood until the fluid pressure decreases. The balance of these two effects
causes a deformation wave to propagate along the artery wall. The pressure and deformation
waves propagate along the vessel at the same velocity. These results are similar to those presented
by Sun et al. [172]1. Figure 3.12a and 3.12b show the time series of the pressure and velocity at
two particular locations on the symmetry axis of the artery. Both variables vary in phase and
reach their peak value at the same moment in time, which is characteristic of a propagating wave
component.

1Note that Sun et al. [172] do not introduce any extension of their model domain and erroneously analyze their
results for times much longer than the time required for the reflected wave to affect the domain of interest. Their
conclusions clearly do not make sense for such longer times.
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Figure 3.11 – Pressure (fluid) and equivalent von Mises stress (solid) in a radial plane at three different
times: 1 t = 5.0 ms, 2 t = 12.6 ms, and 3 t = 20.0 ms.

A quantitative verification of the results can be obtained by comparing the computed wave
speed with the estimate given by the Moens-Korteweg equation

c0 =
√

Et

2ρf R
(3.39)

for the propagation of a pressure disturbance in a circular tube with wall thickness t and undis-
turbed radius R [181]. Using this equation and the parameters of the current numerical experiment
in Tables 3.2 and 3.3, a wave speed of 3.09 m/s can be estimated (Note that this value is much
lower than the expected physiological value on account of the reduced wall rigidity taken from Sun
et al. [172] and used here for comparison purpose). This value compares reasonably well with the
estimate of 2.85 m/s that can be obtained from Figure 3.12a by looking at the delay between the
time of occurrence of the foot of the wave at the two locations. Note however that the theoreti-
cal and numerical estimates rely on different assumptions. The Moens-Korteweg equation (3.39)
considers the idealized case of an infinitely long circular thin-walled artery with a homogeneous,
incompressible, and non-viscous fluid. The artery wall is also considered to be a Hookean solid
with small deformations. Although modeling assumptions differ, the fact that the two values are
close to each other provides a quantitative verification of the numerical approach used to simulate
the propagation of a pulse in a blood vessel.
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(a) (b)

Figure 3.12 – Time series of pressure (a) and longitudinal velocity (b) at two points located on the
symmetry axis at 1.5 cm ( / ) and 4.5 cm ( / ) downstream the upper boundary. Results are
obtained with Casson ( ) and Newtonian ( ) fluid models.

Figures 3.12a and 3.12b show that the amplitude of the wave decreases as it progresses along
the blood vessel. From a maximum amplitude of 2000 Pa at the inlet section at time 2.5 ms,
the pressure peak is reduced to 938 Pa at y = 0.015 m, 5.9 ms later, and about 800 Pa further
downstream at y = 0.045 m. This effect can be partly attributed to the smoothing effect of
the finite discretization and numerical integration but is also directly related to the dissipation
mechanism associated with the fluid viscosity and the no-slip boundary condition at the wall.
The latter is not taken into account by the Moens-Korteweg equation which therefore predicts a
constant pressure pulse.

Results are also shown for a Casson fluid (yield stress τy = 0.0035 Pa and asymptotic dynamic
viscosity µ∞ = 0.0038 Pa · s). Modeling blood either as a Newtonian fluid or a Casson fluid has
however no noticeable influence on the results. This is due both to the high shear rate generated
by the pressure pulse and its highly unsteady nature.

3.3.2 Realistic pulsatile flow in a straight artery.

To go further with the analysis of the blood flow in arteries and identify the appropriate con-
stitutive model and numerical parameters for their simulation, we now introduce more realistic
conditions that are explicitly related to the physiological values found in the real body.
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Figure 3.13 – Geometry of the axisymmetric straight artery with fluid domain ( ), solid domain ( ), and
boundary conditions (clamped ( ), FSI interface ( ), and no-slip/clamped condition ( )). In essence,
a no-slip condition is also prescribed at the FSI interface.
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We still consider a straight segment of an artery as schematized in Figure 3.13 but use now
the geometrical data in Table 3.4 and force the model with boundary conditions adapted from the
literature. The velocity and pressure signals plotted in Figures 3.14 and 3.15 are obtained from
clinical studies and can be considered as typical of the time evolution over the cardiac cycle of the
physiological parameters in the infrarenal segment of the human abdominal aorta [118]. These
waveforms describe a pulse repeating every 1 second (period T = 1 s). The peak systolic flow
occurs at t = 0.304 seconds and outlet peak pressure at t = 0.4 seconds. They are used to force
the model, respectively at the upstream and downstream boundaries of the fluid domain.

Parameters Values Units

Length L 6 cm
Length extension L∗ 1 cm
Radius R 1 cm
Thickness t 0.15 cm

Table 3.4 – Geometrical parameters for the straight artery realistic simulations. The actual domain is
extended upstream and downstream by 1 cm to avoid numerical artifacts and instabilities at the boundaries
of the fluid domain.

Figure 3.14 – Inlet velocity waveform reproduced
from [118].

Figure 3.15 – Outlet pressure waveform repro-
duced from [118].

The pressure waveform can be divided into a systolic (between the two vertical dotted lines)
and a diastolic part. The systole is the phase of the heartbeat where the heart muscle contracts.
It relaxes during diastole. When the left ventricle ejects blood into the aorta, the aortic pressure
rises. The maximal aortic pressure following ejection is termed the systolic pressure. Similarly, the
velocity rises to a peak velocity of 30 cm/s. A small period of backflow, i.e., with negative velocity,
is then observed. It accompanies the aortic valve closing and is responsible for the rebound of
aortic pressure observed in the pressure waveform, the dicrotic notch. This small increase of
pressure typically defines the beginning of the diastolic phase, when the aortic valve closes. As
the left ventricle is relaxing and refilling, the pressure in the aorta then falls. The lowest pressure
in the aorta, which occurs just before the ventricle ejects blood into the aorta, is termed the
diastolic pressure. In this study, pressure varies between a diastolic pressure of 70 mmHg and
a systolic pressure of 115 mmHg (1 mmHg = 133.3 Pa). The velocity is close to zero during
diastole [178].
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The boundary data plotted in Figure 3.14 define the average value va across the inlet section.
The actual velocity profile is prescribed as

v = 1.5va(1 − ξ4) (3.40)

where ξ ∈ [0, 1] is the relative coordinate measured from the symmetry axis. This profile is
relatively flat but ensures that the velocity vanishes at the artery wall.

To feed the data into the model, the inlet velocity and outlet pressure data are digitized
from the figures published by Mills et al. [118] using the WebPlotDigitizer tool2. They are then
submitted to a Fast Fourier Transform to extract the dominant components and get periodic
analytical expressions of the two signals. Accurate representations of the two time series can be
obtained with 17 harmonics.

3.3.3 Numerical considerations.

Both the fluid and solid domains have a simple rectangular geometry. The fluid-structure interac-
tion occurs along their common boundary. To avoid numerical artifacts associated with boundary
conditions, 1 centimeter long (= one radius) buffer zones are added downstream and upstream
the segment of interest. Fluid-structure interactions are not considered in these buffer zones and
the boundaries of the arterial walls are fixed (no translation in any direction). This prevents the
development of instability issues observed in preliminary numerical tests due to spurious inter-
actions between the deformation of the arterial wall and the inlet and outlet sections where the
boundary conditions are prescribed.

Blocking the two degrees of freedom in translation of the artery wall in the buffer region is
motivated by numerical stability requirements, but is also justified from a physiological point of
view. The arteries do not float freely in the body, but are attached to other tissues in the body,
including the vascular nerves. This tethering occurs at different positions along the artery. This
ensures the consistent functioning of the cardiovascular system. In particular, the movement and
deformation of the aorta are reduced by the rigidification provided by the geometry of the aortic
arch and its connection with the left ventricle, upstream, and by the branching with other arteries
downstream [116].

The spatial discretization in the fluid domain is controlled by locally adjusting the charac-
teristic size h of the PFEM elements. This reference value is gradually decreased by a factor of
two as one approaches the fluid-structure interface, where the influence of the deformable wall is
greatest and the velocity gradient reaches its maximum values.

The solid domain is discretized using a transfinite mesh of linear rectangular elements with up
to 12 elements across the wall and 450 elements to capture the variation in stress state along the
arterial segment. For instance, an initial mesh with 8 elements across the wall and 300 elements
along the segment is found in Figure 3.16. The initial fluid domain is made of 5137 elements.

The model is integrated forward in time from zero initial conditions with a maximum time step
of 0.1 ms. To avoid instabilities, the external forcing must be applied gradually. In particular, the
brute application of the 80 mmHg output pressure would produce large oscillations and instabilities
that the PFEM code (PFEM3D) would not be able to handle. Also, the 80 mmHg pressure cannot
be included in the initial conditions because the artery wall would suffer from a similar problem.
Instead, a gradual loading must be introduced. In practice, the inflow velocity is multiplied by a
ramp function

f(t) = min(1, t/Ttrans) (3.41)
2https://automeris.io/WebPlotDigitizer
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Figure 3.16 – Part of the initial mesh of the fluid and solid subdomains. The resolution in the fluid domain
is increased along the interface.

that goes from 0 (no load) to 1 (full load) over the timescale Ttrans = 0.1 s. A similar approach
is used to initialize the pressure field. However, to avoid any non-physical backflow that can
be induced during the initialization phase by the increase of the outlet pressure, this boundary
value is not allowed to increase until a longitudinal pressure gradient has built up, and the ramp
function (3.41) for the pressure field uses a longer timescale Ttrans = 0.3 s.

The simulations are run for 2 cardiac cycles (2 s). The results to be analyzed are extracted
from the second cycle.

Four different meshes are considered in a convergence study (Table 3.5). Both the number
of PFEM nodes (i.e., particles) and the number of finite elements in the artery wall are varied.
Convergence is assessed against the blood velocity at the middle of the segment length on the
symmetry axis, as well as the wall displacement, the equivalent von Mises stress, and the σxy stress
at the point at the middle of the artery wall on its inner surface (Note that the σxy component of
the stress tensor at this point is indicative of the wall shear stress but, as explained in Appendix B,
cannot be used to compute the shear stress actually sensed by endothelial cells.). All the results
are extracted at time t = 1.4 s, corresponding to the peak systolic pressure. The simulation time
reported in Table 3.5 are on 2 nodes of a PC with an Intel Core i7-4790 CPU running at 3.60
GHz.

Fluid Solid h Velocity σxy σVM Wall displacement CPU time
elements elements [cm] [cm/s] [Pa] [MPa] [mm] [s]

5128 1120 0.10 14.06 66.00 0.146 1.221 3116
5137 2093 0.08 14.03 64.06 0.147 1.219 4052
8854 2093 0.08 14.00 65.36 0.147 1.216 10 075
28063 4939 0.04 13.97 65.42 0.147 1.217 29 268

Table 3.5 – Convergence study. Displacement and stresses are computed at the interface between the fluid
and the solid domains, at the middle of the artery, at time t = 1.4 s of the peak systolic pressure.

The results in Table 3.5 show the rapid convergence for the wall displacement and the equiva-
lent von Mises stress. The shear stress and the point value of the velocity are more sensitive to the
number of solid and fluid elements. Even if some parameters are more sensitive than others, we
can nevertheless state that reliable, mesh-independent results can be obtained with the various
models considered. As the computation time increases considerably with the resolution of the
models, with little influence on the results, the parameters of the second model in Table 3.5 are
used in the following studies.
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3.3.4 Analysis of the flow in a straight artery.

The results of the nominal simulation using the parameters listed in Table 3.6 provide insight into
the blood flow in the upper aorta and in the larger arteries. In this nominal simulation, the fluid
is Newtonian and the arterial wall is modeled as a Hookean solid.

Parameters Values Units

Fluid density ρf 1050 kg/m3

Dynamic viscosity µ 0.0038 Pa · s
Arterial wall density ρs 1200 kg/m3

Arterial wall Young’s modulus E 0.675 MPa
Arterial wall Poisson’s ratio ν 0.45 -

Table 3.6 – Material parameters for the straight artery realistic simulations.

Figure 3.17 shows some snapshots taken at different characteristic moments of the cardiac
cycle.

At the end of diastole, Cauchy stresses in the arterial wall and wall deformation are at their
minimum. These are different from zero because the internal pressure is not zero, but at the
diastolic pressure of 70-80 mmHg 1 .

The rapid increase in pressure pushes the flow into the artery in a pulsatile manner. A
maximum velocity of more than 40 cm/s is then observed along the axis of the blood vessel 2 .
The deformation of the arterial wall closely follows the time evolution of the blood pressure.
Therefore, the maximum displacement of about 2.3 mm is observed at the peak systolic pressure,
together with the maximum internal stresses in the walls. This value of the wall displacement, of
the same order of magnitude as the thickness of the wall itself (1.5 mm), is in agreement with the
results reported by Balzani et al. [8] and Barnett et al. [9].

At the moment of the dicrotic notch, the pulse is in a rapid deceleration phase. While blood
is still flowing toward the various organs in the center of the artery, though at a much slower rate,
a small backflow develops along the arterial walls 3 .

During diastole, the flow continues to decrease and the velocity is only a few centimeters per
second. The pressure also steadily decreases, along with the deformation of the arterial wall and
the internal stresses 4 .

Figure 3.18 shows the velocity profiles across the center of the segment at 10 consecutive
times. While a few of these profiles show the typical parabolic distribution of the fully developed
Poiseuille flow, most of them differ significantly from this classical profile. This deviation from
the Poiseuille flow reflects the unsteadiness of the flow.

The parabolic Poiseuille profile appears when the pressure gradient is balanced by viscous
forces. In an unsteady flow, however, one must also consider the ratio of the unsteady inertia to
viscous effects. This can be quantified using the Womersley number α

α =
√

ρf R2ω

µ
(3.42)

where ω is the angular frequency of the oscillatory motion and R is the undeformed radius of the
artery [65]. The Womersley number compares the characteristic time associated with diffusion to
the period T of pressure variations. It is related to the Reynolds number, Re, and the Strouhal
number, St, by

α =
√

2πStRe (3.43)
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Figure 3.17 – Velocity profiles and artery wall deformation at four characteristic moments of the cardiac
cycle: 1 end of diastole (t′ = t−T = 0.20 s), 2 systole velocity peak (t′ = 0.30 s), 3 beginning of diastole
(dicrotic notch, t′ = 0.55 s), and 4 diastole (t′ = 0.80 s).
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Figure 3.18 – Velocity profiles across the midsection of the straight artery at t′ = t − T = 0.0 s ( ),
0.1 s ( ), 0.2 s ( ), 0.3 s ( ), 0.4 s ( ), 0.5 s ( ), 0.6 s ( ), 0.7 s ( ), 0.8 s ( ), 0.9 s ( ),
and 1.0 s ( ).

Using the parameters of the straight artery simulations, a value of 13.18 is found, which is typical
for the human abdominal aorta under resting conditions [193]. Such a large value of Womersley
implies that the dominant balance in the fluid is not between the pressure and viscosity terms,
but between inertia and pressure gradient. For such large values of the Womersley number, the
velocity profiles are flatter, the flow rate decreases, the oscillations of the flow in the center of
the pipe lag behind those at the walls, and the velocity profiles during flow reversal exhibit local
maxima that are off-center.

The Cauchy stresses are also worthy of careful analysis. Figure 3.19 shows the time series of
relevant statistics in the artery wall. These statistics are computed at the interface between the
fluid and solid domains, in the central part of the segment, where the displacement is only radial.

Figure 3.19 – Variation of the components of the Cauchy stress tensor during the second cardiac cycle
(σzz ( ), σyy ( ), σxx ( ), and σxy ( )), as computed in the central part of the artery segment.
Values are represented by the average value ( ), the first and third quantiles ( ), and minimum and
maximum ( ).
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The largest Cauchy stresses are in the azimuthal direction. Using the thin-wall assumption
and linear elasticity theory, these hoop stresses would be approximated as

σzz = pR

t
(3.44)

which would result in a peak hoop stress of about 0.1 MPa. In the simulated results, the Cauchy
peak hoop stress is about 50% larger, which can be attributed to the deformation of the artery wall,
which is responsible for both an increase in the actual radius and a decrease in the wall thickness,
and to inertial effects, since the fluid and the artery wall have about the same density. A careful
analysis of the model results also shows that, contrary to the assumption behind (3.44), the hoop
stresses are not constant but vary linearly across the wall. The difference between the results of
the linear thin-wall theory and the computed value illustrate the significance of nonlinear effects
in this simple set-up. The discrepancy between the figures computed using the two approaches
decreases significantly when considering the results at the end of diastole. The computed mean
hoop stress then reaches 0.075 MPa, while the corresponding estimate using (3.44) is 0.062 MPa.

The second most important component of the Cauchy stress tensor is the longitudinal stress σyy.
This takes a mean value of about 0.04 MPa. It also varies much less during the cardiac cycle.
The longitudinal stress appears because the two extremities of the artery segment are fixed to
the neighboring segments and cannot therefore move freely, while the deformation of the straight
artery under the internal pressure produces a net longitudinal force.

The radial component of the Cauchy stress tensor σxx simply balances the internal pressure
on the artery wall and varies accordingly between this value on the inner surface of the wall to
zero at its outer surface.

Finally, a very small component of the shear stress σxy is hardly noticeable in Figure 3.19.
Despite its small value, this parameter has important physiological implications. This is indeed a
predictor of atherosclerosis and risk of aneurysm rupture. The analysis of the wall shear stress is
therefore deferred to a specific section.

3.3.5 Wall shear stress and atherosclerosis.

Atherosclerosis is a chronic inflammatory disease of the arteries and is the underlying cause of
about 50% of all deaths in westernized society [132]. Atherosclerosis is when plaque, a sticky
substance made of cholesterol, fatty substances, calcium, collagen fibers, and other materials,
builds up inside the walls of the arteries. This affects the intima, i.e., the inner layer of the blood
vessel.

Plaque progression and eventually plaque rupture is influenced by a complex interaction be-
tween biological and hemodynamic factors: the initiation of plaque formation has been strongly
linked to the wall shear stress [100, 119]. Endothelial cells are indeed sensors of the frictional
force exerted by blood flow. Low WSS modulates endothelial gene expression through complex
mechanotransduction processes that promote lipid accumulation and oxidation, inflammatory cell
infiltration, smooth muscle cell proliferation, and extracellular matrix production [30, 127]. The
consequence of this accumulation of lipid molecules and inflammatory cells at specific locations
within the wall may result in heart attack. The uneven surface of the arteries may also result in
blood clot formation and thrombosis, which leads to the sudden obstruction of blood flow. The
rupture of atherosclerotic plaques is also known to cause heart attacks and strokes.

The direct measurement of wall shear stress in a blood vessel within the body is impossible,
although pathologically low WSS is a major risk factor for initiation and progression of atheroscle-
rosis. Therefore, the use of computer simulations to access this parameter could open the way to
promising early diagnosis of plaque formation.
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The low and/or oscillatory WSS hypothesis has become the consensus mechanism for the
initiation of atherosclerosis. Two related parameters are often reported in literature to assess the
risk of atherosclerosis, namely the Time-averaged Wall Shear Stress (T-WSS) and the Oscillatory
Shear Index (OSI) [26, 202]. The T-WSS is obtained by integrating the WSS magnitude over the
cardiac cycle

T-WSS = 1
T

∫ T

0
|wss(t)|dt (3.45)

while the oscillatory shear index

OSI = 1
2

1 −

∣∣∣∣∣
∫ T

0
wss(t)dt

∣∣∣∣∣∫ T

0
|wss(t)|dt

 dt (3.46)

is a non-dimensional parameter measuring the directional change of WSS during the cardiac
cycle. Wall cells with a low T-WSS and large OSI (i.e., with highly oscillating WSS directions)
are prone to lesion development. Prior research reported in particular that T-WSS values less than
0.4 Pa can result in plaque buildup in the arterial wall and stimulates an atherogenic phenotype
while T-WSS above 1.5 Pa induces endothelial quiescence and an atheroprotective gene expression
profile [112]. When the disease has started, however, plaques will begin to invade the lumen and
affect local hemodynamics. Upon further progression of plaques, high WSS is associated with the
formation of vulnerable/unstable plaque. It promotes the transformation of plaque to high-risk
phenotype [209]. Low WSS and high WSS are therefore both involved in the occurrence and
development of atherosclerosis.

Figure 3.20 shows the spatial distribution of both the time-averaged and maximum wall shear
stress along the considered segment of the aorta. It is important to note that accurately com-
puting this parameter requires an extensive treatment of the fluid model results, as detailed in
Appendix B.

Figure 3.20 – Time-averaged WSS ( ), range of variation ( ), and minimum and maximum values along
the artery segment ( ).

While the maximum values fall within the healthy range for an individual, the time-averaged
wall shear stress index is slightly lower than the range typically expected to inhibit plaque for-
mation (0.4 Pa < T-WSS < 7 Pa) [112]. Our results are however similar to those reported by
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Scotti et al. [155]. The relatively small WSS value may be due to the simplified geometry em-
ployed in this analysis. In a perfectly straight artery, the wall shear stress necessary to force the
velocity profile to adapt to the geometric constraints is small. More realistic geometries featuring
variable curvature and full three-dimensional effects are anticipated to yield higher WSS values.
Conversely, the lack of tortuosity of the current simulation adversely impacts the T-WSS index.
This preliminary conclusion is supported by the observation that WSS increases near the outlet
of the artery segment, where there is a slight increase in the curvature of the artery wall (Fig-
ure 3.17). This phenomenon is even more marked at the systolic peak, where the wall deformation
is greatest, causing the instantaneous WSS to rise above 2 Pa.

3.3.6 Influence of the material parameters.

As explained in the first sections of this chapter, different options are available and are commonly
used to model the behavior of blood and of the artery wall. In this section, we analyze the influ-
ence of the constitutive laws through the different runs described in Table 3.7. In particular, the
different simulations give insight into the influence of the arterial stiffness, which is an important
parameter for the dynamics of the cardiovascular system. Stiffening is known to contribute sig-
nificantly to cardiovascular diseases in older individuals and is positively associated with systolic
hypertension, coronary artery disease, stroke, and heart failure, which are the leading causes of
mortality in the developed countries [160]. The influence of the constitutive model is also consid-
ered. Models of increasing complexity (Linear elastic, Neo-Hookean, Mooney-Rivlin) are used to
model the artery wall. The effect of the fluid assumption is also studied (Casson vs. Newtonian
fluid).

Note that negative coefficients in the Mooney-Rivlin hyperelastic energy density function can
lead to instability problems but are nevertheless sometimes reported in the literature [101, 188].
Our results for the R5 simulation do not exhibit such problems.

Name Type of solid Young’s Modulus [MPa] C1 [MPa] Type of fluid

R1 ( ) Linear elastic 0.675 / Newtonian
R2 ( ) Linear elastic 1 / Newtonian
R3 ( ) Linear elastic 100 / Newtonian
R4 ( ) Linear elastic 0.675 / Casson
R5 ( ) Mooney-Rivlin 0.675 −20 Newtonian
R6 ( ) Mooney-Rivlin 0.675 10 Newtonian
R7 ( ) Neo-Hookean 0.675 / Newtonian

Table 3.7 – Constitutive laws and parameters used to analyze the influence of the material parameters.
The Poisson’s ratio is kept at ν = 0.45 in all the simulations.

Figure 3.21 shows the displacement of the arterial wall at the center of the artery as a function
of time during the second of simulated heartbeats. Note that the displacement is defined with
respect to the unloaded situation with zero internal pressure in the artery. The obvious conclusion
is that the choice of constitutive model has no significant effect on the deformation of the artery
wall when the constitutive models are consistent with each other. Of course, this is expected since
the deformation of the artery wall is moderate, i.e., a displacement of 2.3 mm at most (for an
initial radius of 1 cm), and the models are built to behave in the same way in the linear regime.

Varying the Young’s modulus does however have a large influence on the displacement of the
artery wall. Changing the Young’s modulus from the reference value of 0.675 MPa (R1) to 1 MPa
(R2) decreases the maximum displacement from 2.29 mm to 1.30 mm, which is more than the
ratio of the Young’s moduli. Of course, the displacement of a nearly rigid wall (R3) is close to zero.
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Figure 3.21 – Evolution of the displacement of the artery wall at the middle of the artery segment for the
constitutive laws detailed in Table 3.7 (R1 ( ), R2 ( ), R3 ( ), R4 ( ), R5 ( ), R6 ( ), and
R7 ( )).

A close examination of the displacement curve at the moment of peak systolic pressure
(Figure 3.21) reveals minor, not really significant, differences among the models with identical
equivalent Young’s modulus. The maximum deformation with the linear model R1 occurs at
t − T = 0.37 s and is 2.293 mm. For the same shear modulus, the wall deformations predicted by
the Neo-Hookean (R7) and Mooney-Rivlin models (R5/R6) are 2.270 mm and 2.296/2.260 mm,
respectively. The difference between all these models is less than 2%. The solutions computed
with the two versions R5 and R6 of the Mooney-Rivlin model display the largest differences and
form the envelope of the different results. Except for the Mooney-Rivlin model with a negative C1
coefficient (R5), all the models show the same time series with a small, nearly constant vertical
offset.

These observations are perfectly in line with the conclusions of Kallekar et al. [93] who analyzed
the effect of the constitutive model on deformation during flow in a coronary artery.

The influence of the constitutive law on the von Mises stress is also not of major influence,
with the Neo-Hookean slightly overestimating the von Mises stress compared to other models
(Figure 3.22). Again, the largest influence comes from the stiffness of the artery wall, with the
two more rigid models yielding to smaller values. For the kind of simulations considered here, it
is therefore clear that the accurate quantification of the Young’s modulus of the arterial material
is definitely more important than the choice of the constitutive model.

The analysis does not reveal any significant difference if blood is modeled as a Newtonian or
Casson fluid. This means that in large arteries (diameter of 2 cm), the assumption of a Newtonian
fluid is valid. This is due both to the high shear rate in such a flow and to its highly unsteady
nature. As mentioned above, viscosity terms play only a secondary role here, as long as the
Womersley number is large.

The exact material parameters have a significant influence on the wall shear stress and the
T-WSS index discussed in section 3.3.5 (Figure 3.23). The choice between a Newtonian or Casson
model has little influence, in contrast to the constitutive model of the arterial wall. In section 5.2.6,
we will show however that this partial conclusion does not extend to more complex geometries.
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Figure 3.22 – Evolution of the von Mises equivalent stress at the middle of the artery segment for the
constitutive laws detailed in Table 3.7 (R1 ( ), R2 ( ), R3 ( ), R4 ( ), R5 ( ), R6 ( ), and
R7 ( )).

Figure 3.23 – T-WSS along the artery segment computed with the constitutive laws detailed in Table 3.7
(R1 ( ), R2 ( ), R3 ( ), R4 ( ), R5 ( ), R6 ( ), and R7 ( )).

With the exception of the most rigid model R3, the other models show spatial variations of
the T-WSS index that are similar to those discussed previously (Figure 3.20). Overall, the mean
values are below the expected threshold of 0.4 Pa, despite a significant increase as the outlet
section is approached. Among all the models, R5 stands out for its higher T-WSS values. In
particular, the two Mooney-Rivlin model parameter choices introduced in models R5 and R6
lead to different values of T-WSS, even though they gave rise to similar internal stresses and
displacements. In the absence of experimental data to validate one choice over the other, it
therefore seems reasonable to consider that the choice of arterial wall constitutive model can
significantly influence the calculation of WSS and therefore the assessment of the propensity to
develop an atherosclerosis problem if this parameter is used for diagnostic purposes. Further
investigation of these issues, in more complex geometries and with extensive experimental data,
is however required before reaching meaningful conclusions. The potential influence of numerical
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implementation details should also be investigated. The different models differ indeed by the way
the stiffness matrix of the finite element formulation is computed, with an analytical derivation
used for all the models except Mooney-Rivlin, for which a perturbation method is used.

3.4 Typical flow in a vein.

The results of the previous sections show that blood in larger arteries behaves as a Newtonian fluid
and that there is no need to resort to a Casson type constitutive equation. In fact, the viscosity of
blood decreases with increasing shear rate until reaching an asymptotic value for shear rates above
about 100 s−1. In most computational hemodynamic studies, such high shear rates are commonly
reached and blood can be modeled as a Newtonian fluid with a viscosity equal to its asymptotic
value [6]. In addition, the unsteadiness of the flow also plays an important role, since viscosity
effects, and thus the distinction between Newtonian and Casson models, are hardly relevant in a
pulsatile flow with a large Womersley number.

To illustrate a situation in which the Casson model is relevant, we consider here the flow in
the Inferior Vena Cava (IVC). The IVC is the largest vein of the human body. It is located at the
posterior abdominal wall. The lack of pulsatility plays a double role here. On the one side, the
flow remains nearly constant so that the Womersley number takes a small value. On the other
side, the transport of a given flow rate at a nearly constant rate requires smaller velocity, which
creates smaller shear rates [6].

The human inferior vena cava geometry can be simplified as a straight tube with a slightly
thinner wall than that of an artery. The geometrical parameters are summarized in Table 3.8. As
depicted in Figure 3.24, the inlet velocity maximum and minimum values, measured via in vivo
magnetic resonance imaging by Cheng et al. [31], vary only by a factor of two. The pressure wave
from the heartbeat experiences significant damping upon reaching the capillary beds, resulting in
the IVC operating at a nearly constant pressure of 5 mmHg.

Figure 3.24 – Inlet velocity in the IVC as a function of time. The period of the cardiac cycle is T = 0.8 s.

The simulations are carried out following the same approach as in section 3.3.3 using either a
Newtonian or a Casson constitutive equation. The inlet velocity profile is assumed to be uniform.
The walls of the vein are modeled as a linear elastic material with a Young’s Modulus of 1.25 MPa
to account for the larger rigidity of the walls of the IVC [20]. The material parameters of the
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Parameters Values Units

Length L 14 cm
Radius R 1 cm
Thickness t 0.12 cm

Table 3.8 – Geometrical parameters for the IVC simulations.

different simulations are summarized in Table 3.9. The results are extracted during the second of
the two simulated cycles.

Parameters Values Units

Fluid density ρf 1050 kg/m3

Dynamic viscosity µ (Newton model) 0.0038 Pa · s
Asymptotic dynamic viscosity µ∞ (Casson model) 0.0038 Pa · s
Yield stress τy (Casson model) 0.0035 Pa
Venous wall density ρs 1200 kg/m3

Venous wall Young’s modulus E 1.25 MPa
Venous wall Poisson’s ratio ν 0.45 -

Table 3.9 – Material parameters for the IVC simulations.

The velocity profiles in the IVC are plotted in Figure 3.25. The results are qualitatively similar
to those of the analytical study carried out in section 3.1. While the simulations carried out using
the assumption of a Newtonian fluid show the typical parabolic profile, the results for the Casson
fluid do not show a well-defined velocity maximum at the center of the vein, but rather a zone
where the velocity is nearly constant.

Figure 3.25 – Velocity profiles in the IVC at t′ = t−T = 0.40 s ( ), 0.48 s ( ), 0.56 s ( ), 0.64 s ( ),
0.72 s ( ), 0.80 s ( ). Comparison between Casson ( ) and Newtonian fluid models ( ). Results
are taken across the undilated section of the vein, 2 cm before the outlet.

The shear rates can be extracted from the model results using the ParaView Compute Gradient
filter3. Due to the linear interpolation of the velocity field inherent to the PFEM, the velocity
gradient is constant over each element, producing the mean staircase distribution shown in Fig-

3See www.paraview.org.
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ure 3.26a. The results, which are similar to those reported by Cheng et al. [31], explain why a
Casson model is relevant for the modeling of the flow in the IVC: the mean shear rate is every-
where significantly smaller than the 100 s−1 threshold for neglecting the yield stress and the shear
thinning behavior of blood.

(a) (b)

(c)

Figure 3.26 – Mean shear rate in the IVC (a), reconstructed mean viscosity in the IVC (b), and recon-
structed mean shear stress in the IVC (c) using either a Newtonian ( ) or a Casson ( ) fluid model.
Results are taken across the undilated section of the vein, 2 cm before the outlet, at t′ = t − T = 0.555 s.

The staircase numerical data can be approximated by polynomial functions (dotted curves in
Figure 3.26a). While the shear rate for a Newtonian fluid varies linearly with the radial distance
( ), the corresponding distribution for the Casson fluid is better approximated with a cubic
function ( ). The two curves can be used to estimate the viscosity (Figure 3.26b) and shear
stress (Figure 3.26c) corresponding to the two models. The viscosity of the Casson model is
definitely larger than the constant viscosity of the Newtonian approximation, especially in the
central section. This larger viscosity is large enough to compensate for the smaller shear rate
shown in Figure 3.26a. As a result, the Casson model produces a significantly higher shear stress.
In particular, where the wall shear stress matters, it is therefore important to rely on the right
constitutive model and use a Casson model when appropriate.
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4.1 Modeling of the aortic valve.

Cardiac valves play a crucial role throughout the cardiac cycle as they ensure the one-way flow
of blood to and from the heart. Valves are passive structures that react to the dynamic pressure
variations created by the heart muscle contractions. Specifically, the aortic valve, situated between
the left ventricle and the aorta, controls the ejection of oxygen-rich blood from the heart and
prevents it from flowing back into the left ventricle [145].

The aortic valve has a semilunar shape and usually comprises three leaflets, which are thin
cusps connected to the aortic root (Figure 4.1). The primary sealing function of the valve is
provided by the complete coaptation of the three leaflets during diastole, effectively separating
the ascending aorta from the left ventricle. The leaflets tissue features a layered structure (ven-
tricularis, fibrosa, and spongiosa) and contains collagen fibers that are circumferentially aligned,
leading to an anisotropic mechanical response [73].

Figure 4.1 – Anatomy of the aortic root. Reproduced from Napgal et al. [126].
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The aortic root refers to the anatomical bridge between the left ventricle and the ascending
aorta. The three bulges of the aortic wall are named the sinuses of Valsalva. Two of the three
sinuses host the origin of the coronary arteries [29]. The vortices created in the sinuses are thought
to contribute to stress reduction on the aortic leaflets and to minimize the systolic pressure drop
across the aortic valve. The sinuses also serve as a support structure for the aortic valve and
provide space behind the valve leaflets when the leaflets are open during systole so that they do
not occlude the coronary ostia (ostia = opening) [40]. The distal part of the sinuses toward the
ascending aorta forms a tubular structure called the sinotubular junction, which separates the
aortic root from the ascending aorta.

4.1.1 State-of-the-art on aortic valve modeling.

Numerical modeling is emerging as a valuable tool for accessing physiological parameters that are
not directly measurable or observable. It can be used to assess heart valve performance in healthy
and pathological conditions, facilitate pre-operative planning, develop new designs for replacement
valves, and analyze blood flow patterns to guarantee the same functioning of the valve.

FSI-based heart models have been created to precisely simulate the complex motions of heart
valves as they open and close, capturing the fluid dynamics within the heart chambers. Fluid-
Structure Interaction (FSI) is particularly appropriate for modeling the dynamics of both native
and prosthetic heart valves, given the mutual dependence between the movement of the valves
and the pressure and flow fields within the heart chambers [77]. This interaction is vital, as the
hemodynamics are affected by the condition of the valves, and conversely.

Gao et al. [61] developed a FSI model of the full cardiac cycle, including valve features, left
ventricle contraction, nonlinear structural mechanics of valves, and the interaction of the fluid,
ventricular wall, and valve. Some modeling studies focus on the aortic valve and consider the
effects on the downstream large arteries: Hasan et al. [72] for instance successfully created a
patient-specific FSI model of aortic root and ascending aorta to be used to plan valve repair or
replacement surgeries. Fedele et al. [51] also created a model of the aorta that included the valve.
Cao et al. [25] published a study investigating the contribution of coronary blood flow to aortic
valve dynamics. Their results indicate that coronary flow decreases vortex development and affects
the Wall Shear Stress (WSS) distributions.

Several other studies aim at determining the causes of heart valve stenosis and the response
of valves to calcium buildup. Sadeghpour et al. [146] studied flow through a stenotic aortic valve
and found that the low orifice area resulting from incomplete aortic valve opening causes a jet of
fluid with high blood stresses. Cai et al. [19] also studied the mechanics of calcified aortic valve
stenosis. Their results show significant changes in valve elasticity, mobility, and orifice area due
to calcification, leading to changes in flow patterns.

Gharaie et al. [63] studied the nonlinear deformation of polymeric aortic valves using FSI. The
valve leaflets are very flexible, hence it is essential to study the leaflet motion as well as the fluid
dynamics of the complex flow through the valve. Research on bileaflet mechanical heart valves and
associated complications, such as valve dysfunction, tissue overgrowth, and thromboembolism also
employ FSI techniques. FSI techniques have, for instance, been used to simulate leaflet motion
and investigate the role of vorticity in platelet activation. Hedayat et al. [75] looked at the effect of
leaflet gap size of mechanical prosthetic heart valves on this mechanism. Their results show that
a larger gap leads to higher total activation, but also improved washout ability due to increased
flow velocity.

FSI models are also used to study the effects and dynamics of congenital bicuspid aortic valves.
Cao et al. [24] published studies in this area, determining the WSS profile and leaflet deformation

56



4.1. MODELING OF THE AORTIC VALVE

of normal tricuspid aortic valves and bicuspid ones, and also investigating aortic dilation: bicuspid
aortic valves result in abnormal aortic hemodynamics in areas with high dilation risk.

Although the intraventricular flow is three-dimensional by nature, it is a real computational
challenge to describe the complex geometry of the flow and its interaction with the heart valves.
Therefore, most numerical studies of aortic valve dynamics use simplified geometries, often with a
2D description of the aortic root, leaflets, and sinuses of Valsalva. Sometimes the sinus component
includes a portion of the ascending aorta and the two coronary arteries [97]. Although two-
dimensional approaches may not be realistic enough to analyze some physiological parameters
in great detail, especially in pathological situations, they are capable of capturing the main flow
characteristics. Therefore, they provide valuable insights into the dynamics that allow to improve
the general understanding of cardiac fluid dynamics. For example, Segarra et al. [156] used a
2D FSI model to analyze the operation of a stenotic valve compared to a normal valve. Kivi et
al. [97] studied the hemodynamic effects of calcification on the aortic root and coronary arteries
to identify potential sites of coronary stenosis in a two-dimensional healthy aortic valve model.

When physiologically accurate results are required, one can feed the model with patient-specific
image-based geometries of the aortic root, the left ventricle, and atrium. For instance, Hasan et
al. [72] built a realistic, three-dimensional anatomical model of the aortic root and ascending
aorta, using an anatomical geometry reconstructed from patient-specific Computed Tomography
(CT) angiography data. Gao et al. [61] also presented an integrated model of the mitral valve
coupled to the left ventricle, with the geometry derived from in vivo clinical magnetic resonance
images. Some studies, e.g., Halevi et al. [69], also considered the 3D geometry of the calcification
with patient-specific 3D calcification patterns obtained from CT images.

The various elements discussed in section 1.3.3 regarding FSI methods in general are all the
most relevant for modeling the dynamics of heart valves. Fully coupled models are crucial to
account for the opening and closing of the valve. A recent review of the different modeling
strategies of the dynamics of the aortic valve reported that 51% of the studies published before
2021 used a moving grid method (like Arbitrary Lagrangian-Eulerian (ALE)) while 38% used
a fixed grid method (like the Immersed Boundary Method (IBM)) [1]. ALE methods ensure
an accurate calculation of blood rheological properties and shear stresses near the blood leaflet
interface. However, the need for a constant remeshing is a challenging and expensive computational
step. For this reason, and because of the amplitude of the deformation undergone by the very thin
leaflets, the IBM is often preferred to the ALE approach. Gao et al. [61] for instance developed a
left ventricle two-way FSI model to simulate a complete cardiac cycle using the immersed boundary
method. Hasan et al. [73] also constructed physiologically realistic immersed boundary models of
the dynamics of the aortic root and ascending aorta. Lemmon and Yoganathan [105] used the
IBM approach to develop a three-dimensional FSI model to account for blood–tissue interaction in
order to simulate the leaflets kinematics of bioprosthetic valves. Fixed-grid methods have however
to interpolate the solution data near the blood leaflet interface, which consequently results in
imprecise calculation of important flow parameters such as wall shear stresses on the leaflets. It
was therefore concluded by Bavo et al. [10] that for two-dimensional aortic heart valve geometries,
the differences between ALE and IBM are unsubstantial, but that ALE face major grid quality
distortion when it is used in simulating three-dimensional geometry of the aortic valve.

The most significant challenge of mesh-based approach is the coaptation between the leaflets
during valve closure, where the flow domain is separated into two unconnected regions. Dabiri
et al. [37], for instance, investigated the effect of different designs of linear elastic leaflets of
bioprosthetic heart valves on the transvalvular gradients using ALE but, despite its influence on
the kinematics, the mutual coaptation between the leaflets was not modeled.
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Meshless methods have been able to counter the problems faced by grid-based FSI methods
in terms of accuracy and stability. These methods may significantly contribute to the improved
estimation of blood damage because they can more accurately model the blood particles compared
with conventional Lagrangian particle-tracking methods. Mao et al. [114] applied an implicitly
coupled FSI algorithm based on Smoothed Particle Hydrodynamics (SPH) to investigate the
leaflets dynamics of a transcatheter aortic valve. Shahriari et al. [158] extended this method to
investigate the accumulation of shear stresses on blood particles by simulating blood flow through
normal and dysfunctional bileaflet mechanical heart valves. So far, the meshless methods have
however been only occasionally applied to heart valve simulations.

To the best of our knowledge, the Particle Finite Element Method (PFEM) has never been
applied to analyze the dynamics of heart valves.

4.2 Two-dimensional model of the aortic valve.

In order to illustrate the capability of the PFEM to describe the dynamics of the ejection of blood
from the left ventricle, we consider here the simplified two-dimensional plane strain model of the
aortic valve shown in Figure 4.2. This geometry and the parameters listed in Table 4.1 are that
of Ariane et al. [3] and Sun et al. [172].
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Figure 4.2 – Geometry of the two-dimensional aortic valve with fluid domain ( ), solid domain ( ), and
boundary conditions (clamped ( ), FSI interface ( ), and no slip condition ( )). Inspired by De Hart
et al. [39].
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Parameters Values Units

Aorta radius Z 1.25 cm
Leaflet length L 1.6 cm
Leaflet thickness t1 0.05 cm
Sinus cavity radius R 2.15 cm
Aortic wall thickness t2 0.1 cm
Domain total length 6 cm

Table 4.1 – Geometrical parameters for the aortic valve simulations.

The fluid domain comprises the left ventricle, two sinuses, and the initial segment of the aorta.
The aortic valve is modeled as two flexible leaflets. In the real heart, the valve has three leaflets
that can open in their respective sinus cavity, with the left and right sinuses containing their own
coronary ostia.

The main objective of the model is to reproduce the interaction of the flow with the leaflets
and the opening/closing of the valve. With this objective in mind, and considering the much
larger rigidity of the peripheral walls, only the leaflets are considered as deformable.

Only a few models describe the behavior of the leaflets with complex constitutive models.
Sadeghpour et al. [146] used a Mooney-Rivlin material. Gao et al. [61] and Hasan et al. [72] mod-
eled the leaflets as a fiber-reinforced material to reflect the collagen fibers distributed throughout
the leaflets. Such complex approaches are necessary and appropriate in realistic geometries that
focus on the mechanical loading of the leaflets. However, the vast majority of previous models
of heart valves introduce extensive simplifying assumptions. The large rotations of the nearly
incompressible isotropic leaflets are indeed accompanied by small strains, so that the assumption
of linear elasticity according to Hooke’s law is considered as a reasonable assumption [63]. This
approach is used in the current study.

In light of the previous discussion about blood rheology, blood can be described as a Newtonian
fluid when it flows through the aortic valve. The pulsatility of the flow and the large velocity
shear largely support this approach. By the same token, however, the hypothesis of a laminar
flow implicitly made so far is no longer valid for the Reynolds number corresponding to a 1 m/s
flow through the valve, i.e.,

Re = ρf UZ

µ
= 3450 (4.1)

is larger than the commonly accepted threshold of 2300 for a laminar flow. If one takes into
account the fact that the flow is accelerated rapidly by the contraction of the ventricle and pushed
through a narrow inter-leaflet space, turbulent effects must be taken into account. In the absence
of a turbulence model, blood viscosity is artificially increased by a factor of 10 in the simulations
presented here to reflect the increase in momentum diffusion.

In some previous models of flow through the aortic valve, a time-dependent velocity profile is
prescribed at the inlet, while the outlet pressure is either kept constant or made to vary with time
[97, 128, 172]. This approach is inappropriate to capture the real mechanism behind the opening
of the aortic valve, which is controlled by the pressure difference between the left ventricle and
the aorta1.

1Sun et al. [172] incorrectly impose a velocity time series as input to their model, which is the one reported
by Scotti et al. [155] to describe the flow approaching an abdominal aneurysm, and is therefore unrelated to the
velocity upstream of the aortic valve.
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We chose to drive the model by imposing the temporal pressure variations shown in Figure 4.3
on both the ventricular and aortic sides. The boundary data are obtained from Nobari et al. [128].
This approach allows the processes responsible for opening and closing the aortic valve, as well
as the ejection of blood from the left ventricle into the sinuses, to be fully modeled. When the
ventricular pressure exceeds the aortic pressure during the contraction of the heart, the balance
of forces on either side of the leaflet drives its opening, while the leaflets close when the pressure
gradient is reversed.

Figure 4.3 – Time series of the inlet (ventricle) ( ) and outlet (aorta) pressures ( ) prescribed at the
open boundaries of the model domain. To compensate for the impact of the 2D geometry, the ventricular
pressure is modified to ensure that the valve resists the applied pressure difference ( ): the maximum
pressure difference between the aorta and the ventricle is 2 mmHg.

4.2.1 Limitations of the 2D approximation.

The simplification of the geometry associated with the 2D model comes together with an important
modification of the dynamics of the aortic valve. In the 2D model, the leaflets appear as curved
cantilever beams, i.e., they are supported only at their base where they connect with the heart
wall. A simple calculation reveals that such a thin two-dimensional leaflet would not be able to
resist the huge pressure difference between the sinus cavity and the left ventricle.

Deflection of a two-dimensional leaflet

The maximum deflection of a clamped beam (with free extremity) of length L, height t,
and transversal dimension e under a constant distributed load per unit length w is given by

Vmax = wL4

8EI
= 3pL4

2Et3 (4.2)

with the inertia I = et3/12 and w = pe, with p the pressure [115]. Considering the
numerical values of t = 0.5 mm, p = 100 mmHg, L = 1.6 cm, and E = 2 MPa, a maximum
deflection of about 5 m is obtained. This value of the Young’s modulus is a physiological
value reported by Ghasemi et al. [64] and Nobari et al [128].
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In reality, leaflets derive their stiffness from the fact that they are not flat but curved along
two axes, and are attached to at least a third of the valve perimeter. These aspects cannot be
reproduced in a two-dimensional approach. This has two important implications for the model.

• First, the artificially reduced resistance to deformation of the leaflets under a given pressure
difference must be compensated by artificially increasing their Young’s modulus. A value
of 107 Pa, much larger than the actual value of the constitutive material of the leaflets, is
therefore used in the simulations. This value has been set by trial and error to match the
observed outflow peak velocity.

• Second, even with such a large value of the Young’s modulus, the leaflet would not resist
the 100 mmHg pressure difference between the aorta and the left ventricle when the valve is
closed. Therefore, the boundary conditions are modified to clip the pressure difference and
prevent that the pressure within the sinus cavity exceeds the pressure on the other side of
the leaflet by more than 2 mmHg (Figure 4.3). This has little influence on the flow since
the two regions are disconnected when this clipping is activated.

Replacing the 2D model with an axisymmetric model would address both the above problems,
by replacing the two leaflets with a single one covering the entire valve perimeter. The strength
of this single leaflet would then be ensured by its axisymmetric geometry. Beside the resulting
artificially large strength, this solution poses other technical problems when the valve closes, since
the valve would then have to make contact with itself along the axis of symmetry, which is likely
to pose numerical problems because of the singularity on this axis.

The final choice of material parameters is reported in Table 4.2.

Parameters Values Units

Fluid density ρf 1050 kg/m3

Dynamic viscosity µ 0.038 Pa · s
Leaflets wall density ρs 1060 kg/m3

Leaflets Young’s modulus E 10 MPa
Leaflets Poisson’s ratio ν 0.45 -

Table 4.2 – Material parameters for the aortic valve simulations.

4.2.2 Other numerical considerations.

The initial PFEM mesh contains 4960 particles with an increased resolution near the leaflets
(Figure 4.4) to capture the larger velocity shear around the leaflets. The leaflets themselves are
discretized with a transfinite mesh consisting of 200 elements along each leaflet and 12 elements
across.

The model is integrated forward in time with a time step of 5 · 10−5 s that is necessary to
capture the delicate contact between the leaflets and to cope with the large velocity, exceeding
1.2 m/s, associated with the pulsed outflow from the ventricle. Instability develops at the open
boundaries when attempting to solve the problem with smaller time steps. With such a small
time step, it takes about 6 hours and a half to simulate one single heartbeat (= 0.85 s).

Unlike the study of arteries presented in the previous section, there is no need here for a
progressive application of boundary conditions. In fact, it is sufficient to start the simulations at
the moment when the pressure in the ventricle is equal to the pressure in the aorta and the valve
begins to open. At this point, pressure is uniform and velocity is naturally zero, so that initial
conditions compatible with the boundary conditions can be easily prescribed.
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Figure 4.4 – Initial PFEM mesh with 4960 particles. The resolution is increased by a factor 2 in the
vicinity of the leaflets.

Running the simulation for two cycles confirms that there is very little difference between the
first and second cycles, even at the initial time. Therefore, the solution computed during the first
cycle can be considered to be representative of the periodic solution.

The contact interactions between the two leaflets are handled using the sticking model imple-
mented in Metafor (penalty of 108 Pa and 0.7 · 108 Pa respectively for the normal and tangential
components). This contact model turns out to be necessary to avoid sliding of the two leaflets.
This model ensures that the tips of the two leaflets stick to each other when they touch and the
valves remain closed as long as the net normal force between is opposed to their outer normal
vector.

4.2.3 Flow through the aortic valve.

Snapshots of the flow through the aortic valve, as computed with the nominal parameters listed
in Tables 4.1 and 4.2, are shown in Figure 4.5. In spite of the many simplifying assumptions, the
model succeeds in reproducing the qualitative behavior of the aortic valve as well as some of its
quantitative aspects.

Initially 1 , the valve is closed as the pressure inside the left ventricle is less than that in the
aorta. There is no flow through the valve, nor through the aorta.

As the heart contracts, the valve opens when the pressure difference across the leaflets is large
enough to push them toward the sinus cavity 2 . Blood starts then to flow from the left ventricle
to the aorta.

The opening of the valve and the flow are very dynamic events, which produces a very pulsatile
flow 3 . In the Valsalva cavity, the velocity peaks at more than 1 m/s. This value is usually
reported for a normal healthy patient [205].

As the pulse progresses, vortices appear in the sinus cavity and a backflow develops along the
aortic walls 4 . The aortic sinus vortex is one of the most important and prevalent fluid dynamic
features in the aortic sinuses. It is known to play a crucial role in the context of sinus washout
and overall energy efficiency of the aortic valve system [74].

Combined with the decrease of the ventricular pressure, the secondary circulation contributes
to the progressive closure of the valve 5 . This, also, is in agreement with the in vivo observations
of the flow [148].
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1 2

3 4

5 6

Figure 4.5 – Pressure (background color) and velocity fields (arrows) at 6 successive moments of the
cardiac cycle: 1 t = 0.00 s, 2 t = 0.05 s, 3 t = 0.10 s, 4 t = 0.15 s, 5 t = 0.20 s, and 6 t = 0.30 s.
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With the closing of the valve, the flow from the heart toward the aorta stops while the vortices
are progressively damped 6 . The velocity progressively goes to zero during diastole before a new
cardiac cycle begins.

The model results are not directly applicable for estimating the volume of blood pumped into
the circulatory system with each heartbeat (the stroke volume), as the 2D model only provides
an estimate of the flow rate per unit length across the transverse dimension. Extrapolating the
2D results to a depth of 2Z = 2.5 cm, one comes out with a stroke volume of 34.4 mL, which is of
the right order of magnitude but a half of the physiological value of 70 mL [178]. This difference
can be attributed to the 2D geometry and the rather small 13 mm opening of the valve [185].

The rapid movement of blood through the constricted valve generates significant shear stresses
on the leaflets, and to a lesser extent, around the intersection of the sinus cavity and the aorta.
When the valve is fully open, the shear rate (γ̇ =

√
2 D : D) reaches 540 s−1 on the ventricularis

side (i.e., facing the ventricle) of the leaflets (Figure 4.6). The maximum appears at the tip of the
leaflets. While more quantitative estimates should be confirmed with an even higher resolution
modeling to better capture the large gradients in the vicinity of the leaflets, our results are in line
with the previous studies and show that the shear rate, and hence the wall shear stress, on the
fibrosa side (i.e., facing the aorta) of the leaflets and the sinus section behind them is considerably
lower and more dynamic. As reported by Moore et al [122], these areas are particularly prone to
calcification, especially if the vortices in the Valsalva cavity fail to adequately cleanse them.

Shear rate (1/s)

Figure 4.6 – Shear rate at the time of maximum opening of the aortic valve.

4.2.4 Modeling the effect of calcification.

As mentioned in chapter 1, calcification is one of the most recurrent causes of aortic valve diseases.
To illustrate how calcification can affect the normal functioning of the valve, the simulation de-
scribed in the previous section is repeated by adjusting the thickness t1 of the leaflets. Instead of
the nominal thickness of 0.5 mm, we consider two alternative values of, respectively, 0.75 mm and
0.85 mm. While these changes do not affect the results in any qualitative way, they increase the
flexural stiffness of the valves, which are therefore expected to be more resistant to the imposed
pressure gradient. Obviously, the same effect could also be modeled by increasing the Young’s
modulus of the material of the leaflets.

64



4.2. TWO-DIMENSIONAL MODEL OF THE AORTIC VALVE

Figures 4.7, 4.8, and 4.9 provide a quantitative comparison of the results obtained with the
baseline case and the two alternative simulations with thicker leaflets.

The effect of the increased flexural rigidity of the leaflets can first be observed in Figure 4.7
of the distance between the two leaflets as a function of time, i.e., of the opening of the valve.
This figure suggests that calcification will affect both the duration of the opening and its width.
In the nominal configuration, the valves remain open for about 0.28 s. This is about 33% of the
cardiac cycle (period T = 0.85 s), which is in agreement with experimental data for the normal
heart [128]. With the thicker leaflets, the time during which the valve is open decreases to 0.22 s
or even 0.20 s for the 0.85 mm-thick leaflets. At the same time, the width of the opening is also
strongly reduced by calcification. With the thickest leaflets, the maximum opening is reduced by
a factor 2, going from about 13 mm in the nominal run to 6.5 mm for the 0.85 mm-thick leaflets.

Figure 4.7 – Evolution of the opening of the valve with time for the nominal configuration with t1 =
0.5 mm ( ) and for two alternative configurations with thicker leaflets (t1 = 0.75 mm ( ) and t1 =
0.85 mm ( )).

The opening of the valve influences of course the flow rate into the sinuses of Valsalva (Fig-
ure 4.8). The decreased opening of the thicker leaflets goes with a reduction of the flow rate
through the valve. The maximum flow rate decreases and the flow occurs during a reduced period
of time. It should be noted, however, that the maximum flow rate is not reduced in proportion
to the reduction in valve opening. While the thickest leaflets show a maximum opening that is
about half of the opening in the nominal configuration, the corresponding maximum flow rate
nevertheless reaches 60% of that of the more flexible leaflets.

The reduction in both the maximum flow rate and the duration of the ejection phase for the
stiffer leaflets results in a large decrease in stroke volume, the volume of blood ejected with each
heartbeat (Table 4.3). Again, direct comparison of the raw numbers with physiological values is
difficult, but the results illustrate how calcification can have a serious impact on the heart ability
to pump blood throughout the body. Patients with calcification problems must compensate by
increasing the heart rate, which can lead to excessive fatigue and even more acute heart and
circulatory problems.
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Figure 4.8 – Evolution of the flow rate (per unit length of transverse direction) with time for the nominal
configuration with t1 = 0.5 mm ( ) and for two alternative configurations with thicker leaflets (t1 =
0.75 mm ( ) and t1 = 0.85 mm ( )).

t1 = 0.5 mm t1 = 0.75 mm t1 = 0.85 mm Units

1377.1 871.4 724.9 mm2

Table 4.3 – Stroke volume per unit thickness.

The data plotted in Figure 4.8 are computed by integrating the velocity field in the ventricle
along a vertical line between the inner attachment points of the leaflets. The first negative peaks
in the curves correspond to the small backward flow that occurs just before the valve closes. The
following oscillations during diastole reflect the movements of the leaflets that, although remaining
closed during that phase, oscillate in response to the variations of the pressure gradient and the
oscillating flow in the Valsalva cavity to which they are exposed. The small oscillations of the
closed leaflets set the fluid in motion inside the ventricle without contributing to any net blood
transfer between the disconnected ventricle and aorta. The thinner leaflets are of course more
sensitive to this phenomenon. It is unclear whether oscillations of this amplitude really occur in
the real heart or if they are largely influenced by the 2D simplification of the leaflets considered
in this simplified model.

The above discussion suggests that calcification has a proportionally stronger influence on
the opening of the leaflets than on the flow rate. As suggested by Figure 4.9, which shows the
evolution of the longitudinal velocity at a point located 0.5 cm downstream the center of the sinus
cavity, the decreased opening is partly compensated by a small increase of the maximum velocity.
This is of course because the pressure difference between the ventricle and the aorta remains the
same in all the simulations but the fluid is pushed through a smaller orifice when calcification
restricts the opening of the valve [130].

Clinical studies reveal that calcification of the aortic valve affects the hemodynamics inside the
aortic root such as the transvalvular pressure gradient and the wall shear stress on both sides of the
leaflets. Prior research has shown that variations in wall shear stress levels on the front and back
surfaces of leaflets play a role in calcification formation [97]. As calcification levels rise, WSS levels
increase on the front ventricularis surface, but decrease on the back fibrosa surface. Therefore,
the WSS gradient between the two surfaces intensifies, potentially triggering mechanobiological
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Figure 4.9 – Evolution with time of the longitudinal blood velocity 0.5 cm downstream the valve for the
nominal configuration with t1 = 0.5 mm ( ) and for two alternative configurations with thicker leaflets
(t1 = 0.75 mm ( ) and t1 = 0.85 mm ( )).

.

mechanisms that further promote calcification, thus perpetuating stenosis over time [2, 96].

Our results are consistent with these findings. The general distribution of the shear rate for
calcified leaflets is similar to Figure 4.6 but the the shear rate at peak systole on the ventricularis
surface increases from 540 s−1 for the 0.5 mm-thick leaflets, to 580 s−1 and 620 s−1 in the two
calcified cases.

4.2.5 About the influence of viscosity and turbulence.

The above results are obtained with a 10 fold increase of the viscosity in an attempt to account
for turbulent features. To explore the effect of this crude parameterization on the results of the
different runs, the nominal simulation is repeated here without this parameterization, i.e., using
the nominal value of blood viscosity (µ = 0.0038 Pa · s).

The time series of the width of the opening between the leaflets and the flow rate across the
valves are shown in Figures 4.10 and 4.11. The results suggest that the value of the effective
viscosity has little effect on these two parameters until the valve is about to close. At this time,
however, without any parameterization of turbulence, the distance between the two leaflets passes
through a small almost horizontal plateau (see Figure 4.10 at t = 0.2 s) when the symmetry of the
movement of the two valves is lost. Very energetic and asymmetric vortices develop in the sinus
cavity, forcing the two leaflets to move in a completely asynchronous manner ( 1 in Figure 4.12).
By chance, during this simulation, the two leaflets are pushed against each other at a later time
and the valve closes. The asynchronous movements of the two valves could however make them
flip into the ventricular region at different times without touching each other so that the valve
would not close. The vortex behind the leaflets remains very active throughout the diastole, with
a maximum velocity of 80 cm/s 2 . Such very energetic features are not expected in the healthy
heart, demonstrating the need for proper treatment of turbulence to obtain realistic results in the
model or a dramatic (and non affordable) increase of the spatial resolution to describe dissipation
mechanisms. The latter option would require a three-dimensional model of the aortic root as
turbulent eddies are essentially three-dimensional.

67



CHAPTER 4. AORTIC VALVE

Figure 4.10 – Time evolution of the opening of
the valve with ( ) and without ( ) parameter-
ization of turbulence.

Figure 4.11 – Time evolution of the flow rate (per
unit length of transverse direction) with ( ) and
without ( ) parameterization of turbulence.

1

2

Figure 4.12 – Velocity fields without parameterization of turbulence at two moments of the cardiac cycle:
1 t = 0.225 s (before the closure of the valve) and 2 t = 0.355 s (after the closure of the valve).
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ANEURYSM

5.1 Modeling of aneurysms with FSI.

Considering the interdependence of structural and fluid domains, Fluid-Structure Interaction (FSI)
approaches are frequently used to investigate the dynamics of abdominal aortic and cerebral
aneurysms. These approaches provide crucial qualitative and quantitative insights for assessing
the various risk factors linked to aneurysms.

Many studies demonstrate the potential of numerical modeling for predicting the progression
and risk of rupture of Abdominal Aortic Aneurysms (AAAs). In these studies, geometry appears
as one of the most important factors. It has been demonstrated that the shape of an AAA, the
thickness of the arterial wall, and the degree of asymmetry are major factors in determination
of the arterial wall stress distribution [141, 155]. Drewe et al. [46] also highlight the impact of
iliac bifurcation angles on rupture risk. The geometry contributes therefore significantly to the
mechanical response of AAA and its rupture risk.

Although some studies resort to simplified geometries, many rely on patient-specific models
reconstructed from clinical images. Campobasso et al. [22], for instance, use 4D Magnetic Res-
onance Imaging (MRI) datasets acquired on a patient while Mesri et al. [117] build their model
geometry from Computed Tomography (CT) angiographic data. Rostam-Alilou et al. [144] em-
phasize that individualized models based on patient-specific properties show significant differences
from a generic model, with the patient-specific model demonstrating significantly altered stress at
the site of the aneurysm compared to the generic model.

Mesri et al. [117] emphasize the importance of proper AAA material model and wall thickness,
with isotropic material and uniform wall thickness significantly underestimating Wall Shear Stress
(WSS) compared to anisotropic variable wall models. Nonlinear behavior of the artery wall is also
reported by Rissland et al. [143] and Xenos et al. [201] as an important factor for robust and
accurate FSI simulations of AAA risk.

While exploring the influence of geometry with two patient-specific abdominal aneurysm data,
Canchi et al. [23] also point toward the importance of biomechanical parameters, such as wall shear
stress, for accurate treatment decisions. Stergiou et al. [169] examine how hematocrit affects AAA
progression. They show that low values of hematocrit result in lower WSS values, which in turn
promote plaque formation on the aneurysmal wall.

Numerical studies with FSI have also been used to focus on specific connective tissue disor-
ders: simulations with a hyperelastic modeling of the aortic wall have compared wall shear stress
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between Marfan syndrome patients, i.e., with altered elasticity of the aorta, and healthy patients.
The findings revealed lower wall shear stress in Marfan syndrome patients, suggesting vascular
remodeling in areas affected by aneurysms [140].

Different studies suggest the potential of coupled fluid-structure models for planning patient-
specific surgical interventions. A study of Helthuis et al. [76] for example studied the efficacy of
partial occlusion for the treatment of Cerebral Aneurysm (CA). A similar approach has also been
used to optimize stent placement and assess its functionality after surgery [90].

Cerebral aneurysms have also been the focus of much modeling work. Hajirayat et al. [68] for
instance employed FSI methods to explore the impact of cerebral aneurysm neck shape on rupture
risk and hemodynamics, revealing significant differences between circular and elliptical neck cases
(Figure 5.15 for neck definition). Other studies have identified arterial bifurcations as the most
susceptible sites for intracranial aneurysm formation [144].

5.2 Numerical modeling of an axisymmetric aneurysm.
In this section, we consider the interaction of blood flow with a compliant axisymmetric abdominal
aneurysm wall, with the objective of analyzing the influence of aneurysm size and wall thickness
heterogeneity on the mechanical stresses and fluid dynamics.

The aneurysm is assumed to be fully developed with an axisymmetric shape shown in Fig-
ure 5.1. The geometry is directly inspired from Scotti et al. [155] (Figure 5.2). While the in-
troductory discussion suggests that more realistic geometries should actually be considered, such
simulations are beyond the scope of the current exploratory study.

Figure 5.1 – Geometry of the axisymmetric abdominal aortic aneurysm.

The fluid domain is characterized by a circular cross section with a non dilated diameter r
and a maximum radius R at the midsection of the AAA sac. More precisely, the radius ϕ(y) is
assumed to vary with the longitudinal coordinate y according to

ϕ(y) =


r + (R − r)

2

[
cos

(
πy

6r

)
+ 1

]
if − 6r ⩽ y ⩽ 6r

r if |y| > 6r

(5.1)

70



5.2. NUMERICAL MODELING OF AN AXISYMMETRIC ANEURYSM

In
le

t

O
ut

le
tR

r

LL∗ L∗

ClampedFSI Interface t

X

Y

Figure 5.2 – Geometry of the axisymmetric abdominal aortic aneurysm with fluid domain ( ), solid
domain ( ), and boundary conditions (clamped ( ) and FSI interface ( )).

The total length of the aneurysm is L = 12 cm, which is about the actual length of the
abdominal aorta, but the model is extended upstream and downstream with L∗ = 2 cm segments
to avoid spurious oscillations between the inlet/outlet boundary conditions and the moving walls.
The geometrical parameters considered in the different simulations are listed in Table 5.1.

Parameters Values Units

Length L 12 cm
Length extension L∗ 2 cm
Vessel radius r 1 cm
Aneurysm radius R 2 - 2.5 - 2.75 cm
Thickness t 0.15 cm

Table 5.1 – Geometrical parameters for the abdominal aortic aneurysm simulations. The actual domain is
extended upstream and downstream by 2 cm to avoid numerical artifacts and instabilities at the boundaries
of the fluid domain.

The model is forced by prescribing the same velocity and pressure time series at the upstream
and downstream boundaries of the fluid domain as those considered for the straight artery (Fig-
ures 3.14 and 3.15). These describe a full cardiac cycle between a diastolic pressure of 70 mmHg
and a systolic pressure of 115 mmHg. The average velocity at the inlet is assumed to peak at
about 30 cm/s shortly before the maximum systolic pressure.

The time-averaged velocity prescribed at the inlet is about 6 cm/s. The mean Reynolds number
is therefore 332 and, as observed by other authors, the flow can be assumed to be laminar in the
abdominal aorta [54, 155]. In line with the discussion of the flow in a straight artery presented
in chapter 3, blood is assumed to behave as a Newtonian fluid. The Womersley number and the
anticipated shear rate are large enough to ignore any yield stress and shear thinning behavior
of blood. The aortic segment is fixed at its two extremities, which accounts for the complete
tethering of the aorta by the surrounding tissues and organs.

On account of the similar dynamics and forcing data, the numerical parameters identified
through the convergence study in section 3.3.3 for analyzing flow through a straight artery are
also used for simulating flow through an aneurysm. This results in an initial count of 4509 PFEM
particles, with a resolution doubled near the fluid-structure interface. The segment of the artery
wall in contact with the flow is represented by a transfinite mesh composed of 300 × 12 linear
quadrangular elements (Figure 5.3).

5.2.1 Constitutive laws of the aortic aneurysmal wall.

As stated in the introduction, the choice of an appropriate constitutive law is an important factor
for the successful modeling of the deformation of the wall of the AAA.
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Figure 5.3 – Part of the initial mesh of the fluid and solid subdomains. The fluid and solid elements
have similar sizes on the fluid-structure interface. The resolution in the fluid domain is increased along the
interface.

Several studies consider that the aortic wall behaves as an isotropic, linear, and elastic solid.
Scotti et al. [155], for instance, make this assumption with a Young’s Modulus of 2.7 MPa and
a Poisson’s ratio of ν = 0.45. These values are reported as the average characteristics for the
aneurysmal abdominal aorta obtained by linearization of the stress-strain curve described by Di
Martino et al. [41].

A Young’s modulus of 2.7 MPa may seem significantly high compared to the reference value
of 0.675 MPa mentioned in section 3. Indeed, the presence of AAA correlates with a marked
increase in arterial wall stiffness. The formation of abdominal aortic aneurysms involves changes
in the aortic wall connective tissue. A key histological characteristic of aneurysmal tissue is the
breakdown of elastic fibers and the reduced presence of elastin as the aneurysm enlarges. This
degradation predominantly occurs in the media layer, which begins to thin and lose its structured
arrangement of elastic fibers, resulting in the deterioration of elastin and a rise in rigid collagen [11].

It is however widely agreed that aneurysm tissue should be modeled as a nonlinear hyperelastic
material. Many such models have been proposed, with some of which also attempting to incor-
porate anisotropic behavior to reflect the underlying structure of the wall. Nevertheless, there is
considerable inconsistency in the constitutive models used in the literature.

Different studies use the strain energy density function [95, 163, 172]

W = C10(Ī1 − 3) + C20(Ī1 − 3)2 + K(J − 1)2

2 (5.2)

with the bulk modulus K and with the constants derived from the experimental data of the
aneurysmal abdominal aorta provided by Raghavan et al. [139] (C10 = 0.174 MPa and C20 =
1.881 MPa). Apart from the fact that these authors do not specify whether they use reduced
invariants or not, they incorrectly refer to a two-parameter Mooney-Rivlin type material when
they are actually using a Yeoh model with C3 = 0.

Other studies implement a true two-parameter Mooney-Rivlin law (3.33) but use the same
experimental constants as Raghavan et al. (C1 = 0.174 MPa and C2 = 1.881 MPa) even though the
parameters in the two models do not have the same interpretation and cannot be interchanged [4,
151]. The two constants in the two-parameter Mooney-Rivlin equation can be used to compute
the shear modulus G as

G = 2(C1 + C2) (5.3)
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Using the above constant and a Poisson’s ratio ν = 0.45, one comes out with a Young’s modulus of
about 12 MPa. Although there is obviously considerable patient-to-patient variety in the stiffness
of the aorta, such a huge value is never reported in experimental studies. The inconsistent use
of constitutive laws and experimental parameters leads therefore many authors to work with an
over-realistic stiffness.

To address the uncertainties in the constants and the model, we describe here a sensitivity
study exploiting the data found in the literature and the implementation of the true Mooney-Rivlin
model available in Metafor.

We consider three different values for the Young’s modulus of the aortic wall, namely 0.675 MPa,
1.35 MPa, and 2.7 MPa. The smallest value characterizes the relatively flexible healthy aortic wall
while the largest constant is typically reported for the fully developed aneurysm. These constants
are further injected in both a linear elastic model and Mooney-Rivlin material. Since the Young’s
modulus is not sufficient to define the two constants of the Mooney-Rivlin constitutive equation
but merely defines the sum of the two coefficients through Eq. (5.3) (using ν = 0.45), we further
introduce three variants of this constitutive equation using different values of parameter C1. The
parameters values for the M1 variant are adapted from Valencia et al. [188] for the corresponding
equivalent Young’s moduli. The parameters values for M2 and M3 are introduced to explore the
range of variability for the two parameters. The parameters constants are set proportionally for
the different Young’s moduli. The different sets of constants are listed in Table 5.2.

Young’s Modulus E [MPa] M1 [MPa] M2 [MPa] M3 [MPa]
C1 C2 C1 C2 C1 C2

2.7 (High) 0.584 -0.1185 0.3 0.165 0.1 0.3655
1.35 (Mid) 0.292 -0.0592 0.15 0.0827 0.05 0.1828

0.675 (Low) 0.146 -0.0296 0.075 0.0413 0.025 0.091

Table 5.2 – Mooney-Rivlin parameters.

These different model parameters are used to simulate the deformation of an aortic abdominal
aneurysm in a model of the wall only. This Metafor model uses the same geometry of the aneurysm
introduced above but does not describe the actual fluid dynamics nor the fluid-structure interac-
tion. The observed pressure variation (Figure 3.15) is therefore applied as a uniform loading to
the model. In addition to varying the material constants, we also consider two sizes of aneurysm,
i.e., a small aneurysm with R = 2 cm and a larger aneurysm with R = 3 cm.

The results of these sensitivity studies are shown in Figures 5.4a and 5.4b as time series for
the maximum displacement of a 1.5 mm-thick aortic wall in response to the physiological blood
pressure fluctuations. The figures also show, for comparison purposes, the corresponding results
obtained with a linear elastic model.

As expected, the maximum radial displacement of the aortic wall increases as the Young’s
modulus decreases. As already observed when studying the straight artery, in section 3.3.6, the
results are however not inversely proportional to the stiffness of the artery, especially for the more
flexible models. This indicates that geometric nonlinearities play a significant role in the problem.
The figures further show that the results with different variants of the Mooney-Rivlin materials
are consistent with the corresponding deformations computed with a linear elastic model: they
coincide almost perfectly during the initial 0.3 seconds during which the pressure loading is applied
gradually and the displacement of the wall is small. The different models produce however different
results in the more flexible models, when the radial displacement exceeds 3 mm (which is twice
the initial thickness of the aortic wall).
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(a) R = 2 cm. (b) R = 3 cm.

Figure 5.4 – Influence of the constitutive law of the wall (of Table 5.2) on the aneurysm deformation during
the cardiac cycle (linear elastic ( ), Mooney-Rivlin M1 ( ), M2 ( ), and M3 ( )) for different values
of the Young’s modulus (low ( ), mid ( ), and high ( )). The curve for the Mooney-Rivlin model
M1 with the low Young’s modulus ( ) does not cover the two cardiac cycles. The simulation stopped
due to unbounded deformation.

For the stiffest wall (E = 2.7 MPa), characteristic of the fully developed aneurysm, the
Mooney-Rivlin model M3 ( ) yields maximum displacements that are only 3.5% and 3.8%
smaller than that of the linear elastic model ( ), respectively for R = 2 cm and R = 3 cm.
They both produce deformations of about 1 mm, for the smaller aneurysm, and up to 2 mm for
the 30 mm aneurysm that are in agreement with the results reported in the literature [155]. The
small difference between the different results suggest that a linear elastic model may be sufficient
here. The Mooney-Rivlin formulation will nevertheless be used in the following to account for
possible effects of more complex stress-strain distributions than those considered in this simple
example using a uniform loading of the aortic wall. The results suggest however that the precise
choice of C1 and C2 has little influence, in spite of the large range of variation considered in this
sensitivity study.

In addition to providing a sensitivity analysis to material parameters, the results presented
in Figures 5.4a and 5.4b highlight some important particular aspects of aneurysm progression
and resistance to rupture. The displacement varies more than proportionally with the aneurysm
radius. Consequently, the more flexible aortic wall does not resist the physiological pressure range
encountered in the artery if a large aneurysm is present. This is why Figure 5.4b does not present
any result for the different models corresponding to E = 0.675 MPa. The simulations produce
unbounded large deformations and stop rapidly. An aneurysm of this size would not be stable if
its Young’s Modulus was only 0.675 MPa. The large stiffness observed in developed aneurysms
appears therefore not merely fortuitous or a negative side aspect of aneurysm formation. It is
imperative to prevent rupture. More generally, our results suggest that the stability of an aneurysm
depends upon the interplay between its radius and the aortic wall rigidity. From a dynamic point
of view, they suggest that it is necessary for the wall material to develop a sufficiently rapid
biological response to the development of the aneurysm by replacing the softer elastin by stiffer
collagen to avoid larger deformations and rupture. Fortunately, an aneurysm with a Young’s
modulus of 2.7 MPa can grow safely up to a radius of 3 cm, at least if no other singularity nor
abnormal stress occur.
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5.2.2 About the boundary and initial conditions.

The simulation of flow in the aneurysm requires both appropriate initial and boundary conditions
to describe the cardiac cycle. Some of the routines necessary for a proper handling of these are
however not available in the current implementation of PFEM3D, which asks for some tricks to
get the simulation running.

First of all, the simulation requires an appropriate initialization procedure. To avoid insta-
bilities and spurious oscillations, the simulation must start from velocity and pressure fields that
are nearly in equilibrium. Since the numerical model does not include any option to restart a
simulation from previously computed fields, other than those that can be described as analytic
functions of the space coordinates, the flow simulation is initiated with zero pressure and velocity
fields. A constant non zero pressure field would be appropriate for the flow model but not for the
aortic wall since this would be hit by a sudden and discontinuous in time pressure wave where a
progressive application of the loading is required.

The initialization of the simulation of the flow through the aorta from homogeneous initial
conditions has two aspects. First, one must gradually increase the background pressure from 0 to
the level of 70-115 mmHg. This can easily be done with a ramp function applied to the pressure
field prescribed at the downstream boundary. Because of the amplitude of the jump required to
reach the physiological level, the transition time must be large to ensure a smooth start of the
simulation. In practice, a transition time of 0.4 s is considered. The model is run for two cardiac
cycles with the results extracted from the second heartbeat.

Most importantly, however, one must also ensure that progressive pressure and velocity waves
develop in the artery. This second aspect of the initialization is intimately linked with the bound-
ary conditions at the upstream and downstream boundaries of the aorta segment. Even if the
time series of the inlet velocity and outlet pressure are obtained from accurate in vivo observation,
i.e., are real data, they must not only be compatible with each other but also with the dynamics
computed by the model to produce meaningful results that are not blurred by numerical artifacts.
If one tries to prescribe inconsistent upstream and downstream boundary conditions, pressure
waves will be generated and bounce from one boundary to the other. This problem is particularly
significant if dissipation mechanisms are too small to provide a natural/physical damping of these
waves. Such oscillations can already be seen with small amplitude in Figure 3.22 in the straight
artery results but are amplified with the current geometry because of the increased discrepancy
between the observation data and the dynamics of the model (Figure 5.5). The oscillations exhibit
here a period of 0.089 s, which appears as an eigenfrequency of the system. Attempts to get rid
of these spurious oscillations by shifting the signals prescribed at the inlet and outlet (from -0.005
s to +0.01 s) or to extend the model domain (by up to 6 cm) did not produce any improvement.
Similar oscillations are also clearly present in the results presented by Scotti et al. [155] even five
cycles after initializing the model. The proper solution to this problem requires the development of
dedicated boundary algorithms allowing for the outward propagation of perturbations generated
in the model domain, which would be the subject of a thesis on its own.

5.2.3 Flow in a 2.5 cm aneurysm.

We consider first a R = 2.5 cm aneurysm with a constant wall thickness of 1.5 mm. The fluid is
Newtonian and the artery wall is described with a Mooney-Rivlin model. The material parameters
are listed in Table 5.3.

The velocity field at three different moments of the cardiac cycle is depicted in Figure 5.6. As
blood pulses in the artery 1 , the peak velocity reaches 42 cm/s in the inlet and outlet segments
that are not affected by the aneurysm (Remember that the boundary data plotted in Figure 3.14

75



CHAPTER 5. ANEURYSM

Figure 5.5 – Pressure evolution at the inlet of the artery during two consecutive cardiac cycles. The
ramp during the initial 0.4 s is introduced to ensure a smooth start of the simulations with the progressive
loading as pressure increases from zero to the physiological values. During the second cycle, after t = 1 s,
the spurious oscillations are related to waves reflecting on the open boundaries of the model domain.

Parameters Values Units

Fluid density ρf 1050 kg/m3

Dynamic viscosity µ 0.0038 Pa · s
Arterial wall density ρs 1200 kg/m3

Arterial wall Young’s modulus E 2.7 MPa
Mooney-Rivlin parameter C1 0.584 MPa

Table 5.3 – Material parameters for the abdominal aortic aneurysm simulations.

are for the section averaged velocity.). By continuity, the velocity is much smaller in the aneurysm
itself because of the increased cross section. The flow gently follows the contours of the artery
and is essentially unidirectional. When the flow decreases, some weak vortices do however appear
occasionally both in the entrance and exit cross sections of the aneurysm, where the wall curvature
is greatest ( 2 and 3 ). A small counter-flow corresponding to the dicrotic notch is also observed
at time t′ = t − T = 0.5 s 2 .

Wall stresses follow the evolution of pressure with time. The maximum values are therefore
observed at the peak systolic pressure. The main effect of the internal pressure is to produce
circumferential stresses and a smaller contribution to the longitudinal stresses. The maximum
hoop stress reaches 2.49 105 Pa while the maximum von Mises equivalent stress is 2.23 105 Pa.
The distribution (Figure 5.7) is symmetric around midsection with the maximum occurring around
the inflection points of the wall, approximately one aneurysm radius away from the middle section.
This pattern and the characteristic values closely align with the results of Scotti et al. [155] who
study the same configuration and report a maximum equivalent von Mises stress of 2.38 105 Pa.

During the cardiac cycle the maximum displacement of the wall reaches 1.5 mm in the radial
direction around the center of the aneurysm with little variation around this spot, which is also
consistent with Scotti et al. [155] although their distribution shows the maximum displacement
shortly off-centered.
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Figure 5.6 – Velocity field in the 2.5 cm aneurysm at the peak systolic flow ( 1 t′ = t − T = 0.32 s) and
two subsequent moments during diastole ( 2 t′ = 0.50 s and 3 t′ = 0.70 s).

5.2.4 Influence of the initial size of the aneurysm.

To go further with the analysis, we consider two other aneurysms with initial radii of 2 cm and
2.75 cm. All the other parameters are unchanged (thickness of the wall, boundary conditions,
material parameters). The qualitative response is not modified so that we concentrate here on
the quantitative differences between the different simulations. Results are shown in Figure 5.8.

Table 5.4 shows the maximum hoop stress, maximum equivalent von Mises stress, and the
range of displacement at mid-aneurysm for the three sizes of the aneurysm. As expected, all the
parameters increase with the size of the aneurysm.
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Figure 5.7 – Circumferential (hoop) stress at systolic pressure of the 2.5 cm aneurysm. The time of
the snapshot is indicated on the inlet velocity ( ) and outlet pressure ( ) time series (Figures 3.14
and 3.15).

Initial radius R [cm] σzz [105Pa] σVM [105Pa] ∆r [mm]
min max

2 2.02 1.799 0.72 1.12
2.5 2.49 2.230 0.89 1.50
2.75 2.77 2.496 1.02 1.66

Table 5.4 – Sensitivity of key parameters to the size of the aneurysm: maximum hoop stress (σzz),
maximum equivalent von Mises stress (σVM), and displacement in the middle section of the aneurysm (∆r)
(minimum displacement at diastolic pressure and maximum displacement at systolic pressure).

The increase in hoop stress and equivalent von Mises stresses with the radius of the aneurysm
reflects the usual balance of forces in a cylindrical thin-walled vessel under pressure, i.e.,

σhoop = Rp

t
(5.4)

(where R is the radius of the vessel and t is the wall thickness). The aneurysm with the larger
radius must resist a larger resultant force and is therefore the seat of large stresses. However, the
stress grows slightly faster than the size of the aneurysm. This is most likely related to nonlinear
geometric effects, including wall curvature in the radial plane, and the influence of fluid flow.
This increase is potentially dangerous because it could induce greater deformation of the arterial
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Figure 5.8 – Circumferential (hoop) stress at systolic pressure of the 2 cm aneurysm (left) and the 2.75 cm
aneurysm (right).

wall, with even greater stresses. However, the maximum deformation in the middle section is
seen to increase less than proportionally with the radius of the aneurysm, which ensures that the
aneurysm remains stable, at least with the stiffness considered in the current simulations.

5.2.5 Three-layer model.

The wall of arteries and veins are essentially three-layer structures with each layer playing a
distinct role in preserving vascular homeostasis and regulating the vascular response to stress or
injury [168] (Figure 5.9). The inner layer, or intima, is formed of a thin layer of endothelium, which
plays an important role in the regulation of blood pressure and substance transfer. It covers the
luminal surface of blood vessels. The middle layer, or media, consists mainly of circumferentially
aligned smooth muscle cells and elastic fibers and collagen. The outer layer, or adventitia, consist
of an extracellular matrix scaffold of collagen fibers (oriented longitudinally as wavy bundles) with
fibroblasts, nerve fibers, and immune cells. Tiny blood vessels (vasa vasorum) are also present in
the wall of large vessels to nourish the wall cells [178]. The wall thickness and the proportion of
the structural components in each layer vary among large, medium, and small-caliber arteries and
veins. Large arteries (diameter > 1 cm) contain a thick media layer and higher amount of elastin.
Large arteries contain more elastin than collagen (1.5×) tissue to stretch and recoil during the
systole and diastole thereby propelling blood forward. The amount of elastin decreases in small
arteries which in turn contain more smooth muscle cells [20].

Many studies simplified the aorta as a single-layer structure, with a uniform thickness and
uniform material properties throughout the vessel. The three layers have however different me-
chanical properties and contribute thus differently to the vessel stiffness. We therefore refine the
previous description of the artery wall by introducing a more realistic three-layer structure. The
mechanical behaviors of the intima, media, and adventitia are described by the Mooney-Rivlin
model but, following Simsek et al. [163], the Young’s modulus of the three layers are assumed
to be in the ratio 1/3/2. The thickness and model constants for the three layers are reported in
Table 5.5.
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Intima
Media
Adventitia

Figure 5.9 – Schematic view of the three lay-
ers of blood vessel wall.

Layer Relative E C1 C2
thickness MPa MPa MPa

Intima 0.20 1.174 0.254 -0.052
Media 0.47 3.522 0.762 -0.155

Adventitia 0.33 2.238 0.484 -0.098

Table 5.5 – Thickness, equivalent Young’s modulus, and
Mooney-Rivlin parameters for the three layers of the
aneurysm wall.

The three layers deform together as a single solid and exhibit similar strains (ignoring the
impact of geometric nonlinearities), i.e., they work in parallel and the equivalent Young’s modulus
of the three-layer structure is the average of the individual moduli weighted by their relative
thickness. The parameters listed in Table 5.5 ensure that the three-layer wall exhibits the same
stiffness as the single-layer model considered initially. The main results of this three-layer model
are reported in Table 5.6. They can be compared with the results of the single-layer model listed
in Table 5.4.

Initial radius R [cm] σzz [105Pa] σVM [105Pa] ∆r [mm]
min max

2 2.554 2.311 0.73 1.15
2.5 3.193 2.865 0.93 1.52
2.75 3.600 3.220 1.11 1.70

Table 5.6 – Key parameters of the tree-layer models of the aneurysm: maximum hoop stress (σzz),
maximum equivalent von Mises stress (σVM), and displacement in the middle section of the aneurysm (∆r)
(minimum displacement at diastolic pressure and maximum displacement at systolic pressure).

The refinement of the model does not influence the deformation of the aortic wall. The radial
displacement in the midsection increases by less than 2% with the introduction of the three-layer
structure, which is clearly not significant from physiological and mechanical points of view. The
difference could also be linked to the increased spatial resolution used in the three-layer model.

The most interesting aspect of the refined model is related to the stress distribution. The
results listed in Table 5.6 reveal much larger hoop stresses and equivalent von Mises stresses,
about 25% larger, than in the model using only one layer.

A quick examination of a cross section through the middle of the arterial wall shows that
the maximum hoop stress occurs in the thick and stiff media layer, which provides the greatest
contribution to counteracting pressure forces (Figure 5.10). The intima, on the other hand, does
not contribute significantly to the resistance of the wall. Its primary function is known to be the
modulation of interactions between the blood and the artery wall, making its role more biological
than mechanical.

Because of their different composition, the three layers exhibit different mechanical properties.
In particular, the risk of rupture in each of these layers should be examined with respect to the
ratio of the actual stress to the intrinsic ultimate stress of that layer.
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Figure 5.10 – Cauchy hoop stress (nodal values) variation along the wall for the 2 cm ( ), 2.5 cm ( ),
and 2.75 cm ( ) aneurysms. Data are taken in the radial direction, at the mid of the aneurysm sac,
at the time of maximum hoop stress. Results correspond to the three-layer model ( ) and single-layer
model ( ).

5.2.6 Aneurysm initiation and stability.

The dynamics of aneurysm proceeds at two different timescales. So far, we have considered the
movements of the artery along the cardiac cycle. The initiation and progression of aneurysms
proceed however with a longer timescale characterizing the biological transformations of the wall
vessels. Aneurysms initiation can be caused by an initial weakness in the blood vessel wall, which
may be present from birth in some cases, a high blood pressure also resulting in damage and
weakening of blood vessels, atherosclerosis, or other diseases resulting in the weakening of the
blood vessel wall [149]. The proper description of the corresponding mechanisms requires specific
models of the evolution of the damage of the wall over periods of months and years.

There is a natural interplay between the models at the short and long timescales. Models of the
cardiac cycle can describe the mechanical stress to which the cells of the artery walls are exposed,
including the Wall Shear Stress (WSS) and the cycle of loading/unloading. These parameters are
influenced by the geometry of the aneurysm and the stiffness of the artery wall. The latter are
determined by the biological response occurring at the longer timescale.

In this section, we do not consider the longer timescales but touch upon two aspects of this
two-timescale analysis. Figure 5.11 shows the Time-averaged Wall Shear Stress (T-WSS) and the
maximum WSS computed in the three-layer model of the 2.75 cm aneurysm considered in the
previous section. The results indicate a reduction of these parameters by a factor of three in the
aneurysm with respect to the initial and terminal sections. The small values of the wall shear
stress (T-WSS < 0.4 Pa) experienced by the endothelial cells in the sac of large scale aneurysms are
known to create an environment that is favorable to the deposition of plaque and atherosclerosis
[112]. This kind of result can be used as an input to a longer timescale model describing the
evolution of atherosclerosis on the artery wall.

The information on wall shear stress provided by numerical models is valuable because wall
shear stress cannot be measured in vivo. Most estimates rely indeed on Poiseuille’s law to calculate
wall shear stress from blood velocity measured by echo Doppler ultrasound. This is, of course,
a crude approximation because it ignores local dynamic and geometric effects, and assumes a
constant and fully developed flow.
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Figure 5.11 – Time-averaged wall shear stress ( ) and maximum wall shear stress ( ) along the
artery segment (for the 2.75 cm three-layer aneurysm) computed using a Newtonian model ( ) and a
Casson ( ) fluid model (τy = 0.0035 Pa and µ∞ = 0.0038 Pa · s).

From a methodological point of view, the results also suggest that the constitutive equation
used to describe the blood rheology matters. While the hoop stress and deformation of the
aneurysm are insensitive to the choice between a Newtonian or a Casson fluid model, the time-
averaged and maximum WSS values computed with the Casson fluid assumption are, respectively,
22% and 13% higher than the corresponding results computed with a Newtonian model. Given
the clinical significance of WSS in atherosclerosis diagnosis, the use of the more realistic Casson
fluid model is therefore recommended when assessing the stress acting on endothelial cells.

As already mentioned in section 5.2.1, we suggest that the stability of the aneurysm depends
on the appropriate increase of the stiffness of the artery wall to compensate for the initial problem
responsible for the creation of the aneurysm. To illustrate this claim, we first consider two sets of
simulations of a straight artery with a spatially variable thickness of the wall.

The heterogeneity of the wall, especially its thickness, is known to be a significant factor in the
risk of AAA rupture. Accurately assessing thickness in patient-specific CT images is challenging
due to calcification, thrombus, and indistinct image definition between the inner and outer wall
surfaces. However, experimental sampling of wall specimens has revealed that the wall is indeed
non-uniform, thinning in response to pulsatility and the progressive expansion of the aneurysm
sac [155, 192]. We consider here local thinning as a potential cause of aneurysm initiation.

In the first two models, the wall thickness is assumed to decrease from the nominal value of
1.5 mm at the two extremities of the aortic segment to a local minimum of 1 mm in its center
section. The flow is then modeled as previously with either a 0.675 MPa Young’s modulus,
characteristic of the unperturbed artery wall, or with a higher value of 2.7 MPa that is generally
measured in aneurysm walls.

The results shown in Figure 5.12 illustrate the impact of the stiffness of the artery wall on
the initiation of the aneurysm. If the local thinning of the artery is not compensated by an
increase of its Young’s modulus, the artery wall experiences significant deformations. A maximum
radial displacement of 4.20 mm is computed here. If, however, biological remodeling occurs
and the Young’s modulus increases thanks to the replacement of elastin by collagen, such large
deformations can be avoided. Here, a maximum of only 0.52 mm is obtained with the stiffer
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wall. The deformation not only decreases on account of this physiological adaptation but also the
maximum hoop stress. In Figure 5.12, this stress component peaks at 0.17 MPa for the adapted
artery while the hoop stress reaches 0.33 MPa in the more flexible aorta. These results clearly
demonstrate the relevance of the adaptation of the stiffness of the artery to mitigate the influence
of a local thinning.

Figure 5.12 – Deformation and hoop stress in a straight artery segment with a local decreased thickness
of 1 mm in the central section at the peak systolic pressure. The upper figure is computed with a Young’s
modulus of 0.675 MPa, while the lower one shows the behavior of the stiffer wall (E = 2.7 MPa).

Reducing the wall thickness to 0.75 mm in the central section leads to even more disastrous
outcomes (Figure 5.13). A stiffer artery, with a modulus of elasticity E = 2.7 MPa, can withstand
systolic blood pressure without pathological deformation or stress. However, a more flexible artery
(E = 0.675 MPa) forms a significant bulge, experiencing both extensive deformation and stress.
Owing to the Poisson effect, the wall thickness reduces even more, increasing the hoop stress and
ultimately causing the aneurysm to rupture.

5.3 Rupture of aneurysms.
A comprehensive understanding of the different factors contributing to the propagation of the
aneurysm is crucial for the appropriate clinical handling. The surgical criteria for elective AAA
repair must carefully consider the risk of rupture against the risk of the repair procedure. Surgery
presents indeed an in-hospital mortality rate of about 3–5 % for open repair and 1–2 % for en-
dovascular repair [186]. Clinicians therefore face the challenge of determining when the risk of
AAA rupture outweighs the risks associated with the repair.

The size of the aneurysm is a universally recognized factor to forecast rupture. For abdominal
aortic aneurysms, the European Society for Vascular Surgery recommends surgery at a maximum
aortic diameter of 55 mm for men and 50 mm for females and patients with increased probability of
rupture [57, 121]. The American Heart Association identifies age, gender, hypertension, smoking,
and family history as factors that must be considered when assessing the pertinence of a surgical
operation [180].

Size is not the whole story: 13% of AAAs with a diameter smaller than 50 mm rupture
while 60% of AAAs with a diameter greater than 50 mm remain stable during the patient’s
lifetime [38, 57]. Although easy to use in practice, these statistics suggest that the size of the
aneurysm is probably not the sole useful criterion for risk of rupture.

In addition to the diameter, the expansion rate of an aneurysm is a significant factor in
assessing the risk of rupture. An expansion rate exceeding 10 mm per year is considered critical
for an abdominal aortic aneurysm. However, the expansion rate might not always be available for
clinical assessment due to the requirement for historical patient data [57, 121]. Ideally, the decision
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Figure 5.13 – Deformation and hoop stress in a straight artery segment with a local decreased thickness of
0.75 mm in the central section at four successive moments of the cardiac cycle: 1 t = 0.395 s, 2 t = 0.445 s,
3 t = 0.465 s, and 4 t = 0.475 s.
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to repair an aneurysm should not be guided by maximum transversal dimension and expansion
rate alone, but rather by a more reliable criterion associated with the actual rupture potential of
the patient-specific artery. Although not directly measurable in vivo, stresses on the aneurysmal
wall are believed to be a better rupture risk index and offers better data for surgical evaluation
than size and growth rate [52, 70]. As illustrated in the previous section, the highest stress can
indeed greatly vary despite identical maximum diameter and similar blood pressure. The wall
of an aneurysm is a living and metabolizing structure, able to add and reinforce itself [163].
Enlargement does not necessarily imply increasing the risk of rupture.

The use of peak wall stress as a potential predictor of AAA rupture has been explored in
several studies. Raghavan et al. [139], for example, found that the peak wall stress for AAAs
which either ruptured or were symptomatic was significantly greater than the peak wall stress
in electively repaired or asymptomatic AAAs. It is therefore a superior measure than maximum
diameter for predicting patients with an unfavorable outcome. The authors also report that the
location of peak wall stress is not the point of maximum diameter, but in the posterolateral part
of the AAA, which coincides with the area of rupture in patients.

The actual risk of rupture depends on the ratio of wall stress to the estimated local wall
strength, which defines the Peak Wall Rupture Index (PWRI) [164]. Wall strength does not only
vary from patient to patient but also significantly within the same aneurysm. Therefore, wall
strength must be carefully evaluated on a patient-specific basis to accurately predict the rupture
potential of individual aneurysms [70, 190, 194]

Many numerical studies use the von Mises equivalent stress in the abdominal aneurysm as
rupture criterion [155, 175]. However, the use of this comparison value seems to be dictated more
by ease of use and simple adaptation of fracture criteria for metallic materials than by arguments
linked to the mechanical study of biological tissues. The use of the peak principal stress seems to
be much more appropriate to estimate where and when rupture will occur, as reported by many
studies [52, 53, 195].

5.3.1 Numerical modeling.

The specific implementation of Metafor used in this work allows the definition of different rupture
criteria and the explicit modeling of this rupture [137]. In Metafor, rupture can also be deemed
to occur when any component of the stress tensor, its average value, the maximum value over all
the Gauss points in the element, or at a single Gauss point is greater than a critical value. In line
with the above discussion, rupture of the artery wall is assumed here to occur when the greatest
principal component of the stress tensor in a given element exceeds a given threshold, on average
over the different Gauss points of the considered element.

When the rupture criterion is reached, the corresponding element is simply deleted from the
discretization and the deformation and stress fields are updated accordingly. The corresponding
change in geometry is taken into account in coupled fluid-structure simulations by extending the
FSI interface with the new external nodes created by deleting the ruptured solid finite elements.
In the same move, the fluid elements that no longer have a solid counterpart are transformed into
free surface elements. Then, it is checked which solid node doesn’t have an equivalent on the fluid
side and it is added on the fluid side. PFEM nodes can also be removed in this process.

In addition to the definition of the rupture criterion, the coupling code between the fluid and
solid parts requires a couple of adjustments to account for rupture. First, for technical reasons,
in the current implementation, the FSI interface must be adjusted to encompass the entire solid,
since fluid-solid contact is no longer limited to the inner surface of the solid. Once the arterial wall
is ruptured, blood can flow along the outer surface of the artery. Second, the simple mechanism
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described in the previous paragraph asks for a complete matching between the fluid and solid
elements along the FSI interface (Figure 5.14). The discretizations of the two subdomains must
therefore be adapted. Thanks to the matching discretizations, the mapping of displacement and
surface forces on the fluid and solid sides is straightforward.

Figure 5.14 – Matching fluid and solid meshes. The fluid and solid meshes share the same set of nodes along
their common boundary. Since consistent displacements are prescribed through the coupling algorithm,
shared nodes move in a consistent way, which simplifies the interpolation.

It turns out that the most important factor for a successful fracture simulation is that the
finite elements inside the solid should be approximately (in 2D) square elements with a side of the
same order of magnitude as the characteristic size of the fluid elements. Since interior elements
are likely to be exposed, the discretization of the fluid and the solid must match not only along
the initial FSI boundary, but also within the two subdomains.

In this section, the feasibility of this methodology is demonstrated for two different geometries.

5.3.2 Rupture of a 2D cerebral aneurysm.

As a first demonstration of the capability of the code to model the rupture of a blood vessel,
we consider the 2D plane strain model of a cerebral aneurysm schematized in Figure 5.15. The
geometry describes a semi-circular aneurysm on the side of a cerebral vessel and is adapted from
Sun et al. [172] (so called cerebral berry aneurysm). The real dimensions used by Sun et al. [172]
are reported in Table 5.7.

Such a 2D model is greatly simplified as it fails to capture the real balance of forces present
in 3D configurations. Specifically, it does not account for the dominant component of the stress
tensor, the hoop stress, and how it varies with the local radius of a blood vessel. Consequently,
this model should be regarded as a tool model to demonstrate the modeling of rupture. We
therefore feel free to introduce more simplifications that make the model further depart from the
real problem.

While it was advocated above that the rupture criterion should be based on the largest principal
stress, the equivalent von Mises stress is considered here in this preliminary study. In practice,
rupture of an element is assumed to occur when the average equivalent von Mises stress over the
Gauss points exceeds 0.2 MPa.

No slip boundary conditions are applied on the straight outer boundary of the vessel and on
the FSI interface (Figure 5.15). The fluid model is forced by prescribing the inlet velocity and
the outlet pressure. Starting from rest, the flow is allowed to develop for 0.2 s until a velocity
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Figure 5.15 – Simplified cerebral berry aneurysm geometry with fluid domain ( ), solid domain ( ), and
boundary conditions (clamped ( ), FSI interface ( ), and no slip condition ( )).

Parameters Values Units

Length L 28.8 mm
Width Z 3.6 mm
Height H 1.6 mm
Wall thickness t1 0.55 mm
Aneurysm thickness t2 0.3 mm
Aneurysm radius R 3.6 mm

Table 5.7 – Geometrical parameters for the cerebral berry aneurysm simulations.

of 45 cm/s is reached in the main segment of the vessel. A linear increase of pressure is then
prescribed via the outlet boundary condition. A peak of 100 mmHg is reached at time t = 0.5 s.

A hypoelastic linear model of the walls of the vessels is used with E = 5 MPa. Since the
simplified 2D geometry does not allow for hoop stresses to balance the internal pressure, the
non-dilated part of the vessel wall is fixed on its outer boundary. While the whole upper wall is
considered in the solid model, only the aneurysm region is therefore allowed to deform under the
internal pressure and flow.

The model lacks the right features to predict where rupture will occur. We therefore rely on
the work of Crompton et al. [36], who analyzed the location of rupture in 289 cerebral aneurysms.
In this work, the observed aneurysms are divided lengthwise from the origin to the top of the
artery into three equal thirds. The proximal third adjacent to the parent artery is called the neck,
the middle third is the body, and the distal third is the apex. Rupture has been observed to occur
predominantly through the apex of cerebral aneurysms. Figure 5.16 shows the typical pattern of
a ruptured cerebral aneurysm.

To ensure that the model describes the rupture of the aneurysm at a physiologically meaningful
location and not in the regions where the fixed boundary conditions are applied to the solid, the
wall thickness is increased along the straight part of the vessel and at the base of the aneurysm.
In contrast, a local weakening of the aneurysm wall is simulated by introducing a 25% decrease
in wall thickness where rupture is reported in clinical observations.

Figure 5.17 shows the results of the simulation. Figure 5.18 shows the initial flow in the blood
vessel with a well developed flow in the straight part and a vortex flushing the aneurysm region.
The reduced thickness around the apex can be seen to induce a local maximum of the equivalent
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Figure 5.16 – Clinical observation of a ruptured cerebral aneurysm [71].

von Mises stress 1 . When blood pressure increases, the rupture threshold is first reached in the
corresponding element, which is therefore deleted 2 . Blood is then accelerated through the hole
in the vessel by the very large pressure gradient existing between the inner and outer regions.
Blood is ejected at a very high velocity that quickly exceeds 5 m/s. At the same time, the stresses
in the artery wall decrease sharply as the pressure inside the aneurysm drops 3 .

The steep pressure gradient between the ends of the vessel and the aneurysm causes a signifi-
cant increase in flow velocity in the straight portion of the vessel. The boundary condition on the
velocity imposed at the entrance of the cerebral artery limits the flow rate, so the blood rushes
away from the downstream boundary toward the aneurysm and the hole in it.

The rupture of the aneurysm separates the two parts of the wall, which loses its stiffness
and deforms significantly as the two parts move apart at approximately 3 m/s (see velocity field
in Figure 5.19). This rapid movement creates significant stresses at the base of the aneurysm,
resulting in a new, somewhat artificial rupture at this point in the last subfigure 4 .

5.3.3 Rupture of an axisymmetric abdominal aortic aneurysm.

Building on the success of the first rupture simulation described in the previous section, we return
here to the modeling of the axisymmetric abdominal aneurysm described earlier in this chapter
(Fig. 5.2).

Although real aneurysms often have a more complex, truly 3D geometry, the axisymmetric
model provides a fair description of many of the features of real aneurysms [154]. However,
axisymmetric rupture of an aneurysm is much less realistic because it implies that the two parts
of the vessel are completely separated when rupture occurs. In general, rupture occurs around
some weak point in the arterial wall.

Despite its inherent limitations, the axisymmetric model provides a much more realistic frame-
work than the strictly two-dimensional model considered previously. Of particular significance is
the ability of the model to represent the balance of forces by accounting for the dominant hoop
stress in the artery wall and the dependency of this stress component on the radius of the de-
formed vessel. A 2 cm aneurysm with a uniform wall thickness and a Mooney-Rivlin model
(C1 = 0.584 MPa, C2 = −0.1185 MPa, corresponding to E = 2.7 MPa) of the artery material is
considered.
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1

2

3

4

Figure 5.17 – Deformation and rupture of a cerebral berry aneurysm at four successive times: 1 t =
0.4780 s, 2 t = 0.4785 s, 3 t = 0.4910 s, and 4 t = 0.4955 s. Rupture occurs in the apex region of the
aneurysm.
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1

Figure 5.18 – Velocity field in a cerebral berry aneurysm at time t = 0.4780 s (subfigure 1 of Figure 5.17).

4

Figure 5.19 – Velocity field in a cerebral berry aneurysm at time t = 0.4955 s (zoom on the hole of
subfigure 4 of Figure 5.17).

As indicated in section 5.2.3, the Cauchy stress tensor in an axisymmetric model comprises
only the components σxx, σyy, σxy, and σzz, with the hoop stress σzz taking much larger values
than the other components and acting out of plane with respect to the three other components.
As a result, it is the greatest principal stress to be used in the rupture criterion. In this section,
we consider that rupture occurs when the hoop stress reaches a value of 0.18 MPa on average over
the integration points of an element. Note that this value does not have a true clinical meaning
but is used here for demonstration purposes. In practice, the accurate modeling of rupture would
require the knowledge of the wall strength, which as reported in the introduction to aneurysm
rupture, must be evaluated on a patient-specific basis. This critical value is somewhat arbitrarily
chosen for the sole purpose of highlighting the fracture phenomenon, but is nevertheless of the
same order of magnitude as the peak stress threshold of 0.28 MPa reported by Vorp et al. [194]
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Rupture of the axisymmetric aneurysm is illustrated in a dedicated simulation similar to the
numerical experiment carried out with the cerebral aneurysm in the previous section. The flow
is allowed to develop in the blood vessel during the initialization phase and pressure is increased
gradually until rupture occurs. In order to improve one of the aspects of the cerebral aneurysm
simulation, the boundary conditions are modified to avoid constraining the velocity in the inlet
section and allow the corresponding inflow to increase when rupture occurs. The model is forced
by imposing the evolution of pressure at both the inlet and the outlet. A pressure signal gradually
increasing to a value of 100 mmHg is prescribed, but with a phase shift of 0.004 s between the
inlet and outlet sections. This describes the propagation of a progressive wave along the artery.

The deformation, rupture, and outward bleeding of the aneurysm simulated under this forcing
are shown in Figure 5.20. The second subfigure reveals that rupture does not occur where the
diameter of the aneurysm is maximum, but around an inflection point of the aneurysm 2 . This
clearly reflects the stress distribution already observed in section 5.2.3 and in Figure 5.7. Contrary
to the numerical experiment with the cerebral aneurysm, nothing is done here to trigger the
rupture of the artery wall at this location. This provides an interesting validation of the model.
The results are in agreement with the experimental study carried out by Doyle et al. [45]. By
analyzing the location of the rupture of abdominal aortic aneurysms, they also observe that
rupture occurs around an inflection point of the aneurysm sac and not in the middle section. This
can also be observed in Figure 5.20.

The occurrence of rupture on the distal part, rather than the proximal part, indicates that
while the stress distribution around the middle section is roughly symmetrical, it is not perfectly
so, displaying a slight asymmetry due to the dynamics of blood flow within the artery.

The significant pressure difference across the artery wall causes blood to be ejected at approx-
imately 3 m/s through the ruptured element 3 . Concurrently, pressure within the artery near
the leak decreases, and this pressure gradient relative to the inlet region causes a swift increase
in blood flow within the artery. Approximately 3 ms post-rupture, the velocity at the inlet region
doubles, surpassing 1 m/s, resulting in a rapid influx of blood from the upstream region into the
aneurysm.

With the drop of blood pressure, the forces on the artery wall also decrease sharply, which
can be observed on the hoop stress distribution. The later increase of the hoop stress observed in
subfigure 4 while blood continues to be ejected through the hole is a numerical artifact 4 . The
sudden rupture of the artery wall creates a negative pressure wave that propagates through the
model domain. Because the inlet pressure is prescribed by the boundary condition, the expansion
wave bounces on this boundary and is reflected as a compression wave that affects the whole
domain by artificially increasing pressure in the artery.
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1

2

3

4

Figure 5.20 – Deformation and rupture of an axisymmetric abdominal aneurysm at four successive times:
1 t = 0.1085 s, 2 t = 0.1090 s, 3 t = 0.1120 s, and 4 t = 0.1135 s (with zoom on the hole with velocity
field). Blood flows from left to right.
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Conclusions.

The aim of this work was to demonstrate the possibilities offered by the Particulate Finite Element
Method (PFEM) and the modeling of fluid-structure interactions in the context of the study of
the cardiovascular system. This objective is achieved by studying a series of problems ranging
from blood ejection from the heart through the aortic valve, blood flow in healthy arteries and
veins, and the dynamics of an abdominal aortic aneurysm including its ultimate rupture. From
the author’s knowledge, it is the first time that the PFEM is applied to problems of this kind.

While chapter 2 provides a stand-alone introduction to the PFEM3D and Metafor codes and
their coupling strategy in the framework of FSPC, this work has deliberately attacked the problems
not merely from a purely numerical point of view, but rather from an application point of view.
This approach is indeed thought to provide more relevant insights into the real potential of the
PFEM to aid the understanding of phenomena related to blood circulation.

The third chapter provides an extensive analysis of the constitutive equations used to describe
the rheology of blood and the mechanics of artery walls. On the one hand, the chapter shows
how the non-Newtonian behavior of blood (with shear thinning and yield stress) can be taken
into account using a Casson model. The capabilities of PFEM3D have been augmented by the
implementation and verification of this model. On the other hand, the various constitutive laws
used in the literature to describe the complex mechanical behavior of artery walls are also presented
in this chapter.

After an initial demonstration of the ability of the coupled model to describe the propagation of
a pressure pulse in an axisymmetric elastic artery and its verification against the Moens-Korteweg
equation, the pertinence and influence of the different relevant constitutive laws available in the
codes were investigated. A realistic pulsatile flow in a straight artery of 2 cm diameter was studied
and used for this purpose.

The results show that blood in large arteries behaves as a Newtonian fluid and that there is
no need to resort to a Casson-type constitutive equation for such flow. This result is due to two
reasons. The high shear rates encountered in this type of flow mean that the apparent viscosity is
virtually constant. The non-stationary and even pulsatile nature of these flows also implies that
viscosity plays a relatively minor part. Simulations of the flow in the much less dynamic inferior
vena cava show however that the Casson model has a significant influence when the shear rate
and the Womersley number are small.

The choice between a Hookean, Neo-Hookean, or Mooney-Rivlin model of the arterial wall
also proved to have little effect on the displacement of the wall. However, the results suggest that
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modeling the elastic behavior of the wall could have an influence on the wall shear stress exerted
by the fluid, which is known to be a very relevant parameter for the onset and propagation of
atherosclerosis.

The fourth chapter focuses on the modeling of a two-dimensional plane strain aortic valve.
While the simplification of the geometry associated with the 2D model comes with an important
modification of the dynamics of the valve, the model succeeds in reproducing the qualitative
behavior of the ejection of blood from the left ventricle and the opening and closing of the aortic
valve as a result of the pressure difference between the left ventricle and the aorta. The effect
of calcification has been introduced in the model by increasing the thickness of the leaflets. The
results of the corresponding simulations show a good qualitative agreement with previous studies.
Calcification impacts the heart ability to pump blood throughout the body by decreasing the
opening of the valve and the duration of the ejection phase, which has a significant impact on the
stroke volume.

The dynamics of the abdominal aortic aneurysm is addressed in chapter five. Models of
increasing complexity are considered, using either a simple linear elastic model or a Mooney-
Rivlin constitutive equation of the aortic wall, with uniform or space varying properties of the
wall. In spite of the limitations of the axisymmetric approach, this study provides very valuable
information about the necessary adaptation of the properties of the aortic wall to compensate
for the occurrence of a local defect. The local thinning of the wall can trigger an instability of
a straight artery segment, with large deformations and, ultimately, rupture of the aneurysm if
the Young’s modulus of the arterial wall does not increase to compensate for the initial defect.
There is a clear nonlinear geometrical effect behind this instability. Any increase of the local
radius of the artery goes with an increase of the hoop stress, which triggers further elongation of
the artery wall. Such large deformations and instability can be avoided if biological remodeling
occurs, and the Young’s modulus increases thanks to the replacement of elastin by collagen. These
findings, along with the identification of regions susceptible to atherosclerosis, hold great promise
for accurately assessing the risk of aneurysm rupture and making decisions regarding the always
risky surgical interventions.

Finally, the ability of the code to describe the rupture of an aneurysm has been demonstrated
with two different geometries. In particular, we modeled the rupture of a cerebral aneurysm at its
apex and showed that, in line with clinical and experimental results, the axisymmetric abdominal
aneurysm is more likely to rupture around an inflection point.

Perspectives.

The various models developed in this study highlight the potential of PFEM3D and Metafor, and
of their coupling in the FSPC framework, to enhance our understanding of hemodynamics and
biomechanical processes. This offers significant promise for diagnosing cardiovascular conditions
and developing new therapeutic methods that could improve patient care. However, there are still
numerous limitations that constrain the pertinence of the results and the practical application of
these numerical tools in a clinical setting.

A first set of useful or necessary improvements are related to the numerical tool itself.

• As illustrated by the simulation of the opening of the aortic valve, some physiological flows
are turbulent and therefore require a proper modeling of the corresponding phenomena.

Simple zero-equation models are unsuitable due to the extensive separated regions and sig-
nificant curvature effects present in turbulent blood flow modeling. Although it will require
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more computational time, incorporating a two-equation k − ϵ model into PFEM3D would
enhance the model versatility.

Alternatively, considering that blood flows are only weakly turbulent, a shift towards Large
Eddy Simulations (LES) might be considered. This approach would demand higher spatial
and temporal resolutions, along with the adoption of Smagorinsky-type modeling for sub-
grid scales.

• The different simulations also emphasize the need to improve handling of boundary condi-
tions. Most of the developments and applications of PFEM3D addressed either very viscous
flows or flows that were not driven by the boundary conditions. Blood flows represent a
completely different framework in which open boundary conditions play a significant part
in the dynamics.

The ability of the code to cope with signal propagating through the model domain and
radiating to the outside is of particular importance. A first objective, therefore, should be
to implement radiation boundary conditions allowing disturbances generated in the model
domain to leave the region of interest without bouncing on the boundaries and spoiling the
computed solution. There is a vast literature about such treatments in many application
fields of fluid mechanics and electromagnetism. Some of the solutions developed in these
contexts (e.g., sponge layer with a local artificial increase of the viscosity to damp outgoing
signals [82]) should be implemented in PFEM3D.

A second objective is to give the user more flexibility in the treatment and definition of
boundary conditions. The flow in the aorta, for instance, is not limited to a simple pro-
gressive wave but is also influenced by reflection occurring downstream. It would therefore
be interesting to couple PFEM3D to simplified models of the rest of the circulatory system.
A common strategy reported in several studies is to couple the boundary condition with
a Windkessel model, i.e., a lumped model of the circulation [195]. The implementation of
Windkessel model as downstream boundary conditions in artery modeling has demonstrated
the possibility to reproduce patient-specific flow data. By adding resistance and compliance
at the distal vasculature, aorta models equipped with a Windkessel model can prevent back-
flow, especially during diastole when the ventricle is relaxed and there is no pressure driving
the blood flow [67, 123].

• Blood flow simulations can run for hours, even in 2D, and a significant part of the compu-
tation time must be invested in the initialization of the model. In this context, it would be
very beneficial to provide the whole model system (PFEM3D, Metafor, and their coupling
through FSPC) with an option to restart a simulation and not to start every simulation from
zero or from initial conditions that can be expressed analytically.

Considering their large numerical cost, 3D simulations have not been carried out in this work.
While no specific difficulties are anticipated, except the computational load, three-dimensional
models of the aortic valve, of arteries and aneurysms would of course allow to increase the fidelity
of the simulations with the real physiology and open the way for the practical use of numerical
simulations by the clinician.

Three-dimensional models would include the real geometry of blood vessels, with their tor-
tuosity, curvature, details of branching, and local variations of the material properties of their
wall that have been found to impact physiologically relevant parameters like the wall shear stress.
In the future, simple 3D models and, even more preferably, actual patient-specific geometries
reconstructed from imaging data should also be considered.
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Such next generation models should also take into account the anisotropic behavior of the
biological tissues of the cardiovascular system. In order to account for the realistic material
properties of the aortic wall, aneurysmal tissue, and aortic leaflet tissue, the use of a nonlinear,
anisotropic, viscoelastic material property should be investigated. This means modeling and
taking into account the non-collagenous matrix with embedded collagen fibers.

Most importantly however, the model should be extensively validated against experimental
data before being applied to tackle real patients issues. Such data are for instance particularly
necessary to validate the constitutive laws of biological tissues and the corresponding rupture
criteria. When numerical aspects of the codes are validated and robust models are available, an
interdisciplinary approach with engineers and physicians must therefore be set up to address the
relevance of the results and make further progress.
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APPENDIX A
MANUAL

This appendix provides a brief and pragmatic guide to set up the PFEM3D parameters in the
framework of FSPC, the environment for flow-structure interaction problems. While it aligns with
the May 2024 version, please be aware that the codes and the corresponding parameters may be
subject to change. This guide is also not exhaustive.

PFEM3D requires a .msh as input file with the geometry and the initial set of fluid nodes.
This file can be generated using Gmsh [62].

The input parameters of PFEM3D, the initial conditions, and the boundary conditions must
be provided in a .lua file that can be structured as follows.

PFEM3D Problem parameters.

• Problem.verboseOutput = true / false

Controls the output of the solver. Can be used to get detailed information about the
operations carried out by the solver (iterations, remeshing, residues, ...).

• Problem.autoRemeshing = false

Controls whether remeshing is performed by PFEM3D. Must be set to false for FSI problems
since remeshing is controlled by FSPC and not by PFEM3D.

• Problem.simulationTime = value1

Duration of the simulation.

• Problem.id = IncompNewtonNoT / Boussinesq / IncompNewtonT / Conduction /
Bingham / Casson / WCompNewtonNoT / WCBoussinesq / WCConduction

Selection of the fluid model: incompressible Newtonian fluid, incompressible Newtonian
fluid with thermal effects under Boussinesq assumption, incompressible Newtonian fluid
with thermal effects, heat equation only (no movement equation), incompressible Bingham
fluid, incompressible Casson fluid, weakly compressible Newtonian fluid, weakly compressible
Newtonian fluid with thermal effects under Boussinesq assumption, and weakly compressible
with heat equation only.

1With FSPC, any value can be used here without affecting the simulation. This parameter is controlled by FSPC
through the main.py file. A common practice is to set this parameter to math.huge.
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• Problem.axiSymmetric = true / false

Defines a 2D axisymmetric problem if set to true.

Mesh parameters.

• Problem.Mesh.remeshAlgo = CGAL / CGAL_Edge / GMSH / GMSH_Edge /
CGALConstrainedChew

Sets the algorithm used for remeshing. GMSH_Edge and CGALConstrainedChew are slower.

• Problem.Mesh.boundingBox = {xmin, ymin, xmax, ymax}

Defines the bounding box containing the region in which the flow is modeled. PFEM nodes
outside the bounding box are deleted at run time. In 3D, a third coordinate must be added.

• Problem.Mesh.exclusionZones = {xmin, ymin, xmax, ymax}

Defines one or more exclusion zones. PFEM nodes inside the boxes are deleted at run time.
In 3D, a third coordinate must be added.

• Problem.Mesh.alpha = value

α parameter of the α-shape algorithm. Generally chosen in the range from 1.0 to 1.3. A small
value of α will tend to separate weakly connected parts while a large value can artificially
link subdomains that should be treated as separate.

• Problem.Mesh.omega = value

ω parameter controlling the introduction of new nodes where elements become too large.
Generally chosen in the range 0.7-0.9. Decreasing ω will tend to introduce more new nodes
where the mesh size becomes large.

• Problem.Mesh.gamma = value

γ parameter controlling the suppression of nodes where nodes get too close to each other.
Should not be greater than 0.5. Increasing γ will tend to delete more nodes.

• Problem.Mesh.gammaFS = value

Same as γ but for deleting nodes on free surfaces. A smaller value than γ is expected to
keep more nodes on free surfaces. Parameter is not relevant if the flow has no free surface.

• Problem.Mesh.addOnFS = true / false

Allows nodes to be added on a free surface. Tends to create mass conservation issues.

• Problem.Mesh.hchar = value

Characteristic size of the mesh. Should be similar to the characteristic size of the initial
mesh. If hchar is too large, many nodes will be deleted at the first iteration and the initial
node density will be lost.

• Problem.Mesh.Problem.Mesh.localHcharGroups = list of physical groups (optional)

List of physical groups used to control local variations of the characteristic size of the hchar
parameter when a non-uniform mesh is used. When used, a computeHcharFromDistance
function must be provided to define the rules for local adjustment of hchar.
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• function Problem.Mesh.computeHcharFromDistance(x,y,z,t,dist)

User-defined function used for the local adjustment of hchar and the generation of non-
uniform mesh. This function should return the value hchar as a function of the nominal
value and the distance dist to the physical groups listed in the localHcharGroups.

• Problem.Mesh.minHeightFactor = value

Minimum size of elements deleted between solid parts come close to each other. Avoids
creation of (near) flat triangles by Delaunay triangulation.

• Problem.Mesh.keepFluidElements = true / false

Prevents/allows deleting elements in the core of the fluid domain.

• Problem.Mesh.deleteFlyingNodes = true / false

Prevents/allows deleting "flying nodes", i.e., nodes ejected from the fluid through the free
surface that are not connected to any element.

• Problem.Mesh.deleteBoundElements = true / false

Prevents/allows deleting elements with all their nodes on a boundary. Should be set to
true only for incompressible flows, to prevent elements with all nodes with constrained
movements to block the structure.

Extractors.

• Problem.Extractors[i].kind = GMSH / Global / Point / MinMax

Defines extractor number i to write intermediate results on disk. Possible choices are GMSH
to save the whole field, Point for the value of a field at a set of points, Global for global
information, and MinMax to store the minimum/maximum value over the whole domain.

• Problem.Extractors[i].whatToWrite = p / u / v / w / velocity / magV / mass /
volume / ke

Defines the field or set of fields to be extracted by extractor i, i.e., pressure, one or more
velocity components, velocity vector, magnitude of the velocity, total mass, total volume,
total kinetic energy (total parameters to be used with Global extractor only).

• Problem.Extractors[i].timeBetweenWriting = value1

Time between writing of intermediate results.

• Problem.Extractors[i].outputFile = name

Name of file on disk (.msh or .txt file according to the type of extractor to save results).

• Problem.Extractors[i].writeAs = NodesElements

Sets GMSH type extractors to store results as nodal values.

• Problem.Extractors[i].minMax = min / max

For MinMax type extractor, indicates whether to return maximum or minimum of the selected
field.

• Problem.Extractors[i].points = {x, y}

For Point type extractor, lists the coordinates of the points at which the value of the field
is extracted.
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Material parameters.

• Incompressible Newtonian fluid: mu (dynamic viscosity), rho (density), gamma (surface ten-
sion).

• Incompressible Casson fluid: mu (dynamic viscosity), rho (density), gamma (surface tension),
tau0 (yield stress), mReg (coefficient of regularization of the constitutive law).

• Incompressible Bingham fluid: mu (dynamic viscosity), rho (density), gamma (surface ten-
sion), tau0 (yield stress), mReg (coefficient of regularization of the constitutive law).

• Weakly compressible Newtonian fluid: mu (dynamic viscosity), rhoStar (density), gamma
(surface tension), K0 and K0p (constants of the Tait-Murnaghan equation).

Solver parameters.

• Problem.id = PSPG / FracStep

Selects solver for incompressible fluid: Pressure Stabilizing Petrov Galerkin is a mo-
nolithic solver (it has a unique matrix for velocity and pressure). Fractional step considers
two different matrices (one for pressure and one for velocity) and it adapts one with respect
to the other. The second is quicker but lacks the stability of PSPG.

• Problem.Solver.adaptDT = true / false

Allows/prevents an adaptive time step. Should always be set to true, except for testing.

• Problem.Solver.maxDT = value1

Problem.Solver.initialDT = value1

Maximum and initial time steps of integration.

• Problem.Solver.coeffDTDecrease = value
Problem.Solver.coeffDTIncrease = value

Coefficients by which the time step is decreased (resp. increased) after an unsuccessful (resp.
successful) iteration. Recommended values are 2 and 1, respectively.

Momentum and continuity equations2.

• Problem.Solver.MomContEq.nlAlgo = Picard / NR / quasiNR / quasiNRAprox

Selects the iterative algorithm for solving the nonlinear system of momentum and continuity
equations. NR (Newton-Raphson) is more robust but more demanding than Picard.

• Problem.Solver.MomContEq.residual = Ax_f / U_P

Selects the type of residual for convergence. Ax_f is based on the convergence of the force
while U_P is based on the convergence of the velocity. Ax_f is not available for FracStep
solver.

• Problem.Solver.MomContEq.sparseSolverLib = MKL / MKL_Pardiso / Eigen / Pastix /
Amgcl / CUDA_GPU

Selects the sparse solver to be used.
2In the context of this thesis, only the momentum and continuity equations were solved (therefore the manual

does not contain information about the heat equation).
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• Problem.Solver.MomContEq.tolerance = value

Algorithm relative tolerance used by some sparse solvers. Should be set between 1e-12 and
1e-6.

• Problem.Solver.MomContEq.maxIter = value

Maximum number of iterations allowed at each time step before the time step is considered
unsuccessful.

• Problem.Solver.MomContEq.minRes = value

Minimum residual of momentum and continuity equations. Values between 1e-8 and 1e-6
are typically recommended.

• Problem.Solver.MomContEq.BC[’FSInterfaceVExt’] = true / false

Tells PFEM3D to use Metafor displacement data at the FSI interface and not to search for
user-defined boundary functions. Must be set to true for coupled simulations.

Boundary (BC) and initial (IC) conditions.

• function Problem.IC.initStates(x,y,z)

User-defined function returning the velocity and pressure fields at the initial time.

• function Problem.Solver.MomContEq.BC.NameVEuler(x,y,z,t) (optional)

User-defined function returning the velocity field to be prescribed on the physical group
Name. An Eulerian velocity is imposed, i.e., the velocity is prescribed at the boundary, and
not as a moving node.

• Problem.Solver.MomContEq.BC[’NameFreeSlipEuler’] = true (optional)
Problem.Solver.MomContEq.oneEpsFreeSlip = value

Defines physical group as free-slip boundary and sets penalty for normal velocity component.

• function Problem.Solver.MomContEq.BC.NameP(x,y,z) (optional)

User-defined function returning the pressure field to be prescribed on physical group Name.

FSPC Main file.

A series of parameters related to the FSPC coupling between PFEM3D and Metafor are defined in
the main.py file as follows.

• solver = FSPC.init_solver(path_F, path_S)

Sets the inputF.lua and inputS.py files with the parameters of the simulation related to
PFEM3D and Metafor and defines the solver variable.

• algorithm = FSPC.algorithm.XXX(val)
FSPC.set_algorithm(algorithm)

Defines XXX as the iterative algorithm to solve the coupling problem. Possible choices of XXX
are the Block Gauss Seidel BGS, Quasi-Newton with inverse least-square ILS, and Multi-
Vector Jacobian MVJ. The latter is deemed to be more efficient but cannot be used when the
number of nodes on the solid side of the interface changes with time (e.g., rupture).

The maximum number of iterations is set to val (recommended value = 25).
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• interpolator = FSPC.interpolator.YYY(param)
FSPC.set_interpolator(interpolator)

Sets the interpolation method between the fluid and solid domains along the FSI interface.
Possible choices of YYY are

– FSPC.interpolator.RBF(fun): Radial Basis Function with interpolating function fun
(to be defined by the user);

– FSPC.interpolator.LEP: Linear Element Projection method (using the shape func-
tions to interpolate nodal data between the fluid and solid domains).

• step = FSPC.general.TimeStep(t1, t2)
FSPC.set_time_step(step)

Defines the initial integration time step t1 and the time between writing of intermediate
results t2. The time step should be small enough to avoid remeshing problems.

• residual = FSPC.general.Residual(val)
FSPC.set_mechanical_res(residual)

Sets to val the mechanical residual controlling convergence of the iterations between the
fluid and solid models.

• algorithm.simulate(val)

Sets to val the total duration of the simulation.
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The wall shear stress is a parameter of great physiological importance. However, it is not directly
accessible in the results of the coupled models. This appendix provides a description of how the
computation of wall shear stress is implemented in this work, and a verification of the approach.

Implementation.

In coupled simulations, the stresses exerted by the fluid are applied to the solid which deforms
under these loadings applied as a Neumann boundary condition. The movement of the solid is
imposed on the fluid as a Dirichlet boundary condition. Stresses are therefore continuous between
the fluid and the solid. The Wall Shear Stress (WSS) can be evaluated either in the solid domain
(Metafor) or in the fluid domain (PFEM3D).

On the solid side, one has the advantage of having direct access to the Cauchy stress tensor
(at least at the Gauss points). Surface tractions can be obtained by projecting the Cauchy stress
tensor onto the normal. The tangential component of the surface tractions is the WSS. However,
inaccuracies arise from the presence of a pressure component in the surface tractions, which can be
several orders of magnitude higher than the tangential component. Small errors in the orientation
of the normal leads therefore to large errors on the WSS when projecting the surface tractions.

The alternative is to calculate the WSS on the fluid side, taking advantage of the natural
separation between viscous forces (τ ) and pressure (p), i.e.,

σ = −pI + τ (B.1)

However, since viscous stresses are not directly accessible through appropriate extractors of the
PFEM3D code, the components of τ must be recalculated from the velocity field v during post-
processing of the results using

τ = 2µD (B.2)
where the strain rate tensor is given by

Dij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(B.3)

This particular procedure for calculating the wall shear stress is not affected by the large values
of p.

The same procedure can also be used to compute the shear rate

γ̇ =
√

2D : D (B.4)
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which is an important parameter affecting the rheology of whole blood. It is also required to
evaluate the viscosity of the fluid when a Casson model is used.

In practice, the computation of the WSS (and the shear rate) along the boundary of the fluid
domain from a 2D gmsh file generated by PFEM3D is carried out using the following procedure
implemented in a stand-alone MATLAB code.

• The structure of .msh files1 is exploited to read and reconstruct the list of fluid nodes with
their coordinates and the list of nodal values of the velocity. In addition, the list of 1D
boundary elements and the list of 2D fluid elements (triangles) are also extracted from the
.msh file together with the tags of their nodes.

Figure B.1 – Schematic representation of the nodes (•), 1D elements ( ), and 2D elements of the PFEM
mesh ( ).

• An ordered list of consecutive 1D elements that connect to each other is built, which defines
the boundary contour of the fluid domain. The unit normal and tangent vectors, along with
the curvilinear abscissa, are computed from the coordinates of the successive nodes along
the contour.

• The tag of the single 2D element to which each 1D element belongs is found by comparing
the list of nodes defining the 1D and 2D elements. The 2D element corresponding to a given
1D element is the one that is built on the two nodes of the 1D element.

• Using the nodal values at the three vertices of each triangular 2D element, a linear repre-
sentation of the velocity field coherent with the interpolation used in PFEM3D is used to
compute the components of the strain rate tensor D, the shear rate, and the components of
the tensor of viscous stresses τ .

• For each 1D element of the boundary curve, surface tractions are computed by projecting
τ onto the unit normal. The wall shear stress is computed by a new projection onto the
tangent vector. The results are assigned to the barycenter of the 1D boundary element.

Verification.

To verify the approach, the code is applied to a simple case with a known analytical solution: a
2D pipe or blood vessel of radius R, length L, and at an angle ϕ with respect to the axes, with a
fully developed Poiseuille profile described by

uξ = 0 (B.5)

uη = Vmax

[
1 −

(
ξ

R

)2]
(B.6)

in the coordinate system attached to the pipe (Figure B.2). The corresponding wall shear stress
is therefore given by

τ = µ
∂uη

∂ξ
= µVmax

[
1 − 2ξ

R2

]
(B.7)

1See https://gmsh.info/doc/texinfo/gmsh.html#Gmsh-file-formats.
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Figure B.2 – Velocity profile in a vessel of radius R, length L, and inclination ϕ.

The parabolic velocity profile obtained using PFEM3D with a discretization of 20 points across
the pipe is shown in Figure B.2.

The .msh file with the results of PFEM3D describing the Poiseuille flow is used as an input
to the procedure described above. Figure B.3 shows the wall shear stress computed in this way
and the comparison with the analytical values. The reconstructed values nicely compare with the
theoretical ones. The difference is less than 4% and is not associated with the inaccuracy of the
method but is related to the limited spatial resolution to approximate the Poiseuille profile.

A B C D A

Figure B.3 – Wall shear stress along the different boundaries (numerical ( ) and analytical ( ) results).
The curvilinear distance starts at corner A. (See Figure B.2 for the location of the nodes A, B, C, and D.)

105



APPENDIX B. WALL SHEAR STRESS

Note that the shear stresses on the solid boundaries and in the inlet/outlet sections do not
have the same meaning. In the inlet and outlet sections, the shear stress is along eξ while shear
stresses on the two interfaces refer to stresses along eη.

The procedure is further verified by comparing the shear rate γ̇ with an independent estimate
computed using the Paraview post-processing software. A special filter of Paraview allows indeed
the direct computation of the velocity gradient tensor and the strain rate tensor. Figure B.4 shows
a zoom of the shear rate distribution in the vicinity of one of the solid boundaries. This figure
illustrates the fact that the linear interpolation of the velocity field results in a constant shear rate
(and shear stress) at each triangular element. The maximum value of 97.2 s−1 reported along the
wall corresponds exactly to the 0.34 Pa shear stress computed from the approximate Poiseuille
profile with the procedure described in this section, since in the simple setup considered here, the
wall shear stress is equal to the product of the shear rate and the viscosity µ = 0.0035 Pa · s of
the fluid.

This completes the verification of the procedure and of the corresponding code introduced to
extract the wall shear stress from the model results.

Figure B.4 – Zoom of the shear rate computed with Paraview.
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