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Introduction

The mathematical description of closed and isolated quantum systems has been established since
the middle of the last century. It has a proven track record for multiples field of applications such
as in the study of superconductor, with the BCS theory [1] and in atomic Physics [2]. However,
closed systems are an idealization of real systems, just as in classical physics. When considering
interactions between an open system and its environment, the Schrödinger equation becomes un-
solvable on its own due to the large degree of freedom of the environment. Thus, a new formalism
has been developed to generalize the Schrödinger equation to open quantum systems. Instead of
a ket vector from the Hilbert space, the state of the (open) system is described by an operator,
namely the density operator, acting on the Hilbert space. For open systems, the time evolution
of its state is described by a master equation. The advantage of the master equation over the
Schrödinger equation is that, under certain assumptions, the environment can be eliminated,
resulting in a solvable equation of motion for the system only. The most common form of such a
master equation is the Lindblad master equation. There are two main methods of resolution for
the master equation. First, one could integrate the differential equation via numerical methods.
However, for large systems, this method becomes impractical. Secondly, it is possible to adapt
the formalism of Hilbert space for the linear space of density operators. Thus, solving the master
equation is equivalent to diagonalize the generator of the dynamic, which is called the Liouvillian.
As the Hamiltonian generates the dynamics of closed systems and is an operator acting on ket
vectors, the Liouvillian is a superoperator acting as an operator on the level of density operators.
In this master’s thesis, we will be interested to solve master equations with the second method.

The first objective of this master thesis is to present an elegant and promising exact method of
resolution for such master equations. This method is called the third quantization. It extends the
idea of second quantization to the space of density operators, transforming the problem into one
that can be addressed using techniques from many-body physics. Initially developed by Prosen
for fermionic systems [3], the third quantization has since been adapted for bosonic systems [4]
and other types of master equations [5, 6], providing a versatile framework for studying a wide
range of open quantum systems. The elegance of this method lies in the fact that it can be
used for an arbitrary number of bosonic modes and the obtained solution is in an analytical
form. The interest of developing such resolution tools for open quantum systems stems from
its current prominence as a highly active research area in quantum physics. Indeed, the study
of the Lindblad master equation plays an important role in fields as quantum cryptography [7],
quantum information [8], quantum measurement [9] and in condensed matter [10]. Among all
the usages of the third quantization method, let us cite the study of phase transition for spin
models [11, 12], applications in quantum transport [6].

The second objective of this master thesis is to apply this method to a concrete problem,
namely quantum thermal transport. We will use the third quantization to study the transport
of bosonic particles between two baths of different temperatures, mediated by a junction com-
pounded of several bosonic sites. In the framework of this master thesis, we will limit our study
to two sites. This quantum transport setup is the first step towards to the study of quantum
thermodynamics problems such as quantum heat engines. Quantum thermodynamics is also an
active and promising field of research, see [13, 14] for a complete review of the topic. Devices
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such as quantum thermal engines could have a direct application in the industry field via the
design of new thermal transistors [15, 16].

The structure of this master’s thesis is the following. In the first part, we introduce the math-
ematical tools allowing to describe open quantum systems. In the first chapter, we describe the
second quantization in closed systems. Following this, we present the Bogoliubov transformation
and show its application within the BCS theory.
In chapter 2, we study open quantum systems in detail. We give the definition of the density
operators and show its properties. Then, we present and derive the Lindblad master equation for
a general case. Afterwards, we introduce the Fock-Liouville Hilbert space of density operators
and show that a certain isomorphism makes it possible to find a matrix representation of the
generator of the dynamics. We end this chapter by studying the properties of this generator.
In chapter 3, we introduce and derive the third quantization method in a general frame for two
bosonic modes. We show the robustness of this method and what it allows us to know about the
system of study.

The second part of this master thesis is dedicated to the application of the third quantization
to quantum transport problems. To the best of our knowledge, this is the first time that the third
quantization method is applied to quantum thermodynamics problems, and constitutes thus our
original contribution to the field, which opens many perspectives for future research. In chapter
4, we show its usage in detail for a simple but non trivial system, namely the single-site junction.
We are interested in its steady state, the spectrum of the Liouvillian and the particle current.
In addition, we study the symmetries within this system. We also compare our result obtained
via third quantization with a numerical method.
In chapter 5, we study the two-site junction. We compare two approaches of derivation for the
Lindblad master equation throughout the result obtained via third quantization and we show
how another more accurate master equation could be used, the Redfield one.
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Part I

Theoretical tools
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Chapter 1

Second Quantization

In this chapter we briefly present the formalism to describe quantum closed systems with N
indistinguishable particles. We first introduce the Fock space and define creation and annihilation
operators. The second part of this chapter is dedicated to the Bogoliubov transformation, which
is a method used to diagonalize Hamiltonians and thus find their ground state. We focus our
presentation around the BCS theory, one of the well-known application of this transformation.

1.1 Fock space

Considering N indistinguishable1 particles, the Hilbert space associated is the tensor product of
N Hilbert spaces H1

HN = H1 ⊗ ...⊗H1, (1.1)

where H1 is the Hilbert space associated with a single particle. Via the symmetry postulate, we
define two subspaces of HN : H+

N and H−
N , depending if the wavefunction ψ of the system is en-

tirely symmetrical or entirely antisymmetrical with respect to the exchange of spatial coordinates
and spins within any pairs of two particles [17]. For such spaces, a basis is given by

B± =
∞⋃

N=0

B±
N = B0 ∪ B1 ∪ B±

2 ∪ ..., (1.2)

where

B±
N =

(
|n0, n1, n2, ...⟩± :

∞∑
k=0

nk = N

)
. (1.3)

Here, |n0, n1, n2, ...⟩± is a Fock state and nk denotes the occupation number, i.e., the number of
particles in each single particle state |ϕk⟩. The + (−) upper index refers to bosonic (fermionic)
particles. For bosons, nk ∈ N for all k ∈ N while for fermions, nk ∈ {0, 1} for all k ∈ N due to
the Pauli exclusion principle. To be as complete as possible, we also specify the vacuum state,
corresponding to an absence of particles in the system

|0⟩ ≡ |0, 0, 0, ...⟩ . (1.4)

We now introduce the creation and annihilation operators, a†k, ak.
2 The application of a

creation (annihilation) operator on a Fock state adds (removes) a particle on a given state k in
1Indistinguishable means here that all the particles have the same properties: same mass, same spin, same

electric charge.
2The reader should note that the notation of operators here and throughout the master’s thesis is without the

usual hat.
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the system. Considering the bosonic case, the application of these operators to a general Fock
state is

ak |n0, n1, ..., nk, ..⟩ =
√
nk |n0, n1, ..., nk − 1, ..⟩ , (1.5)

a†k |n0, n1, ..., nk, ..⟩ =
√
nk + 1 |n0, n1, ..., nk + 1, ..⟩ . (1.6)

If nk = 0, ak |n0, n1, ..., nk, ..⟩ = 0, the null vector3. For fermionic particles, we have

ak |n0, n1, ..., nk, ..⟩ = (−1)n0+...+nk−1nk |n0, n1, ..., nk − 1, ..⟩ , (1.7)

a†k |n0, n1, ..., nk, ..⟩ = (−1)n0+...+nk−1(1− nk) |n0, n1, ..., nk + 1, ..⟩ . (1.8)

The creation and annihilation operators admits the following properties:

• The application of a†kak to a (bosonic or fermionic) Fock state multiplies this state by the
associated occupation number nk

a†kak |n0, n1, ..., nk, ..⟩ = nk |n0, n1, ..., nk, ..⟩ . (1.9)

• For bosonic particles, the canonical commutation relations (CCR) are

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0, (1.10)

for k, k′ ∈ N. The notation [A,B] is the commutator of the operators A and B,
[A,B] ≡ AB −BA.

• For fermionic particles, the CCR are slightly different,

{ak, a†k′} = δkk′ , {ak, ak′} = 0, (1.11)

where {A,B} is the anticommutator of A and B, {A,B} ≡ AB +BA.

• In both cases, the creation operators can be used to generate any Fock state. We have

|n0, n1, n2, ...⟩ =
1√
n0!

(
a†0

)n0 1√
n1!

(
a†1

)n1 1√
n2!

(
a†2

)n2

... |0⟩ . (1.12)

An example of simple Hamiltonian with creation and annihilation operator is the quantum
harmonic oscillator. Considering only one mode, we have

H = ℏωa†a,

where ω is the frequency of the mode. Generalizing for multiples modes, this becomes

H =
∑
k

ℏωka
†
kak.

1.2 Bogoliubov transformation

The aim of a Bogoliubov transformation is to find a new set of creation and annihilation operators
such that any complicated Hamiltonian can be written in a diagonal form, like a harmonic
oscillator so that to obtain directly the eigenstates and corresponding energies of the system of
interest. To illustrate how this transformation works, we show its usage in the well-known BCS
theory. Developed by Bardeen, Cooper and Schrieffer in 1957 [1], this theory describes the origin
of superconductivity through the creation of bound pairs of electrons, known as Cooper pairs,

3Not to be confused with the vacuum state |0⟩.
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due to an attractive interaction between them. Bogoliubov himself applied this transformation
for the BCS theory [18]. We briefly review the transformation, following the main steps of [19].

The Hamiltonian for BCS is

HBCS =
∑
k,σ

ξkσc
†
kσckσ +

1

N

∑
k,k′

Vkk′c
†
k↑c

†
−k↓c−k′↓ck′↑, (1.13)

where ckσ, c
†
kσ are the annihilation and creation operators for electrons of mode k and spin σ,

ξkσ is the frequency of the corresponding mode in units where ℏ = 1. The first term of this
Hamiltonian describes the single-particle energy of the electronic system while the second term
corresponds to the interactions between the electrons. The latter is non-quadratic in ckσ or
, c†kσ which makes impossible the BCS transformation. To bypass this issue, we use a mean field
approximation: any product of operator A,B will be replaced by

AB ≃ ⟨A⟩B +A⟨B⟩ − ⟨A⟩⟨B⟩,

where ⟨O⟩ is the mean value of the operator O. Applying this approximation to the interaction
term, we obtain

HBCS =
∑
k,σ

ξkσc
†
kσckσ −

∑
k

∆∗
kc−k↓ck↑ −

∑
k

∆kc
†
k↑c

†
−k↓, (1.14)

with

∆k = − 1

N

∑
k′

Vkk′⟨c−k′↓ck′↑⟩,

∆∗
k = − 1

N

∑
k′

Vkk′⟨c†k′↑c
†
−k′↓⟩.

The Hamiltonian is now quadratic in ckσ, c
†
kσ but as it contains terms in ckσckσ and c†kσc

†
kσ, it is

not yet diagonal. It is then difficult to identify to eigenstates and energies of the system. Thus,
we introduce a new mapping for the fermionic creation and annihilation operators,(

γk↑
γ†k↓

)
=

(
u∗k −vk
v∗k uk

)(
ck↑
c†k↓

)
. (1.15)

This mapping corresponds to the Bogoliubov transformation. The new set of operators have to
satisfy the fermionic CCR, which requires the following conditions on the coefficient uk, vk

{γk↑, γ†k↓} = 1

⇔ |uk|2 + |vk|2 = 1.

Inverting the mapping, we find

ck↑ = ukγk↑ + vkγ
†
k↓, (1.16)

c†k↓ = −v∗kγk↑ + u∗kγ
†
k↓. (1.17)

Now, we inject the previous equation in (1.14) and we choose uk, vk such that the terms in
γkσγkσ, γ†kσγ

†
kσ vanish. We finally find

HBCS =
∑
k,σ

Ekγ
†
kσγkσ, (1.18)
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with the dispersion Ek =
√
ξ2k + |∆k|2. Here we effectively see that the Hamiltonian is diagonal

and looks like a harmonic oscillator with multiples modes. We call these modes normal modes
because they do not interact with each other. The coefficients Ek are the eigenvalues of the
Hamiltonian. Hence, the diagonal form of the Hamiltonian shows that the electrons are no more
the relevant particles in the presence of interactions. The stable particles of the system are the
Bogoliubov particles created by γkσ of energy Ekσ. With this diagonalization, we can write the
state of the system at any time as

|ψ(t)⟩ =
∑
k,σ,i

eiEktbk,σ,i |ϕk,σ,i⟩ , (1.19)

where the set {ϕk,σ,i} are the eigenvectors of HBCS given by

ϕk,σ,i =
1√
i!

(
γ†kσ

)i
|0⟩ (1.20)

and bk,σ,i = ⟨ϕk,σ,i|ψ(0)⟩.
To summarize the ideas of this section, we started with the BCS Hamiltonian (1.13) and

defined a new set of fermionic creation and annihilation operators such that the Hamiltonian
becomes diagonal, similar to the Hamiltonian of a harmonic oscillator. Applying the new creation
operator γ†kσ does not directly add an electron of mode kσ. Instead, it corresponds to quasi-
particle modes that do not interact with each other. Additionally, we obtain the spectrum of the
Hamiltonian, which is necessary to study the energy dispersion of the system.

It is possible to define a Bogoliubov transformation for more general cases, such as in open
quantum systems. Indeed, we will apply the same logic: finding new modes such that the gener-
ator of the dynamics, the Liouvillian (kind of equivalent of the Hamiltonian for open systems),
has a diagonal representation. Thus, we will also obtain the associated spectrum, which is a
central subject of study for open quantum systems, as it will give access to the steady states of
the systems.
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Chapter 2

Open quantum systems

The aim of this chapter is to present and develop mathematical tools that are necessary to
study the dynamics of open quantum systems. We first give a definition for an open system
and exhibit the differences with closed ones. We also introduce the density operator. Then, we
develop the standard form of the time evolution equation for open systems, namely the Lindblad
master equation. We continue by constructing a Hilbert space where the vectors are now the
density operators. With this space and a specific isomorphism, we are able to give a matrix
representation for the generator of the dynamics of the system. We end this section by studying
the spectrum of this generator.

2.1 Introduction

An open quantum system is a system included in a larger system that interacts with his envi-
ronment. As in thermodynamics, an open system can exchange particles and energy with its
environment. A representation of the situation is sketched in Figure 2.1. The system, described
by the Hilbert space HS , Hamiltonian HS and density operator ρS is coupled with its envi-
ronment, itself described by the Hilbert space HE , Hamiltonian HE and density operator ρE .
The total system (system of study + environment) has the same structure, with Hilbert space
HT = HS ⊗ HE , Hamiltonian HT = HE + HS + Hint, where Hint contains the interactions
between the system and the environment, and density operator ρT . Typically, we study systems
where the dimension of HE is much larger than of HS . In such cases, solving the Schrödinger
equation for the entire system is infeasible. Throughout this chapter, we will demonstrate that,
under certain assumptions and approximations, it is possible to derive an equation that describes
the dynamics of the system alone. To achieve this, we first need to define the density operator
and outline its properties.

2.2 Density operator

We shall define the density operator and study its properties. This operator is mainly used to
describes open systems although it is defined for a general framework.

Consider a system whose state is unknown but we know that it has a probability p1 to be in
the state |ψ1⟩, p2 to be in a state |ψ2⟩,... . If

∑
k pk = 1, the set {pk, |ψk⟩} defines a mixed state

which contains all the physical information of the system. For a set {pk, |ψk⟩}, we can define the
density operator ρ as

ρ =
∑
k

pk |ψk⟩ ⟨ψk| . (2.1)

A density operator ρ fulfills two mathematical conditions:

1. ρ has unit trace, Tr[ρ] = 1,

11



Figure 2.1: An open quantum system is a part of a larger system that includes the environment,
which interacts with the open subsystem.

2. ρ is a positive operator.

Furthermore, any operator fulfilling these conditions is considered a density operator. One can
show that for an arbitrary density operator ρ, there exists a set {pk, |ψk⟩} of positive numbers
pk and |ψk⟩ ∈ H such that

ρ =
∑
k

pk |ψk⟩ ⟨ψk| . (2.2)

The density operator ρ admits the following properties

• ρ is an Hermitian operator.

• If the states |ψk⟩ follow the Schrödinger equation, we have
d

dt
ρ = −i[H, ρ], (2.3)

in units where the reduced Planck constant ℏ = 1. This equation is the Liouville-Von
Neumann equation and it has a classical equivalent in mechanics.

• The expectation value of any observable A1 is given by

⟨A⟩ = Tr[Aρ]. (2.4)

• 1
N ≥ Tr[ρ2] ≥ 1,N being the dimension of H [20]. The equality is achieved when every pk
is equal to 0 except one. In this case, the system is said to be in a pure state.

If we fix an arbitrary basis {|k⟩} for k ∈ {1, .., N} of H, the density operator has a matrix
representation given by

ρ =

N∑
k,l=1

ρkl |k⟩ ⟨l| , (2.5)

where ρkl = ⟨k| ρ |l⟩. Equivalently, we can write

ρ =


ρ11 ρ12 · · · ρ1N
ρ21 ρ22 · · · ρ2N
...

...
. . .

...
ρN1 ρN2 · · · ρNN

 . (2.6)

1An observable is hermitian operator. Unless otherwise specified, all operators will be assumed to be Hermitian
throughout this thesis.
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The diagonal elements of this matrix are called populations. Due to the properties of ρ, the
populations are real number and

∑
k ρkk = 1. The off-diagonals elements are called coherences

and ρij ∈ C, ρij = ρ∗ji. The notation (·)∗ refer to the complex conjugate.
We shall recall that as ρ is an operator, ρ ∈ B(H) where B(H) denote the space of the

operators acting on H.

2.2.1 Reduced density matrix

In the case where the Hilbert space is composed of two subspaces, H = H = HA⊗HB (for example
a system and its environment), one could be interested in studying the physical properties of
only one on the two subsystems corresponding to one of the subspaces. To do so, we define the
reduced density matrix. If the state of the whole system is described by the density operator ρ,
the definition of the reduced density matrix of the subsystem A is the operator

ρA = TrB[ρ], (2.7)

where TrB[·] =
∑

k ⟨k| · |k⟩ and {|k⟩}, k ∈ {1, ..., N} an arbitrary basis of HB. Taking the
partial trace over a subspace allows us to study the subsystem A without considering the degrees
of freedom of the subsystem B. Indeed, if OA is an operator acting on the subspace A, i.e.,
OA ∈ B(H), we have

⟨OA⟩ = TrA[OAρA]. (2.8)

Furthermore, tracing over the subspace B equation (2.3), we obtain the exact time evolution of
the density operator associated with the subsystem A

d

dt
ρA = −iTrB ([H, ρ]) . (2.9)

Therefore, if we consider subsystem A as our open system of interest and B as its environment,
solving this equation will provide us with the time evolution of subsystem A. The next section
is dedicated to presenting the approximations that enable us to solve this equation.

2.3 Lindblad master equation

In the second part of this master thesis, we will be interested in deriving an explicit master
equation for several particular systems. It is thus insightful to discuss how master equations are
derived in general.

In this section, we describe and derive the Markovian master equation of Lindblad form
developed by Gorini, Kossakowski, Sudarshan and Lindblad in [21, 22, 23]. We shall recall that
ρS indicate the density operator of the system, ρE the one of the environment and ρT the total
density operator, corresponding to the state of the total system (system of study + environment).
The standard form of the Lindblad master equation is

ρ̇S(t) = −i [HS +HLs, ρS(t)] +
∑
µ

(
LµρS(t)L

†
µ − 1

2

{
L†
µLµ, ρS(t)

})
, (2.10)

where we can see that the only density operator that appears is the one of the open system. The
first term of this equation is related to the unitary evolution of the system. The operator HS is
the Hamiltonian of the system and HLs is the Lamb shift Hamiltonian, its role is to renormalize
the system energy levels due to interaction with the environment [20]. We cite it here to be
as complete as possible but for the systems that we will study, we will neglect it. The second
term contains the effects of the interaction with the environment, i.e., the dissipative evolution.
The operators Lµ are usually refereed to as jump operators, where µ ∈ {1, ..., d2S − 1} with dS
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the dimension of HS . Each term LµρSLµ
† corresponds to one of the possible quantum jumps,

while the anti-commutator term is needed to normalize properly the system if no jumps occur
[24]. An recurrent example of jump for the systems that we will study is the creation operator
a†. If the physical system contains a source that adds particles in the system, the corresponding
master equation will contain a term that contains a creation operator. Similarly, an excited atom
returning to its ground state will emit a photon, represented in the master equation by a term
in a.

Any Markovian master equation can be expressed in this form, but not every equation in
this form is a valid master equation. Specifically, it must preserve the properties of the density
operator: the positivity and the unit trace for every time t.

2.3.1 Derivation of the Lindblad master equation

We show here how to derive the standard form of the Lindblad master equation in a general
case, starting from equation (2.3), following the derivation presented in [20].

We first recall the Liouville-Von Neumann equation for the total system, which gives its time
evolution

ρ̇T (t) = −i[HT , ρT (t)]. (2.11)

The total Hamiltonian HT can be separated into the effect on the system HS , the environment
HE and the interaction between them Hint such that HT = HS⊗1E+1S⊗HE+Hint. Here, the
operators 1S and 1E are the unitary operators on the Hilbert spaces HS and HE . We now move
from Schrödinger picture, where the operators are constant in time and the states dependent on
the time2, to interaction picture where both depend on the time.

The interaction picture

In this picture, the density matrix evolves with time due to the interaction Hamiltonian
while the operators evolve due to the free Hamiltonian H0 = HS +HE . Thus, we have the
time evolution of any operator O(t) defined in B(HT ) given by

OI(t) = ei(HS+HE)tOe−i(HS+HE)t, (2.12)

where the subscript I indicate that we are in the interaction picture. For an operator defined
in B(HX) where X = S or E, we have

OX,I(t) = eiHX tOXe
−iHX t. (2.13)

To give a bit of context, changing from Schrödinger picture to interaction picture is the
same transformation as entering a rotating frame of reference to solve a problem of rotating
motion in classical mechanics.

This change of picture allows us to remove the effect of the Hamiltonians of the system and
environment in the evolution of ρT and only keep the interaction term, which simplifies the
problem. The equation (2.11) now reads

ρ̇T (t) = −i[Hint(t), ρT (t)]. (2.14)

Integrating on both sides, equation (2.14) reads

ρT,I(t) = ρT,I(0)− i

∫ t

0
ds[Hint,I(s), ρT,I(s)]. (2.15)

2Even though ρ is an operator, it depends on the state of the system and therefore evolves over time.
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Injecting (2.15) into (2.14) and taking the trace over the environment, we have successively

ρ̇T,I(t) = −i [Hint,I , ρT,I(0)]−
∫ t

0
ds [Hint,I(t), [Hint(s), ρT,I(s)]] , (2.16)

TrE [ρ̇T,I(t)] = ρ̇S,I(t) = −iTrE [Hint,I , ρT,I(0)]−
∫ t

0
dsTrE [Hint,I(t), [Hint,I(s), ρT,I(s)]] .

(2.17)

Note that for the following, we drop the I subscript to lighten the notations. In addition, we admit
that the first term of the r.h.s of the last equation can be omitted without loss of generality. We
will not show it here but this development is done in [20]. It relies on the following assumptions:

• Initially, the system and the environment are not correlated, ρT (0) = ρS(0)⊗ ρE(0),

• the initial state of the environment is thermal, which means its density matrix is of the
form

ρE =
e−HE/T

TrE [e−HE/T ]
, (2.18)

where T is the temperature of the bath and we take the Boltzmann constant kB = 1.

Equation (2.17) reads now

ρ̇S(t) = −
∫ t

0
dsTrE [Hint(t), [Hint(s), ρT (s)]] . (2.19)

This equation is not yet usable for two reasons. First, the state of the system still depends on
the state of the environment trough ρT . Furthermore, it is not local in time, as we have to inte-
grate over the time to solve the equation. Bypass these issues requires two strong assumptions.
The first one is the Born approximation. It states that the influence of the system over the
environment is weak enough to consider that the environment is in a stationary state, i.e., we
have [HE , ρE ] = 0. This means that the total state can be rewritten for all the time evolution
as ρT (t) = ρS(t) ⊗ ρE . Even under this assumption, the equation is still non local in time. To
do so, we first do a changing on the integration variable s→ t− s. Equation (2.19) reads now

ρ̇S(t) = −
∫ t

0
dsTrE [Hint(t), [Hint(t− s), ρS(t− s)⊗ ρE ]] . (2.20)

Until now, we have not said anything about the coupling term. From now on, we consider that
the coupling is weak, i.e., the system and the environment are non-correlated during all the time
evolution. This will allow us to make the Markov approximation: ρS(t − s) ≃ ρS(t). One way
of explaining this approximation is that the state of the system at the current time does not
depend on the state at previous times. We also have to extend the upper limit of the integral
to ∞. This strong assumption is justified because we consider a weak interaction between the
system and the environment.

Hierarchy of the typical timescale and validity of the Markov approximation

There is three typical timescales for master equations:

1. τrel, the relaxation time of the system. This timescale corresponds to the duration
required for the system to reach its steady state due to interactions with the environ-
ment.

2. τcor, the correlation time of the bath. This timescale is the time it takes for the bath
to lose information about the system.

3. τs is the typical time evolution of the system.
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The Born-Markov approximation is valid for

τcor ≪ τrel.

The Secular approximation for
τcor ≪ τs.

We have the following hierarchy for our timescales,

τcor ≪ τs ≪ τrel. (2.21)

The proof of the validity of the Markovian approximation will not be discussed here, see for
example [9] for more details.

After the Born-Markov approximations, the time evolution of ρS is

ρ̇S(t) = −
∫ ∞

0
dsTrE [Hint(t), [Hint(s), ρS(s)⊗ ρE ]] . (2.22)

This equation is called the Redfield equation [25]. It will be used at some point in the chapter 5.
Still, for the Lindblad form of the master equation, we have to expand the double commutator
and simplify some terms to finally get rid of the time integration. Regarding the remark at the
beginning of this section, we also have to assure that our final equation preserve the positivity
and the trace of the density matrix3. The interaction HamiltonianHint in the Schrödinger picture
can always be written as

Hint =
∑
i

Si ⊗ Ei, (2.23)

with Si and Ei acting on HS and HE respectively. Each Si can be decomposed into a sum of
eigenoperators of the superoperator4 [HS , ·],

Si =
∑
ω

Si(ω), (2.24)

where
[HS , Si(ω)] = −ωSi(ω). (2.25)

As an Hamiltonian is always hermitian, we also have

[HS , S
†
i (ω)] = ωSi(ω). (2.26)

It is proven that this decomposition can always be made [26]. Applying this decomposition for
the interaction Hamiltonian in the interaction picture, one finds

Hint(t) =
∑
j,ω

e−iωtSj(ω)⊗ Ej(t),

=
∑
j,ω

eiωtS†
j (ω)⊗ E†

j (t). (2.27)

The reader must keep in mind that the operators Ej(t) are taken here in the interaction pic-
ture. To combine this decomposition with the Redfield equation, we have to expand the double
commutator:

ρ̇S(t) = −TrE

[∫ ∞

0
dsHint(t)Hint(t− s)ρS(t)⊗ ρE(0)−

∫ ∞

0
dsHint(t)ρS(t)⊗ ρE(0)Hint(t− s)

−
∫ ∞

0
dsHint(t− s)ρ(t)⊗ ρE(0)Hint(t) +

∫ ∞

0
dsρ(t)⊗ ρE(0)Hint(t− s)Hint(t)

]
.

(2.28)
3It is not always the case under certain conditions for the Redfield equation [26].
4In the next section, we will provide the precise definition of a superoperator. For now, we can describe it as

an operation that takes operators as inputs and returns operators as outputs.
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Applying the decomposition in terms of Si(ω) for Hint(t) and S†
i (ω) for Hint(t − s), we find for

the first term

TrE [Hint(t)Hint(t− s)ρ(t)⊗ ρE(0)] =
∑
k,l
ω,ω′

e−iωtSk(ω)e
−iω′(t−s)S†

l (ω
′)ρ(t)TrE [Ek(t)E

†
l (t− s)ρE ].

(2.29)
We now define the spectral correlation function Γkl that contains the information about the effect
of the environment.

Γkl(ω) ≡
∫ ∞

0
dseiωsTrE [E

†
k(t)El(t− s)ρE ]. (2.30)

Doing the same expansion for each terms of 2.28, we find

ρ̇S(t) =
∑
k,l
ω,ω′

(
ei(ω−ω′)tΓkl(ω)

[
Sl(ω)ρ(t), S

†
k(ω

′)
]
+ ei(ω−ω′)tΓ∗

lk(ω
′)
[
Sl(ω)ρ(t), S

†
k(ω

′)
])
. (2.31)

In equation (2.31), we can do a Rotating wave approximation (RWA). The terms with |ω−ω′| ≫ 1
oscillate much faster around 0 than the typical timescale of the system evolution. Thus, they
do not contribute to the time evolution of the system. Considering the weak coupling, we must
only consider the terms where ω = ω′ as the other terms vanish.5 Our equation now reads

ρ̇S(t) =
∑
k,l
ω

(
Γkl(ω)

[
Sl(ω)ρ(t), S

†
k(ω)

]
+ Γ∗

lk(ω)
[
Sl(ω)ρ(t), S

†
k(ω)

])
. (2.32)

To end this section, we still have to put our equation in the standard form by showing
explicitly the jump operators. To do so, we decompose our Γkl coefficients as a sum their
Hermitian and anti-Hermitian part, Γkl(ω) =

1
2γkl(ω) + iπkl, with

πkl ≡
−i
2
(Γkl(ω)− Γ∗

kl(ω)),

γkl ≡ Γkl(ω) + Γ∗
kl(ω) =

∫ ∞

−∞
dseiωsTrE

[
E†

k(s)ElρE

]
. (2.33)

Here we can write TrE

[
E†

k(s)E(t− s)lρE

]
= TrE

[
E†

k(s)ElρE

]
because ρE commute with

exp(iHEt)
6. At this point, it is relevant to note that γkl is the Fourier Transform of

TrE

[
E†

k(s)ElρE

]
. As explained in [20], it can be shown that the last function is positive, which

implies that its Fourier Transform is positive too. Using the decomposition and turning back to
Schrödinger picture, we have

ρ̇(t) = −i[HS +HLS , ρ(t)] +
∑
k,l
ω

γkl(ω)

(
Sl(ω)ρ(t)S

†
k(ω)−

1

2

{
S†
k(ω)Sl(ω), ρ(t)

})
, (2.34)

with HLS =
∑

k,lω πkl(ω)S
†
k(ω)Sl(ω). We recall that this term will always be neglected in the

following. As γkl is positive ∀k, l the matrix composed of these coefficients is positive and can be
diagonalized. Thus, the master equation can be written in a diagonal form, i.e., it exists Li(ω)
such that

ρ̇(t) = −i[HS +HLS , ρ(t)] +
∑
i,ω

(
Li(ω)ρ(t)L

†
i (ω)−

1

2

{
L†
i (ω)Li(ω), ρ(t)

})
, (2.35)

5Essentially, the RWA is equivalent to multiplying by δω,ω′
6Since ρE is a thermal state.
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which is the expected master equation.
To summarize this section, we started from the Liouville-Von Neumann equation for the

density operator of the total system, equation (2.11). We perform a series of approximations,
namely the Born-Markov approximation to arrive to a local time evolution equation for the
density matrix of the system only that depend to environment only trough the jump operators in
a general framework. Example of the derivation for specific cases will be given in the Appendix B.

2.4 Fock-Liouville Hilbert space

In this section, we define the framework of the third quantization. Considering linear combina-
tions of density matrix that conserve their positivity and trace, we construct a linear space of
density matrix. Besides, if we define a scalar product over this space, it is a Hilbert space. This
space is usually called the Fock-Liouville space and is noted ρ(H).7 The construction of such
space is still valid for an infinite space H.

With this in hand, we can define properly what is a superoperator. A superoperator S is an
operator acting on B(H), the space of the operators acting on H. For A ∈ B(H),

A→ A′ = S[A]. (2.36)

If we restrict ourselves to superoperator acting on ρ(H), they can define a mapping of ρ(H) over
itself, S : ρ(H) → ρ(H). To ensure that the result is a density matrix, the superoperator must
fulfill the following properties

• Trace preserving: Tr[S[ρ]] = 1∀ρ ∈ ρ(H).

• Completely positive. It must map to a positive density matrix but this sole condition is not
enough. If the system of interest is entangled with another system R, the superoperator
(I⊗S) must also map to a positive density matrix. Here the I is the identity superoperator.

The class of superoperator satisfying these two conditions are called completely positive maps
or CPT-maps [9]. These superoperators represent physical processes such as measurement or
dynamics. Indeed, we already encountered a superoperator previously, the Liouvillian. We can
rewrite equation (2.10) as

ρ̇S = L[ρS ], (2.37)

where L is the Liouvillian, the superoperator that gives the dynamics of the system. Now that we
have introduced the concept of superoperators, there is an alternative notation for the Lindblad
equation that we will prefer over the one in (2.10),

ρ̇S(t) = L[ρS(t)] = −i[H, ρS(t)] +
∑
µ

γµDxµ [ρS(t)]. (2.38)

where γµ are the dissipative rates. For master equation in the Lindblad form, γµ > 0 ∀µ. The
corresponding dissipative superoperators Dxµ [ρS(t)], are defined as

Dxµ [ρS(t)] = xµρS(t)x
†
µ − 1

2
{x†µxµ, ρS}. (2.39)

We can see that the xµ are nothing else than a rewriting of the jump operators, Lµ =
√
γµxµ∀µ.

Note that we have not yet defined a scalar product for our space ρ(H).
To summarize, we have constructed a well-defined Hilbert space of density operators and

introduced a class of mappings over this space, known as superoperators, which act like operators
at the level of density operators. This structure shares many similarities with the original Hilbert

7We have ρ(H) ⊊ B(H)

18



space H of state vectors |ψ⟩ of the system, where the operators of B(H) map the ket vectors
of H to themselves. However, there is a key difference in the generator of the dynamics. In H,
the Hamiltonian H can be represented as a matrix and diagonalized to solve the Schrödinger
equation (see Sec. 1.2). Therefore, the goal of the next section is to find a matrix representation
of the generator of the dynamics for ρ(H), which is the Liouvillian L.

2.5 Choi-Jamiołkowski isomorphism

Through the previous section, we constructed a linear space of density matrix. It is straight-
forward to see that an isomorphism can be easily established between an N × N matrix and a
vector of size N2 × 1. Formally, we have |i⟩ ⟨j| → |i⟩ ⊗ |j⟩. Noting |ρ⟩ the vectorized density
operator,

ρ =


ρ11 ρ12 · · · ρ1N
ρ21 ρ22 · · · ρ2N
...

...
. . .

...
ρN1 ρN2 · · · ρNN

 Isomorphism−−−−−−−−→ |ρ⟩ =



ρ11
ρ12
...

ρ1N
...

ρNN


. (2.40)

This representation for the density operators allow us to define a scalar product. Let ρ, ϕ be
elements of ρ(H), their vectorized representation are |ρ⟩ and |ϕ⟩. We define the scalar product
in the Fock-Liouville space as

⟨ρ|ϕ⟩ ≡ Tr[ρ†ϕ]. (2.41)

The name of this isomorphism is the Choi-Jamiołkowski isomorphism, developed and pre-
sented in [27, 28]. This isomorphism also implies the existence of a matrix representation for
the Liouvillian L, or any other CPT-map. With a matrix representation of L, we will be able to
perform a sort of Bogoliubov transformation in order to find the eigenvalues and eigenvectors of
the dynamic. This is the aim of the third quantization.

The Choi-Jamiołkowski isomorphism implies that for any CPT-map S acting on the density
operator space ρ(H) such that S[ρ] = AρB for ρ ∈ ρ(H), A,B ∈ B(H), its matrix representation
S is given by8

S = A⊗BT , (2.42)

where S is a matrix of size N2 ×N2 for a Hilbert space H of dimension N . The demonstration
of this isomorphism is done in details in the Appendix A.

Note that in the standard form of the Lindblad equation (2.10), the density operator appears
in several terms. Therefore, representing L in matrix form provides a mathematical object that
encapsulates the system’s dynamics without explicitly including any density operator. At this
point, an example will probably help the comprehension.

2.5.1 Example

We consider the following master equation for a bosonic case:

L[ρ(t)] = ρ̇(t) = −i[H, ρ(t)] + γDa[ρ(t)],

8We shall specify that the tensor product in this equation has a particular name, the Kronecker product, defined
by the relation

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ,

for a matrix A of size m× n and B of size p× q.
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where H = ωa†a is the Hamiltonian of the system, ω the frequency of the mode and a†, a the
creation and annihilation operators corresponding to this mode and γ > 0 the dissipation rate.
This equation could model the motion of an atom in an harmonic trap, where the dissipation
can correspond to cooling of the atomic motion. In this case, the Fock basis of H is given by
{|0⟩ , |1⟩}, the state |0⟩ corresponding to the ground state and the state |1⟩, is the excited one.
With this basis, the matrix representation of H, a and ρ are respectively

H =

(
0 0
0 ω

)
, a =

(
0 1
0 0

)
and ρ =

(
ρ11 ρ12
ρ21 ρ22

)
.

Following the application of the isomorphism, we have

[H, ρ] = Hρ− ρH → H ⊗ 1− 1⊗HT ,

Da[ρ] = aρa† − 1

2
{a†a, ρ} → a⊗ (a†)T − 1

2
a†a⊗ 1− 1

2
1⊗ (a†a)T

and

L =


0 0 0 γ
0 −γ

2 + iω 0 0
0 0 −γ

2 − iω 0
0 0 0 −γ

 .

With this representation of the Liouvillian, determining its eigenvalues becomes straightforward,
allowing for an analytical solution to the master equation.

In the next section, we will deeply study the spectrum of the Liouvillian to understand how
it could affect the dynamics of the system.

2.6 Spectrum of the Liouvillian

In this section, we compare the spectrum of the Hamiltonian with the one of the Liouvillian. We
also review the main properties of the eigenvalues and eigenvectors of the Liouvillian.

On the first hand, the Hamiltonian is an operator defined in B(H), it is therefore hermitian
and its eigenvalues are necessarily real. In addition, its left and right eigenvectors are the same,
i.e., if H |ϕi⟩ = Ei |ϕi⟩, Ei ∈ R and ⟨ϕi|H = ⟨ϕi|Ei. As the set of eigenvalues is real, we can
order them and find the smallest, E0 such that Ei > E0 ∀i ̸= 0. The eigenstate associated with
the eigenvalue E0 is called the ground state9.

On the other hand, the matrix representation of the Liouvillian is not hermitian, which
implies different properties for its spectrum. Firstly, Evans theorem [29, 30] assure the existence
of at least one zero eigenvalue for finite size systems. The eigenstate associated with this value
is the steady state, i.e., we have

L[ρNESS] = 0. (2.43)

The uniqueness of the steady state is not assured, in particular when the Liouvillian admits
some specific symmetries, see [31, 32, 33] for more details. To fully determine the dynamics of
the system, one has to find the full spectrum of the Liouvillian. One consequence of the non-
Hermiticity of L is that its left and right eigenvectors might be different. For a given eigenvalue
λi, we can find the eigenvectors

∣∣ΛR
i

〉
and

〈
ΛL
i

∣∣ such that

L
∣∣ΛR

i

〉
= λi

∣∣ΛR
i

〉
,
〈
ΛL
i

∣∣L =
〈
ΛL
i

∣∣λi. (2.44)

We impose that the norm of the eigenvectors is 1. However, the eigenvectors does not necessarily
represent density operators. Having the eigenvalues and eigenvectors of the Liouvillian, we can

9Remember equation (1.20) and take i = 0.
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write the state of the system in any time t,

|ρ(t)⟩ =
∑
i

eλit
〈
ΛL
i

∣∣ρ(0)〉 ∣∣ΛR
i

〉
. (2.45)

Given the previous equation, one can understand that in order to describe a physical system, we
must have Re[λi] ≤ 0∀i [26]. Indeed, for t → ∞, ρ(t) → ρNESS, the real part of the eigenvalues
is responsible for the relaxation to the steady state. Similarly to the Hamiltonian case, we can
sort the eigenvalues via their real part: 0 = Re[λ0] < Re[λ1] < ... < Re[λn]. We also identify
a relevant quantity, the Liouvillian gap, λ = Re[λ1] which gives the slowest relaxation rate10.
It is shown in [32] that if the Liouvillian gap tends toward 0, a dissipative phase transition can
occur because the steady state is now degenerated. Many recent articles show the links between
dissipative phase transitions, symmetries breaking and study of the spectrum of the Liouvillian.
See for example [34, 35, 36].

The Liouvillian admits the following properties

• eLt
∣∣ΛR

i

〉
= eλit

∣∣ΛR
i

〉
.

• As the Liouvillian conserve the trace, we have Tr[ΛR
i ] = 0 if Re[λi] ̸= 0. Indeed, for t→ ∞,

eLt
∣∣ΛR

i

〉
= eλit

∣∣ΛR
i

〉
→ 0. We can understand why the eigenvectors of the Liouvillian are

not necessarily density operators.

• The eigenvalues of the Liouvillian are either real or complex conjugated two by two. Indeed,
if L

∣∣ΛR
i

〉
= λi

∣∣ΛR
i

〉
then L

∣∣ΛR
i

〉†
= λ∗i

∣∣ΛR
i

〉†. Thus, if
∣∣ΛR

i

〉
is Hermitian, λi has to be

real. We can also show that if an eigenvalue is real, the associated eigenvector must be
Hermitian.

• If the eigenvalue 0 has a algebraic multiplicity n, then there existsn independent eigenvec-
tors of the Liouvillian. Therefore, there exists n different steady states towards which the
system can evolve, depending on the initial condition [32].

In Fig. 2.2, we summarized and compared the properties of the spectrum of the Liouvillian and
the Hamiltonian.

Figure 2.2: Comparison between the spectrum of a typical Hamiltonian and a typical Liouvillian.
We see that for H, the spectrum is real while for L, it is complex. We also remark that the
eigenvalues of the Liouvillian are two by two complex conjugate. We recall equation (2.45) that
gives the time evolution of an arbitrary state |ρ(t)⟩ ∀t.

10The careful reader will surely have made the connection with the relaxation time defined in Sec. 2.3. Indeed,
we have τrel = 1/λ.
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2.7 Summary of the chapter

Throughout the chapter, we developed the mathematical tools required to build a solid theory to
study the dynamics of the state of an open quantum system. We described the density operator,
which contains the physical information about the system. Then, we presented and derived the
Lindblad master equation, a differential equation that generate the dynamics of open quantum
systems. Afterwards, we introduced the Fock-Liouville space, an equivalent of the Hilbert space
H where the vectors are now density operators. We also showed that these matrices could be
vectorized. With vectorized density operators, the Choi-Jamiołkowski isomorphism allowed us
to find a matrix representation for superoperators. Especially for the Liouvillian, the generator
of the dynamics of the system. In the previous section, we studied its spectrum and showed that
if we have the eigenvalues and eigenvectors of the Liouvillian, we are able to calculate the state
of the system for any time t.

However, diagonalizing the Liouvillian is often a very complex problem due to the matrix size,
which contains N4 elements. Performing this manually is tedious, and numerical methods are
typically preferred. But for largeN , the computation time grows exponentially. Another common
numerical approach is integrating the Lindblad equation. Similar issues with computation time
arise for large N and depending on the algorithm used, computational errors may occur. An
overview of the common numerical methods is done in [37].

This master’s thesis is on a new analytical method for diagonalizing the Liouvillian, known
as third quantization. Initially developed by Prosen for fermions in [3], he later extended the
method to bosons in [4]. Subsequently, the Redfield equation was addressed for both fermions
[5] and bosons [6]. In the next chapter, we introduce this formalism for the bosonic case.
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Chapter 3

Third quantization

The principle of the third quantization is to apply a "second quantization" to the Fock-Liouville
space. The objective is to find a diagonal representation of the Liouvillian matrix, thereby
obtaining its eigenvalues and associated eigenstates, similar to the Bogoliubov transformation
for Hamiltonians. The interest of building such methods is ultimately to develop a theory for
open many-body systems involving fermions, bosons, their interactions and coupling with the
environment. For such systems, a straightforward numerical resolution seems quite impossible.
This is where an analytical method like third quantization becomes more than useful.

The third quantization method presented and utilized in this master’s thesis is restricted to
the bosonic case. We only consider quadratic Hamiltonian and linear coupling with the bath to
ensure the existence of a solution. For non-linear coupling, this method must be used in addition
with perturbatives or non-perturbatives methods of many-body physics. In this chapter, we
present the philosophy of the method for a two-mode bosonic system, as this type of system will
be the focus of the second part of this thesis. An extension for the general case of n bosonic
modes can be found in [4].

3.1 Preliminaries and notations

We consider a Hilbert space H of 2 bosonic modes. We recall that with the second quantization,
any state of H can be written in terms of the vacuum state |0⟩, the creation operators, a†1, a

†
2

and annihilation operators a1, a2. We shall now differentiate the elements of B(H), the set of
operators acting on H and ρ(H), the set of density operators that represent physical states of H.
As in the previous chapter, the elements of ρ(H) are noted |ρ⟩. Furthermore, the elements B(H)
will now be noted (A|, a bra operator different of ⟨ρ|1. This notation for the operators allow us
to give the expectation value A for a state ρ as

(A|ρ⟩ = ⟨A⟩ = Tr[Aρ], (3.1)

where the last equation comes from equation (2.4).
As the multiplication of matrices is usually not commutative, we are not assured that the

outcomes of bρ and ρb are the same, where b is one of the creation or annihilation operators. The
same question can be asked for bA and Ab. Thus, we define the left and right multiplication of
b over ρ(H)

bL |ρ⟩ = |bρ⟩ , bR |ρ⟩ = |ρb⟩ . (3.2)

Similarly, for B(H), one finds

(A|bL = (Ab|, (A|bR = (bA|. (3.3)
1We use a different notation to make clear that the kets and bras come from different spaces.
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The left and right multiplications output a vector belonging to the initial space, thus defining a
mapping. Note that for B(H), the right multiplication of b is noted with bL. Indeed,

(Ab|ρ⟩ = (A|bL |ρ⟩ = Tr[Abρ].

It also noteworthy that we have [bL, bR] = 0.
We will use this notation to rewrite the Liouvillian. However, we first need to identify the

different terms that can appear in the Hamiltonian and in the jump operators. For a quadratic
system, the Hamiltonian can contains four types of terms, one linear, in a or a†, and three
quadratic, in aa, in a†a† or in a†a. Due to the CCR (1.10), the terms in aa† can be converted in
a†a. It is possible to show that the linear terms can be absorbed via a canonical transformation,
resulting in a shift for the right vacuum state, which has no importance for the following. We
will therefore not consider these terms. The Hamiltonian can be written as

H =

(
a†1

a†2

)T

H

(
a1
a2

)
+

(
a1
a2

)T

K

(
a1
a2

)
+

(
a†1

a†2

)T

K∗

(
a†1

a†2

)
, (3.4)

where H,K are complex matrices of size 2. Moreover, due to the Hermiticity of H, H = H† and
K = KT . For the jump operators, we only consider linear coupling, thus it can be rewritten as

Lµ = lµ1a1 + lµ2a2 + kµ1a
†
1 + kµ2a

†
2. (3.5)

We can now rewrite the Liouvillian in terms of left and right operators. Given equation (2.38),
we have

L = −iHL + iHR +
∑
µ

(
LL
µL

†R
µ − 1

2
L†L
µ L

L
µ − 1

2
L†R
µ LR

µ

)
. (3.6)

The link between the use of this notation for left and right multiplication and the Choi
-Jamiołkowski isomorphism is straightforward. Using the same master equation as in exam-
ple 2.5.1, we find

L = iω
(
(a†a)R − (a†a)L

)
+ γ

(
aLa†

R − 1

2
a†

L
aL − 1

2
a†

R
aR
)

= iω
(
aRa†

R − a†
L
aL
)
+ γ

(
aLa†

R − 1

2
a†

L
aL − 1

2
a†

R
aR
)
.

We can understand why (a†a)R = aRa†
R by calculating the effect of (a†a)R on |ρ⟩2.

Before diving into the heart of the matter, we have to define a new set of maps that will
be useful later. We want this set of maps to acts like the creation and annihilation operators
a, a†, but at the density vector level. For two bosonic modes, we define the set of 8 maps
a0,j , a1,j , a

′
0,j , a

′
1,j for i = 1, 2,

a0,j = aLj , a′0,j = a†
L

j − a†
R

j , (3.7)

a1,j = a†
R

j , a′1,j = aRj − aLj .

To obtain a mapping similar to the creation and annihilation operators at the density vector
level, these maps have to follow the same properties:

• Almost-CCR:
[aν,j , a

′
µ,k] = δµ,νδj,k, [aν,j , aµ,k] = [a′ν,j , a

′
µ,k] = 0 (3.8)

for µ, ν = 0, 1. We can observe that this property is similar to the corresponding one at
the Hilbert space level, as shown in equation (1.10). This similarity is demonstrated by
utilizing this relation for the left and right creation and annihilation operators.

2We have (a†a)R |ρ⟩ =
∣∣ρa†a

〉
= aR

∣∣ρa†〉 = aRa†R |ρ⟩
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• a′ν,j left annihilate the identity operator

(1|a′ν,j = 0, (3.9)

as the creation operator return 0 when applied to the vacuum bra ⟨0|.

• aν,j right annihilate the vacuum pure state |ρ0⟩ = |0⟩ ⟨0|,

aν,j |ρ0⟩ = 0, (3.10)

as the annihilation operator return 0 when applied to the vacuum state.

Similarly to the Hilbert Fock space defined in chapter 1, we can define a convenient dual-Fock
basis of ρ(H) and B(H) as

|m⟩ =
∏

ν=0,1

(a′ν,1)
mν,1(a′ν,2)

mν,2√
mν,1!

√
mν,2!

|ρ0⟩ , (m| = (1|
∏

ν=0,1

(aν,1)
mν,1(aν,2)

mν,2√
mν,1!

√
mν,2!

, (3.11)

where

m =


m0,1

m0,2

m1,1

m1,2

 .

We have the bi-orthonormality (m′|m⟩ = δm,m′ guaranteed by equation (3.8).

3.2 Block triangular form of the Liouvillian

In this section, we inject our new maps to the general expression of the Liouvillian, 3.6. The aim
is to show that using the CCR, we can find a block triangular form for L. Therefore, diagonalizing
each diagonal block will yield the eigenvalues of the Liouvillian. As the derivation is done for a
general case, it will be easy to adapt it for our specific systems.

Let us expand the equation (3.6) in terms of the new maps. For the Hamiltonian terms, we
find

HL −HR =

a†L1
a†

L

2

T

H

(
aL1
aL2

)
+

(
aL1
aL2

)T

K

(
aL1
aL2

)
+

a†L1
a†

L

2

T

K∗

a†L1
a†

L

2


−

a†R1
a†

R

2

T

H

(
aR1
aR2

)
−

(
aR1
aR2

)T

K

(
aR1
aR2

)
−

a†R1
a†

R

2

T

K∗

a†R1
a†

R

2

 . (3.12)

We shall decompose our computation in two steps for more clarity. First, the terms in Ha†L1
a†

L

2

T

H

(
aL1
aL2

)
−

a†R1
a†

R

2

T

H

(
aL1
aL2

)
=

(
a†

L

1 − a†
R

1

a†
L

2 − a†
R

2

)T

H

(
aL1
aL2

)
+

a†R1
a†

R

2

T

H

(
aL1
aL2

)
−

a†R1
a†

R

2

T

H

(
aR1
aR2

)

=
(
a′0,1
a′0,2

)T

H

(
a0,1
a0,2

)
−
(
A11

A12

)T

H

(
a′1,1
a′1,2

)
=
(
a′0,1
a′0,2

)T

H

(
a0,1
a0,2

)
−
(
a′1,1
a′1,2

)T

H∗
(
A11

A12

)
. (3.13)
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In the last equation, we switched the a and the a′ by using the Hermiticity of H. Then, for the
term in K(
aL1
aL2

)T

K

(
aL1
aL2

)
−

(
aR1
aR2

)T

K

(
aR1
aR2

)
=

(
aL1
aL2

)T

K

(
aL1 + aR1
aL2 + aR2

)
−

(
aL1
aL2

)T

K

(
aR1
aR2

)
(3.14)

−

(
aR1
aR2

)T

K

(
aL1 + aR1
aL2 + aR2

)
+

(
aR1
aR2

)T

K

(
aL1
aL2

)

= −
(
a′1,1
a′1,2

)T

K

(
2a0,1 +A′

11

2a0,2 +A′
12

)
+

(
aR1
aR2

)T

K

(
aL1
aL2

)
−

(
aL1
aL2

)T

K

(
aR1
aR2

)

= −
(
a′1,1
a′1,2

)T

K

(
2a0,1 +A′

11

2a0,2 +A′
12,

)
, (3.15)

since3 (
aR1
aR2

)T

K

(
aL1
aL2

)
=

(
aL1
aL2

)T

·K

(
aR1
aR2

)
.

Similarly, for the term in K∗, we finda†L1
a†

L

2

T

K∗

a†L1
a†

L

2

−

a†R1
a†

R

2

T

K∗

a†R1
a†

R

2

 =

(
a′0,1
a′0,2

)T

K∗
(
2A11 + a′0,1
2A12 + a′0,2

)
. (3.16)

We now have to expand the jump operators with the new maps. The derivation follows the
same steps as for the Hamiltonian, introducing the new mappings and utilizing the commutation
properties. We will not show the derivation here but at some point, we have to define the
following 2× 2 matrices

M =
∑
µ

(
|lµ,1|2 lµ,1l

∗
µ,2

lµ,2l
∗
µ,1 |lµ,2|2

)
, N =

(
|kµ,1|2 kµ,1k

∗
µ,2

kµ,2k
∗
µ,1 |kµ,2|2

)
, L =

(
lµ,1k

∗
µ,1 lµ,1k

∗
µ,2

lµ,2k
∗
µ,1 lµ,2k

∗
µ,2

)
. (3.17)

Notice that the matrices M and N are Hermitian. We eventually obtain an expression for the
Liouvillian in terms of the new maps

L = −i
(
a′0,1
a′0,2

)T

H

(
a0,1
a0,2

)
+ i

(
a′1,1
a′1,2

)T

H∗
(
A11

A12

)
+ i

(
a′1,1
a′1,2

)T

K

(
2a0,1 +A′

11

2a0,2 +A′
12,

)
− i

(
a′0,1
a′0,2

)T

K∗
(
2A11 + a′0,1
2A12 + a′0,2

)
+

(
a′0,1
a′0,2

)T

(N−M∗)

(
a0,1
a0,2

)
+

(
a′1,1
a′1,2

)T

(N∗ −M)

(
A11

A12

)
+

(
a′0,1
a′0,2

)T (
L† − L∗

)(A11

A12

)
+

(
a′1,1
a′1,2

)T (
LT − L

)(a0,1
a0,2

)
−
(
a′0,1
a′0,2

)T

L∗
(
a′0,1
a′0,2

)
−
(
a′1,1
a′1,2

)T

L

(
a′1,1
a′1,2

)
+ 2

(
a′0,1
a′0,2

)T

N

(
a′1,1
a′1,2

)
. (3.18)

It is worth noting that the primed maps appear always at the left side of the matrices, which
implies (1|L = 0.

We are now very close to the diagonal form of the the Liouvillian. Setting

b =
(
a0,1 a0,2 A11 A12 a′0,1 a′0,2 a′1,1 a′1,2

)T
, (3.19)

3If we calculate the matrix product, we find the same expression in both sides by remembering that [bL, bR] = 0
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we can rewrite (3.18) as
L = L = b · Sb− S018, (3.20)

where S is a 2× 2 block matrix, where each block is of size 4.

S =

(
S1 S2
S3 S4

)
. (3.21)

Let us expand b · Sb to identify which block of S is associated with each term in (3.18).

b ·Sb =


a0,1
a0,2
A11

A12


T

S1


a0,1
a0,2
A11

A12

+


a0,1
a0,2
A11

A12


T

S2


a′0,1
a′0,2
a′1,1
a′1,2

+


a′0,1
a′0,2
a′1,1
a′1,2


T

S3


a0,1
a0,2
A11

A12

+


a′0,1
a′0,2
a′1,1
a′1,2


T

S4


a′0,1
a′0,2
a′1,1
a′1,2

 .

In equation (3.18), there is no terms in a(·)a, thus S1 is necessarily equal to 0. Due to the
almost-CCR condition, we must have aS2a′ = (a′S3a)

T , which implies S2 = ST
3 . To remain

consistent with Prosen’s notation, we substitute S2 by −X and S4 by Y. Eventually, S must be
in the form

S =

(
0 −X

−XT Y

)
. (3.22)

We still have to identify X and Y in (3.18) using (3.8). We have

L =− i

2

(
a′0,1
a′0,2

)T

H

(
a0,1
a0,2

)
− i

2

(
a0,1
a0,2

)T

H∗
(
a′0,1
a′0,2

)
+
i

2
H∗

+
i

2

(
a′1,1
a′1,2

)T

H∗
(
A11

A12

)
− i

2

(
A11

A12

)T

H

(
a′1,1
a′1,2

)
− i

2
H

+
i

2

(
a′1,1
a′1,2

)T

2K

(
a0,1
a0,2

)
+
i

2

(
a0,1
a0,2

)T

2K∗
(
a′1,1
a′1,2

)
+
i

2

(
a′1,1
a′1,2

)T

2K

(
a′1,1
a′1,2

)
− i

2

(
a′0,1
a′0,2

)T

2K∗
(
A11

A12

)
− i

2

(
A11

A12

)T

2K

(
a′0,1
a′0,2

)
− i

2

(
a′0,1
a′0,2

)T

2K∗
(
a0,1
a0,2

)
+

1

2

(
a′0,1
a′0,2

)T

(N−M∗)

(
a0,1
a0,2

)
+

1

2

(
a0,1
a0,2

)T

(N∗ −M)

(
a′0,1
a′0,2

)
− 1

2
(N∗ −M)

+
1

2

(
a′1,1
a′1,2

)T

(N∗ −M)

(
A11

A12

)
+

1

2

(
A11

A12

)T

(N−M∗)

(
a′1,1
a′1,2

)
− 1

2
(N−M∗)

+
1

2

(
a′0,1
a′0,2

)T

(L† − L∗)

(
A11

A12

)
+

1

2

(
A11

A12

)
(L∗ − L†)

(
a′0,1
a′0,2

)
+

1

2

(
a′1,1
a′1,2

)T

(LT − L)

(
a0,1
a0,2

)
+

1

2

(
a0,1
a0,2

)T

(L− LT )

(
a′1,1
a′1,2

)
− 1

2

(
a′0,1
a′0,2

)T

(L∗ + L†)

(
a′0,1
a′0,2

)
− 1

2

(
a′1,1
a′1,2

)T

(L+ LT )

(
a′1,1
a′1,2

)
+

1

2

(
a′0,1
a′0,2

)T

2N

(
a′1,1
a′1,2

)
+

1

2

(
a′1,1
a′1,2

)T

2NT

(
a′0,1
a′0,2

)
and we can finally write the Liouvillian in a block triangular form

L = bT
(

0 −X
−XT Y

)
b− 1

2
[M+M∗ − (N∗ +N)], (3.23)

where

X =
1

2

(
iH∗ −N∗ +M −2iK− L+ LT

2iK− L∗ + L† −iH−N+M∗

)
, (3.24)
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Y =
1

2

(
−2iK∗ − L∗ − L† 2N

2NT 2iK− L− LT

)
= YT , (3.25)

S014n =
1

2
[M+M∗ − (N∗ +N)] = (Tr M− Tr N)14n. (3.26)

The latest correspondsto the reordering of maps.
In his paper, Prosen showed that the eigenvalues of the Liouvillian are proportional to the

rapidities, the eigenvalues of X. Thus, if X is diagonalizable, we could have the eigenvalues and
associated eigenstates, leading to a fully analytical solution of the master equation.

3.3 Eigensystem of the Liouvillian

In this section, we will show how the eigenvalues of X are related to these of L. We will also
show that a Bogoliubov-like transformation can be performed to obtain the normal master mods,
equivalent of the normal modes in the section 1.2.

We will assume that X is diagonalizable4. Thus, it exists ∆ = diag(β1, .., β4), βj ∈ C, ∀j ∈
{1, ..., 4} and P such that

X = P∆P−1. (3.27)

As said in the previous section, the eigenvalues of X are called the rapidities. Furthermore, the
rapidities should come in complex conjugate pairs5, βj , β∗j . It is due to the fact that X (and Y)
is unitarily similar to a real matrix.

The expression of the eigenstates of L requires a matrix Z which is the solution of the following
equation

XTZ+ ZX = Y. (3.28)

This equation is known as the continuous Lyapunov equation, originally studied by Lyapunov in
[38] to investigate the stability of motion. It is known that a solution exists and is unique if no
pairs of rapidities exists such that βj + β′j = 0. Thus, a solution is guaranteed to exists if all
the rapidities have a non-zero real part6. With the matrix Z, we can define the 8 normal master
modes (NMM) (ξ, ξ′) as


ξ1
ξ2
ξ3
ξ4

 = PT



a0,1

a0,2

A11

A12

− Z


a′0,1
a′0,2
a′1,1
a′1,2


 ,


ξ′1
ξ′2
ξ′3
ξ′4

 = P−1


a′0,1
a′0,2
a′1,1
a′1,2

 . (3.29)

It can be shown that these NMM satisfy the almost-CCR

[ξr, ξ
′
s] = δr,s, [ξr, ξs] = [ξ′r, ξ

′
s] = 0. (3.30)

And finally, we have

L = −2

4∑
r=1

βrξ
′
rξr. (3.31)

We just showed that the Liouvillian can be expressed in a diagonal form. In the basis of the NMM,
the eigenvalues of the Liouvillian are −2βr for r = 1, ..., 4. To compare with the Hamiltonian
case, H = ℏωa†a has a single eigenvalue ℏω in the basis a, a†. However, we know that the full

4The general case for a non-diagonalizable X has yet to be explored.
5Just as the complex eigenvalues of the Liouvillian.
6Unlike the Liouvillian, which has necessarily at least a 0 eigenvalue.
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spectrum of the Hamiltonian of a harmonic oscillator is given by ℏωn for n ∈ N. We still have to
find the equivalent for the Liouvillian. Before that, we must note that the existence of a stable
solution of the Lindblad master equation is not guaranteed. Indeed, if at least one rapidity is
at the left of the imaginary axis, i.e., ∃j : Re[βj ] < 0, we would have at least one eigenvalue
of L with a positive real part, which does not corresponds to a physical system, as the system
would continuously absorbs excitations from the environment. This case will be explained and
discussed in detail in the chapter 4.

We now express the properties of the NMM

1. As expected, a unique non-equilibrium steady state7 (NESS) exists. Indeed, we have
|ρNESS⟩ ∈ ρ(H), the "right vacuum state" of the Liouvillian, defined by

L |ρNESS⟩ = 0. (3.32)

We thus can determine the steady state via the NMM annihilation relations, ∀r = 1, ..., 4,

ξr |ρNESS⟩ = 0. (3.33)

We also have that the primed NMM annihilate the identity operator, (1|ξ′r = 0.

2. The spectrum of the Liouvillian is completely determined analytically in term of a 4 com-
ponent multi-index of super-quantum numbers m = (m1,m2,m3,m4), mr ∈ N,

λm = −2
4∑

r=1

mrβr. (3.34)

The associated left and right eigenvectors associated are given by

L
∣∣Λm

〉
= λm

∣∣Λm

〉
, (Λm|L = λm(Λm|, (3.35)

where ∣∣Λm

〉
=

4∏
r=1

(ξ′r)
mr

√
mr!

|ρNESS⟩ , (Λm| = (1|
4∏

r=1

(ξr)
mr

√
mr!

. (3.36)

The main idea of this point is that the eigenvalues of the Liouvillian are given by −2CL
where CL are all the possible linear combination of the rapidities, CL = {x : x = m1β1 +
m2β2 +m3β3 +m4β4,∀mr ∈ N}.

3. The 2-point correlator of |ρNESS⟩ is given by the solution of the Lyapunov equation (3.28).
Considering br, bs among the 4 creation or annihilation operators (a1, a

†
1, a2, a

†
2), we have

Tr[: brbs : ρNESS] = ⟨: brbs :⟩NESS = Zrs, (3.37)

where : brbs : designate the normal order of brbs. It is a convention in quantum field theory,
the creation operators are to the left of all annihilation operators [39]. This property will
be of great interest in the next chapters as it will allows us to obtain the time evolution of
the occupation numbers of each mode.

We should also add that the NESS is a Gaussian state8 and we can express any higher-order
correlation thanks to the Wick’s theorem [41].

7The words "non equilibrium" are there to emphasise that the steady state does not corresponds to an equi-
librium situation

8A Gaussian state is essentially a state that can be written as

ρG =
e−βH

Tr[e−βH ]
, (3.38)

for β > 0 and a positive definite Hamiltonian [40].
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3.4 Summary of the chapter

In this chapter, we introduced a new formalism that acts like a second quantization at the
density operator space level. This formalism gives exact analytical solution for master equations
of the Lindblad form for quadratic Hamiltonians and linear couplings to the bath. This method
shows how to calculate the eigenvalues of the Liouvillian. Instead of diagonalizing a matrix of
n4 elements, where n is the number of bosonic modes, this method diagonalizes a n size matrix
and solve the Lyapunov equation for another n size matrix. Once we have obtained these two
expressions, the method gives a formula for the normal master mode, an equivalent of the normal
modes for the Hamiltonian, that allows us to calculate the steady-state. In addition, the solution
of the Lyapunov equation is the 2-point correlation matrix.

In the next part, we will apply this method to a quite general problem of open quantum
transport. To ensure clarity, we will address a simple case in Chapter 4 and show most of the
calculation steps to illustrate how third quantization operates.
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Part II

Application in quantum transport
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The second part of this master’s thesis is dedicated to the study of quantum transport. We
study here simple cases: only one ore two bosonic modes although the extension of the
formalism for n bosonic modes could be done. We present the application of the third

quantization method together with the results that we were able to draw from it. In the
following chapters, we will study the transport of bosons between two baths, passing through a
junction. In chapter 4, the junction will be constituted of one single site or mode, namely the
single-site junction and in chapter 5 it will be constituted of two sites, the two-sites junction.
The study of quantum transport for this kind of system is the first step towards the study of

quantum thermal engines, which is a field of quantum thermodynamics.
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Chapter 4

Single-site junction

In this chapter, we will study a simple but non trivial system consisting of a bosonic harmonic
oscillator of frequency ω coupled with two bosonic baths of different temperatures. A thermal
bosonic bath is modeled here by a collection of different bosonic harmonics oscillators. The inter-
est of this first system is to show how the third quantization should be used to find an analytical
solution for the time evolution of the system only. Thus, we consider simplified interactions
between the baths and studied system. We assume the baths interact only in a unique manner:
the system absorbs particles from the left bath and emitsto the right bath. The absorption and
emission rates are chosen constant. A representation of the situation is given in figure 4.1.

Figure 4.1: Sketch of the bosonic harmonic oscillator coupled with two bosonic baths of different
temperatures. The red and blue arrow represent the influence of the left and right baths respec-
tively. For this system, we consider that the left bath only emits particles in the system with
rate γL while the right bath absorbs from the system with rate γR.

The Hamiltonian of the system of study is

HS = ωa†a, (4.1)

where a† and a are respectively the creation and annihilation operators of a bosonic mode of
frequency ω. The Hamiltonian of each bath is

Hα =
∑
k

ωk,αb
†
k,αbk,α, (4.2)

where b†k,α and bk,α are respectively the creation and annihilation operators of a bosonic mode of
frequency ωk,α, for α = L,R. Subscript L denote the left bath and subscript R the right one1.
It remains the interaction Hamiltonian, given by

Hint =
∑
k

vk,La
†bk,L + vk,Ra

†bk,R + h.c., (4.3)

1We shall point out that this notation is non related to the left and right multiplication defined in the previous
chapter.
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where h.c. stand for Hermitian conjugate and vk,L, vk,R ∈ C.
The time evolution of the state of the system is described by the following master equation

of Lindblad form

ρ̇(t) = L[ρ(t)] = −i[HS , ρ(t)] + γLDa† [ρ(t)] + γRDa[ρ(t)], (4.4)

where ρ(t) is the density matrix of the system, γL, γR > 0 are the absorption and emission rates
and Dx[ρ(t)] is the dissipation superoperator defined by

Dx[ρ(t)] = xρ(t)x† − 1

2
{x†x, ρ(t)}.

The complete derivation of the master equation from the Liouville-Von Neumann equation
is done in details in Appendix B.1.

Study of the differential equation

As a first approach, one could be interested in displaying the coupled differential equation
system. This would allow to see explicitly which elements of the density matrix are coupled
together. In order to do so, we have to project equation (4.4) on the Fock state ⟨n| · |m⟩.
Defining ρnm = ⟨n| ρ |m⟩ and ρ̇nm = ⟨n| ρ̇ |m⟩, with n,m ∈ N, we have

ρ̇nm = −iωnρnm + iωmρnm

+ γL[
√
nmρn−1m−1 −

1

2
(n+ 1)ρnm − 1

2
(m+ 1)ρnm]

+ γR[
√
(n+ 1)(m+ 1)ρn+1m+1 −

1

2
nρnm − 1

2
mρnm]. (4.5)

Taking n = m, we obtain the differential equation that describes any diagonal element ρnn
(for n ≥ 1) of the density matrix. Thus, we see that the time evolution of a diagonal
element only depends on other diagonal elements and does not depend on any non-diagonal
element. We can then decompose the Hilbert space of density operators ρ(H) into two
distinct subspaces: one containing the diagonal elements and the other containing the non
diagonal ones.

This remarkable structure of the density matrix puts us on the path to a U(1) symmetry,
that will be explored later in Sec. 4.2.

The study of this system is going to be done from several points of view. We first use the third
quantization method to obtain the eigenvalues and eigenstates associated of the Liouvillian as
well as the steady state.The latter allows us to find an analytical solution to the master equation.
Then, we will study the spectrum of the Liouvillian and compare the third quantization method
with a numerical method. Finally, we will study the quantum transport between the two baths
via the particle current.

4.1 Application of the third quantization

Using the methods of the third quantization, we define successively

H = ω, K = 0,

l1 = k2 = 0, l2 =

√
γR
2
, k1 =

√
γL
2
,

M =
γR
2
, N =

γL
2
, L = 0.

34



Following (3.24) and (3.25), we find

X =
1

2

(
iω + γR−γL

2 0

0 −iω + γR−γL
2

)
, (4.6)

Y =

(
0 γL/2

γL/2 0

)
. (4.7)

The diagonal form of X gives immediately the rapidities of our system:

β1, β2 =
γR − γL

4
± iω

2
. (4.8)

Thus, we just have to solve the Lyapunov equation (3.28) to find the NMM. Its solution is

Z =

(
0 γL

γR−γL
γL

γR−γL
0

)
. (4.9)

Then, using equations (3.29), we can express the NMM

ξ1
ξ2

 =


aL

γR
γR−γL

− aR
γL

γR−γL

a†R
γR

γR−γL
− a†L

γL
γR−γL

 , (4.10)

(
ξ′1
ξ′2

)
=

(
a†L − a†R
aR − aL

)
. (4.11)

Once we calculated the NMM, the steady state can be found in a few steps via the property (3.33).

4.1.1 Derivation of the steady state

Before calculating the steady state, we need to do an ansatz that makes the calculation realisable.
We will see in Sec. 4.2 that the existence of a symmetry completely justifies this ansatz.

As said in Sec. 3.3, the steady state of the system is guaranteed to be a Gaussian thermal
state. Furthermore, there is no term in a · a nor in a† · a† in the Liouvillian. We can then make
the ansatz that the steady state is diagonal in the Fock basis. In other words, we suppose

ρNESS = R
∑
n

Cn |n⟩ ⟨n| , (4.12)

or, for the vectorized density operator,

|ρNESS⟩ = R
∑
n

Cn |n⟩ |n⟩ , (4.13)

where R is a constant that ensure the trace to be one.
Using equation (3.33) for ξ1, we can now calculate the steady state. We have

ξ1 |ρNESS⟩ = 0. (4.14)

For now on, we use the matrix representation of the density operator as it is more intuitive, even
if they are both equivalent in a mathematical sense.

⇔
∞∑
n=0

γRCn

γR − γL
aL |n⟩ ⟨n| − γLCn

γR − γL
aR |n⟩ ⟨n| = 0

⇔
∞∑
n=0

Cn

γR − γL
(γRa |n⟩ ⟨n| − γL |n⟩ ⟨n| a) = 0.
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Separating the sum and re-indexing the first one while keeping in mind that a |0⟩ = 0, we have
∞∑
n=0

Cn+1γR
√
n+ 1 |n⟩ ⟨n+ 1| − CnγL

√
n+ 1 |n⟩ ⟨n+ 1| = 0.

The aim is to find a recurrence relation over the coefficients Cn. Thus, we have to impose that
the factor in front of |n⟩ ⟨n− 1| is equal to 0. One finds

γRCn+1

√
n+ 1− γLCn

√
n+ 1 = 0

⇔ Cn+1 =
γL
γR
Cn.

This recurrence relation implies that

C0 = C, (4.15)

Cn = C

(
γL
γR

)n

, (4.16)

for n ∈ N\{0} and C a constant that still needs to be determined. To do so, we use the definition
of the density operator, it must have a trace of one. We have

Tr[ρNESS ] = 1 (4.17)

⇔
∑
n

⟨n|R
∑
n′

C

(
γL
γR

)n′ ∣∣n′〉 〈n′∣∣n〉 = 1 (4.18)

⇔ RC
∑
n

⟨n|
∑
n′

(
γL
γR

)n′ ∣∣n′〉 〈n′∣∣n〉 = 1 (4.19)

⇔
∑
n

(
γL
γR

)n

⟨n|n⟩ = 1

RC
(4.20)

⇔
∑
n

(
γL
γR

)n

=
1

RC
. (4.21)

The left hand side of the last equation is a geometric series where the ratio between two successive
terms is γL

γR
. The series is diverging if γL ≥ γR and converging if γL < γR, the limit being γR

γR−γL
.

Thus, we find an expression for the steady state,

|ρNESS⟩ =

{
1 if γL ≥ γR,
γR−γL

γR

∑
n

(
γL
γR

)n
|n⟩ |n⟩ if γL < γR.

(4.22)

When γL ≥ γR, the system cannot be normalizable. The result is a non physical state. Physically,
we add more excitation into the system than we remove, which leads to an accumulation of
energy in the system. As we consider a bosonic harmonic oscillator, it can absorb excitation
indefinitely. Thus, the "steady state", should correspond to the eigenvalue 0 of the Liouvillian
is a superposition of all the possible states in the Fock basis.

Having an analytical expression for the steady state will allow us to find an expression for
the state of the system at any time, i.e., a solution of the Lindblad master equation (4.4).

4.1.2 Solution of the master equation

We are now interested to find an expression of the state of the system at any time. We will first
express it in the basis of the NMM that we just found in equation (4.10) and then in the Fock
basis2.

2The reader not interested by the mathematical development should only look at the boxed equation and skip
the rest of this subsection.
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For the state in the NMM basis, we follow equation (2.45). The state of the system |ρ(t)⟩ for
a time t is given by

|ρ(t)⟩ =
∑

m1,m2

e−(m1+m2)
γR−γL

2
te−iω(m1−m2)tcm1,m2

(ξ′1)
m1(ξ′2)

m2

√
m1!

√
m2!

|ρNESS⟩ (4.23)

with
cm1,m2 = (1| ξm1

1 ξm2
2√

m1!
√
m2!

|ρ(0)⟩ .

We now want to switch to the Fock basis. In this basis, any state |ρ(t)⟩ is written as
|ρ(t)⟩ =

∑
n,n′ cn,n′ |n⟩ ⟨n′|. As the steady state is diagonal in the Fock basis, we first have to

compute the power of ξ′, then apply ξ′2 to |n⟩ ⟨n| and ξ′1 to the result.
Computing explicitly the powers of ξ′i in terms of aL, aR, we find

(ξ′1)
m1 =

(
a†L − a†R

)m1

=

m1∑
k=0

(
m1

k

)
a†

m1−k

L (−a†
k

R ), (4.24)

(ξ′2)
m2 = (aR − aL)

m2 =

m2∑
k=0

(
m2

k

)
akR(−aL)m2−k. (4.25)

For ξ′2, we have

(ξ′2)
m2 |n⟩ ⟨n| =

m2∑
k=0

k>m2−n

(
m2

k

)
(−1)m2−k

√
(n+ k)!

(n−m2 + k)!
|n−m2 + k⟩ ⟨n+ k| , (4.26)

where the condition k > m2 − k comes from the |n−m2 + k⟩, as a |0⟩ = 0. For ξ′1, that must be
applied to |n⟩ ⟨n′|, we find

(ξ′1)
m
1 |n⟩

〈
n′
∣∣ = m1∑

k=0
k<n′

(
m1

k

)
(−1)k

√
(n+m1 − k)!

n!

(n′)!

(n′ − k)!
|n+m1 − k⟩

〈
n′ − k

∣∣ , (4.27)

where we have the condition k < n′ for the same reason. Combining the two previous equations,

(ξ′1)
m1(ξ′2)

m2 |n⟩ ⟨n| =
m2∑
k=0

k>m2−n

m1∑
k′=0

×k′<n+k

(
m1

k′

)(
m2

k

)
(−1)m2−k+k′ (k + n)!

(k −m2 + n)!

√
(k − k′ +m1 −m2 + n)!

(n+ k − k′)!
|n−m2 +m1 − k′ + k⟩

〈
n+ k − k′

∣∣ . (4.28)

Gathering all our equations, we can display the solution of the master equation as a function of
the time in the Fock basis:

|ρ(t)⟩ =
∑

m1,m2

∑
n

∑
k,k′

e−(m1+m2)
γR−γL

2
te−iω(m1−m2)tcm1,m2

(
m1

k′

)(
m2

k

)

× (k + n)!

(k −m2 + n)!

√
(k − k′ +m1 −m2 + n)!

m1!m2!(k − k′ + n)!

× (−1)m2−k+k′
∣∣n−m2 +m1 − k′ + k

〉 ∣∣n+ k − k′
〉
. (4.29)

In the limit for t(γR− γL) ≫ 1, the first exponential decreases to 0 except for m1 = m2 = 0. We
have

lim
t→+∞

e−(m1+m2)
γR−γL

2
t ∼ δm1,0δm2,0. (4.30)

Therefore in this limit, we obtain the steady state, as expected. It is associated with a zero
eigenvalue, as m1 = 0 = m2.
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4.2 Symmetries of the system

The studied system displays a U(1) weak discrete symmetry. A weak symmetry is found when
a given unitary transformation leaves the full Lindbladian invariant (i.e. the transformation
commutes with the Lindbladian) without necessarily keeping the jump operators invariant. Fur-
thermore, the symmetry ensures that the matrix form of the Liouvillian has a block-diagonal
structure in the appropriate basis, the basis of the eigenvectors of the generator [42]. The size
of the blocks is given by the algebraic multiplicity of the eigenvalues of the generator of the
transformation [31]. In this section we will first show the symmetry by studying the commutator
of the Liouvillian and an arbitrary unitary superoperator. Secondly, we will demonstrate that
given this symmetry, the steady state is diagonal in the Fock basis.

The generator of the symmetry is unitary, we can write it as U = U · U †, with U = e−ia†a.
Showing that the system admits a U(1) weak symmetry is equivalent to show that [L,U ] = 0.
We recall that U , as L, is a superoperator acting on ρ(H). Let us compare the two following
expressions

LU [ρ] = L[ρ′] (4.31)

with ρ′ = e−iϕa†aρeiϕa
†a and

UL[ρ] = −iU [H, ρ]U † + γLUDa† [ρ]U
† + γRUD[ρ]U

†. (4.32)

At some point of the derivation, we will have to commute a and a† with U and U †. Let us show
once and for all how they commute. Expanding the exponential, we have

aU = a
∑
k

(−iϕ)k

k!
(a†a)k. (4.33)

We rearrange a(a†a)k in (aa†)ka and using the CCR, we find

aU = e−iϕUa. (4.34)

Similarly, we have the following expressions

Ua† = e−iϕa†U, (4.35)

aa†U = Uaa† (4.36)

and trivially,
a†aU = Ua†a. (4.37)

We now compare term by term the expressions (4.31) and (4.32). For the first one, we have

a†aUρU † − UρU †a†a = a†e−iϕ(a†a+1)aρU † − Uρa†eiϕ(a
†a+1)a (4.38)

and
Ua†aρU † − Uρa†aU † = a†e−iϕ(a†a+1)aρU † − Uρa†eiϕ(a

†a+1)a. (4.39)

The second term of (4.31),

a†UρU †a− 1

2
aa†UρU † − 1

2
UρU †aa† = Ua†ρaU † − 1

2
Uaa†ρU † 1

2
UρU †aa†, (4.40)

is equal to the second term of (4.32). For the thirds ones, we also have identical terms. Thus,
the U(1) symmetry is displayed.

We notice here that the eigenvectors of the generator is the Fock basis and algebraic multi-
plicities of the associated eigenvalues are 1. This implies that the matrix form of the Liouvillian
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is diagonal, which explains the particular structure of the density matrix showed in the beginning
of this chapter.

Now, we want to use this symmetry to justify the ansatz in equation (4.12), i.e., demonstrate
that if the steady state is unique, it must be diagonal in the Fock basis. Here the uniqueness of
the steady state is an assumption, as all our systems will admit a unique steady state. We recall
that by definition, from equation (2.43), the steady state is the eigenvector of L associated with
the eigenvalue 0: L[ρNESS] = 0. Moreover, we have

UL[ρNESS] = U [0] = 0. (4.41)

As U and L commute, we also have
LU [ρNESS] = 0. (4.42)

So, U [ρNESS] is also the eigenvector associated with the eigenvalue 0, which is the definition of
the steady state. Nevertheless, the steady state is unique, so we must have

U [ρNESS] = e−iϕa†aρNESSe
iϕa†a = ρNESS. (4.43)

Projecting this equation on ⟨n| · |m⟩, with n,m ∈ N, we obtain

⟨n| e−iϕa†aρNESSe
iϕa†a |m⟩ = ⟨n| ρNESS |m⟩

⇔ ⟨n| e−iϕnρNESSe
iϕm |m⟩ = ⟨n| ρNESS |m⟩ .

The last equation being true if and only if e−iϕneiϕm = 1 which implies n = m.
We just demonstrated that when a U(1)symmetry occurs and if the steady state is unique,

it must be diagonal in the Fock Basis.

4.3 Spectrum of the Liouvillian

We will now study the spectrum of the Liouvillian. We mentioned earlier the existence of
numerical methods. Thus, as the system is quite simple, it is relevant to compare one of these
methods with our analytical results obtained via the third quantization. Below, we detail the
two approaches and compare the results.

4.3.1 Analytical method

The computation of the analytical eigenvalues is done using formula (3.34). Essentially, the
eigenvalues are given by all the possible linear combinations of β1, β2 where the coefficients are
integers. As there is an infinite number of eigenvalues, we have to fix a limit for the coefficients of
the linear combinations. We introduce the integer M such that m1,m2 ≤M . For the comparison
between the two methods, we choose M = 10.

4.3.2 Numerical method

The numerical method is based on the direct diagonalization of the matrix representation of
the Liouvillian. This method is here quite simple as we demonstrated earlier than L is already
diagonal due to the U(1) symmetry.

We chose here to start from the definition (4.4) of the Liouvillian for the system of study and
use the following matrix representation for the creation and annihilation operators, a and a†. In
the Fock basis,

aij =
√
iδi,j−1 (4.44)

and a†i,j = aj,i. We obtain the matrix representation of L using the Choi-Jamiołkowski isomor-
phism, as described in Sec. 2.5. We shall note that a cutoff must be defined in order to deal with
non-infinite size matrices. Formally, we have to choose Ncutoff such that n,m ≤ Ncutoff . This
cutoff value should influence the accuracy of the results.
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4.3.3 Results

In figure 4.2, we compare the eigenvalues obtained via the third quantization, and the eigenvalues
of L for different values of Ncutoff . The numerical computation is done for four different cutoff
values, one for each plot: 10 for panel (a), 30 for panel (b), 50 for panel (c) and 70 for panel
(d). In each plot, ϵ, γ and ω are respectively equal to 1.3, 1 and 1. Analytical eigenvalues are
represented in red while numerical are represented in blue. The real part of the eigenvalues are
represented in the horizontal axis while the imaginary part is represented in the vertical axis.

We can see that for each panel, there is a blue and a red dot in (0, 0). This corresponds to
the eigenvalue 0 associated with the steady state. Increasing the cutoff, we see the blue dot are
lining up to the red ones. This lign-up starts on the right, for eigenvalues of greater real part.
As expected, increasing Ncutoff will give numerical eigenvalues closer to the (exact) analytical
eigenvalues.

(a) (b)

(c) (d)

Figure 4.2: Eigenvalues of the Liouvillian using two different methods. The first one is numerical,
via the matrix representation of the Liouvillian, L, which is already diagonal due to the U(1)
symmetry. The numerical eigenvalues are represented by the blue dots in the figures. For the
second method, we use (3.34) for m1,m2 ≤ 10. The eigenvalues obtained via third quantization
are represented in red. Moreover, we plotted the eigenvalues for 4 different values of Ncutoff:
10 for panel (a), 30 for panel (b), 50 for panel (c) and 70 for panel (d). In each plot, ϵ, γ and
ω are respectively equal to 1.3, 1 and 1. The real part of the eigenvalues are represented in the
horizontal axis while the imaginary part is represented in the vertical axis.

4.4 Particle current

In this section, we study the particle current which characterizes the heat and energy diffusion
trough the baths and sites. Its definition is given by

J ≡ d(a†a)

dt
. (4.45)

Formally, it is the variation of particles passing throughout the site. We can also define its mean
value,

⟨J⟩ ≡ d⟨a†a⟩
dt

. (4.46)
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For the steady state, the theory of the third quantization gives directly the quantity ⟨aiaj⟩ for
i, j = 1, 2 via the Z matrix. We have

⟨aiaj⟩ = (1|aiaj |ρNESS⟩ = Zij . (4.47)

In this particular system, we find
⟨a†a⟩ = γL

γR − γL
. (4.48)

As the steady state corresponds to long time dynamics of our system, we can infer that this limit
for t(γR − γL) ≫ 1 should appear during the derivation.

We derive the expression of J(t) using the master equation in Heisenberg picture. For any
operator A, its time evolution is given by

Ȧ = i[HS , A] +
∑
i

γi

(
L†
iALi −

1

2

{
L†
iLi, A

})
. (4.49)

For its mean counterpart, we use the Heisenberg picture to "project" a†a into the master equa-
tion: d⟨a†a⟩

dt = Tr[ρ̇(t)a†a].

Deriving equation (4.49) for A = a†a, one finds

J(t) =
d
(
a†a
)

dt
= i[HS , a

†a] + γL[aa
†aa† − 1

2
{aa†, a†a}] + γR[a

†a†aa− 1

2
{a†a, a†a}] (4.50)

= γLaa
† − γRa

†a (4.51)

= −(γR − γL)a
†a+ γL. (4.52)

Solving the differential equation,

(a†a)(t) = Ce−(γR−γL)t +
γL

γR − γL
(4.53)

with C ∈ C. It is relevant to rewrite this expression in terms of the initial conditions to get rid
of the C constant,

(a†a)(t) = e−(γR−γL)t

(
(a†a)(0)− γL

γR − γL

)
+

γL
γR − γL

. (4.54)

As predicted, the limit for t(γR− γL) ≫ 1 is the one expected even for the operator quantity. In
addition, we can highlight the divergence when γL ≥ γR. And finally,

J(t) = e−(γR−γL)t[γL − a†a(0)(γR − γL)] . (4.55)

We can see that this operator is a scalar, which means that its mean value should be the same
expression. Indeed, we find

Tr[ρ̇a†a] =− iTr[HSρa
†a− ρHSa

†a] (4.56)

+ γL(Tr[a
†ρaa†a]− 1

2
Tr[aa†ρa†a]− 1

2
Tr[ρaa†a†a])

+ γR(Tr[aρa
†a†a]− 1

2
Tr[a†aρa†a]− 1

2
Tr[ρa†aa†a]),

which leads to the same differential equation.
For the purpose of plotting, we define two new variables, γ = γL and ϵ = γR/γL such that

γR = γϵ. The particle current reads now

J(t) = e−(ϵ−1)γt[1− a†a(0)(ϵ− 1)]γ. (4.57)
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Figure 4.3: Normalized particle current J/γ as a function of γt for γ = 1, (a†a)(0) = 1 for three
different values of ϵ = γR/γL as obtained in equation (4.57). The blue curve shows the behavior
for ϵ = 1.3, the yellow one for ϵ = 2 and the green one for ϵ = 2.6.

The particle current J(t) is plotted in Fig. 4.3 for γ = 1 and a†a(0) = 1 for different values of
ϵ. We can see that three different behavior can be outlined, depending on the value of ϵ. For
1 < ϵ < 2, the blue curve, the particle current is a positive decreasing function. For ϵ = 2,
in other words when the rate of incoming particles is exactly 2 times smaller than the rate of
outgoing particles, the yellow curve, the function is null for any time. And if ϵ > 2, the green
curve, it is a negative increasing function. We can see that for the three cases, the limit for
tγ ≫ 1 is 0. As the system tends towards its stationary state for sufficiently long periods of time,
the number of particles within it remains constant, as dictated by the definition of the steady
state.

It is relevant to say that for γL = γR, the particle current is γL, a constant. This is coherent
with the diverging steady state in this case as excitation are brought constantly into the system.
The case γL > γR gives a exponential growth: the system gain more and more particles and this
gain is exponential.

4.5 Numerical comparison

It is interesting to compare the particle current obtained from the third quantization method
and the one we can find using a "brute force" numerical method. Here we will solve numerically
the system of equations (4.5). As in Subsec 4.3.2, we have to define a cutoff in order to deal with
non-infinite size matrices. We will see that the choice of the cutoff will be relevant regarding the
dynamics of the system.

As said at the beginning of this chapter, the dynamics of the populations only depends on
the populations. It is straightforward to show that the particle current, Tr[ρa†a], only depends
on the populations too. This reduce efficiently the computation time.

The results of the numerical computations are shown in Figure 4.4. We plot the normalized
particle current for four values of the cutoff value (5, 10, 20 and 50) and for four different values
of ϵ: 1.3 in Fig (a), 2 in Fig(b), 2.6 in Fig (c) and 0.85 in Fig (d). The choice of ϵ allows to
displays the four different possible behaviors for the particle current. In each plot, we choose
n0 = 1 and γ = 1, where n0 is the initial number of particles in the system.

In panel (a), we see that the blue and yellow curves do not fit well, although the behavior is
the right one, a decreasing exponential to zero. For the case Ncutoff = 20, we see that the gap
between the green curve and the theoretical expectation is near to zero. For the last curve, the
fit is perfect. In panel (b), we see that for the blue curve, the particle current is negative around
γt = 0.6, which is not consistent with the expected behavior. The same remark applies to the
orange curve around γt = 1. While the two last fit perfectly. In panel (c), every curve converge
rapidly, even the blue one. This is due to the large value of ϵ which appears in exponential.
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(a) (b)

(c) (d)

Figure 4.4: Comparison between analytical and numerical computation of the normalized particle
current J/γ as a function of the normalized time for four different values of ϵ. The numerical
method comes from the resolution of equation (4.5) while the analytical method is given in
equation (4.57). The computations for four different cutoffs values (5 in blue, 10 in yellow, 20 in
green, 50 in orange) are compared with the analytical curve (in black) obtained with the third
quantization method. In panel (a), the particle current is plotted for ϵ = 1.3, in panel (b) it is
for ϵ = 2, in panel (c) it is for ϵ = 2.6 and in panel (d) it is for ϵ = 0.85. In each plot, we chose
n0 = 1 and γ = 1.

Figure 4.5: Comparison between analytical and numerical computation of the normalized particle
current J/γ as a function of the normalized time for ϵ = 0.85 and Ncutoff = 250 (in blue)
compared to the analytical curve (in black) found with the third quantization method. The
numerical method comes from the resolution of equation (4.5) while the analytical method is
given in equation (4.57). We chose n0 = 1 and γ = 1.
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In panel (d), the limits of the numerical computation are found. For all cutoff values, we ob-
serve a decrease towards zero, whereas an exponential increase was expected. Even if we increase
the cutoff to 250, see figure 4.5, we see that the numerical curve does not fit the theoretical one
for long time and eventually decreases towards 0.

Overall, we find that for values of ϵ great enough, numerical curves converge for reasonable
values of Ncutoff . For ϵ < 1, the numerical curve always tends to zero which is not the behavior
expected by the analytic curve and the physic behind the system.

Figure 4.6: Time evolution of the numerical population ρnn in the Fock basis as a function of
the index n. Parameters ϵ, γ and ω are respectively 1.3, 1 and 1. The initial number of particles
is n0 = 8 and Ncutoff = 11.

In figure 4.6, we see the time evolution of the populations ρnn in the Fock basis, computed
with the numerical method. Parameters ϵ, γ and ω are respectively 1.3, 1 and 1 and Ncutoff = 11.
Note that the origin of the time axis is not taken at 0 but 0.04 to remove the peak for short
times.

Initially, the system is in a state with 8 particles, i.e., ρnn is equal to 0 for all n excepted
for n = 8 where we have ρ88 = 1. Then, the system evolves with L and the state tends towards
the steady state defined in 4.22. This corresponds to the content of the figure for γt > 7.5: the
populations with smaller index n weight more than the others. The populations with index n
close to Ncutoff are not negligible if the cutoff value is not taken large enough. This leads to a
wrong behavior for the curves of panel (b) of Fig. 4.4 for a cutoff value of 5. A balance must
therefore be struck between a threshold value large enough to avoid miscalculation and one that
is too large, which could lead to too much unnecessary calculation time.

4.6 Summary of the chapter

In this chapter we studied in details the single-site junction with the use of the third quantization
method. We first showed how it was utilized to solve the Lindblad master equation with an
analytical method. We found that the steady state was unique and had a physical meaning
only if the emission rate γR was greater than the absorption rate γL. Then, we compared the
eigenvalues of the Liouvillian obtained via the third quantization with a numerical method. We
saw that if a great precision was required for the numerical method, a large cutoff value, i.e.,
the size of the matrices, was needed. Afterwards, we studied the particle current which is the
time derivative of the number of particles in the site. We identified three regimes of parameters,
depending on the ratio between the absorption and emission rates. We finally compared our
results with a numerical method.
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Chapter 5

Two-site junction

In this chapter, we will demonstrate how the third quantization method can be applied to
a more complex case than in the previous chapter: a two-site junction. We will study this
system using three different approaches, each corresponding to a distinct master equation that
models the system’s time evolution under various assumptions. Our objectives in this chapter
are multifaceted. First, we will apply third quantization to solve the master equation for the first
two approaches. Next, we will compare the spectrum of their respective Liouvillian, just as the
particle currant, within a parameter range where both approaches are valid. We want to illustrate
that one approach may be more suitable than the other depending on the chosen parameters.
Finally, we will apply the third quantization to the third approach, demonstrating that although
it is more complex to solve, this method provides superior results across all parameter regimes.

Figure 5.1: Sketch of the two-site junction. The system consists of two bosonic harmonic oscil-
lators with different frequencies coupled with two bosonic baths of different temperature. The
arrows represent the interactions governing the evolution of the system. In green, we see the
coupling between the two sites. In red, we see the interactions between the left bath and the first
site. Similarly, the blue double arrow represents the interactions between the second site and the
right bath. To model a more realistic system, we consider that the interaction between the sites
and the baths are in both ways: the system can absorb and emit particles in both sides.

The second system to be considered is sketched in figure 5.1. It consists of two harmonic
oscillators, with frequencies ω1 and ω2, each coupled to a separate bath. The first harmonic
oscillator, referred to as the site, couples to the left bath, while the second oscillator couples
to the right bath1. Unlike the previous system, we consider a more general coupling with the
baths where absorption and emission coexist for each side. Furthermore, we consider a coupling
between the two sites. The source of this coupling is not the subject of interest here but an
example of coupling mediated by an external field is proposed in [43].

The Hamiltonian of the system of study is

HS = ω1a
†
1a1 + ω2a

†
2a2 + g(a†1a2 + a†2a1), (5.1)

1Note that the left bath does not interacts with the second site, and the right bath does not interacts with the
first site.
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where the third term corresponds to the coupling between the two sites, with g > 0. The
Hamiltonian of the baths is same as in equation (4.2). For the interaction Hamiltonian, we have

Hint =
∑
k

vk,La
†
1bk,L + vk,Ra

†
2bk,R + h.c. (5.2)

with vk,L, vk,R ∈ C.

Local vs global & Redfield

There is two main approaches to derive a Lindblad master equation for our system. The
first one, the local approach, consists in considering a free Hamiltonian when computing the
effects of the environment on the system [44]. In our case, the coupling between the two sites
is neglected when calculating the jumps operators. Thus, each jump operator only affects
one site at a time. The effect of the coupling only appears in the commutator, i.e., the first
term of the master equation. This approach is more phenomenological and is expected to be
valid for sufficiently small coupling as it relies on a different approximation than the secular
one.

The second approach is the global approach. This approach consists in coupling the
environment with the eigenvalues of the system. Thus, we have to consider the full Hamil-
tonian when deriving the jump operators which can then act on both sites simultaneously
rather than just one site at a time. It is convenient to diagonalize the initial Hamiltonian
to identify the normal modes. As in Sec. 1.2, we have to find linear combinations of the
initial modes a†1, a1, a

†
2, a2 such that there is no interaction terms in the Hamiltonian of the

system. In this picture, the two sites are uncoupled and each bath is interacting with each
mode. This method is supposed to be valid for sufficient coupling between the two sites.
Moreover, this approach requires the secular approximation to derive a standard form of the
Lindblad equation.

Finally, the Redfield approach is the same approach as the global one but without the
secular approximation. As it is based on less assumptions that the other methods, this
approach is expected to give better results than the two others.

We shall add that for the first system, the three approaches lead to the same master
equation.

We will use the numerical results from [43] as a reference point for comparing our different
approaches. In this paper, they describe the two-site junction where a time-dependant external
field mediates the coupling between the two sites. Although their system is slightly different, it
aligns with ours when we set the site frequencies to be equal, ω1 = ω2.

5.1 Local approach

The first approach that we study is the local one. A sketch of the situation can be found in
Fig. 5.2. As we consider here a "phenomenological approach", the master equation will contain
several terms. First, the unitary evolution of the system, then the jump operators. There are two
jump operators per site, one for the absorption and the other for the emission. Each dissipative
term acts only on one site. Thus, the time evolution of the system state is given by the following
Lindblad master equation

ρ̇ = L[ρ(t)] = −i[HS , ρ(t)]+γL(ω1)Da†1
[ρ(t)]+γ̄L(ω1)Da1 [ρ(t)]+γR(ω2)Da†2

[ρ(t)]+γ̄R(ω2)Da2 [ρ(t)],

(5.3)
with the same definition for dissipation superoperators. Unlike the previous system, the absorp-
tion and emission rates are not constant in this case. They are defined by

γα(ω) = κ(ω)nα(ω),

γ̄α(ω) = κ(ω)[nα(ω) + 1] (5.4)
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Figure 5.2: Sketch of the two-site junction. The system consists of two bosonic harmonic oscil-
lators with different frequencies coupled with two bosonic baths of different temperature. The
arrows represent the interactions governing the evolution of the system. In green, we see the
coupling between the two sites, whose intensity is given by g. In red, we see the interactions
between the left bath and the first site, with absorption rate γL and emission rate γ̄L. Similarly,
the blue arrows represents the dissipation between the second site and the right bath, with ab-
sorption rate γR and emission rate γ̄R.

with κ(ω) the spectral density and nα(ω) for α = L,R being the Bose-Einstein distribution.
We choose an ohmic spectral density, κ(ω) ∝ ω. Taking units where kB = 1, the Bose-Einstein
distribution is given by

nα(ω) =
1

eω/Tα − 1
(5.5)

where Tα is the temperature of the bath α. Note that with this definition, the absorption rate is
always smaller than the emission rate for a positive frequency. While we could consider negative
frequencies for the left bath to encourage absorption instead of dissipation, we stick to positive
frequencies in order to compare of results with [43].

A partial derivation of the local master equation can be found in Subsec. B.2.1. This approach
is said to be valid for a small coupling between the two sites, i.e., g ≪ ω.

5.1.1 Application of the third quantization

In contrary of the single-site junction, we have two modes here, which doubles the dimension of
X,Y and Z. However, the calculation remains quite similar. Hence, we leave the details for the
Appendix, see Sec. C.1.

For X, we obtain a 2× 2 block diagonal matrix, whose diagonalization gives the rapidities

β1 =
γ̄(ω1, ω2)− γ(ω1, ω2)

4
− i

ω1 + ω2

4
−
√
λ+(ω1, ω2)

8
,

β2 =
γ̄(ω1, ω2)− γ(ω1, ω2)

4
− i

ω1 + ω2

4
+

√
λ+(ω1, ω2)

8
,

β3 =
γ̄(ω1, ω2)− γ(ω1, ω2)

4
− i

ω1 + ω2

4
−
√
λ−(ω1, ω2)

8
,

β4 =
γ̄(ω1, ω2)− γ(ω1, ω2)

4
− i

ω1 + ω2

4
+

√
λ−(ω1, ω2)

8
, (5.6)

where we defined

2γ̄(ω1, ω2) = γ̄L(ω1) + γ̄R(ω2),

2γ(ω1, ω2) = γL(ω1) + γR(ω2),

λ±(ω1, ω2) = (γL(ω1)− γ̄L(ω1)− γR(ω2) + γ̄R(ω2)± 2i(ω1 − ω2))
2 − 16g2.
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Here, 2γ̄ is the total absorption, 2γ, the total emission and λ± the correction term due to the
coupling. We can see that the rapidities for the two-site junction are similar to the ones found
for the single-site junction (4.8). The solution of the Lyapunov equation (3.28) is given by the
block matrix

Z =

(
0 A

AT 0

)
, (5.7)

where the matrix A is expressed as

A11 = nL,1 +
4g2(κ1 + κ2)κ2(nR,2 − nL,1)

(κ1 + κ2)2(4g2 + κ1κ2) + 4κ1κ2(ω1 − ω2)2
,

A12 =
2g(nL,1 − nR,2)κ1κ2[2(ω1 − ω2) + i(κ1 + κ− 2)]

(κ1 + κ2)2(4g2 + κ1κ2) + 4κ1κ2(ω1 − ω2)2
,

A21 =
2g(nL,1 − nR,2)κ1κ2[2(ω1 − ω2)− i(κ1 + κ− 2)]

(κ1 + κ2)2(4g2 + κ1κ2) + 4κ1κ2(ω1 − ω2)2
= A∗

12,

A22 = nR,2 +
4g2(κ1 + κ2)κ1(nL,1 − nR,2)

(κ1 + κ2)2(4g2 + κ1κ2) + 4κ1κ2(ω1 − ω2)2
,

where
κi = κ(ωi), nα,i = nα(ωi).

The reader must bear in mind equation (3.37): the matrix elements of Z give the mean values
of the creation and annihilation operators for the steady state. Explicitly,

A11 = ⟨a†1a1⟩NESS, A12 = ⟨a†1a2⟩NESS,

A21 = ⟨a†2a1⟩NESS, A22 = ⟨a†2a2⟩NESS. (5.8)

From the Z matrix, we also deduce that ⟨aiaj⟩ = ⟨a†ia
†
j⟩ = 0 for i, j = 1, 2, the steady-state is

diagonal in the Fock basis.
The derivation of the steady state relies on the same property (3.32) and the ansatz (justified

here) that it is diagonal in the Fock basis. At one point of the derivation, we have to study the
convergence of a series that guarantees that the trace of the steady state is one. We have the
following condition

|A11 +A12| < |1 +A11 +A12|,
|A22 +A∗

12| < |1 +A22 +A∗
12|. (5.9)

If one of these two conditions are not fulfilled, the existence of a unique steady state is not
guaranteed. these conditions correspond to the case where all rapidities βi defined in (5.6) have
their reel part positive. The expression of the steady state of the two-site junction is

|ρNESS⟩ =
∑
n,n′

(
A11+A12

1+A11+A12

)n ( A∗
12+A22

1+A∗
12+A22

)n′

|n, n′⟩ |n, n′⟩

(1 +A11 +A12) (1 +A22 +A∗
12)

. (5.10)

It is interesting to note that the steady state depends directly of the number of particles in each
site, i.e., A11 and A22 and the cross term, A12. Intuitively, we can understand that if the first
site accumulates particles without sending them to the right site, for example if the coupling is
too weak, the system will never reach a steady state.
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5.1.2 Symmetries of the system

In this subsection, we will study in detail the symmetries of the system. Firstly, we will display
that this system admits a U(1) as the previous system, with an adapted unitary generator.
Afterwards, we will show how the symmetry deeply affects the matrix representation of the
Liouvillian.

As is the previous section, we define the superoperator U = U · U † for U = e
−iϕ

(
a†1a1+a†2a2

)
for ϕ ∈ R. We seek for conditions for ϕ under which [L,U ] = 0.
The operator U can be rewritten as

U = e−iϕa†1a1e−iϕa†2a2 = U1U2 = U2U1. (5.11)

This allows us to reuse the relations (4.34) - (4.37) found in the previous chapter. We have now

aiU = e−iϕUai, (5.12)

Ua†i = e−iϕa†iU, (5.13)

a†iaiU = Ua†iai, (5.14)

aia
†
jU = Uaia

†
j . (5.15)

The last relation can be demonstrated in a few lines,

aia
†
jU = aia

†
jUiUj

= aiUia
†
jUj .

Using (5.12) and (5.13), we find successively

aia
†
jU = e−iϕUiaia

†
jUj

= UiaiUja
†
j

= Uaia
†
j .

All that remains is to compute LU [ρ] and UL[ρ], keeping in mind that we partially did the
computations for the previous system.
Firstly, we derive LU [ρ]. Denoting ρ′ = U1U2ρU

†
1U

†
2 and ρ1 = U1ρU

†
1 , ρ2 = U2ρU

†
2 , we have

LU [ρ] =− i
[
HS , ρ

′]+ γL

(
a†1ρ

′a1 −
1

2

{
a1a

†
1ρ

′
})

+ γ̄L

(
a1ρ

′a†1 −
1

2

{
a†1a1ρ

′
})

+ γR

(
a†2ρ

′a2 −
1

2

{
a2a

†
2ρ

′
})

+ γ̄R

(
a2ρ

′a†2 −
1

2

{
a†2a2ρ

′
})

. (5.16)

Expanding the commutator, we have for the first term

−i
[
HS , ρ

′] =− iω1

[
a†1a1, ρ

′
]
− iω2

[
a†2a2, ρ

′
]
− i
[
g
(
a†1a2 + a1a

†
2

)
, ρ′
]

=− iω1U2

[
a†1a1, ρ1

]
U †
2 − iω2U1

[
a†2a2, ρ2

]
U †
1 − i

[
g
(
a†1a2 + a1a

†
2

)
, ρ′
]
, (5.17)

where we used property (5.14) to split U1 and U2 and made appear ρ1 and ρ2. For the single-site
junction, we showed the equality of (4.38) and (4.39). We can reuse this here for the two first
terms of (5.17), which implies that we only have to compare the coupling terms. Similarly, by
applying what has already been proven for the single-site junction, we can demonstrate that all
other terms in (5.16) match the corresponding terms in ULρ. Thus, we have

LUρ = ULρ (5.18)
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if and only if [
g
(
a†1a2 + a1a

†
2

)
, ρ′
]
= U

[
g
(
a†1a2 + a1a

†
2

)
, ρ
]
U †. (5.19)

Expanding the left side of the equation, we have[
g
(
a†1a2 + a1a

†
2

)
, ρ′
]
=g
(
a†1a2U1U2ρU

†
1U

†
2 + a1a

†
2U1U2ρU

†
1U

†
2

)
−g
(
U1U2ρU

†
1U

†
2a

†
1a2 + U1U2ρU

†
1U

†
2a1a

†
2

)
. (5.20)

Using relation (5.15) in each term, the left side of equation (5.19) reads[
g
(
a†1a2 + a1a

†
2

)
, ρ′
]
= g

(
Ua†1a2ρU

† + Ua1a
†
2ρU

†
)
− g

(
Uρa†1a2U

† + Uρa1a
†
2U

†
)

= Ug
(
a†1a2 + a1a

†
2

)
ρU † − Ugρ

(
a†1a2 + a1a

†
2

)
U †

= U
[
g
(
a†1a2 + a1a

†
2

)
, ρ
]
U †, (5.21)

which is the right side of equation (5.19).
As any condition over ϕ has been encountered during the development, we have established

that the two-site junction admits a U(1) symmetry.

Implications of the symmetry

We want to show here how a U(1) weak symmetry on the superoperator level could affect the
dynamics of the system. We state that this kind of symmetry on the superoperator implies
another symmetry, on the operator level. Indeed, we have

[U,HS ] = 0. (5.22)

We prove this equality in a few lines

UHS = U1U2

(
ω1a

†
1a1 + ω2a

†
2a2 + g(a†1a2 + a†2a1)

)
= (ω1a

†
1a1 + ω2a

†
2a2)U1U2 + U1U2g(a

†
1a2 + a†2a1),

using property (5.14) and

UHS = (ω1a
†
1a1 + ω2a

†
2a2)U1U2 + g(a†1a2 + a†2a1)U1U2

= HSU,

using property (5.15). Thus, the matrix representation of HS is block diagonal in the basis of the
eigenvectors of U . To better understand the strength of the symmetries, an example is required.

We represent the creation and annihilation operator of each site as

a1 = a⊗ 1,
a2 = 1⊗ a, (5.23)

where we use the definition (4.44) of the annihilation operator a. The creation operators are
defined by the transpose of the annihilation operators. Taking Ncutoff = 3, the matrix represen-
tation of HS in the Fock basis is

HS =



0 0 0 0 0 0 0 0 0
0 ω2 0 g 0 0 0 0 0

0 0 2ω2 0
√
2g 0 0 0 0

0 g 0 ω1 0 0 0 0 0

0 0
√
2g 0 ω1 + ω2 0

√
2g 0 0

0 0 0 0 0 ω1 + 2ω2 0 2g 0

0 0 0 0
√
2g 0 2ω1 0 0

0 0 0 0 0 2g 0 2ω1 + ω2 0
0 0 0 0 0 0 0 0 2ω1 + 2ω2


. (5.24)
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In the same basis, the matrix representation of the generator U is

U = diag(1, e−iϕ, e−2iϕ, e−iϕ, e−2iϕ, e−3iϕ, e−2iϕ, e−3iϕ, e−4iϕ). (5.25)

The generator U is already diagonal but its eigenvalues are not sorted. We define P as the
unitary matrix that sorts the eigenvalues of U , i.e.

PUP T = diag(e−4iϕ, e−3iϕ, e−3iϕ, e−2iϕ, e−2iϕ, e−2iϕ, e−iϕ, 1). (5.26)

The matrix P contains the change of basis required to display HS in a block diagonal form,

H̃S = PHSP
T =



2ω1 + 2ω2 0 0 0 0 0 0 0 0
0 2ω1 + ω2 2g 0 0 0 0 0 0
0 2g ω1 + 2ω2 0 0 0 0 0 0

0 0 0 2ω1

√
2g 0 0 0 0

0 0 0
√
2g ω1 + ω2

√
2g 0 0 0

0 0 0 0
√
2g 2ω2 0 0 0

0 0 0 0 0 0 ω1 g 0
0 0 0 0 0 0 g ω2 0
0 0 0 0 0 0 0 0 0


.

Note that the size of the matrices is N2
cutoff as we have two sites here. In the superoperator level,

the size of the matrices are Nn2

cutoff where n is the number of sites. The growth is exponential for
a large number of modes, which explains why analytic exact methods are important.

By setting Ncutoff = 2, we can observe the changes when transitioning from the Hamiltonian
to the Liouvillian. We reduce the cutoff value by one because, if we kept the previous value,
the matrix representation of the Liouvillian would be of size 81, which is too large to represent
here. When sorted, the eigenvalues of U are e−2iϕ, e−iϕ, 1 with algebraic multiplicity respectively
1, 2, 1. Thus, in this basis, the Hamiltonian is

H̃S =


ω1 + ω2 0 0 0

0 ω1 g 0
0 g ω2 0
0 0 0 0

 . (5.27)

Then, the generator at the superoperator level, U , has the following eigenvalues

λ1 = e−2iϕ of multiplicity 1,

λ2 = e−iϕ of multiplicity 4,

λ3 = 1 of multiplicity 6,

λ4 = eiϕ of multiplicity 4,

λ5 = e2iϕ of multiplicity 1

and the Liouvillian in the appropriate basis is

L =


L1 0 0 0 0
0 L2 0 0 0
0 0 L3 0 0
0 0 0 L4 0
0 0 0 0 L5

 , (5.28)
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where

L1 =
−γ − γ̄ − 2i(ω1 + ω2)

2
= L∗

5,

L2 =
1

2


−γR − γ̄R − 2(γ̄L + iω2) 2ig 0 2γL

2ig −γL − γ̄L − 2(γ̄R + iω1) 2γR 0
0 2γ̄R −γL − γ̄L − 2(γR + iω1) −2ig

2γ̄L 0 −2ig −γR − γ̄R − 2(γL + iω2)


= L∗

4,

L3 =



−γ̄L − γ̄R γR 0 0 γL 0
γ̄R −γ̄L − γR ig −ig 0 γL
0 ig 1

2(−γ − γ̄ − 2(iω1 − iω2) 0 −ig 0
0 −ig 0 1

2(−γ − γ̄ + 2i(ω1 − ω2)) ig 0
γ̄L 0 −ig ig −γL − γ̄R γR
0 γ̄L 0 0 γ̄R −γL − γR

.

We can see that the size of each block is related to the multiplicity of the associated eigenvalue
of U .

The connection between H̃S and L can be understood by examining the diagonal elements of
each matrix, particularly by counting the occurrences of a site frequency, ω1 or ω2. This analysis
provides an in-depth understanding of what occurs when transitioning from a closed to an open
system. For the Hamiltonian, the diagonal elements respectively show 2, 1, and 0 frequencies.
We count two frequencies for the first element due to their addition; for a subtraction, we would
count zero. These numbers correspond to the coefficients in front of ϕ in the exponential terms
for the eigenvalues of U . Applying the same logic to L, we get −2 and 2 for the first and
last elements, −1 and 1 for the second and fourth blocks, and 0 for the third block. For the
third block, we could also represent the third and fourth elements as −1 + 1 and 1− 1. Again,
these values are related to the eigenvalues of U and match those found for H̃, establishing the
link between the two matrices. Figure 5.3 illustrates this reasoning, with colors added to help
visualize how each block from H̃ transforms into L.

At first glance, the reader might think that the study of symmetries is not directly related
to third quantization methods. However, several recent studies have combined both approaches
to find analytical solutions to Lindblad master equations [45, 46, 47, 48].

5.1.3 Particle current

It this subsection, we want to derive an expression for the particle current. We shall recall that
the particle current corresponds to the amount of particles passing from the left to the right bath
per unit of time. Tracing the path of a particle, it begins at the left bath, moves through the left
junction, continues through the right junction, and finally reaches the right bath. The definition
of the particle current should reflect this trajectory. Thus, we define the total particle current
by

⟨JT ⟩ = Tr[ρ̇(t)(a†1a1 + a†2a2)] =
d

dt
⟨a†1a1 + a†2a2⟩. (5.29)

Defining the left and right current as

⟨JL⟩ =
d

dt
⟨a†1a1⟩, (5.30)

⟨JR⟩ =
d

dt
⟨a†2a2⟩, (5.31)

(5.32)

we have
⟨JT ⟩ = ⟨JL⟩+ ⟨JR⟩. (5.33)
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Figure 5.3: Sketch of the link that can be found between H̃ and L when counting the occurrences
of the site frequencies of each diagonal element or block. Blocks framed in the same color share
their count of frequencies and are related.

After some algebra, we find

⟨JL⟩ = ig⟨a†2a1 − a†1a2⟩+ ⟨a†1a1⟩(γL(ω1)− γ̄L(ω1)) + γL(ω1), (5.34)

⟨JR⟩ = ig⟨a†1a2 − a†2a1⟩+ ⟨a†2a2⟩(γR(ω2)− γ̄R(ω2)) + γR(ω2). (5.35)

We now exploit the covariance matrix Z using (5.8). Replacing the corresponding terms, we
obtain an analytical solution for the particle current at the steady state

⟨JL⟩ =
8g2(nL,1 − nR,2)(κ1 + κ2)κ1κ2

4g2(κ1 + κ2)2 + κ1κ2 ((κ1 + κ2)2 + 4(ω1 − ω2)2)
,

⟨JR⟩ = −
8g2(nL,1 − nR,2)(κ1 + κ2)κ1κ2

4g2(κ1 + κ2)2 + κ1κ2 ((κ1 + κ2)2 + 4(ω1 − ω2)2)
= −⟨JL⟩. (5.36)

We can already know that at the steady state, the total particle current is null for every regime
of parameter. There are as much particles entering the system than particles going out.

Ultimately, we derived an analytical solution for the left and right particle current which
depends on the frequency of each site, the coupling strength g and the temperatures of each bath
through the Bose-Einstein distribution.

5.2 Global approach

We now study our system with the second approach, the global one. As explained at the be-
ginning of this chapter, we must apply a Bogoliubov transformation to the system Hamiltonian.
This will allow us to find the eigenstates and eigenvalues associated such that the Hamiltonian
is in a diagonal form, without an interaction term. Thus, we will effectively have a coupling
between the baths and the eigenvalues of the system, which means that the frequencies of the
normal modes must appear in the expression of the jump operators. A sketch of this situation
is shown in figure 5.4. We must define new absorption and emission rates, for a total of eight:
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Figure 5.4: Sketch of the two-site junction in the global approach. Instead of the previous two
sites, we diagonalized the Hamiltonian to find the normal modes, namely the "+" and "-" modes
of frequency ω+ and ω−. Using the normal modes, the two sites are now uncoupled. Thus, a
boson going from the left to the right bath cross the junction via one mode only. In addition,
each mode absorbs and emits particles to each bath, which leads to eight rates, one for each
combination of absorption/emission to the left/right bath for the "+"/"-" mode.

γα,σ is the absorption rate for the mode σ and bath α, γ̄α,σ is the emission rate for the mode σ
and bath α.

This approach is less intuitive than the local one but according to [44, 43, 49], it tends to
give better results, especially for a large coupling between the two sites.

After the Bogoliubov transformation, the Hamiltonian of the system reads now

HS = ω+a
†
+a+ + ω−a

†
−a−, (5.37)

where

ω± =
ω1 + ω2 ±

√
4g2 + (ω1 − ω2)2

2
(5.38)

and the new creation and annihilation operators are given by

a+ = a1 cos θ + a2 sin θ,

a− = a1 sin θ − a2 cos θ. (5.39)

The angle θ, assuring that the new mapping admits the CCR, is defined as

tan θ =
2g

(ω1 − ω2)−
√

4g2 + (ω1 − ω2)2
. (5.40)

We shall take ω1 = ω2 for more simplicity. Otherwise we would obtain a master equation
containing terms in cos θ and sin θ. Taking ω1 = ω2, the new mapping reads now

a+ =
1√
2
(a1 + a2), (5.41)

a− =
1√
2
(a1 − a2). (5.42)

(5.43)

The global form of the Lindblad master equation is

ρ̇(t) = −i [HS , ρ(t)] + (γ̄L,+ + γ̄R,+)Da+ [ρ(t)] + (γ̄L,− + γ̄R,−)Da− [ρ(t)]

+ (γL,+ + γR,+)Da†+
[ρ(t)] + (γL,− + γR,−)Da†−

[ρ(t)]. (5.44)
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We can see here that the modes are effectively uncoupled, the coupling factor g only appearsin
the definition of the new frequencies. Furthermore, if we neglected the absorption for left bath
and emission for right bath, we would obtain an equation similar to Eq. (4.4) for two independent
modes.

The dissipation rates are defined as follows

γα,σ = κ(ωσ)nα(ωσ),

γ̄α,σ = κ(ωσ)[nα(ωσ) + 1], (5.45)

for α = L,R, σ = +,−.
The complete derivation of the global master equation can be found in Subsec. B.2.2. This

approach is said to be valid for a large coupling, g ≫ κ(ω).

5.2.1 Application of the third quantization

The calculation details are not showed here as the resolution is quite similiar to the two previous
cases. We only show here the obtained results.

As the the two modes absorbed the interaction term, the X matrix is diagonal. We find
immediately the rapidities,

β1 =
γ̄L,−(ω−) + γ̄R,−(ω−)− γL,−(ω−)− γR,−(ω−)

4
− iω−

2
,

β2 =
γ̄L,−(ω−) + γ̄R,−(ω−)− γL,−(ω−)− γR,−(ω−)

4
+
iω−
2
,

β3 =
γ̄L,+(ω+) + γ̄R,+(ω+)− γL,+(ω+)− γR,+(ω+)

4
− iω+

2
,

β4 =
γ̄L,+(ω+) + γ̄R,+(ω+)− γL,+(ω+)− γR,+(ω+)

4
+
iω+

2
.

Using definition (5.45), the rapidities reduce to

β1 =
κ(ω−)

2
− iω−

2
,

β2 =
κ(ω−)

2
+
iω−
2
,

β3 =
κ(ω+)

2
− iω+

2
,

β4 =
κ(ω+)

2
+
iω+

2
. (5.46)

With these expressions, we can already infer that Re[β1] and Re[β2] are negatives when κ(ω−)
is negative. As κ(ω) ∝ ω, we find a negative real part when g >

√
ω2/ω1.

Similarly to the local approach, the solution of the Lyapunov equation is given by a 2 × 2
block equation. However, here we are only interested by two matrix elements. The elements
in ⟨aa⟩ or ⟨a†a†⟩ are equal to zero, just like in the local case, and additionally, the modes are
no longer interacting. The latter lead to matrix elements corresponding to different modes, in
⟨a†σaτ ⟩, also equal to 0. Thus, we have

Z13 = Z31 = ⟨a†+a+⟩NESS =
nL,+ + nR,+

2
, (5.47)

Z24 = Z42 = ⟨a†−a−⟩NESS =
nL,− + nR,−

2
, (5.48)

where
nα,σ = nα(ωσ),
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for α = L,R, σ = +,−.
The derivation of the steady state brings a condition for the stability of the system. The

steady state is well defined if

|⟨a†+a+⟩NESS | < |⟨a†+a+⟩NESS + 1|, |⟨a†−a−⟩NESS | < |⟨a†−a−⟩NESS + 1|. (5.49)

The first condition is always true as ⟨a†+a+⟩NESS is positive for all range of parameters. For
the second condition, we find an instability if ⟨a†−a−⟩NESS < 1/2, i.e., if g ≥

√
ω2/ω1, the same

condition that led to Re[βi] < 0 for i = 1, 2. Considering g <
√
ω2/ω1, we find for the steady

state

|ρNESS⟩ =
∑
n,n′

(
⟨a†+a+⟩NESS

⟨a†+a+⟩NESS+1

)n(
⟨a†−a−⟩NESS

⟨a†−a−⟩NESS+1

)n′

(⟨a†+a+⟩NESS + 1)(⟨a†−a−⟩NESS + 1)

∣∣n, n′〉 ∣∣n, n′〉 . (5.50)

5.2.2 Symmetries of the system

The previous section already included a thorough analysis of the symmetries of the system.
Given the similitude of this system and the previous ones, it seems to us that the study of the
symmetries of the system would not add new elements. We simply state that the system admits
a U(1) weak symmetry.

5.2.3 Particle current

In this subsection, we want to find an analytical expression for the particle currents. Given that
the master equation is different from the local approach, we must adapt the definitions of the
left and right currents. For the local approach, we defined them as

⟨JL⟩ = Tr
[
LL[ρ(t)](a

†
+a+ + a†−a−)

]
, (5.51)

⟨JR⟩ = Tr
[
LR[ρ(t)](a

†
+a+ + a†−a−)

]
, (5.52)

where Lα corresponds to the dissipator related to the bath α,

Lα = γ̄α,+D[a+] + γ̄α,−D[a−] + γα,+D[a†+] + γα,D[a†−].

The idea behind this definition is to isolate the effect of the coupling for only one bath at a time
in the master equation. The reader might think that the contribution of the unitary evolution
(the commutator with the Hamiltonian term) has been forgotten. Yet it is trivial to show that
Tr
[
−i[HS , ρ](a

†
+a+ + a†−a−)

]
= 0, due to the properties of the trace. After some algebra, we

find
⟨Jα⟩ = ⟨a†+a+⟩(γα,+ − γ̄α,+) + ⟨a†−a−⟩(γα,− − γ̄α,−) + γα,− + γα,+, (5.53)

for α = L,R. We now exploit the covariance matrix Z. Replacing the corresponding terms, we
obtain an analytical solution for the particle current at the steady state

⟨JL⟩ =
κ−(nL,− − nR,−) + κ+(nL,+ − nR,+)

2
,

⟨JR⟩ = −
κ−(nL,− − nR,−) + κ+(nL,+ − nR,+)

2
= −⟨JL⟩. (5.54)

Once again, the right current is the exact opposite of the left current.
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5.3 Results

In this section, we will compare the spectrum of the Liouvillian and the particle current for each
approach. As the master equation for the global approach is only valid for ω1 = ω2, we will
not consider different frequencies for the sites. Thus, we will study the influence of the coupling
strength g for two regimes: when TL = TR and when TL ̸= TR. It might also be interesting to
compare the two approaches for g fixed and varying TL/TR. For all the computations, we take
κ1 = κ2 = 0.05 and ω1 = ω2 = 1. Thus ω± = 1 ± g and κ± = κ/(2π)ω±. We recall that the
validity of the local approach is when g ≪ ω and for the global one, it is valid for g ≫ κ. Thus,
there is an overlapping between the regimes of validity for the two approaches, when κ≪ g ≪ ω.

We shall note that we will not compare our derivations with a numerical method here. Firstly
because we can compare our results with the numerical results from [43]. In that paper, they
studied a similar problem but instead of having the same frequencies on each site, they considered
an external driving. For identical frequencies, both methods are the same. Secondly, the results
from our numerical computations were unsatisfactory. Achieving the desired precision would
have required a too high Ncutoff . Given that the size of the Liouvillian matrix scales as N4

cutoff ,
this approach was impractical. For this test, instead of straightforwardly solve the coupled
differential equations corresponding to the master equation, we wanted to exploit the symmetries
of the system. Indeed, as explained in Subsec. 5.1.2, rather than a large matrix of size N4

cutoff ,
we only had to diagonalize smaller square matrices. However, we still had to diagonalize and
find the eigenvectors of the matrix generator of the symmetry, which, despite being unitary, was
also of size N4

cutoff . This final step prevented us from performing the necessary computations.

5.3.1 Spectrum of the Liouvillian

In this subsection, we compare the spectrum given by the two approaches. Rather than plotting
the spectrum of the Liouvillian using property (3.34), we chose to directly compare the rapidities.
We shall note that given the expressions of the rapidities for the local case, equation (5.6) and
the global case, equation (5.46), the rapidities are independent of the temperatures in both cases.
Thus, it remains to study the influence of the coupling for the real and the imaginary parts of
the rapidities.

In the upper panel of Fig. 5.5, we compare the real part of the rapidities for both approaches.
We see that all the real parts of the rapidities in the local case are equal and constant with
respect to g. For the global case, we see that for g > 1, Re[β1] = Re[β2] < 0. In this case, the
Liouvillian has eigenvalues with positive real parts, which would imply that the state does not
converge towards the steady state. Instead, the system continuously absorbs excitations from
the left bath. In the lower panel, we plotted the imaginary part of the rapidities for the global
approach only2. We see that for g = 1, we have β1 = β2 = 0, there is an infinity of eigenvalues
0 instead of one for g ̸= 1. This implies that for g = 1, the steady state is degenerated.

5.3.2 Particle current

In this subsection, we compare the particle current for the two approaches. As the total current
is null for the two approaches, we compare the left current, which corresponds to the quantity
of particles entering the system per unit of time. The left particle current for the local approach
is given in equation (5.36) and in equation (5.54) for the global apprach.

In Fig. 5.6, we compare the left particle current for both approaches as a function of g for
TL = TR. We see that without gradient of temperature, no particle current is found. For
TL > TR, the left particle current is positive, see Fig 5.7. The local approach gives the expected

2The imaginary part of the rapidities does not give information about the physical properties of the system if
the real parts are constant.
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Figure 5.5: Upper panel: Comparison of the real part of the rapidities obtained for the local
master equation (5.6) (in red) and the global master equation (5.46) (in blue) as a function
of the coupling strength g. The real part of the rapidities are constant in the local approach
while Re[β1] < 0 for g > 1. Lower panel: Comparison of the imaginary part of the rapidities
obtained for the global master equation (5.46). When g = 1, Im[β1] = Im[β2] = 0. Parameters:
ω1 = ω2 = 1, κ1 = κ2 = 0.05, TL = TR = 0.5.
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behavior in all range of g, even for g ≈ ω/2 where it is expected to break down. The global left
current indeed breaks down for small g as it it gives a non-zero current for g = 0.

In Figs. 5.8 and 5.9, we compare the left particle current as a function of the temperature of
the left bath TL. We see in the figure 5.8 that the left particle current follows the temperature
gradient in both approaches, as it is positive for TL > TR and negative for TL < TR (see the
insets in both panels). In the left panel, as g = 0.5 = ω/2, we expect the local approach to break
down, which is not the case and gives similar results than the global approach. In the right
panel, both approaches are valid and also give similar results. Note that |⟨JLocal⟩| ≤ |⟨JGlobal⟩|
for all TL. The Fig. 5.9 shows that the global approach break down when g = 0 for all TL.

We see that our results are in accord with the conclusions drawn in [43].

Figure 5.6: Comparison of the left particle current obtained for the local master equation (5.36)
(in red) and the global master equation (5.54) (in blue) as a function of the coupling strength g.
The left particle current is null everywhere for the two approaches. Parameters: ω1 = ω2 = 1,
κ1 = κ2 = 0.05, TL = TR = 0.5.

(a) (b)

Figure 5.7: Comparison of the left particle current obtained for the local master equation (5.36)
(in red) and the global master equation (5.54) (in blue) as a function of the coupling strength
g. The global left current decreases very slowly, remaining nearly constant over this range of
parameters. In contrast, the local left current starts at 0 for g = 0 then increases significantly
for g < 0.12, and eventually levels off to reach the value of the global current. Increasing the
temperature of the left bath, TL, by a factor 10 gives a left current multiplied by 10 in both
approaches. Panel (a): TL = 5 Panel (b): TL = 50. Parameters: ω1 = ω2 = 1, κ1 = κ2 =
0.05, TR = 0.5.

5.4 Redfield approach

In this section, we study our system with the last approach, the Redfield one. This method
follows a derivation similar to the global approach, except that the secular approximation is not
performed here.
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(a) (b)

Figure 5.8: Comparison of the left particle current obtained for the local master equation (5.36)
(in red) and the global master equation (5.54) (in blue) as a function of the temperature of
the left bath, TL. The insets show the behavior of the left current for TL ≤ TR. The value
of the particle current follows the temperature gradient for both cases. In the left panel, the
two approaches give similar results even if the local approach is expected to break down, as
g = ω/2.. In the right panel, both approaches are valid and also give similar results. Note
that |⟨JLocal⟩| ≤ |⟨JGlobal⟩| for all TL. Panel (a): g = 0.5 Panel (b): g = 0.1. Parameters:
ω1 = ω2 = 1, κ1 = κ2 = 0.05, TR = 0.5.

Figure 5.9: Comparison of the left particle current obtained for the local master equation (5.36)
(in red) and the global master equation (5.54) (in blue) as a function of the temperature of the
left bath, TL. The inset showsthe behavior of the left current for TL ≤ TR. For g = 0, the local
approach gives a null left particle current, as expected, while the global approach break down
and gives a non-zero one. Parameters: ω1 = ω2 = 1, κ1 = κ2 = 0.05, g = 0, TR = 0.5.
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The master equation in the Redfield approach is

ρ̇(t) = −i [HS , ρ(t)] + (γ̄L,+ + γ̄R,+)Da+ [ρ(t)] + (γ̄L,− + γ̄R,−)Da− [ρ(t)]

+ (γL,+ + γR,+)Da†+
[ρ(t)] + (γL,− + γR,−)Da†−

[ρ(t)]

+
1

2

∑
α=L,R
σ=±

(γα(ωσ) + γ̄α(ωσ))
[
aσρ(t)a

†
σ̄ − ρ(t)a†σaσ̄ + h.c.

]
, (5.55)

where σ̄ = ± if σ = ∓. We see that the only difference between this master equation and the
one obtained via the global approach, equation (5.44), is the last term. It contains the "cross
terms" that were neglected with the secular approximation. Without this approximation, our
equation is expected to be valid for all the ranges of parameters.

5.4.1 Application of the third quantization

The third quantization as shown in chapter 3 is not valid anymore as the master equation is not
on the Lindblad form here. Fortunately, the third quantization has been extended to Redfield
master equation in [6] with a few modifications. In this subsection, we will discuss how to adapt
our equations so that they match the notations presented in the article.

The aim is to obtain a master equation of the form

ρ̇(t) = L[ρ(t] = −[HS , ρ(t)] +D[ρ], (5.56)

where D is a new type of dissipator. Its definition is

D[ρ(t)] =
∑
µ,ν

∫ ∞

0
dτΓµ,ν(τ)[Xmu(τ)ρ(t), Xν] + h.c.. (5.57)

Here the definition of Γµ,ν is different from the one we used in Sec. 2.3. We have

Γµ,ν(τ) = TrE [E1(t)
†E2(t− τ)ρE ].

Essentially, we remove the time integral that we hid in our definition (2.30). We need a change
of notation to derive the dissipator of form (5.57):

Γ̃1,2(τ) =
∑
k

|γk,L|2eiωk,Lτ [nL(ωk,L) + 1]

Γ̃2,1(τ) =
∑
k

|γk,L|2eiωk,LτnL(ωk,L)

Γ̃3,4(τ) =
∑
k

|γk,R|2eiωk,Rτ [nR(ωk,R) + 1]

Γ̃4,3(τ) =
∑
k

|γk,R|2eiωk,RτnL(ωk,R)

and Γi,j = 0 for the others combination of i, j. We also set

X1 =
1√
2
a+ + a−, X2 = X†

1, X3 =
1√
2
a− − a+, X4 = X†

3.

Thus, the nations given in [6] match with ours.
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5.5 Comparison with the other approaches

In this section, we compare the three approaches throughout the 2-point correlation matrix Z.
We shall precise that for the global and Redfield cases, the correlation matrix is expressed in
terms of the mapping a+, a− while the local is expressed in terms of a1, a2. We chose to express
everything in terms of a1, a2 in order to capture the Physics of the system as this mapping is more
intuitive. We compared the occupation number for both sites, ⟨a†1a1⟩NESS and ⟨a†2a2⟩NESS and the
overlap between the two modes, ⟨a†1a2⟩NESS at the steady state. We compared our observables
for two regimes: the equilibrium case, without thermal gradient, and the non-equilibrium case,
where TL > TR.

In Fig. 5.10 we compare our observables in the equilibrium case. In both panels, we see that
each approach gives the same behavior around g = 0. However, for g > 0, the local approach
breaks down.

In Fig. 5.7 and 5.8, we compare the occupation number in each site for the non-equilibrium
case. For g around 0, we expect to have only particles in the first site, which is not the case
for the Redfield and global approaches. For g > 0, we see that for the local approach, each site
tends to have the same number of particles, which is confirmed by Fig 5.8, where we see that
the total number of particle is constant for increasing g. For the Redfield and global approach,
we have ⟨a†1a1⟩NESS = ⟨a†2a2⟩NESS,∀ g.

In Fig. 5.9, we compare the overlap between the two modes for the non-equilibrium case.
The local approach breaks down for g > 0 and the global and Redfield approaches break down
for small g.

Overall, the Redfield and global approaches give in all the studied cases the same results.
For the equilibrium case, the Redfield and global approaches give better results than the local
approach. For the non-equilibrium case, the Redfield and global approaches do not give the right
behavior for g small. while the local approach breaks down for g > 0. As the secular approxi-
mation was not performed in the Redfield approach, we would have expected this approach to
give better results than the global approach for small g. It is not the case here.

(a) (b)

Figure 5.10: Comparison of elements of the 2-point correlation matrix Z for the local master
equation (5.8) (in red), the global master equation (5.47) (in blue) and for the Redfield master
equation (in green) as a function of the coupling strength g in the equilibrium case. Panel
(a): Occupation number for the first site ⟨a†1a1⟩NESS. Panel (b): Overlap between the two
modes Re[⟨a†1a2⟩NESS]. The local approach does not give the right behavior for g > 0. We
also see that the Redfield and global approaches give similar results. In the equilibrium case,
Im[⟨a†1a2⟩NESS] = 0. Parameters: ω1 = ω2 = 1, κ1 = κ2 = 0.05, TL = TR = 0.5.
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(a) (b)

Figure 5.11: Comparison of the occupation numbers at the steady state computed via the 2-point
correlation matrix Z for the local master equation (5.8) (in red), the global master equation (5.47)
(in blue) and for the Redfield master equation (in green) as a function of the coupling strength g
with a temperature gradient. Panel (a): Occupation number for the first site ⟨a†1a1⟩NESS. Panel
(b): Occupation number for the second site ⟨a†2a2⟩NESS. We can observe here the break down
of the global approach for small g and we also see that the Redfield approach does not give the
right behavior in the same regime. Parameters: ω1 = ω2 = 1, κ1 = κ2 = 0.05, TL = 5, TR = 0.5.

Figure 5.12: Comparison of the total number of particles at the steady state, ⟨a†1a1⟩+⟨a†2a2⟩NESS

computed via the 2-point correlation matrix Z for the local master equation (5.8) (in red), the
global master equation (5.47) (in blue) and for the Redfield master equation (in green) as a
function of the coupling strength g with a temperature gradient. In the local case, the total
number of particles is constant while it increases for the two other approaches. Parameters:
ω1 = ω2 = 1, κ1 = κ2 = 0.05, TL = 5, TR = 0.5.

(a) (b)

Figure 5.13: Comparison of the overlap between the two modes computed via the 2-point corre-
lation matrix Z for the local master equation (5.8) (in red), the global master equation (5.47)
(in blue) and for the Redfield master equation (in green) as a function of the coupling strength
g. Panel (a): Re[⟨a†1a2⟩NESS]. Panel (b): Im[⟨a†1a2⟩NESS]. Once again, we see in the right panel
that the global and Redfield approaches break down for small g. Parameters: ω1 = ω2 = 1,
κ1 = κ2 = 0.05, TL = 5, TR = 0.5.
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5.6 Summary of the chapter

In this chapter, we studied the two-site junction in details with the use of the third quantization.
We first discussed three different approaches to derive the master equation. The first approach
was the local one, presented as more phenomenological and expected to be valid for small coupling
between the two sites, i.e., g ≪ ω where g is the coupling strength and ω the frequency of the
two sites. In the section dedicated to the local approach, we discussed the implications of a weak
symmetry for the matrix representation of the Liouvillian and the Hamiltonian. The second
approach was the global one, expected to be valid for strong coupling, i.e., g ≫ κ(ω) where
κ(ω) is the spectral density and was taken ohmic here (κ(ω) ∝ ω). For this method, we had
to perform a Bogoliubov transformation in order to find the normal mode to effectively have
a coupling between the baths and the eigenvalues of the system. We then compared several
quantities such as the particle current at the steady state and the spectrum of the Liouvillian
for the two methods in two cases: same temperatures in the two baths or different temperatures.
Our conclusions were that, as expected, the global approach broke down for small g while the
local approach had the right behavior, even for g = ω/2 where it was expected to break down.
We shall note that for the global approach, we found that the steady state was degenerated for
g = 1. Finally, we showed a third approach, the Redfield one, which had the same features
as the global approach, except for the secular approximation which was not performed in this
approach. We ended this chapter by comparing the three methods for the occupation numbers
of each site and the overlap between the two modes at the steady state, and we drew the same
conclusions: the local approach failed to give the right behavior for large coupling while the
global and Redfield approaches broke down for small g.
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Conclusion

The aim of this master’s thesis was to study the dynamics of open quantum systems in the
framework of the third quantization, an elegant and exact analytical method of resolution for
master equations with quadratic Hamiltonians and linear couplings with baths. We studied its
application for a system made of two bosonic thermal baths and a junction of one or two sites,
bosonic too. Our final objective was to study different approaches of derivation for the master
equation and compare which one was the best in which regime of parameters.

In chapter 1, we introduced the second quantization in closed quantum systems and presented
the Bogoliubov transformation.
In chapter 2, we introduced the mathematical framework to study the dynamics of open quantum
systems. We presented the density operator and its properties. We then derived the Lindblad
master equation for a general case. After that, we introduced the Choi-Jamiołkowski isomor-
phism, that allowed us to construct a Hilbert space where the vectors are the vectorized density
operators. We also presented the superoperators and their matrix representation. We ended this
chapter with a description of the spectrum of the Liouvillian, the generator of the dynamics of
open quantum systems.
In chapter 3, we presented the third quantization method in a general case for two bosonic modes.
We showed how this method could give an exact analytical solution for Lindblad master equa-
tions where the Hamiltonian is quadratic and the couplings to the bath are linear. Furthermore,
we presented the features of this method such as obtaining the steady state, the normal master
mode, the complete spectrum of the Liouvillian and the two-points correlations matrix.
In chapter 4, we applied this method of resolution for a simple but non-trivial system of quantum
transport, the single-site junction. We showed the conditions of validity of the steady state: the
emission rate must be greater than the absorption rate, otherwise, the system continuously accu-
mulates excitations. We also discussed the symmetries of the system. Finally, we compared the
third quantization method with numerical methods throughout the spectrum of the Liouvillian
and the time evolution of the particle current between the two baths. We showed that a large
cutoff value had to be taken to recover the physical behaviors predicted by the third quantization,
highlighting the power this latter approach.
In chapter 5, we studied the two-site junction via three methods of derivation for the master
equation: the local approach, the global approach and the Redfield approach. We saw that each
approach had its regime of validity, depending on the coupling strength. For small coupling, the
local approach showed better results while for large coupling, the two others were better. We
based our conclusions on the study of the rapidities (for the local and global approaches), the
particle current at the steady state for thermal equilibrium and non-equilibrium between the two
baths (for the local and global approaches) and the elements of the two-points correlations matrix
(for all the approaches). Surprisingly, the Redfield approach should have yielded better results
than the global approach for small coupling because the latter required an additional approxima-
tion. We found out that both approaches result in the same incorrect behavior for small coupling.

The last chapter of this master thesis contains original results. Although this system has al-
ready been studied, it was with the use of numerical methods. The use of the third quantization

65



for this specific model has not been reported in the literature to our knowledge.

The outlook of this master’s thesis would be to study the two-sites junctions with an external
drive for the three approaches that we presented here. Indeed, in [43], they do consider the case
of an external field, however, they do not take into account the Redfield approach. In contrast,
in [49] they take into account the Redfield approach, however, they limit their study to the case
where both sites share the same frequency, as we did.The introduction of an external drive will
make the system similar to a quantum heat engine and make possible the study of quantum
batteries, for example.

Another direction to go further would be to investigate open systems with strong couplings
to their environments. In this regime, the Born-Markov approximation no longer holds, necessi-
tating the study of memory effects within the system. Extending third quantization to such cases
would enable the exploration of non-Markovian effects in quantum thermodynamics, as studies
such as [50, 51, 52, 53] have demonstrated their potential to enhance the efficiency of quantum
heat engines.
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Appendix A

Choi-Jamiołkowski isomorphism

In this chapter, we recall the result presented in Sec. 2.5 which provides the matrix representation
of the Liouvillian. Given the Choi-Jamiołkowski isomorphism, for any CPT-map S acting on
ρ(H) such that S[ρ] = AρB for ρ ∈ ρ(H), A,B ∈ B(H), its matrix representation S is given by

S = A⊗BT . (A.1)

Proof. We have to show that
|S[ρ]⟩ = |AρB⟩ = S |ρ⟩ , (A.2)

where |ρ⟩ is the vectorized density operator. Let {|i⟩}, i ∈ {1, ...N} be a basis of H with N the
dimension of H. The spectral theorem gives the decomposition of A and B in this basis,

A =
∑
i,j

aij |i⟩ ⟨j| , B =
∑
k,l

bkl |k⟩ ⟨l| . (A.3)

The same decomposition can be applied to ρ, ρ =
∑

m,n bmn |m⟩ ⟨n|. The element i, j of the
matrix AρB is given by

(AρB)i,j =
∑
k

aik

(∑
l

ρklblj

)
(A.4)

and

|AρB⟩ =


(AρB)11

...
(AρB)1N

...
(AρB)NN

 , (A.5)

where (AρB)i,j corresponds to the element (i− 1)N + j of |AρB⟩. On the other side, ρkl is the
element (k − 1)N + l of |ρ⟩ and

A⊗BT |ρ⟩ =

a11B
T · · · a1NB

T

...
. . .

...
aN1B

T · · · aNNB
T



ρ11
...

ρ1N
...

ρNN

 . (A.6)

Multiplying A ⊗ BT by |ρ⟩, each blockaklBT multiply the corresponding subpart of |ρ⟩, which
gives a sum over the product aikρklblj . This corresponds to the matrix element i, j of AρB.
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Appendix B

Lindblad Master equations

B.1 Derivation of the Lindblad master equation for one mode

In this section, we show how to derive a Lindblad master equation of the form of (4.4). We give
bellow the expressions of the system, environment and interaction Hamiltonian (respectively HS ,
HE and Hint

HS = Ωa†a,

HE =
∑
k

[
ωk,Lb

†
k,Lbk,L + ωk,Rb

†
k,Rbk,R

]
,

Hint =
∑
k

[
γk,La

†bk,L + γk,Ra
†bk,R + h.c.

]
,

where h.c stand for hermitian conjugated.
In the interaction picture, the time evolution of the annihilation and creation operators of

the system, a(t) and a†(t), are given by

a(t) = eiHStae−iHSt = e−iΩta, a†(t) = eiΩta†

and the interaction Hamiltonian Hint becomes

Hint(t) =
∑
k

γk,Le
i(HS+HE)ta†bk,Le

−i(HS+HE)t + γk,Re
i(HS+HE)ta†bk,Re

−i(HS+HE)t + h.c.

=
∑
k

γk,La
†eiHEtbk,Le

−iHEt + γk,Ra(t)
†eiHEtbk,Re

iHEt + h.c.

= B†(t)a(t) + h.c., (B.1)

where we defined the operator B(t) such that

B(t) =
∑

α=L,R
k

γk,αbk,αe
−iωk,αt. (B.2)

We now have to inject (B.1) in (2.28). For the first term of the right-hand-side, we obtain

TrE

[∫ ∞

0
ds
(
B†(t)a(t) + h.c.

)(
B†(t− s)a(t− s) + h.c.

)
ρ(t)⊗ ρE

]
, (B.3)

with ρE = ρL ⊗ ρR where ρL and ρR are both thermal states. Expanding the product in (B.3),
we have a sum of terms of the form B†B†aa + BB†a†a + BBa†a†.1 As the environment is a
tensor product of thermal states, we have

TrE [B
†(t)B†(t− s)ρE ] = 0 = TrE [B(t)B(t− s)ρE ]. (B.4)

1We omit on purpose the time dependence here because it is not necessary.
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Thus, the integrand of (B.3) is equal to

TrE

[(
B†(t)B(t− s)a(t)a†(t− s) + h.c.

)
ρS ⊗ ρE

]
=
(
a(t)a†(t− s) + h.c.

)
ρSTrE

[(
B†(t)B(t− s) + h.c.

)
ρE

]
. (B.5)

By definition, TrE
[(
B†(t)B(t− s)

)
ρE
]
= ⟨B†(t)B(t − s)⟩E and we can expand B and B†

from (B.2)

⟨B†(t)B(t− s)⟩E =

〈∑
α,α′

k,k′

γ∗k,αγk′,α′b†k,αbk′,α′eiωkte−iωk′ (t−s)

〉
E

=
∑
α,α′

k,k′

γ∗k,αγk′,α′

〈
b†k,αbk′,α′

〉
E
eiωkte−iωk′ (t−s). (B.6)

Keeping in mind that the baths are thermal,
〈
b†k,αbk′,α′

〉
= nk,αδk,k′δα,α′ where nk,α is the

Bose-Einstein distribution,

nk,α =
1

eωk,α/T − 1
. (B.7)

We can now define the correlation function C1(s) as

C1(s) =
∑
k,α

|γk,α|2nk,αeiωk,αs. (B.8)

Similarly, we find for ⟨B(t)B†(t− s)⟩E

⟨B(t)B†(t− s)⟩E = C2(s) =
∑
k,α

|γk,α|2(1 + nk,α)e
−iωk,αs. (B.9)

These two correlations function can be found in each term of (2.28). We then rewrite the time
evolution of the density matrix of the system as

ρ̇(t) =

∫ ∞

0
ds
(
C1(s)

[
a†(t− s)ρ(t)a(t)− a(t)a†(t− s)ρ(t)

]
+ C2(s)

[
a(t− s)ρa†(t)− a†(t)a(t− s)ρ(t)

])
+ h.c.. (B.10)

We now elaborate more these correlations functions. Choosing an arbitrary spectral density
J(ω), we change the sum into an integral:

C1(s) =
∑
α

∫ ∞

0
dωk,αJ(ωk,α)nk,α(ωk,α)e

iωk,αs,

C2(s) =
∑
α

∫ ∞

0
dωk,αJ(ωk,α) (1 + nk,α(ωk,α)) e

−iωk,αs. (B.11)

We can show explicitly the effect of this change in the first term of (B.10)∫ ∞

0
dsC1(s)

(
a†(t− s)ρ(t)a(t)

)
=
∑
α

∫ ∞

0
ds

∫ ∞

0
dωk,αJ(ωk,α)nk,α(ωk,α)e

iωk,αse−iΩsa†ρ(t)a

=
∑
α

∫ ∞

0
dωk,αJ(ωk,α)nk,α(ωk,α)a

†ρ(t)a

[∫ ∞

0
dsei(ωk,α−Ω)s

]
.

(B.12)
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The integral between the brackets is a well-known formula of distribution theory,∫ ∞

0
dsei(ωk,α−Ω)s = πδ(wk − Ω) + iP.V.

(
1

ωk − Ω

)
. (B.13)

This is the same decomposition that we made for Γkl in Sec. 2 of chapter 2. If we account only
for the real part, (B.12) is now∫ ∞

0
dsC1(s)

(
a†(t− s)ρ(t)a(t)

)
= πJ(Ω)(nL(Ω) + nR(Ω))a

†ρ(t)a. (B.14)

We removed the subscript k in nα because this quantity does not depend on k from now on. The
other part of the decomposition will appear in the commutator and HLS can be neglected here.

Gathering everything, we can write the master equation in the standard form

ρ̇(t) = −i[Hs, ρ(t)] + πJ(Ω)(nL(Ω) + nR(Ω))

(
a†ρ(t)a− 1

2
{aa†, ρ(t)}

)
+ πJ(Ω)(nL(Ω) + nR(Ω) + 2)

(
aρ(t)a† − 1

2
{a†a, ρ(t)}

)
.

We chose the spectral density J(ω) arbitrary. We now take it such that

πJ(Ω)(nL(Ω) + nR(Ω)) = γL (B.15)

and
πJ(Ω)(nL(Ω) + nR(Ω) + 2) = γR. (B.16)

The master equation studied in Sec. 1 of Chapter 4 is retrieved.

B.2 Derivation of the Lindblad master equation for two modes

This section is dedicated to the computation of a Lindblad master equation for the two mode
system in local and global form.

HS = HL +HR + g(aLa
†
R + a†LaR),

HE =
∑
k

ωk,Lb
†
k,Lbk,L + ωk,Rb

†
k,Rbk,R,

Hint =
∑

α=L,R
k

γk,αa
†
αbk,α + h.c. = Hint,L +Hint,R,

with Hα = Ωαa
†
αaα the Hamiltonian of the site α = L,R. Here, the operators aL, aR, a

†
L, a

†
R are

operators related to the left and right sites, we do not use the notations a1, a2, a
†
1, a

†
2 in order to

to effectively reduce the size of the sums that we will encounter throughout this section. This
notation has nothing to do with the left and right operators defined in Chapter 3.

B.2.1 Local approach

Similarly to the previous case, it is possible to derive a time evolution equation for the reduced
density matrix in the form

ρ̇(t) =
∑

α=L,R

∫ ∞

0
ds
(
C1α(s)

[
a†α(t− s)ρ(t)aα(t)− aα(t)a

†
α(t− s)ρ(t)

]
+ C2α(s)

[
aα(t− s)ρa†α(t)− a†α(t)aα(t− s)ρ(t)

])
+ h.c., (B.17)
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where the bath correlation functions are defined by

C1,α(s) =
∑
k

|γk,α|2nα(ωkα)e
i(ωk,α−Ωα )s, (B.18)

C2,α(s) =
∑
k

|γk,α|2[1 + nα(ωkα)]e
i(ωk,α−Ωα )s, (B.19)

(B.20)

and nα(ωk,α) is the Bose-Einstein distribution for the bath α,

nα(ω) =
1

eω/(kBTα) − 1
. (B.21)

As the correlation functions are peaked around s = 0 and decay for large times, we can perform
the following approximation:

aα(t− s) ≈ aα(t). (B.22)

This approximation directly result in the local master equation given in Sec. 5.1 without need of
the secular approximation (that will be required for the global case).

B.2.2 Global approach

To retrieve the global Lindblad master equation, we first have to rewrite the system Hamiltonian
in a diagonal form,

HS = HL +HR + g(aLa
†
R + a†LaR) = (a†L, a

†
R)

(
ΩL g
g ΩR

)(
aL
aR

)
. (B.23)

Diagonalizing the Hamiltonian is equivalent to find a new pair of creation and annihilation
operators. Thus, the system Hamiltonian is a sum of two independent harmonic oscillators, the
coupling being included in the definition of the new operators:

HS = Ω+a
†
+a+ +Ω−a

†
−a−, (B.24)

where

Ω± =
Ω1 +Ω2 ±

√
4g2 + (Ω1 − Ω2)2

2
(B.25)

and the new operators are given by

a+ = aLcosθ − aR sin θ,

a− = aL sin θ + aRcosθ, (B.26)

with the angle θ defined as

tan θ =
2g

(Ω1 − Ω2)−
√
4g2 + (Ω1 − Ω2)2

. (B.27)

It is trivial to verify that these creation and annihilation operators satisfy the bosonic canonical
commutation relations [aν , a

†
ν′ ] = δνν′ for ν, ν ′ = +,−.

The interest of the diagonalization is that we do not have to deal with the interaction term
between the two sites throughout the computation. We can now express these operators in the
interaction picture:

a+(t) = eiHSta+e
−iHSt = e−iΩ+ta+,

a−(t) = eiHSta−e
−iHSt = e−iΩ−ta−
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and inject it into the expression of Hint in the interaction picture

Hint =
∑
k

γkL

(
a†− sin θ + a†+cosθ

)
bk,L +

∑
k

γkR

(
a†−cosθ − a†+ sin θ

)
bk,R + h.c.

and

Hint(t) =
∑
k

γkL

(
a†−(t) sin θ + a†+(t)cosθ

)
eiHEtbk,Le

−iHEt + h.c.

+
∑
k

γkR

(
a†−(t)cosθ − a†+(t) sin θ

)
eiHEtbk,Re

−iHEt + h.c.

= BL(t)
(
a†−(t) sin θ + a†+(t)cosθ

)
+BR(t)

(
a†−(t)cosθ − a†+(t) sin θ

)
+ h.c.. (B.28)

Similarly to (B.2), we defined Bα(t) for α = L,R as

Bα(t) =
∑
k

γk,αbkαe
−iωkαt. (B.29)

The interaction between the baths and the system can decomposed in a sum two terms, one
corresponding to the interaction with the left bath and the other corresponding to the right
bath, Hint = Hint,L +Hint,R. Considering this, we obtain the analogue of (2.22),

ρ̇(t) =−
∫ ∞

0
dsTrBL

[Hint,L(t), [Hint,L(t− s), ρ(t)⊗ ρBL
]]

−
∫ ∞

0
dsTrBR

[Hint,R(t), [Hint,R(t− s), ρ(t)⊗ ρBR
]],

= LL[ρ] + LR[ρ]. (B.30)

as
TrE [Hint,L(t), [Hint,R(t− s), ρ(t)]] = 0 = TrE [Hint,R(t), [Hint,L(t− s), ρ(t)]] .

We will first focus on LL. It is trivial to find a decomposition similar to (2.27) since we
already partially did it. By construction, [HS , a±] = −Ω± and we can find the expressions for
Sj(ω) and Ej(t)

S1(Ω+) = a+cosθ, S1(Ω−) = a− sin θ,

S2(Ω+) = a†+cosθ, S2(Ω−) = a†− sin θ,

E1(t) = B†
L(t), E2(t) = BL(t). (B.31)

With these operators, we can compute the spectral correlation functions (2.30). For the first
one, we have

Γ11(ω) =

∫ ∞

0
dseiωsTrL

[
E1(t)E

†
1(t− s)ρL

]
=

∫ ∞

0
dseiωsTrL

[
BL(t)B

†
L(t− s)ρL

]
=

∫ ∞

0
dseiωs

∑
k,k′

γk,Lγ
∗
k′,Le

−iωk,Lteiωk′,L(t−s)
〈
bk,Lb

†
k′,L

〉
L

(B.32)

=
∑
k

|γk,L|2[nL(ωk,L) + 1]

∫ ∞

0
dsei(ω−ωk,L)s. (B.33)

As we did for the single mode, we introduce now the spectral density of the left bath
JL(ω) =

∑
j |γk,L|2δ(ω − ωj,L),

Γ11(ω) =

∫ ∞

0
dνJL(ν)

∫ ∞

0
dsei(ω−ν)s[nL(ν) + 1].
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Using formula (B.13), we split Γ11 into its real and imaginary parts (assuming ω > 0),

Γ11(ω) = γL(ω)[nL(ω) + 1] + i[∆L(ω) + ∆′
L(ω)], (B.34)

with

γL(ω) = πJL(ω),

∆L(ω) = P.V.

∫ ∞

0
dω

JLω)

ω − ω
,

∆′
L(ω) = P.V.

∫ ∞

0
dω

JL(ω)nL(ω)

ω − ω
. (B.35)

For the others spectral correlation function, one finds, taking ω > 0,

Γ12(−ω) = Γ21(ω) = 0,Γ22(−ω) = γL(ω)nL(ω)− i∆′
L(ω). (B.36)

Having these expressions for Γkl allows to perform the secular approximation on L1,

L1[ρ(t)] =
∑
ω,ω′

ei(ω
′−ω)tΓ11(ω)

[
S1(ω)ρ(t), S

†
1

(
ω′)]+ ei(ω−ω′)tΓ∗

11(ω)
[
S1
(
ω′) , ρ(t)S†

1(ω)
]

+ei(ω
′−ω)tΓ22(ω)

[
S2(ω)ρ(t), S

†
2

(
ω′)]+ ei(ω−ω′)tΓ∗

22(ω)
[
S2
(
w′) , ρ(t)S†

2(w)
]
.

(B.37)

In this equation, we have a sum over ω, ω′ = Ω±. If ω ̸= ω′, there are terms with a factor
e±2git. We can neglect them2 if 2g is large compared to the inverse of the relaxation rate [54].
Equation (B.37) reads now

L1[ρ(t)] =− i
∆L(Ω+)

2
[a†+a+ρ(t)]− i

∆L(Ω−)

2
[a†−a−ρ(t)]

+ γL(Ω+)[nL(ω+) + 1]

(
a+ρ(t)a

†
+ − 1

2
{a†+a+, ρ(t)}

)
+ γL(Ω+)nL(ω+)

(
a†+ρ(t)a+ − 1

2
{a+a†+, ρ(t)}

)
+ γL(Ω−)[nL(Ω−) + 1]

(
a−ρ(t)a

†
+ − 1

2
{a†+a−, ρ(t)}

)
+ γL(Ω−)nL(Ω−)

(
a†−ρ(t)a− − 1

2
{a−a†−, ρ(t)}

)
.

The same process can be effectuate to the second term of equation (B.30). The only difference
is the minus sign in a+ for Hint,R. This modifies the cross terms, which we neglect anyway when
performing the secular approximation. We obtain an expression of the same form as for L1 with
the replacements L→ R in γ, n and ∆, referring to the right bath.

Turning back to Schrödinger picture and neglecting the HLs as in the previous case, one finds
for the time evolution of the system

ρ̇(t) =− i[HS , ρ(t)]

+ {γL (Ω+) [nL (Ω+) + 1] + γR (Ω+) [n2 (Ω+) + 1]}
(
a+ρS(t)a

†
+ − 1

2

{
a†+a+, ρS(t)

})
+ [γL (Ω+)nL (Ω+) + γR (Ω+)n2 (Ω+)]

(
a†+ρS(t)a+ − 1

2

{
a+a

†
+, ρS(t)

})
+ {γL (Ω−) [nL (Ω−) + 1] + γR (Ω−) [n2 (Ω−) + 1]}

(
a−ρS(t)a

†
− − 1

2

{
a†−a−, ρS(t)

})
+ [γL (Ω−)nL (Ω−) + γR (Ω−)n2 (Ω−)]

(
a†−ρS(t)a− − 1

2

{
a−a

†
−, ρS(t)

})
, (B.38)

2If we do not perform this approximation, we obtain the Redfield master equation presented in Sec. 5.4.
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where HS should be taken in the diagonal form.
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Appendix C

Application of the third quantization

This chapter contains the detailed derivations of the results found in chapter 5.

C.1 Local approach

Using the methods of third quantization, we define successively

H =

(
ω1 g
g ω2

)
, K =

(
0 0
0 0

)
,

M =
1

2

(
γ̄L(ω1) 0

0 γ̄R(ω2)

)
, N =

1

2

(
γL(ω1) 0

0 γR(ω2)

)
,

L =

(
0 0
0 0

)
.

For the X and Y matrices, we find

X =
1

2


iω1 − γL(ω1)−γ̄L(ω1)

2 ig 0 0

ig iω2 − γR(ω2)−γ̄R(ω2)
2 0 0

0 0 −iω1 − γL(ω1)−γ̄L(ω1)
2 −ig

0 0 −ig −iω2 − γR(ω2)−γ̄R(ω2)
2


and

Y =


0 0 γL(ω1)

2 0

0 0 0 γR(ω2)
2

γL(ω1)
2 0 0 0

0 γR(ω2)
2 0 0

 .

The P matrix, which contains the eigenvectors of X is

P =


0 0 −i

4g

(√
λ+ + 16g2 +

√
λ+

)
1

0 0 −i
4g

(√
λ+ + 16g2 −

√
λ+

)
1

i
4g

(√
λ− + 16g2 +

√
λ−

)
1 0 0

i
4g

(√
λ− + 16g2 −

√
λ−

)
1 0 0

 , (C.1)
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where we omitted on purpose the dependence in ω1, ω2 for λ± to lighten the notations. With
the solution of the Lyapunov equation, (5.8) and equation (3.29), we can express the NMM:

ξ1 =a
†L
1 (−P3,1A11 − P4,1A12) + a†

R

1 (P3,1 + P3,1A11 + P4,1A12)

+ a†
L

2 (−P3,1A
∗
12 − P4,1A22) + a†

R

2 (P3,1A
∗
12 + P4,1 + P4,1A22),

ξ2 =a
†L
1 (−A11 −A12) + a†

R

1 (1 +A11 +A12) + a†
L

2 (−A∗
12 −A22) + a†

R

2 (A∗
12 + 1 +A22),

ξ3 =a
L
1 (P1,3 + P1,3A11 + P1,4A

∗
12) + aR1 (−P1,3A11 − P1,4A

∗
12)

+ aL2 (P1,3A12 + P1,4 + P1,4A22) + aR2 (−P1,3A12 − P1,4A22),

ξ4 =a
L
1 (1 +A11 +A∗

12) + aR1 (−A11 −A∗
12) + aL2 (A12 + 1 +A22) + aR2 (−A12 −A22). (C.2)

Rewriting the matrix P with general coefficients b, c, d, e, we have

P =


0 0 d 1
0 0 e 1
b 1 0 0
c 1 0 0

 .

The purpose of this rewriting is to lighten the notations. Similarly, for the matrix Z we have

Z =


0 0 z1 z2
0 0 z∗2 z3
z1 z∗2 0 0
z2 z3 0 0

 .

Following (3.29) for ξ = (ξ1, ξ2, ξ3, ξ4)
T , we derive successively

Za′ =


z1(a

R
1 − aL1 ) + z2(a

R
2 − aL2 )

z∗2(a
R
1 − aL1 ) + z3(a

R
2 − aL2 )

z1(a
†L
1 − a†

R

1 ) + z∗2(a
†L
2 − a†

R

2 )

z2(a
†L
1 − a†

R

1 ) + z3(a
†L
2 − a†

R

2 )

 ,

and

a− Za′ =


aL1 (1 + z1)− aR1 z1 + aL2 z2 − aR2 z2
aL1 z

∗
2 − aR1 z

∗
2 + aL2 (1 + z3)− aR2 z3

−a†
L

1 z1 + a†
R

1 (1 + z1)− a†
L

2 z
∗
2 + a†

R

2 z∗2
−a†

L

1 z2 + a†
R

1 z2 − a†
L

2 z3 + a†
R

2 (1 + z3)

 . (C.3)

Using Li, i ∈ {1, ..., 4} to label the elements of the vector computed in (C.3), we find

ξ = PT
(
a− Za′

)
=


bL3 + cL4

L3 + L4

dL1 + eL2

L1 + L2

 , (C.4)

with

ξ1 = a†
L

1 (−bz1 − cz2) + a†
R

1 (b+ bz1 + cz2) + a†
L

2 (−bz∗2 − cz3) + a†
R

2 (bz∗2 + c+ cz3),

ξ2 = a†
L

1 (−z1 − z2) + a†
R

1 (1 + z1 + z2) + a†
L

2 (−z∗2 − z3) + a†
R

2 (z∗2 + 1 + z3),

ξ3 = aL1 (d+ dz1 + ez∗2) + aR1 (−dz1 − ez∗2) + aL2 (dz2 + e+ ez3) + aR2 (−dz2 − ez3),

ξ4 = aL1 (1 + z1 + z∗2) + aR1 (−z1 − z∗2) + aL2 (z2 + 1 + z3) + aR2 (−z2 − z3). (C.5)
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Unfortunately, replacing the coefficients b, c, d, e and Z1, z2, z3 does not leads to an easily readable
expression. Thus, we must keep these coefficients for the following.

To derive the steady state, we use the same ansatz as in Subsec. 4.1.1, i.e., the steady state
is Gaussian and so it is diagonal in the Fock basis. Using property (3.32) with ξ2, we have
successively

ξ2 |ρNESS⟩ = 0

⇔
∑
n,n′

Cn,n′ [a†1
∣∣n, n′〉 〈n, n′∣∣ (−A11 −A12) +

∣∣n, n′〉 〈n, n′∣∣ a†1(1 +A11 +A12)

+a†2
∣∣n, n′〉 〈n, n′∣∣ (−A∗

12 −A22) +
∣∣n, n′〉 〈n, n′∣∣ a†2(A∗

12 + 1 +A22)] = 0.

Separating the sum and reindexing the first one, we find∑
n,n′

√
n+ 1

∣∣n+ 1, n′
〉 〈
n, n′

∣∣ [Cn,n′(−A11 −A12) + Cn+1,n′(1 +A11 +A12)
]

+
√
n′ + 1

∣∣n, n′ + 1
〉 〈
n, n′

∣∣ [Cn,n′(−A∗
12 −A22) + Cn,n′+1(A

∗
12 + 1 +A22)

]
= 0

The relations between the coefficients are found by equating each term to 0

Cn+1,n′ = Cn,n′
A11 +A12

1 +A11 +A12
,

Cn,n′+1 = Cn,n′
A∗

12 +A22

1 +A∗
12 +A22

. (C.6)

And thus,

Cn,n′ = C0,0

(
A11 +A12

1 +A11 +A12

)n( A∗
12 +A22

1 +A∗
12 +A22

)n′

(C.7)

We find the value of C0,0 using the unitary of the trace of the state.

Tr[|ρNESS⟩] = 1

⇔
∑
l,m

⟨l,m|
∑
n,n′

C0,0

(
A11 +A12

1 +A11 +A12

)n( A∗
12 +A22

1 +A∗
12 +A22

)n′ ∣∣n, n′〉 〈n, n′∣∣l,m〉 = 1

⇔
∑
n,n′

〈
n, n′

∣∣n, n′〉( A11 +A12

1 +A11 +A12

)n( A∗
12 +A22

1 +A∗
12 +A22

)n′

=
1

C0,0

⇔

(∑
n

(
A11 +A12

1 +A11 +A12

)n
)(∑

n′

(
A∗

12 +A22

1 +A∗
12 +A22

)n′)
=

1

C0,0

The geometric series converges respectively when

|A11 +A12| < |1 +A11 +A12|,
|A22 +A∗

12| < |1 +A22 +A∗
12|. (C.8)

If one of these two conditions are not fulfilled, the existence of a unique steady state is not
guaranteed. These conditions corresponds to the case when all rapidities βi defined in (5.6 have
their reel part positive. Considering that these geometric series converges, we find

1

C0,0
= (1 +A11 +A12) (1 +A22 +A∗

12) . (C.9)

We can finally express the steady state of the two-site junction

|ρNESS⟩ =

∑
n,n′

(
A11+A12

1+A11+A12

)n ( A∗
12+A22

1+A∗
12+A22

)n′

|n, n′⟩ |n, n′⟩

(1 +A11 +A12) (1 +A22 +A∗
12)

. (C.10)
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