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Abstract

The vulnerability of classical encryption protocols to the increasing power of quantum computers is
driving research into new and secure methods of communication. One promising candidate to address
this problematic is quantum key distribution, which takes advantage of the properties of quantum
mechanics to ensure a secure exchange of the encryption key, thus guaranteeing secure communication
between the entities.

Quantum key exchange algorithms exploit the properties of quantum objects, typically the polar-
ization of photons, to set up the secure exchange. To this end, the polarization state of the photons
must be maintained throughout the exchange. Reflections of the telescope mirrors at the receiver,
however, modify the polarization state.

The present work recalls the concept of light polarization, and the different types with the as-
sociated mathematical description. A general introduction to quantum key distribution, and to the
MOCA project, then follows to introduce the reader to the main parts of this work, which focuses on
characterizing the changes in polarization caused by the telescope, and in particular by the third mirror
where the high angle of incidence causes polarization aberrations. Based on the Jones formalism, it is
shown that the phase shift between the orthogonal components of the polarization at the wavelengths
relevant to this project is too large to satisfy the requirements in terms of polarization extinction ratio.

As a result of the unsatisfactory performance of the telescope, an in-depth study of the use of
birefringent crystals to correct the excessive phase shift is carried out, showing the need to use three
crystals of different birefringence to achieve the desired polarization extinction ratios at the three
relevant wavelengths for MOCA. Results also show that if there is an order of priority for optimizing the
wavelengths of the application, the use of one or two crystals proves to be worthwhile. Eventually, based
on ellipsometric measurements, the phase shift and change in polarization orientation generated by a
mirror of configuration comparable to the third mirror of the telescope are determined. A comparison
of the results provided by models to real measurements confirms the implementation of the Jones
formalism and highlights the need to characterize a mirror on the basis of experimental measurements.
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Chapter 1

Introduction

1.1 Motivation

In our everyday lives, communication plays a fundamental role in the exchange of information between
several entities. There are many and varied means of communication, the use of which varies according
to the situation. If the exchange is to be private, it must be ensured that no third party intercepts any
information.

For encrypted data, whose content is supposed to remain private, possession of a key enabling
decryption is necessary in order to access the content. When this key is exchanged for this purpose
between two entities, any interception by a third party would compromise the security of the operation,
and the consequences could prove disastrous depending on the importance of the encrypted informa-
tion. Numerous encryption algorithms have therefore been developed to secure information, ranging
from the most rudimentary and therefore less reliable, such as Cesar code, to the most sophisticated
and widely used today, such as RSA encryption.

Recently, the development of quantum physics has opened a new door to secure key exchanges.
This new exchange possibility, called quantum key distribution (QKD), consists of a secure method of
key exchange that discerns the presence of an intruder (eavesdropping) between two entities, commonly
known as Alice and Bob1, based on the physical principle that the presence of an observer disturbs the
quantum system. What’s more, as the power of quantum computers undermines encryption algorithms
based on the limited computing power of today’s computers, new methods such as QKD need to be
put in place to guarantee the security of exchanges for the foreseeable future.

New quantum key exchange protocols such as BB84 and B92, based on Heisenberg’s uncertainty
principle, have emerged. Specifically, these protocols utilize a property of light called polarization.
This property can be present for transverse waves, such as light, and corresponds by definition to the
directions of vibration of the electric field components. Through the protocols developed for QKD,
secure quantum key exchanges can take place by advantageously making use of polarized photons and
of the principles of quantum mechanics.

The key characteristic of the previously mentioned quantum protocols being polarization state, it
is important to ensure that the latter is maintained throughout the communication channel to enable
the reception of the correct information. In particular, the ground receiving antenna, which takes the

1Alice being the one sending the information to Bob.
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form of a telescope in the case of optical communications, must maintain the initial polarization state.
However, reflections on the various mirrors of a telescope induce phase delays between the orthogonal
components of polarization if the incidence is not normal. It is therefore necessary to determine these
delays, and then correct them to maintain polarization, and more generally, the communicated infor-
mation.

This is where the importance of this work lies, which primarily focuses on studying polarization
changes through the telescope, particularly induced by the third mirror, and analyzes different ways to
tackle this problem, with the aim of achieving good performances in transmitting the communicated
information.

1.2 Goals of the project

The first objective of this project is to study changes in the polarization state of light as it propa-
gates through an optical communication antenna, which takes the form of a telescope. The aim is
to understand how the polarization state is affected by the optical components inside the telescope,
using the Jones formalism useful for describing the polarization state of fully polarized light, as optical
components can, by reflection, modify the polarization state.

Secondly, the main objective of this project is to determine a method for correcting phase shifts
between orthogonal components of polarization. This is of major importance in terms of the per-
formance of optical communication systems in maintaining polarization states, enabling secure and
reliable exchanges via quantum key distribution.

1.3 Structure of the report

The present work is structured as follows:

Part I contains the necessary theoretical background to understand polarization, starting from
Maxwell’s equations to highlight the wave behavior of light, which forms the basis of polarization. It
then introduces the various types of polarizations, along with the necessary mathematical formalism,
ultimately leading to the Jones formalism, which is the fundamental framework used to describe the
polarization state of fully polarized light.

Part II introduces the principle of quantum key distribution, and explains the associated quantum
theory. The well-known BB84 quantum key exchange protocol is explained and its security analyzed.
Finally, the QKD antenna project within AMOS is described, explaining its various parts, with par-
ticular attention to the optical design.

Part III uses the Jones formalism introduced earlier to characterize the telescope by its Jones
matrix, and to deduce the change in polarization for the different types of polarization at the object
scene. In addition, performance, i.e. the telescope’s ability to retransmit the information correctly,
is determined as a function of wavelength and type of polarization. It is also at this stage that the
induced phase shifts are rigorously determined for subsequent correction.

2



Part IV is devoted to solving the problem of polarization degradation, i.e. correcting the phase
shift between the orthogonal components of polarization by means of compensation. The methodology
employed is based on the principle of birefringence, using crystals to achieve the performance targets
set at the wavelengths relevant to the project.

Part V aims to validate the correct implementation of the Jones formalism, and consequently
the correct characterization of the telescope model, by comparison with experimental measurements
made on an ellipsometer. The ellipsometric parameters, i.e. the phase shift between the orthogonal
components of polarization and the polarization orientation, of a mirror of a similar configuration to
that causing the phase shifts in the telescope, are determined. A comparison with the results of the
numerical model is carried out for final validation.

1.4 AMOS company

As part of my end-of-study work, I did an internship within the AMOS (Advanced Mechanical and
Optical Systems) company. Founded in 1983, AMOS has distinguished itself for over 40 years in the
development of ultra-high opto-mechanical systems, which are mainly dedicated to the space industry
and professional astronomy. The main achievements of the company are professional-grade telescopes,
optical systems for space applications, testing apparatus for space instruments, and precision mechan-
ical equipment (Advanced Mechanical and Optical Systems (AMOS), 2024).
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Chapter 2

Polarized light

2.1 Electromagnetic radiation

2.1.1 Maxwell’s equations

Electromagnetic radiation consists of an electric and magnetic field traveling through space, at constant
speed depending on the medium. The full description of electromagnetic radiation is derived from
Maxwell’s equations, which describe all classical electromagnetic phenomena. These are given here
under their differential form:

−→
∇ ·

−→
D = ρ, (2.1)

−→
∇ ·

−→
B = 0, (2.2)

−→
∇ ×

−→
E = −∂

−→
B

∂t
, (2.3)

−→
∇ ×

−→
H =

−→
J +

∂
−→
D

∂t
. (2.4)

−→
E stands for the electric field vector,

−→
D for the electric displacement vector,

−→
B for the magnetic

induction vector and
−→
H for the magnetic field vector. The density of free charges is given by ρ, and the

current density by
−→
J . In a linear, homogeneous and isotropic material, the electric displacement and

magnetic induction vectors are linked to the electric field and magnetic field vectors by constitutive
equations of the form:

−→
D = ε

−→
E , (2.5)

−→
B = µ

−→
H, (2.6)

with ε the permittivity, and µ the permeability, of the medium. Moreover, in a conducting medium,
the current density is linked to the electric field by the electrical conductivity σ:

−→
J = σ

−→
E . (2.7)

2.1.2 Wave equation for electric and magnetic fields

Maxwell’s equations can be used to obtain the wave equation for the electric field
−→
E and magnetic

field
−→
H . Vanderheyden (2023) proposes the following approach:
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Taking the curl of Equation 2.3,

−→
∇ ×

(−→
∇ ×

−→
E
)
=

−→
∇ ×

(
−∂

−→
B

∂t

)
= −

∂
(−→
∇ ×

−→
B
)

∂t
, (2.8)

and using the vectorial calculus relation

−→
∇ ×

(−→
∇ ×

−→
E
)
=

−→
∇
(−→
∇ ·

−→
E
)
−
−→
∇2−→E , (2.9)

one has

−→
∇ ×

(−→
∇ ×

−→
E
)
=

−→
∇ ρ

ε
−
−→
∇2−→E , (2.10)

= −
∂
(−→
∇ ×

−→
B
)

∂t
, (2.11)

= −µσ∂
−→
E

∂t
− µε

∂2
−→
E

∂t2
. (2.12)

Eventually, the wave equation for the electric field is

−→
∇2−→E − µε

∂2
−→
E

∂t2
= µσ

∂
−→
E

∂t
+
−→
∇ ρ

ε
. (2.13)

Similar manipulations can be applied to Equation 2.4 to obtain the wave equation for the magnetic
field (see Appendix A):

−→
∇2−→H − µε

∂2
−→
H

∂t2
= µσ

∂
−→
H

∂t
. (2.14)

2.1.3 Propagation of uniform plane waves in vacuum

In free space,
−→
J =

−→
0 and ρ = 0, and Equations (2.13) and (2.14) reduce to

−→
∇2−→E − µ0ε0

∂2
−→
E

∂t2
= 0, (2.15)

−→
∇2−→H − µ0ε0

∂2
−→
H

∂t2
= 0. (2.16)

The solution is a plane wave propagating in the direction of the wave vector
−→
k = kxx̂+kyŷ+kz ẑ with

respect to the (x, y, z) coordinate system (Wolski, 2011):

−→
E =

−→
E0 cos

(−→
k · −→r − ωt+ ϕ0

)
, (2.17)

−→
B =

−→
B0 cos

(−→
k · −→r − ωt+ ϕ0

)
, (2.18)

with
−→
E0 and

−→
B0 the amplitudes of the electric and magnetic induction fields, respectively, ω the

pulsation, and ϕ0 a constant phase. The wave vector and the pulsation are linked to the frequency f
and wavelength λ through

ω = 2πf, (2.19)

|
−→
k | = 2π

λ
. (2.20)
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Moreover, the speed of the wave c0 can directly be deduced from Equation 2.15 and Equation 2.16:

c0 =
1

√
µ0ε0

≈ 3 · 108 m/s. (2.21)

As a consequence of Maxwell’s equations, light is a transverse wave consisting of an electric and
magnetic field perpendicular to each other, and oscillating in phase through space (Klein and Furtak,
1986).

z

y

x
−→
k

−→
E

−→
B

Figure 2.1 – Electromagnetic wave propagation in the case of an in-plane oscillation of
−→
E and

−→
B , with−→

k = ẑ. Adapted from Neutelings (2018).

2.2 Wave polarization

The directions of the electric and magnetic fields within the plane perpendicular to the direction of
propagation may change in function of position and time, depending e.g., in which medium the wave
is propagating. The instantaneous orientations of the field vectors are in consequence necessary pa-
rameters in order to describe an electromagnetic wave.

Polarization is defined as the electric field vector orientation as a function of time, at fixed position
in space (Hayt and Buck, 2001). As the electric field vector, electric displacement vector, magnetic
field vector and magnetic induction vector are all linked through Maxwell’s equations and through the
constitutive relations, it is sufficient to specify the electric field direction only. However, the choice of
the electric field over the magnetic field is motivated by the fact that the force experienced by electrons
due to the electric field of light, when the latter interacts with matter, is greater than that experienced
by electrons due to the magnetic field of light (Scharf, 2007).

The three types of polarization — linear, circular, and elliptical — are characterized by the ratio
of the amplitudes of the electric field components and the phase shift between these. For the sake
of illustration, fully polarized light is considered hereafter. The different types of polarization can
be easily illustrated by considering an electromagnetic wave propagating through space in a direction−→
k = ẑ, with the electric field thus oscillating perpendicularly:

−→
E (z, t) =

−→
Ex(z, t) +

−→
Ey(z, t) = E0x cos (kz − ωt+ φx) x̂+ E0y cos (kz − ωt+ φy) ŷ. (2.22)

9



2.2.1 Linear polarization

z

y

x
−→
k

−→
E−→

B

Figure 2.2 – Vertical linear polarization. The
wave vector

−→
k lies along the z-axis. x− z and y −

z planes represent the planes of oscillations of the
magnetic and electric field, respectively. Adapted
from Neutelings (2018).

When the electric field vibrations are restricted
to one single plane oriented along the direction of
propagation, light is said to be linearly polarized.
The necessary and sufficient condition to obtain
linear polarization is to have a phase shift1 δ =

φy − φx equal to zero or any multiple of π, i.e.

δ = kπ, with k ∈ Z, (2.23)

as each field component will then always have a
cosinusoidal behavior. The plane orientation α

with respect to x-axis is characterized by the ratio
of the amplitudes of each component:

tanα =
E0y

E0x
. (2.24)

The sign of the right-hand side defines if the plane orientation will be in the interval [0◦, 90◦] or not,
depending on the type of oscillations the electric field components present : in-phase or out-of-phase
oscillations. For each type, the field component writes{−→

E y = E0y cos (kz − ωt) ŷ if δ = 2kπ, with k ∈ Z,
−→
E y = −E0y cos (kz − ωt) ŷ if δ = (2k + 1)π, with k ∈ Z,

(2.25)

respectively. Both cases with equal absolute field amplitudes, i.e. α = 45◦ and α = −45◦, are called
linear polarization at 45◦, and −45◦, respectively. Other interesting cases are horizontal and vertical
polarization, for which E0y = 0 and E0x = 0, respectively. These four special cases are useful for QKD
as will be introduced in Chapter 3.

−→
k

−→
E

Figure 2.3 – Vertical linear polarization. Adapted from Tsagkaropoulos (2021).

1Choosing φx = 0 as a reference, one has δ = φy − φx = φy.
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2.2.2 Circular polarization

If one considers a fixed position along the z-axis, and allows time to vary, there exists a configuration
in which the electric field vector draws a circle. Light is then said to be circularly polarized. Two
conditions must be fulfilled in order to obtain circularly polarized light:

δ = ±π
2
+ 2kπ with k ∈ Z, (2.26)

E0x = E0y = E0. (2.27)

The corresponding field components are:

−→
E x = E0 cos (kz − ωt) x̂, (2.28)
−→
E y = ∓E0 sin (kz − ωt) ŷ. (2.29)

Indeed, the expression of a circle can be obtained from the amplitude:

|
−→
E |2 = |

−→
E x +

−→
E y|2 = E2

0 cos
2 (kz − ωt) + E2

0 sin
2 (kz − ωt) = E2

0 , (2.30)

and the constant amplitude, corresponding to the radius of the circle, is naturally equal to

|
−→
E | =

√
E2

0 cos
2 (kz − ωt) + E2

0 sin
2 (kz − ωt) = E0. (2.31)

If δ = π/2 + 2kπ, the field vector rotates clockwise in the plane perpendicular to the direction of
propagation, and the polarization is called left-handed circular polarization. When the field rotates
counter-clockwise, i.e. δ = −π/2 + 2kπ, the polarization is called right-handed circular polarization
(Hayt and Buck, 2001).

−→
k

−→
E

Figure 2.4 – Right-handed circular polarization. Adapted from Tsagkaropoulos (2021).
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2.2.3 Elliptical polarization

This type of polarization is the most general polarization state, as the field components amplitudes and
the phase shift are arbitrary. Linear polarization is in fact a particular case of elliptical polarization,
with δ = kπ (k ∈ Z), and circular polarization also but with a fixed value for the three parameters
E0x = E0y and δ = ±π/2 + 2kπ (k ∈ Z).

A full characterization of elliptical polarization relies on the polarization ellipse. Following Collett
(2005)’s approach, the equation of an ellipse can be obtained from

−→
E x and

−→
E y (see Appendix A):

Ex(z, t)
2

E0x
2

+
Ey(z, t)

2

E0y
2

− 2Ex(z, t)Ey(z, t)

E0xE0y
cos δ = sin2 δ. (2.32)

This expression is valid for any case of polarization, and therefore also in particular for linear and
circular polarization. For the former, Equation 2.32 simplifies to:

Ex(z, t)
2

E0x
2

+
Ey(z, t)

2

E0y
2

= ±2Ex(z, t)Ey(z, t)

E0xE0y
, (2.33)

−→
E y

−→
E x

ψ

χ

Figure 2.5 – Polarization ellipse. The azimuth
angle characterizes the orientation of the principal
axis of the ellipse, and the ellipticity angle provides
information on the length of the secondary axis,
therefore characterizing the phase shift between the
components of the electric field.

for in-phase and out-of-phase oscillations, respec-
tively. For circular polarization, it becomes:

Ex(z, t)
2 + Ey(z, t)

2 = E2
0 , (2.34)

which is the equation of a circle of radius E0. The
orientation of the principal axis of the polariza-
tion ellipse with respect to the x-axis is given by
the azimuth angle ψ:

tan 2ψ =
2E0xE0y

E2
0x − E2

0y

cos δ, (2.35)

and the ellipticity angle χ writes

sin 2χ =
2E0xE0y

E2
0x + E2

0y

sin δ. (2.36)

Introducing the auxiliary angle α such that

tanα =
E0y

E0x
, (2.37)

the azimuth and ellipticity angles can be related through:

tan 2ψ = tan 2α cos δ, (2.38)

sin 2χ = sin 2α sin δ. (2.39)

As for circular polarization, elliptical polarization is characterized by its handedness, making use of
the same convention. Consequently, polarization can be left-handed elliptical or right-handed elliptical.
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−→
k

−→
E

Figure 2.6 – Right-handed elliptical polarization. Adapted from Tsagkaropoulos (2021).

2.3 Description of the polarization state

2.3.1 Jones formalism

In the 1940s, R. Clark Jones published a series of papers introducing the Jones (matrix) formalism,
which describes the state of polarization of completely polarized light (Scharf, 2007). It introduces the
Jones vector to describe polarized light, and the Jones matrix to characterize optical elements with
linear behavior. To fully describe the state of polarization and the propagation of plane waves, the
amplitudes and phases of each field component must be fully stated (Jones, 1941). For the sake of
illustration, light is considered as propagating along the z-axis, perpendicularly to the x− y plane.

Jones vectors

The Jones vector comprises the transverse electric field components, hereafter written Ex and Ey:

E =

(
Ex

Ey

)
=

(
Ex0e

iφx

Ey0e
iφy

)
. (2.40)

Ex0, Ey0, φx and φy are the respective amplitudes and phases of the components. The intensity I of
the electric field is

I = EE∗ = |Ex|2 + |Ey|2, (2.41)

and in an equally equivalent manner, the Jones vector can be rewritten as

E =

(
Ex0

Ey0e
i(φy−φx)

)
, (2.42)

with the same polarization and intensity, but with a phase shift φx compared to Equation 2.40. As
the phase difference δ between the two components is a characterizing parameter for polarization
characterization, and not the absolute phase of each component, one can consequently choose to shift
the phase of one component and rewrite the other accordingly. δx = 0 can be chosen for the sake of
simplicity and illustration. Jones vectors are also often normalized to have a unitary intensity:
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E =
1√

|E2
x|+ |E2

y |

(
Ex

Ey

)
. (2.43)

Table 2.1 – Jones vectors for examples of polarization states.

Polarization state Normalized Jones vector

Horizontal polarization (along the x-axis)
(
1
0

)
Vertical polarization (along the y-axis)

(
0
1

)
Linear polarization at +45° w.r.t the x-axis 1√

2

(
1
1

)
Linear polarization at −45° w.r.t the x-axis 1√

2

(
1
−1

)
Left-handed circular polarization 1√

2

(
1
i

)
Right-handed circular polarization 1√

2

(
1
−i

)
Elliptical polarization (C1, C2 and δ are constants) 1√

C2
1+C2

2

(
C1

C2e
iδ

)

Jones matrices

Jones matrices are 2× 2 matrices describing the effect of polarization sensitive elements on the polar-
ization state. The input polarization state Ein is transformed linearly to the output polarization state
Eout by

Eout = J×Ein =

(
J11 J12
J21 J22

)(
Ex

Ey

)
. (2.44)

The Jones matrix J describes the transformation of the Jones vector by reflection, retardation, rotation,
absorption or transmission (Scharf, 2007), and its elements are complex if they affect the phase. The
state of light propagating through an optical system composed of multiple optical elements modeled
by Jones matrices is given by Equation 2.44, where J is the product of the individual Jones matrices
of the optical elements. If these are written Ji, with i = 1, 2 . . . N (N being the number of optical
elements), the equivalent Jones matrix of the optical system is

J = JN × JN−1 × . . .× J2 × J1, (2.45)

and the output Jones vector

Eout = J×Ein = JN × JN−1 × . . .× J2 × J1 ×Ein =

(
J11 J12
J21 J22

)(
Ex

Ey

)
. (2.46)
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Table 2.2 – Examples of Jones matrices.

Optical element Jones matrix

Horizontal polarizer (x-axis)
(
1 0
0 0

)
Vertical polarizer (y-axis)

(
0 0
0 1

)
±45° polarizer w.r.t the x-axis 1

2

(
1 ±1
±1 1

)
Left-handed circular polarizer 1

2

(
1 −i
i 1

)
Right-handed circular polarizer 1

2

(
1 i
−i 1

)

2.4 Unpolarized light

Section 2.2 provides a general introduction to wave polarization for the various possible cases, together
with the corresponding mathematical formalism. Transverse waves such as electromagnetic radiation
are, however, not necessarily (fully) polarized, and in this case, the oscillations of the electric field
no longer occur in certain preferential directions. The degree of polarization (DOP) is a measure
of the portion of polarized light. It is defined as the ratio of the intensity of the polarized portion
of light to the total intensity. The DOP is equal to 100% for fully polarized light, and to 0% for
completely unpolarized light. This parameter is, as expected, independent of the choice of reference
for the description of this type of light.

−→
k

−→
E

Figure 2.7 – Unpolarized light.

QKD requires fully polarized light. A description of the opposite case is therefore not necessary for
the sake of this project. However, as the literature on the subject is vast, the reader can for instance
refer to the work of Born and Wolf (1999) for a description of the Stokes formalism, and to the work of
Scharf (2007) on Mueller matrices, for an analogy to the Jones formalism and matrices for unpolarized
or partially polarized light.
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Quantum Key Distribution
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Chapter 3

Quantum Key Distribution

3.1 Principle of QKD

The ability to communicate securely without fear of interception or eavesdropping by others is paramount
for sensitive applications, such as sharing an encryption key. The vulnerability of actual protocols to
the increasing computing power of computers, as well as the quantum computer, are good reasons to
turn to quantum cryptography, and more particularly, the distribution of quantum key, which takes ad-
vantage of quantum mechanics to enable secure exchange of information. In particular, QKD relies on
the superposition principle and the no-cloning theorem to guarantee the security of the exchange (Wolf,
2021). For now, QKD has been achieved through optical fiber, and in free space, with success over
distances of the order of several tens or even hundreds of kilometers. However, attenuation throughout
the channel as well as the signal-to-noise ratio (SNR) limit the possible distance of exchange. Satellites
are, however, good candidates to allow QKD over even longer distances (Wang et al., 2013).

The emergence of quantum mechanics has thus opened the doors to a new world of safe communi-
cations, for which quantum key exchange algorithms have been developed, such as BB84 and B92. In
fact, all current discrete-variable1 quantum key exchange protocols are variants of the BB84 protocol,
which should therefore be explained in more detail. The following discussion on the latter is based on
the work of Wolf (2021).

3.1.1 Qubits

Understanding quantum key exchange protocols requires understanding quantum bits, commonly called
qubits. A qubit is a two-state quantum mechanical system, which is the quantum mechanical analog
of a classical bit. Qubits have the particularity, unlike classical bits, to be in the superposition of two
orthogonal states |0⟩ and |1⟩. These are for instance denoted |H⟩ and |V ⟩ in the rectilinear basis2,
and |D⟩ and |A⟩ in the diagonal basis, corresponding respectively to the horizontal and vertical states,
and to the diagonal and antidiagonal states. Qubits can be described by a linear combination of these
states, i.e.

|ψ⟩ = α|0⟩+ β|1⟩, (3.1)

1In opposition to continuous-variable quantum key distribution (CV-QKD), in which a continuous beam of light is
sent through the channel instead of polarized photons one at a time as in discrete-variable quantum key distribution
(DV-QKD) (Zhang et al., 2024).

2Orthogonal state pairs are referred to as a basis.
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with α, β ∈ C, representing the probability amplitudes (Dawar, 2007). When measuring the qubit
ψ, the probability of the outcome |0⟩ is |α|2, and |β|2 for the |1⟩ outcome. As |α|2 and |β|2 are
probabilities, it follows that

|α|2 + |β|2 = 1. (3.2)

Four states are useful for the protocol described hereafter, namely horizontal, vertical, diagonal and
antidiagonal.

Table 3.1 – Dirac notation of qubits states.

State Rectilinear basis Diagonal basis

Horizontal (|H⟩) |0⟩ 1√
2
(|0⟩ − |1⟩) or 1√

2
(−|0⟩+ |1⟩)

Vertical (|V ⟩) |1⟩ 1√
2
(|0⟩+ |1⟩) or 1√

2
(−|0⟩ − |1⟩)

Diagonal (|D⟩) 1√
2
(|0⟩+ |1⟩) or 1√

2
(−|0⟩ − |1⟩) |0⟩

Antidiagonal (|A⟩) 1√
2
(|0⟩ − |1⟩) or 1√

2
(−|0⟩+ |1⟩) |1⟩

Qubits are realized using polarized photons for the sake of projects such as this one where photons
are used as carriers of information. Other possibilities, such as the spin of electrons, exist to represent
qubits. Polarization splitters allow deflecting polarized photons differently according to their state.
For instance, a rectilinear splitter will deflect vertically and horizontally polarized photons differently,
each reaching a different detector. A randomly linearly polarized photon will, however, be randomly
deflected in one direction with probability |α|2 and in the other one with |β|2 probability, as this state
is the superposition of a horizontal and vertical state (see Equation 3.2).

|ψ⟩

x

y

z

ϕ

θ

Figure 3.1 – Bloch sphere representation of a qubit. α = cos θ
2 , and β = eiϕ sin θ

2 , are the
Hopf coordinates (Glendinning, 2005). Classical bits can only be located at the poles. Adapted from
Riebesell and Bringuier (2020).

As a result, there is an equal probability of observing a diagonally polarized photon being deflected
as a horizontally polarized photon or as a vertically polarized photon: 50% for each case. Here
appears a very useful property of quantum mechanics that, as will be explained hereafter, allows
secure communications : measurement fixes the state. A randomly polarized photon will, after passing
through a polarization splitter, always be in one of the two possible states of the basis.
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50%
50%

Figure 3.2 – Polarization splitters. A horizontally polarized photon is deflected to the left, while a
vertically polarized photon is deflected to the right. In the case of a photon polarized in the diagonal
basis, deflection will be to the left in 50% of the time, and to the right in 50% of the time too. Adapted
from Wolf (2021).

3.1.2 BB84 protocol

Alice Bob

Classical
channel

Quantum
channel

Eve
Figure 3.3 – Fundamental configuration of the BB84
protocol.

BB84, developed in 1984 by Charles
Bennett and Gilles Brassard, is the first
QKD protocol, and relies on qubits.
Two authorized parties, Alice and Bob,
want to share a secret key over a certain
distance. To achieve this, they use two
channels. The initial channel is a clas-
sical channel, through which Alice and
Bob can exchange messages in a classi-
cal way. Authentication is required for
this channel, which means that Alice
and Bob must identify themselves be-
forehand. Eve, a malicious person who
wants to eavesdrop and gain informa-
tion, can intercept the transmitted messages but cannot modify them. The second channel is a quantum
channel, allowing Alice and Bob to transmit quantum signals (polarized photons). This channel is to-
tally insecure, allowing Eve to manipulate the information. The BB84 protocol is composed of two
steps: the quantum transmission step and classical post-processing step.

Quantum transmission

The quantum transmission phase encompasses all actions performed on quantum states, such as en-
coding and decoding classical bits into quantum states, as well as communication over the quantum
channel. The process is as follows:

1. Alice chooses a string of classical bits, s.

2. For each bit, Alice randomly chooses a basis b (rectilinear or diagonal ).

3. Alice encodes the string of bits s with photons polarized according to the basis. In the rectilinear
basis, horizontal polarization corresponds to 0 and vertical polarization to 1. In the diagonal
basis, diagonal polarization corresponds to 0 and antidiagonal polarization to 1 (see Table 3.1).
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4. Bob chooses for each photon that he receives a basis to measure it, in order to obtain classical
bits. Both Alice and Bob now have a classical bit string.

Table 3.2 – Quantum transmission.

String of chosen bits (s) 0 1 1 1 0 0 1

Random sending basis (b)

Photon sent by Alice

Random receiving basis (b̃)

Photon measured by Bob

String of received bits (s̃) 0 0 1 1 0 0 0

Classical Post-Processing

The remaining part of the protocol is classical. Alice and Bob exchange a series of classical information
to derive from the bit strings they possess a shared secret key.

5. Sifting step : Bob publicly announces the bases he used to measure Alice’s photons. Alice then
compares Bob’s bases with her own and tells for which photons the bases were the same. All bits
for which the bases are different are discarded.

6. Parameter estimation step : In order to compute the error rate, which is the number of corre-
sponding bits that differ, Bob reveals some bits of his key. If there is no eavesdropping, these bits
are the same, and Alice confirms. However, if the error rate is too high, the protocol is stopped
as there is eavesdropping3. Bits revealed in this step are discarded as they are now public.

7. Error correction and privacy amplification steps : By making use of error correction protocols,
Alice and Bob erase the errors in their bit strings. These steps also try to reduce Eve’s knowledge
of the key, but weren’t present in the initial proposal of the BB84 protocol. The reader can refer
to the work of Wolf (2021) for detailed explanations on these steps.

3Even in the absence of an eavesdropper, errors might arise from noise in the channel. This is the reason why there
is a certain threshold for the error rate.
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Table 3.3 – Classical Post-Processing.

Sending basis (b)

Receiving basis (b̃)

Matching bases (b = b̃) ✓ ✕ ✓ ✓ ✕ ✓ ✕

Sifting step (no eavesdropping) 0 – 1 1 – 0 –

Parameter estimation step – – 1 – – 0 –

Confirmation of Alice – – ✓ – – ✓ –

Security of the protocol

The security of the protocol is ensured by the principle of quantum mechanics that states that measur-
ing a system disturbs its state. Eve’s presence can potentially be highlighted thanks to this property.
Consider for instance the first bit sent by Alice to Bob, as in table Table 3.2, but with the presence of
an eavesdropper:

Table 3.4 – Example of eavesdropping.

Bit sent 0

Sending basis

Photon sent by Alice

Eve’s basis

Eve’s measurement

Receiving basis

Photon measured by Bob

Received bit 1

As Eve chose a different basis than Alice, the outcome of the measurement is random, with equal
probability (50%) to obtain a horizontally or vertically polarized photon. In this particular case, a
horizontally polarized photon was obtained. As Bob’s basis is different from Eve’s basis, when he
measures this photon, the outcome is random and the probability of having a diagonal or antidiagonal
state is the same (50%). In this case, an antidiagonal state is obtained, and the presence of Eve can be
highlighted. Figure 3.4 illustrates all the possibilities for the outcome state of a photon sent by Alice
to Bob, in the case of eavesdropping:
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Figure 3.4 – Possible outcomes for a bit sent by Alice to Bob with eavesdropping in the case
of same bases for Alice and Bob. Example with the rectilinear basis (extension to the diagonal
basis yields the same results). The type of bit sent (0 or 1) does not matter. Eve’s possibilities of not
being detected are shown in red. Adapted from Chaabani (2023).

Two outcomes can highlight Eve’s presence, as in two cases the bit measured by Bob, in the same
basis as the one used by Alice, is different from the bit sent by Alice. Both cases are equiprobable,
with 12.5% chance of happening.
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Figure 3.5 – Probability to detect Eve in func-
tion of the number of bits used in the param-
eter estimation step.

The probability to have a flip of the bit is thus
25%, meaning that the probability of Eve not be-
ing detected is larger than the probability to be
detected. However, for an increasing number of
bits sent n, the probability to be detected evolves
as

PDE
(n) = 1−

(
3

4

)n

, (3.3)

with PDE
(n) the probability to detect Eve using

n bits. The probability increases rapidly, and in
function of a chosen threshold value, the exchange
will be considered secure or not.

24



3.2 MOCA

3.2.1 Project overview

Figure 3.6 – MOCA.

The MOCA (Medium size Optical Communica-
tion Antenna) project consists in the production
of a cost-effective, medium-sized optical telecom-
munication antenna to be installed in Redu (Bel-
gium). It is part of the INT-UQKD project (In-
ternational Use Cases for operational QKD ap-
plications and services) of ESA (European Space
Agency). The project, managed by RHEA Sys-
tem Luxembourg, has as main objective to de-
velop and demonstrate international use cases for
QKD, exploiting the BB84 and B92 protocols.
The space segment part consists in the develop-
ment of the SpeQtral-1 satellite, by the SpeQtral
company (Singapore), which will be launched in
2024/2025. A second satellite, SpeQtre, will be
launched afterward. The quantum receiver box
(QKD box) to be installed at the output of the
antenna will be provided by the SpeQtral com-
pany. The antenna is made of:

• An optical tube, composed of several mirrors, which collects photons and bring them to the focal
plane.

• A motorized altitude-azimuth mount designed to support the tube, ensuring precise alignment
with the desired target area, while enabling tracking of an object in the sky.

• A back-end optical conditioner (BOC). It shapes the optical signal and splits it between the differ-
ent instruments. This part includes the adaptive optics (AO), which compensate for atmospheric
distortion. It also includes the polarization controller.

• A beacon emitter (auxiliary telescope), aligned with the optical tube, capable of sending a colli-
mated laser beam to indicate antenna position.

• An antenna control system (ACS), to control and operate the antenna. It incorporates a pointing,
acquisition and tracking (PAT) system, which guides the antenna to point toward the satellite,
captures its beacon signal, and maintains tracking throughout the duration of the link.

The BOC and the auxiliary telescopes will be tested in factory and on the existing SALTO (Smart
Adaptive-optics and Laser guide-star for medium-size Telescopes and Optical communications) tele-
scope in Redu.

The project began in August 2023, and will be completed by September 2026. It is now entering
the final step of the definition phase, which involves establishing the requirements, trade-offs and
conceptual design, as well as defining the BOC. During the technology phase (that the project will
enter soon), the design will be carried out in detail, the functioning of the various parts will be verified,
and QKD will be validated by equipping SALTO with the MOCA BOC.
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Figure 3.7 – Functional block diagram of MOCA. The yellow boxes indicate the components
provided by RHEA System Luxembourg. Other subsystems are developed by AMOS.

3.2.2 Telescope optical design

The telescope design is a Nasmyth-type design4 with a spherical concave primary mirror, elliptical
convex secondary mirror and a folding third mirror. The design achieved integrates the benefits
of a cost-effective spherical primary mirror, effective achromatic correction, and an easily accessible
Nasmyth focus.

Table 3.5 – Telescope design parameters.

Configuration Nasmyth

Aperture (entrance pupil) 1.5 m

Focal length 14.875 m

F-number F/9.58

Field of view (FoV) 1.2 arcmin (± 0.01 degree)

Primary mirror Concave spherical

Secondary mirror Convex aspherical

Central obscuration 0.4 m (7.1% in surface)

Collimated beam diameter 21 mm

4The Nasmyth design is a modified version of the Cassegrain telescope design, with light reflected sideways.
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The primary mirror M1, defined as the entrance pupil, collects and converges the light toward the
secondary mirror M2. Thanks to the aspherical shape of the second mirror M2, almost all spherical
aberrations created by M1 are corrected. Light is then reflected by the third mirror M3, which retards
the components of polarization by its orientation, toward the focal plane (FP). The latter still presents
significant coma aberrations. All other aberrations are negligible, or compensated over the small size
of the FoV. Moreover, the coatings of the three mirrors are made of protected silver.

Following the FP is the corrector. It is composed of the off-axis corrector and the pupil deformed
mirror. The first component corrects for the remaining coma aberrations while the second has two
functions: correcting for atmospheric distortion and for the spherical aberrations introduced by the
off-axis corrector.

M1

M3

M2

Corrector

Focal plane

Pupil deformed
mirror

Off-axis
corrector

Figure 3.8 – Telescope optical design.

3.2.3 Optical communication wavelengths

Within the scope of this report, there are three main wavelengths to consider: QKD, beacon and
telecommunication. The QKD wavelength, at 780 nm, is the one used in the main mission to imple-
ment quantum key exchange. Linearly polarized photons at this wavelength, which are required for
quantum key exchange protocols, are therefore used.

Given the constant change in orientation of a satellite in space due to its own rotation, the polar-
ization reference frame of the satellite also varies constantly. It is thus appropriate to use a beacon
beam sending linearly polarized photons to MOCA to deduce the relative orientation of the satellite’s
polarization reference frame with respect to the reference frame of the terrestrial antenna. The mea-
surement of the beacon polarization orientation is used to physically rotate the polarization of the
QKD photons. The beacon photons have wavelengths of 685 nm for SpeQtral-1 and 1550 nm for Spe-
Qtre. Finally, for SpeQtral-1, telecommunication is also possible using light at a wavelength of 1550 nm.

These cases are summarized in Table 3.6.
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Table 3.6 – Optical communication wavelengths.

Satellite QKD Beacon Telecommunication

SpeQtral-1 780 nm 685 nm 1550 nm

SpeQtre 780 nm 1550 nm N/A

The wavelengths are imposed by SpeQtral, and correspond to the wavelengths used by the SpeQtral-
1 and SpeQtre satellites as part of their mission. All wavelengths are therefore downlinked.
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Telescope numerical model
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Chapter 4

Telescope characterization

Chapter 2 describes electromagnetic radiation and polarization, and introduces the Jones formalism to
characterize the polarization state of light. Moreover, the Jones formalism can also be used to model
optical elements, such as waveplates, to deduce the outgoing polarization state from the incoming one.
This, however, requires the knowledge of the Jones matrix of each optical element present in the optical
system, i.e. in the telescope. A natural matrix multiplication along the optical path, as it is unique,
can yield the equivalent Jones matrix of the telescope. Nevertheless, the individual Jones matrix of
the different optical elements are not known a priori, and it is therefore necessary to think differently
in order to determine the Jones matrix of the telescope. For this purpose, one can rely on knowledge
of the polarization state of the light at the object scene and image of the telescope, and more precisely,
on the knowledge of the components of the electric field and their phase shift, to proceed in reverse in
order to derive the Jones matrix.

4.1 Jones matrix derivation

Figure 4.1 – Polarization pupil map at the ob-
ject scene. Example with linear polarization at
+45° and λ = 780 nm. The spatial sampling is
9 × 9. Electric field components and their phase
shift are obtained from here.

The telescope model made in the Ansys Zemax
OpticStudio software allows analyzing the polar-
ization state of light at each location of the opti-
cal path. Crucial information such as the electric
field vector components and the phase delay be-
tween them can be determined. The problem is
thus not to determine the polarization state at the
telescope’s image given the polarization state at
the object scene, but to determine the Jones ma-
trix of the telescope given the polarization state
at the object scene and image:

Ei = J×Eo, (4.1)

or written explicitly, (
Ex,i

Ey,i

)
=

(
Jxx Jxy
Jyx Jyy

)(
Ex,o

Ey,o

)
, (4.2)

with J being the Jones matrix, and its components are the unknowns. Ex,i, Ey,i, Ex,o and Ey,o are
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the x and y (transverse) electric field components at the image and object scene, respectively. As
Jones vectors have two components, and the Jones matrix four, the linear system of equations is
underconstrained. A simple workaround for this problem is to use two different and well-chosen object
polarization states, to obtain as much equations as unknowns:(

Ex,i,1 Ex,i,2

Ey,i,1 Ey,i,2

)
=

(
Jxx Jxy
Jyx Jyy

)
×

(
Ex,o,1 Ex,o,2

Ey,o,1 Ey,o,2

)
. (4.3)

Figure 4.2 – Polarization pupil map at the image. Example with linear polarization at +45°
and λ = 780 nm. The sampling is 9 × 9. The ellipticity shows the impact of the telescope on the
polarization state.

−→
E y

−→
E x

−→
E

−→
E

ε

δ = 180◦

Figure 4.3 – 180° phase shift between the elec-
tric field components. Example with linear ver-
tical polarization. The cause is a sign reversal of
the x-component. ε represents an infinitely small
deviation from the vertical polarization state.

Linearly polarized light at +45° and −45° is used
as the first and second set of data, respectively.
There is not just one suitable combination of
datasets, but some combinations aren’t appropri-
ate for modeling changes in light amplitude and
phase. For instance, using both horizontal and
vertical polarization states would not work, as the
phase shift isn’t defined in these cases. Moreover,
an abrupt phase jump of 180° occurs when the
polarization state shifts from nearly vertical (or
horizontal) to nearly vertical (or horizontal) with
a change of sign of one electric field component,
with the vertical (or horizontal) polarization state
being the limit case.

This 180° phase shift in value follows directly
from Euler’s identity. Considering the general ex-

pression of the Jones vector written in polar form, a sign reversal leads to:

(
Ex

Ey

)
=

(
Ex0e

iφx

Ey0e
iφy

)
⇒



(
Ex

Ey

)
=

(
−Ex0e

iφx

Ey0e
iφy

)
=

(
Ex0e

i(φx+π)

Ey0e
iφy

)
if Ex → −Ex,(

Ex

Ey

)
=

(
Ex0e

iφx

−Ey0e
iφy

)
=

(
Ex0e

iφx

Ey0e
i(φy+π)

)
if Ey → −Ey,

(4.4)
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and the phase shift δ writes

δ = φy − φx ⇒

{
δ = φy − φx − π if Ex → −Ex,

δ = φy − φx + π if Ey → −Ey.
(4.5)

Eventually, the solution of Equation 4.3 is determined algebraically, yielding the Jones matrix coeffi-
cients: (

Ex,i,1 Ex,i,2

Ey,i,1 Ey,i,2

)
×

(
Ex,o,1 Ex,o,2

Ey,o,1 Ey,o,2

)−1

=

(
Jxx Jxy
Jyx Jyy

)
. (4.6)

It is worth noting that in order to determine the coefficients of the Jones matrix, it is necessary to
know the absolute phase of the transverse electric and magnetic modes. Therefore, a reference must
be chosen since only the phase difference between the components is known. φx = 0 is chosen as the
reference, and as a consequence1, δ = φx − φy = −φy.

The same procedure can be applied to deduce the Jones matrix of each optical element, as the
state of polarization can be retrieved anywhere in the telescope.

4.1.1 Jones pupil matrix of the telescope

Jones pupil matrices describe the change of polarization state in amplitude A and phase φ across
the optical system, in function of the pupil coordinates (Px, Py) and the wavelength λ, using the
Jones matrix formalism. They therefore have the same size as classical Jones matrices introduced in
Chapter 2.

J =

(
Jxx(Px, Py, λ) Jxy(Px, Py, λ)

Jyx(Px, Py, λ) Jyy(Px, Py, λ)

)

=

(
Axx(Px, Py, λ)e

iφxx(Px,Py ,λ) Axy(Px, Py, λ)e
iφxy(Px,Py ,λ)

Ayx(Px, Py, λ)e
iφyx(Px,Py ,λ) Ayy(Px, Py, λ)e

iφyy(Px,Py ,λ)

)
. (4.7)

Axx and Ayy represent the transmission for x- and y-polarized light, respectively. On the other hand,
Axy and Ayx denote the amplitude of y-polarized light converted to x-polarized light, and vice versa.
In the same way, φxx and φyy represent the phase of x- and y-polarized light, respectively, while φxy

and φyx give the phase of y-polarized light converted to x-polarized light, and vice versa (Anche et al.,
2023; Chipman et al., 2015). All these parameters depend on the pupil coordinates and wavelength.

Polarization aberrations

Polarization aberrations (PA) were introduced by Russell A. Chipman in 1987, and defined as
the variation of the amplitude, phase and polarization of an optical wavefront across the pupil of
an optical system and the dependence of these variations on wavelength and object coordinate
(Chipman, 1987).

1Following the convention of Ansys Zemax OpticStudio.
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In an ideal optical system, without any polarization aberrations, the Jones pupil matrix would be
the identity matrix for each set of pupil coordinates (Zhang et al., 2007). However, the coatings applied
on the mirrors and the angles of incidence of light, making mirrors act as retarders, change the game
and generate polarization aberrations. As stated by the Fresnel equations, obliquely incident light on
an optical surface will give rise to different variations in amplitude and phase between the orthogonal
components of polarization, which is the main cause of polarization aberrations (He et al., 2017). This
is the reason why the third mirror M3 is the primary cause of polarization aberrations.

The Jones pupil matrices of the telescope for λ = 780 nm are given in Figures 4.4 and 4.5.

(a) Axx. (b) Axy.

(c) Ayx. (d) Ayy.

Figure 4.4 – Amplitude coefficients of the Jones pupil matrices for λ = 780 nm.

34



(a) φxx [°]. (b) φxy [°].

(c) φyx [°]. (d) φyy [°].

Figure 4.5 – Phase coefficients of the Jones pupil matrices for λ = 780 nm. Phase disconti-
nuities of 180° in φxy and φyx are caused by a change of sign in the amplitude of one electric field
component (see Figure 4.3).

Figure 4.4 shows that the cross-coupled polarizations Axy and Ayx are very small and negligible
with respect to the transmitted Axx and Ayy polarizations. As a consequence, the main impact is
the phase shift between the orthogonal components2, accompanied by losses due to reflections on the
mirrors, resulting in an amplitude of less than unity for Axx and Ayy. The choice of reference made
previously for δ yields φxx = 0 everywhere on the pupil, and consequently φyy is an image of the
phase shift as φyy = −δ. The Jones pupil matrices for λ = 685 nm and λ = 1550 nm can be found in
Appendix B.

4.1.2 Jones matrix of the telescope

Equation 4.7 is the mathematical representation of the Jones matrix at each set of pupil coordinates.
The final Jones matrix of the system, independent of the pupil coordinates, requires to take into account
the interference of the light rays of each set of pupil coordinates, to eliminate this dependence. The aim
is the transition from a Jones matrix that depends on the pupil coordinates (Px, Py) and wavelength
λ to a pupil-coordinate-independent Jones matrix that still retains dependence on wavelength:

2According to the choice made previously for the absolute phases of the components.
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J(Px, Py, λ) =

(
Jxx(Px, Py, λ) Jxy(Px, Py, λ)

Jyx(Px, Py, λ) Jyy(Px, Py, λ)

)
⇒ J(λ) =

(
Jxx(λ) Jxy(λ)

Jyx(λ) Jyy(λ)

)
. (4.8)

The amplitude and phase components of Jxx, Jxy, Jyx and Jyy are found by averaging the real and imag-
inary parts of the Jones pupil matrix to combine the waves, thus taking into account the interferences,
yielding the final wave. For each term of the Jones matrix, one has

ℜ(J(λ)) = 1

N

∑
(Px, Py)

ℜ(J(Px, Py, λ)), (4.9)

ℑ(J(λ)) = 1

N

∑
(Px, Py)

ℑ(J(Px, Py, λ)), (4.10)

where N is the number of samples. Conversion from Cartesian coordinates to polar coordinates allows
retrieving the amplitude and phase terms of each component. Knowing the incoming polarization
state of the photon, the outgoing polarization state is now deduced from the Jones calculus with the
wavelength-dependent Jones matrix of the telescope.

Figure 4.6 shows the evolution of the Jones matrix coefficients Jxx, Jxy, Jyx and Jyy in function of
the wavelength λ. Polarization aberrations cause the deviation from the identity matrix. Indeed, Fig-
ure 4.6a shows the evolution of the equivalent reflectance coefficient of the telescope for the x-component
of the polarization, and Figure 4.6d for the y-component. The phase of the latter corresponds to the
opposite of the phase shift, given the reference of a null phase for the x-component. Numerical errors in
Jxy and Jyx cause phases3 which have no physical meaning given the zero amplitude. These amplitudes
are zero as the cross-coupled components of the Jones pupil matrix were.

4.2 Performances

In the case of a quantum optical communication antenna, the performances of the antenna, i.e. of
the telescope, directly depend on the ability to maintain the initial polarization state such that when
the information is observed at the detector, it is not biased. Given the phase shifts between the
orthogonal components of the polarization generated mainly by the third mirror, the Jones matrix is
not unitary, as shown by Figure 4.6, which inevitably has an impact on the telescope’s performances.
The characterization of the telescope’s performances is based on the polarization extinction ratio, which
must meet the objectives set for the three wavelengths (QKD, beacon and telecommunication).

4.2.1 Polarization extinction ratio

Polarization extinction ratio

The polarization extinction ratio (PER) is the ratio of the optical powers of the perpendicular
polarizations, known as the transverse electric and transverse magnetic modes. It is therefore a
measure of the quality of the linear polarization of light in an optical system.

3Large variations in the phase of Jyx are due to frequent variations in the sign of the real part, as a complex number’s
phase changes by 180° when the sign of the real part reverses.
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(a) Jxx. (b) Jxy.

(c) Jyx. (d) Jyy.

Figure 4.6 – Amplitudes and phases of the Jones matrix coefficients in function of wave-
length.

The procedure to calculate the polarization extinction ratio relies on the Jones formalism4, by
first determining the polarization state at the image knowing the object scene polarization state, as
described above:

Ei = J×Eo. (4.11)

The phases of the transverse components Ex and Ey are

φx = tan−1

(
ℑ(Ex)

ℜ(Ex)

)
, (4.12)

φy = tan−1

(
ℑ(Ey)

ℜ(Ey)

)
, (4.13)

and the auxiliary angle α writes

α = tan−1

(
Ey

Ex

)
= tan−1

(√
ℜ(Ey)2 + ℑ(Ey)2√
ℜ(Ex)2 + ℑ(Ex)2

)
. (4.14)

4This is not the only way to proceed, as one could also start from the definition of the PER given above. This would,
however, not give any information relative to the phases, and thus not allow to determine the phase shift to compensate
for each wavelength.
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The ellipticity angle derives from Equation 2.39:

χ =
1

2
sin−1 (sin 2α sin δ) , (4.15)

and eventually, the polarization extinction ratio can be written in function of the ellipticity angle (Wu
et al., 2020):

PER =
1

tan2 χ
. (4.16)

In order to ensure the accuracy of the PER values obtained as a function of wavelength, and more
particularly at the wavelengths of interest, a convergence analysis is carried out as a function of spatial
sampling S on the polarization pupil map, from which all the data useful for Jones’s calculations are
taken. In pursuit of this goal, and anticipating on the values of the PER5, the relative error ηi between
two values of the PER, at samplings Si and Si+1, is defined as

ηi =
PER(λ)Si+1 − PER(λ)Si

PER(λ)Si

. (4.17)

Figure 4.7 shows that the relative error is low even at low sampling. For the sake of precision, an
acceptable relative error of 0.01% is chosen, which corresponds to a sampling of 49× 49.

Figure 4.7 – Convergence analysis of the PER in function of the spatial sampling. Polarization
is linear at +45°. The acceptable relative error is shown by the dotted line.

The PER at convergence are given in Table 4.1.

4.2.2 PER sensitivity to polarization orientation

Figure 4.8 shows the variation of the PER as a function of the polarization orientation supplied at the
object scene ψo, for the wavelengths of interest. The results show that the PER is too low as compared
to the targeted values to guarantee that the PER objectives will be achieved for all types of linear

5The worst-case scenario for the PER is ±45° polarization, as will be shown later. The convergence analysis is done
for this type of polarization.
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Table 4.1 – Polarization extinction ratios. Objectives values are dictated by the SpeQtral company.

Wavelength Telescope PER Targeted PER

685 nm 130 : 1 200 : 1

770 nm 82 : 1 1000 : 1

780 nm 84 : 1 1000 : 1

790 nm 88 : 1 1000 : 1

1550 nm 14 : 1 200 : 1

polarization, due to too large phase shifts between the orthogonal components of polarization. The
worst case corresponds to ψo = ±45° polarization, as identified from Figure 4.8, while horizontal and
vertical polarizations have an infinite PER. Consequently, ψo = ±45° will be considered the worst-case
scenario for the remainder of this project, which is in accordance with the work of Arteaga-Díaz et al.
(2020) on polarization degradation induced by reflection at an angle of incidence (AOI) of 45°.

These results were expected as ψo = ±45° correspond to the case of equal amplitudes in value for
both electric field components. The importance of the phase shift is therefore maximal in this case,
while it becomes less and less noticeable as the value of one of the components tends towards zero.
Independently of δ, by Equation 4.15, the ellipticity is minimized for ψ = kπ/2 (k ∈ Z), and maximized
if ψ = kπ/4 (k ∈ Z). Consequently, as dictated by Equation 4.16, the PER is minimized when the
ellipticity is maximized, and vice versa.

(a) PER in function ψo. (b) Zoom on the QKD wavelength band. Curves
almost merge due to the small difference in phase
shift.

Figure 4.8 – PER in function of linear polarization orientation at the object scene. Infinite
PER corresponding to horizontal and vertical polarization have been omitted for the ease of visualiza-
tion. Targeted PER are represented by the dotted lines.

The other parameter defining the PER is, as previously introduced, the phase shift δ. For a given
orientation of the linear polarization, increasing values of χ in the interval 0 ≤ χ ≤ π/4 will gradually
transform the polarization ellipse from a straight line (linear polarization) for χ = 0 to a circle (circular
polarization), at χ = π/4. This increase in the phase shift decreases the PER, up to δ = π/2, given
the increase of the ellipticity angle. The ellipticity angle reaches its maximum value at this point. If δ
continues to increase, the minor and major axes of the polarization ellipse reverse, and further value
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increases of δ decrease the ellipticity, the latter being defined with respect to the minor and major
axes of the ellipse. The PER increases again as the ellipticity now decreases. The same explanations
are valid for decreasing values of δ, which lead to negative values for ellipticity with a minimum at
χ = −π/4 (circular polarization).

−→
E y

−→
E x

−→
E

(a) δ = 0, χ = 0.

−→
E y

−→
E x

−→
E

χ

(b) 0 < δ < π/2, 0 < χ < π/4.

−→
E y

−→
E x

−→
E

χ

(c) δ = π/2, χ = π/4.

Figure 4.9 – Ellipticity angle. Impact of the phase shift δ on the ellipticity angle χ.

4.2.3 Wavelength-dependent parameters

Polarization orientation

Figure 4.10 shows the wavelength-dependent impact of polarization aberrations, leading to slight vari-
ations in the polarization orientation ψ. More precisely, as the cross-coupled polarization is small
but non-zero, a conversion from x to y polarization takes place, and vice versa, thus causing small
variations in ψ. At the wavelengths of interest, these variations are of the order of a tenth of a degree
in the worst-case scenario.

Figure 4.10 – Polarization orientation at the image in function of wavelength. Initial polar-
ization state is 45°. Asterisks show the phase shift at the wavelengths of interest.

It is important to note that there is no guarantee that ψ = ±45° is the type of polarization with the
largest variations in orientation. Indeed, Equation 2.38 indicates that ψ depends on the phase shift,
and on the ratio of the electric field components amplitudes. As these parameters are wavelength-
dependent, each wavelength can present different orientation changes for different polarization types
at the object scene. However, since the objectives are expressed in terms of PER, which is minimal for
ψ = ±45°, these are the provided results for illustration purposes.
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Phase shift

Figure 4.11 – Phase shift in function of the
wavelength.

Fresnel’s equations show that the reflection coeffi-
cients for transverse electric and transverse mag-
netic polarization depend on the refractive in-
dex of the medium before reflection and on the
medium generating the reflection. Since refrac-
tive indices depend on the wavelength, the phase
shift between the transverse components also de-
pends on the wavelength (Clarke, 2010). Fig-
ure 4.11 illustrates the variation of the phase shift
in function of the wavelength, which is indepen-
dent of the type of polarization6.

In compliance with Figure 4.9, the polarization
of the incoming photon is transformed from lin-
ear to elliptical, with increasing ellipticity for an
increasing phase shift in absolute value. At two
wavelengths, however, the phase shift is zero, and
consequently is the ellipticity.

Polarization extinction ratio

The two wavelengths of zero phase shift are wavelengths corresponding to maximum PER, as a conse-
quence of Equations (4.15) and (4.16), resulting in a maintained polarization state. As can be observed
in Figures 4.11 and 4.12, the two peaks are not located at the desired wavelengths, and the PER at the
relevant wavelengths for this project do not meet the objectives. In the following chapter (Chapter 5),
it will be necessary to align the maximum PER values with the desired wavelengths, or to at least
achieve the objectives at these wavelengths, by correction of the phase shift.

Figure 4.12 – PER in function of the wavelength for ±45° polarization orientation. Objectives
values are represented by the dotted lines. A zero-degree phase shift corresponds to an infinite PER.

6Excluding the special cases of horizontal and vertical polarizations. The concept of phase shift does not exist due to
the null component of the electric field.
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Part IV

Polarization-maintaining telescope design
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Chapter 5

Polarization-maintaining design

The study of the impact of the telescope on the polarization of the light, conducted in Chapter 4,
has provided valuable insights for the development of solutions aimed at correcting this impact. Now
that the retardance between the orthogonal components of the electric field composing the light has
been characterized, as a function of wavelength, it is possible to explore solutions to compensate this
retardance at the desired wavelengths. Hence, research logically turns towards means of modifying the
existing telescope design, which may also involve the addition of new elements, to reach the objectives.

5.1 State of the art

There are several possible solutions to correct phase delays between the components of polarization.
Basically, research is focusing either on ways of inducing no phase shift between the components, or
on ways of compensating for the phase shifts induced by the telescope. In the first case, given that the
telescope inevitably induces phase delays at the wavelengths corresponding to the application, the only
possibility is to modify the telescope design. This may involve geometric modifications, as modifying
the telescope configuration for instance, to avoid using the third mirror M3, which given its orientation,
is the main culprit of polarization degradation.

Another possibility is to modify the coatings applied on the mirrors. By rigorously choosing the
type of coatings and the thicknesses of the layers, it is possible to induce an optical path difference
(OPD) corresponding to the compensation of phase delays. This possibility of using phase retarding
optical coatings has been studied in literature, and Fabricius and Hansen (2008) illustrated the design
methodology using the optimization of a merit function.

In the second case where research investigates the possibility to compensate the induced phase shifts,
one possibility is to make use of the principle of birefringence, which enables to induce phase shifts
between orthogonal components of light. Miller et al. (2022) illustrated the feasibility of this solution
by using several birefringent elements, each of which has three variable parameters: the thickness, the
orientation of the fast axis, and the choice of material. Optimization of a merit function, based on the
difference between the identity matrix and the Mueller matrix of the optical system1, was performed
numerically using a multivariable merit function optimization function.

1As light was not fully polarized, the Jones formalism was not suitable and one had to use the more general Mueller
formalism.
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Ordinary ray

Extraordinary ray

Optical
Axis

Figure 5.1 – Birefringence. A different propaga-
tion direction and optical axis orientation yields dif-
ferent phase velocities for the ordinary and extraor-
dinary rays. Adapted from Tsagkaropoulos (2021).

Still based on the principle of birefringence, liq-
uid crystals can be used to correct phase delays.
These have the particularity of having a birefrin-
gence that can be controlled by applying an elec-
tric field between two electrodes:

∆φ(λ,∆V ) =
2π

λ
d∆n(λ,∆V ). (5.1)

The induced phase shift can be controlled by
varying the electric field, and it is then possible to
freely choose which, if not several, wavelength to
optimize. This method is, however, more difficult
to implement, as it requires an external current
source, as well as electrodes that are transparent
to the wavelengths whose phase shift is to be cor-
rected.

As the design of the telescope is fixed, and in order to be versatile with respect to future missions
that could make use of different wavelengths, the solution involving a modification of the coatings is
not considered for this work, but was nevertheless studied by AMOS. Retardation plates will thus be
used to simultaneously compensate several wavelengths.

5.2 Light propagation in crystals

The propagation of electromagnetic, monochromatic plane waves in anisotropic materials can be de-
scribed mathematically by using Maxwell’s equations combined with constitutive relations, as described
in Chapter 2. Full developments can be found in the work of Born and Wolf (1999), but the develop-
ments directly useful to the physical understanding of light propagation are the focus of attention.

Fresnel’s equation of wave normals describes light propagation of a monochromatic plane wave in
an anisotropic medium:

s2x
(
v2p − v2y

) (
v2p − v2z

)
+ s2y

(
v2p − v2z

) (
v2p − v2x

)
+ s2z

(
v2p − v2x

) (
v2p − v2y

)
= 0, (5.2)

with −→s = (sx, sy, sz) the wave normal vector, vp the phase velocity, being function of the speed of
light c and the refractive index of the medium n:

vp =
c

n
. (5.3)

Fresnel’s equation also depends on the principal velocities of propagation, vx, vy and vz:

vx =
c

√
µεx

, vy =
c

√
µεy

, vz =
c

√
µεz

, (5.4)

with εx, εy and εz the principal dielectric constants, or principal permittivities, and µ the magnetic
permeability. In the particular case of a uniaxial crystal2, with its optical axis oriented in the z

2As most optical applications make use of uniaxial crystals, the discussion is limited to the propagation of plane waves
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direction, vx = vy. By writing vo for this velocity, and ve = vz, for the sake of terminology, the
expression above simplifies to

(
v2p − v2o

) [ (
s2x + s2y

) (
v2p − v2e

)
+ s2z

(
v2p − v2o

) ]
= 0. (5.5)

The change of terminology is motivated by the intention to be consistent with the usual terminology,
using ordinary and extraordinary terms, hence the suffixes o and e. These concepts will be clarified
hereafter. Writing ϑ for the angle between the wave normal s and the z-axis, and knowing that
s2x + s2y + s2z = 1, one has

s2z = cos2 ϑ, (5.6)

s2x + s2y = sin2 ϑ, (5.7)

and Equation 5.5 becomes

(
v2p − v2o

) [
sin2 ϑ

(
v2p − v2e

)
+ cos2 ϑ

(
v2p − v2o

) ]
= 0. (5.8)

The roots of this equation, written vp1 and vp2, are:

vp1 = vo, (5.9)

vp2 =

√
v2o cos

2 ϑ+ v2e sin
2 ϑ. (5.10)

These roots show that the normal surface consists of two shells: a sphere of radius vo and an ovaloid.
Thus, light is split into two types of waves depending on the direction of the normal to the wave
surface (wavefront) at that point. One of these waves is called the ordinary wave, whose propagation
velocity is independent of the direction of propagation. The other is the extraordinary wave, whose
velocity depends on the angle between the direction of the wave normal and the optical axis of the crys-
tal. If ϑ = 0, both phase velocities are equal and the wave normal lies in the direction of the optical axis.

Two cases are then possible. If vo > ve, the extraordinary wave travels slower than the ordinary
wave. These types of crystals are called positive uniaxial crystals. On the other hand, if vo < ve, the
extraordinary wave travels faster than the ordinary wave, and one speaks of negative uniaxial crystals.

x

z

ve

vo

−→s

vp1

vp2

(a) Positive uniaxial crystal : ve < vo.

x

z

vo

−→s

vp1

vp2

ve

(b) Negative uniaxial crystal : ve > vo.

Figure 5.2 – Ellipsoid of wave normals of uniaxial crystals. Adapted from Born and Wolf (1999).

in these types of crystals.
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5.3 Arrangement of retardation plates inside the telescope

Retardation plate

Collimating lens

Focusing lens

Light propagation direction

Figure 5.3 – Arrangement of the retardation
plates in the telescope. Example with one plate.
The dotted line represents the optical axis, and the
collimating lens represents the corrector.

The use of birefringence, as illustrated above,
makes it possible to induce a phase shift between
the orthogonal components of polarization, due
to their different refractive indices, and so prop-
agation velocities, in a crystal. However, the im-
pact of one or more retardation plates will vary
depending on their placement within the tele-
scope, and the PER will be affected. In order to
achieve the best possible results while minimizing
polarization aberrations, the crystals are placed
in a collimated beam at the output of the tele-
scope, after the pupil deformed mirror (Arteaga-
Díaz et al., 2020). The number of retardation
plates to use, their orientations, and their thick-
nesses, are a priori unknown. The detailed study
that follows examines these parameters to deter-
mine the ideal combination for achieving the ob-
jectives.

5.4 Polarization extinction ratio optimization

5.4.1 Optimization using one crystal

The retardance induced between the orthogonal components of polarization due to the propagation of
light through a single crystal of thickness d and birefringence ∆n is expressed by:

∆φ(λ) =
2π

λ
d∆n(λ). (5.11)

Figure 5.4 – Birefringent properties of MgF2.
Absolute birefringence is considered as negative val-
ues correspond to a perpendicular orientation of the
crystal axis.

The induced phase shift is a function of the wave-
length, and depends on the type of crystal. The
choice of the latter is free, but it is still important
to ensure that transparency at the useful wave-
lengths is high. Moreover, the crystal must re-
main financially affordable and manufacturable
with sufficient ease. A good candidate respecting
these conditions is magnesium fluoride (MgF2).

In order to determine the thickness required to
correct the phase shift, a choice must be made re-
garding the wavelength for which the PER must
be optimized. This stems from the fact that crys-
tals do not exhibit sufficiently different birefrin-
gences at different wavelengths, with the conse-
quence that it is not possible to induce signif-
icantly different phase shifts at different wave-
lengths. The dispersion curve of the crystal does
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thus not allow to match the phase retardance of
the mirrors for each wavelength.

As one wants to correct the phase shift, the crystal must induce a phase shift opposite to the one
induced by the telescope:

−δ(λ) = 2π

λ
d∆n(λ), (5.12)

with δ(λ) the telescope-induced phase shift. The thickness writes:

d = − δ(λ)λ

2π∆n(λ)
. (5.13)

Optimization at the three main wavelengths requires the thicknesses given in Table 5.1. It is possible
to obtain negative values for the thickness when solving Equation 5.13. This means that the slow
axis and fast axis orientations must be inverted, corresponding to a reversal between the ordinary and
extraordinary refractive index. According to the Ansys Zemax OpticStudio model of the telescope, a
positive value means that the optical axis is directed along the x-direction in the global coordinate
reference frame, while a negative value means that the optical axis is along the z-direction. The
y-direction corresponds to the propagation direction, and does thus not generate a phase shift.

Table 5.1 – Required thickness for the crystal in function of the wavelength to optimize.
OA denotes the orientation of the optical axis of the crystal.

λ d OA

Beacon 1.625 · 10−3 mm z

QKD 2.302 · 10−3 mm z

Telecommunication 11.211 · 10−3 mm x

The previously made assertion that optimizing more than one wavelength is not possible if the wave-
lengths are too far apart, in the sense that the phase shift varies too much between the wavelengths,
can now be verified. For instance, optimization at the QKD wavelength would require ∆n = 0.056 at
the telecommunication wavelength to compensate its phase shift with a given thickness corresponding
to the one needed for QKD. This is not feasible as ∆n = −0.011 at the telecommunication wavelength.
This value is firstly too low, but secondly, and more importantly, this negative value indicates that
it is necessary to have a perpendicular orientation of the crystal’s optical axis for both wavelengths,
which is impossible since there is only one crystal. This leads us to believe that the use of multiple
crystals may allow optimization at multiple wavelengths, and this option will be studied later.

Instead of dealing with very low thicknesses such as those obtained, it is possible to make good
use of the property of birefringence to achieve more realistic thicknesses. To this end, two crystals of
the same material, but of different thicknesses d1 and d2, are used. The fast axis of the first crystal is
aligned with the slow axis of the second, and so everything happens as if there was only one crystal
whose phase delay is exactly that generated by the crystal whose thickness is equal to the difference
in thickness between the two crystals. If d2 = d1 + d is the thickness of the thicker crystal with the
optical axis oriented according to the solution found by solving Equation 5.13, one has
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−δ(λ) =
2π

λ
∆n(λ)d1 −

2π

λ
∆n(λ)d2, (5.14)

=
2π

λ
∆n(λ)d1 −

2π

λ
∆n(λ)(d1 + d), (5.15)

= −2π

λ
∆n(λ)d, (5.16)

with the minus sign corresponding to the second crystal as for the sake of the example above of
optimization at the QKD wavelength, the optical axis was along the z-direction. Manufacturers of
retardation plates also employ this methodology to produce zero-order retardation plates (Edmund
Optics, 2024). The evolution of the PER by separately optimizing the three main wavelengths is
shown in Figure 5.5, and the corresponding retardance in Figure 5.6.

(a) Beacon. (b) QKD. (c) Telecommunication.

Figure 5.5 – PER in function of wavelength for optimization at the three main wavelengths.
Two peaks are visible for beacon optimization as the phase shift at this wavelength also corresponds
to another wavelength.

(a) Beacon. (b) QKD. (c) Telecommunication.

Figure 5.6 – Phase shift in function of wavelength for optimization at the three main
wavelengths. δt is the phase shift induced by the telescope, ∆φ the phase shift induced by the
crystal, and δ = δt + ∆φ the resulting phase shift. The latter is the result of optimization at the
desired wavelength.

Given that the priority order in achieving the PER objectives states that the QKD wavelength is
the most important to optimize, followed by the beacon wavelength, optimizing at the QKD wavelength
(Figure 5.5b) or at the beacon wavelength (Figure 5.5a) are the solutions to consider. Unfortunately,
due to the considerable differences between the phase shifts at the beacon or QKD wavelengths and
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the telecommunication wavelength (see Figure 4.11), good performances at these wavelengths come at
the expense of poor performances at the telecommunication wavelength.

High-order solutions

The thicknesses in Table 5.1 lead to a phase shift exactly opposite to that induced by the telescope,
δ, and are called zero-order solutions. These thicknesses are, however, too thin to be manufactured in
practice.

An alternative to address this problem is to consider high-order solutions. Introducing a phase
shift −δ is equivalent to the introduction of a phase shift −δ+2kπ, with k ∈ Z (Crabtree, 2007). This
approach allows finding larger thicknesses while inducing in fact the same phase shift. As a consequence,
the number of possible thicknesses is infinite. The new equation to be solved to determine the thickness
of the crystal and the orientation of its optical axis is therefore

−δ(λ) + 2kπ =
2π

λ
∆n(λ)d, (5.17)

and the increase in thickness ∆d is proportional to the order k:

∆d =
(−δ(λ) + 2kπ)λ

2π∆n(λ)
−
(
− δ(λ)λ

2π∆n(λ)

)
=

kλ

∆n(λ)
. (5.18)

Solving Equation 5.17 for instance for QKD optimization for different orders gives the results in Ta-
ble 5.2. The thickness increases with the order, and negative orders have a perpendicular optical axis
orientation with respect to positive orders as the phase shift to compensate changes sign for negative
orders.

Table 5.2 – Higher-order solutions for QKD optimization.

k 0 1 −1 2 −2 3 −3

d [mm] 2.302 · 10−3 6.899 · 10−2 6.438 · 10−2 1.357 · 10−1 1.311 · 10−1 0.202 0.198

OA z z x z x z x

Opposite-order solutions have very similar but different thicknesses. Naturally, it directly follows
from Equation 5.17 that the thicknesses can only be identical if the phase shift to be corrected is zero,
in which case there is only a difference of signs in the thicknesses, i.e. a perpendicular orientation of
the optical axes of opposite-order solutions.

Figure 5.7 shows the PER in function of wavelength for QKD optimization of order 1. At the
QKD wavelength, the PER is high thanks to the optimization, and another high-PER region appears.
Even though the latter has a high PER, this optimization is in fact not suitable as the polarization
orientation at these wavelengths is reversed. This is confirmed by Figure 5.8, which shows that in the
vicinity of the undesired optimized PER region, the phase shift passes through δ = 180°, meaning that
the components are not in-phase anymore. Therefore, when analyzing the performances obtained, it is
advisable to remain cautious and always analyze the retardance in addition to the PER when exploring
unwanted optimized wavelengths.
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Figure 5.7 – PER in function of wavelength
for first-order QKD optimization.

Figure 5.8 – Phase shift in function of wave-
length for first-order QKD optimization.
The phase shift zone passing through 180◦ is a
parasitic optimization.

Moreover, a non-negligible disadvantage of this method is the reduction in the width of the opti-
mized wavelength band. This is the direct consequence of a large variation in the phase shift within the
area of interest. The retardance variation directly depends on the derivative of the phase shift induced
by the crystal, as the phase shift induced by the telescope is independent of the latter. Mathematically,
the derivative of the crystal’s phase shift is:

∂∆φ

∂λ
= −2π

λ2
d∆n(λ) +

2π

λ
d
∂∆n(λ)

∂λ
. (5.19)

Figure 5.9 – Crystal-induced phase shift for
thicknesses corresponding to QKD optimiza-
tion. Non-zero order solutions were shifted by mul-
tiples of 360° for the ease of comparison and to have
a common intersection at the QKD wavelength.

Small wavelengths thus suffer from high varia-
tions of crystal-induced phase shift, and so from
high phase shift variations in the whole system,
i.e. telescope and crystal together. For a fixed
wavelength, increasing the order (increasing the
thickness) increases the derivative as it is lin-
early dependent on the thickness. Therefore,
it can be concluded that higher-order solutions
have greater phase shift variations (Crabtree,
2007), and consequently smaller optimized band-
widths, simultaneously explaining the increase of
the number of high-PER bands. Because of this
drawback in terms of bandwidth, higher-order so-
lutions are not considered and the study concen-
trates on zero-order solutions only.

Tolerance analyses on the thickness and op-
tical axis orientation

Since the two determining parameters for phase
shift correction are crystal thickness and ori-
entation of the crystal’s optical axis, it is of
paramount importance to study their acceptable tolerances to ensure that the correct phase shift
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is induced. It is therefore necessary to determine precisely the acceptable variations in crystal thick-
ness and optical axis orientation to guaranty compliance with the required PER performances. For
this purpose, the crystal thickness is varied by different orders of magnitude, and the orientation of
the optical axis is varied too.

(a) Thickness. (b) Optical axis orientation.

Figure 5.10 – Tolerance analyses on the thickness and orientation of the optical axis of the
MgF2 crystal. Initial thickness d is for QKD optimization.

The parameter with the greatest impact is the crystal thickness, and it follows from Figure 5.10a
that a tolerance of 0.1 µm is acceptable. This tolerance is in line with the order of magnitude of the
tolerance that waveplate manufacturers are able to provide (Edmund Optics, 2024). The impact of the
orientation of the optical axis on the order of magnitude of the PER is much less. Tolerances of the
order of several degrees are acceptable, but still lead to a progressive decrease in order of magnitude,
to the benefit of other wavelengths, which is not the case for the thickness tolerance.

Considering these errors simultaneously gives the results shown in Figure 5.11. However, it is
important to note that taking both tolerances simultaneously into account can have a positive or
negative impact, depending on whether the combination of thickness and optical axis orientation
results in a final phase shift that is closer or less close to the desired phase shift. Consequently, as a
safety measure, and given that the alignment of the optical axis can be achieved without too much
difficulty with a smaller tolerance, the tolerance on the alignment of the optical axis is reduced to the
order of a degree.
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(a) d+ 0.1 µm, OA+ 10°. (b) d+ 0.1 µm, OA+ 1°.

Figure 5.11 – PER results for simultaneous consideration of thickness and optical axis
alignment errors.

5.4.2 Optimization using two crystals

The previous study has hinted at a way to optimize the performances in terms of PER at multiple wave-
lengths simultaneously. However, as the adage goes, there is no free lunch. Achieving the objectives
using the principle of birefringence requires the use of multiple crystals, and to rigorously determine
both their thicknesses and orientations. For simplicity of assembly and to minimize alignment and
thickness errors, the feasibility of using two crystals is being investigated firstly.

Equation 5.11 is modified as below3 for light propagation through two crystals of thicknesses d1
and d2, and birefringences ∆n1 and ∆n2.:

∆φ(λ) =
2π

λ
d1∆n1(λ) +

2π

λ
d2∆n2(λ). (5.20)

The choice of crystals is no longer as free as before. While they still need to be transparent at the
wavelengths of interest, and remain financially affordable and manufacturable with sufficient ease, the
two crystals must also exhibit different birefringences in function of the wavelength (Miller et al., 2022).
If two crystals with a very similar birefringence were used, due to the almost identical nature of the
crystals, any adjustment made one the thickness of one crystal to optimize a different wavelength would
also affect the other optimized wavelength. Thus, changing the thickness of one to optimize for one
wavelength would negatively impact the PER at other wavelengths due to the significant difference
between the phase shifts to be corrected. However, if the crystals exhibit sufficiently different birefrin-
gences, this negative impact can be compensated by the difference in birefringence. This is also the
reason why two identical crystals can’t be used to optimize the PER at two wavelengths of significantly
different retardance.

The second selected crystal that meets these criteria is aluminum oxide (Al2O3). The difference
between the birefringences of the two crystals is visible in Figure 5.12.

3The sign before each term could be different, depending on the orientation of the corresponding crystal. In general,
this expression remains valid as the sign can be absorbed into the thickness of the crystal, which can be either negative
or positive, as explained earlier.
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Figure 5.12 – Birefringent properties of MgF2

and Al2O3.

With the choice of crystals made, Equation 5.20
still has two variable parameters, d1 and d2.
Therefore, several combinations of thicknesses
can optimize one wavelength. This degree of free-
dom can be effectively utilized for optimization at
two wavelengths, by establishing a system of two
equations with two unknowns, whose exact so-
lution provides the necessary thicknesses for the
two crystals:


−δ(λ1) =

2π

λ1

(
d1∆n1(λ1) + d2∆n2(λ1)

)
,

−δ(λ2) =
2π

λ2

(
d1∆n1(λ2) + d2∆n2(λ2)

)
.

(5.21)

Solving the system for optimization in the three possible configurations (beacon-QKD,
telecommunication-QKD and beacon-telecommunication) yields the results of Figure 5.13, with the
associated thicknesses d1 for MgF2, and d2 for Al2O3.

Table 5.3 – Required thicknesses for the crystals in function of the wavelengths to optimize.
OA denotes the orientation of the optical axes of the crystals.

λ d1 d2 OA1 OA2

Beacon-QKD 0.301 mm 0.440 mm z z

Telecommunication-QKD 2.345 mm 3.450 mm z z

Beacon-Telecommunication 3.674 mm 5.396 mm z z

(a) Beacon-QKD. (b) Telecommunication-QKD. (c) Telecommunication-beacon.

Figure 5.13 – PER in function of wavelength for the possible optimization configurations.
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(a) Beacon-QKD. (b) Telecommunication-QKD. (c) Telecommunication-beacon.

Figure 5.14 – Phase shift in function of wavelength for the possible optimization configu-
rations.

As for the study of high-order solutions, large wavelengths have a low crystal-induced phase shift
derivative, and so larger optimized wavelength bands. Moreover, the appearance of parasite opti-
mized wavelength bands must be confirmed by analyzing the corresponding phase shift to confirm
optimization and not a polarization orientation reversal. It turns out that for the considered range of
wavelengths, all the parasite peaks correspond to a reversal of the polarization orientation.

Figure 5.13 illustrates the impossibility for the two-wavelengths optimization to meet the require-
ments for the PER at the three wavelengths simultaneously, due to the wavelength band being too
narrow to cover the beacon and QKD wavelengths simultaneously when optimizing for telecommuni-
cation, or the absence of a peak at the telecommunication wavelength in the case of optimization at
both QKD and beacon wavelengths. These results suggest that the addition of a third crystal is the
preferred solution for simultaneously optimizing three wavelengths.

5.4.3 Optimization using three crystals

As with two crystals, the determination of the thickness of each crystal is based on knowledge of the
phase shifts and birefringence properties of the crystals. Thus, the thicknesses d1, d2 and d3 of the
zero-order solution are naturally derived from

−δ(λ1) =
2π

λ1

(
d1∆n1(λ1) + d2∆n2(λ1) + d3∆n3(λ1)

)
,

−δ(λ2) =
2π

λ2

(
d1∆n1(λ2) + d2∆n2(λ2) + d3∆n3(λ2)

)
,

−δ(λ3) =
2π

λ3

(
d1∆n1(λ3) + d2∆n2(λ3) + d3∆n3(λ3)

)
.

(5.22)

The third crystal, selected using the same criteria as the first two, is zinc oxide (ZnO). For comparison,
its birefringence properties are given in Figure 5.15. By solving the system of equations, the thicknesses
and orientations of the optical axes are found, and are provided in Table 5.4.
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Figure 5.15 – Birefringent properties of MgF2, Al2O3 and ZnO.

Table 5.4 – Required thicknesses for the crystals for simultaneous optimization of all desired
wavelengths. OA denotes the orientation of the optical axes of the crystals.

λ d1 d2 d3 OA1 OA2 OA3

Beacon-QKD-Telecommunication 1.308 mm 2.092 mm 0.087 mm z z z

(a) Phase shift over a broad spectrum of wave-
lengths.

(b) Zoom on the QKD band and beacon wave-
length, revealing an additional wavelength with
zero phase shift.

Figure 5.16 – Phase shift in function of wavelength for simultaneous optimization of all
wavelengths.

Exact compensation of the retardance at the wavelengths of interest using three crystals provides
a feasible solution. Performance is on target over a wide band covering the first two wavelengths, and
there is also a significant margin over the third wavelength thanks to its wide bandwidth. Given the
small thickness of the ZnO crystal, as explained above, this solution involves using a fourth crystal of
perpendicular optical axis and of random thickness, so that the thickness of the third crystal is modified
such that the difference in thickness between the two is the thickness calculated theoretically for the
third crystal. The PER at the relevant wavelengths for this project are given in Table 5.5. Eventually,
one should keep in mind that all the results presented for the PER are for ±45° polarization, which is
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the worst-case scenario. For all other types of linear polarization, the PER is higher.

Figure 5.17 – PER in function of the wavelength for simultaneous optimization of all desired
wavelengths. All objectives are reached. Unwanted optimization between 685 nm and 770 nm comes
from an additional point with zero phase shift in this region.

Table 5.5 – PER obtained using the three crystals optimization.

Wavelength Telescope PER Targeted PER

685 nm 514 574 : 1 200 : 1

770 nm 1 8881 400 : 1 1000 : 1

780 nm 103 480 : 1 1000 : 1

790 nm 251 043 : 1 1000 : 1

1550 nm 143 952 : 1 200 : 1

5.4.4 Merit function optimization

Previously, the method for determining crystal thickness and orientation was based on the exact
resolution of the phase shift equations. This has the advantage of compensating the phase shifts
exactly, but sometimes at the cost of a narrow optimized wavelength band. Alignment errors or
excessively tight thickness tolerances could significantly degrade the performances to the extent of
non-compliance with the objectives. To avoid this, an alternative approach to the problem involves
optimizing (minimizing) a merit function over a broader range of wavelengths. The expression of
this function relies on the phase shifts, since they provide an immediate measure of performance. As
the optimized wavelength band using three crystals is large around the areas of interest, the merit
function optimization is applied using two crystals for the search of an equivalent solution only using
two crystals:

Mj,k =

l∑
i=1

(
∆φi,j,k − δi

δi

)2

· ωi (5.23)
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d1d1,maxd1,min

d2
d2,max

d2,min

Figure 5.18 – Spatial domain. Maximum values
for the thicknesses are free of choice.

∆φi,j,k is the calculated phase shift for thick-
nesses dj and dk corresponding to the first and
second crystal, respectively, for each wavelength
i to be optimized. δi is the phase shift to induce
at wavelength i for optimization. The number of
wavelengths to optimize is denoted l. Normaliza-
tion ensures that no term in the sum dominates
the others. A weight function ω is applied to
regulate the importance of each individual wave-
length.

One possible way to optimize the merit function
is through large-scale testing, by testing all pos-
sible combinations of thicknesses within a given
range. The spatial discretization of the domain
involves a large number of thickness combinations to test, and this highly refined discretization may
require a significant amount of memory for calculations, which can be problematic to avoid overlook-
ing a solution. For these reasons, large-scale testing is not considered4, and the optical axis angle
and thickness for each crystal are determined using the non-linear multivariable solver fmincon, by
minimization of M (Miller et al., 2022).

Figure 5.19 – General shape of the merit function. The diagonals of equal merit function value
reflect the link between the phase shift induced by the crystals and their thicknesses. Since the induced
phase variation is periodic, moving along the diagonals means exploring higher-order solutions. Spatial
domain representation has been restricted for the ease of visualization.

Given the strong dependence of non-linear numerical solvers on initial conditions, the search for op-
timum thicknesses is carried out by testing all possible initial conditions in the search domain, with
a spatial step derived from Figure 5.19 to ensure all areas are explored. The domain extends from a
null thickness to 10 mm thickness for each crystal, in order to encompass the thicknesses of the exact
solutions for each optimization case, while leaving considerable scope for exploring further thicknesses
corresponding to higher orders.

4With the exception of Figures 5.19 and 5.21, where this method is used to obtain a visual representation of the merit
function.
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In an attempt to achieve the objectives using two crystals, it is chosen to optimize weight functions
ω1, ω2, ω3 and ω4. Weight function ω5 aims to compare the exact resolution of the phase shift equations
to the optimization of the merit function.

• ω1: unitary weight function for the three main wavelengths.

• ω2: weight function corresponding to the imposed priority order.

• ω3: weight function attempting to achieve good performances at beacon and QKD wavelengths,
corresponding to the priority order, by fixing their weights considerably higher than the telecom-
munication wavelength.

• ω4: unitary weight function considering the extremities of the QKD band, using two crystals.

• ω5: weight function with priority order considering the extremities of the QKD band, using three
crystals.

Table 5.6 – Weight functions.

Beacon QKD −10 nm QKD QKD +10 nm Telecommunication

ω1 1 0 1 0 1
ω2 2 0 3 0 1
ω3 5 0 10 0 1
ω4 1 1 1 1 1
ω5 2 3 3 3 1

The thicknesses and orientations of the optical axes of the crystals, determined by optimizing M
using the fmincon solver for the different weight functions ω, are provided in Table 5.7.

Table 5.7 – Optimization results for the different weight function.

d1 d2 d3 OA1 OA2 OA3

ω1 7.321 mm 7.579 mm / x z /
ω2 7.321 mm 7.579 mm / x z /
ω3 5.347 mm 1.685 mm / z z /
ω4 0.418 mm 0.612 mm / z z /
ω5 1.397 mm 2.239 mm 0.096 mm z z z

Figure 5.20 confirms the difficulty of optimizing the QKD and beacon wavelength bands, along with
the telecommunication wavelength. This stems from the significant phase shift difference between the
two bands. The optimization naturally converges to unsuitable very high order solutions. Applying a
priority order for optimization of the three relevant wavelengths is also not enough. One has to optimize
the full QKD wavelength band for better results, at the expense of bad PER for the telecommunication.
Eventually, the merit function optimization using three crystals is applied for the sake of completeness.
Results are matching the objectives, and are as satisfactory as the results of the exact solution.
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(a) ω1, ω2. (b) ω3.

(c) ω4. (d) ω5.

Figure 5.20 – PER in function of wavelength for the different weight functions. Objectives
are not reached using two crystals. The merit function optimization confirms the impossibility of using
two crystals to optimize all wavelength bands.

(a) Spatial domain. (b) Zoom on the location of the solution corre-
sponding to ω4. The red dot indicates the posi-
tion of the optimal solution in the domain.

Figure 5.21 – Merit function corresponding to ω4. Spatial domain representation has been re-
stricted for better visualization.
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Part V

Experimental measurements
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Chapter 6

Experimental study of polarization
characteristics

The first task of this project was to determine the retardance caused by the reflections on the various
mirrors, particularly induced by the third mirror M3. The previous chapters demonstrated the method-
ology for characterizing and correcting it. However, the retardance is determined from the telescope
model as designed in the Ansys Zemax OpticStudio software. This model is based on standard models
for the coatings on the various mirrors, and the telescope model is thus naturally subject to modeling
errors.

Since retardance is the basis of the problem in this project, it is of paramount importance that it
corresponds to the retardance induced by real mirrors that will be used for MOCA. To this end, the
retardance induced by a mirror sample is studied by the discipline of ellipsometry. The variation of
the azimuth angle is also studied for completeness.

6.1 Ellipsometry

As a consequence of Fresnel’s equations, polarized light at non-normal incidence on an optical surface
will undergo a phase shift between its components of polarization. This change of polarization is de-
pendent on the AOI, and on the material properties of the optical surface. Ellipsometry is the practical
discipline studying the change of polarization, by determination of the retardance1 and azimuth angle,
∆ and ψ respectively (called the ellipsometric parameters) after reflection on the optical surface, from
intensity measurements at the detector.

The experimental setup for ellipsometry consists of two parts. The first branch, called the polariza-
tion state generator, consists of a light source accompanied by polarizing elements such as polarizers
or retarders. After reflection on the optical surface, light arrives in the second branch, called the
polarization state detector, which generally contains an analyzer (polarizer), followed by a detector to
measure the intensity (Tompkins and Irene, 2005).

Ellipsometry consists of four key stages aimed at determining the ellipsometric angles ψ and ∆:

1. Generation of a polarized light beam.

2. Reflection on an optical surface leading to a new polarization state.
1The retardance, denoted δ in the previous chapters, is written ∆ for consistency with the literature.
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3. Analysis of the new polarization state.

4. Determination of the ellipsometric angles.

Step 1 and 3 happen in the polarization state generator and polarization state detector, respectively.

6.1.1 Types of ellipsometers

The first types of ellipsometers to be developed were nulling ellipsometers. These are made up of the
components listed above, and the ellipsometric angles are determined by adjusting the optical param-
eters, such as the polarizer angles, of the components until a null signal is obtained at the detector
(Azzam and Bashara, 1987).

Because the nulling ellipsometer is slow in its process, and because of the dark current with its
associated noise inevitably present in detectors, the photometric ellipsometer was developed. In this
type of ellipsometers, two configurations are possible. The first one varies the angle of the polarizer
in the polarization state generator branch, while keeping the angle of the analyzer fixed. The second,
and more common option, is to reverse the roles, i.e. vary the angle of the analyzer while keeping the
angle of the polarizer constant. These two configurations are respectively called the rotating polarizer
ellipsometer (RPE) and rotating analyzer ellipsometer (RAE). As a consequence of the angle variation,
the intensity measurements at the detector vary sinusoidally. It is then possible, from a spectral de-
composition of the signal using Fourier’s theory, to deduce the ellipsometric parameters (Motschmann
and Teppner, 2001; Gonçalves and Irene, 2002).

Depending on the application, ellipsometry can be spectroscopic, and therefore requires monochro-
mators in the setup to study each wavelength separately. Furthermore, it has been shown by Aspnes
(1974) that the uncertainty on the retardance using photometric ellipsometry is greatest when light is
linearly polarized. To overcome this problem, a compensator is introduced into the polarization state
generator arm to induce ellipticity, which does not change the retardance induced by reflection, as it is
independent of the type of polarization. Moreover, this type of ellipsometer is the best possible choice
when investigating broad spectral bands, having the added advantage of being able to operate at low
light intensity (Tompkins and Irene, 2005; Gonçalves and Irene, 2002).

WL

M

P

C A

S

D

Unpolarized

Linear

Elliptic Elliptic

Sinusoidal

Figure 6.1 – Rotating analyzer ellipsometer. WL, M, P, C, S, A, and D stand for White Light,
Monochromator, Polarizer, Compensator, Sample, Analyzer and Detector, respectively. The compen-
sator is placed to induce ellipticity. Adapted from Tompkins and Irene (2005).
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6.1.2 Determination of the ellipsometric parameters from polarization formalisms

Since current detectors only measure intensities, the ellipsometric parameters ψ and ∆ must be deduced
from this signal. In the presence of fully polarized light, it is possible to use the Jones formalism to
describe each component of the ellipsometer by its Jones matrix, in order to deduce the equivalent Jones
matrix as described in Chapter 2 by successive multiplications of the component matrices. However, in
order to take into account the non-ideality of depolarizing components, and for generality, the Stokes
formalism is used for a brief description of the ellipsometer. The case of the RAE is studied for
illustration. As with the Jones formalism, the Mueller matrices of the components are successively
multiplied:

Ith sD = R
(
−A′)MAℜ

(
A′)MSM

′R
(
−P ′)MPℜ

(
P ′) (ISsS) . (6.1)

The normalized Stokes vector at the detector is written sD, and Ith and IS are the irradiance at the
detector and the source, respectively. The matrices MA and MP denote the Mueller matrices of the
analyzer and polarizer, respectively, and MS is the sample’s Mueller matrix. Matrix R is a rotational
transformation that converts the Stokes vector or Mueller matrix from the global coordinate system
to the local coordinate system of the element. Eventually, matrix M′ is the Mueller matrix of the
compensator in the global reference frame. The ellipsometric parameters are deduced from a Fourier
analysis of the intensity at the detector, by varying the analyzer angle.

6.2 Experimental measurements

6.2.1 Mirror sample

Figure 6.2 – Mirror sample.

The sample provided by AMOS for the ellipso-
metric measurements is a flat aluminium mir-
ror sample coated with protected silver. It has
previously been used for the qualification of mir-
ror coatings for the CHIME (Copernicus Hyper-
spectral Imaging Mission for the Environment)
spectrometer system instrument. In total, the
coating consists of 8 layers of different materials:
chromium (Cr), nichrome (NiCr), silicon dioxide
(SiO2), tantalum (Ta), tantalum oxide (Ta2O5),
hafnium oxide (HfO2), Al2O3 and silver (Ag).
Due to the confidentiality imposed by the manu-
facturer of the coating, CILAS, the exact thick-
ness of each layer is unknown. The total thickness
of the coating, however, is known and is about 200
nm.

6.2.2 Ellipsometer

To measure the ellipsometric parameters, experimental measurements were carried out at Centre Spa-
tial de Liège (CSL), which is equipped with the SENresearch 4.0 spectroscopic ellipsometer. It covers
a wide spectral range from the deep ultraviolet (λ = 190 nm) to the shortwave infrared (λ = 3500 nm),
with high SNR and selectable spectral resolution. Thanks to the step scan analyzer (SSA), which is
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a unique feature of the SENresearch 4.0 spectroscopic ellipsometer, there are no moving optical parts
during data acquisition, guaranteeing optimum measurement results. The accuracy on the ellipsometric
parameters are given in Table 6.1 (SENTECH Instruments, 2024).

Table 6.1 – Accuracy of the ellipsometer.

Ellipsometric
parameter Accuracy

∆ 0.06°
ψ 0.03°

Spectralray/4 is the software used to configure the ellipsometer and perform measurements. It is
used in interactive mode through a graphical interface to perform the required ellipsometric measure-
ments for this work. For the sake of comparison and to illustrate the importance of the M3 mirror, a
spectral range from 500 nm to 1750 nm, and incidence angles from 42° to 48°, have been considered.

(a) SENresearch 4.0 spectroscopic ellipsometer. (b) Mirror sample in place for measurements.

Figure 6.3 – Experimental setup at CSL.

6.2.3 Measurement of the retardance

Measuring retardance is fundamental to the success of the MOCA project. To this end, the study of
retardance based on the standard model of the protected silver coating in Ansys Zemax OpticStudio,
carried out previously Chapter 4, is compared with the experimental measurements provided by the
ellipsometer. The difference between the results in Figure 6.4a directly leads to the conclusion that the
standard model, composed solely of SiO2, Al2O3 and Ag, does not perfectly fit the measured coating.
However, by proceeding inversely through the modification of the composition and thicknesses of the
layers of the modeled coating, it is possible to reconcile the results in the considered wavelength band.
The results of this procedure are illustrated by the reverse-engineered model curve, providing a good
qualitative approximation of the experimental measurements. Deviations are on the order of a few
degrees.
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(a) Comparison of the retardance from experimental
measurements to the Ansys Zemax OpticStudio mod-
els.

(b) Evolution of the retardance with varying AOI.

Figure 6.4 – Retardance.

It is important to be aware that even if the coating characteristics of the sample were perfectly
known, a coating model with the same characteristics would still yield different results. The discrep-
ancies would then arise from differences in optical parameters of the layers. For instance, the coating
deposition method has an impact on the optical parameters of the coating. Depositing a substrate layer
by ion beam sputtering or by magnetron sputtering would thus result in different optical properties
for the coating layers. In addition, other parameters such as deposition rate or temperature influence
optical properties. Indeed, variations in deposition techniques and parameters affect the energy with
which atoms and molecules arrive on the substrate, leading to different atomic arrangements, and
consequently, slight differences in optical properties.

Moreover, it should be noted that the ellipsometer itself is not perfect (see Table 6.1), and offers
only a certain degree of precision in measurements.

Since the AOI on M3 varies across the pupil and is not exactly 45°, the behavior of an incident
photon deviates from what would occur if the AOI was precisely 45°. Thus, a potential additional
explanation for the deviation from measurements would come from a slight difference in AOI, which
would be consistent with the observations in Figure 6.4b.

In conclusion, although the exact characteristics of the sample are unknown, and as the behavior of
the retardance curve is the same for both models, it confirms the correct implementation of the Jones
formalism, and the correct characterization of the telescope retardance. It is worth remembering,
however, that since every model is an approximation, and given the dependence of optical properties
e.g., on the various parameters listed above, it is not possible to obtain exactly the same results, and
experimental measurements will always be the results on which to base the characterization of the
retardance of a mirror.

6.2.4 Measurement of the azimuth angle

Although SpeQtral has not imposed any constraint on this parameter, the azimuth angle plays an im-
portant role for algorithms such as BB84 in discerning the polarization state, and must consequently
be maintained. As with the retardance, a deviation between the standard coating model and the exper-
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imental measurements is observed in Figure 6.5a, once again highlighting the differences between the
coatings. The reverse-engineered model shows, as expected, great consistency with the measurements
and closely matching values, with a maximum deviation about a tenth of a degree.

(a) Comparison of the polarization orientation from ex-
perimental measurements to the Ansys Zemax Optic-
Studio models.

(b) Evolution of the polarization orientation with vary-
ing AOI.

Figure 6.5 – Polarization orientation. Initial state of polarization is 45°. The difference in flatness
in the measurements results from a non-constant step size used on the wavelength by the ellipsometer.

Additionally, the magnitude of the variations on ψ remains on the order of a few tenths of a degree,
allowing the different states to be distinguished from one another. The impact of the AOI shown in
Figure 6.5b is of the order of a tenth of a degree.

All the elements provided in the discussion of the retardance to explain the differences between
the results of the models and the experimental results remain obviously applicable. The conclusion is
also the same: experimental results will always be the ones to rely on, and models can only provide
approximations for a qualitative characterization of the results.

6.3 Telescope characterization procedure and conclusion

As demonstrated and discussed in this chapter, relying on models is not sufficient, and experimental
measurements are required to characterize ellipsometric parameters quantitatively. Since ellipsometry
provides the necessary experimental measurements with a high degree of accuracy, AMOS can use it to
characterize the M3 mirror. Consequently, the telescope can be accurately assessed for its polarization
characteristics.

Chapter 5 studied the feasibility of using crystals to correct the retardance, and specified the tol-
erance that needs to be met on the thickness and optical axis orientation of the crystals. In practice,
however, the objective remains the induction of the correct retardance value at the required wave-
lengths. This therefore means that the required optical path length must be reached, by progressive
manufacturing of the crystals, ensuring that any tolerance related to the thickness, the optical axis
orientation, or to the dispersion of the crystals, is inherently addressed through the achievement of the
desired retardance. This methodology thus guarantees accurate results for the characterization, and
rigorous crystal manufacturing will then enable retardance correction and thus the attainment of the
targeted PER.
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Chapter 7

Conclusion and perspectives

7.1 Thesis summary

With the aim of studying changes in polarized light through MOCA, this report firstly introduces
electromagnetic waves and their possible polarization, along with a discussion of the different types
of polarization and a useful introduction to the associated mathematical formalism. The principles
of QKD, including the theory required to understand it, follows and demonstrates the high security
of this method, illustrated using the BB84 algorithm. The MOCA project, which aims to develop
and demonstrate international use cases for QKD, is discussed with particular emphasis on the optical
design and information useful for this work. The importance of the project is considerable both for
AMOS and for the world of secure communications in the years to come.

The work carried out usefully focuses on the characterization of the telescope based on the adapted
Jones formalism for fully polarized light. The promising results of this study show the feasibility of
characterizing optical communication antennas using the Jones formalism through a general method-
ology as studied in Chapter 4. Thanks to this methodology, the phase shift between the orthogonal
components of polarization, mainly responsible for poor performance in terms of PER, can be derived
for each desired wavelength, and in particular for each wavelength useful to the project. It is shown that
the retardance is too large to reach the targeted PER values, with values on the order of several degrees
or even tens of degrees compared to the desired null phase shift, representing the case of maximum PER.

Poor performance in terms of PER is unacceptable for the MOCA project, and in general for QKD
based on the polarization of light. To overcome this problem, a detailed study implementing the use of
birefringent crystals is being carried out, with the aim of studying the feasibility of correcting the phase
shift between the orthogonal components of polarization. The approach shows that this correction is
feasible for wavelength bands that are free of choice, but for which the thicknesses of the crystals used
and the orientation of their optical axes are rigorously determined. Crystals of different birefringence
are, however, needed to achieve good performance in terms of PER for significantly different wavelength
bands, if the phase shift induced by the telescope is significantly different. In order to optimize the
three wavelength bands used for the MOCA project, the use of three crystals is necessary.
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Eventually, the ellipsometric measurements carried out at the CSL enabled to conclude that the
Jones formalism had been correctly implemented, and demonstrated the need for experimental mea-
surements to characterize a manufactured mirror.

The key conclusions of this study are that it is possible to characterize optical telecommunication
antennas by polarization formalisms such as that of Jones, and that the latter allow considering ways
to maintain polarization through the telescope. Using correction methods such as birefringence, the
polarization state can be maintained, and QKD algorithms exploited.

7.2 Perspectives

The study concluded that it was necessary to use the same number of crystals as the number of
wavelengths to optimize. However, using merit function optimization with different crystals, it could
theoretically be shown that optimizing at all wavelengths with fewer crystals might be possible, if the
crystals present a highly variable dispersion curve. This would be a stroke of luck, and in practice,
taking the risk of using fewer crystals than the number of wavelengths to optimize is not advisable
because it is unlikely to achieve the same success again. It is thus better to play it safe by using the
same number of crystals as wavelengths, as this method has proved its worth.

Although this is not the case at present, constraints on variations in polarization orientation could
be imposed by SpeQtral in the future. A closer look at this parameter would then need to be taken to
guide the search for crystals, and potentially the coating if desired, to limit variations.

Moreover, during this work, research focused on a way of maintaining polarization through the use
of birefringent crystals. However, this is not the only way, and others should be investigated. One
example is the study of mirror coatings, a method that has already been proposed in the literature as
discussed in Section 5.1. In addition, Chapter 6 demonstrated the possibility of adjusting the mod-
eled delay curve by modifying the thickness and composition of the coating layers. Consequently, the
coatings of the M3 mirror could be changed and a study conducted on a choice of coating maintaining
polarization at wavelengths useful to the project. Thus, a detailed study of the coatings should be
carried out to gain an in-depth understanding of the behavior of the retardation curve, with the aim
of achieving zero retardance at the targeted wavelengths. Optimizing a coating for one or more wave-
lengths relevant to the MOCA project could then potentially reduce the required number of crystals.

Eventually, AMOS plans to use liquid crystals to correct the phase delays caused by the corrector
mirrors. This solution could also be used to correct the retardance of M3, and potentially also in
combination with an optimized coating.
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Appendix A

Electromagnetic waves

A.1 Wave equation for the magnetic field

The determination of the wave equation for the magnetic field can be carried out in a similar manner
to the derivation of that for the electric field. By taking the curl of Equation 2.4, one has
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and making use of the vectorial calculus relation
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the second term on the right-hand side,
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Additionally, Equation 2.3 allows writing:

σ
−→
∇ ×

−→
E = −µσ∂

−→
H

∂t
, (A.7)

ε
∂
(−→
∇ ×

−→
E
)

∂t
= −µε∂

2−→H
∂t2

, (A.8)

Combining with the constitutive relation Equation 2.6 yields the wave equation for the magnetic field:
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A.2 Polarization ellipse

The general expressions for the components of the electric field are :{−→
E x(z, t) = E0x cos (kz − ωt) x̂,
−→
E y(z, t) = E0y cos (kz − ωt+ δ) ŷ,

(A.10)

with δ = φy − φx. Simultaneous algebraic and trigonometric manipulations of these expressions can
be used to write

Ey(z, t)

E0y
− Ex(z, t)

E0x
cos δ = − sin (kz − ωt) sin δ. (A.11)

Squaring Equation A.11 yields
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Eventually, the expression of the ellipse is obtained by rewritng the last expression:
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2
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2
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2
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Appendix B

Supplementary figures

B.1 Jones pupil matrices

B.1.1 Beacon wavelength

(a) Axx. (b) Axy.

(c) Ayx. (d) Ayy.

Figure B.1 – Amplitude coefficients of the Jones pupil matrices for λ = 685 nm.
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(a) φxx [°]. (b) φxy [°].

(c) φyx [°]. (d) φyy [°].

Figure B.2 – Phase coefficients of the Jones pupil matrices for λ = 685 nm.

B.1.2 Telecommunication wavelength

(a) Axx. (b) Axy.

(c) Ayx. (d) Ayy.

Figure B.3 – Amplitude coefficients of the Jones pupil matrices for λ = 1550 nm.
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(a) φxx [°]. (b) φxy [°].

(c) φyx [°]. (d) φyy [°].

Figure B.4 – Phase coefficients of the Jones pupil matrices for λ = 1550 nm.
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