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Abstract

In neuroscience research, the use of functional magnetic resonance imaging (fMRI) at
ultra-high (≥7T) magnetic field strengths improves significantly the signal-to-noise ratio
(SNR). However, fast imaging techniques like Echo-Planar Imaging (EPI) are prone to

geometric distortions due to local field inhomogeneities, which become more pronounced at
higher field strengths and can cause the mislocalization of relevant signal. To mitigate
those distortions, conventional static correction methods use one "snapshot" fieldmap

applied to all fMRI magnitude images. Other dynamic methods compute one fieldmap for
each EPI time point from preliminary Gradient echo (GRE) images. By doing so, it

accounts for the changes in the static magnetic field occurring during the acquisition time,
including motion or breathing.

In this thesis, a new dynamic geometric distortion correction method is presented and
compared to existing corrections. The technique uses a fieldmap computed from EPI

images acquired with opposite phase encoding (PE) directions. This reference fieldmap is
then used to estimate the constant phase offset present in all EPI phase data. A series of

dynamic fieldmaps can thus be calculated from the EPI phase, and each volume is
corrected independently. The main advantage of this method is to allow for a dynamic

correction without the need for preliminary scans.

To perform a complete analysis of the methods, six different correction pipelines have been
implemented. Two of them use a static fieldmap computed from GRE preliminary scans,

with and without extra modelling of the susceptibility-by-motion effect. Two others
compute a fieldmap from EPI volumes acquired with opposite PE direction, then apply it
with and without the same extra model as before. Finally, two dynamic corrections have
been implemented, estimating the phase offset based on preliminary GRE or on reversed
PE acquisition. These methods have been tested on different datasets acquired at 7T at

University College London, including one chin approach task inducing dynamic changes in
the static field.

The results showed that for 3D EPI and small motion (<1mm translation and <1°
rotation), using a static correction without extra modelling lead to a slightly better

temporal stability. The dynamic corrections seem to induce extra variance, due to the
extra computation steps present in the methods. However, to observe significant differences

between the methods, the sequence and the task should be chosen wisely.

Future studies should focus on assessing the temporal behaviour of the different correction
methods in a non-accelerated 2D unsegmented EPI sequence with greater head motion and
a chin approach task. This would allow determining if this newly developed method visibly

improves the temporal stability along the volumes.
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Introduction

High-resolution functional Magnetic Resonance Imaging (fMRI) has become a crucial
tool in human neuroscience studies. The localization of functional brain networks can be
achieved through this rapid and non-invasive imaging technique. Furthermore, ultra-high
field (UHF) MRI systems (≥7T) offer higher signal-to-noise ratio (SNR) and increased
blood-oxygen-level-dependent (BOLD) contrast, thereby enabling higher spatial resolution
imaging. However, this spatial precision is often compromised when employing very rapid
functional imaging techniques such as Echo Planar Imaging (EPI). Indeed, in presence of
inhomogeneities in the static magnetic field due to interfaces between tissues with different
magnetic susceptibilities, EPI suffers from geometric distortions mainly in the
phase-encoding (PE) direction.

Many methods have been developed to correct those geometric distortions and
accurately re-localize neural activity. The first commonly used approach is based on
computing a B0 fieldmap from the phase change observed between gradient echo (GRE)
images acquired at different echo times (TEs) (Jezzard and Balaban 1995). Another widely
adopted approach, using only magnitude scans, estimates the fieldmap from two EPI
images with opposing phase-encoding direction (Andersson et al. 2003). Once the fieldmap
has been extracted using the former or the latter technique, the voxel shift/displacement
map (VSM) can be computed and then used to unwarp all EPI volumes, resulting in
undistorted images.

Nevertheless, a conventional static fieldmap fails to account for the dynamic changes
of B0 occurring during the scanning. To consider the potential variations of B0, various
dynamic approaches have been investigated. In the approach proposed by (Marques and
Bowtell 2005.) (Lamberton et al. 2007), the EPI phase measured is decomposed into an
offset (due to coil sensitivity) and a component proportional to the fieldmap and TE.
Dynamic fieldmaps can then be derived at each time point by subtracting the phase offset
from the phase measured throughout the EPI time series.

However, in such dynamic approach, estimating the phase offset from undistorted
preliminary GRE scans may lead to inaccuracies. The time separation between GRE and
EPI scans allows for significant changes in B0 to occur, potentially reducing the accuracy
of distortion correction. Moreover, adding GRE scans to the protocol is not always
desirable, as the time the participant spends in the scanner can be quite long.

The motivation behind this project was to develop a combined approach for geometric
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distortion correction. By using opposite PE direction scans, we are able to derive an initial
fieldmap and thus extract the phase offset. Then, this phase offset is subtracted from the
EPI phase volume-by-volume to obtain a series of dynamic fieldmaps. Therefore, each EPI
time point is corrected, accounting for dynamic variations in field inhomogeneities.
Moreover, there is no need for separate preliminary scans as the reversed phase-encoding
EPI is directly embedded in the EPI run.

This thesis is divided into five chapters. The first chapter aims to describe the general
background by reviewing theoretical notions considered during the work. Chapter two
describes the data collection and the different distortion correction approaches
implemented, including static field mapping from GRE, static field mapping from opposite
PE scans, dynamic fieldmaps with phase offset estimation from GRE data and the
combined dynamic method with phase offset estimation based on opposite PE scans. In
this chapter, qualitative and quantitative methods to assess the robustness of each
approach are also presented. The results obtained are then shown in the third chapter.
The fourth chapter contains a critical analysis of those results. Finally, the last chapter
concludes by discussing the limitations of this study and the potential future improvements.

All MATLAB code developed in this project can be found in a GitHub repository, to
which you can have access upon request.
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Chapter 1

Background

1.1 Magnetic resonance imaging
Magnetic resonance imaging (MRI) is currently one of the most widely used medical

imaging techniques. Its high image quality and non-invasiveness make it very attractive for
diagnostic and research purposes, especially in the neuroscience area. Since its creation in
the 1970s[5], the increasing interest of scientists to understand anatomical and
physiological behaviour of the human body has led to continuous development of MRI
techniques and its applications.

Due to the absence of ionizing radiation, MRI is particularly valuable in neuroscience
research and in the monitoring of a broad range of pathologies. Moreover, with its great
flexibility and ability to characterize a large variety of tissue properties, MRI has become
one of the most significant breakthroughs of the century.

1.1.1 Physical principle
MRI is based on the interaction between an applied magnetic field and a nucleus with

a nuclear magnetic moment. Multiple nuclei have a non-zero spin, providing them with a
nuclear magnetic moment. The most abundant nuclei in living organisms are hydrogen
protons, due to their substantial presence in water and fat [6]. For this reason, hydrogen
protons are the nuclei of interest for medical MR imaging.

Initially, the spins are oriented randomly. Nevertheless, when placed under a strong
external magnetic field B0, a large number of protons become polarized and align with the
direction of B0, precessing around it. The precessing frequency, also known as the Larmor
frequency, is proportional to the strength of the external magnetic field [7]:

ω0 = γB0 (1.1)

with γ representing the gyromagnetic ratio, a constant value for each nucleus
(γprotons = 42.58MHz/T ).

3



CHAPTER 1. BACKGROUND

There are two different energy levels for hydrogen atoms described as "up" and "down".
A slightly smaller number of nuclei are oriented antiparallel to the B0 field ("down"). The
number of spin parallel to B0 exceeding the number antiparallel to that field is known as
the "spin excess" and is very small [8]:

spin excess = N
ℏω0

2kT ° (1.2)

with N , the total number of protons in the sample, ℏ the Plank constant, k the Boltzmann
constant and T ° the temperature.

This excess yields to a net longitudinal magnetization Mz parallel to B0. For a sample
with ρ0, the number of protons per unit volume (or spin density), the net longitudinal
magnetization Mz is given by the proton magnetic moment γℏ/2 multiplied by the spin
excess per unit volume. Taking into account Equation 1.1, it gives [8]:

Mz = ρ0γ
2ℏ2

4kT ° B0 (1.3)

Figure 1.1: Longitudinal magnetization Mz.

At this stage, no net transverse magnetization Mxy exists because even though the
spins are precessing at the same frequency ω0, their phases are random.

When a varying magnetic field B1 is applied using a radio-frequency (RF) pulse at the
Larmor frequency (ωRF = ω0), the resonance phenomenon occurs. The energy provided
flips the magnetization vector Mz from the z-axis towards the xy-plane (Figure 1.2). If the
RF pulse causes the magnetization to flip by a 90° angle, the net magnetization will then
precess in the transverse plane with frequency ω0. No net longitudinal magnetization is
now detected, but the spins precess at the same frequency and with the same phase in the
xy-plane, leading to a net transverse magnetization. With other flip angles, the
longitudinal magnetization Mz decreases to non-zero values as Mxy increases.

1.1.2 Relaxation times
When the excitation of the RF pulse stops, the spins go back to their equilibrium state

by two independent relaxation processes: longitudinal relaxation and transverse relaxation,
characterized by time constants T1 and T2 [5].

T1 is the time during which there is a regrowth of 63% of the longitudinal
magnetization Mz initial value [9]. Similarly, T2 is the time constant that determines the
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CHAPTER 1. BACKGROUND

Figure 1.2: Magnetization vector motion in rotating (a) and static (b) frame (adapted from
[5]).

rate at which excited protons go out of phase with each other, inducing a decay of the
transverse component Mxy of the field as seen in Figure 1.3. T2 is defined as the time after
which the transverse magnetization has decreased to 37% of its initial value. Those time
constants define the evolution Equation 1.4 of the magnetization:

Mz = M0(1 − e−t/T1)
Mxy = M0e

−t/T2
(1.4)

Figure 1.3: Relaxation processes (reproduced from [9])
.

However, in real conditions, the transverse magnetization Mxy decays much faster due
to the inhomogeneities present in the main magnetic field. This faster decreasing rate is
called T ∗

2 and is given by [5]:
1

T ∗
2

= 1
T2

+ 1
T ′

2

Considering that T ′
2 is the time constant linked to the contribution of the total relaxation

attributable to the magnetic field inhomogeneities.
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1.1.3 Hardware
MRI systems come in various sizes, yet they always consist of four major components:

a main magnet, gradient coils, RF coils, and computer systems including the visualization
console [7]. As illustrated in Figure 1.4, the coils are arranged in a concentric way within
the cylindrical magnet.

Figure 1.4: MRI scanner components (adapted from [10])
.

Main magnet

The main magnet is the heart of the MRI scanner as it produces the strong static
magnetic field B0. The most common type of magnet used is a superconductive magnet
which consists of a series of coils wound on a cylindrical form within a bath of liquid
helium enclosed in a cryostat [11].

Gradients

Usually, gradient coils (also called gradients) are a combination of three orthogonal
sets of coils, one for each of the physical x, y, and z directions. Their principal function is
to allow for spatial encoding of the MR signal. This is achieved by providing a temporary
change in the magnitude B0 as a function of position [5].

Specifically, when activating all three coils simultaneously with strengths Gx, Gy, and
Gz, respectively, the main field ideally varies in space as [5]:

B(x, y, z) = (B0 + Gxx + Gyy + Gzz)ẑ

In this expression, Gx, Gy and Gz are the constant gradient amplitude which have units of
Gauss per centimetre. In MR imaging methods, the gradients are switched on and off very
rapidly.
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RF coils

RF coils have two purposes: they are used to send RF pulses and to receive the signal
back from the patient’s body. RF coils can function as a transmitter, a receiver or both [5].
When acting as a transmitter, they generate a time-varying B1 magnetic field which is
perpendicular to the main B0 field. The energy transmitted by RF pulses flips
magnetization away from the z-axis. When this deviation reaches any angle α, it’s referred
to as a α° pulse. Receiver RF coils catch the oscillating net transverse magnetic flux Mxy

produced by excited spins, inducing a voltage according to Faraday’s Law of induction.

Computer system

There are multiple computer systems embedded into an MRI machine to control all
the scanner functions [5]. They work interdependently to control the RF and gradient
pulses, to sample the incoming signal and to process the data to produce and display the
generated images.

1.1.4 MRI signal
The signal picked up by the receiving coils is an induced voltage generated by the

precession of the net transverse magnetization [7]. This signal is always a complex number
that can be represented on the real-imaginary plane. The signal can thereby be
reconstructed in multiple ways [9]:

• "real" image,

• "imaginary" image,

• Magnitude (M) image,

• Phase (φ) image.

Usually in clinics, magnitude images are the only one used for diagnostic. However,
sometimes, phase data is also saved for some specific applications. The phase of the signal
is given by the following formula:

φ(x, y, z) = 2πTE · ∆ω0(x, y, z)︸ ︷︷ ︸
Fieldmap

+ φ0(x, y, z)︸ ︷︷ ︸
Phase offset

(1.5)

It consists of two components: one is proportional to the fieldmap and the echo time
(TE) and the other is the phase offset, representing mainly the phase of coil sensitivity
profile [3][4]. This phase offset has been proved to stay relatively constant over time and
subject motion [12].

1.1.5 Image formation
To form an image, the goal is to find the signal intensity of each pixel. However, in

MRI scanners, the signal is picked up by the coils without knowing where it comes from.
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To be able to visualize a proper image, the MRI system encodes the spatial position of the
signal [7].

In multi-slice 2D images, a first gradient is applied during the RF pulse in the Z
direction to select the slice. Since the Larmor frequency is proportional to the applied field,
the slice is selected by emitting an RF pulse at the Larmor frequency of the desired slice.

Then, during relaxation, 2 different gradients are applied to localize the signal within
the 2D slice. One of the gradients, usually applied in the X-direction, encodes the position
by modifying the precessional frequency along the X-axis. This process is called frequency
encoding. Then, by applying a gradient in the Y-direction, the spins along the Y-axis get
dephased, and it allows to encode for the position across this axis. This Y-gradient is also
known as the phase encoding gradient. Each Frequency and Phase Combination defines its
location within a slice.

All the data collected is organized into an array called the K-space, where each point
contains spatial frequency and phase information about every pixel in the final image [9].
Then, with a reconstruction algorithm, which most of the time is the Fourier transform,
the k-space information is converted into an image as we can see in Figure 1.5. Changing
the way the K-space is sampled modify the final MR image.

Figure 1.5: Raw data in K-space and corresponding image data in image space (adapted
from [13])

.

1.2 Functional MRI
As mentioned in its name, fMRI is based on MRI physical and image formation

principles. This imaging method has been developed to observe time-varying changes in
brain activity [14]. fMRI is one of the most widely used imaging techniques in cognitive
neuroscience studies but also in presurgical planning [15].
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1.2.1 BOLD signal
As stated before, in fMRI, the goal is to observe brain activity. BOLD contrast

mechanism is usually used to visualize neural activation. When the activity of a local
region of the brain increases, cerebral blood flow increases, delivering more oxygenated
hemoglobin in the capillaries [14]. BOLD contrast arises from the change in magnetic field
surrounding the red blood cells depending on the oxygen state of the hemoglobin. When
hemoglobin is fully deoxygenated (Hb), it is paramagnetic whereas, when fully oxygenated
(HbO2), it’s diamagnetic. Therefore, Hb will cause local dephasing of protons, reducing the
returned signal from the tissues nearby. T ∗

2 weighted sequences are used to measure this
change, which is in the order of 1-5%.

1.2.2 Sequences
The goal of fMRI being to observe time-varying behaviour, having a good temporal

resolution is particularly important. In order to reduce the acquisition time, different
imaging techniques have been developed.

GRE

A first way to increase the speed of the sequence is to use gradient echo instead of spin
echo in which two RF excitations are needed. In GRE, the frequency encoding gradient is
used twice to create the echo (Figure 1.6). First it is used to produce transverse dephasing
of spinning protons and then right after, it is reversed and used as a readout gradient to
realign the dephased protons and thereby acquire the signal. Compared to spin echo
sequences, GRE are much faster since they only have one RF pulse per TR, they can have
relatively short TR and create fast images.

Figure 1.6: GRE pulse sequence with gradient reversal to create an echo (adapted from
[16])
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Echo train

In gradient echo train sequences, a series of echoes is generated by a sequence of
gradients following the RF excitation. The readout or frequency encoding gradients are
quickly and repeatedly reversed to collect multiple lines of K-space data after only one RF
pulse. It enables us to collect data much faster.

2D EPI

Echo planar imaging is a specific gradient echo train sequence where the complete
K-space is acquired following only one excitation RF pulse. As we can see in Figure 1.7,
the readout gradients (Gx) are reversed rapidly to acquire the complete K-space during a
single T ∗

2 decay. Each positive or negative lobe of this gradient correspond to a different ky

line in K-space. Currently, the most used EPI technique is the so-called blipped-EPI as the
phase-encoding gradient (Gy) is applied briefly during the time when the readout gradient
was zero. The obtained K-space trajectory is simply sweeping straight lines from left to
right, and then from right to left.

Figure 1.7: blipped-EPI pulse sequence (left) and the corresponding K-space trajectory
(right) (adapted from [16])

This fMRI technique is very fast and has low power deposition because only one RF is
needed by slice. Nevertheless, it presents an important disadvantage. It is very prone to
off-resonance artefacts because the phase accumulates along the entire readout. Distortion
in EPI is most pronounced in the PE (y-axis) direction because of the long time between
sampling points (low bandwidth) relative to the readout direction (high bandwidth).
During this time, there can be a substantial change in phase accumulation due to field
inhomogeneities presented in 1.3.

Depending on the way K-space is traversed (bottom-up or top-down), the voxels are
stretched or compressed. Blip up and blip down acquisition therefore lead to the same
amount of distortion but in the opposite direction (Figure 1.8).
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Figure 1.8: EPI images acquired traversing K-space bottom-up (left) and top-down (right)

1.3 B0 field inhomogeneities
As stated in the previous section, EPI suffers from geometric distortions in the PE

direction in the presence of B0 field inhomogeneities. These geometric distortions arise
from the spatial variation of B0 causing differences in Larmor frequency and signal
mislocalization. The cause of those B0-inhomogeneities can have different origins. They
can be directly due to the hardware or specific to the tissue scanned. The two main sources
of tissue-related B0 geometric distortions are chemical shifts and susceptibility differences.

1.3.1 Chemical shift
Chemical shift consists of small changes in the resonant frequency due to different

environments of nuclei. For example [9], the 1H protons of fat, which can be found within a
long triglyceride chain, are enveloped by clouds of electrons. These clouds act as partial
shields, mitigating the impact of an externally applied magnetic field on the fat protons. In
contrast, the 1H protons of water are less shielded as the highly electronegative oxygen
atom pulls their electron clouds away from them [17].

Due to those different shielding, a fat proton experiences a slightly weaker local
magnetic field. Their resonance frequency is thereby a little lower than a nearby water
proton. This small difference in frequency is approximately 3.5ppm (or 3.5 × 10−6). It
must be noted that chemical shift between two species produces both a frequency and a
phase shift between them. This suggests that both frequency and phase encoding processes
are impacted.

In MR image reconstruction, spatial position along the frequency-encoding direction is
assigned based on the resonance frequency. If, within one voxel, both water and lipid
protons coexist, the signal emitted by the lipid protons will have a lower frequency than
the one from the water protons.
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Therefore, if the reference frequency of the system is set to water, the signal coming
from the fat protons appears to originate from water protons from another voxel in a lower
part of the field [18].

As stated in 1.2.2, in EPI, the bandwidth per pixel in the frequency-encoding direction
is very large, making chemical shifts in this direction unnoticeable. However, in the
phase-encoding direction, the bandwidth per pixel is extremely small. At 7T, the Larmor
frequency is approximately 300MHz and the fat/water chemical shift is [9]:

∆f = 300MHz × 3.5ppm = (300 × 106)(3.5 × 10−6) = 1050Hz

In EPI sequences, chemical shifts lead to B0-field inhomogeneities and with a very low
phase-encoding bandwidth, artefacts in this direction become visible.

1.3.2 Susceptibility differences
Magnetic susceptibility (χ) is a measure of how a material becomes magnetized when

it’s placed in an external magnetic field. Some materials strengthen the field (χ > 0) by
concentrating it [9] . These are called paramagnetic, superparamagnetic, or ferromagnetic,
depending on the extent of the effect. Other materials, called diamagnetic materials,
weaken the magnetic field by dispersing it. If an object has non-homogeneous
susceptibility, it leads to a non-uniform magnetic field [17].

In Table 1.1, we can see that molecular oxygen, O2, is weakly paramagnetic, which
means that its internal magnetization is slightly higher than B0. On the other hand, most
biological tissues are diamagnetic and oppose the B0 magnetic field. Therefore, distortions
can be observed at natural interfaces between air and tissue. Moreover, ferromagnetic
materials have the largest susceptibility inducing prominent field distortion and artefacts
around metal implants.

Magnetic property Magnetic susceptibility, χ (in ppm) Example material
Diamagnetism -10 Water, most biological tissues
Paramagnetism +1 molecular oxygen, O2

Superparamagnetism +5000 SPIO contrast agents
Ferromagnetism >10 000 Iron, steel

Table 1.1: Magnetic susceptibilities of different materials (adapted from [17]).

The amounts of off-resonance local field depend directly on the B0-field strength. At
ultra-high field (UHF), magnetic susceptibility difference at air-tissue boundaries is the
largest source of B0-field inhomogeneities [17].

In brain imaging, two main air-tissue boundaries cause distortions of the image inside
the brain. The first most visible artefacted region is located near the sinuses and consists
mainly of the frontal pole and the orbitofrontal cortex. Another significantly affected
region is the medial temporal lobe, which is close to the ear canals.
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1.4 Ultra-high field MRI
Ultra-high magnetic field strength MRI systems are scanners with a main magnet that

provide a B0 static magnetic field of at least 7T. Their main advantage is their increased
sensitivity. Indeed, electromotive force induced by the receiving coils is given by [8]:

emf = − d

dt

∫
d3rM⃗(r⃗, t) · B⃗receive(r⃗)

where B⃗receive is the receive field, also known as B1. Neglecting any spatial variations and
considering that the magnetization can be written M(t) = Mze−iω0t+iϕ0 , the emf is
proportional to ω0Mz. From equation 1.3, the signal caught by the receiving coils then
depends quadratically on the static magnetic field B0 [8]:

signal ∝ B2
0

This results in an increased SNR as the noise only has a linear B0 dependency at UHF [19].
The improved SNR can be used to increase spatial resolution and better differentiate
between small anatomical structures. Moreover, in fMRI the time series SNR also get
enhanced leading to a greater sensitivity to temporal correlations in the BOLD signal.

On the other hand, as depicted in Section 1.3.2, the extent of off-resonance local field
is proportional to the static magnetic field. Therefore, at UHF, more susceptibility-induced
artefacts can be observed. In neurosciences, as some structures of interest are of
particularly small sizes, UHF MRI can be used to obtain better spatial resolution. The
increased distortions then need to be accounted for and reduced as much as possible.

1.5 Existing approaches
These geometric distortions have been proved to be extremely problematic in clinical

assessment and pre-surgical planning [15]. A shift in neural activation could indeed induce
the misidentification of essential functional regions and impact the surgical approach.

1.5.1 Acquisition stage
Multiple methods have been developed in the acquisition stage to mitigate those

artefacts. In this section, some existing methods are presented.

Water excitation

The B0 inhomogeneities due to chemical shift presented in 1.3.1 can be avoided. Since
the frequency offset between water and fat stays the same everywhere and fat signal is not
of interest in fMRI, it can be suppressed or not excited.

In the data used in this thesis, water-selective excitation was used to get rid of these
artefacts. By using a binomial RF pulse, water is selectively excited and fat protons’
resonance frequency is unchanged.
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Thanks to this process, only one main source of geometric distortions due to B0
inhomogeneities is left to deal with.

Shimming

The B0 magnetic field is supposed to be static and unchanging over time. However, as
stated in Section 1.3, tissue properties can create inhomogeneities leading to geometric
distortions. Moreover, even following the most rigorous manufacturing tolerances, the
magnet’s field is not perfectly uniform after production.

Shimming is the process used to maximize B0 field homogeneity. First, the real
magnetic field is accurately measured [20], then entered into a computer program to
calculate the correction needed. On most scanners, two shimming techniques are usually
implemented: passive and active shimming.

Passive shimming consists of designing and placing small pieces of ferromagnetic
material at specific locations within the magnet bore. Through their passive response to
B0, this process tailors the magnetic field distribution towards a more uniform state [21].
Passive shimming is not the most straight-forward procedure, as it requires adding pieces
of material in the unit. Therefore, it is not used for patient-specific shimming but rather
for the static removal of hardware-related and environmental sources of field imperfection.
The main drawback of this method is that the shim material is sensitive to temperature
changes. In EPI sequences, as the gradient must be switched on and off very rapidly, the
bore tends to heat, causing a change in the magnetic distribution created by the shim.

When a patient is placed in the scanner, specific tissue-related B0 inhomogeneities
arise. Active shimming is a method to correct those individual non-uniformities from
patient to patient. Field inhomogeneities are measured and visualized on a B0 map [20].
Currents are then directed into shimming coils, generating induced corrective magnetic
fields. Their purpose is to cancel the remaining field gradient within the bore. Before
scanning begins, automated shimming is usually performed on many MRI scanners to
obtain the most uniform field as possible.

Accelerated acquisitions

In order to reduce the geometric distortions due to phase accumulation along the
phase encoding direction, a solution is to reduce the time between the acquisition of two
lines in K-space. This time is called the echo spacing (ESP).

In accelerated acquisitions, some K-space lines are skipped, reducing the time between
adjacent lines. By using a proper image reconstruction algorithm, the missing lines are
reconstructed using the redundant information from RF receive coils. To account for that,
another metric is defined: the effective ESP. This represents the real ESP between two
adjacent lines, accounting for the acceleration factor:

ESPeff = ESP
accelerating factor
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By accelerating the acquisition, the phase has less time to evolve in the phase-encoding
direction, resulting in reduced B0 inhomogeneities and geometric distortions.

Multi-shot EPI

Another way of reducing the ESPeff is to use multi-shot EPI. In single-shot EPI, since
all lines of K-space are acquired after only one RF stimulation, the phase errors due to
magnetic susceptibility artefacts tend to accumulate along the entire phase-encoding
gradient. Multi-shot, or segmented, EPI is a technique to reduce this phase accumulation
and therefore the geometric distortions associated. Multiple RF excitations are required
[8], and the same method as in single-shot EPI is used to cover smaller regions of K-space
after each RF pulse (Figure 1.9). Thereby, the entire K-space is divided into Ns segments
and acquired after Ns RF pulse [16] . The resulting K-space data is then combined to form
the complete K-space. The total number of lines in the ky direction is given by:
Ny = Ns × ETL , with ETL, the echo train length, which is the number of lines/echoes in
each segment.

Figure 1.9: K-space trajectory of multi-shot interleaved EPI with 2 segments

As in accelerated acquisitions 1.5.1, the ESP is reduced in multi-shot EPI. the effective
ESP is given by:

ESPeff = ESP
nb segments

With the K-space trajectory presented in Figure 1.9, the ESP is decreased by a factor 2,
giving twice less time for the phase error to accumulate and leading to fewer geometric
distortions.

However, the main drawback emerging from this technique is that it takes longer to
perform compared to single-shot EPI causing it to be more susceptible to motion artefacts.

1.5.2 Post-processing
To mitigate the residual field inhomogeneities and resulting geometric distortions,

techniques have also been developed in the post-processing stage. Usually the process
involves using a static B0 fieldmap or a series of fieldmaps for each time point. This

15



CHAPTER 1. BACKGROUND

fieldmap can be converted to Voxel Shift Map (VSM) showing how much each voxel has to
be shifted in the phase-encoding direction to create a distortion-free image.

Static corrections

Static correction strategies use only one VSM to unwarp the entire EPI time series.
Distortions can be corrected using a B0 fieldmap derived from the phase difference between
GRE images acquired at multiple TE’s [1]. This method requires the phase data of
preliminary GRE scans.

Another technique based only on magnitude data and that doesn’t involve pre-scans is
also commonly used to correct for geometric distortions [2]. Two echo-planar images are
acquired with opposite PE direction: one traversing K-space bottom-up and the other one
top-down. The resulting images have distortions with equal magnitude but opposing
directions. The algorithm then estimates the voxel displacement map by trying to
minimize the difference between the two scans.

Dynamic corrections

However, the use of a single fieldmap doesn’t account for dynamic changes in B0
during the fMRI run due to motion, breathing or heating of the gradient coils. Multiple
dynamic correction methods have therefore been developed.

The technique implemented in SPM [22] "Realign & Unwarp" module [23], models
geometric distortion only from EPI magnitude scans. The static fieldmap is modified at
each time point, taking into account the motion parameters estimated to consider the
susceptibility-distortion-by-movement interactions. It provides a good approximation of the
B0 field changes due to motion, regardless of the other causes such as breathing or gradient
heating.

To obtain a more complete correction, a fieldmap can be generated for each time point
using the phase EPI data. The phase measured contains an offset and a component
proportional to the fieldmap and TE. The dynamic series of fieldmaps can thereby be
obtained by subtracting the phase offset from the phase data at each time point [3][4].
Those methods are based on the assumption that the phase offset remains stable over time
and during motion. A previous study at 7T [12] has confirmed this assumption showing
that with large shifts in head position, the changes in the phase offset are around two order
of magnitude lower than the B0 field variations. Nevertheless, preliminary GRE scans are
used to compute the first fieldmap from which the phase offset is estimated, which may
cause potential correction errors.

1.6 Aim of the thesis
As the use of fMRI at UHF increases in neuroscience research, the need for

undistorted scans with correctly located activity becomes crucial. The goal of this thesis
was to develop a dynamic distortion correction [3][4] taking into account the changes in B0
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due to motion and breathing during the scanning. To avoid the need for preliminary GRE
scans, the initial fieldmap from which the phase offset is derived, is computed with
magnitude blip-opposed EPI scans as in the static correction in [2]. By doing so, the
reference scans would directly be embedded in the EPI run, obviating the need for
additional GRE images. In this thesis, I implemented the combined approach and
compared it with existing techniques with quantitative assessment tools.
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Methods

In this section, the data collection and the different pipelines implemented to correct
for the geometric distortions will be explained. Next, the assessment method for evaluating
the temporal stability and distortion correction accuracy of the implemented correction
pipelines will be detailed.

2.1 Distortion correction methods
During this research project, six main pipelines have been developed to correct for

geometric distortions (Figure 2.1). These pipelines either replicate already existing
distortion correction methods or seek improvement in the correction accuracy by
appropriate modifications, as explained below. Each of these methods delivers one or
multiple fieldmaps ∆ω0. Static distortion correction (SDC) uses a unique fieldmap
capturing the main field inhomogeneities, whereas dynamic distortion correction (DDC)
uses a series of fieldmaps to account for the additional dynamic effects. The fieldmap can
be converted into Voxel Shift Maps (VSMs) showing how much each voxel needs to be
shifted in the phase-encoding direction in order to bring it to a distortion-free space:

VSM = ∆ω0 · MPE · ESPeff [voxels] (2.1)

with ∆ω0 the fieldmap, MP E the matrix size in the PE direction and ESPeff the effective
echo spacing. These VSMs are used to unwarp the distorted data and obtain distortion-free
images.

2.1.1 Static field mapping with GRE (Gradient echo)
Theory

The first method, described by (Jezzard and Balaban 1995) derives a static fieldmap
from multiple GRE phase images. By acquiring GRE scans at multiple TEs, the fieldmap
can be extracted by estimating the slope ∆ω0 of the linear regression φ = 2πTE · ∆ω0 + φ0
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Figure 2.1: Summary of the six correction pipelines developed. They can be split into 3
groups: two of these, using static field mapping with Gradient echo (GRE) and SCOPE,
with or without modification of the VSM with head movements. The last one employs a

fully dynamic field mapping with one VSM per volume derived with GRE or SCOPE
reference used to estimate the phase offset φ0.

where φ and TE are the independent variables. If we consider the case using only two TEs,
the phase signals described in Equation 2.1.3 are given respectively by:

φTE1(x, y, z) = 2πTE1 · ∆ω0(x, y, z) + φ0(x, y, z)
φTE2(x, y, z) = 2πTE2 · ∆ω0(x, y, z) + φ0(x, y, z)

The fieldmap can thereby be easily extracted by subtracting the phase of the two
GRE images [1]:

∆ω0 = φTE2 − φTE1

2π(TE2 − TE1)
= ∆φ

2π∆TE (2.2)

This unique fieldmap is then applied to all EPI volumes.

Implementation

The complete diagrams of the pipelines are presented in Figure 2.2. The phase of the
GRE scan at all TEs is first unwrapped with the ROMEO unwrapping tool [24] and the
∆ω0 fieldmap is calculated as a weighted echo averaging assuming linear phase evolution
with time. SPM12 [22] segmentation tool is used to create a probability map of being
inside the brain. Then this map is binarized to generate an intra-cranial volume (ICV)
mask. The fieldmap is masked and then smoothed and extrapolated outside the brain
boundaries with "smoothn.m" which is a fast and robust discretized spline smoother for
data of arbitrary dimension. This open-source function by D. Garcia can be found in
MathWorks "File Exchange" [25]. The VSM is computed using Equation 2.1 before being
co-registered using SPM12 [22] to the EPI volume closest in time.
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To unwarp the functional data using this VSM and correct for the geometric
distortions, two different methods have been implemented.

SDC GRE

The first method is purely static and consists of combining volume-by-volume motion
and distortion correction in a single interpolation step. To do that, the motion with respect
to the reference EPI volume was estimated using SPM12 [22] Realign (Estimate). This step
modifies the 4x4 mat header of the NIfTI files to account for the transformation matrix,
bringing the target volume to the space of the reference volume.

The absolute motion of each volume i is then computed by solving the following
equation:

Mabs,i = mati · mat0−1
ref

with mati, the matrix containing the relative motion between volume i and the reference volume,
mat0ref , the matrix containing the position of the reference volume with respect to the scanner.

A warp field containing each voxel coordinates (x,y,z) is created, and the static VSM
accounting for the geometric distortion is added in the PE (y) direction. This step modifies
the coordinate of distorted voxels in the PE direction. The motion matrix is then
multiplied to this corrected field to correct for motion with respect to the reference volume.
Finally, with a single step interpolation, both motion and distortion correction are applied
at once for each volume. In this method, the VSM used is static, which means the same
VSM is used for all the volumes within the EPI time series.

SDC GRE + motion model

The second pipeline uses the same VSM computation but unwarps EPI data using
SPM12 [22] "Realign & Unwarp". In this module, the motion and distortion correction are
also applied in a single step (i.e. involving only one interpolation step). Additionally,
dynamic field changes due to motion are modeled using affine transform matrices describing
motion with respect to reference volume and a static fieldmap acquired before the EPI
time series. Partial derivatives of the deformation field are estimated based on the affine
transformation for each EPI volume and added on top of the static warp field. This is done
in an iterative process to account for the susceptibility-by-motion interactions [23] [26].

Other sources of dynamic field changes such as breathing, eye movements or
swallowing, which can be well decoupled from head motion, are not modeled by this
method.

2.1.2 Static field mapping with SCOPE
Theory

In this pipeline, two EPI scans with reverse PE direction were used to estimate the
fieldmap. By acquiring one image blip-up and the other one blip-down, both are subject to
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(a) Pipeline 1 (b) Pipeline 2

Figure 2.2: Static field mapping with GRE: Pipeline 1 (left) and Pipeline 2 (right) with the
additional motion model
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distortion of the same magnitude but in opposite directions. The model developed by
(Andersson et al. 2003) tries to estimate the fieldmap ∆ω0 by minimizing the difference
between the blip-up and blip-down images. The following problem is being solved by this
method: [

f+
f−

]
=

[
K+
K−

]
ρ (2.3)

where ρ is the true image, f+/f− are the distorted blip-up/blip-down images and K+/K−
are real-valued square matrices that map the pixel locations in the true image to the
distorted image. Therefore, K+/K− represent the same displacement field but in opposite
direction. If the image was undistorted, these matrices would both be unity. SCOPE
method estimates K+/K− by solving Equation 2.3 using regularization in an iterative
process, since the problem is ill-posed

Implementation

The pipeline of this method can be seen in Figure 2.3. First, SPM12’s [22] new tool
SCOPE (Susceptibility Correction using Opposite PE), is used to estimate the fieldmap
based on the theoretical model introduced in 2.1.2. If multiple blip-up/down volumes are
given to SPM12, they are realigned and the mean blip-up/down volume are used to
compute the fieldmap. This fieldmap ∆ω0 is then used to compute one unique VSM and
unwarp distorted EPI data.

SDC SCOPE

As in the case of SDC GRE, the fieldmap obtained from SCOPE is a basis for two
unwarping pipelines. In the first pipeline, a simultaneous motion and distortion correction
is performed, but dynamic field changes are ignored, as described in 2.1.1.

SDC SCOPE + motion model

In the fourth pipeline, distorted data is unwarped using SPM12 "Realign & Unwarp".
As in 2.1.1, the correction is therefore accounting for the susceptibility-by-motion
interaction modeling dynamic field changes due to motion.

2.1.3 DDC with GRE reference
Theory

To obtain a fieldmap for each volume, this method uses the phase of the EPI data. As
stated in Section 1.1.4, the phase signal φ of MRI consist of a component proportional to
the fieldmap ∆ω0 and a phase offset φ0:

φ(x, y, z) = 2πTE · ∆ω0(x, y, z)︸ ︷︷ ︸
Fieldmap

+ φ0(x, y, z)︸ ︷︷ ︸
Phase offset
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(a) Pipeline 3 (b) Pipeline 4

Figure 2.3: Static field mapping with SCOPE: Pipeline 3 (left) and Pipeline 4 (right) with
the additional motion model
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A first reference fieldmap is obtained from phase data of preliminary GRE scans at
multiple TEs, as in the 1st pipeline:

∆ωref
0 = φTE2 − φTE1

2π(TE2 − TE1)
= ∆φ

2π∆TE

Then, instead of using this fieldmap to unwarp the distorted data, it is used to
estimate the value of the phase offset φ0. If we assume that the field inhomogeneities do
not change between the reference GRE scan and the first EPI time point (tp=1), we have:

∆ωref
0 = ∆ωfMRI

0 (tp=1) =
φfMRI

tp=1 − φ0

2πTE (2.4)

From this equation, we are able to estimate the phase offset φ0:

φ0 = φfMRI
tp=1 − 2πTE∆ωref

0 (2.5)

By assuming that the phase offset remains relatively constant over time and during motion
as in (Dymerska et al. 2018), a fieldmap for every time point (tp=i) can be computed by
subtracting the phase offset from the EPI phase data φfMRI

tp=i :

∆ωfMRI
0 (tp=i) =

φfMRI
tp=i − φ0

2πTE (2.6)

A schematic of the theoretical method is depicted in Figure 2.4.

Figure 2.4: Graphical representation of the theoretical method of dynamic fieldmaps
generation with phase offset subtraction: the reference fieldmap ∆ω0 is obtained from GRE
scans at two TEs and used with the phase of the EPI reference volume φfMRI

(tp=1) to estimate
the phase offset φ. This phase offset is then subtracted from all EPI phase data to generate

one VSM per volume.
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Figure 2.5: DDC with GRE reference (Pipeline 5)
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Implementation

The complete pipeline diagram can be seen in Figure 2.5. As in the 1st and 2nd

pipelines, the phase of the GRE scan at all TEs is unwrapped with ROMEO unwrapping
tool [24] and the ∆ωref

0 fieldmap is directly extracted. This fieldmap is masked using an
ICV mask as in Section 2.1.1 and then smoothed and extrapolated outside the brain
boundaries with "smoothn.m"[25]. Finally, this reference fieldmap ∆ωref

0 is corregistered to
the EPI space using SPM12.

In parallel, the phase data of all EPI volumes is also unwrapped using ROMEO [24].
Blip-up and blip-down data are unwrapped separately within two different ICV masks
generated from probability maps of SPM12 segmentation tool. EPI phase volumes are
unwrapped individually, meaning each EPI phase volume is unwrapped separately rather
than using one common template for all time points.

After unwrapping the EPI phase data, the phase offset is computed using the GRE
fieldmap and the phase data of the reference EPI volume as in Equation 2.5. This phase
offset ∆φ0 is then masked with SPM12 segmentation tool and then smoothed and
extrapolated outside the brain boundaries with "smoothn.m" from D. Garcia[25].

Thenceforth, the phase offset is subtracted from the phase of each EPI volume as in
Equation 2.6 to obtain an EPI fieldmap for every time point. Finally, these series of EPI
fieldmaps are masked using SPM12 segmentation tool, then smoothed and extrapolated
with "smoothn.m"[25] before being converted into a VSM with Equation 2.1.

To unwarp EPI magnitude data, the same process as the one depicted in Section 2.1.1
is used. The EPI VSM is first added to the phase-encoding direction of a warp field. After
that, motion correction is applied by multiplying this warp field by the rigid-body
transformation matrix from each volume to the reference volume estimated with "Realign
(Estimate)" from SPM12. Finally, through a single-step interpolation, the undistorted and
motion corrected image is obtained for each volume.

2.1.4 DDC with SCOPE reference
Theory

This method can be seen as a combined technique. It uses the exact same equations as
the ones in 2.1.3 to obtain dynamic EPI fieldmaps, but the reference fieldmap ∆ωref

0 is
estimated from the model using blip-up and blip-down EPI magnitude data as described
before in Equation 2.3 [2].

Once the reference fieldmap has been estimated, it is subtracted from the phase data
of the EPI reference volume to obtain the phase offset φ0 (Equation 2.5). Then, dynamic
fieldmaps ∆ωfMRI

0 (tp) can be extracted with Equation 2.6 to unwarp each time points
individually.

This approach tries to only utilize the EPI sequence with embedded blip-reversed
volumes, as well as the phase data for each of the EPI volumes. In contrary to the DDC
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with GRE reference approach, this method would therefore not need any additional GRE
scan to derive dynamic fieldmaps.

Implementation

The diagram of the complete pipeline can be seen in Figure 2.6. The reference
fieldmap is obtained using the new SPM12 tool called SCOPE that takes blip-up and
blip-down magnitude EPI volumes and try to minimize the difference between them. In
parallel, the EPI phase data is unwrapped using ROMEO, as described in Section 2.1.3.

Then, the pipeline is exactly the same as for the previous dynamic distortion
correction, as described in Section 2.1.3.

2.2 Data acquisition
In order to apply the different correction algorithms and to assess their robustness,

MRI data was acquired. The data presented in this thesis were collected on three
participants on a 7T Siemens TERRA (Siemens Healthcare, Erlangen, Germany) scanner
using 8 transmit and 32-channel receive head coil (Nova Medical) at the Department of
Imaging Neuroscience of University College London. All data were collected under local
ethics agreement. This data can be divided in three experiments that are detailed in the
following sections. The complete protocols for all experiments can be found in Appendix
A. These measurements have included 3D EPI scans with protocols deployed for various
studies at the department. Each protocol started with a "localizer" and a B0 map acquired
to allow for the definition and alignment of the scan plane, and the shimming of the
scanner, respectively.

2.2.1 Experiment 1
A first set of data was taken retrospectively from another study and used to evaluate

the performances of the different pipelines on a segmented EPI acquisition. In this
experiment, high-resolution T2∗-weighted segmented GRE 3D EPI acquisition was used in
contrary to non-segmented acquisition as in Experiment 2 and 3 (see Sections 2.2.2 and
2.2.3). Four volumes were collected at the beginning with reversed-PE polarity (PA
direction) relative to the ongoing time series acquisition (AP direction). To avoid chemical
shift artefacts arising from fat signal, a water-selective binomial excitation was used.

The 3D EPI run had the following parameters: matrix size=240 × 240, echo
spacing=1.2 ms and readout bandwidth=947 Hz/pixel. With an acceleration factor of 4 in
the PE direction and 2-in-plane segments, the effective echo spacing was 1.2

8 = 0.15 ms.
This corresponds approximately to a bandwidth in the PE direction of:

BWPE = 1
ESPeff · MPE

= 27.78 Hz/pixel

The detailed acquisition parameters can be seen in Table 2.1. The presence of a
preliminary GRE scan allowed to use all the pipelines for distortion correction.
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Figure 2.6: DDC with SCOPE reference (Pipeline 6)
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Sequence TE
(ms)

TR
(ms) FA Resolution

(mm iso) PF Segments Acceleration
in PE1 Slices

Effective
echo spacing

(ms)
3D EPI 18.5 43.0 13° 0.8 6/8 2 4 88 0.15
GRE [2.56:2.56:20.5] 25.0 24° 0.8 Off - 2 192 -

Table 2.1: Data acquisition protocol for Experiment 1.

With an echo spacing divided by two due to segmentation, the phase has less time to
accumulate and geometric distortion in the PE direction are less visible. As stated in
Section 1.5.1, multi-shot EPI can be used to reduce the distortions due to B0
inhomogeneities. However, in this project, the goal is to have those distortions and to
correct for them in post-processing. With less distortion, the effect of the correction
methods is less visible. Therefore, this dataset is not analysed in detail in the content of
this thesis, but some results are still provided in Section 3.1 to be able to compare them
with unsegmented ones.

The following experiments used unsegmented EPI data. By increasing the effective
echo spacing, more distortion is visible and the effect of the different correction methods
can be more easily analysed.

2.2.2 Experiment 2
In the second experiment, 8 fMRI runs were acquired on one subject for a

neuroscientific study run at the department and these data were used retrospectively for
this project under the agreement from the Principal Investigator of that study.

High-resolution unsegmented T ∗
2 -weighted GRE 3D EPI were acquired with partial

brain coverage. In each of the 3D EPI acquisitions, the first four volumes were collected
with reversed-PE polarity (Posterior-Anterior (PA) direction) relative to the ongoing time
series acquisition (Anterior-Posterior (AP) direction). To avoid chemical shift artefacts
arising from fat signal, as in experiment 1, a water-selective binomial excitation was used.

The 3D EPI runs had identical matrix sizes=240 × 240, echo spacing=1.2 ms and
readout bandwidth=947 Hz/pixel as in experiment 1. With an acceleration factor of 4 in
the PE direction, the effective echo spacing was 0.3 ms. This corresponds approximately to
a bandwidth in the PE direction of:

BWPE = 1
ESPeff · MPE

= 13.89 Hz/pixel

Table 2.2 summarizes the details of the imaging protocol. All imaging parameters were
kept the same for every run. The number of volumes acquired per run were variable:

Nb volumes/run = [201; 35; 184; 200; 113; 113; 113; 118]

As only fMRI data was collected, pipelines 3, 4 and 6 were the only ones applicable in
this experiment.

30



CHAPTER 2. METHODS

Sequence TE
(ms)

TR
(ms) FA Resolution

(mm iso) PF Segments Acceleration
in PE1 Slices

Effective
echo spacing

(ms)
3D EPI 26.08 68.0 15° 0.8 6/8 1 4 96 0.3

Table 2.2: Data acquisition protocol for Experiment 2.

2.2.3 Experiment 3
The third experiment was designed specifically for this research project and contains

all data required to apply all 6 pipelines prepared. The exact same unsegmented GRE 3D
EPI sequence as in experiment 2 has been used with asupplementary prior GRE sequence
to be able to implement Pipelines 1,2 (2.1.1) and 5 (2.1.3). The details of the imaging
protocol can be found in Table 2.3.

Three fMRI runs were performed with the exact same imaging parameters as in
Experiment 2 and contained 74 volumes each. In those 3 runs, the participant was asked to
perform different tasks. The first run was simply a control run where the volunteer was
asked to lie as still as possible. After that, in the second run, the participant was asked to
move both his hand from his side to his chin (without touching it) and then move it away
with a regular pace. This task has been used to induce dynamic breathing-like changes of
the B0 field without head motion [27].

In the last run, the subject was asked to move his chin slowly towards his chest to
induce susceptibility-by-motion interaction. However, due to the padding on the sides of
his head, a progressive motion was difficult to perform. A substantial rapid movement was
executed at the beginning of the acquisition, preventing the reconstruction algorithm to
correctly reconstruct the data. Thereby, this run has been excluded from the analysis.

Sequence TE
(ms)

TR
(ms) FA Resolution

(mm iso) PF Segments Acceleration
in PE1 Slices

Effective
echo spacing

(ms)
3D EPI 26.08 68.0 15° 0.8 6/8 1 4 96 0.3
GRE [2.56:2.56:20.5] 25.0 24° 0.8 Off - 2 192 -

Table 2.3: Data acquisition protocol for Experiment 3.

2.3 Analysis methods
To assess the robustness of the methods and compare the correction pipelines,

qualitative and quantitative assessments were performed, focusing mainly on the temporal
stability of the corrected EPI time series.

2.3.1 Qualitative assessment
First of all, intermediate steps of the processing pipelines have been inspected to

optimize the correction.
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Unwrapping

As explained in the Section 2.1, the unwrapping of the phase of GRE and of EPI was
done using the ROMEO tool [24]. Changing parameters of the unwrapping can lead to
very different results. Intermediate checks of the unwrapped phase were performed to make
sure of the correctness of this step.

For EPI phase data, using template unwrapping or individual unwrapping lead to very
different correction results. Indeed, as the reference EPI volume is the first target scan, if a
lot of motion happens during the time series, template unwrapping of the last volume
could include noise and lead to unwrapping errors. In individual unwrapping, each volume
is unwrapped individually and not based on a template generated from a reference
unwrapped phase.

However, when each time point is unwrapped individually, differences of n2π can occur
and cause shifts in the PE direction between adjacent corrected volumes. By looking at
this intermediate step, such differences were detected.

To avoid these, a correction for phase jumps between adjacent volumes has been
implemented. This function computes the median value of the phase over all voxels of the
reference EPI volume within an ICV mask. Then, after calculating the median of all other
volumes, it checks if a n2π difference occurs between the reference median and the current
median. If a n2π difference is detected, it is corrected. By doing so, all potential image
shifts due to n2π difference in the unwrapped phase are avoided.

Masking

Masking of the data is also a crucial step of the correction pipelines. By using a low
binarizing threshold, the mask could be too large and include noise, shifting voxels from
outside of the brain to the inside. But with a too high threshold, phase signal from tissue
at the brain boundary could be missed, leading to less accurate correction in these regions.

The masking used in all pipelines relies on the SPM12 segmentation tool. White
matter, grey matter and CSF probability maps are extracted from a magnitude image and
then summed to form an Intra-cranial volume (ICV) probability map. A threshold is
defined to turn this ICV probability map into a binary mask. For GRE mask, the value of
the threshold is 0.5 whereas for EPI data it is 0.8. The choice of this threshold was done
manually in an intermediate step, by looking at the mask overlaying the data to check if
every relevant information was contained within it. Most brain tissue and as little noise as
possible should be included.

Extrapolation

Finally, another important intermediate step to analyse was the extrapolation and
smoothing of the data. As mentioned in Section 2.1, when the fieldmaps and the phase
offset were extrapolated outside the brain boundaries, it was done using a discretized spline
smoother smoothn.m function by D. Garcia [25]. This robust smoothing process minimizes
the influence of outlying data. The background values were padded with NaNs and thereby
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treated as missing values, such that smoothn.m iteratively extrapolates values for these
voxels based on a discrete cosine transform. By looking at the smoothed data, the
smoothing parameter was determined such that it would smooth and extrapolate enough
without loosing too much information.

Other smoothing methods could have been used, such as Gaussian smoothing or
polynomial interpolation, but in the paper from (Dymerska et al. 2018), smoothn.m was
established to work well for fieldmaps extrapolation. As MRI data can contain significant
noise, a smoothing algorithm robust to outliers is really important. Moreover, it must have
the ability to handle multidimensional data and missing values. smoothn.m provides a
good balance between keeping important features and decreasing the noise.

2.3.2 Difference between blip reversed images
This analysis was done to assess the ability of each of the correction methods to

remove differences between EPI volumes with blip up and down phase encoding direction,
which are affected by the opposite distortions. Ideally, this difference should be minimised
by an effective distortion correction method. To do that, the last blip up volume and the
first blip down, which are the closest in time, are realigned. Then, the sum of the squared
difference between them is calculated within an ICV mask:∑

voxels
(xup − xdown)2

with xup/down, the voxel intensity of the blip up/down image.

A perfect correction should lead to a difference close to zero, as the blip up and down
volumes are acquired very close in time. This would mean both blip up and blip down
volumes would have been perfectly corrected and thereby very similar.

2.3.3 temporal Standard Deviation (tSTD)
This thesis focuses on comparison of geometric distortion correction method from a

dynamic point of view. Temporal metrics are needed to analyse how the different methods
behave dynamically. The first temporal metric used is the temporal standard deviation of
the signal (tSTD), calculated voxel-wise from the entire EPI time series. It gives
information about the temporal variability of the signal over time. High tSTD values
indicate regions with substantial signal fluctuations, which can be due to distortions. A
good distortion correction method should decrease the tSTD in distorted regions,
indicating that the temporal variability has been reduced. This reduction in tSTD implies
that the signal has become more stable over time.

Histograms

Local variations of the tSTD can be observed by looking directly at the maps.
However, to summarize the analysis over a specific region of interest, histograms of tSTD
were plotted. A tSTD histogram displays the distribution of temporal standard deviation
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values across all voxels in the brain. In order to do that, the first step was to compute a
mask from the mean corrected image in every pipeline. This was done using an ICV mask
including white matter, grey matter and CSF generated as described in Section 2.3.1.
Then, a common mask was generated by multiplying all the masks derived from the data
corrected using various methods. Finally, histograms were computed from the tSTD maps
within the common mask.

A very effective distortion correction method should shift the histogram towards lower
tSTD values, indicating a reduction in temporal variability and noise. Moreover, a
narrower histogram suggests more consistent signal variability across voxels. By examining
the tails of the histograms, the proportion of voxels with very high tSTD values can be
assessed. A good correction method should decrease the number of voxels with very high
temporal variability.

High deformation in grey matter histograms

To observe regions where high deformations occur due to high off-resonance effects,
another mask was used. First, the VSM from GRE fieldmap was thresholded to only have
values of more than 2 voxels. This ensures to have a region of high distortion. Then, it was
binarized and combined with a grey matter common mask. This combination of the two
masks came from their intersection. In this case, only grey matter was chosen because
usually in fMRI, the interest is about grey matter only. Finally, histograms of tSTD within
this mask were plotted to see if stronger deformation regions lead to more visible
differences between the methods.

2.3.4 temporal Signal-to-noise Ratio (tSNR)
Another well known temporal metric is the temporal signal-to-noise ratio (tSNR) of

each voxel. It is the mean signal over time divided by the temporal standard deviation:

tSNR = mean
tSTD

This metric is relevant, because in fMRI, the % of signal change is of interest and tSNR is
often used as a surrogate for BOLD-sensitivity estimation. In this project, tSNR shows if
the distortion correction methods not only reduce the variability but also preserve the
signal. A good correction method should improve tSNR by reducing the variability without
significantly affecting the signal strength. Higher tSNR values indicate a better distortion
correction method, with more consistent signal over time and low signal fluctuation due to
distortion.
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Results

In this chapter, the results of the different correction methods are presented. First,
temporal results from the segmented dataset are briefly shown. Then, the difference
between blip-up and blip-down images is presented to assess the spatial accuracy of the
various correction pipelines on unsegmented data. Finally, temporal metrics are depicted
to investigate the temporal stability of the methods.

3.1 Segmented dataset
In the first experiment, the correction pipelines were applied to a segmented dataset.

In this section, tSTD histograms of the corrected volumes are presented to see if
substantial differences with respect to unsegmented data occurred.

By looking at the Figures 3.1 and 3.2, we observe that the static distortion corrections
with no additional motion reach their peak for lower tSTD values. This is consistent with
what is obtained with unsegmented datasets (see Section 3.3).

SDC GRE SDC GRE +
motion model SDC SCOPE SDC SCOPE +

motion model
DDC with
GRE ref.

DDC with
SCOPE ref.

Mean 44.81 47.61 44.77 48.58 46.34 46.27
Standard
deviation 18.57 19.67 18.68 22.07 20.05 19.78

Table 3.1: Segmented EPI (experiment 1): mean and standard deviation of histograms

In Table 3.1, we observe that static corrections have the lowest mean variance and
that dynamic distortion correction slightly increase the tSTD mean value, but not as much
as the static correction with extra model motion. The exact same pattern is also found in
the unsegmented datasets (see 2.2.2 2.2.3). However, the values are reduced for all
correction methods compared to the one in both others experiments. In general, this
dataset presents lower variance values. Therefore, in the next sections, only results from
Experiment 2 and Experiment 3 are detailed.
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Figure 3.1: Segmented EPI (experiment 1) : tSTD histogram

Figure 3.2: Segmented EPI (experiment 1): zooms of the plot 3.1
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3.2 Difference between blip-reversed images
The difference between images acquired with opposite PE direction for all fMRI runs

of Experiment 2 and 3 are presented in Figure 3.3.

Figure 3.3: Square root of sum of squared difference between blip-up and blip-down EPI
images from Experiment 2 (left) and 3 (right)

In these bar plots, it is evident that in each run of each experiment, "SDC SCOPE +
motion model", including the additional modelling of B0 changes due to motion, removes
spatial differences between blip up and down volumes most effectively. All other methods
performed slightly worse than "SDC SCOPE + motion model". For SCOPE-based
approaches (dynamic and static) this observation was consistent for all 8 functional runs
analysed.

3.3 tSTD histograms
Data were collected on two different subjects with respectively eight, and three fMRI

runs. Results of three representative runs are shown below. Two EPI runs from the second
experiment were chosen with more or less head motion. Then in experiment 3, only the run
with the chin approaching task is shown. As explained in Section 2.2.3, the run with
intentional motion had been excluded due to a very important initial movement preventing
a good image reconstruction. Other than this run with large intentional motion with poor
image quality, all results from all runs are consistent with what is presented in those three
runs.

In the following Figures, results of EPI volumes that have been motion corrected but
not distortion corrected (MoCo noDC) are also presented as a control case.
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3.3.1 Experiment 2
The motion parameters of both fMRI runs from experiment 2 are plotted in Figure

3.4. We can see submillimetric motion in the first one. In the second run, the motion
parameters are slightly increased, but they are still relatively low.

Figure 3.4: Motion parameters of 2 EPI runs of experiment 2: one with very low motion
(left) and one with a little more motion (right)

When looking at the tSTD histograms in Figures 3.5,3.7, we see that, in general, using
"SDC SCOPE" with no modelling of B0 changes due to motion yields results with the
highest temporal stability: the peak is reached for smaller tSTD than in other distortion
correction methods. By looking at the zooms in Figure 3.6 and Figure 3.8, we clearly see
that "SDC SCOPE" (in yellow) has more voxels with low tSTD values and the tail is
shifted to the left.

By looking at the "DDC with SCOPE reference" results, we see that the peak is
reached for higher tSTD values, but the tail is similar. This means that there aren’t more
high (>50) tSTD values.

In the case with low motion (Figures 3.53.6), the correction "SDC SCOPE + motion
model" has increased tSTD globally, showing a shift of the peak value towards the peak
with only motion correction. This histogram peak is also lower, showing a larger right tail
(with high tSTD values) than any other distortion correction method.

When motion of the subject increases (Figure 3.7 3.8), "SDC SCOPE + motion
model" has more similar tSTD characteristic to "SDC SCOPE", but it still shows lesser
temporal stability (see Figure 3.8 left tail of the histogram).

In Tables 3.2 and 3.3, we observe that in both runs, "SDC SCOPE" has the lowest
mean tSTD. When analysing the standard deviation of the histograms distributions, we see
that "SDC SCOPE" is slightly higher than "DDC with SCOPE reference". This means that
the variability is more uniform with the dynamic correction. When the subject head motion
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Figure 3.5: Low motion case (experiment 2): tSTD histogram

Figure 3.6: Low motion case (experiment 2): zooms of the plot 3.5
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Figure 3.7: More motion case (experiment 2): tSTD histogram

Figure 3.8: More motion case (experiment 2): zooms of the plot 3.7

increases, we also see that the mean tSTD of "SDC SCOPE + motion model" gets shifted
to values closer to "SDC SCOPE". However, all the values are very close and comparable.
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SDC SCOPE SDC SCOPE + motion model DDC with SCOPE ref.
Mean 49.42 52.26 49.96

Standard deviation 24.60 25.76 24.31

Table 3.2: Low motion case (experiment 2): mean and standard deviation of histograms

SDC SCOPE SDC SCOPE + motion model DDC with SCOPE ref.
Mean 58.63 59.16 59.35

Standard deviation 32.98 32.08 32.69

Table 3.3: More motion case (experiment 2): mean and standard deviation of histograms

3.3.2 Experiment 3
The motion parameters of the EPI run with the chin approaching task can be seen in

Figure 3.9. These parameters are very low along the entire time series.

Figure 3.9: Motion parameters of chin task EPI runs of experiment 3.

The tSTD histogram of this experiment can be observed in Figure 3.10. The results
for the pipelines 3,4 and 6 are consistent and similar to what we observed in experiment 2.
"SDC SCOPE" has the peak with lowest tSTD values, whereas "SDC SCOPE +motion
model" has the bigger right tail with more voxels having high tSTD values (Figure 3.11:
right).

In the additional pipelines using preliminary GRE scan, "SDC GRE" follows the same
trend as "SDC SCOPE". Both dynamic methods ("DDC with GRE reference" and "DDC
with SCOPE reference") show very similar behaviour with tSTD histogram peak values
and right tail values falling in between "SDC SCOPE"/"SDC GRE" and "SDC SCOPE
+motion model"/"SDC GRE +motion model".
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Figure 3.10: Chin task (experiment 3): tSTD histogram

Figure 3.11: Chin task (experiment 3): zooms of the plot 3.10
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SDC GRE SDC GRE +
motion model SDC SCOPE SDC SCOPE +

motion model
DDC with
GRE ref.

DDC with
SCOPE ref.

Mean 54.22 56.39 53.81 57.12 55.87 55.43
Standard
deviation 30.41 30.27 29.90 32.27 31.48 30.74

Table 3.4: Chin task (experiment 3): mean and standard deviation of histograms

By looking at Table 3.4, we notice that "SDC SCOPE" has the best temporal stability
with the lowest tSTD mean and standard deviation. Nevertheless, the greatest difference
between tSTD of all the correction methods is around 6% which is relatively small.

For this experiment, another histogram has been computed only from regions in grey
matter affected by distortions higher than 2 voxels, as explained in Section 2.3.3. The
results that can be observed in Figures 3.12 and 3.13 and in Table 3.5, show consistency
with the ones obtained with the whole brain tissue mask used before.

SDC GRE SDC GRE +
motion model SDC SCOPE SDC SCOPE +

motion model
DDC with
GRE ref.

DDC with
SCOPE ref.

Mean 58.80 61.99 58.37 61.94 60.72 60.28
Standard
deviation 30.85 31.79 30.47 33.55 31.76 31.29

Table 3.5: Chin task (experiment 3) with high deformation and grey matter mask: mean
and standard deviation of histograms

3.4 tSTD maps
The tSTD maps of the same fMRI runs as in the previous section are presented here.

These maps allow for a more local analysis to determine which regions have been more or
less impacted by the correction methods.

3.4.1 Experiment 2
The tSTD maps in Figure 3.14 correspond to the fMRI run with low motion

parameters. Only small regional differences are visible for different correction methods,
mostly at the brain boundaries or close to ventricles. We observe slightly lower standard
deviation values in the white matter for "SDC SCOPE" than for the two other correction
methods. However, with the dynamic correction ("DDC with SCOPE reference"), lower
tSTD values are found in grey matter, especially in the occipital lobe (arrows 1 in Figure
3.14) and in the frontal region of the lateral ventricles (arrows 2 in Figure 3.14).
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Figure 3.12: Chin task (experiment 3) with high deformation in grey matter mask: tSTD
histogram

Figure 3.13: Chin task (experiment 3) with high deformation in grey matter mask: zooms
of the plot 3.12
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Figure 3.14: Low motion case (experiment 2): tSTD maps

In the run with more motion (Figure 3.15), less high tSTD values are seen using "SDC
SCOPE + model motion" in the frontal region of the brain (arrow 1 in Figure 3.15), but
higher tSTD values are visible close to the frontal horn of the lateral ventricle (arrow 2 in
Figure 3.15). The rest of the results observed are consistent with what we saw before.

Figure 3.15: More motion case (experiment 2): tSTD maps

3.4.2 Experiment 3
The results of the chin approaching task from the second experiment can be seen in

Figure 3.16. Everything looks consistent with what we observed in Experiment 1. In the
static corrections ("SDC GRE" and "SDC SCOPE"), better stability is observed in white
matter. Nevertheless, in grey matter, the use of dynamic distortion correction seems to
reduce the standard deviation slightly.

45



CHAPTER 3. RESULTS

Figure 3.16: Chin task (experiment 3): tSTD maps

3.5 tSNR maps
Additionally, tSNR maps of the three representative runs are presented below. The

slices shown in each run are the same as the ones in the tSTD maps.

3.5.1 Experiment 2
By looking at the tSNR results from the run with low motion in Figure 3.17, we can

see slightly increased values in the occipital lobe with dynamic distortion correction ("DDC
with SCOPE reference") with respect to the static field mapping methods. However, the
rest of the results are quite similar across the pipelines.

Figure 3.17: Low motion case (experiment 2): tSNR maps

In the case with more motion from experiment 2, the tSNR maps depicted in Figure
3.18 are relatively similar for all correction methods.
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Figure 3.18: More motion case (experiment 2): tSNR maps

3.5.2 Experiment 3
Finally, the tSNR maps from the chin approaching task with every correction method

are shown in Figure 3.19. Once again, no important difference between the methods can be
seen from these results.

Figure 3.19: Chin task (experiment 3): tSNR maps

47



CHAPTER 3. RESULTS

48



Chapter 4

Discussion

In this section, the results obtained will be discussed regarding the correction
efficiency itself but also the temporal stability. The impact of the choice of the sequence as
well as the task performed on the results will also be considered.

4.1 Correction efficiency
Because ’blip up’ and ’blip down’ EPI images have distortions in opposite directions,

any difference between these images after correction can be a good indicator of how well a
given method corrects distortions. The correction using "SDC SCOPE + motion model"
provided the greatest similarity between blip-reversed volumes. This result was expected
due to two main factors. Firstly, SCOPE fieldmap is generated by trying to minimize the
difference between blip up and blip down images [2]. Therefore, any pipeline using a
SCOPE fieldmap is expected to have better results than the ones using GRE fieldmap,
which is acquired separately from EPI scan and any field changes between that scan and
the target blip up and down volumes cannot be accounted for. However, the intermediate
steps present in "DDC with SCOPE reference" pipeline (such as phase offset estimation
and extrapolation) induce some extra variance in the corrected volumes. This leads to a
higher difference between blip up and blip down volumes.

Another explanation for the improved results of the "SDC SCOPE + motion model"
pipeline could be that by unwarping the data with SPM12 [22], Jacobian modulation is
automatically applied. This method corrects for intensity variation caused by geometric
distortion [26]. When voxels from the undistorted image get mapped to other locations in
the distorted image, the signal change (compression or stretching) is taken into account.
The Jacobian determinant indicates how much the volume of each voxel changes during
this mapping. If the volume of a voxel is compressed, the Jacobian determinant will be less
than one. On the other hand, if it is stretched, the determinant will be greater than one.
To correct for the intensity variations, the signal intensity of the corrected image is
multiplied by the local Jacobian determinant [28]. This Jacobian modulation therefore
improves the similarity between blip-reversed volumes.
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4.2 Temporal stability
By looking at the temporal standard deviation, we observe that static pipelines "SDC

GRE" and "SDC SCOPE", which use exactly the same process to apply different fieldmaps,
have strongly similar results. The same behaviour is also observed with the dynamic
pipelines: "DDC with GRE reference" and "DDC with SCOPE reference". This suggests
that both a SCOPE or a GRE fieldmap could be used to estimate the phase offset in the
dynamic correction. Therefore, GRE preliminary reference scans are not mandatory to
apply a dynamic correction. By using SCOPE, the reference scans are directly embedded
in the fMRI sequence. Pipeline 6 ("DDC with SCOPE reference") enables to perform a
distortion correction accounting for dynamic effects without needing any additional
sequence. This is a considerable advantage given that in neurosciences studies, participants
sometimes already spend a long time inside the scanner. In such way, we also avoid
introducing errors (e.g. undesired shimming adjustments) between a reference scan and
target EPI scan.

Overall, "SDC SCOPE" shows the best temporal stability. One of the potential
reasons is that other methods introduce noise and therefore more temporal variance. The
susceptibility-by-motion model [23] implemented in SPM12 and used in pipelines 2 and 4
increased temporal variance most from all the methods compared in this project. This
could signify that this model is not appropriate for low motion cases. However, the choice
of the sequence and the motion regime weren’t ideal to obtain strongly visible differences
between the correction methods.

4.3 Sequence choice
The EPI data analysed in this project came from accelerated 3D EPI. By accelerating

the acquisition in the phase encoding direction, the geometric distortions are reduced.
Therefore, the impact of the distortion correction methods is less visible than with
non-accelerated data. Moreover, by using 3D EPI, the off-resonance effects are averaged
over the entire volume acquisition, which can lead to image blurring rather than a
distinctive voxel shifts creating a distorted image.

In the literature, non-accelerated 2D EPI is usually used to assess the efficiency of a
dynamic distortion correction method [27]. The use of 2D EPI gives a snapshot of the
breathing cycle per slice, inducing thereby more distinct dynamic changes within a slice
and thus also distortions rather than blurring.

4.3.1 Segmented dataset
By using an EPI sequence with in-plan segments, the reduced effective echo spacing

decreases the amount of distortion observed in the uncorrected image. Distortion
correction still improves the data quality but to a lesser extent than with unsegmented
data. The results presented in Section 3.1 show the same behaviour in terms of comparison
between the methods. However, the temporal standard deviation values across all methods
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are significantly lower than the ones obtained with unsegmented data. Since less distortion
is present in this first experiment, the variance included in the initial data is reduced.
Therefore, the mean tSTD values for all pipelines are smaller. For this reason, after
analysing results from the first experiment, we decided to further investigate unsegmented
EPI acquisitions to have a more visible effect.

4.4 Tasks
The tasks performed by the participant in the experiment 3 also had an impact on the

results obtained. The tasks chosen are similar to the ones used in previous papers
presenting the behaviour of dynamic distortion correction methods [27]. However, the
results obtained in this project with these tasks do not show substantial differences
between static and dynamic correction methods. Reasons for this will be explained in the
following sections.

4.4.1 Chin approaching task pace
In Figure 4.1, we can see a screenshot of a frequency offset plot from EPI sequence

navigators shown by the computer during the image reconstruction process of the fMRI
run with the chin approaching task in experiment 2. It shows the change in frequency due
to B0 field inhomogeneities (y-axis) versus the repetition time (TRs) (x-axis). During this
task, the participant moved his hands from his sides to close to his chin, then back to his
sides with a regular pace. We clearly see from Figure 4.1 the constant pace of B0 changes
generated from this task. From this Figure, we would expect to have important dynamic
B0 field inhomogeneities along the time series. However, in the results presented in Section
3.3.2, dynamic distortion correction did not clearly improve the temporal metrics.

Figure 4.1: Screenshot of the reconstruction computer showing the change in frequency due
to the chin approach task per repetition time.

51



CHAPTER 4. DISCUSSION

To understand why such a variable field could be present in reality without impacting
the reconstructed images, we need to compute the time over which 3D EPI averages the
off-resonance effects. From Table 2.3, we can extract useful parameters of the 3D EPI
sequence: the TR is 68ms, the number of slices is 96 and the acceleration factor in PE
direction is 2. Therefore, we can compute the time needed to acquire one volume:

TR · nbslices

acceleration factor = 68.10−3 · 96
2 = 3.264s (4.1)

During this time, the off-resonance effects are averaged. We can then compute the period
of the task from Figure 4.1. As said before, in this Figure, the x-axis represents the time in
TR. This means that two points are separated by one TR. We observe five peaks
happening during 500 TR. Thereby, the period of one chin approach task is:

500
5 · TR = 100 · 68.10−3 = 6.8s (4.2)

From Equation 4.1 and Equation 4.2, we notice that the off-resonance effect are
averaged almost every half period of B0 change:

6.8/3.264 = 2.083 ≃ 2

During a half period, we get +50Hz and -50Hz, therefore the B0 dynamic changes are
averaged to a value close to zero over a volume acquisition. This explains the lack of
difference between the results obtained with static and dynamic distortion correction.

4.4.2 Low motion
The data from the second task consisting of moving the head towards the chest slowly

was unusable, as explained in Section 2.2.3. Therefore, the data on which the corrections
were applied had only very low head movement (<1.5mm translation and <1.5° rotation).
Such a small motion did not allow testing various distortion correction methods in a regime
where we would expect differences in temporal stability.

In the pipelines 2 and 4, the additional model accounting for susceptibility-by-motion
changes is implemented in SPM12 [22] "Realign & Unwarp". However, in SPM12 Manual
[26], it is described that using this method with data containing little movement will
provide no benefit. It only removes unwanted variance if the motion is above 1mm and 1°.
In our results we not only observe no benefit from application of the additional motion
model, we also see a slight deterioration of temporal stability when this model is applied.
When head motion increases, the "SDC SCOPE + motion model" results become more
similar to "SDC SCOPE" but still show slightly higher tSTD values.

Another impact of the low motion regime of our data is that we do not see a strong
difference between static and dynamic distortion correction. Indeed, motion is known to
modify the B0 field along a time series. With variation of the static field across time,
dynamic corrections should have reduced the temporal standard deviation. However, with
such small head motion, its impact on the B0 field across time was very weak, leading to
small differences between dynamic and static correction methods.
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4.5 Future work
Even if the correction pipelines seem to behave similarly in a small motion regime or

for data with a periodic field changes (as in chin task), future work is desirable to test
distortion correction temporal stability in other functional protocols and tasks. To be able
to observe more clearly the differences between the methods, an unsegmented 2D EPI
sequence with no acceleration could be acquired. If 3D EPI is still used, one could consider
changing the pace of the chin approaching task in order to avoid the frequency averaging
within one volume TR. Regarding the second task, a controlled head motion should be
performed slowly towards the chest to see if it would show improved results of dynamic
distortion correction. These experiments would be valuable for testing correction methods
in extreme scenarios. This would allow researchers to choose the best method for a specific
situation: while some functional tasks involve minimal head movement, others may have
slow, sustained head drift over time. Rapid head movements are more common in tasks
using virtual reality paradigms or pain stimulation. Additionally, by testing different
correction methods within real neuroscientific studies, researchers can make more informed
decisions about the optimal processing pipeline for their particular case taking into
consideration temporal stability as well as functional activation.

Using this sequence and those tasks, differences between static and dynamic distortion
correction methods will be more visible. Therefore, a more precise assessment will be
possible. This will enable a choice between a simple static correction that does not account
for the changes of B0 along the time series or a dynamic correction which involves many
intermediate steps that could increase the temporal variance if no substantial dynamic field
changes are expected. One would expect that if the static field is highly variable during the
acquisition, dynamic pipelines would reduce the temporal variance even considering all
their intermediate steps.
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Chapter 5

Conclusion

The growing trend in neuroscience research is to utilize functional magnetic resonance
imaging (fMRI) at high (3T) and ultra-high (7T) magnetic field strengths. This is driven
by the significant gains in signal-to-noise ratio (SNR), enabling researchers to acquire
high-resolution functional maps, potentially even at the laminar level. However, fMRI
typically employs fast imaging techniques like Echo-Planar Imaging (EPI) which are
susceptible to geometric distortions caused by local field inhomogeneities. These
inhomogeneities become increasingly pronounced at higher field strengths. To ensure
accurate spatial localization of brain activation in 7T fMRI studies, robust correction
methods for geometric distortions are essential.

In this thesis, different existing geometric distortion correction methods have been
implemented and compared, focusing mainly on temporal stability. Additionally, a new
dynamic distortion correction method has been developed and compared to existing
methods. This technique does not require any preliminary scan and uses blip-reversed
volumes to estimate the phase offset. Then, one fieldmap per time point is derived to
account for any changes in the B0 field along the time series.

The results showed that for 3D EPI and small motion (<1.5mm translation and <1.5°
rotation), static distortion correction with a fieldmap generated from blip-reversed EPI
volumes has the best temporal stability. In dynamic distortion correction, the intermediate
computation steps induced some additional variance, which was not compensated by the
reduction of variance occurring from accounting for the dynamic field changes.

However, the application of this new correction method on unsegmented 2D EPI could
be very promising as off-resonance effects would not be average over the volume acquisition
time. Further work is required to assess clearly the behaviour of each correction pipeline
using 2D EPI.
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Appendix A

MRI protocols

In the next pages, the PDF file of the protocols from experiment 2 and experiment 3
are presented with the detailed parameters used in the different sequences. Additional
sequences than the ones presented in this thesis were present in the protocol are not shown,
as they were used to providing data for other projects.

Only one fMRI sequence is shown because all runs from both Experiments were
acquired using the exact same protocol.
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\\USER\FIL Physics\Barbara\20240424_Katia_DDC\t1w_mfc_3dflash_v1k_0.8mm
TA: 6:16 PM: REF Voxel size: 0.8×0.8×0.8 mmPAT: 4 Rel. SNR: 1.00 : fl3d_1k

Properties
Prio recon Off
Load images to viewer On
Inline movie Off
Auto store images On
Load images to stamp segments Off
Load images to graphic segments Off
Auto open inline display Off
Auto close inline display Off
Start measurement without further
preparation

Off

Wait for user to start Off
Start measurements Single measurement

Routine
Slab group 1

Slabs 1
Position L0.0 A6.2 F21.1 mm
Orientation Sagittal
Phase enc. dir. A >> P

AutoAlign ---
Slice oversampling 0.0 %
Slices per slab 192
FoV read 256 mm
FoV phase 85.0 %
Slice thickness 0.80 mm
TR 25.00 ms
TE 1 2.56 ms
TE 2 5.12 ms
TE 3 7.68 ms
TE 4 10.24 ms
TE 5 12.8 ms
TE 6 15.4 ms
TE 7 17.9 ms
TE 8 20.5 ms
Concatenations 1
Filter None
Coil elements AC

Contrast - Common
TR 25.00 ms
TE 1 2.56 ms
TE 2 5.12 ms
TE 3 7.68 ms
TE 4 10.24 ms
TE 5 12.8 ms
TE 6 15.4 ms
TE 7 17.9 ms
TE 8 20.5 ms
MTC Off
Flip angle 24 deg

Contrast - Dynamic
Reconstruction Magnitude

Resolution - Common
FoV read 256 mm
FoV phase 85.0 %
Slice thickness 0.80 mm
Base resolution 320
Phase resolution 100 %

Resolution - Common
Slice resolution 100 %
Phase partial Fourier Off
Slice partial Fourier Off

Resolution - iPAT
PAT mode GRAPPA
Accel. factor PE 2
Ref. lines PE 48
Accel. factor 3D 2
Ref. lines 3D 48
Reference scan mode Integrated

Resolution - Filter Image
Image Filter Off
Distortion Corr. Off
Prescan Normalize Off
Normalize Off
B1 filter Off

Resolution - Filter Rawdata
Raw filter Off
Elliptical filter Off

Geometry - Common
Slab group 1

Slabs 1
Position L0.0 A6.2 F21.1 mm
Orientation Sagittal
Phase enc. dir. A >> P

Slice oversampling 0.0 %
Slices per slab 192
FoV read 256 mm
FoV phase 85.0 %
Slice thickness 0.80 mm
TR 25.00 ms
Concatenations 1

Geometry - AutoAlign
Slab group 1

Position L0.0 A6.2 F21.1 mm
Orientation Sagittal
Phase enc. dir. A >> P

AutoAlign ---
Initial Position L0.0 A6.2 F21.1
L 0.0 mm
A 6.2 mm
F 21.1 mm
Initial Rotation 0.00 deg
Initial Orientation Sagittal

Geometry - Tim Planning Suite
Set-n-Go Protocol Off
Table position H
Table position 0 mm
Inline Composing Off

System - Miscellaneous
Positioning mode REF
Table position H
Table position 0 mm

SIEMENS MAGNETOM Investigational_Device_7T
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System - Miscellaneous
MSMA S - C - T
Sagittal R >> L
Coronal A >> P
Transversal F >> H
Coil Combine Mode Sum of Squares
Save uncombined Off
Matrix Optimization Off
AutoAlign ---
Coil Select Mode Default

System - Adjustments
B0 Shim mode Advanced
B1 Shim mode TrueForm
Confirm freq. adjustment Off
Assume Dominant Fat Off
Assume Silicone Off
Adjustment Tolerance Auto

System - Adjust Volume
! Position L0.0 A1.8 F4.2 mm
! Orientation T > C-15.0
! Rotation -180.00 deg
! A >> P 192 mm
! R >> L 192 mm
! F >> H 71 mm
Reset Off

System - pTx Volumes
B1 Shim mode TrueForm

System - Tx/Rx
Frequency 1H 297.211698 MHz
Correction factor 1
Gain High
Img. Scale Cor. 1.000
Reset Off
? Ref. amplitude 1H 0.000 V

Sequence - Part 1
Dimension 3D
Elliptical scanning Off
Contrasts 8
Bandwidth 434 Hz/Px

Sequence - Part 2
Gradient mode Fast
RF spoiling On

Sequence - Special
Noise Adjust On
Reorder Object? On
Partition Spoiler? On
RF Spoiling Increment 144.0 Degrees
Trajectory Lines in Partitions
Prewinder (PE, RO) Ramp 290 us
Prewinder (PE, RO) Dur. 610 us
Readout Ramp 110 us
Spoiler Ramp 240 us
MTC Spoil Ramp 200 us
MTC Spoil Flat 1000 us
RF Pulse Duration 240 us
Excitation Non-Selective Rect
Reconstruction Gadgetron

Sequence - Special
Bandwidth Time Product 6.0
No. of PI to Spoil 3.0 PI
Flip Angle of MTC pulse 180.0 Degrees
Num. CAIPI Partitions 228
Num. CAIPI Lines 282

Sequence - Assistant
Mode Off
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\\USER\FIL Physics\Barbara\20240424_Katia_DDC\nc_epi3d_v3s_1seg_96part_AP_121mono_320us
_nomotion

TA: 5:01 PM: REF Voxel size: 0.8×0.8×0.8 mmPAT: 8 Rel. SNR: 1.00 : ep3dv3s

Properties
Prio recon Off
Load images to viewer On
Inline movie Off
Auto store images On
Load images to stamp segments Off
Load images to graphic segments Off
Auto open inline display Off
Auto close inline display Off
Start measurement without further
preparation

Off

Wait for user to start Off
Start measurements Single measurement

Routine
Slab group 1

Slabs 1
Position Isocenter
Orientation T > C-15.0
Phase enc. dir. P >> A

AutoAlign ---
Phase oversampling 0 %
Slice oversampling 0.0 %
Slices per slab 96
FoV read 192 mm
FoV phase 100.0 %
Slice thickness 0.80 mm
TR 68.00 ms
TE 1 26.08 ms
TE 2 300.00 ms
TE 3 300.00 ms
Filter None
Coil elements AC

Contrast - Common
TR 68.00 ms
TE 1 26.08 ms
TE 2 300.00 ms
TE 3 300.00 ms
MTC Off
Flip angle 15.0 deg
Fat suppr. Water excit. normal

Contrast - Dynamic
Reconstruction Magnitude
Measurements 74
Pause after meas. 0.000 s

Resolution - Common
FoV read 192 mm
FoV phase 100.0 %
Slice thickness 0.80 mm
Base resolution 240
Phase resolution 100 %
Slice resolution 100 %
Phase partial Fourier 6/8

Resolution - iPAT
PAT mode GRAPPA
Accel. factor PE 4

Resolution - iPAT
Ref. lines PE 112
Accel. factor 3D 2
Ref. lines 3D 96
Reference scan mode GRE/separate

Resolution - Filter Image
Image Filter Off
Distortion Corr. Off
Prescan Normalize Off
Normalize Off
B1 filter Off

Resolution - Filter Rawdata
Raw filter Off
Elliptical filter Off

Geometry - Common
Slab group 1

Slabs 1
Position Isocenter
Orientation T > C-15.0
Phase enc. dir. P >> A

Slice oversampling 0.0 %
Slices per slab 96
FoV read 192 mm
FoV phase 100.0 %
Slice thickness 0.80 mm
TR 68.00 ms

Geometry - AutoAlign
Slab group 1

Position Isocenter
Orientation T > C-15.0
Phase enc. dir. P >> A

AutoAlign ---
Initial Position Isocenter
L 0.0 mm
P 0.0 mm
H 0.0 mm
Initial Rotation 180.00 deg
Initial Orientation T > C
T > C -15.0
> S 0.0

Geometry - Tim Planning Suite
Set-n-Go Protocol Off
Table position H
Table position 0 mm
Inline Composing Off

System - Miscellaneous
Positioning mode REF
Table position H
Table position 0 mm
MSMA S - C - T
Sagittal R >> L
Coronal A >> P
Transversal F >> H
Coil Combine Mode Sum of Squares

SIEMENS MAGNETOM Investigational_Device_7T
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System - Miscellaneous
Save uncombined Off
Matrix Optimization Off
AutoAlign ---
Coil Select Mode Default

System - Adjustments
B0 Shim mode Advanced
B1 Shim mode TrueForm
Confirm freq. adjustment Off
Assume Dominant Fat Off
Assume Silicone Off
Adjustment Tolerance Auto

System - Adjust Volume
Position Isocenter
Orientation T > C-15.0
Rotation -180.00 deg
A >> P 192 mm
R >> L 192 mm
F >> H 77 mm
Reset Off

System - pTx Volumes
B1 Shim mode TrueForm

System - Tx/Rx
Frequency 1H 297.211698 MHz
Correction factor 1
Gain High
Img. Scale Cor. 1.000
Reset Off
? Ref. amplitude 1H 0.000 V

Sequence - Part 1
Dimension 3D
Contrasts 1
Bandwidth 947 Hz/Px

Sequence - Part 2
Gradient mode Fast
RF spoiling On

Sequence - Special
Caipi Delta 0
In-plane segments 1
Number of RF pulses 3
Sinc duration 320 us
TBWP 24
Phase Evolution 540 deg
Off resonance frequency 0 Hz
VoxDeph 1 2pi
SpoilAmp 20 mt/m
EddCurr0 0 us
EddCurr1 250 us
TRamp 210 usec
TFlat 800 usec
effective TE 26080 usec
Quiet File None
SlabGradScale 15.0
IceProgram IceProgram2DiPatOffline3D
Noise Adjust On
RF Spoil Basic Inc 50.0 deg
Trigger Type Vol3ms

Sequence - Special
X_Shim_0 0.0 mt/m*ms
X_Shim_1 0.0 mt/m*ms
X_Shim_2 0.0 mt/m*ms
Y_Shim_0 0.0 mt/m*ms
Y_Shim_1 0.0 mt/m*ms
Y_Shim_2 0.0 mt/m*ms
Z_Shim_0 0.0 mt/m*ms
Z_Shim_1 0.0 mt/m*ms
Z_Shim_2 0.0 mt/m*ms
RO_Off Off
PE_Off Off
RO_OnSlice Off
PE_OnSlice Off
RO_Opp On
PE_Opp On
BlipUP_DOWN On
PCAutoCorr Off
PCAcrossSeg Off
OnlineFFT On
PFSubMatrix Off
PF_POCS Off
DummyNavigators Off
Navs always on On
Navs on for ref scans On
Lin Ref Part On
Sym Ref Data Off
Late PF Off
FlyBack Exc On
MT_GaussPulse Off
MT_HardPulse On
MT dual-Freq Off
Part. enc. balanced in On
Pol slice sel grad Off
Dummies 10 AccVol
Fillers 0 AccVol
BlipUpDown 4 BlipVol
MT FlipAngle 220 Deg
MT OFFRES 2000 Hz
MT PLS_DUR 4000 us
MT-subpulse 10 Number
MT-subpulseFA 12 Deg
MT-subpulse_tau 100 us
m_lMT_HardPulse_Dur 200 us

Sequence - Assistant
Mode Off
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