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Abstract

This thesis deals with a multi-objective approach to promote the circular
economy in the context of chemical recycling of plastic waste. The main
objective of this thesis was to develop a multi-objective decision making tool
that could be integrated into the iSMA framework developed by Pacheco-
López et al. (2023) to fill an identified gap. The literature review highlighted
the growing importance of sustainable plastic waste management, describing
current waste management methods and their limitations, as well as the
potential of chemical recycling to improve this situation. Chemical recycling,
in particular pyrolysis, offers a promising way to convert plastic waste into
valuable resources, although challenges remain in terms of efficiency and
environmental impact.

The iSMA framework generates Pareto optimal solutions for different
recycling paths, but a tool was needed to objectively select the best options.
This tool, developed in Python, implements the multi-objective optimization
methods TOPSIS and PROMETHEE, and includes a sensitivity analysis
module to assess the stability and robustness of alternatives in the face of
uncertainty in the weighting of criteria. The results obtained show that the
tool is functional and able to provide relevant rankings, although depending
on the quality and completeness of the initial data. Future prospects include
extending the tool to other areas of environmental sustainability, integrating
new optimization methods, and specifying criteria weightings guided by local
sustainability policies.
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Résumé

Ce mémoire aborde une approche multi-objectifs pour promouvoir l’économie
circulaire dans le cadre du recyclage chimique des déchets plastiques. L’objectif
principal de ce travail était de développer un outil de prise de décision multi-
objectifs, intégrable dans la structure iSMA développée par Pacheco-López
et al. (2023), afin de combler une lacune identifiée. La revue de littérature a
mis en évidence l’importance croissante de la gestion durable des déchets
plastiques, en décrivant les méthodes actuelles de gestion des déchets et
leurs limitations, ainsi que le potentiel du recyclage chimique pour améliorer
cette situation. Le recyclage chimique, notamment la pyrolyse, offre une voie
prometteuse pour transformer les déchets plastiques en ressources précieuses,
bien que des défis subsistent en termes d’efficacité et d’impact environnemen-
tal.

Le cadre iSMA génère des solutions Pareto optimales pour divers chemins
de recyclage, mais nécessitait un outil pour choisir les meilleures options de
manière objective. Cet outil, développé en Python, implémente les méth-
odes d’optimisation multi-objectifs TOPSIS et PROMETHEE, et intègre un
module d’analyse de sensibilité pour évaluer la stabilité et la robustesse des
alternatives face à l’incertitude de la pondération des critères. Les résul-
tats obtenus montrent que l’outil est fonctionnel et capable de fournir des
classements pertinents, bien que dépendants de la qualité et de l’exhaustivité
des données initiales. Les perspectives futures incluent l’extension de l’outil
à d’autres domaines relatifs à la durabilité environnementale, l’intégration
de nouvelles méthodes d’optimisation, et la spécification de pondérations de
critères guidées par des politiques de développement durable locales.
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Introduction

Global plastics production has increased dramatically in recent decades,
reaching unprecedented levels. In 2019, global plastics production exceeded
368 million tons (Geyer et al. 2017), and this trend continues to grow (Le-
breton et al. 2019). This rapid increase in production has led to a massive
accumulation of plastic waste, which poses serious environmental, economic,
and social problems.

Plastic waste is ubiquitous in the environment: it ends up in oceans,
soil, and even the air we breathe. Plastics take hundreds of years to de-
compose, resulting in persistent pollution and significant ecological damage.
Microplastics, which result from the degradation of plastics, have been de-
tected in many ecosystems and can enter the food chain, with potentially
significant effects on human health (Kumar et al. 2021; Ullah et al. 2023).

Traditionally, plastic waste management has relied on three main meth-
ods: landfilling, incineration and mechanical recycling. However, these meth-
ods have significant limitations. Landfills take up large amounts of space and
can contaminate soil and groundwater (Cook et al. 2020). Incineration, while
reducing the volume of waste, releases harmful pollutants into the atmosphere
and contributes to greenhouse gas emissions (Nagy et al. 2016; Anshassi et
al. 2021). Mechanical recycling, on the other hand, is limited by the type of
materials that can be processed, the degradation of the recycled materials,
and its economic viability (Schyns et al. 2021).

In this context, it is crucial to find sustainable and efficient solutions
for the management of plastic waste. Chemical recycling is emerging as
a promising solution capable of transforming plastic waste into valuable re-
sources. Unlike mechanical recycling, chemical recycling breaks down plastics
into their basic chemical components, which can then be reused to produce
new plastics or other valuable chemicals (Hong et al. 2017). This approach
promotes a circular economy in which waste is continuously reintroduced
into the production cycle, reducing dependence on virgin raw materials and
minimizing environmental impact (Meys et al. 2020).

However, in order to implement chemical recycling on a large scale and
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in an efficient way, it is necessary to develop robust tools to evaluate the dif-
ferent technologies and methods available, taking into account economic and
environmental aspects. With this in mind, the iSMA framework, developed
by Pacheco-López et al. (2023), proposes a holistic methodological approach
to generate and evaluate different recycling pathways for plastic waste.

Starting from a set of processes and associated plastic products, this
framework generates recycling pathways that are combined into a network
that is optimized according to four criteria: economic profit and environ-
mental impact on ecosystems, human health and resources. From this op-
timized network, Pareto optimal solutions with different trade-offs between
the criteria are generated. A selection of these alternatives is then arbitrarily
chosen for detailed modeling. This arbitrary selection creates a clear need
for a robust and systematic multi-objective decision support tool, capable of
objectively selecting the best option from a set of Pareto optimal solutions
according to the user’s preferences.

The main objectives of this thesis are as follows:

1. Development of a multi-objective decision-making tool: This
tool aims to fill the gap identified in the iSMA framework by providing a
systematic method for choosing between Pareto optimal configurations.
The tool will integrate the TOPSIS and PROMETHEE multi-objective
optimization methodologies to provide a complete and objective eval-
uation of the different alternatives.

2. Incorporate sensitivity analysis: A critical aspect of the tool is the
ability to assess the stability and robustness of alternatives in the face
of uncertainty in the weighting of criteria. This feature allows us to
determine whether a solution remains relevant even when conditions
vary slightly, ensuring more reliable and robust decisions.

3. Adapting the tool to different issues: Although developed specif-
ically for the chemical recycling of plastic waste, the tool needs to be
flexible enough to adapt to other environmental sustainability contexts.
This means being able to integrate different databases and decision cri-
teria according to the specific needs of each situation.

These objectives translate into the development of a tool capable of rank-
ing Pareto optimal alternatives, assessing their stability and robustness, and
integrating with the iSMA framework to promote the circular economy in
the chemical recycling of plastic waste.

The development of the multi-objective decision-making tool is based on
a rigorous methodology that includes several key steps to ensure its effective-
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ness. The two multi-objective optimization methods used are TOPSIS and
PROMETHEE.

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution)
ranks alternatives according to their relative distance from an ideal solution
(best for all criteria) and an anti-ideal solution (worst for all criteria). This
method involves normalizing the criteria, calculating the Euclidean distances
to the ideal and anti-ideal solutions, and finally ranking the alternatives
according to these distances.

The PROMETHEE (Preference Ranking Organization METHod for En-
richment Evaluations) method uses preference functions to compare alterna-
tives in pairs and calculate a net outranking flow for each alternative, al-
lowing alternatives to be ranked. This method involves selecting preference
functions, comparing alternatives in pairs, calculating positive and negative
outranking flows, and finally ranking alternatives based on the net flow.

The sensitivity analysis module in this tool follows several key steps. It
begins with the sampling of random weights from normal distributions con-
structed using the uncertainties associated with the criteria weights provided
by the user. These normal distributions are used to generate a large number
of random weightings that reflect possible variations in the user’s preferences.
Each random weighting is then used in optimization methods (TOPSIS or
PROMETHEE) to produce a set of results. By repeating this process with a
large number of random weights, the tool generates a distribution of scores
for each alternative. These distributions are then analyzed to assess the sta-
bility and robustness of the alternatives in the face of weighting uncertainty.
This analysis allows us to visualize how the rankings of alternatives vary ac-
cording to different weightings, providing an in-depth understanding of the
robustness of solutions and helping to identify the most stable alternatives.

Developed in Python, the tool is structured in modules to ensure clear
organization and smooth execution of the various steps. This modularity
allows for efficient data management and results in a tool that can be easily
modified and extended.

The thesis is divided into several chapters to guide the reader through
the research process and findings.

The first chapter is a detailed literature review. It is divided into three
main sections: plastic waste management and associated challenges, chemical
recycling and the circular economy of plastic waste, and finally ontological
frameworks and decision-making tools in environmental sustainability. This
review highlights current challenges and potential solutions for more sustain-
able plastic waste management.

The second chapter explains the rationale of the thesis by describing in
detail the structure of the iSMA framework and the case study of municipal

13



plastic waste recycling considered. It also presents the objectives of the
dissertation.

The third chapter describes the methodology used in this thesis. The
multi-objective optimization methods TOPSIS and PROMETHEE are de-
scribed, as well as the sensitivity analysis module. This chapter also includes
a discussion of the objective reduction and the data normalization method,
which plays a crucial role in obtaining reliable results.

The fourth chapter focuses on the practical development of the tool in
Python. It describes the modular architecture of the tool, the different func-
tions implemented, and the data flow between the modules. This section
highlights the structure and functionality of the tool, as well as the technical
choices made during its development.

The fifth chapter presents and discusses the results obtained. The per-
formances of TOPSIS and PROMETHEE are compared as a function of
different parameters, such as normalization methods, criteria weighting, and
preference functions. The results of the sensitivity analysis are also discussed
in detail, providing a comprehensive assessment of the robustness of the pro-
posed solutions.

Finally, the conclusion summarizes the main contributions of the thesis,
discusses the limitations of the developed tool and proposes prospects for
future research. It highlights the importance of the tool in the context of
multi-criteria decision making for the chemical recycling of plastic waste,
and suggests potential improvements to enhance its applicability and effec-
tiveness.
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Chapter 1

Chemical recycling of plastics
waste: background, challenges
and future directions

1.1 Plastic waste management and associated
challenges

The rise of global plastic production over the past seven decades has been
tremendous, leading to a major impact on waste generation and environmen-
tal policies. This trend is illustrated in Figure 1.1, which shows the annual
plastic production from 1950 to 2019. According to Geyer et al. (2017), pro-
duction soared from about 2 million tonnes in 1950 to 380 million tonnes in
2015. This growth steadily continued, with annual production reaching over
460 million tonnes in 2019, showing a constant increase in plastic use.

The distribution of plastic production by type, as represented in Figure
1.2, indicates that Polyethylene (PE), Polypropylene (PP), and Polyvinyl
Chloride (PVC) together constitute approximately 60% of the global output
in 2021. These materials are essential to various applications due to their di-
verse properties and low cost. PE, with its variants like LDPE and LLDPE,
is extensively used for its flexibility and durability, particularly in the pack-
aging industry. PP is often found in automotive parts and consumer goods
for its resilience and high-temperature resistance. PVC’s rigidity and resis-
tance make it a predominant material in construction industry and medical
devices.

The application of these polymers across industries is described in Figure
1.3, which shows the usage of plastics by sector in 2021. The data reveals
that the packaging sector accounts for 44% of total plastics use, reinforcing
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Figure 1.1: Annual plastic production from 1950 to 2019 including polymer
resin and fibers. Adapted from (Geyer et al. 2017) and (OECD 2022a).

Figure 1.2: Distribution of the global plastics production by type in 2021.
Adapted from (PlasticsEurope 2022).
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Figure 1.3: Distribution of the global plastics use by application in 2021.
Adapted from (PlasticsEurope 2022).

concerns about the extensive use of single-use plastics, as discussed in the
work of Ncube et al. (2021). Plastics are also widely used in the construction
and automotive sectors, illustrating the widespread use of plastics in more
durable applications. However, these applications ultimately add to the gen-
eration of waste, highlighting the significance of managing the entire lifecycle
of plastics.

Looking ahead, the forecasts for plastic production and waste genera-
tion are concerning. According to Lebreton et al. (2019), if current trends
continue, it is projected that the amount of plastic waste will increase sig-
nificantly in the future, further complicating the already challenging task of
managing waste effectively. This trend towards increased production and
waste generation necessitates an urgent reassessment of our global waste
management strategies.

Regarding the current strategies, Figure 1.4 provides a graphical visu-
alization of the lifecycle and various management routes for plastic waste,
ranging from its production to potential end-of-life alternatives. The pro-
cesses depicted in the shaded area of the diagram potentially allow a closed
system for the utilization of plastic. Unfortunately a fully closed loop is
unattainable, not only because most of plastic waste never enter the recy-
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cling stream but also because of the losses and inefficiencies inherent in the
recycling methods themselves. Furthermore, considering the increasing de-
mand, it is inconceivable to cease the production of fresh polymers derived
from fossil resources.

This realization presents a difficult context for the investigation of current
waste disposal techniques. It underscores the necessity for a multifaceted ap-
proach that not only seeks to optimize current recycling and reuse strategies
but also acknowledges and addresses the limitations of these systems. Before
diving into the specific waste management methods, it is essential to realize
that the challenge is not just improving recycling techniques, but also ensur-
ing they are utilized to their full potential. As it is, a significant portion of
plastic waste is sent to landfill, incinerated, or, in the worst cases, leaked into
the environment due to a combination of policy gaps and economic factors.
Enhancing the efficiency of recycling is one part of the solution; the other
crucial aspect is making sure these practices are adopted widely enough to
make a substantial impact.

Landfilling, whether controlled or uncontrolled, shares common challenges
in managing plastic waste, although with varying degrees of environmental
impact. In both scenarios, the challenges include greenhouse gas emissions,
impacts on human health and on ecosystems. Controlled landfills aim to
mitigate these impacts by using containers with liner and methane capture
technologies. However, they still struggle with issues like leachate contami-
nation and incomplete gas capture. Leachate is described as a contaminated
liquid that forms as a result of water passing through a landfill, collect-
ing pollutants, and flowing into underground areas. Uncontrolled dumping
amplifies these problems, leading to more direct and severe consequences
on human health and ecosystems. Hazardous substances from unregulated
landfills can leak into water sources, putting in danger both human health
and ecosystems (Cook et al. 2020). Moreover, the greenhouse gases emitted
from these sites, mostly methane, significantly contribute to global warming.
The global warming potential of methane from landfills is particularly con-
cerning as it is far more potent than carbon dioxide in trapping heat in the
atmosphere. To make matter worse, landfills and open dumps are together
the third contributor to global human-made methane emissions (Wang et al.
2020).

Incineration allows to reduce the volume of plastic waste and in some cases
to recover energy. This process consists of the high-temperature combustion
of plastics which reduces waste volume between 70% and 90%. Modern incin-
erators can recover the energy produced during this process by converting it
into electricity or heat. However, the environmental impact of plastic waste
incineration raises considerable concerns. The burning of plastics, especially
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Figure 1.4: Life cycle and management pathways for plastic waste: from
production to end-of-life options.
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those containing chlorine like PVC, can lead to the emission of dioxins and
other harmful pollutants (Nagy et al. 2016). These harmful substances emit-
ted during combustion impose sophisticated filtration systems in incinerators
to maintain air quality and to reduce risks to public health. Regarding green-
house gas emissions, a careful evaluation of the environmental trade-offs is
necessary when comparing landfilling with incineration (Anshassi et al. 2021).
Indeed the comparison between the direct release of CO2 during incineration
of fossil-based plastics and the slower, but potentially more harmful, methane
emissions from landfills is not straightforward. The use of incineration also
presents a challenge regarding single-use plastics: it offers a seemingly con-
venient disposal method that potentially discourage the reduction of plastic
production. Thus one should consider each solution in its globality in order
to evaluate the best method in a specific context.

The simplest method of plastic recycling is the reuse. Reusing plastic
products is a way of extending their lifespan by using them more than once.
They can be used in the same way, but also for a different purpose. This
approach potentially involves repairs as well as cleaning, particularly when
it comes to food containers. Practical examples include plastic bottles and
reusable shopping bags. This practice is particularly interesting, as it saves
energy and reduces environmental impact in a number of ways. Firstly, reuse
avoids the need to produce new products from fresh raw materials. In addi-
tion to the above-mentioned advantages, this also has an economic benefit.
Secondly, this process avoids the generation of waste and the difficulties as-
sociated with it. However, the reuse of plastics has certain limitations such
as the degradation of plastic quality over time and the limited reusability
of certain types of plastics. It can also presents health and safety concerns,
particularly when reused for food storage. Additionally, there are logistical
difficulties in gathering and distributing used plastics, and consumer percep-
tions about hygiene and aesthetics prevent the widespread adoption of plastic
reuse.

The most widespread method of recycling plastics is mechanical recy-
cling. This recycling method is a process that transforms plastic waste into
reusable materials, thereby reducing the need for virgin plastics. After col-
lection, the waste is first sorted to separate the different types of plastic.
Sorting is a crucial step in mechanical recycling. Indeed, this stage, through
the potential incompatibility of materials, has a significant impact on the
final product quality, as well as on the overall recycling process efficiency.
The sorted plastics are then cleaned to remove any impurities or contami-
nants. Once cleaned, the plastics are shredded into small pieces called flakes.
These flakes are then melted and transformed back into granules, which can
be used in the production of new plastic products. Mechanical recycling
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of plastics offers several key advantages in waste management. Firstly, it
reduces the amount of waste destined for landfill and incineration, helping
to conserve space and reduce environmental impacts. Secondly, by reusing
existing materials, mechanical recycling saves natural resources and reduces
dependence on virgin raw materials. In addition, the process supports the
circular economy, extending the life of materials and stimulating innovation
in the recycling sector. Although it may seem highly advantageous, mechan-
ical recycling suffers from a number of important limitations. Probably the
most important is the deterioration in plastic quality. Although degradation
mechanisms differ from polymer to polymer, changes in chain length and me-
chanical properties are a recurring problem (Schyns et al. 2021). Secondly,
as mentioned above, the inherent complexity of waste sorting makes this
method of recycling very difficult. The process can also be quite costly, mak-
ing it potentially less attractive than the production of new plastics. This
problem is exacerbated by the dependence on market’s demand: if demand
for these recycled materials is low, the economic incentive will be weak.

Leaving aside chemical recycling (which will be discussed in detail in Sec-
tion 1.2), leakage to the environment is the last end-of-life option for plastic
waste shown in Figure 1.4. It is a fate that is unfortunately all too com-
mon for plastic waste. It has been estimated, for example, that between
0.8 and 2.7 million tonnes of plastic waste are dumped into the ocean via
rivers every year, mainly in Asia (Meijer et al. 2021). Environmental leak-
age also extends to terrestrial ecosystems, including urban and peri-urban
areas, forests and wilderness areas, as well as agricultural land. The work
of Kumar et al. (2021) highlights the consequences of this leakage, showing
a complex and widespread impact on ecosystems and human health. The
dispersal of plastic waste in natural environments is leading to an alarming
accumulation of microplastics. These fine particles are capable of absorbing
and transporting chemical pollutants, and can enter food chains, causing eco-
logical imbalances and health problems in animals and humans. The harmful
effects on our health are of particular concern. Microplastics can cross the
body’s biological barriers and accumulate in various tissues, posing signifi-
cant risks of long-term toxicity. Among the chemical pollutants present in
these microplastics are numerous endocrine disruptors. These substances
cause hormonal imbalances with deleterious consequences for the reproduc-
tive system and endocrine organs such as the hypothalamus, pituitary gland
and thyroid, to name but a few (Ullah et al. 2023). However, further studies
are needed to better understand this topic as well as the damage caused by
soil contamination, as the work of Chae et al. (2018) suggests. However,
it is quite clear that this contamination also concerns agricultural soils and
therefore raises the question of food safety. Moreover, as mentioned earlier
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Figure 1.5: Share of plastic waste that is recycled, landfilled, incinerated and
mismanaged across the world in 2019. Adapted from (OECD 2022b).

in the discussion on landfill, the degradation of plastics releases greenhouse
gases, thereby contributing to global warming.

Having explored the various plastic waste management systems and the
difficulties associated with them, as well as the serious consequences associ-
ated with environmental leakage, it is worth looking at current strategies on
a global scale. Figure 1.5 shows the share of plastic waste that is recycled,
landfilled, incinerated and mismanaged in various region of the world in 2019.
Mismanaged plastic waste includes materials burned in open pits, dumped
into seas or open waters, or disposed of in unsanitary landfills and dumpsites.
This chart highlights regional disparities and similarities in waste treatment.
A first obvious observation is that, with the exception of India, where most
plastic waste is mismanaged, the most common fate for this waste around
the world is landfill. In the USA, for example, up to 70% of plastic waste is
landfilled. It can also be observed that a very significant proportion of waste
is mismanaged in India, China and Asia in general, where the state of plastics
management and recycling is highly unsatisfactory. These figures lead us to
believe that Asia is a particularly poor performer in this area, but it is abso-
lutely necessary to nuance this statement, given that Asian countries import
a huge amount of plastic waste from other countries. Indeed, as the analysis
of Liang et al. (2021) on Asia’s plastic waste trade shows, Asia imported
74% of the world’s plastic waste in 2016. These imports mainly concerned
China, but since the ban on imports of plastic waste from foreign countries
came into force at the beginning of 2018, imports have been transferred to
other Asian countries such as Vietnam or Malaysia. It is therefore vital to
bear in mind that this is a global problem. Globally, less than 10% of plastic
waste is recycled, which is by no means enough, especially given the general
inefficiency of current recycling methods.
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In the light of the picture painted in this section, it is clear that profound
changes are needed to improve the current situation. As the work of Prata et
al. (2019) underlines, this issue can only be tackled through a multi-faceted
approach that considers all the ins and outs of plastics production, consump-
tion and disposal. The entire life cycle of plastics needs to be improved,
and this means applying the four R’s rule, in order: reduce, reuse, recycle
and recover. The first step is, of course, sobriety, by regulating production
and consumption. This includes political efforts to ban single-use plastics
and promote sustainable alternatives. Nevertheless, society will continue to
produce waste. It is therefore crucial to design products that are more eas-
ily recyclable and contain fewer harmful additives. More efficient collection
systems are needed to ensure that these products are properly processed. It
is vital that these changes are accompanied by improvements in recycling
methods. Indeed, technological innovation can play a key role, by developing
new methods that are more efficient and less damaging to the environment.
These new solutions will promote the circular economy, transforming waste
into valuable resources. In this context, Section 1.2 will examine a very
promising processing method: chemical recycling. Although this recycling
method presents its own challenges and opportunities, it has the potential to
radically transform the way plastic waste is managed.

1.2 Chemical recycling and circular economy of
plastic waste

The challenges associated with plastic waste management, exacerbated by
the constant increase in its production, were explored in detail in Section 1.1.
While traditional methods such as landfilling, incineration and mechanical
recycling have their own limitations and environmental impacts, chemical
recycling stands out as a promising route to more sustainable plastic waste
management.

The chemical recycling of plastic waste refers to all technologies that en-
able this waste to be converted back into valuable products through chemical
transformations. These valuable products are purified polymers, monomers,
fuels or other chemical substances. These technologies have the advantage of
reintegrating plastics into the production cycle, helping to reduce dependence
on virgin fossil resources and minimize their ecological footprint (Meys et al.
2020). Unlike mechanical recycling, which is often associated with "downcy-
cling" due to the loss of material quality, chemical recycling offers a pathway
to maintain or even improve the quality of recycled materials (Hong et al.
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2017).
Chemical recycling encompasses a variety of methods, each characterized

by its own specific products and constraints. Among them, conversion gener-
ates feedstock in the form of oil or gas, which can be used as fuels or bases for
other chemical compounds. Depolymerization, on the other hand, transforms
polymers back into monomers, while dissolution focuses on the recovery and
purification of the polymers themselves from plastic waste. Each method,
responding to specific challenges, contributes in its own way to the circular
economy by transforming waste into reusable resources.

Dissolution is particularly relevant for processing industrial plastic waste,
such as manufacturing offcuts, which are generally clean and of constant com-
position. According to Walker et al. (2020), the STRAP (solvent-targeted
recovery and precipitation) technique has proved effective in separating in-
dustrial multilayer packaging into pure resins with near-perfect material ef-
ficiency. However, this efficiency needs to be nuanced, as it applies to un-
contaminated post-industrial waste, rather than mixed municipal waste. The
dissolution method presents significant challenges, particularly with regard to
its large-scale application. The use of chemical solvents imposes significant
limitations in terms of cost, availability and post-use management. These
constraints, combined with the need for highly selective solvents to effectively
dissolve specific types of plastic, complicate the dissolution process. Zhao et
al. (2018) also highlight that, despite the production of high-quality plastics,
dissolution and supercritical fluid extraction face similar challenges. These
techniques require improvement to become more environmentally friendly,
economically viable and suitable for large-scale processing of plastic waste.

Depolymerization is a chemical recycling method that involves breaking
long polymer chains into their constituent monomers. This approach is par-
ticularly effective for recycling polyethylene terephthalate (PET), a polyester
whose ester bonds can be easily split by chemical reactions such as hydrol-
ysis, glycolysis or methanolysis. PET’s structure enables efficient recovery
of terephthalic acid and ethylene glycol, which can be reused to produce
virgin-grade PET (Crippa et al. 2019). Depolymerization offers a solution
for recycling PET that is difficult to process by mechanical recycling, partic-
ularly when it is heavily colored or soiled. However, this technique presents
challenges in terms of technical complexity and high cost, making its large-
scale application less practical. Additionally, it is not suitable for all types
of plastic. For example, polyethylene (PE) and polypropylene (PP) have
chemical structures that do not lend themselves well to depolymerization.
Indeed, these polyolefins are long hydrocarbon chains without easily break-
able functional groups like PET’s ester bonds. At the same time, research
into microbial and enzymatic biodegradation of synthetic plastics is opening
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up new prospects for chemical recycling. The work of Mohanan et al. (2020)
highlights the use of microorganisms and enzymes to break down plastics
into reusable monomers or convert them into valuable bioproducts. Although
progress has been made in identifying enzymes capable of degrading PET,
research continues to focus on the discovery and characterization of enzymes
effective for other types of plastic. The speed of degradation and the speci-
ficity of the enzymes remain major obstacles to the wider application of this
type of technique.

While dissolution and depolymerization techniques are often more selec-
tive and geared towards the recovery of specific materials, thermal processes
offer greater flexibility to handle a wide range of plastic wastes and produce a
diversity of useful products (Davidson et al. 2021). These thermal methods,
particularly gasification and pyrolysis, are better suited to municipal waste
management. Indeed, they enable the treatment of large volumes of mixed
and contaminated waste that would otherwise end up in landfill or be incin-
erated (Qureshi et al. 2020). These technologies are based on the application
of heat under a controlled atmosphere, transforming the waste into gas, oil
and coal (Maqsood et al. 2021). Although the basic concept is simple, prac-
tical implementation on an industrial scale can be quite complex. It requires
precise control of process conditions, product and by-product management,
and advanced systems for emissions treatment (N. Zhou et al. 2021). These
challenges, together with questions about energy efficiency and economics,
qualify the considerable potential of thermal processes and motivate techno-
logical advances (Dogu et al. 2021). Moreover, optimizing these technologies
to maximize the quality and utility of end products is an active area of re-
search and development (Solis et al. 2020). It is therefore crucial to explore
gasification and in particular pyrolysis in depth to better understand how
they work, their advantages and challenges, as well as future prospects.

The gasification of plastic waste is a complex process that takes place in
several stages. Initially, the plastics are ground or shredded to a uniform
particle size, facilitating their treatment in the reactor. Once prepared, this
waste is fed into a gasification reactor, which is generally either a fluidized bed
or fixed bed reactor. The fluidized-bed reactor, for example, promotes ho-
mogeneous heat distribution and efficient interaction between the waste and
the gasifying agent, thanks to a fluidized particle medium (Mastellone et al.
2007). In the reactor, the plastics are exposed to high temperatures, typi-
cally between 700°C and 1000°C, generally under atmospheric pressure. The
reactor atmosphere is made up of gasifying agents such as water vapor and
carbon dioxide, plus a small amount of oxygen or air. The first key stage in
the reactor is the pyrolysis of carbonaceous waste. During this stage, volatile
particles are released, forming a gas and a solid matrix called char. Next, the
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small amount of oxygen introduced generates combustion, releasing heat for
the subsequent gasification phase and producing CO2. Then comes the gasi-
fication process proper where the carbon contained in the char reacts with
steam and carbon dioxide to form carbon monoxide and hydrogen following
reactions 1.1 and 1.2 (Janajreh et al. 2020). In addition, the reversible gas
phase water-gas shift reaction (1.3) rapidly reaches equilibrium, stabilizing
the concentrations of carbon monoxide, steam, carbon dioxide and hydrogen.

C + H2O → H2 + CO (1.1)
C + CO2 → 2CO (1.2)

CO + H2O ↔ CO2 + H2 (1.3)

The process is designed to produce syngas, a mixture mainly composed of
hydrogen and carbon monoxide. The conversion efficiency and quality of this
syngas are highly dependent on the reactor’s operating parameters, including
temperature, pressure and the proportion of gasifying agent. Recent techno-
logical advances focus on optimizing these parameters to improve syngas yield
and minimize environmental impacts. Studies such as the one conducted by
Abdelrahman et al. 2018 have explored the use of sustainable materials and
catalysts to improve gasification efficiency and product quality. In terms of
energy applications, syngas is a versatile fuel. It can be burned directly to
generate heat and electricity, or used in internal combustion engines and gas
turbines. Its high calorific value makes it particularly attractive for power
generation. Syngas is also a key raw material in chemical synthesis. It is used
to manufacture a variety of chemicals such as methanol and ammonia, and is
also the reactive mixture used in the Fischer-Tropsch process for hydrocar-
bon production. The transformation of CO and H2 into a range of chemicals
further enhances the value of syngas as a resource (Xu et al. 2010). However,
the presence of contaminants such as tars and fine particles in syngas can
complicate its use. Research and development efforts aim to improve syngas
cleaning methods, removing these impurities and increasing gas purity for
downstream applications. These advances are essential to optimize the use
of syngas and maximize its economic and environmental potential.

Whereas gasification uses a partially oxygenated environment to trans-
form plastic waste into syngas, pyrolysis is taking place in the total absence of
oxygen, thus avoiding any form of combustion. This fundamental difference
affects not only the composition of the final products, but also the strategy
for managing plastic waste. During the pyrolysis process, polymers are trans-
formed into a mixture of pyrolysis oil, gas and char in varying proportions.
The nature of the products obtained and their proportions in the final mix-
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ture depend on factors such as temperature, heating rate and residence time
(Papuga et al. 2016). Pyrolysis is typically carried out at a temperature
between 300°C and 900°C. The selection of temperature and other factors
depends on the specific pyrolysis objectives, such as maximizing oil or gas
production. Pyrolysis reactors also vary, ranging from fixed-bed reactors to
fluidized and rotating beds, each with direct implications for heating rate
and residence time, and thus the quality and quantity of pyrolysis products
(Anuar Sharuddin et al. 2016).

Figure 1.6: Schematic representation of a plastic waste pyrolysis process
retrieved from the paper of Maqsood et al. (2021).

Figure 1.6 shows a schematic process of plastic waste pyrolysis, in which
the plastic waste is shredded and fed into the reactor. When the plastic is
heated and reaches its melting point, it melts and begins to break down into
smaller hydrocarbon molecules. This complex physico-chemical transforma-
tion results in the breaking of various carbon-hydrogen and carbon-carbon
bonds. The work of Hujuri et al. (2011) examines the evolution of polypropy-
lene pyrolysis products as a function of temperature. The way in which
process conditions influence the nature and quantity of the products is used
to determine the pyrolysis mechanism. A combination of random-scission
reactions, intra- and intermolecular hydrogen transfers, β-scissions and rad-
ical recombinations produce different types of alkanes and alkenes covering
a wide range of chain lengths. These volatile molecules in gaseous form are
then sent to a condenser, where they are either condensed into pyrolysis oil,
or remain in a gaseous state for those that cannot be condensed.

The use of catalysts in the pyrolysis of plastic waste significantly modifies
its thermal decomposition. Catalysts, typically zeolites, act by lowering the
temperature required to initiate the pyrolysis reaction and by influencing the
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selectivity of the end products. For example, catalysts such as zeolite ZSM-5
can promote the formation of low-molecular-weight aromatic hydrocarbons
via Diels-Alder cyclization and aromatization of alkenes and dienes from
polyolefin pyrolysis (Onwudili et al. 2019). These catalysts accelerate the
fragmentation of polymer chains and facilitate the formation of more volatile
compounds. Cracking and molecular rearrangement reactions are more pro-
nounced leading to pyrolysis oils with lower molecular weights and a higher
proportion of hydrocarbons in the gasoline range (Ratnasari et al. 2017).
In addition, zeolite catalysts modify the distribution of gaseous products by
promoting the formation of specific gases such as ethylene and propylene,
which can be used as raw materials in the manufacture of polyethylene and
polypropylene, thereby reinforcing the circular economy paradigm (Muham-
mad et al. 2015).

Of the products obtained from the pyrolysis of plastic waste, char is
generally the one obtained in the smallest quantities, as it is less valuable
than oil or gas. However, there are several ways to use it, the most common
being as a substitute for coal as a solid fuel. After activation, it can also
be used as a means of extracting heavy metals, odors and toxic gases from
waste (Maqsood et al. 2021). The gas obtained during pyrolysis consists
of light alkanes and alkenes such as methane, ethane, ethylene, propane,
propylene and butane, as well as non-condensable gases such as dihydrogen
and carbon mono- and dioxides. The nature of the plastic waste and the
reaction temperature play a very important role in the exact composition of
the gas mixture. For example, a high proportion of PET increases CO and
CO2 concentration, while an increase in operating temperature enhances H2

production (Singh et al. 2016). These gaseous products can be used as raw
materials for chemical synthesis. In particular, as described above in the
context of gasification, the syngas contained in the mixture can be used
in a variety of ways. However, this type of valorization requires advanced
separation and purification technologies to isolate useful components and
remove impurities. More simply, thanks to its high calorific value, pyrolysis
gas can be burned to generate electricity via steam turbines, or to produce
the heat needed for the pyrolysis process itself.

Pyrolysis oil from plastic waste processing is a key product in the thermo-
chemical recycling process, distinguished by its high valorization potential.
Compared with the char and gas also produced during pyrolysis, the oil is
generally obtained in larger quantities and has greater reuse and processing
potential, underlining its central role in plastic waste recycling efforts. The
composition of pyrolysis oil varies greatly depending on the conditions under
which pyrolysis is carried out, such as temperature, residence time and the
use of catalysts. These factors influence not only the quantity but also the
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quality of the oil obtained. In terms of physical properties, pyrolysis oil shares
similarities with conventional diesel, particularly with regard to its viscosity
and calorific value (Miandad et al. 2017). However, its chemical composition
can differ significantly. Unlike diesel, which is mainly composed of saturated
alkanes and a smaller proportion of aromatic hydrocarbons, pyrolysis oil can
have a much higher concentration of aromatic compounds, particularly when
it is derived from the pyrolysis of polystyrene-rich mixtures (Miandad et al.
2017). This divergence in composition makes its direct use as a transport
fuel problematic without post-pyrolysis treatments to improve its character-
istics, such as distillation, refining, or blending with conventional diesel to
adjust its composition. Distillation of the pyrolysis oil separates the vari-
ous hydrocarbon fractions, enabling more targeted use of these components,
whether for energy or fuel production, or for the manufacture of new chemi-
cals. The conversion of plastic waste into fuels via pyrolysis is a very active
area of research, offering an attractive method for recovering plastic waste
while meeting energy needs. The critical review of Li et al. (2022) sheds light
on this approach, highlighting the potential for converting plastic waste into
various types of fuel using a variety of technologies, including pyrolysis in
particular. The use of pyrolysis oil as a fuel is emerging as a particularly
attractive avenue for large-scale deployment. This is likely to be a feasible
and profitable business that has already been successfully put into practice,
although it does involve technical difficulties associated with the composition
of pyrolysis oil (Fahim et al. 2021; Faussone 2018). In particular, conversion
into fuels such as diesel and gasoline, suitable for use in internal combustion
engines, illustrates the potential of this approach to make a significant con-
tribution to the energy mix. However, this strategy raises concerns about
its long-term sustainability. Continued reliance on petroleum-based fuels,
even when recycled from plastics, can detract from the aims of the circular
economy, which aims to reduce consumption of non-renewable resources and
promote a more sustainable materials life cycle. In addition, the focus on
burning fuels derived from pyrolysis oil could perpetuate emissions of CO2

and other pollutants, underlining the importance of considering alternative
solutions that better align with the principles of emissions reduction and
environmental preservation.

Aligning plastic waste management with the circular economy opens up
innovative pathways for its valorization. One of the most promising methods
is to convert plastic waste into virgin monomers, which can then be reused to
create new polymers. This offers a sustainable solution by closing the plastic
life cycle. Steam cracking is a particularly relevant technique in this con-
text. This process enables the production of light alkenes such as ethylene,
polypropylene, butene and butadiene, which are essential building blocks for
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the manufacture of a variety of polymers. Basically, thermal cracking is the
preferred industrial means of obtaining these light olefins. In this process,
saturated hydrocarbon chains are broken and converted into smaller, unsat-
urated hydrocarbons, thanks to a multitude of reactions taking place in a
steam-rich environment. Typically, the feedstock for steam cracking includes
naphtha cuts or light alkanes. However, the use of heavier cuts, such as
pyrolysis oil from waste plastics, is also possible (Kusenberg et al. 2022b).
Nevertheless, the massive quantities of raw materials required to feed indus-
trial steam crackers far exceed the available volumes of sorted plastic waste.
This means that it is unrealistic to expect these plants to operate exclusively
on plastic waste. However, it is entirely possible and potentially beneficial
to blend pyrolysis oil obtained from plastic waste with fossil feedstocks tra-
ditionally used in these reactors (Kusenberg et al. 2022b).

e.g., C8H18 → C5H•
11 + C3H•

7 (1.4)
e.g., C9H20 + C3H•

7 → C9H•
19 + C3H8 (1.5)

e.g., C7H•
15 → C5H•

11 + C2H4 (1.6)
e.g., C2H•

5 + H• → C2H6 (1.7)
e.g., C3H8 → C3H6 + H2 (1.8)

e.g., C4H6 + C2H4 → C6H10 (1.9)

The steam cracking process involves a series of complex chemical reac-
tions. However, it is possible to define a number of key stages that transform
heavy hydrocarbons into light olefins, highly valuable compounds. The mech-
anism begins with the homolytic breaking of a carbon-carbon bond, forming
two smaller free radicals (Equation 1.4). This step is the initiation reaction,
generating highly reactive particles that drive subsequent reactions. The
propagation reaction (Equation 1.5) follows, where a free radical interacts
with a hydrocarbon to produce a lighter molecule and another free radical,
continuing the chain of reactions. A crucial step in this process is illustrated
by Equation 1.6, where a free radical can split into a smaller radical and
an olefin. This reaction contributes directly to the formation of light olefins
such as ethylene and propylene. Finally, termination reactions take place,
involving the recombination of two free radicals (Equation 1.7). Beyond this
general process, dehydrogenation reactions (Equation 1.8) also take place,
where alkanes are transformed into olefins while hydrogen is released. In
addition, as shown in Equation 1.9, the Diels-Alder reaction produces cyclo-
hexane derivatives from a diene and an alkene. These cyclohexane derivatives
then undergo dehydrogenation reactions to form a benzene derivative, which
is a coke precursor.
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Figure 1.7: Diagram of the main reactions involved in the steam cracking of
alkanes retrieved from the review of Gholami et al. (2021).

Figure 1.7 shows a general steam cracking diagram, divided into primary
cracking (I) - the splitting of heavy hydrocarbons into lighter compounds
- and secondary cracking (II) - the production of even lighter, olefin-rich
products. This figure also highlights the risk of unwanted reactive alkyne
formation during olefin dehydrogenation (IV).

The success of steam cracking is highly dependent on the quality of the
feedstock processed. This sensitivity underlines the importance of careful
management of plastic waste even before the pyrolysis process. Contamina-
tion of plastic waste can introduce impurities into the resulting pyrolysis oil,
originating in particular from additives used in the production of plastics and
from dirt accumulated during their use. These impurities include oxygenated,
chlorinated and nitrogenous compounds, as well as iron, sodium and silicon
(Kusenberg et al. 2022a). The presence of these compounds and of alkenes
and dienes poses specific challenges for steam cracking. The study by Kusen-
berg et al. (2022b) shows the potential harm caused by these undesirable
substances. Compounds with heteroatoms can poison and thus deactivate
catalysts and cause corrosion in the pipes, notably via the formation of hy-
drochloric acid. Alkenes and dienes cause reactor fouling through increased
coke formation. These consequences greatly affect the overall efficiency of
the cracking process. To overcome these challenges, hydrotreatment appears
to be a key step in purifying pyrolysis oil prior to its use in steam cracking.
This treatment involves reacting the oil with hydrogen at high pressure and
temperature, in the presence of specific catalysts. This technique removes not
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only impurities, but also alkenes and dienes that are unsuitable for cracking.
The use of cobalt/molybdenum (CoMo) and nickel/molybdenum (NiMo) cat-
alysts supported on alumina has proved effective for the hydrotreatment of
a mixture of heavy atmospheric diesel and waste cooking oil, as reported by
Bezergianni et al. (2014) in their analysis. This mixture is comparable to the
composition of plastic waste pyrolysis oil, opening the door to an interesting
solution for the post-treatment of this pyrolysis oil.

This question of the sensitivity of steam cracking to the quality of pyroly-
sis oil highlights a more general constraint associated with chemical recycling:
technical complexity. For example, on paper, the transformation of plastic
waste into virgin monomers through a succession of pyrolysis, hydrotreat-
ment and steam cracking processes seems an ideal solution, but this is with-
out taking into account the technical challenges involved in scaling up such
a process to industrial scale (Dogu et al. 2021). Each of these stages requires
specific operating conditions, advanced equipment and rigorous management.
Precise control of these systems is necessary to achieve sufficient yields and
ensure the quality of the final products (Solis et al. 2020). Moreover, chemi-
cal recycling processes, especially those that use heat as a conversion means
such as pyrolysis and gasification, are particularly energy-intensive. This
high energy demand, potentially through the use of fossil resources, whether
directly or indirectly, strongly qualifies the idea of environmental sustainabil-
ity. Additionally, the environmental impacts of chemical recycling go beyond
energy consumption and greenhouse gas emissions. Processing plastic waste
through chemical recycling can generate by-products and emissions that need
to be managed responsibly to avoid new types of pollution (Hahladakis et
al. 2018). The economic viability of chemical recycling is also an essential
consideration. Indeed, it is utopian to imagine that manufacturers would em-
bark on chemical recycling without expecting a return on their investment,
especially given the potentially colossal investments involved in this type
of technology. Consequently, large-scale adoption of chemical recycling will
only be encouraged if the operational costs associated with energy, catalysts
and equipment maintenance are more than offset by the profits generated
by the sale of recycled products. There are two potential responses to these
challenges: technological innovation and the introduction of new policy regu-
lations. Technological innovation appears to be a crucial lever for improving
efficiency, reducing costs and minimizing the environmental impact of chem-
ical recycling. The development of more energy-efficient processes, improved
catalysts and cleaner treatment methods are all pathways to be explored to
make the chemical recycling of plastic waste more sustainable and econom-
ically viable. The introduction of new policy regulations also plays a key
role. By offering subsidies and tax incentives, governments can encourage
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Figure 1.8: Infographic describing the circular economy model (European
Parliament 2023).

companies to invest in the necessary infrastructure and innovate in the field
of plastic waste processing. Such financial support could offset high initial
costs and operational expenses, making chemical recycling more economi-
cally attractive. In addition, policy regulations can set clear standards for
the quality and safety of products derived from chemical recycling, boosting
consumer and industrial confidence in recycled materials. This could open up
new markets for chemically recycled products and stimulate demand, creat-
ing a virtuous circle. Targeted policies could also encourage research and de-
velopment by facilitating collaboration between companies, universities and
research institutes.

Despite the challenges associated with chemical recycling, the fact re-
mains that it is an essential solution for the development of the circular
economy. The circular economy stands as an alternative economic model
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that breaks with the traditional linear pattern of "take, make, consume,
throw away". Geisendorf et al. (2018) define the circular economy as a sys-
tem where the reuse, repair, renewal and recycling of materials and products
extend their life cycle, thereby reducing resource consumption and waste
production. This approach, depicted in Figure 1.8, aims to create a closed
loop of materials, optimizing the value of resources throughout their life cy-
cle. Chemical recycling, at the heart of the circular economy, plays a key
role in converting plastic waste into monomers or other chemicals that can
then be reused to make new plastics. This technology offers an opportunity
to significantly reduce the environmental footprint of plastics by reducing
the reliance on fossil resources to produce new materials and limiting the
amount of plastic waste destined for landfill or incineration. Meys et al.
(2020) highlight the potential impact of chemical recycling on improving the
environmental sustainability of plastic packaging, providing a viable solution
for its integration into circular economy models.

Having highlighted the importance of chemical recycling for the develop-
ment of the circular economy, despite the challenges involved, it is now time
to look to the future and explore methods to effectively manage the complex-
ity of these technologies. Chemical recycling, with pyrolysis at the forefront,
is a very active field of study, explored through laboratory work and vari-
ous simulations. In the case of pyrolysis, for example, this research reveals a
wide range of potential configurations that are influenced by the nature of the
feedstock, the catalysts used, and the operating conditions. This diversity
of methods poses a major challenge: how to identify the most efficient and
environmentally friendly recycling methods from an ocean of possibilities?
Performing detailed simulations is a critical step prior to actual process de-
velopment. However, this process is both complex and time-consuming, and
cannot be systematically repeated to evaluate the multitude of options avail-
able. Ontological structures and decision-making tools are critical at this
stage. They provide a structured framework for analyzing and comparing
different recycling methods, making it easier to identify and select the most
promising strategies for further exploration. Section 1.3 will focus on the
importance of ontological frameworks and decision-making tools in moving
towards greater environmental sustainability.
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1.3 Ontological frameworks and decision-making
tools in environmental sustainability

Having explored the promises and difficulties associated with chemical recy-
cling, the importance of making informed choices in the face of the multitude
of options available becomes essential in the pursuit of more sustainable ap-
proaches to plastic waste management. This need highlights the usefulness
of ontological frameworks and decision-making tools as effective means of
structuring knowledge and facilitating relevant choices in the complex field
of plastic waste recycling. Ontologies are key elements of knowledge manage-
ment because they provide a structured framework for defining the relevant
concepts in a given domain and the relationships between these concepts.
These structures play an important role in allowing information to be cate-
gorized and linked in a structured way, enabling in-depth understanding and
analysis. In addition, attributes are associated with these concepts. For ex-
ample, in the context of plastic waste recycling, ontological frameworks not
only define the various processes and products and the links between them,
but also allow specific attributes to be associated with each of these pro-
cesses and products. Typically, a given recycling process or different plastic
products would be assigned a cost and an environmental impact, allowing a
multi-criteria evaluation of each option. This ability to associate attributes
with concepts becomes particularly important when exploring complex de-
cisions related to chemical recycling. As Kumazawa et al. (2014) point out,
ontological engineering applied to sustainability science can greatly facilitate
the deliberative process that is essential to addressing sustainability issues
holistically.

The issue of sustainability and the application of these conceptual frame-
works naturally extends to a variety of fields. The work of Muñoz et al.
(2013) illustrates how an ontological framework can facilitate the integra-
tion of environmental concerns into business decision-making processes. The
approach proposed by Hou et al. (2015) uses ontologies and semantic web
technologies to optimize structural design in the construction sector, high-
lighting the importance of considering environmental and economic impacts
from the earliest stages of design. This methodology illustrates how ontolog-
ical frameworks can guide material selection and construction methods that
minimize carbon footprints and maximize sustainability. Finally, Upward
et al. (2016) vision of highly sustainable business models introduces an ex-
tended application of ontological structures and demonstrates how they can
be used to rethink business models with the goal of achieving strong sustain-
ability. By integrating environmental, social, and economic considerations
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within the framework of a business model ontology, companies can identify
strategies that not only reduce their negative impact on the environment,
but also contribute positively to society while maintaining profitability. The
exploitation of the fundamental principles of ontological structures through
these studies reveals a wide range of applications and stresses their impor-
tance in promoting sustainable practices. By taking into account the environ-
mental and economic attributes of processes and products, and by carefully
organizing the associated information, ontological frameworks emerge as an
effective strategy for addressing the challenges inherent in plastic waste recy-
cling. This analysis begins the discussion of decision-making tools and their
synergy with ontologies, a key element in the effective implementation of
strategies to promote environmental sustainability.

Decision-making is a process in which an individual or a group chooses
an option among several alternatives according to specific criteria and objec-
tives. This process involves several key stages: identification of the problem
to be solved, evaluation of the various alternatives available, selection of
the best option and, finally, implementation of the decision. These stages
involve cognitive elements, such as judgment and analysis, as well as emo-
tional factors, underscoring the complexity of decision-making. For example,
according to Papadakis et al. (1998), business decisions are influenced by
three main factors: the details of the situation, the decision makers, and the
overall business context. They point out that decisions are shaped by logic,
established rules, communication, and influence. This shows that a decision
is not just a matter of rationality, but is greatly influenced by the overall
context in which it is made. Decision-making is of paramount importance in
a wide range of fields and sectors. Not only does it influence the direction and
performance of organizations in industrial environments, but it also plays a
key role in social behavior and political governance. Effective and informed
decision making is fundamental to solving problems in a variety of complex
and changing environments (Wilson et al. 2007).

Various theories and strategies have been developed in the field of strate-
gic decision making. These approaches use both analytical methods, based
on data and facts, and more intuitive methods, which take into account per-
sonal experience and instinct. According to Ahmed et al. (2014), decision-
making is not just about choosing the option that looks best on paper; it
involves a thorough evaluation of different options, reflection on potential
consequences, and alignment with long-term goals. A good decision has sev-
eral key elements. It must be informed, considered, aligned, pragmatic, and
adaptive. Informed means based on rigorous analysis of relevant data. A
well-considered and aligned decision is one that takes into account different
future scenarios, uncertainties, and the balance of pros and cons, while being
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Figure 1.9: Eisenhower Matrix.

aligned with the broader goals of the organization. A good decision must
also be achievable within the context of existing resources and constraints,
and be adaptable as the situation evolves. This description of a good deci-
sion suggests that it’s an objective process, but it is important to remember
that decision-making is at least partly subjective. This means that the in-
tervention of human expertise and intuition is often necessary. However, in
today’s complex, data-driven world, the use of specific decision-making tools
becomes not only useful, but sometimes essential.

These tools are methods or software that are used to analyze, evaluate,
and compare different alternatives or options according to specific criteria in
order to make more informed decisions. They can also play an important role
in quantifying uncertainty. Decision-making tools can be classified according
to whether they are qualitative or quantitative. Qualitative decision-making
tools, such as concept maps and decision matrices, help organize thoughts
and categorize alternatives. The Eisenhower Matrix, shown in Figure 1.9,
is a simple example of a qualitative decision-making tool. It involves distin-
guishing between tasks that are important or not, and urgent or not, in order
to organize and prioritize them. This decision matrix can be applied in a va-
riety of contexts and has been used, for example, to prioritize orthodontic
procedures and, therefore, patients on a waiting list (Batra 2017).

Quantitative tools, on the other hand, transform raw data into useful
information to support decision-making. There are a variety of methods and
techniques for analyzing and processing this data. These mathematical tech-
niques are particularly valuable for their ability to quantify the impact of
different options, allowing decision makers to evaluate them objectively. The
study by Bagshaw et al. (2019) examines the trend toward quantitative anal-
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ysis as a core function in decision-making and highlights that it is an effective
tool in today’s organizations. One of the most widely used tools in industry
is linear programming. This technique is highly valued for its versatility, ac-
cessibility, and power. The core of linear programming is the optimization of
a linear objective function that represents a measure, such as cost or profit,
that aims to be maximized or minimized. This objective function is a linear
combination of several parameters called decision variables. Optimization
takes place within constraints in the form of equations or inequalities, which
are also linear. These constraints may include a limited amount of resources,
maximum production capacity, or minimum satisfaction requirements. The
search for the optimal solution in the space of feasible solutions is based
on the application of mathematical or numerical algorithms. The simplex
method, developed by George Dantzig in the 1940s, is the classic algorithm
for solving this type of problem. It is a simple, efficient, and robust algorithm
that works by systematically moving from one vertex to another along the
edges of the space of feasible solutions, each time in a direction that improves
the value of the objective function until no further improvement is possible
(Kye et al. 2019).

Although linear programming is a powerful technique, many real-world
problems don’t fit neatly into its framework, where the objective function
and constraints are linear and the decision variables are continuous. Two
important variants of the method overcome these limitations: mixed-integer
linear programming (MILP) and nonlinear programming (NLP). On the one
hand, in MILP, one or more decision variables are constrained to take only
integer values, which makes it possible to represent elements that cannot
be divided, such as people or machines. However, this type of optimization
is more complex and requires different types of algorithms. On the other
hand, NLP deals with optimization problems where the objective function
or some of the constraints are non-linear. Finding an optimal solution for
these nonlinear problems is more complex because there are local optimums
in addition to the global optimum. There are several specialized solution
methods based on different principles, each with its own advantages and
disadvantages. The steepest descent method is relatively easy to implement
and involves using the gradient to find the direction in which the function
increases or decreases most rapidly. Newton’s and Quasi-Newton’s methods
use not only the gradient but also the curvature of the objective function
via the Hessian matrix to find the direction to the optimum. This technique
is more computationally expensive, but tends to converge faster. Genetic
algorithms, for example, apply the principles of natural evolution through
selection, mutation, and crossover. The introduction of randomness does
not guarantee finding the absolute global optimum, but it does allow the
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Figure 1.10: Example of a Pareto front (Pareto Front n.d.).

exploration of large solution spaces, which proves effective for complex and
highly nonlinear problems.

The methods described above are very effective, but they suffer from a
major conceptual limitation: they are designed to optimize a single objective
function at a time. This fundamental limitation poses a problem when it
comes to making a decision in a multifaceted situation with multiple, often
conflicting, objectives. It is sometimes possible to convert different objectives
into a single measure, but when the criteria are very different in nature, they
are not always quantifiable in the same way. For example, how do you directly
compare financial costs with environmental impact or employee satisfaction?
This is where multi-objective or multi-criteria optimization comes in.

Multi-objective optimization focuses on identifying a set of solutions rather
than a single optimal solution. These solutions are called Pareto optimal and
represent trade-offs between different objectives, where no objective can be
improved without sacrificing another. Thus, the concept of trade-offs is in-
herent in multi-objective optimization. This set of Pareto optimal solutions
is called a Pareto front. An example of a Pareto front, where both objectives
f1 and f2 are to be minimized, is shown in Figure 1.10. The Pareto front, rep-
resented by the red line, includes all non-dominated solutions in the objective
space, unlike the other solutions. For example, point C is strictly dominated
by points A and B because the values of both objectives are higher. On the
other hand, point A is better than point B with respect to the second objec-
tive, and point B is better than point A with respect to the first objective,
which means that one is not strictly better than the other, highlighting the
idea of compromise.

There are many methods for obtaining Pareto fronts in multi-objective
problems, and the ϵ-constraint method is one of the most commonly used.
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The ϵ-constraint method involves optimizing one objective function while
treating the other objectives as constraints (Mavrotas 2009). The general
form is given by:

Minimize f1(x)

Subject to f2(x) ≤ ϵ2

f3(x) ≤ ϵ3
...
fm(x) ≤ ϵm

x ∈ X

Here, f1(x) is the objective function to be minimized, f2(x), f3(x), . . . , fm(x)
are the other objective functions treated as constraints with upper bounds
ϵ2, ϵ3, . . . , ϵm, and X represents the feasible set. To obtain the Pareto front,
the constraints ϵi are varied systematically within their respective ranges.
The optimization problem is solved repeatedly for different values of ϵi, gen-
erating a set of Pareto optimal solutions.

Evolutionary algorithms are also a well-known method for generating
Pareto fronts. These algorithms mimic the processes of natural selection and
biological evolution to solve multi-objective optimization problems. They
start with an initial population of candidate solutions and use genetic op-
erators such as selection, crossover, and mutation to evolve toward better
solutions over generations (A. Zhou et al. 2011). Among the most pop-
ular algorithms in this category is the Multi-Objective Genetic Algorithm
(MOGA), which uses Pareto dominance-based selection to guide the search
toward the Pareto front. Each individual in the population is evaluated ac-
cording to its performance against different objectives, and individuals that
are not dominated by any other are selected to reproduce. Diversity mainte-
nance mechanisms such as crowd distance are often used to ensure a good dis-
tribution of solutions on the Pareto front (Deb et al. 2002). Multi-objective
evolutionary algorithms (MOEAs) are capable of obtaining the approximate
Pareto optimal set in a single run by evolving a population of solutions. Al-
gorithms such as NSGA-II (Non-dominated Sorting Genetic Algorithm II,
Deb et al. (2002)) and SPEA2 (Strength Pareto Evolutionary Algorithm 2,
Zitzler et al. (2001)) are widely used and have proven effective in many ap-
plications. For example, NSGA-II uses non-dominated sorting and crowd
distance to maintain solution diversity, while SPEA2 combines strength of
dominant solutions and an external archive to preserve the best solutions
found.
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To conclude the discussion of Pareto frontiers, it is important to mention
that there are methods to make a choice from a set of Pareto optimal solu-
tions. Multi-Criteria Decision Making (MCDM) methods such as TOPSIS,
PROMETHEE, and VIKOR are particularly relevant in this context. These
methods can be used to rank the various Pareto optimal alternatives and thus
select the best solution using a quantitative and structured approach. For
example, TOPSIS helps identify the solution that is closest to the positive
ideal and furthest from the negative ideal. VIKOR is another method for
determining a compromise solution as a function of distance from the ideal.
The application of these methods often requires human expertise to weight
the different criteria. For example, the study by Makan et al. (2020) uses the
PROMETHEE method to assess the sustainability of large-scale composting
technologies by integrating environmental, economic, social and technical cri-
teria. The weights of the criteria were determined using the judgments of
international experts, making it possible to calculate outranking flows for
each alternative and identify the most sustainable technologies. Similarly,
in the context of multi-site supply chain planning, Felfel et al. (2017) used
TOPSIS and VIKOR to select the best solutions from a set of Pareto optimal
solutions generated by the epsilon constraint method. These methods helped
maximize both profit and product quality by providing decision makers with
tools to evaluate and compare the various options available. These exam-
ples illustrate the importance and effectiveness of MCDM methods in the
decision-making process, particularly in selecting the optimal solution from
among several Pareto optimal alternatives.

1.4 Conclusion
The literature review presented highlights the many challenges associated
with plastic waste management, while emphasizing the importance of chem-
ical recycling and decision-making tools in the context of circular economy.
Global plastic production has increased drastically in recent decades, lead-
ing to an increase in plastic waste. Traditional waste management methods,
such as landfilling, incineration and mechanical recycling, all have significant
limitations, and more sustainable and efficient methods need to be explored.

Chemical recycling is a promising method for the sustainable management
of plastic waste. Unlike mechanical recycling, chemical recycling offers the
opportunity to convert plastic waste back into monomers or other valuable
chemicals, making it easier to return them to the production cycle. Among
the various chemical recycling methods, pyrolysis and gasification are partic-
ularly well suited to treating municipal plastic waste, while dissolution and
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depolymerization offer effective solutions for specific types of plastic such as
PET.

However, the diversity of chemical recycling methods and the many pos-
sible configurations pose a major challenge: How can we identify the most
efficient and environmentally friendly methods among a multitude of op-
tions? This is where ontological structures and decision support tools come
into play. Ontological structures help to structure and organize knowledge
about different recycling processes, facilitating in-depth comparative analy-
sis. They associate attributes such as cost and environmental impact with
each process, enabling multi-criteria evaluation.

Decision-making tools, meanwhile, play a critical role in selecting the best
options from a set of solutions. Multi-objective optimization methods, such
as ϵ-constraint and evolutionary algorithms, generate Pareto fronts that pro-
vide a set of optimal solutions from which to choose. These Pareto fronts rep-
resent trade-offs between different objectives, underscoring the importance
of considering multiple criteria in the decision-making process.

Multi-criteria decision-making methods, such as TOPSIS and PROMETHEE,
are particularly useful for selecting the best solution among Pareto optimal
alternatives. These methods often require human expertise to weight the
criteria, but they provide a structured, quantitative approach to evaluating
and comparing the various options available, making them relevant to the
sustainable management of plastic waste.

In conclusion, the integration of ontological structures and decision-making
tools in plastic waste management offers a promising way to identify and im-
plement the most efficient and sustainable recycling methods. This not only
allows for better management of plastic waste, but also promotes a circular
economy by turning waste into valuable resources. The following chapter ex-
plores the rationale behind this master’s thesis, detailing the objectives and
expected contributions of this research.
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Chapter 2

Rationale for this work

2.1 Background
Chapter 1, which focused on a comprehensive literature review and general
contextualization, highlighted the seriousness of the plastic waste manage-
ment problem. This analysis highlighted the catastrophic environmental im-
pact of plastic waste, the urgent need to develop recycling methods that are
not only effective but also sustainable, and the need for behavioral change
on a global scale. Among the various strategies envisaged, chemical recy-
cling, and in particular thermal decomposition techniques such as pyrolysis,
stand out as a particularly promising solution. However, the implementa-
tion of these techniques on an industrial scale remains limited due to the
complexity of choosing from a multitude of potential variants.

In this context, the work of Pacheco-López et al. (2023) provides a signif-
icant breakthrough. By implementing the innovative methodological frame-
work designated iSMA (acronym for integrated Synthesis, Modeling, and As-
sessment), it is possible to generate and evaluate different recycling paths for
plastic waste. This approach, based on a combination of knowledge manage-
ment, graph theory and optimization algorithms, makes it possible to identify
recycling configurations that are both economically viable and environmen-
tally responsible. However, it has one shortcoming: the choice of which of
the pareto-optimal options to promote to the last stage of the methodology
remains arbitrary.

This is where this work comes in and makes a significant contribution.
By developing a multi-objective decision support tool, this project aims to
facilitate an informed and objective choice among recycling options, based
on specific preferences linked to the context of use of the whole tool. A
key aspect of this tool is its ability to assess the robustness of the proposed

43



Figure 2.1: Schematic representation of the iSMA framework (Pacheco-López
et al. 2023).

solutions in the face of the inherent uncertainty of the user’s preferences,
thanks to its built-in sensitivity analysis. This feature ensures the overall
relevance of a solution, beyond the specificities of a given context.

Although this tool has been developed specifically for the analysis of
chemical recycling paths for plastic waste, its potential application extends
to other contexts where selection from a list of Pareto-optimal options is
required, and where analysis of the robustness of a solution in the face of
uncertainty is crucial. As such, this tool promises to be an interesting con-
tribution to the scientific literature, offering a new perspective on decision
making, and in particular in the field of sustainable recycling and waste
management.

2.2 Description of the iSMA framework

2.2.1 General presentation

The iSMA structure represents a holistic methodological framework designed
to systematically address the complex issue of chemical recycling of plas-
tic waste. Figure 2.1 illustrates the interconnected and iterative nature of
this framework. This architecture highlights how each component interacts
and contributes to the overall process of identifying and evaluating the most
promising recycling pathways.

The diagram shows a process structured around four main modules. At
the heart of the structure is Module I: Ontological database, which serves
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as the foundation for knowledge storage and management. This repository
centralizes essential data on waste, transformation processes and products,
and serves as a reference throughout the assessment process (Pacheco-López
et al. 2021).

Next, Module II: Routing & preassessment aims to generate and prelim-
inarily evaluate potential routes for converting waste into resources. This
module implicitly generates all possible paths connecting waste sources to
final products. These paths are evaluated using a Global Performance In-
dicator (GPI) that takes into account economic profitability, environmental
impact, and technological readiness. The most promising paths are identi-
fied using the Bellman-Ford algorithm (Bellman 1954), which constructs and
evaluates the shortest paths. In this way, the process effectively narrows the
vast range of possibilities down to a manageable selection of routes, while
ensuring that different options are selected using assigned weights for each
processing node.

Module III: Network synthesis represents an advanced optimization phase
in which the pre-selected alternatives are synthesized into a superstructure.
This superstructure is then optimized using a mathematical model developed
by Somoza-Tornos et al. (2021) to determine optimal process networks that
effectively balance economic objectives with environmental criteria.

Finally, Module IV: Detailed design & simulation is dedicated to the
technical realization of the selected configurations. The most promising al-
ternatives are developed through detailed simulations with a view to their
potential implementation on an industrial scale.

Completing the structure, Module 0: External data input represents the
manual addition of new external data by experts, allowing the database to
be enriched and improved by the addition of new technologies or better data
on existing technologies.

2.2.2 Framework objectives

The main objective of the iSMA structure is to build a decision-making
tool that goes beyond traditional approaches to chemical recycling of plastic
waste. The structure aims to provide an overview that not only identifies
and evaluates potential recycling routes, but also steers these routes towards
concrete, optimized implementation while respecting environmental and eco-
nomic constraints.

The goal of iSMA is threefold:

1. Resource Optimization: Identify the most efficient recycling routes
to turn plastic waste into valuable resources, with a focus on minimizing
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environmental impact while maximizing economic benefit.

2. Informed decision making: Provide decision-makers with analytical
tools that allow them to choose from a wide range of recycling options
based on rigorous scientific data and multi-criteria assessments. This
ensures that decisions made are both viable and consistent with sus-
tainable development goals.

3. Adaptability and robustness: Design a flexible, scalable structure
that can adapt to different contexts and integrate new data or technolo-
gies as they emerge. The robustness of the iSMA structure is essential
to ensure its long-term relevance and effectiveness in the face of evolv-
ing industry standards and environmental concerns.

The in-depth case study by Pacheco-López et al. (2023) provides a con-
crete demonstration of iSMA’s ability to synthesize and evaluate complex
recycling configurations. This framework represents a significant step for-
ward in promoting the circular economy.

2.2.3 Stage details

Knowledge management (module I)

This module serves as a central repository for collecting, managing, and
structuring knowledge related to plastic waste recycling processes. It uses a
predefined ontological framework to represent and classify a variety of trans-
formation processes, waste types, and resulting products.

Through the adaptation of the OntoCAPE ontology dedicated to the field
of Process Systems Engineering (PSE) (Marquardt et al. 2010), this module
assimilates information from the scientific literature into a formal database.
This information includes material characteristics and process performance
parameters such as raw material characteristics, processing capacities, yields,
process temperatures, as well as economic data and environmental impact in-
dicators. Materials are modeled as p.states (process states) and processes as
p.steps (process steps). All this information is encoded in a natural machine-
understandable language to ensure efficient knowledge management and to
facilitate queries performed by humans and logical inference by reasoners.
Any entity or relationship between entities can be queried from the ontology.

The power of this module lies in its ability to represent processes and
products using a well-defined relational database, where concepts are related
to each other with different properties relationships (axioms). It enables
the construction of processing paths by mapping waste, available processing
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technologies and valuable products. This modeling serves as the basis for the
generation and preassessment of recycling paths, which are then evaluated
and optimized in subsequent modules of the iSMA framework.

The practical implementation of this module was done using the Protégé
ontology editor (Musen 2015), which integrates an inference engine capable
of validating data consistency and generating new conceptual relationships.
The result is an organized, hierarchical representation of knowledge.

Path generation and pre-assessment (module II)

The second module of the iSMA framework plays a crucial role in the creation
and preliminary evaluation of plastic waste recycling routes. This module,
which has been described in detail in another paper of Pacheco-López et al.
(2021), uses the ontological database built in Module I to perform these tasks,
focusing on two main activities: network construction and route evaluation.

An input-output matching algorithm is developed to link wastes, pro-
cesses and products. Using data from the ontology, a graph is built in steps:
starting from a waste (p.state), the algorithm searches for processes (p.steps)
that use this state as input. For each process step, all outputs are retrieved
and the process is repeated for each new process state, building branches
that end when no marketable product can be obtained or when the process
step has no output, indicating an end-of-life alternative such as incineration
or landfilling.

A tree-like graph is created with all potential branches using a state-task
network approach, where operations and processes are categorized as "tasks"
and raw, intermediate, and final materials as "states." This bipartite graph
connects two types of nodes which are process steps and material states,
storing their corresponding information on economic, environmental, and
behavioral aspects. After the graph is constructed, the algorithm identifies all
possible paths from the initial node, representing the waste to be processed,
to all potential final products, thus enabling further evaluation based on the
total weight of each path.

The paths assessed by the shortest path algorithm are analyzed according
to three main criteria: economic, environmental and technological maturity.
A global performance indicator (GPI) is calculated using the following system
of equations, where index i represents the different process steps, index j
represents the process states, and index k represents the complete paths.
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Profitecoi =
∑
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xout
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∑
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∑
j∈inputsi

xin
i,j · EIp.statej − EIp.stepi (2.2)

Profiteco,pathk =
∑

i∈pathk

Profitecoi (2.3)

Profitenv,pathk =
∑

i∈pathk

Profitenvi (2.4)

Profittotal,pathk = Profiteco,pathk + Profitenv,pathk (2.5)

f eco
k =

Profiteco,pathk −mink{Profiteco,pathk }
maxk{Profiteco,pathk } −mink{Profiteco,pathk }

(2.6)

f env
k =

Profitenv,pathk −mink{Profitenv,pathk }
maxk{Profitenv,pathk } −mink{Profitenv,pathk }

(2.7)

fTRL
k =

TRLk −mink{TRLk}
maxk{TRLk} −mink{TRLk}

(2.8)

GPIk = Profittotal,pathk · f eco
k · f env

k · fTRL
k (2.9)

Equation 2.1 determines the economic profit of a process by calculat-
ing the difference between the sum of the outputs price multiplied by their
corresponding fractions in the output of the process and the sum of the in-
puts price multiplied by their fractions in the input of the process, while
subtracting process costs. Equation 2.2 follows the same principle to eval-
uate environmental profit, using the monetized environmental impacts of
p.states and p.steps rather than their price and processing cost, respectively.
Equations 2.3 and 2.4 add the economic and environmental profits of all
the processes that make up a given path. Equation 2.5 calculates the total
profit by adding the results of Equations 2.3 and 2.4. Equations 2.6, 2.7, and
2.8 generate weighting factors to favor paths with high economic and en-
vironmental benefits as well as superior technological maturity (TRL) over
less profitable, environmentally favorable or mature alternatives. Finally, ac-
cording to Equation 2.9, the global performance indicator (GPI) for a path is
calculated by multiplying the total profit for that path by the corresponding
weighting factors.

The different paths are ranked according to their GPI. Only a limited
number of options are promoted for the next step, while ensuring that a
diverse set of technologies is included. This diversity is ensured by the in-
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formation provided by the ontology, which defines the type of technology for
each path.

Superstructure optimization (module III)

The third module focuses on the optimization of a process superstructure,
forming an optimized network that exploits the waste recycling paths identi-
fied in the previous module. This optimization is based on the mathematical
model developed by Somoza-Tornos et al. (2021), which is a tool that aims
to determine the most appropriate process networks according to economic
profit and three environmental indicators: impacts on human health, ecosys-
tems and resources.

Using mixed-integer linear programming (MILP) optimization, this tool
aims to link different recycling technologies with waste sources and raw mate-
rial requirements, combining recycling paths derived from the previous mod-
ule. First, the superstructure is optimized to maximize/minimize each ob-
jective and then identifies robust anchor points for each pair of bi-objective
criteria, evaluating each environmental objective against economic profit.
Next, the ϵ-constraint method (Mavrotas 2009) is used to generate a set of
Pareto optimal solutions. For each environmental objective, the maximum
and minimum values are known. The interval between these values is then di-
vided into several sub-intervals, for example, into ten parts. For each specific
value within this interval, the model maximizes the economic profit while
taking this value as a constraint. This is how the Pareto optimal solutions
are obtained.

The different resulting configurations are represented by bi-criteria Pareto
fronts, which show the best possible solutions according to the two criteria
evaluated. Each point on a Pareto front corresponds to a specific configura-
tion of the superstructure that is considered optimal, since neither objective
can be improved without compromising the other. Each configuration is char-
acterized by the processes used, the amount of material processed in each, the
products and by-products generated, and the residual waste or by-products
sent to incineration or landfill.

On the basis of these configurations, a summary table is created showing
the evaluation of each configuration according to the four criteria discussed:
economic profit and the three environmental indicators. These data form the
basis of the multi-objective analysis carried out in the present work.
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Process design and optimization (module IV)

The final module of the iSMA framework focuses on the detailed simulation
and optimization of one or more selected processes using Aspen Plus software.
This phase involves complex operations such as heat integration, energy re-
covery, and CO2 capture, with the goal of fine-tuning and optimizing the
configurations developed in the previous phases.

The main objective is to build a rigorous model of the identified optimal
configurations, which requires considerable human expertise. This stage re-
quires extensive technical knowledge to make strategic decisions about equip-
ment, utilities, and operating parameters such as pressure and temperature.
This is a particularly time-consuming part of the process for which automa-
tion has not yet provided effective solutions.

Currently, the selection of options to be simulated from the Pareto op-
timal solutions is arbitrary. The multi-objective decision tool developed in
this project aims to fill this gap. This tool allows for a more systematic and
justified approach to selecting configurations for further investigation, finding
the most adequate trade-off optimal solution to a particular decision-making
situation.

2.3 Case study

2.3.1 Description of the case study

The case study presented focuses on the processing of mixed plastic waste
from municipal sorting centers, consisting of 40% polyethylene (PE), 35%
polypropylene (PP), 18% polystyrene (PS), 4% polyethylene terephthalate
(PET), and 3% polyvinyl chloride (PVC). Figure 2.2 illustrates the com-
plex network of tentative pathways, or connections, created during the first
module of the iSMA framework. This visualization shows intermediates, fi-
nal products, and treatment processes, including end-of-life options such as
incineration and landfilling.

The processes considered include several pyrolysis methods operating at
temperatures ranging from 350°C to 1000°C and using different catalysts.
In addition to pyrolysis, the network also includes a gasification process at
850°C. The conversion steps can be followed by separation, which is essential
to isolate and purify the end products, making them suitable for various
industrial uses or as new raw materials to produce new plastics. Pyrolysis
products can also be used directly as fuels without the need for purification.

The case study is based on the processing of 32.71 tons of plastic waste
per hour, which corresponds to the amount of post-consumer plastic waste

50



Figure 2.2: Graph created during the initial assessment phase, showing ten-
tative connections (Pacheco-López et al. 2023).
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collected in the European Union in 2018 (29.1 million tons), scaled down to
an area the size of the province of Barcelona, with a population of around 5
million.

2.3.2 Resulting data used for this work

Table 2.1 from the third module of the iSMA framework shows the resulting
Pareto optimal configurations, each defined by a specific set of processes.
Each configuration indicates the amount of material processed by the dif-
ferent processes, expressed in tons per hour. As mentioned above, the total
amount of plastic waste mix processed is set to 32.71 tons per hour for all
configurations.

Configurations are color-coded to indicate the use of similar technologies.
Configurations of the same color use the same technologies, but in different
proportions. For example, configurations 1 to 4 and 14 to 16 include a sorting
stage for the mixed plastic waste and therefore use pyrolysis technologies
adapted to each type of waste. Furthermore, configurations 7 to 13 are
distinguished by the inclusion of a separation stage for the gases produced
during the pyrolysis of the initial mix, a feature not present in the other
alternatives.

The Pareto fronts generated in the third module of the iSMA structure,
shown in Figure 2.3, are a graphical representation of the evaluation of the
different configurations according to the four considered criteria: economic
profit, environmental impact on human health, environmental impact on
ecosystems, and environmental impact on resources. Three bi-criteria Pareto
fronts are presented because economic profit is evaluated against each of the
three environmental impacts. Pareto-optimal configurations are those where
none of the criteria can be improved without worsening at least one other
criterion. These fronts help visualize the trade-offs between economic and
environmental objectives.

Economic profit is measured in Euros per hour (€/h) and represents the
net profitability of the configurations, calculated by subtracting operating
and investment costs from the revenues generated by the end products. The
environmental impact on human health is measured in Disability Adjusted
Life Years per hour (DALY/h). DALY measure the difference between an
ideal situation, in which everyone lives to the standard life expectancy in
perfect health, and the actual situation. This measure combines years of life
lost (YLL) due to premature mortality and years of life lost due to disability
(YLD) from living with a disease or its consequences: DALY = YLD + YLL
(Salwa et al. 2020).

Environmental impact on ecosystems is measured in species lost per year
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per hour (species·yr/h) and reflects damage to natural ecosystems, including
biodiversity loss and habitat degradation. Environmental Impact on Re-
sources, measured in USD2013 per hour, represents the additional monetary
costs associated with the need to produce materials to compensate for what
was not obtained through recycling (SimaPro database manual Methods li-
brary 2022). This measure includes the additional costs associated with raw
material extraction, production and depletion of natural resources. In other
words, the unit USD2013 evaluates the expenditure required to produce ma-
terials in the conventional way, taking into account the environmental and
economic impacts of that production.

These environmental criteria are endpoint indicators resulting from the
combination of several midpoint environmental indicators. These indicators
result from the application of the ReCiPe2016 life cycle assessment method-
ology described in the work of Huijbregts et al. (2017). Table 2.2 presents
the numerical evaluations of each configuration according to the four criteria,
which are the starting point for the multi-objective analysis developed in this
work.

2.4 Objective for this work
This master’s thesis aims to fill a gap identified in the iSMA structure. Al-
though this framework is very useful for generating and evaluating different
recycling configurations, it has a limitation: the arbitrary choice of Pareto-
optimal configurations to be modeled in detail. Therefore, the main objective
of this work is to design and develop a systematic and robust decision making
tool for selecting, among the Pareto-optimal configurations, those that need
to be studied in more detail, by integrating the multi-objective optimization
methods TOPSIS and PROMETHEE.

This decision-making tool is designed to select one or more configurations
based on the user’s specific preferences. In fact, the ideal weighting of cri-
teria varies according to the user’s context and priorities. Consequently, the
tool must be flexible and adaptable to different decision environments and
contexts. In addition, the tool must be applicable and adaptable to differ-
ent types of problems, not only those related to sustainability or chemical
recycling of plastic waste.

Another important goal of this tool is to integrate sensitivity analysis
functionality. Since users have to determine their preferences for criteria,
intrinsic uncertainty is inevitable. It is therefore essential to assess how
different solutions behave in the face of this uncertainty. The tool must be
able to analyze the stability and robustness of proposed solutions, ensuring
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Table 2.2: Pareto-optimal solutions evaluated according to the four objectives
(Pacheco-López et al. 2023). This data table serves as a basis for multi-
objective optimization.

Point Profit
(e/h)

Impact on Human
Health (DALY/h)× 10

Impact on Ecosystems
(species · yr/h)× 104

Impact on Resources
(USD2013/h)× 10−4

1 566.37 2.474 5.532 4.082
2 2701.83 2.496 5.576 4.094
3 4223.16 2.518 5.625 4.124
4 5381.57 2.539 5.674 4.156
5 6091.79 2.561 5.720 4.192
6 6221.99 2.583 5.766 4.214
7 6271.55 2.605 5.814 4.220
8 6272.59 2.626 5.862 4.213
9 6273.62 2.648 5.910 4.205
10 6274.65 2.670 5.958 4.198
11 5843.28 2.640 5.890 4.151
12 5324.84 2.624 5.853 4.103
13 4575.07 2.606 5.811 4.056
14 3815.92 2.594 5.785 4.008
15 3002.12 2.582 5.760 3.961
16 2227.80 2.571 5.734 3.914

that a solution remains relevant even if the weighting of the criteria varies
slightly. This ensures that the chosen solution is not only optimal in a highly
specific context, but also retains its relevance and reliability in a variable
context.

In summary, the objective of this work is to develop a tool that:

• From a data table containing the Pareto optimal options evaluated
according to all the criteria considered and the user’s preferences, pro-
duces a ranking of these options.

• Evaluate the stability and robustness of these options with respect to
the uncertainty of the user’s weighting.

The decision making tool is designed to be integrated within the iSMA
framework and be applicable to other contexts. By providing a simple, sys-
tematic, effective and robust method, this tool will help decision makers in
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the complex field of sustainable recycling and contribute to the promotion of
the circular economy.
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(a) Profit against environmental impact
on human health.

(b) Profit against environmental impact
on ecosystems.

(c) Profit against environmental impact
on resources.

Figure 2.3: Optimal Pareto solutions within each two-objective space, ex-
ploring the balance between profit and the three environmental endpoint
indicators (Pacheco-López et al. 2023). Solid dots indicate solutions that are
optimal for their specific bicriteria Pareto front, whereas open dots represent
projections from optimal solutions in other bicriteria Pareto fronts. The so-
lutions are differentiated by color, corresponding to various configurations as
outlined in Table 2.1. A dotted line is used to illustrate hypothetical points
along the Pareto front.
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Chapter 3

Methodology

3.1 Data gathering
The data collection process begins with importing the decision matrix, which
is a table containing the various Pareto-optimal solutions and their evalua-
tions according to the considered criteria. This data is provided in the form
of a CSV or Excel file. Following this, user inputs are gathered. These in-
puts include the nature of each criterion, the weighting of the criteria, and
the chosen normalization method.

• Nature of Criteria: The nature of a criterion refers to whether it is
beneficial or non-beneficial. A beneficial criterion is one that should
be maximized, while a non-beneficial criterion is one that should be
minimized. This step ensures adaptability to various data sets. For
instance, in the case study considered in this work, the profit criterion
is beneficial because it should be maximized, whereas the environmental
impacts are non-beneficial as they should be minimized.

• Criterion Weighting: Users must enter their preferences for each
criterion by assigning a value from 1 to 10, where 1 indicates the least
important and 10 the most important criterion. These assigned values
are then normalized so that their sum equals 1.

• Normalization Method: Users can choose between three normal-
ization options: no normalization, vector normalization, and min-max
normalization.

This data gathering part ensures that the tool can systematically handle
different datasets and accommodate user preferences.
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3.2 Normalization method
The choice of data normalization method is a crucial step in multi-objective
analysis. In fact, this choice can have a significant impact on the final results
(Sałabun et al. 2020). Therefore, it is imperative to make a conscious and
informed choice of the normalization method to be used. In this work, we
focus on two normalization methods: vector normalization and min-max
normalization, since these are the ones offered to the user in the tool.

Vector normalization consists of dividing each element of the decision ma-
trix by the square root of the sum of the squares of the elements in the same
column. Formally, for an element xij of the decision matrix, the normalized
value nij is calculated as follows:

nij =
xij√∑m
i=1 x

2
ij

(3.1)

This method preserves the original distribution of the data.
Min-max normalization consists in adjusting the values of a column so

that they lie between 0 and 1. For an element xij, the normalized value nij

is calculated as follows:

nij =
xij −min(xj)

max(xj)−min(xj)
(3.2)

This method imposes a range of values from 0 to 1, regardless of the
initial distribution of the data.

The distinction between beneficial and non-beneficial criteria is made
at this stage of normalization. For non-beneficial criteria, the normalized
element is obtained by subtracting the normalized value from 1 to invert the
scale. This approach simplifies the interpretation of the normalized values:
the higher the value, the better, regardless of the criterion.

The two normalization methods differ fundamentally in how they treat
the data. Vector normalization preserves the relative distribution of the data,
while min-max normalization can radically alter that distribution. This is
illustrated in Figure 3.1 by the data tables before and after normalization. It
can be seen that the min-max method significantly changes the distribution
of the values for the three environmental criteria, but not for profit. This
difference is explained by the relative differences between the values of the
environmental criteria, which are low, and those of the profit criterion, which
are high.

This can have important implications for multi-objective analysis. For
example, with vector normalization, the environmental criteria will be much
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(a) No normalization.

(b) Vector normalization. (c) Min-max normalization.

Figure 3.1: Comparison of data distribution before and after normalization
(vector and min-max).

less important than the profit criterion, regardless of the weighting, because
their variations are very small. Conversely, min-max normalization puts
all criteria on an equal footing, making the weighting more relevant and
balanced.

This is particularly relevant for the case study presented here. Initially,
the vector method was used for TOPSIS and the min-max method for PROMETHEE,
resulting in very different rankings. The TOPSIS method systematically fa-
vored high-profit options, even with a weighting that favored environmental
criteria. To avoid this disproportionate influence of the profit criterion, the
min-max method is recommended, as it ensures a balanced weighting of the
criteria, regardless of their initial values.
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3.3 Objective reduction
Objective reduction is an important step in multi-objective optimization, as
it aims to simplify the problem by reducing the number of criteria to be
considered without losing necessary information (Yurdakul et al. 2009). A
correlation analysis revealed that two of the environmental criteria considered
were almost perfectly correlated, making one of them redundant.

Pearson’s correlation coefficient was used to identify this redundancy.
This coefficient measures the strength of the linear relationship between two
variables. It is calculated as follows:

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(3.3)

where xi and yi are the values of the variables and x̄ and ȳ are their
respective means. A correlation coefficient of +1 indicates a perfect positive
correlation, -1 indicates a perfect negative correlation, and 0 indicates no
correlation.

Table 3.1: Correlation coefficients between criteria.

/ Profit Human Health Ecosystems Resources
Profit 1,0000 0,7087 0,7192 0,7692

Human Health 0,7087 1,0000 0,9997 0,2857
Ecosystems 0,7192 0,9997 1,0000 0,3070
Resources 0,7692 0,2857 0,3070 1,0000

Table 3.1, which contains the Pearson’s coefficients for each pair of crite-
ria, shows that the coefficient between the environmental impact on human
health and that on ecosystems is 0.9997, which is almost a perfect correla-
tion. This high correlation indicates that these two endpoint environmental
indicators depend on the same midpoint indicators, or that the indicators
they do not share do not have a significant influence in this case study.

The human health criterion was arbitrarily removed to simplify the prob-
lem and avoid double counting or double optimization of certain underlying
parameters.
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3.4 Multi-objective optimization methodologies

3.4.1 TOPSIS

Introduction of the TOPSIS method

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is
a multi-criteria optimization method that ranks and selects the best alterna-
tives from a set of choices according to their proximity to an ideal solution
(Çelikbilek et al. 2020). This method identifies two hypothetical solutions:
an ideal solution and an anti-ideal solution. The first corresponds to a so-
lution that has the best possible values for each criterion (Utopian point),
and the second corresponds to a solution that has the worst possible values
for each criterion (Nadir point). For each alternative, the relative distance
to the ideal and anti-ideal solutions is calculated. Based on these distances,
a performance score is determined and used to generate a ranking.

Steps for implementing TOPSIS

The first step is to normalize the decision matrix using one of the two nor-
malization methods described in Section 3.2. The normalized decision matrix
is then weighted according to the user’s preferences. The weighted values vij
are obtained by multiplying each normalized value by the normalized weight
corresponding to the criterion:

vij = wj · nij (3.4)

where wj is the normalized weight of the criterion j.
The Utopian (U) and Nadir (N) points are determined from the weighted

decision matrix:

U = {v+1 , v+2 , . . . , v+n }, N = {v−1 , v−2 , . . . , v−n } (3.5)

where
v+j = max(vij), v−j = min(vij) (3.6)

The distance from each alternative to the Utopian (D+
i ) and Nadir (D−

i )
points is calculated using the Euclidean distance:

D+
i =

√√√√ n∑
j=1

(vij − v+j )
2, D−

i =

√√√√ n∑
j=1

(vij − v−j )
2 (3.7)
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Figure 3.2: 3-dimensional representation of Pareto optimal solutions,
Utopian and Nadir points, with min-max normalization and equal weighting
for each criterion.

Figure 3.2 shows a 3-dimensional visualization of the different points and
the distance between them. The blue dots represent the different alterna-
tives, the green dot represents the Utopian point, and the red dot represents
the Nadir point. This representation was obtained using a min-max normal-
ization and considering equal weighting for each of the criteria. The Utopian
point is effectively placed at coordinates (1

3
, 1
3
, 1
3
) because these are the best

values (1, 1, 1) obtained after min-max normalization multiplied by a nor-
malized weight of 1

3
, which is identical for each criterion. Similarly, the nadir

point is placed at coordinates (0, 0, 0).
The performance score Pi for each alternative is then determined as fol-

lows:
Pi =

D−
i

D+
i +D−

i

(3.8)

A higher score indicates an alternative that is closer to the Utopian point
and further from the Nadir point. Alternatives are ranked according to their
Pi performance scores. The alternative with the highest Pi score is considered
the best.

The resulting data includes the performance score and ranking position
for each alternative.
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Advantages

• Simplicity and ease of use: TOPSIS is a relatively simple and
straightforward method, making it easy to implement and understand.
It does not require complex calculations, which means it can be used
on large datasets and facilitates its use in a variety of contexts and by
users with different levels of technical expertise.

• Flexibility: TOPSIS can be used with different types of criteria and
is adaptable to a variety of decision situations. It can easily integrate
user preferences in the form of criteria weighting, allowing the analysis
to be adapted to the specific priorities of each case study.

• Clear visualization: TOPSIS results can be easily visualized by rank-
ing alternatives according to their proximity to the ideal solution. This
visualization helps to understand and interpret the results and facili-
tates decision making.

Limitations

• Sensitivity to normalization: TOPSIS results can be strongly in-
fluenced by the normalization method used. As discussed in Section
3.2, vector normalization and min-max normalization can produce very
different distributions of the data, which can affect the final ranking of
the alternatives.

• Dependence on weighting: The method depends on the weights as-
signed to the criteria. If these weights are not rigorously or objectively
defined, they can introduce significant subjectivity into the results. De-
termining weights can be difficult and subjective which requires careful
consideration and possibly consultation with experts or stakeholders.

• Linearity assumption: TOPSIS uses Euclidean distance to calculate
the closeness of alternatives to ideal solutions. This implies a linear
relationship between criteria, i.e. the method assumes that variations
between criteria are proportional. In contexts where the relationships
between criteria are non-linear, this assumption may limit the accuracy
of the evaluation. Complex interactions or threshold effects are not
accounted for by a simple linear distance.

• Handling outliers: TOPSIS can be sensitive to extreme data (out-
liers), which can disproportionately influence both positive and nega-
tive ideal solutions. This can bias computed distances and thus alter-
native rankings.
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• Interactions between criteria: The method treats each criterion in-
dependently and does not consider possible interdependencies between
criteria. In situations where criteria are correlated or interdependent,
this can result in less accurate or relevant scores.

3.4.2 PROMETHEE

Introduction of the PROMETHEE method

Like TOPSIS, PROMETHEE (Preference Ranking Organization Method for
Enrichment Evaluations) is a multi-criteria decision support method for rank-
ing and selecting the best alternatives from a set of choices according to
multiple criteria. However, it is based on a very different principle: pairwise
comparison of alternatives and evaluation of their relative preferences using
preference functions (Maadi et al. 2014). For each criterion, a preference
relationship is established between each pair of alternatives. This relation-
ship is determined by a preference function that quantifies the intensity of
preference for one alternative over another. Preferences are then aggregated
to obtain outranking flows, which are used to compare alternatives. There
are several versions of the PROMETHEE method, and the tool developed
in this master’s thesis uses version II, which provides a complete ranking of
alternatives, ordering all alternatives from best to worst.

Steps for implementing PROMETHEE

As with the TOPSIS method, the first step is to normalize the values of the
decision matrix to make the criteria comparable.

For each pair of alternatives (Ai, Aj) and for each criterion k, the differ-
ence dkij is calculated as follows:

dkij = fk(Ai)− fk(Aj) (3.9)

where fk(Ai) represents the value of the alternative Ai for the criterion k.
The next step is to choose a preference function for each criterion. In the

PROMETHEE method, these functions are used to quantify the degree of
preference of one alternative over another, based on the difference between
their evaluations for a given criterion. The tool proposed in this work allows
the user to choose between three of the most common types of preference
functions: usual, linear and Gaussian. The usual preference function, de-
scribed by Equation 3.10, is the simplest. It only considers whether one of
the alternatives is strictly better than the other. If the difference between
the two alternatives is positive, the preference is 1, i.e., total, otherwise it
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is 0. This function does not require any additional parameters and is useful
when considering a binary decision, a qualitative or critical criterion where
the slightest difference is very important.

Pk(d
k
ij) =

{
0 if dkij ≤ 0

1 if dkij > 0
(3.10)

Equation 3.11 defines the linear preference function, which takes into
account a preference proportional to the deviation. This function uses two
threshold parameters, q and p. If the deviation is less than q, there is no
preference. If the deviation is greater than p, there is full preference. Between
these two thresholds, the preference increases linearly with the difference.
These thresholds allow the sensitivity of the function to be adjusted, making
this approach relevant when it is critical to accurately determine a preference
based on the difference between values.

Pk(d
k
ij) =


0 if dkij ≤ q
dkij−q

p−q
if q < dkij < p

1 if dkij ≥ p

(3.11)

Finally, the Gaussian preference function described by Equation 3.12 uses
a bell curve to model preference. It is defined by a constant, σ, which repre-
sents the standard deviation and controls the width of the curve. In this tool,
this constant is set to 0.3. This preference function is of similar interest as
the linear function, except that here it is possible to give greater importance
to small differences.

Pk(d
k
ij) = 1− exp

(
−
(dkij)

2

2σ2

)
(3.12)

Figure 3.3 provides a visual representation of the three preference func-
tions available in the tool.

Once a preference function Pk(d
k
ij) is chosen for each criterion, it is applied

to each difference. Aggregate preference indices π(Ai, Aj) are then calculated
by weighting the preferences for each criterion by the normalized weight wk

of the criterion:

π(Ai, Aj) =
n∑

k=1

wk · Pk(d
k
ij) (3.13)

This index indicates how much alternative Ai is preferred to alternative
Aj, taking all criteria into account.
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Figure 3.3: Usual, linear and Gaussian preference functions.

Next, positive (ϕ+) and negative (ϕ−) outranking flows are calculated for
each alternative. The positive outranking flow ϕ+(Ai) measures the superi-
ority of alternative Ai over all the others, while the negative outranking flow
ϕ−(Ai) measures the inferiority of the alternative over all the others:

ϕ+(Ai) =
1

m− 1

m∑
j=1,j ̸=i

π(Ai, Aj) (3.14)

ϕ−(Ai) =
1

m− 1

m∑
j=1,j ̸=i

π(Aj, Ai) (3.15)

Finally, the net outranking flow ϕ(Ai) is obtained by subtracting the
negative flow from the positive flow:

ϕ(Ai) = ϕ+(Ai)− ϕ−(Ai) (3.16)

Alternatives are ranked according to their net outranking flows ϕ(Ai).
An alternative with a higher net preference flow is considered better.

The resulting data includes the net outranking flow and ranking position
for each alternative.

Advantages

• Flexibility and advanced consideration of user preferences:
PROMETHEE allows advanced personalization by integrating user
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preferences through preference functions and criteria weighting. The
increased flexibility provided by these preference functions allows mod-
eling complex preferences that cannot be captured by simpler methods
such as TOPSIS.

• Pairwise comparison: The pairwise comparison principle used by
PROMETHEE captures fine nuances between alternatives. This ap-
proach is particularly useful when alternatives are very close in terms
of performance. TOPSIS, on the other hand, which relies on global dis-
tances to ideal solutions, may not always reflect the subtle differences
between alternatives.

• Interpretability: Positive, negative and net outranking flows are in-
tuitive measures that facilitate the interpretation of results. This makes
it easier for decision makers to understand why one alternative is pre-
ferred over another, improving the transparency and acceptability of
decisions.

Limitations

• Complexity of implementation and need for expertise: The
implementation of PROMETHEE can be complex, especially when it
comes to defining appropriate preference functions for each criterion.
This complexity requires specific expertise to properly parameterize the
method, which may limit its accessibility to users.

• Sensitivity to weighting: Like TOPSIS, PROMETHEE is sensitive
to the weights assigned to the criteria. Poorly defined weights can
introduce subjectivity and bias the results.

• Handling outliers: PROMETHEE can be affected by extreme val-
ues (outliers), which can distort the final rankings. This sensitivity is
similar to that of TOPSIS.

• High computational cost: Due to the large number of pairwise com-
parisons required to evaluate alternatives, PROMETHEE can be very
computationally expensive, especially for datasets with many alterna-
tives. This can increase the computational time and resources required,
making the method less practical for large-scale problems.

• Interactions between criteria: Like TOPSIS, PROMETHEE does
not explicitly consider interactions between criteria. In situations where
criteria are highly interdependent, this may limit the accuracy of the
evaluation.
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3.5 Sensitivity analysis

3.5.1 Introduction

Sensitivity analysis is used to evaluate the robustness of alternatives in the
face of uncertainty associated with the weighting of criteria. As mentioned in
Section 3.4, TOPSIS and PROMETHEE multi-objective optimization meth-
ods are sensitive to criteria weighting. Determining an ideal weighting for
a given context is a complex and subjective task that introduces intrinsic
uncertainty. It is crucial to account for this uncertainty when selecting the
best alternative to ensure that it performs not only under specific conditions,
but also in variable situations.

3.5.2 Procedure

The first step in sensitivity analysis is to generate weight ranges for each cri-
terion, sampled from normal distributions constructed based on user-defined
confidence intervals. The user provides a lower and upper bound for each
criterion, defining a 95% confidence interval. From these bounds, a standard
deviation is calculated for each criterion.

The standard normal distribution N (0, 1) has a mean µ of 0 and a stan-
dard deviation σ of 1. The probability density for a variable Z following this
distribution is given by:

f(z) =
1√
2π

e
−z2

2 (3.17)

The cumulative distribution function of the standard normal distribution,
denoted Φ(z), gives the probability that the variable Z is less than or equal
to z:

Φ(z) = P (Z ≤ z) =

∫ z

−∞

1√
2π

e
−t2

2 dt (3.18)

For a 95% confidence interval, the quantile of the standard normal distri-
bution z is such that:

Φ(z) = 0.975 (3.19)

The value 0.975 is used because it indicates that 97.5% of the values in
the distribution are below the quantile z, and because of the symmetry of the
normal distribution, 2.5% of the values are below −z. Calculating the value
of z is usually done using numerical methods, and it is found that z ≈ 1.96.

For a normal distribution with mean µ and standard deviation σ, 95% of
the values are between µ− 1.96σ and µ+ 1.96σ. Assuming a lower bound a
and an upper bound b, it can be written that:
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Figure 3.4: Sampled weights distribution from a normal distribution with
an initial weight of 5 and lower and upper confidence limits of 3 and 7,
respectively.

µ− 1.96σ = a (3.20)

µ+ 1.96σ = b (3.21)

Subtracting the first equation from the second equation gives:

(µ+ 1.96σ)− (µ− 1.96σ) = b− a (3.22)

3.92σ = b− a ⇒ σ =
b− a

3.92
(3.23)

Once the standard deviations have been calculated, normal weight dis-
tributions are constructed for each criterion, centered on their initial weight.
Lists of randomly sampled weights are generated, one per criterion, with a
size of 100,000 elements. Figure 3.4 shows an example of a weight distribu-
tion sampled from a normal distribution with an initial weight of 5 and lower
and upper confidence limits of 3 and 7, respectively.

These lists are then randomly combined to form a desired number of
weight sets.

These weight sets are first normalized and then used to generate perfor-
mance scores and rankings through the application of TOPSIS and PROMETHEE
multi-objective optimization methods. The resulting data is stored as two
matrices: one containing all the scores and the other containing all the rank-
ings.
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Figure 3.5: Ridgeline plot resulting from a sensitivity analysis run with
PROMETHEE and 10,000 weight sets. All initial weights are equal to 5
and all confidence intervals are between 3 and 7.

3.5.3 Results analysis

From the matrix of scores, a score distribution is generated for each alterna-
tive. Figure 3.5 shows an example of a ridgeline plot that shows the score
distributions of all alternatives, allowing them to be compared with each
other. The position and width of these distributions indicate the average
performance and stability of each alternative. A broad peak means that
performance is strongly influenced by variations in weighting, indicating a
degree of instability. Conversely, a narrow peak indicates that the alterna-
tive is stable in the face of weighting uncertainty.

Rankings indicate the frequency with which alternatives reach a particu-
lar position. These frequencies are calculated by simply counting the number
of times a particular position appears for each alternative in the ranking ma-
trix. The sensitivity analysis module determines the frequency with which
each alternative receives the top position or a position in the top three. In
both cases, the top five alternatives are filtered and a histogram is gener-
ated. Examples of these histograms are shown in Figure 3.6. This identifies
the most robust and frequently performing alternatives and provides a more
complete view of their relative stability.
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(a) Percentage of first place. (b) Percentage in the top 3.

Figure 3.6: Percentage of first and top 3 places for the 5 best alternatives
in each case. These results were obtained under the conditions described in
Figure 3.5.

3.5.4 Conclusion

Sensitivity analysis is essential for assessing the robustness of decisions made
using TOPSIS and PROMETHEE multi-objective optimization methods. By
taking into account the uncertainty associated with the weighting of criteria,
this analysis ensures that the alternatives selected are not only optimal under
certain conditions, but also stable and efficient under different weightings.
This increases the reliability of decisions and helps decision-makers make
informed choices even in the presence of uncertainty.

72



Chapter 4

Tool development

4.1 Introduction
The development of the multi-objective decision-making tool required the
practical implementation of the theoretical methodologies described in Chap-
ter 3. This chapter describes how these methodologies were translated into
a functional tool, highlighting the technologies used and the code architec-
ture. The main goal is to provide a clear overview of the tool’s structure
and functionalities, while explaining the technical choices made to ensure its
efficiency and robustness.

The tool consists of several modules, each dedicated to a specific function.
These modules include data collection and preparation, implementation of
the TOPSIS and PROMETHEE optimization methods, sensitivity analysis,
visualization of results, and storage of results. This modular structure is
designed to facilitate the use and modification of the tool.

4.2 Technologies and tools

4.2.1 Programming language

The multi-objective decision-making tool was developed primarily in Python.
This programming language was chosen for several reasons.

First, the iSMA framework described in Chapter 2, from which the de-
velopment project for this tool was born, is also developed in Python. This
ensures consistency and compatibility between the different components of
the project, making it easier to integrate the tool into the existing framework.

Second, Python offers many advantages for the development of scientific
and technical tools. It has a large number of useful libraries that facilitate
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the implementation of complex tasks. These libraries significantly reduce
development time by providing pre-built, optimized functions for various
operations.

Python also benefits from a very large user community. This active com-
munity contributes to rich documentation and rapid support through various
forums and online platforms. This facilitates problem solving and learning
new techniques, making the development process more efficient and less re-
strictive.

Finally, Python’s syntax is clear and expressive, making it easy to write
readable and maintainable code. This is critical in a collaborative project
where multiple developers may be working on the same code. Python’s sim-
plicity also enables rapid prototyping, which is essential for testing and vali-
dating ideas before they are fully implemented.

Thus, the choice of Python as the programming language for the devel-
opment of the tool is based on its consistency with the existing ontological
structure, the richness of its libraries, the support of a large community, and
the clarity of its syntax.

4.2.2 Development environments

Jupyter Notebook

Jupyter Notebook is used for rapid prototyping and experimentation with
different algorithms and techniques. This interactive environment combines
executable code, visualizations, and textual explanations in a single docu-
ment. This facilitates iterative development by allowing immediate visual-
ization of results and interactive data exploration. Key benefits of Jupyter
Notebook include:

• Instant visualization: Calculation results can be immediately visu-
alized in the form of built-in graphs, helping to understand and adjust
algorithms in real time.

• Flexibility: Notebooks can be run cell by cell, providing great flexibil-
ity to develop and test small segments of code before integrating them
into a larger structure.

Visual Studio Code

Visual Studio Code (VS Code) was used for the final development and or-
ganization of the code into modules. VS Code is a lightweight yet powerful
source code editor that integrates many of the features essential to software
development. Key benefits of VS Code include:
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• Extensions and plugins: An extensive library of extensions allows to
add additional functionality, such as support for different programming
languages, integration with version control systems like Git, and code
formatting tools.

• Version management: Native integration with Git makes it easy to
manage code versions and track changes.

• Jupyter Notebook integration: VS Code also supports Jupyter
notebooks, making it easy to switch between interactive prototyping
and more structured, modular development.

4.2.3 Libraries

The development of the tool is based on several essential Python libraries.
These tools simplify and optimize data manipulation and result visualization.

NumPy and Pandas

NumPy (Numerical Python) is a fundamental library for scientific comput-
ing in Python. It provides powerful data structures and optimized functions
for performing mathematical operations on them. NumPy is used for fast,
efficient computations that are critical for optimization algorithms and sen-
sitivity analysis.

Pandas is a data manipulation and analysis library that provides flex-
ible, expressive data structures, DataFrames, and Series. This library fa-
cilitates data manipulation, making the development of mathematical algo-
rithms faster and more intuitive. DataFrames are tabular data structures
with axis labels (rows and columns), while Series are one-dimensional data
structures with index labels. These data structures are powerful because
they offer several advantages:

• Indexing and selection: Quickly access specific rows and columns
using index labels. For example, it is easy to extract an entire column
to perform calculations.

• Vectorized operations: Apply mathematical operations to entire
columns without the need for explicit loops. For example, a column
can be normalized in a single line of code.

• Join and merge: Combine multiple DataFrames using join and merge
operations, simplifying the handling of complex data sets.
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• Mathematical operations: Mathematical operations between DataFrame
and Series are greatly facilitated by row and column indexing. This in-
dexing automatically applies operations between the correct rows and
columns, eliminating the need to write complex loops to ensure data
alignment.

Matplotlib and Seaborn

Matplotlib is a basic library for creating graphs in Python. It is highly flexible
and can be used to create a wide range of visualizations, from line graphs to
complex 3D visualizations.

Seaborn is a data visualization library based on Matplotlib. It provides
more sophisticated statistical visualizations and aesthetic themes by default.
Seaborn is used to create more complex and aesthetically pleasing graphs,
making results easier to interpret.

4.3 Tool architecture
The tool is structured in modules to ensure a clear organization and smooth
execution of the various steps. The data flow, shown in Figure 4.1, begins
with the collection of data about the alternatives and the user’s preferences,
performed by the data collection module. This data is then processed by
optimization methods. After processing, a sensitivity analysis is performed.
The results of this analysis are then analyzed and visualized, and finally
stored for future use.

The tool is coordinated by two main executable files, one for TOPSIS and
one for PROMETHEE. Each main file successively calls the main function
defined within each module, allowing the execution of the different stages of
the tool.

Each module contains several functions, each of which models a specific
step, such as performing a mathematical operation, displaying a graph, or
saving a particular set of data. These functions are aggregated into a main
function within each module. This main function is then called in the corre-
sponding main file (TOPSIS or PROMETHEE).

The main file for TOPSIS, TOPSIS_main.py, successively calls the
main functions of the different TOPSIS-specific modules to compose the com-
plete tool. Similarly, the main file for PROMETHEE, PROMETHEE_main.py,
coordinates the steps specific to the PROMETHEE method by calling the
main functions of the corresponding modules.

There are five types of modules in the tool:
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Figure 4.1: Data flow within the tool.

• Data gathering: This module collects data on alternatives and user
input and normalizes the data set.

• Optimization methods: This type of module has two versions, one
for TOPSIS and one for PROMETHEE, each implementing the steps
specific to their respective algorithms.

• Sensitivity analysis: This module performs sensitivity analysis, with
specific versions for TOPSIS and PROMETHEE.

• Plotting results: This module uses visualization libraries to display
results.

• Saving results: This type of module saves results in CSV files.

This modular structure ensures clear organization and easy adaptation of
the tool to different contexts and needs, while facilitating maintenance and
future extensions. The complete code of the tool, including all source files, is
available on GitHub. The repository can be browsed at: GitHub - MODM
tool.
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Chapter 5

Results and discussion

5.1 Introduction
This chapter analyzes the results obtained with the multi-objective decision-
making tool by varying different parameters: the normalization method, the
criteria weighting as well as the uncertainty associated, and the preference
functions for the PROMETHEE method. The aim is to understand how
these parameters influence the final results and to compare the performance
of the different alternatives using the TOPSIS and PROMETHEE methods.

The analysis first examines the impact of the normalization method on
the results for each optimization method. Next, the impact of the weighting
of the criteria on the results is studied by comparing different weighting
scenarios. For PROMETHEE, the impact of preference functions is also
analyzed by comparing the usual function and the Gaussian function. Finally,
a global comparison is made between TOPSIS and PROMETHEE using a
fixed normalization method, balanced weighting, and preference function.
This comparison also includes a study of different degrees of uncertainty for
the sensitivity analysis in order to assess the robustness of the solutions.
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5.2 Results analysis for TOPSIS

5.2.1 Impact of the normalization method

(a) Min-max normalization. (b) Vector normalization.

Figure 5.1: Comparison of alternative rankings using the two normalization
methods for TOPSIS, with equal weighting for each criterion (5, 5, 5).

Figure 5.1 shows that vector normalization systematically favors high-profit
alternatives by placing them at the top of the ranking. The 6 best alterna-
tives, 6, 5, 7, 8, 9, and 10, are relatively indistinguishable from each other,
as they have fairly similar performances for all criteria. Alternative 1, on the
other hand, with its very good environmental performance, is ranked by far
last, as it has the lowest profit of all the alternatives.

Min-max standardization, on the other hand, represents a much more
balanced approach to the consideration of different criteria. High profit
alternatives tend to be ranked lower because they do not offer significant
improvement in environmental criteria compared to the small additional eco-
nomic gain. This trend is reflected in the bottom ranking of Alternative
10, which has the highest economic benefit. On the other hand, Alternative
16 is ranked first, despite having the second lowest profit, because it offers
very good environmental performance, especially in terms of resource impact,
where it is the best.

These observations are consistent with the discussion in Section 3.2, which
concluded that the min-max normalization method takes into account the
different criteria in a balanced way, regardless of the initial distribution of
the values associated with these criteria, which is not the case with vector
normalization.
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(a) Min-max normalization. (b) Vector normalization.

Figure 5.2: Comparison of performance scores distributions obtained through
sensitivity analysis using the two normalization methods for TOPSIS, with
equal weighting (5, 5, 5) and uncertainty (± 20%) for each criterion.

Figure 5.2 shows a clear difference between the score distributions accord-
ing to the normalization method. The vector normalization shows a wider
spread of the scores obtained by the alternatives, ranging from almost 0 to
almost 1, while producing distributions at well-defined positions. Again, al-
ternatives 5, 6, 7, 8, 9, and 10 are almost indistinguishable. The narrowness
and precise positioning of the distributions show that the influence of the
criteria weighting is virtually null when vector normalization is used.

In contrast, the min-max normalization method produces much broader
distributions with closer mean values. This shows that the results obtained
are highly dependent on the weighting used. The wider distributions indi-
cate that each criterion has a more balanced weight in the final calculation,
reflecting better the diversity of the criteria evaluated.

Finally, Figure 5.3 shows that a dominant alternative can be identified
for both normalization methods. However, this dominance is more relative
for min-max normalization, where alternative 16 ranks first in about 40% of
the simulations. On the other hand, for vector normalization, alternative 6
is the best in more than 60% of the cases. It can also be noted that the first
place is globally shared between 5 alternatives for min-max normalization,
while alternatives 6 and 5 account for almost 100% of the first places in the
case of vector normalization.

The analysis shows that the normalization method has a significant im-
pact on the TOPSIS results. Vector normalization strongly favors high-profit
alternatives, systematically placing them at the top of the ranking. Min-max
normalization, on the other hand, offers a more balanced approach, taking
better account of the different criteria and allowing a fairer distribution of the
top positions among the alternatives. The choice of normalization method
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(a) Min-max normalization. (b) Vector normalization.

Figure 5.3: Comparison of first place percentages of the 5 best alternatives
obtained through sensitivity analysis using the two normalization methods
for TOPSIS, with equal weighting (5, 5, 5) and uncertainty (± 20%) for each
criterion.

must therefore be made according to the specific objectives of the analysis
and the criteria to be evaluated.

5.2.2 Impact of the criteria weighting

(a) Profit-oriented weighting (7, 3, 3). (b) Environmental-oriented weighting
(3, 7, 7).

Figure 5.4: Comparison of alternative rankings using two weighting scenarios
for TOPSIS, with min-max normalization.
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In the profit-oriented scenario (Figure 5.4a), the alternatives with the best
economic scores are generally preferred. Alternatives 5, 4, 6, 7, 12, and 11
occupy the top positions in the ranking. However, some high-profit alterna-
tives, such as alternatives 8, 9, and 10, are ranked behind alternatives with
slightly lower profits, such as alternative 4. This is because this weighting
does not give absolute importance to profit, as it also takes environmental cri-
teria into account, although in a more moderate way. The alternatives with
the highest profits, such as Alternative 10, do not offer an ideal compromise
between profit and environmental impact.

In the environmentally-oriented scenario (Figure 5.4b), alternatives with
better environmental performance are favored. Alternative 16, with the sec-
ond lowest profit but the best performance in terms of impact on resources, is
in first place. Alternatives 15, 1, 2 and 14 follow, highlighting the increased
importance of environmental criteria in this weighting scenario. Note that
even with a significant relative importance for the profit criterion (3 for profit
vs. 7 for environmental criteria), the high-profit alternatives are systemati-
cally ranked at the bottom.

These results show that the weighting of criteria has a strong influence
on the ranking of alternatives. By adjusting the weights to reflect different
priorities, decision-makers can steer the choice towards solutions that better
meet their specific objectives, whether economic or environmental. Alterna-
tives that offer a better compromise among the three criteria are highlighted,
demonstrating the flexibility of the method to adapt to different scenarios.

(a) Profit-oriented weighting (7, 3, 3). (b) Environmental-oriented weighting
(3, 7, 7).

Figure 5.5: Comparison of performance scores distributions obtained through
sensitivity analysis using two weighting scenarios for TOPSIS, with min-max
normalization and equal uncertainty (± 20%) for each criterion.

Figure 5.5 compares the performance score distributions obtained from
the sensitivity analysis.
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In the profit-oriented scenario (Figure 5.5a), the high-profit alternatives,
such as 5, 4, 6, 7, and 12, are ranked ahead of the others and have broader
overall distributions with relatively close average performances. This indi-
cates that these alternatives, although favored by their profit, show greater
variability in their scores in response to weighting uncertainty.

Moving to the environmental scenario (Figure 5.5b), the difference be-
tween average performance of the distributions becomes clearer. Alterna-
tives with higher environmental performance, such as 16, 15, 1, 2, and 14,
are now ahead of those with higher profits. It can be seen that, with the
exception of Alternative 16, the more environmentally oriented alternatives
tend to have narrower peaks, demonstrating greater stability in the face of
weighting uncertainty.

One particular observation can be made for Alternative 1. When we move
from the profit-oriented scenario to the environmental-oriented scenario, a
gain in stability is noticed. The fact that Alternative 1 is the worst from
a profit perspective and one of the best from an environmental perspective
suggests that the stability of an alternative depends not only on its intrinsic
performance, but also on the initial weighting. This observation underlines
the importance of the weighting of criteria in the evaluation of alternatives,
which influences not only their ranking but also their robustness in the face
of uncertainties.

(a) Profit-oriented weighting (7, 3, 3). (b) Environmental-oriented weighting
(3, 7, 7).

Figure 5.6: Comparison of first place percentages of the 5 best alternatives
obtained through sensitivity analysis using two weighting scenarios for TOP-
SIS, with min-max normalization and equal uncertainty (± 20%) for each
criterion.

Figure 5.6 compares the first-place percentages of the five best alternatives

83



obtained from the sensitivity analysis.
In the profit-oriented scenario (Figure 5.6a), Alternative 5 clearly dom-

inates, taking the top spot in over 50% of the simulations. Alternatives 4,
12, 13, and 11 follow with significantly lower percentages, with alternative
4 taking about 30% of the top spots and the other alternatives sharing the
remaining 20%. This shows that even with uncertainty in the weightings,
Alternative 5 remains widely preferred when high profit is prioritized.

In the environmentally-oriented scenario (Figure 5.6b), Alternative 16
becomes largely dominant, ranking first in nearly 80% of simulations. Alter-
natives 1 and 2 share the remaining top spots with much lower percentages.
This reflects a strong preference for Alternative 16 when environmental cri-
teria are weighted more heavily.

These results demonstrate the significant impact of criteria weighting on
the ranking of alternatives. An alternative can go from dominant to marginal
depending on the priorities defined by the weighting. The min-max normal-
ization method brings out this variation clearly, showing that the preferences
of the decision makers strongly influence the results obtained by TOPSIS.

5.2.3 Impact of the weighting uncertainty

(a) Uncertainty of ± 10% for each crite-
rion.

(b) Uncertainty of ± 30% for each crite-
rion.

Figure 5.7: Comparison of performance scores distributions obtained through
sensitivity analysis using two uncertainty scenarios for TOPSIS, with min-
max normalization and equal weighting (5, 5, 5) for each criterion.

Figure 5.7 compares the score distributions obtained from the sensitivity
analysis for two uncertainty scenarios. As expected, increasing the uncer-
tainty of the weights from ± 10% (Figure 5.7a) to ± 30% (Figure 5.7b) has
the effect of broadening the score distributions. This broadening of the dis-
tributions reflects the greater variability of the scores due to the increased

84



uncertainty. It is important to note that although the distributions are wider
in the increased uncertainty scenario, the overall average performance of the
alternatives remains unchanged. This is visible despite the difference in scale
on the x-axis: the distributions range from 0.4 to 0.6 in Figure 5.7a, while
they range from 0.25 to 0.75 in Figure 5.7b.

(a) Uncertainty of ± 10% for each crite-
rion.

(b) Uncertainty of ± 30% for each crite-
rion.

Figure 5.8: Comparison of first place percentages of the 5 best alterna-
tives obtained through sensitivity analysis using two uncertainty scenarios
for TOPSIS, with min-max normalization and equal weighting (5, 5, 5) for
each criterion.

Figure 5.8 compares the ranked percentages of the top 5 alternatives ob-
tained through sensitivity analysis for two uncertainty scenarios. In both
scenarios, the top 5 alternatives remain the same, with alternative 16 hold-
ing the top position. However, the order of the next 4 alternatives changes
slightly. Alternative 16, while remaining in first place, achieves a higher
percentage of first places in the lower uncertainty case (± 10%), reaching
almost 55% of the simulations. When the uncertainty increases to ± 30%,
this percentage decreases to about 35%. These observations show that al-
though increasing uncertainty affects the relative dominance of Alternative
16, it remains the best option overall.
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5.3 Results analysis for PROMETHEE

5.3.1 Impact of the normalization method

(a) Min-max normalization. (b) Vector normalization.

Figure 5.9: Comparison of alternative rankings using the two normalization
methods for PROMETHEE, with equal weighting for each criterion (5, 5, 5).

Figure 5.9 shows that the min-max normalization method favors a balance
between the criteria, placing alternatives with good environmental perfor-
mance (such as Alternatives 3, 4, and 16) at the top. Alternative 10, with
the best profit, is ranked last. On the other hand, vector normalization favors
alternatives with high profits (such as alternatives 7, 8, and 9) and relegates
ecologically efficient alternatives to lower positions. This shows that, as with
TOPSIS, the normalization method has a significant impact on the rankings
obtained with PROMETHEE.

Figure 5.10 shows a clear difference between the distributions of net out-
ranking flows depending on the normalization method, similar to the observa-
tions made for TOPSIS. Vector normalization produces very narrow distribu-
tions, indicating low sensitivity to criteria weighting and favoring high-profit
alternatives. In contrast, min-max normalization produces broader distri-
butions, reflecting greater sensitivity to weighting. Compared to TOPSIS,
for PROMETHEE, the differences between the distributions are more pro-
nounced for min-max normalization, while they are slightly less pronounced
for vector normalization.

Finally, Figure 5.11 shows that a dominant alternative can be identified
for both normalization methods in PROMETHEE. However, this dominance
is more relative for the min-max normalization, where alternative 16 ranks
first in about 40% of the simulations. In contrast, for the vector normal-
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(a) Min-max normalization. (b) Vector normalization.

Figure 5.10: Comparison of net outranking flows distributions obtained
through sensitivity analysis using the two normalization methods for
PROMETHEE, with equal weighting (5, 5, 5) and uncertainty (± 20%) for
each criterion.

ization, alternative 7 is the best in almost 100% of the cases. This pattern
is similar to observations made with TOPSIS, where min-max normaliza-
tion allows for more balanced competition between alternatives, while vector
normalization strongly favors a single alternative.

In conclusion, the choice of normalization method has a significant impact
on the results obtained with PROMETHEE. The min-max normalization fa-
vors a more balanced evaluation of the alternatives, better reflecting the
diversity of the criteria. On the other hand, the vector normalization tends
to heavily favor certain alternatives, especially those with higher profits. This
behavior is consistent with the observations made for TOPSIS and empha-
sizes the critical role of normalization in multi-criteria decision-making.
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(a) Min-max normalization. (b) Vector normalization.

Figure 5.11: Comparison of first place percentages of the 5 best alternatives
obtained through sensitivity analysis using the two normalization methods
for PROMETHEE, with equal weighting (5, 5, 5) and uncertainty (± 20%)
for each criterion.

5.3.2 Impact of the criteria weighting

(a) Profit-oriented weighting (7, 3, 3). (b) Environmental-oriented weighting
(3, 7, 7).

Figure 5.12: Comparison of alternative rankings using two weighting scenar-
ios for PROMETHEE, with min-max normalization and Gaussian preference
function.

The results shown in Figure 5.12 for PROMETHEE are consistent with the
observations made for TOPSIS. In the scenario with profit-oriented weighting
(7, 3, 3), alternatives with higher profit values, such as alternatives 5, 4 and
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6, are ranked among the best. However, even in this scenario, Alternative 10,
which has the highest profit, is ranked among the bottom five alternatives.
This indicates that alternatives with a better balance of criteria are favored.

Switching to the weighting scenario in favor of environmental criteria (3,
7, 7), alternatives with better environmental performance, such as alterna-
tives 16, 1, and 15, move to the top positions. This shift demonstrates the
significant impact of weighting on the ranking of alternatives and highlights
the flexibility and responsiveness of PROMETHEE to different prioritization
schemes.

Overall, the rankings between TOPSIS and PROMETHEE are not per-
fectly identical, but the general trends are similar.

(a) Profit-oriented weighting (7, 3, 3). (b) Environmental-oriented weighting
(3, 7, 7).

Figure 5.13: Comparison of net outranking flows distributions obtained
through sensitivity analysis using two weighting scenarios for PROMETHEE,
with min-max normalization, Gaussian preference function and equal uncer-
tainty (± 20%) for each criterion.

Figure 5.13 shows the distributions of net outranking flows obtained
by sensitivity analysis with the PROMETHEE method, using two differ-
ent weighting scenarios. The observations made for TOPSIS apply here as
well. A notable difference is that the stability gain observed for Alternative 1
when moving from the profit to the environmental scenario can be extended
to alternatives that perform well on environmental criteria.

In fact, the distributions of alternatives 14, 15, 16, 1, and 2 narrow when
moving from one scenario to the other. There is little or no evidence of this
for the alternatives that perform well according to the profit criterion. This
can be explained by the fact that there is a single profit criterion and two
environmental criteria. When switching from the profit to the environmental
scenario, greater importance is simultaneously given to both environmental
criteria, which can have a significant impact.
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Statistically, the random weights generated by the sensitivity analysis
favor a certain stability for alternatives that perform well in terms of en-
vironmental criteria. If one of the two environmental criteria has a lower
importance, the other can compensate by having a higher importance. Al-
though the two environmental criteria are not identical and therefore not
perfectly correlated, alternatives with low or even moderate profit tend to
perform acceptably in both environmental criteria. This double-weighting
dynamic provides a form of compensation that contributes to the increased
stability of these alternatives.

On the other hand, this behavior cannot be observed for the profit crite-
rion, since it is unique. Consequently, the profit-oriented alternatives show
no significant change in stability between the different weighting scenarios.
This is due to the lack of dynamic compensation, which explains why these
alternatives show no significant change in stability between the two scenarios.

In summary, the environmental alternatives gain stability as the environ-
mental weighting increases, thanks to the dynamic compensation provided
by the double weighting. This observation is less pronounced for the profit-
oriented alternatives, since they do not benefit from this dynamic compen-
sation.

(a) Profit-oriented weighting (7, 3, 3). (b) Environmental-oriented weighting
(3, 7, 7).

Figure 5.14: Comparison of first place percentages of the 5 best alterna-
tives obtained through sensitivity analysis using two weighting scenarios for
PROMETHEE, with min-max normalization, Gaussian preference function
and equal uncertainty (± 20%) for each criterion.

Figure 5.14 shows that, as with TOPSIS, Alternative 16 is widely pre-
ferred in the environmental weighting scenario, ranking first in almost 80%

90



of the simulations. In contrast, in the profit-oriented weighting scenario, al-
ternatives 5 and 4 share the top rankings with almost identical percentages,
each reaching about 50% of the top spots.

5.3.3 Impact of the weighting uncertainty

(a) Uncertainty of ± 10% for each crite-
rion.

(b) Uncertainty of ± 30% for each crite-
rion.

Figure 5.15: Comparison of net outranking flows distributions ob-
tained through sensitivity analysis using two uncertainty scenarios for
PROMETHEE, with min-max normalization and equal weighting (5, 5, 5)
for each criterion.

Figure 5.15 shows similar results to TOPSIS. The increase in uncertainty due
to weighting spreads the distributions without affecting the average perfor-
mance of the alternatives. As with TOPSIS, it is important to note that the
scale of the x-axis has changed. The distributions range from about -0.3 to
0.2 for an uncertainty of ± 10% (Figure 5.15a), while they range from -0.4
to 0.4 for an uncertainty of ± 30% (Figure 5.15b).

Figure 5.16 shows that in the lower uncertainty case, alternatives 2 and
1 have a zero percentage of first places, meaning that alternatives 16, 4, and
3 all share the first places in the simulations. When moving to a higher
uncertainty scenario, Alternatives 2 and 1 receive a low percentage of first
places, demonstrating that greater uncertainty increases the likelihood that
other alternatives will be ranked first. The percentages given to alternatives 2
and 1 are mainly due to the 10% lost by alternative 3. Alternative 16, on the
other hand, actually increases its percentage of firsts slightly, demonstrating
its ability to perform very well in variable situations.
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(a) Uncertainty of ± 10% for each crite-
rion.

(b) Uncertainty of ± 30% for each crite-
rion.

Figure 5.16: Comparison of first place percentages of the 5 best alterna-
tives obtained through sensitivity analysis using two uncertainty scenarios
for PROMETHEE, with min-max normalization and equal weighting (5, 5,
5) for each criterion.

5.3.4 Impact of the preference function

(a) Gaussian preference function. (b) Usual preference function.

Figure 5.17: Comparison of alternative rankings using two preference func-
tions for PROMETHEE, with min-max normalization and equal weighting
for each criterion (5, 5, 5).

Figure 5.17 shows that the usual preference function tends to form a ranking
with groups of alternatives that are indistinguishable from each other. In
contrast, the Gaussian preference function assigns a unique net outranking
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flow to each alternative, producing a unique ranking. This distinction stems
from the fact that the usual preference function is simpler and only considers
either an overall preference or no preference at all. It is not capable of fine-
grained evaluation of the preference of one alternative over another, unlike the
Gaussian preference function, which provides a precise preference value based
on the difference in evaluation between the alternatives. In the context of
ranking Pareto optimal solutions resulting from trade-offs between different
criteria, the usual function does not seem relevant.

(a) Gaussian preference function. (b) Usual preference function.

Figure 5.18: Comparison of net outranking flows distributions ob-
tained through sensitivity analysis using two preference functions for
PROMETHEE, with min-max normalization, and equal weighting (5, 5, 5)
and uncertainty (± 20%) for each criterion.

Figure 5.18 shows that the distributions obtained with the usual prefer-
ence function support the idea of alternative grouping. Alternatives tend to
group into clusters with similar average net outranking flow values. However,
it is still possible to assess the relative stability of the different alternatives
within each cluster. In comparison, the Gaussian preference function pro-
vides a better distinction between alternatives in terms of net outranking
flow, resulting in less clustered and more individualized distributions. This
confirms that the Gaussian function provides greater precision in assessing
preferences between alternatives.

5.4 Comparison between TOPSIS and PROMETHEE
Comparing the TOPSIS and PROMETHEE methods allows to identify dif-
ferences in the results obtained by these two approaches. The aim is to check
whether the methods agree on the ranking of alternatives, which reinforces
the robustness of the decisions taken.
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(a) TOPSIS. (b) PROMETHEE.

Figure 5.19: Comparison of alternative rankings using TOPSIS and
PROMETHEE, with min-max normalization, Gaussian preference function
for PROMETHEE and equal weighting for each criterion (5, 5, 5).

The two methods were compared using the min-max normalization method,
the Gaussian preference function for PROMETHEE, and a balanced weight-
ing of all criteria. The rankings obtained with the two methods, although
not perfectly identical, are very similar as it can be seen on Figure 5.19.

First, in both cases, the five worst alternatives are alternatives 7, 11, 8,
9, and 10, always in that order. Then, the two multi-objective optimization
methods seem to agree on the worst alternatives, which are systematically
those with the highest profits. This shows that these high-profit alternatives
do not offer a very attractive trade-off in terms of environmental criteria.
In fact, the small economic gain does not compensate for the significant
environmental losses.

However, Alternative 5 remains an exception as it offers a high profit
with an acceptable environmental performance. This alternative, together
with alternatives 14, 2, 13, 6, 1 and 12, forms the middle of the table, which
is again very similar between the two methods. Finally, alternatives 3, 4, 15,
and 16 are considered the bests by both methods. Alternatives 3 and 4 are
in the upper middle range for the profit and for the environmental impact on
ecosystems, and in the lower middle range for resource impacts. Alternatives
15 and 16, on the other hand, are the best in terms of impact on resources,
while they are average in terms of impact on ecosystems and quite weak in
terms of profit. TOPSIS prefers alternatives 16 and 15, while PROMETHEE
prefers alternatives 3 and 4.

In summary, these observations show that the TOPSIS and PROMETHEE
methods tend to agree on which are the best and worst alternatives, while
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producing rankings that are not perfectly identical.

(a) TOPSIS. (b) PROMETHEE.

Figure 5.20: Comparison of performance scores and net outranking flows
distributions obtained through sensitivity analysis using TOPSIS and
PROMETHEE, with min-max normalization, Gaussian preference function
for PROMETHEE, and equal weighting (5, 5, 5) and uncertainty (± 20%)
for each criterion.

Figure 5.20 shows that the relative positioning of the distributions of the
different alternatives is fairly equivalent from one method to another. How-
ever, the differences between the distributions are clearer for PROMETHEE,
mainly due to the greater width of the distributions obtained with TOPSIS.
A very interesting observation can then be made: the differences in width
between the distributions are more pronounced for PROMETHEE than for
TOPSIS. For example, alternatives 1 and 4 show comparable peak widths
with TOPSIS, whereas this is absolutely not the case with PROMETHEE,
where alternative 4 has a much narrower distribution than 1. This suggests
that PROMETHEE is better suited to assess the differences in stability be-
tween the alternatives.

Let’s focus on the distributions obtained with PROMETHEE and con-
sider alternatives 4 and 16, both of which have a high and almost identi-
cal average performance. The distribution of Alternative 16 is much wider,
which means that its performance is largely influenced by the weighting of
the criteria. Under certain conditions, Alternative 16 will excel and largely
dominate all others. Under other conditions, it will perform much poorly
and find itself at the bottom of the table. For Alternative 4, the analysis
is different. Thanks to its narrow peak, it is very stable and will therefore
almost always be among the best. However, this stability is achieved at the
expense of potentially very high performance.

The choice between a good, stable alternative and one that is excellent
under some conditions and average under others depends not only on the risk
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aversion of the decision-makers, but also on the degree of certainty given to
the weighting. If the weighting is absolutely certain, it makes sense to choose
the alternative that is excellent under those conditions, no matter how unsta-
ble it may be in other situations. On the other hand, if the exact conditions
are relatively unknown, then the right choice is to select an alternative that
performs well while remaining stable.

(a) TOPSIS. (b) PROMETHEE.

Figure 5.21: Comparison of first place percentages of the 5 best
alternatives obtained through sensitivity analysis using TOPSIS and
PROMETHEE, with min-max normalization, Gaussian preference function
for PROMETHEE, and equal weighting (5, 5, 5) and uncertainty (± 20%)
for each criterion.

Figure 5.21 shows that Alternative 16 is relatively dominant for both
methods. For PROMETHEE, Alternative 4 is almost equally dominant. In
light of the above observations, it is important to qualify the dominance of
Alternative 16. Indeed, as we have seen, it has a wide distribution of scores
and is therefore relatively unstable in the face of uncertainty in the weighting
of the criteria.

Thus, although it is often favored in certain situations, as shown by the
40% of first places obtained, there are many other situations where it does
not dominate, resulting in a very average performance and a lower ranking.
Alternative 4, on the other hand, is more stable, obtaining 20% dominance
for TOPSIS and 35% for PROMETHEE, which is still quite high, although
slightly lower than the 40% of Alternative 16. However, it could be argued
that the 20% and 35% of Alternative 4 are potentially more valuable due
to its greater stability, offering a more consistent and reliable performance
across different weightings.

96



5.5 General discussion
The comparative analysis of TOPSIS and PROMETHEE presented in this
chapter reveals several key insights regarding their application in multi-
criteria decision-making for chemical recycling of plastic waste. The study
carefully varied several parameters, including normalization methods, crite-
ria weighting, uncertainty levels, and preference functions, to examine how
these factors influence the results obtained with the tool.

Both the TOPSIS and PROMETHEE methods showed a significant im-
pact of the normalization method on the results. The min-max normalization
provided a more balanced evaluation by reflecting the diversity of the criteria,
while the vector normalization specifically favored alternatives with higher
profits, resulting in narrower distributions of scores and less sensitivity to
criteria weighting.

When examining the impact of criteria weighting, it was clear that the
choice of weights strongly influenced the ranking. In both methods, profit-
oriented weighting scenario placed high-profit alternatives at the top, while
environmentally-oriented weighting favored alternatives with better environ-
mental performance. This shift underscores the flexibility of both methods to
accommodate different prioritization scenarios and the critical role of criteria
weighting in multi-criteria decision-making.

The analysis also highlighted the importance of stability in the face of
weighting uncertainty. PROMETHEE’s ability to distinguish between al-
ternatives based on their stability was particularly noteworthy. Alternatives
with broader distributions under PROMETHEE, such as Alternative 16, were
shown to be highly sensitive to weighting changes, resulting in significant vari-
ability in performance. Conversely, alternatives with narrower distributions,
such as Alternative 4, showed greater stability, making them more reliable
choices under uncertain conditions.

The choice of preference function in PROMETHEE further underscored
its capacity for finer evaluation. The Gaussian preference function provided
precise preference values and resulted in less clustered and more individual-
ized distributions compared to the usual preference function, which tended
to form indistinguishable groups of alternatives.

Overall, while both TOPSIS and PROMETHEE generally agreed on the
best and worst alternatives, they produced slightly different rankings, re-
flecting their inherent methodological differences. PROMETHEE’s nuanced
assessment of stability and sensitivity to criteria weighting and preference
functions provided a more detailed understanding of the trade-offs involved
in the decision-making process.

In conclusion, this comprehensive analysis demonstrates that both TOP-
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SIS and PROMETHEE are valuable tools for multi-criteria decision-making
in the context of chemical recycling of plastic waste. Their comparative use
can provide robust insights and support informed decision making, ensur-
ing that the alternatives chosen are well aligned with the specific priorities
and constraints of the decision-makers. The results highlight the need for
careful consideration of normalization methods, criteria weighting, and pref-
erence functions to achieve optimal and sustainable outcomes in complex
multi-criteria decision contexts.
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Conclusion and perspectives

This thesis deals with a multi-objective approach to promote the circular
economy through the chemical recycling of plastic waste. The main objec-
tive of this work was to develop a multi-objective decision-making tool to
be integrated into the iSMA framework developed by Pacheco-López et al.
(2023), in order to fill an essential gap within this structure.

The underlying reasons for the need to develop and improve such a tool
have been detailed in a rigorous literature review. This review is divided
into three main sections: plastic waste management and associated chal-
lenges, chemical recycling and the circular economy of plastic waste, and
finally ontological frameworks and decision-making tools in the context of
environmental sustainability. The first section highlights the growing pro-
duction of plastics and the current management of plastic waste. Among
others, the methods of landfilling, incineration and mechanical recycling are
described, highlighting their limitations, especially from an environmental
point of view. This section concludes by acknowledging that major changes
are needed to improve the current situation. These changes are of various
kinds and include a global change in our behaviour, political efforts, the
improvement and optimal use of existing waste treatment technologies, but
also innovation and the development of efficient and sustainable recycling
methods. Chemical recycling, and in particular thermal techniques such as
gasification and pyrolysis, are presented as a promising solutions that needs
to be explored in depth.

The following section focuses on the study of chemical recycling and its
potentially great importance in promoting the circular economy of plastics.
The main chemical recycling methods are discussed in turn: dissolution,
depolymerization, gasification and finally pyrolysis.

Dissolution and depolymerization are interesting methods due to their
selectivity and efficiency. However, they suffer from significant limitations
in terms of cost and industrial scale implementation. Moreover, they are
not suitable for municipal waste, which is often a mixture of different types
of contaminated plastics. This leads to the discussion of thermal processes
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capable of treating large volumes of contaminated waste.
Gasification primarily produces synthesis gas, which is used to generate

heat and electricity, but also serves as a feedstock for methanol and ammonia
synthesis. Pyrolysis, on the other hand, produces mainly gas and oil. Pyrol-
ysis oil is particularly interesting because it can be used as a fuel or processed
and purified to produce a variety of valuable chemicals. In addition, when
pyrolysis is combined with hydrotreatment and steam cracking, it is possi-
ble to synthesize monomers that can be used to produce new virgin-grade
plastics.

The production of new raw materials, whether monomers, fuels, or any
other type of chemical compound, clearly demonstrates the impact of chem-
ical recycling on the circular economy of plastics by turning waste into valu-
able resources.

However, chemical recycling, and pyrolysis in particular, is not without
its shortcomings. Thermal chemical recycling processes are particularly en-
ergy intensive and can have a significant environmental impact. In addition,
economic viability is an important consideration. For these reasons, pyroly-
sis has been extensively studied and numerous variants have been described
in the literature. Most of these variants remain at pilot or even laboratory
scale. The desire to intensify chemical recycling raises the question of which
methods are preferable, in terms of efficiency and environmental friendliness.

This need to make an informed and reasoned choice from an ocean of
possibilities introduces ontological frameworks and decision support tools.
On the one hand, ontological frameworks are key elements of knowledge
management. They enable the definition of concepts within a given domain,
along with the relationships between them and the attributes associated with
them. For example, in the context of plastic waste recycling, processes and
associated plastic products can be associated with costs and environmental
impacts, allowing a multi-criteria evaluation of each option.

On the other hand, decision-making tools generally refer to optimization
methods that either determine the ideal parameters of a system or identify
one or more optimal solutions to a given problem. In the case of optimizing
a system with a single objective function, there are many powerful mathe-
matical methods, such as linear programming and its derivatives. However,
when we want to use a multifaceted approach, considering multiple and often
conflicting objectives, other methods are required. This is known as multi-
objective optimization. These methods produce a set of optimal solutions
rather than a single solution. These solutions, known as Pareto optimals,
together form a Pareto front, representing the trade-offs between different
objectives, where no criterion can be improved without worsening another.

There are various methods to generate these Pareto fronts, among which

100



the ϵ-constraint method and evolutionary algorithms are commonly used.
When it comes to selecting a particular option from these Pareto optimal
solutions, multi-criteria decision-making methods are used. These methods
provide a structured, quantitative approach to evaluating and comparing the
various alternatives available. Based on preferences related to the context of
the decision, translated into specific weightings of the various criteria, these
methods produce a ranking of alternatives.

As mentioned above, the main objective of this thesis was to develop a
multi-objective decision-making tool for integration into the iSMA frame-
work. This holistic methodological framework aims to promote the circular
economy in the context of chemical recycling of plastic waste. The major
shortcoming identified in the iSMA framework was the lack of a systematic
and objective method for selecting the Pareto optimal solutions to be mod-
eled in detail. The developed tool uses TOPSIS and PROMETHEE methods
to rank these solutions according to the user’s preferences, taking into ac-
count economic and environmental criteria.

Another key objective of this thesis was to integrate a robust sensitivity
analysis into the decision-making tool. This sensitivity analysis makes it
possible to assess the robustness of proposed solutions by taking into account
the uncertainty associated with the user’s weighting of the criteria. Indeed,
the weighting of criteria can vary according to the user’s specific preferences
or the context in which the decision is made. Sensitivity analysis ensures
that proposed solutions remain relevant and stable even when weightings
vary. This ensures that recommended solutions are not only optimal in a very
specific context, but also retain their relevance in slightly different situations.

It was also important to ensure that the tool developed was not only
effective for the specific case of chemical recycling paths for plastic waste,
but also versatile and adaptable to other contexts. In other words, the tool
had to be flexible enough to be applied to a variety of sustainability issues
that require decision-making among a set of Pareto optimal solutions.

In terms of practical implementation, the tool was coded in Python, tak-
ing advantage of its rich libraries and clear syntax. To ensure a clear organi-
zation and smooth execution of the different steps, the tool is structured in
modules. The data flow starts with the collection of data about user alter-
natives and preferences, which is performed by the data collection module.
This information is then processed by optimization methods before a sensi-
tivity analysis is performed. The results of this analysis are then analyzed,
visualized and stored for future use.

The tool is coordinated by two main executable files, one for TOPSIS and
one for PROMETHEE. Each main file successively calls the main function
defined in each module, thus allowing the ordered execution of the different
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steps of the tool. Each module contains several functions, each of which
models a specific step, such as a mathematical operation, the display of a
graph or the acquisition of specific data. These functions are combined into a
main function within each module. The complete code of the tool is available
on GitHub, providing full transparency and the possibility of community use
and improvement. The GitHub repository can be accessed via the following
link: MODM_tool.

The results obtained in this thesis can be divided into two main categories:
the validation of the developed tool and the detailed analysis of the solutions
generated by this tool.

The first and most important result is that the developed multi-objective
decision-making tool is functional. This thesis is mainly a methodological
work aimed at describing the reasons behind and the process of developing
this tool. The final objective was to create a tool capable of objectively
ranking Pareto optimal alternatives according to the user’s preferences, and
this was successfully achieved.

The results obtained reveal several key elements regarding the application
of TOPSIS and PROMETHEE methods to multi-criteria decision making for
the chemical recycling of plastic waste. The study carefully examined several
parameters, including normalization methods, criteria weighting, uncertainty
levels, and preference functions, in order to assess the influence of these
factors on the results generated.

The TOPSIS and PROMETHEE methods showed that the normalization
method had a significant impact on the results. Min-max normalization
provided a more balanced evaluation by reflecting the diversity of the criteria,
while vector normalization specifically favored alternatives with higher profit.
This resulted in narrower score distributions and less sensitivity to criteria
weighting.

Looking at the impact of criteria weighting, it is clear that the choice
of weighting strongly influenced the ranking. In both methods, the profit-
oriented weighting scenario placed high-profit alternatives in the lead, while
the environment-oriented weighting favored alternatives with better environ-
mental performance. This change underscores the flexibility of both methods
to adapt to different prioritization scenarios and the essential role of criteria
weighting in multi-criteria decision-making.

The analysis also highlighted the importance of stability in the face of
weighting uncertainty. PROMETHEE’s ability to discriminate between al-
ternatives based on their stability is particularly noteworthy. Alternatives
with wider distributions in PROMETHEE, such as Alternative 16, proved to
be highly sensitive to changes in weighting, resulting in significant variability
in performance. Conversely, alternatives with narrower distributions, such
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as Alternative 4, showed greater stability, making them more reliable choices
under uncertain conditions.

The choice of preference function in PROMETHEE further emphasized
its ability to perform a more refined evaluation. The Gaussian preference
function provided precise preference values and resulted in less clustered,
more individualized distributions than the usual preference function, which
tended to form indistinguishable clusters of alternatives.

Overall, while TOPSIS and PROMETHEE generally agree on the best
and worst alternatives, they produce slightly different rankings, reflecting
their inherent methodological differences. PROMETHEE’s nuanced assess-
ment of stability and sensitivity to criterion weighting and preference func-
tions has led to a better understanding of the trade-offs involved in the de-
cision process.

In conclusion, this comprehensive analysis shows that both TOPSIS and
PROMETHEE are valuable tools for multi-criteria decision-making in the
context of chemical recycling of plastic waste. Their comparative use can
provide solid information and support informed decision-making, ensuring
that the alternatives chosen are well aligned with the specific priorities and
constraints of the decision-makers. The results highlight the need for careful
consideration of normalization methods, criteria weighting and preference
functions to achieve optimal and sustainable results in complex multi-criteria
decision contexts.

Although the tool developed in this thesis is reliable and robust by de-
sign, it has certain inherent limitations. The main limitation lies in its total
dependence on the quality of the data supplied to it. Indeed, if the initial
data is inaccurate, incomplete or biased, the final ranking of alternatives will
inevitably be compromised and may prove to be unusable. In addition to
quality, the tool is currently unable to handle missing data. If there are gaps
in the initial database, the tool cannot estimate or complete these missing
data, which could limit its effectiveness and applicability in contexts where
information is incomplete.

The results obtained and the observations made in this thesis open several
interesting perspectives for future research and potential improvements of the
tool.

First, due to its flexibility and adaptability, the tool could be applied to
other databases related to environmental sustainability. By broadening its
scope, it would be possible to fully exploit the tool’s capabilities in a variety
of multi-criteria decision contexts.

Second, the inclusion of new optimization methods would extend the
analysis capabilities and provide an even more comprehensive evaluation of
available alternatives. This could include additional multi-criteria decision
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methods or more advanced algorithms to handle even more complex prob-
lems.

Another important perspective would be to enable the tool to handle
missing data. By integrating data imputation techniques or advanced statis-
tical methods, the tool could estimate missing values and thus improve its
robustness and applicability in situations where data are incomplete.

It would also be useful to improve the sensitivity analysis module by
providing quantified data on the stability of each of the alternatives. This
would allow decision makers to better understand the impact of their choices
and make more informed decisions.

Finally, defining a weighting of the criteria based on local sustainable
development policies could make the tool even more relevant and adapted
to specific contexts. By incorporating weightings that reflect local priorities,
the tool could provide recommendations that are aligned with the goals and
constraints of local decision-makers.

In conclusion, this work has highlighted the importance of a multi-criteria
decision-making tool in the context of chemical recycling of plastic waste.
The results obtained demonstrate the robustness and effectiveness of the
TOPSIS and PROMETHEE methods for evaluating and comparing alterna-
tives. Although there is still room for improvement, the developed tool rep-
resents a step forward in promoting the circular economy and environmental
sustainability. Future research perspectives offer numerous opportunities to
perfect the tool and broaden its scope of application, thus contributing to a
more efficient and sustainable plastic waste management.
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