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Abstract

Development of cell counting algorithms within pathological
tissues.

Author : Ulysse Rubens
Supervisor : Dr. Raphaël Marée, Advisor : Prof. Pierre Geurts

Academic year 2016-2017

Counting objects in images is within the reach of everyone. When the number
of objects to count becomes large, the task is more difficult and we tend to make
errors because of some oversights. For a computer, counting or detecting objects in
images is hard. However, the repetitive characteristic of this task does not worry it.

In histopathology, the study of pathology combined to histology (the study of
cells and tissues), scientists frequently have to count cells from images of tissues
to address hypotheses about pathological or developmental processes. The rise of
digital imaging services and the power of computers and networks led to the emer-
gence of digital histopathology, a new field where histopathologists analyze cells and
tissues on computer screens. Therefore, it would be interesting to have automatic
counting methods available to lighten the work of life scientists.

It this thesis, the problem of cell counting and the closely related problem of cell
detection are studied. Supervised machine learning workflows are proposed in that
purpose. Five methods are presented, (re-)implemented and tried on four databases
of histopathological images, whose two are newly introduced for this kind of prob-
lem. We set up the software modules allowing to use these algorithms directly
on databases from Cytomine, a web-based application for collaborative analysis of
multi-gigapixel images.

Basically, two ways of counting are studied. Firstly, counting can be done by cell
detection, the counting trivially being the number of detections. Secondly, counting
can be estimated by density estimation, knowing the density for each image’s pixel.

An important aspect of this work is the assessment and the comparison of these
approaches. Performance results in machine learning literature are sometimes too
optimistic due to weak model validation. Robust metrics are thus defined in order
to make comparisons possible. Each machine learning algorithm has a set of param-
eters that can be tuned. They have a large influence on the performance. In order
to choose the best combination of parameters, a systematic model selection protocol
is employed. It is the first time that such a set of methods has been evaluated on
several datasets of such a large size. Our study has helped to better understand the
functioning of these methods and to establish their limits.

Results are encouraging. In general, at least one algorithm is able to reach a
counting error less than 10% for each dataset.
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Chapter 1

Introduction

Counting objects in images is within the reach of everyone. When the number of
objects to count becomes large, the task is more difficult and we tend to make errors
because of some oversights. For a computer, counting or detecting objects in images
is hard. However, the repetitive characteristic of this task does not worry it.

In histopathology, the study of pathology combined to histology, the study of cells
and tissues, histopathologists frequently have to count cells from images of tissues
to investigate hypotheses about developmental or pathological processes [XNZ15].
This tedious and repetitive task they have to carry out is a waste of time whose they
do well without. Very often, a small region is analyzed and counts are inferred for
the whole tissue, with little certainty about the representativeness of the statistical
sample. Because of the risk yielded by the previous method and because manual
analysis of full images is long and tedious, computer programs could be used to
assist experts. Nowadays, the usage of digital scanners and the power of computers
and networks lead to the emergence of digital histopathology, a new field where
histopathologists work more on their computer screen instead of their microscope.

It the framework of this thesis, the problem of cell counting and the closely
related problem of cell detection have been studied. The goal is to implement com-
puter programs able to successfully carry out these tasks, by learning which is a
cell on tissue images and which is not, using a database of examples established by
experts. Image processing and supervised machine learning are used in this purpose.

For the past ten years, several methods of cell - and more generally object - de-
tection and/or counting have been proposed in the scientific literature, with varying
degrees of success. These approaches can be classified into two categories in terms of
machine learning: some methods employ standard machine learning algorithms such
as randomized trees while others belong to the trending field of deep learning. We
will analyze the theoretical aspects of these methods but also the practical aspects
from a end-user point of view. As far as machine learning algorithms are involved,
the methods have to be assessed and compared. The quality of the mentioned
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approaches is hard to compare as the authors usually use different datasets1 with
varying cell types and different quality metrics. We will perform a systematic eval-
uation and comparison of different methods. Moreover, a recurring issue is the lack
of availability of datasets. This work will compare the studied methods among four
datasets, whose two are newly introduced for the cell counting/detection problem.
A second issue is to find the best combination of method’s parameters to improve
the performance. It is not always possible due to the long training time of machine
learning approaches, especially for deep learning. The usage of two supercomputers,
whose one is tailored for deep learning algorithms made easier the study related to
the influence of these parameters.

In Chapter 2, the problem of cell counting and detection is more deeply intro-
duced and examined in a end-user perspective. In Chapter 3, we perform a survey
of available approaches and develop related algorithms. In Chapter 4, an evaluation
protocol is designed and a set of experiments are conducted to assess and compare
these methods on different datasets. Finally, we conclude in Chapter 5.

1In our case, a dataset is a set of microscopy histological images, annotated by experts to
indicate presence of cells.
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Chapter 2

Object counting for
computer-aided histology

Object counting is a common task in histology and histopathology where objects
are cells. In Section 2.1, we define these terms and explain why the problem of cell
counting is of interest. A bunch of applications is given in Section 2.2. In Section
2.3, we present the Cytomine application for which the algorithms that we will study
have been implemented. Finally, the datasets that we will use for the evaluation
and comparison of the different approaches are described in Section 2.4.

2.1 Task overview

Every organism is made up of a cell or a collection of cells. A cell is defined as
the smallest structural and functional unit of an organism. A tissue is a group of
cells that perform a common function and have a similar origin. Histology is the
study of the structure and the function of microscopic anatomy of human beings
which includes the cells, tissues, organs (a collection of tissues) and organ system
(a collection of organs) of an organism. These studies are performed especially by
the examination of cells and tissues. This field of life science is of great interest in
biology and medicine. We can also highlight histopathology, the microscopic study of
diseased tissues, which is an significant tool in anatomical pathology. For example,
an histopathologist can provide accurate diagnosis of cancer and other diseases by
histopathological examination.

In practice, histology is typically performed by examining cells and tissues under
a light microscope or an electron microscope. In that purpose, tissues have first to
be sectioned, stained, and mounted on a microscope slide. The staining operation
enhances the ability to visualize or identify microscopic structures. One of the most
used stain in histology and histopathology is the Hematoxylin and Eosin one (H&E
stain).

Among the tasks of histopathologists, a common one is the count of cells in a
(possibly pathological) tissue. There exist several techniques devoted to cell counting
and/or localization, with varying degrees of sophistication:
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1. Manual cell counting: the simplest technique where the experimenter use
a counting chamber, i.e. a microscope slide with a grid especially devoted
to cell counting. This approach suffers from several drawbacks. Firstly, it
is a repetitive and tedious task, which increases the risk of making mistakes.
Secondly, the experiment is very subjective due to a considerable inter-observer
variability (two different observers can count differently) and is possibly not
reproducible because of intra-observer variability (a same observer can count
differently at different times) [Kai+15], [Kos+17].

2. Automated cell counting with dedicated machines: these devices, such
as flow cytometers, do not suffer from the issue of manual counting but are
often very expensive and they also do not preserve tissue structure.

3. Automated cell counting by image analysis: the technique by which we
are interested in this thesis. By combining the power of computers and the ma-
jor breakthroughs in image processing and machine learning, new algorithms
can see the day. They fall into the category of computer-aided histology, where
histological slides are digitized before to analyze them on a computer screen.

This last kind of technique inherits from all benefits of computer-aided histology
such as scientific research speed-up and ease of result sharing with softwares such
as Cytomine, an application for collaborative analysis of multi-gigapixel images (see
Section 2.3).

Object counting with machine learning is a challenging task, especially when
objects to count are cells. Indeed, we have to deal with cells that can take various
shapes and sizes (Figure 2.1). Moreover, cell clumping is very frequent. In some
methods, non uniform stain on objects of interest can be an issue. Finally, in some
applications, visually similar structures and different cell types can occur on images
and the developed algorithms have to only detect cells of interest [Art+12].

(a) (b) (c) (d)

Figure 2.1: Variety of cells with visually similar structures that are not cells (a),
with various shapes (b) and cell clumping (c) & (d). Green dots are ground truth
cells whose size has been exaggerated.

In the supervised approach of machine learning that we will follow in this work, a
set of correctly labelled images indicating where are cells is required. This procedure
is usually done manually and thus implies the same issues as manual cell counting
technique presented before. However, this procedure
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1. has to be done only once to train the algorithm before to use it on new and
unlabelled images

2. can be done through the Cytomine interface [Mar+16], behind a computer
screen, and several experts can independently label images before to review
these annotations in order to keep only the perfectly correct ones, in order to
minimize inter-observer variability.

3. is done only in some regions of interest extracted from the whole slide. Figure
2.2 shows a slide with an enlarged version of one of its regions of interest.

Figure 2.2: A slide from ANAPATH dataset (24 gigapixels) and one region of
interest (7.8 megapixels)

It remains to choose how to label a cell on an image. According to [Kos+17],
we opted for a simple annotation system. Each cell is marked with a dot in its
center (or on the nucleus center, the important thing is to be coherent on a same
dataset). Beyond the fact of being the natural way of counting objects, the task is
by far less tedious and time-consuming than a segmentation of all cells in a region
of interest, which is traditionally used in only image-processing-based approaches.
Information provided by dot markers is lower than by segmentation but allow to
label larger regions with the same effort. An other but related problem is to produce
segmentation for cells from dot-marked images, notably tackled in [Art+12].

2.2 Applications

Cell counting and/or localization is of great interest in numerous applications in life
sciences ([Kos+17], [XNZ15]):

• In biology and medicine, the complete blood count is a technique to infer a
patient’s health from the number of red and white blood cells.
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• In molecular biology, the cell concentration can be used to adjust the amount
of chemicals to apply in an experiment.

• In microbiology, cell counting is employed to quantify the growth and the be-
havior of microorganisms such as viruses and bacteria, by counting at constant
time intervals.

• In histopathology, cell counts can be used to investigate hypotheses about
pathological processes. Also, it can be employed to determine the rate at
which the immune system of a patient is dealing with an infection.

• In cancer diagnosis, the quantification of cells having a particular protein in
their nucleus helps to determine the proliferation rate of a tumor.

The algorithms that we will exploit have also experienced promising results in
other domains such as in surveillance systems of crowd, in product inspection for
industrial companies, in wildlife census or in inventories of trees in an aerial photo
of a forest [LZ10], [Fia+12].

2.3 Cytomine

Cytomine [Mar+16] is a web-based application for collaborative analysis of multi-
gigapixel images. This platform has been designed to promote multidisciplinary
collaboration between life scientists and computer scientists. Also, Cytomine aims
to accelerate scientific progress and foster image data accessibility and reusability.

It allows experts to navigate through large images as they would do in map
applications like Google Maps as shown in Figure 2.3. An annotation system allows
users to bring out regions of interest and associate them with some properties.

Figure 2.3: Cytomine image analysis module

The web-based characteristic of the platform allows distant experts to exchange
annotations, directly from their web browser. In our case, after the digitization
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of slides and their upload on Cytomine, histopathologists can annotate regions of
interests and mark cells with the dot annotation tool. It constitutes ground truth
data for our machine learning algorithms. An other component of Cytomine is its
reviewing system which permit to proofread automatically generated annotations,
that could be used to improve the performance of the implemented algorithms.

The software module (Figure 2.4) allows to link our algorithms to the platform.
By this way, results can be directly observed by the scientist on the platform. New
executions of softwares can be directly launched from the interface. The application
gives thus all that is required from a end-user point of view so that we can focus
our work on the development of new methods.

Figure 2.4: Cytomine software module

2.4 Datasets

Four datasets are used to evaluate the methods that we will study through this
work. The source of these is diverse:

• Two datasets (BMGRAZ and CRC) have already been employed respectively
by [Kai+15] and [Sir+16] to assess their respective methods.

• Two other datasets (GANGLIONS and ANAPATH) are introduced in the
context of this thesis for the problem of cell counting. They comes from
projects available on the Cytomine platform where labelled annotations have
been marked by biomedical researchers from the GIGA research center at the
University of Liège1.

Each dataset consists in a set of microscopy digitized whole-slide images of hu-
man tissues. We will refer those whole-slide images as slides for the remainder of

1http://www.giga.ulg.ac.be/

7



this text. Each slide contains several regions of interest (ROI). They are slide’s
image crops where cell centers have been annotated with dots by experts and that
will be denoted as images.

2.4.1 BMGRAZ dataset

The BMGRAZ dataset has been introduced by [Kai+15]. It consists of 11 1200×1200
pixels regions of interest of healthy human bone marrow from 8 different patients
where tissues had been stained with Hematoxylin and Eosin. Affiliations between
regions of interest and slides are unknown. We thus consider each 1200×1200 image
as a slide from which a single region of interest of the same size has been extracted.
Figure 2.5 shows a crop of an image from this dataset as an example.

(a) without dot annotations (b) with dot annotations

Figure 2.5: A sample of a BM GRAZ dataset region of interest.
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Figure 2.6: Number of cells per slide in dataset BM GRAZ.

A total of 4205 dot annotations corresponding to cell centers were marked, with
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382± 49 dots per region of interest on average, which can be deduced from Figure
2.6.

2.4.2 CRC dataset

The CRC dataset has been introduced by [Sir+16]. It consists of 100 500×500
pixels regions of interest of colorectal adenocarcinomas that were cropped from non-
overlapping areas of 10 whole-slide images at a pixel resolution of 0.55µm/pixel
(magnitude 20x), coming from 9 different patients. However, affiliations between re-
gions of interest and whole-slide images are no longer provided by [Sir+16]. Regions
of interest are thus considered as coming from all different slides of 500×500. Tissue
had been stained with Hematoxylin and Eosin. An example of region of interest is
given in Figure 2.7.

(a) without dot annotations (b) with annotations

Figure 2.7: A CRC dataset region of interest.

0

200

400

600

800

1000

1200

Number of cells per slide for dataset CRC
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A total of 29 756 dot annotations corresponding to cell nuclei center are provided
with an average of 297 nuclei per ROI with a rather high standard deviation of 217,
as presented in Figure 2.8.

2.4.3 GANGLIONS dataset

This dataset is composed of 66 rectangular regions of interest extracted from 11
whole slides, scanned at a pixel resolution of 0.455µm/pixel (magnitude 20x). Tis-
sues on these slides come from sentinel lymph nodes of patients with early stage of
cervix cancer and have been stained by immunohistochemistry (IHC). The extrac-
tion of regions of interest has been made in such a way that the number of region
per slide is more or less balanced as seen in Figure 2.10. Those regions of interest
contain 6396 dot annotations depicting cell centers that have been performed by
Cédric Balsat2 on the Cytomine platform. There are 581± 177 cells per whole slide
(Figure 2.11) and 97 ± 61 per ROI on average. Examples of region of interest are
given in Figure 2.9 illustrating the variety of cell appearance in this dataset.

(a) without dot annotations (b) with dot annotations

Figure 2.9: Examples of GANGLIONS dataset region of interest (at different scales).

2LBTD laboratory (biologie des tumeurs et du développement), GIGA-Cancer, University of
Liège
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Figure 2.10: Number of ROI per slide in dataset GANGLIONS
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Figure 2.11: Number of cells per slide in dataset GANGLIONS

2.4.4 ANAPATH dataset

This dataset contains a single whole slide of cancer tissue originating from breast.
This database differs from others in the sense that it consists of 6 rectangular re-
gions of interests (rougly 10 megapixels each) coming from a single 24-gigapixels
whole slide scanned at a pixel resolution of 0.227µm/pixel (magnitude 40x). Even if
it can potentially biases the results since methods can tend to learn characteristics
particular to this image, it corresponds to a possible real use case where the user
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annotates only some regions of the image and applies a cell counting or detection
method on the whole slide. In this case, two experts from the GIGA-Research of
the University of Liège [Lon+16] have annotated 16414 cell nuclei in these 6 ROIs
on the Cytomine platform with 2736 ± 223 cells per region of interest on average
(Figure 2.13). A crop of a region of interest is shown in Figure 2.12 as example.

(a) without dot annotations (b) with dot annotations

Figure 2.12: Example of ANAPATH dataset region of interest.
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Figure 2.13: Number of cells per image in dataset ANAPATH
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2.4.5 Summary

The Table 2.1 summarizes the main characteristics of each dataset.

Dataset Slides ROIs (images) Object annotations
BM GRAZ 11 4205

CRC 100 29756
GANGLIONS 11 66 6396

ANAPATH 1 6 16414

Table 2.1: List of datasets
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Chapter 3

Survey of existing approaches

This chapter introduces various approaches to detect and/or count cells into multi-
gigapixels images. First, Section 3.1 gives a brief remainder of the supervised learn-
ing problem and of two related algorithms, randomized trees and convolutional
neural networks. The problem of cell counting is then formulated in two distinct
ways. It can indeed be seen as a detection problem or a density estimation problem
(Section 3.2). Also, as randomized trees are not directly applicable to images, a
special form of samples based on subwindows extracted from images is presented
in Section 3.3. The different approaches are described in Section 3.4 for tree-based
ensemble ones and in Section 3.5 for neural networks ones.

3.1 Supervised learning

The machine learning approaches studied in this work fall into the category of su-
pervised learning. In this kind of problem, a learning set LS = {(xi,yi)|i = 1, ..., N}
must be available. Each of the N objects of this set is described by an input vector
x ∈ X and associated to an output vector y ∈ Y . When the output of the supervised
problem is symbolic, one talks about classification, while the term regression is used
when the output is numeric. The learning samples have to be gathered in order to
be representative and expose the diversity of real use-case samples.

Given this set of examples, the goal is to learn a function (a model) f : X → Y
only using the inputs and that maps at best the inputs with the outputs. This model
can then be applied on new, unseen objects (for which the outputs are unknown)
and predict these outputs.

The learning of f is the job of a learning algorithm A. It is an algorithm that
takes as input the learning set LS and returns as output a model. In this work,
randomized trees (see Section 3.1.1) and convolutional neural networks (see Section
3.1.2) have been used. These learning algorithms require some hyperparameters that
will influence the complexity of the produced model. Ideally, the model should be
able to predict at best the outputs for unseen objects.

All the art of supervised learning is to find the hyperparameters that lead to a
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Figure 3.1: Bias and variance in function of model complexity

model with the best generalization performance, that is, with the best prediction
capability on independent and unseen test data (test set). For a given loss function
` : Y ×Y → R measuring the discordance between its arguments, the generalization
error that f has to minimize for a particular learning set LS and an independent
test set is given by

ErrLS = Ex,y{`(y, fLS(x))}

The expected generalization error Err = ELS{ErrLS} is another quantity useful
to characterize a learning algorithm. It can be shown that Err can be decomposed
in a noise term (the residual error), a bias term and a variance term. As shown in
Figure 3.1, there is a trade-off between bias and variance. Also, the bias is usually a
decreasing function of the model complexity while the variance increases with model
complexity. A model with low variance but high bias leads to underfitting because
the learning algorithm does not fit enough the data. On the other hand, a model
with high variance but low bias leads to overfitting since the learning algorithm
starts to fit noise [HTF09].

3.1.1 Randomized trees

Random forests [Bre01] are an ensemble learning method using averaging techniques,
especially tailored for decision trees. The idea behind this is that a single model
of decision tree has inevitably some limitations and will make errors. By growing
several models independently and averaging their predictions, the variance can be
decreased which improves the ensemble model performance.

Let T be the number of decision tree estimators in the forest. Each tree is built
from a bootstrap sample, or put differently a sample with replacement drawn from
the learning set.

Decision tree growth The construction of a decision tree [Bre+84] initially starts
with all learning samples available for that tree at its root. These samples are then
partitioned according to the feature A and the associated discretization threshold
τ such that (A, τ) is the best split according to a splitting criterion. A typical
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splitting criterion in classification tasks is the Gini index impurity measure, the
best split being the one providing the highest reduction of impurity of the data, or
equivalently, the one for which the resulting subsets are as pure as possible. A set
is said to be pure if all its samples belong to the same class. The Gini impurity
measure for a learning set LS is given by

∑
j pj(1 − pj) where pj is the proportion

of objects of class j in LS. For regression, the best split is the one leading to the
highest decrease of output variance. A new node is added for the feature A and
the procedure is repeated recursively on the new subsets to grow the corresponding
subtrees. The nodes are expanded until all leaves contain less than nmin samples,
where nmin is thus the minimum number of samples required to split an internal
node of the decision tree. The tree is fully developed when nmin = 2. Regarding
the tree structure, each interior node tests a feature, each branch corresponds to a
feature value (or range of values) and the leaves are labelled by the most frequent
class among the objects belonging to that leaf in the case of a classification. For a
regression, the output average among the objects belonging to the leaf is used.

When decision trees are used in random forests, the best split at a node is se-
lected among a subset Fk of k features randomly chosen instead of looking for the
best split among all features. There is bias-variance trade-off with this maximum
number of features k, a smaller k decreases variance but increases bias.

The output is simply the average of predictions of each tree of the forest in re-
gression tasks, while a majority class vote is used for classification (Figure 3.2).

Figure 3.2: Randomized trees algorithms structure

Extra-Trees [GEW06] is another tree-based ensemble method for supervised
learning where randomization during decision tree nodes splitting goes one step
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further. It reduces variance and decreases training times. The main distinctions
with random forests are:

1. The discretization thresholds τi associated to the features Ai ∈ Fk where Fk is
the subset of features when looking for the best split at a node, are no more
optimized but uniformly drawn between the extreme values of the features Ai
in the learning samples reaching this node.

2. By default, each decision tree in the forest is initialized with all the learning
set without any sampling of training data.

3.1.2 Convolutional neural networks

Convolutional neural networks (ConvNets or CNNs) are a particular form of neural
networks especially tailored for images that fall into the category of deep learning.
The content of this Section is based on [LJY17], [Kar16] and [GW16]. A simple and
intuitive way to define a neural network f is to see it as a composition of several
functions fi. In the deep learning world, these successive functions fi are called
layers. A model with L layers takes the form

y = f(x; w1, ...,wL)
= fL(fL−1(...(f1(x,w1); ...); wL−1); wL)
= (fL(·; wL) ◦ fL−1(·; wL−1) ◦ ... ◦ f1(·; w1))(x)

where the operator ◦ denotes the composition of function, i.e. (g ◦ f)(x) = g(f(x))
and wl is the weight and bias vector of the layer l.

The weight and bias vectors w1, ...,wL have to be numerically optimized in the
learning phase using the learning set LS of N objects, by solving the optimization
problem

arg min
w1,...,wL

1

N

N∑
i=1

`(yi, fLS(xi; w1, ...,wL)) +
1

2
λ
L−1∑
l=1

w2
l

where the last term of the minimization is a regularization term to penalize too
large weights. λ is the weight decay and is an hyperparameter that has to be tuned.
It allows to avoid overfitting by controlling complexity since more non linearity is
introduced with large weights.

Without entering too much into details, the optimization problem is solved
through stochastic gradient descent and backpropagation of derivatives. It calcu-
lates the gradients of the error with respect to all weights in the network and uses
gradient descent to adjust all weights (depending on their contribution to the total
error) to minimize the total error:

wl ← wl − η
(
∂`(yi, f(xi; w1, ...,wL))

∂wl

+ λwl

)
for a sample 〈xi,yi〉 ∈ LS chosen randomly and in a cyclic way.
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The hyperparameter η is the learning rate. This parameter is often adjusted over
time during training phase. In the step decay approach, η is reduced by some factor
every few epochs. An epoch means that every samples of the learning set has been
seen once. The number of epochs to perform e is an other hyperparameter. There
is also the batch size b, which is the number of training samples that are used for
one gradient update.

In the case of convolutional neural networks, the layer fl typically takes the form
either a convolution (Section 3.1.2.1), a spatial pooling (Section 3.1.2.2), a non-linear
activation (Section 3.1.2.3), or a fully connected layer (Section 3.1.2.4). In general, a
convolution layer is always followed by a spatial pooling and a non-linear activation.

3.1.2.1 Convolution

The goal of convolution layers (CONV) is to extract features from the input image.
The convolution is a linear operation that keeps the spatial relationship between
pixels by learning image features using small squares of input data. A kernel or
filter is a K ×K matrix smaller than input images.

The activation map or feature map is the matrix obtained by sliding the kernel
over all the image and calculating the dot product between the input and the kernel.
The filters thus behaves like feature detectors from the input image. For an input
image of size W ×H, the size of the feature map is W ′ ×H ′ ×D with

W ′ =
W −K + 2P

S
+ 1 ; H ′ =

H −K + 2P

S
+ 1

and where

• D (depth) is the number of filters used for convolution, producing thus D 2D
feature maps.

• S (stride) is the number of pixels by which the filter matrix is slided over the
input matrix.

• P (padding) is the number of pixels by which the input is extended on each
border in order to apply the filters to side elements of the input image matrix.

Figure 3.3: A convolutional layer [GW16]
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Figure 3.3 illustrates a convolutional layer with a 5 × 5 filter on a 32 × 32 × 3
image. The layer has a depth D = 5, a stride S = 1 and no padding. The output
activation map thus has a size 28× 28× 5 since W ′ = H ′ = (32− 5)/1 + 1 = 28.

3.1.2.2 Spatial pooling

The pooling operation (POOL) reduces the quantity of information to only keep the
most important one. As a benefit, it reduces the amount of parameters and thus
the computation time but also limits overfitting. Small square blocks are merged
together according to an aggregation function such max or sum. For an input map
W ×H ×D, the pooling operation leads to an output map W ′ ×H ′ ×D with

W ′ =
W − F
S

+ 1 ; H ′ =
H − F
S

+ 1

and where

• F is the spatial extent of pooling square blocks. Typically, F = 2.

• S is the stride. Typically, S = 2.

Figure 3.4: A max pooling layer [LJY17]

Figure 3.4 shows a max pooling layer with the typical values, F = 2 and S = 2.
The output map has the same depth as in input but with and height are divided by
2.

3.1.2.3 Non linearity

Most of real-world input-output relationships are non linear. However, the convolu-
tion operation is a linear operation. To introduce non linearity in the convolutional
neural network, an activation function is employed. In the ReLU (Rectifier Linear
Unit) one, each element x of the input matrix is substituted by the non linear func-
tion f(x) = max(0, x). A smoothed alternative is the SoftPlus activation function
f(x) = ln(1 + exp(x)) or the so-called sigmöıd function 1

1+e−x .
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3.1.2.4 Fully connected layers

The fully connected layer (FC) is a traditional Multi Layer Perceptron (MLP) where
every neuron in the previous layer is connected to every neuron on the next layer.
Their activations can then be computed with a matrix multiplication.

It is worth to notice that a fully connected layer can be re-interpreted as a
convolution layer. Indeed, for an input of size W ×H ×D, a fully connected layer
of s neurons can be seen as a convolution layer with a kernel of size W ×H, S = 1
and P = 0 and an output feature map of size 1 × 1 × s where s is the depth. In
fact, the only difference between fully connected and convolutional layers is that the
neurons in the convolutional layer are connected only to a local region in the input,
and that many of the neurons in a convolutional layer share parameters. However,
the neurons in both layers still compute dot products, so their functional form is
identical [LSD15].

3.2 Problem formulation

Before entering deeply into the problem formulation, a bunch of annotations is put
in place.

It is assumed that a set of N training color images Ii, i ∈ 1, ..., N is given. Each
image is a 3-dimensional matrix Ii ∈ RW×H×D where W is its width, H is its height
and D = {3, 4} is the number of channels in the image, where D = 3 corresponds
to a RGB image and D = 4 corresponds to a RGBA image, whose the three first
components can be decoupled from the last channel (alpha channel) which can be
interpreted as a mask Mi such that for every pixel x of image I,

Mi(x) =

{
1 if x belongs to the region of interest in the image
0 otherwise

For each image i, it is assumed that experts have annotated cells with a dot in
their center. Let Ci the set of all cell annotations for image i. The binary map of
annotations Ai is such that, for every pixel x of image I,

Ai(x) =

{
1 if x ∈ Ci
0 otherwise

An example of mask M and annotation map A is given in Figure 3.5 with an image
crop from the BRCA dataset. The number Ci of cells in the training image i is given
either by |Ci| either by

∑
xAi(x).

According to these notations, the learning set is the set

LS = {〈Ii, Ai〉|i = 1, ..., N}

Researches in scientific literature show that the supervised problem of cell count-
ing and more generally the counting of objects in images can be approached using
two distinct perspectives: counting by detection and counting by density estimation.
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(a) Image I (b) Mask M (c) Annotations A (d) A + I

Figure 3.5: A BRCA image crop (a) with the corresponding mask (b), the binary
map of annotations (c) and the annotations superposed on the image crop (d).

3.2.1 Counting by detection

This approach is taken from the different but related problem of object detection. A
problem of object detection can be trivially castes to a problem of object counting
since the only supplementary required step is to count the number of detections.
As a bonus, the location of cells is provided. However, this approach inherits of
all issues coming from object detection. Object detectors especially have difficulties
with clumping or overlapping objects which is unfortunately a rather frequent case
when objects are cells.

Object detectors operate in two steps. In the first stage, the goal is to predict
a score map (or confidence map) S ∈ [0, 1]W×H where each element S(x) is a score
denoting the probability of presence of an object at location x. It is expected that
S(x) = 1 if x ∈ Ci and S(x) moves towards 0 for any x far away from any x′ ∈ Ci.

Figure 3.6: Score map and non-maximum suppression [Kai+15]

The second stage consists in applying a thresholding operation and a non max-
imum suppression operation on the score map S which results in the prediction
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binary map of cell locations Â as shown in Figure 3.6.

We will use this approach in the euclidean distance transform randomized trees
based classifier (Section 3.4.1) and regressor (Section 3.4.2) but also in the spatially
constrained fully convolutional neural network method (Section 3.5.2).

3.2.2 Counting by density estimation

In this approach, an estimate of the object count Ĉ is obtained directly without any
prior object detection or segmentation, simply by integrating an estimated density
function D ∈ [0, 1]W×H over the image domain [Fia+12]:

Ĉ =

∫
I

D(x) dx

where each element D(x) is the density of objects per pixel at location x.

In this way, the issues of object detection approaches are avoided. However loca-
tions of counted objects are always desirable in real case application, at least to have
an idea of what has been counted. The second stage of the counting by detection
approach can be wisely employed in that purpose. The density map can be seen as
a particular form of score map. The location of cells can thus be also obtained with
this approach, which lead to an other number of cells Ĉ by counting localized cells.
It is worth noticing that two distinct cell counts are gathered in this approach. In
order to distinguish them, the count by density estimation will be denoted by Ĉraw.

We will investigate this approach in the density randomized trees regressor (Sec-
tion 3.4.3) and in the fully convolutional regression network (Section 3.5.1).

3.3 Subwindow-based samples

As randomized trees are not directly applicable to images, a special form of samples
based on subwindows extracted from images is adopted. As [MWG13] explains, the
input images Ii cannot be directly used as learning set instances. The first reason
is the corresponding input vectors have to be of fixed size, while input images Ii are
of various size. Secondly, supervised learning methods are not suited to take into
account the 2D spatial arrangement of pixels in the image.

The approach to solve these issues is to extract a large number of subwindows
Nsw of fixed size from each of the N images, optionally transform them and finally
describe them using a fixed number of features.

At the training stage, the first step is to extract a large set of N ′ = N × Nsw

subwindows from a learning set LS = {〈Ii, Ai〉|i = 1, ..., N}. These subwindows
consists of images of smaller size than the original ones and that are possibly over-
lapping. A subwindow s = s(x) is entirely defined by its center coordinates x and its
size w × h. Typically, the subwindow size is chosen such that squared subwindows
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are extracted. The extraction strategy is method dependant and three strategies
have been used: random way, exhaustive way or even constrained by the map of
annotations.

An output is associated to each input subwindow, which is obtained from the
output map (Ai or a modified version of it such that the score map Si or the density
map Di) of its parent image Ii. The output is once again a subwindow of size w′×h′,
where w′ ≤ w and h′ ≤ h is expected, extracted this time from the output map.
The particular case when w′ = h′ = 1 leads to a single output problem while it
corresponds to a multi-output (w′h′ outputs, each output being one of the pixel of
the output map) in the general case.

Thus, a new learning set

LS ′ = {〈sinj , soutj 〉|j = 1, ..., N ′}

is obtained, where the input and output subwindow’s center x coincide, i.e. sin(x) =
sout(x) ∀j. LS ′ can be directly used by CNN-based methods while input vectors x of
fixed size must be derived from the input subwindows in order to be used by standard
supervised machine learning methods, such as RT-based methods. It results in a
learning set

LS ′′ = {〈x(sinj ), soutj 〉|j = 1, ...., N ′}

At the prediction stage, in order the produced subwindows-based model to be
applicable, subwindows are also extracted from the unseen image Itest and must have
the same size, in input and output, as during the training stage. If required, the
same transformations and feature extraction have to be applied.

However, the subwindow extraction strategy may differ. Indeed during predic-
tion, for each pixel x ∈ Itest, a subwindow such that x is its pixel center is extracted.
The number of subwindows is thus Nsw,test = WtestHtest. Each input vector of the
set {x(sinj )|j = 1, ..., Nsw,test} is applied to the model and produces a predicted out-
put subwindow. The predictions of these output subwindows are aggregated with a
spatial average which results in a predicted map of size Wtest × Htest. The nature
of this map depends on the one that has been used as output during training stage
(annotation map Âtest, score map Ŝtest or density map D̂test). In the particular
case of 1 × 1 output subwindows (single output problem), each prediction directly
corresponds to a pixel of the predicted output map.

3.3.1 Subwindow extraction strategy

3.3.1.1 Random strategy

Algorithm 1 extracts a total of N ×Nsw subwindows at random.

3.3.1.2 Exhaustive strategy

Algorithm 2 extracts all possible subwindows from the given images.

23



Algorithm 1. RandomSubwindowExtraction

Input: Number of subwindows per image Nsw, input subwindow size w × h,
output subwindow size w′ × h′

Data: A set of pairs image/map I
Output: A set of pairs input/output subwindows SW

1 SW = ∅
2 foreach 〈I,M〉 ∈ I do
3 Let C the set of Nsw positions in I, chosen randomly
4 Extend I and M by w/2 pixels on the left and on the right
5 Extend I and M by h/2 pixels on top and bottom
6 foreach x ∈ C do
7 sin ← subwindow from I of size w × h such that x is its center
8 sout ← subwindow from M of size w′ × h′ such that x is its center
9 Append to SW the pair 〈sin, sout〉

10 end

11 end
12 return SW

Algorithm 2. ExhaustiveSubwindowExtraction

Input: Input subwindow size w × h, output subwindow size w′ × h′
Data: A set of pairs image/map I
Output: A set of pairs input/output subwindows SW

1 SW = ∅
2 foreach 〈I,M〉 ∈ I do
3 Let C the set of all positions in I such that |C| = WIHI

4 Extend I and M by w/2 pixels on the left and on the right
5 Extend I and M by h/2 pixels on top and bottom
6 foreach x ∈ C do
7 sin ← subwindow from I of size w × h such that x is its center
8 sout ← subwindow from M of size w′ × h′ such that x is its center
9 Append to SW the pair 〈sin, sout〉

10 end

11 end
12 return SW

3.3.1.3 Scoremap constrained way

Algorithm 3 extracts all subwindows from the given images whose center pixel is
linked to a score higher than a fixed score threshold. The number of extracted
subwindows is thus scoremap dependent. The set of subwindows is completed by
a certain amount (by default, an equal amount) of subwindows randomly chosen
among remaining positions: a half for which the score is less than the threshold but
non zero and a half for which the score is equal to zero.
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Algorithm 3. ConstrainedSubwindowExtraction

Input: Input subwindow size w × h, output subwindow size w′ × h′,
threshold t, ratio q (by default, q = 1)

Data: A set of pairs image/scoremap I
Output: A set of pairs input/output subwindows SW

1 SW = ∅
2 foreach 〈I, S〉 ∈ I do
3 C ← set of all positions x ∈ I such that S(x) > t
4 C ′ ← set of q|C|/2 randomly chosen positions x ∈ I such that

0 < S(x) ≤ t
5 C ′′ ← set of q|C|/2 randomly chosen positions x ∈ I such that S(x) = 0
6 Extend I and S by w/2 pixels on the left and on the right
7 Extend I and S by h/2 pixels on top and bottom
8 foreach x ∈ C ∪ C ′ ∪ C ′′ do
9 sin ← subwindow from I of size w × h such that x is its center

10 sout ← subwindow from S of size w′ × h′ such that x is its center
11 Append to SW the pair 〈sin, sout〉
12 end

13 end
14 return SW

3.3.2 Feature extraction

As far as a RT-based method is involved, each subwindow can be described by a set
of image filters that are used to build the corresponding input feature vector. The
choice of filters is application dependant. This work focused on analysis of images
of H& E stained tissues, just like [Kai+15]. Inspired by it, the following filters are
applied

1. Each pixel is decomposed in the Red, Green and Blue components of the RGB
colorspace (3 features per pixel).

2. Each pixel is decomposed in the L∗, u∗ and v∗ components of the CIELUV
colorspace, a colorspace system exhibiting perceptual uniformity, i.e. a change
step in the data corresponds to an approximately equally perceptible change
step across the colorspace [Poy97] (3 features per pixel).

3. Each pixel is decomposed in the Hue, Saturation and Value components of the
HSV colorspace which has the benefit to increase robustness to illumination
changes (3 features per pixel).

4. Each pixel is extracted from the grayscale colorspace after an histogram equal-
ization in order to improve constrast in the image (1 feature per pixel).

5. The Sobel operator at first order is used as edge detector and is applied on
each pixel in the grayscale space. It is a discrete differentiation operator which
computes an approximation of the derivatives of an image intensity function
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obtained by using two 3 × 3 kernels, one for horizontal changes and one for
vertical changes, that are convolved with the input image I. The horizontal
changes are obtained by

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I
Analogously, the vertical changes are obtained by

Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗ I
where ∗ denotes the convolution operator. Moreover, the resulting gradient
approximations are combined to give the gradient magnitude

G =
√
G2
x +G2

y

Three supplementary features per pixel are thus extracted.

This bank of filters is inspired from [Kai+15] with three notable differences:

1. the second order derivative edge detection with the Sobel operator is not used
as it does not seem to be widely used in literature nor provide useful informa-
tion in the studied images (a possible explanation of error source is that it is
amplified with derivatives due to the discretized nature of images)

2. in addition to single pixel values, the authors of [Kai+15] compute as fea-
tures, for each filter, pixel value differences between two random pixels of the
same subwindow, Haar-like features, and a constrained pixel value difference,
where the second pixel location is chosen within the 10 pixels clamped at the
subwindow borders.

3. the HSV colorspace is introduced as it has already proven its interest in other
histology image analysis problems [MWG13], [MGW16].

Figure 3.7 shows a visual representation of input features for an image crop ex-
tracted from BM GRAZ dataset, where a perceptually uniform colormap has been
used.

In the end, the size d of the input vector x describing the visual content of a
subwindow is equal to (3 + 3 + 3 + 1 + 3) × w × h = 13 × w × h numerical input
features.
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Figure 3.7: Visual representation of input features

3.4 Randomized trees-based methods

The main building blocks having being introduced, we will now explore methods in
details. Each of them takes the form of a localization or counting workflow with two
phases. First, during the training stage, the model is built from a set of images for
which cells have been marked. In the second stage, the prediction is performed on
a new, unseen image using the model produced at the previous step. For reference
sake in the remainder of this text, we will attribute an acronym to each method.
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3.4.1 Standard Classification (SRTC)

This method is described in [Kai+15]. A random forest classifier is trained to predict
whether the center pixel of a subwindow extracted from a new, unseen image is of
interest (center of a cell) or not. We refer this approach as Standard Randomized
Trees Classification (SRTC).

3.4.1.1 Training stage

The learning set is built to be balanced between positive (foreground, cell center)
and negative (background) samples.

All subwindows s whose centers correspond to a cell center are extracted from
the images Ii. In order to increase the number of positive samples in the learning
set, the same operation is repeated on flipped versions of images Ii (vertically, hor-
izontally and both). Negative samples (subwindows whose centers is background)
randomly chosen are added to balance the learning set.

The input subwindows sin are transformed to input vectors using the input sub-
window feature extractor v presented in Section 3.3.2. On the other hand, the
output sout associated to an extracted subwindow sin is the output vector of size
w′h′ which is such that pixel (i, j) of the output subwindow is at location iw′+ j in
the output vector, and whose value is the class, foreground (1) or background (0),
corresponding to the pixel (i, j). The learning procedure is summarized in Algorithm
4.

Algorithm 4. ClassificationTraining

Input: randomized trees classifier algorithm algo = {RF, ET}, number of
tree estimators T , maximum number of features when looking for
best split k, minimum number of samples to split a node nmin, input
subwindow size w × h, output subwindow size w′ × h′, input
subwindow feature extractor v

Data: a learning set of N images with annotation maps

LS = {〈Ii, Ai〉|i = 1, ..., N}

Output: a tree-based ensemble model f (w′h′ outputs) built from
subwindows

1 LS ′ = ConstrainedSubwindowExtraction(LS, w × h, w′ × h′, 0.5, 2)
2 LS ′′ = ∅
3 foreach 〈sinj , soutj 〉 ∈ LS ′ do
4 LS ′′ = LS ′′ ∪ {〈v(sinj ), soutj 〉}
5 LS ′′ = LS ′′ ∪ Augment(〈v(sinj ), soutj 〉)
6 end
7 f = algo(T, k, nmin; LS ′′)
8 return f
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3.4.1.2 Prediction stage

The goal is to predict the binary annotation map Â associated to a new, unseen im-
age Itest. The trained model f is used to predict each pixel of this map, in a sliding
window fashion, that is, each pixel of Itest is the center of an input subwindow. In
the end, Â should provide the predicted positions of cell centers and the number of
cells would correspond to the number of dots in the predicted binary map Â where
Â(x) ∈ {0, 1} ∀x ∈ Â. We note that authors did not considered probabilities of be-
longing to a class instead of predicted classes. It could be an interesting alternative
but we have not tried it in our tests.

This method can suffer from several drawbacks as stated by [Kai+15]. Firstly,
the cell centers can be not well localized due an inconclusive plateau-like classifier
response on the cell nuclei. Secondly, it may lead to multiple peak responses for
single objects, and finally individual adjacent cell objects can be merged if they are
too close or if their appearance is too similar. A solution to overcome these issues is
to smooth Â using a Gaussian kernel in order to group multiple peaks into a single
one. However, it implies also the risk to merge peaks actually belonging to different
cell objects.

After such a smoothing, the map takes now no longer values in {0, 1} but rather
values in [0, 1]. A non maximum suppression algorithm has to be performed in order
to find a binary map again.

Non maximum suppression This process resumed in Algorithm 5 is composed
of the following steps

1. The input real-value map is normalized in the [0, 1] space, such that the highest
value in the map is equal to 1 after this step

2. The real-value map is optionally smoothed with a Gaussian filter in order
to merge neighboring maxima. Indeed, in image processing, this filter typi-
cally blurs the original image, reducing detail and image noise. The result is
obtained by a convolution of the original image with a 2D Gaussian function

G(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
where σ is the standard deviation of the Gaussian distribution.

3. A maximum filter is used for finding local maxima in the real-value map. This
operation, also known as dilation filter, dilates the original image and merges
neighboring local maxima closer than the size of the dilation. Its size is given
by 2ξ + 1 where ξ is the minimum distance between two expected maxima. ξ
is determined empirically for a dataset.

4. Locations where the original image is equal to the dilated image and whose
value is above a fixed discarding threshold κ are returned in a binary map.
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Algorithm 5. PostProcessing

Input: standard deviation of the merging Gaussian kernel σ, minimum
distance between 2 objects ξ, discarding threshold for non maximum
suppression κ

Data: a real-value map MR such that MR(x) ∈ [0, 1] ∀x ∈MR
Output: a binary map MZ such that MZ(x) ∈ {0, 1} ∀x ∈MZ

1 MR = MR/max(MR) //Normalize in [0, 1] space
2 if σ > 0 then
3 MR = GaussianFilter(MR, σ) //Optional smoothing
4 end
5 dilation size = 2ξ + 1
6 MZ = (MR == MaxFilter(MR, dilation size))
7 foreach x ∈MZ do
8 if MR(x) < κ then
9 MZ(x) = 0

10 end

11 end
12 return MZ

The complete algorithm for prediction phase is given in Algorithm 6. In [Kai+15],
the authors only considered the case of single output classifier, using thus 1× 1 out-
put subwindows.

Algorithm 6. ClassificationPrediction

Input: a tree-based model f , input subwindow feature extractor v, input
subwindows size w × h, standard deviation of the merging Gaussian
kernel σ, minimum distance between 2 objects ξ, discarding threshold
for non maximum suppression κ

Data: a new, unseen test image Itest
Output: a predicted binary map of the same shape as Itest giving predicted

cell positions

1 TS = ExhaustiveSubwindowExtraction(TS, w × h, 1× 1)
2 TS ′ = ∅
3 foreach sinj ∈ TS do TS ′ = TS ′ ∪ {v(sinj )}
4 Â = f(TS ′)

5 Â = PostProcessing(Â, σ, ξ, κ)

6 return Â

3.4.2 Regression by proximity score estimation (PRTR)

The key idea behind this method [Kai+15] is to train a regressor to predict a prox-
imity score for each pixel of a new, unseen image and extract local maxima from
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the score map that would correspond to cell centers. It should overcome the issues
experienced with standard classification. This method will be refered as Proximity
Randomized Trees Regression (PRTR).

3.4.2.1 Training stage

A pre-processing step is required where a score map Si is computed for each image Ii.
Each pixel of this score map encodes a score which varies as a function of its distance
to the nearest cell center. We expect it produces high scores only in foreground areas
with remarkable peaks at cell center and a low score in background areas. The scores
are then computed by

Si(x) =

{
e
α

(
1−
DAi

(x)

r

)
− 1 if DAi

(x) < r
0 otherwise

(3.1)

where

• α is a positive integer controlling the shape of the exponential

• r is the mean object radius

• DAi
(x) is the Euclidean distance transform of the cell centers on the annotation

map Ai

The distance transform operator D maps a binary image into a grayscale im-
age where the pixel values represent the distance to the nearest obstacle pixel in
the binary image, according to a specified metric. Figure 3.8 shows an image crop
containing cells, with the corresponding annotation A, the computed distance trans-
form DA and the score map S. The usage of a non-linear function S instead of the
direct application of the distance transform has two advantages (see Figure 3.9).
First, the object positions are precisely localized and the exponential shape clearly
distinguishes the object centers from the rest of the object. Also, regions without
any markers (such as bottom left in Figure 3.8) are encoded with a single and same
score on the contrary to the direct application of D.

(a) (b) (c) (d)

Figure 3.8: A BM GRAZ image crop I (a) with the corresponding annotation map
A (b), the raw Euclidean distance transform DA (c) and the score map S with α = 3
and r = 19 (d).
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Figure 3.9: The score map S with a cell center in C [Sir+14]. With our notations,
d(x) should be seen as S(x) and dM as r.

Once the score maps are computed, the learning set is built with all subwindows
sin whose center pixel x is such that Si(x) > t where t is a score threshold to decide
if the score is foreground or not. Let P be the the number of such subwindows. The
learning set is completed with qP subwindows chosen at random locations, where q
is the ratio between foreground and background in the learning set. Authors restrict
q ∈ [0, 1] while a > 1 would deserve to be tried as there are more background pixels
on an image.

The output sout associated to an extracted input subwindow sin is the output
vector of size w′h′ which is such that pixel (j, k) of the output subwindow is at lo-
cation jw′+h′ in the output vector, and whose value corresponds to the pixel (j, k)
in Si. The input feature extractor v is the same as the one used with SRTC.

A random forest regressor is trained using the given subwindow-based learning
set. The full procedure is given in Algorithm 7.

3.4.2.2 Prediction stage

The goal is to predict a score map Ŝ associated to a new, unseen image. Each pixel of
Ŝ is predicted using the model, with a sliding subwindow. The procedure is somehow
the same as prediction in SRTC with the exception that the learning algorithm
can produce multiple outputs if the output subwindows have a size larger than 1.
The predicted score map is obtained by averaging all the predicted overlapping
subwindows :

Ŝ(x) =
1

S(x)

∑
ŝout∈S(x)∈P

ŝout(x) (3.2)

where S(x) is the set of predicted subwindows s that have pixel x in their scope.
S(x) is a subset of the set of predictions P .

Also, the smoothing in the post-processing step should be less essential than in
classification. Indeed, the predicted map is already a real-value map in this case.
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Algorithm 7. ProximityRegressionTraining

Input: random forest regressor algorithm algo = {RF, ET}, number of tree
estimators T , maximum number of features when looking for best
split k, minimum number of samples to split a node nmin, input
subwindows size w × h, output subwindows size w′ × h′, input
subwindow feature extractor v, mean cell radius r, exponential shape
of score peaks α, score threshold t, ratio q

Data: a learning set of N images with annotation maps

LS = {〈Ii, Ai〉|i = 1, ..., N}

Output: a tree-based ensemble model f (w′h′ outputs) built from
subwindows

1 LS ′ = ∅
2 foreach 〈Ii, Ai〉 ∈ LS do
3 LS ′ = LS ′ ∪ {〈Ii, Si〉}
4 where Si is obtained using Equation 3.1 with parameters α and r

5 end
6 LS ′′ = ConstrainedSubwindowExtraction(LS, w × h, w′ × h′, t, q)
7 LS ′′′ = ∅
8 foreach 〈sinj , soutj 〉 ∈ LS ′′ do LS ′′′ = LS ′′′ ∪ {〈v(sinj ),w(soutj )〉}
9 f = algo(T, k, nmin; LS ′′′)

10 return f

Algorithm 8 recapitulates the procedure.

Algorithm 8. RegressionPrediction

Input: a tree-based model f , input subwindow feature extractor v, input
subwindows size w × h, output subwindows size w′ × h′, standard
deviation of the merging Gaussian kernel σ, minimum distance
between 2 objects ξ, discarding threshold for non maximum
suppression κ

Data: a new, unseen test image Itest
Output: a predicted binary map of the same shape as Itest giving predicted

cell positions

1 TS = ExhaustiveSubwindowExtraction(TS, w × h, w′ × h′)
2 TS ′ = ∅
3 Let P = ∅ be the set of predictions.
4 foreach sinj ∈ TS do
5 Append ŝoutj = f(v(sinj )) to P .

6 end

7 Build ŜR using formula 3.2 with P .

8 ŜZ = PostProcessing(ŜR, σ, ξ, κ)

9 return ŜZ
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3.4.3 Regression by density estimation (DRTR)

Proposed in [Fia+12], the method aims to count objects by integrating a density
map that is predicted from an input image. We will call this approach the Density
Randomized Trees Regression (DRTR).

3.4.3.1 Training stage

A pre-processing step is required where a density map Di is computed for each image
Ii. In the same way as population density measures the number of inhabitants per
area unit in demography, we build an object density map where the area unit is the
squared pixel. Each pixel of this density map encodes then a density of objects per
pixel. The density map is given by

Di(x) =
∑
µ∈Ci

N (x;µ, σ) (3.3)

where µ is the mean and σ is the standard-deviation of a normal or Gaussian
distribution N , and Ci is the set of all cell annotations for image Ii.

The key point of the method is to notice that this equation describes in fact the
application of a Gaussian filter on the annotation mask Ai. Indeed, by definition,
∀x such that x /∈ Ci : Ai(x) = 0. We thus have

Di = GaussianFilter(Ai, σ)

A set of randomly chosen (possibly overlapping) subwindows of size w×h makes
the learning set. Nsw subwindows per image Ii are selected. The output sout asso-
ciated to an input subwindow sin is a subwindow w′ × h′ extracted from Di such
that the input and output subwindow centers are concurrent. The method thus
must use a multi-output regression if w′h′ > 1. Also, in [Fia+12] input and output
subwindows have the same size, i.e. w = w′ and h = h′. Algorithm 9 summarizes
the procedure.

3.4.3.2 Prediction stage

The procedure is similar to PRTR approach, with a sliding window over the image.
The number of objects Ĉ in image Itest is given by the integration of D̂R over the
image domain

Ĉraw =

∫
Itest

D̂R(x) dx

Inspired by PRTR, we propose an extension to the method. By performing non
maximum suppression on D̂R with Algorithm 5, we obtain a binary mask D̂Z with
the positions of local density maxima, which may correspond to some extent to the
cell centers.

The Algorithm 8 can hence be re-employed here with density map instead of
proximity score map. Instead of only returning the binary map D̂Z obtained with
non maximum suppression, the predicted density map with real values D̂R is also
returned. Two counts are thus obtained, Ĉ from detection and hatCraw

34



Algorithm 9. DensityRegressionTraining

Input: random forest regressor algorithm algo = {RF, ET}, number of tree
estimators T , maximum number of features when looking for best
split k, minimum number of samples to split a node nmin, subwindows
size w × h, input subwindow feature extractor v, pre-processing
standard deviation σ, number of random subwindows par image Nsw

Data: a learning set of N images with annotation maps

LS = {〈Ii, Ai〉|i = 1, ..., N}

Output: a tree-based ensemble model f (wh outputs) built from subwindows

1 LS ′ = ∅
2 foreach 〈Ii, Ai〉 ∈ LS do
3 Di = GaussianFilter(Ai, σ)
4 LS ′ = LS ′ ∪ {〈Ii, Di〉}
5 end
6 LS ′′ = RandomSubwindowExtraction(LS, w × h, w × h, Nsw)
7 LS ′′′ = ∅
8 foreach 〈sinj , soutj 〉 ∈ LS ′′ do LS ′′′ = LS ′′′ ∪ {〈v(sinj ),w(soutj )〉}
9 f = algo(T, k, nmin; LS ′′′)

10 return f

3.5 Convolutional neural networks-based meth-

ods

3.5.1 Regression by density estimation (FCRN)

This approach is proposed by [XNZ15] and is based on the work of [LSD15] who
developed a Fully Convolutional Regression Network (FCRN) for semantic labelling.
By reinterpreting the fully connected layers of a classification net as convolutional
ones and using upsampling filters, it can take an input of arbitrary size and pro-
duce a correspondingly-sized output both for end-to-end training and for prediction.

[XNZ15] proposes two architectures: FCRN-A (Table 3.1) and FCRN-B (Table
3.2). Unfortunately, it does not provide any justification for these architectures.
Figure 3.10 gives a graphical representation of these two networks. The first several
layers of the network contain regular convolution-ReLU-pooling, then the spatial
reduction is removed by performing upsampling-ReLU-convolution. It maps the
feature maps back to the original dimension. Upsampling is performed by bilinear
interpolation.

A key parameter in each convolution layer is the padding P . It is automatically
chosen such that the width and height of the output volume are the same as in the
input volume. Each convolutional layer only changes the depth of a volume.
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Layer Type Parameters Filter size Output size
0 INPUT w × h× d
1 CONV+ReLU K = 3;D = 32;S = 1 3× 3× 32 w × h× 32
2 POOL F = 2;S = 2 2× 2 w/2× h/2× 32
3 CONV+ReLU K = 3;D = 64;S = 1 3× 3× 64 w/2× h/2× 64
4 POOL F = 2;S = 2 2× 2 w/4× h/4× 64
5 CONV+ReLU K = 3;D = 128;S = 1 3× 3× 128 w/4× h/4× 128
6 POOL F = 2;S = 2 2× 2 w/8× h/8× 128
7 FC+ReLU D = 512 3× 3× 512 w/8× h/8× 512
8 UPSAMPLING F = 2;S = 2 2× 2 w/8× h/8× 512
9 CONV+ReLU K = 3;D = 128;S = 1 3× 3× 128 w/4× h/4× 128
10 UPSAMPLING F = 2;S = 2 2× 2 w/2× h/2× 128
11 CONV+ReLU K = 3;D = 64;S = 1 3× 3× 64 w/2× h/2× 64
12 UPSAMPLING F = 2;S = 2 2× 2 w × h× 64
13 CONV+ReLU K = 3;D = 32;S = 1 3× 3× 32 w × h× 32
14 CONV K = 1;D = 1;S = 1 1× 1× 1 w × h× 1

Table 3.1: FCRN-A architecture

Layer Type Parameters Filter size Output size
0 INPUT w × h× d
1 CONV+ReLU K = 3;D = 32;S = 1 3× 3× 32 w × h× 32
2 CONV+ReLU K = 3;D = 64;S = 1 3× 3× 64 w × h× 64
3 POOL F = 2;S = 2 2× 2 w/2× h/2× 64
4 CONV+ReLU K = 3;D = 128;S = 1 3× 3× 128 w/2× h/2× 128
5 CONV+ReLU K = 5;D = 256;S = 1 5× 5× 256 w/2× h/2× 256
6 POOL F = 2;S = 2 2× 2 w/4× h/4× 256
7 FC+ReLU D = 256 3× 3× 256 w/4× h/4× 256
8 UPSAMPLING F = 2;S = 2 2× 2 w/2× h/2× 256
9 CONV+ReLU K = 5;D = 256;S = 1 5× 5× 256 w/2× h/2× 256
10 UPSAMPLING F = 2;S = 2 2× 2 w × h× 256
11 CONV K = 1;D = 1;S = 1 1× 1× 1 w × h× 1

Table 3.2: FCRN-B architecture

3.5.1.1 Training stage

The learning set has to be augmented since the more examples are used to train the
model, the better the model is performing. In that purpose, possibly overlapping
input subwindows w×h are extracted from input images in a random way. It clearly
increases the amount of available data for training. Also, rotated (0◦, 90◦, 180◦, 270◦)
and flipped (along horizontal or vertical axis) versions of these subwindows are added
to the learning set. Each input subwindow is normalized by subtracting its own mean
value and then dividing by the standard deviation.

As in other approaches, an output subwindow is associated to each input. It is
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Figure 3.10: The two FCRN architectures for a 100 × 100 × 3 input RGB image
[XNZ15]

extracted from the ground truth density map Di linked to each image Ii of the learn-
ing set. A key point of the method is that input and output subwindows have the
same size. [XNZ15] argues that the content of output subwindows must be scaled,
for example multiplying the ground truth annotation by 100. Without this oper-
ation, the difference between peak values and background is too small. Therefore,
the networks tend to be more focusing on fitting the background zero rather than
Gaussian shapes.

It is worth to remark that subwindows are here used only to augment the dataset.
The method would also work if input images are directly given, provided that the
size of learning set is large enough.

Algorithm 10 summarizes the training step.

3.5.1.2 Prediction stage

To predict the density map of a new, unseen image Itest with the FCRN model f ,
it is enough just to apply Itest to the model. Mathematically, we have

D̂ = f(Itest)

To obtain a binary mask from the predicted real-value density map, it is enough to
apply the non maximum suppression algorithm (Algorithm 5) as previously, requir-
ing a discarding threshold κ and optionally, the standard deviation σ of a Gaussian
kernel to merge neighboring multiple responses into a single one. As in DRTR, it is
an extension of the original method that we propose here.
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Algorithm 10. FCRNTraining

Input: architecture arch = {A,B}, number of epochs e, batch size b,
learning rate η(e), weight decay λ, pre-processing standard deviation
σ, subwindow size w × h, number of extracted subwindows per image
Nsw

Data: a learning set of N images with annotation maps

LS = {〈Ii, Ai〉|i = 1, ..., N}

Output: a CNN model f

1 LS ′ = RandomSubwindowExtraction(LS, w × h, w × h, Nsw)
2 Augment LS ′ with rotated and flipped versions of its elements
3 LS ′′ = ∅
4 foreach 〈Ii, Ai〉 ∈ LS ′ do
5 Ii,norm = [Ii −mean(Ii)] /std(Ii)
6 Di = GaussianFilter(Ai, σ)
7 LS ′′ = LS ′′ ∪ {〈Ii,norm, Di〉}
8 end
9 f = CNN(arch, e, b, η(e), λ; LS ′′)

10 return f

3.5.2 Regression by proximity score estimation (SC-CNN)

[Sir+16] presents this method as a spatially constrained convolutional neural net-
work (SC-CNN) which includes two customized layers: a parameter estimation layer
and a spatially constrained layer for spatial regression. As a result, it produces a
probability score map based on the distance from the center of the nearest object.
In other words, it is very similar to PRTR (see Section 3.4.2). Indeed, a score map
is computed in a similar way and linked to the input images of the learning set. The
goal is to predict the score map for unseen images.

As far as neural networks are involved, an architecture of successive layers must
be defined. Table 3.3 gives the sequence of layers as in [Sir+16] whereas no justifica-
tion is given. It takes in input, as every CNN, an image of size w× h× d where d is
the depth of the image. Then, two blocks of ”convolution + ReLU + max pooling”
are added. The fifth and sixth layers are fully connected layers re-interpreted as con-
volutional ones. As a remainder, this practice is explained in Section 3.1.2. It can be
noticed that the filter of fifth layer has a size which depends on previous output size
and thus on the size of the input image. Finally, the two last layers (S1 and S2) are
the new spatially constrained layers introduced by SC-CNN, as shown in Figure 3.11.

The penultimate layer S1 is the parameter estimation layer. Knowing that out-
put subwindow size is fixed to w′ × h′, let M be the mean number of objects that
should be contained into a single output subwindow. While M is empirically set in
[Sir+16], a simple improvement we can propose to have a fully automated procedure
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Figure 3.11: Last three layers of SC-CNN, where L is the number of layers

Layer Type Parameters Filter size Output size
0 INPUT w × h× d
1 CONV+ReLU K = 4;D = 36;S = 1;P = 0 4× 4× 36 W1 ×H1 × 36
2 POOL F = 2;S = 2 2× 2 W2 ×H2 × 36
3 CONV+ReLU K = 3;D = 48;S = 1;P = 0 3× 3× 48 W3 ×H3 × 48
4 POOL F = 2;S = 2 2× 2 W4 ×H4 × 48
5 FC+ReLU D = 512 W4 ×H4 × 512 1× 512
6 FC+ReLU D = 512 1× 1× 512 1× 512
7 S1 1× 1× 3M 1× 3M
8 S2 w′ × h′

Table 3.3: SC-CNN architecture

is to compute the mean of M over randomly extracted output subwindows from the
learning set, before to start training the network. The number of extracted subwin-
dows has still to be set but this hyperparameter is by far less dataset dependent.

The authors of [Sir+16] expect that the number of predicted objects per sub-
window would be comprised between 0 and M . For each expected object om, with
m = 1, ...,M , three quantities are computed: um, vm and hm where (um, vm) ∈ sout
is the location of om object and hm is its probability of existence. According to
[Sir+16], they are computed by

um = w′ sigm(wS1,um · xFC)
vm = h′ sigm(wS1,vm · xFC)
hm = sigm(wS1,hm · xFC)

where sigm(x) is the sigmoid activation function

sigm(x) =
1

1 + e−x

The number of neurons in the S1 layers is thus 3M .
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The last layer S2 is the spatially constrained layer. It aims to build the predicted
output map ŝout of size w′×h′. The score map of the subwindow is calculated using
Equation 3.1 where the Euclidean distance transform is obtained from the M objects
whose position is given by the (um, vm) of the previous layer. Each pixel x of the
resulting subwindow is then scaled by the probability of existence of om such that
om is the nearest object with respect to pixel x. Mathematically,

ŝout(x) = S(x)hm

where m is such that ∀m 6= m′, dist((um, vm), x) < dist((um′ , vm′), x).

Contrary to previous approaches, we had not been able to implement this method.
Indeed, it seems difficult to justify theoretically the choices of [Sir+16]. In particular,
the usage of layer S1 is rather strange. We do not quite understand its usefulness as
it would seem more natural to directly predict a score map as output of the convo-
lutional neural network, and without any prior knowledge on the expected number
of objects in an output subwindow.

3.5.2.1 Training stage

The SC-CNN model is built using Algorithm 11. The learning set used by the
neural networks is composed of all possible subwindows of size w × h (and their
linked output subwindow of size w′ × h′) extracted from the N input images. As
the number of image examples is crucial in convolutional neural networks, the set
is augmented with rotated (0◦, 90◦, 180◦, 270◦) and flipped (along horizontal and
vertical axis) versions of subwindows.

3.5.2.2 Prediction stage

As the only main difference between SC-CNN and PRTR is the learning algorithm,
the prediction stage is similar to Algorithm 8, with the exception of the input sub-
window feature extractor v which can be removed since the features are directly
learned by convolutional neural networks.
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Algorithm 11. SC-CNNTraining

Input: number of epochs e, batch size b, learning rate η(e), weight decay λ,
input subwindows size w × h, output subwindows size w′ × h′, mean
cell radius r, exponential shape of score peaks α, number of
subwindows per image Nsw (to determine M)

Data: a learning set of N images with annotation maps

LS = {〈Ii, Ai〉|i = 1, ..., N}

Output: a CNN model f built from subwindows

1 LS ′ = ∅
2 foreach 〈Ii, Ai〉 ∈ LS do
3 LS ′ = LS ′ ∪ {〈Ii, Si〉}
4 where Si is obtained using Equation 3.1 with parameters α and r

5 end
6 LSM =RandomSubwindowExtraction(LS’, w × h, w′ × h′, Nsw)
7 Let M be the mean number of objects per output subwindow from all

sout ∈ LSM
8 LS ′′ = ExhaustiveSubwindowExtraction(LS’, w × h, w′ × h′)
9 Augment LS ′′ with rotated and flipped versions of its elements

10 f = SC-CNN(e, b, η(e), λ,M ; LS ′′)
11 return f
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Chapter 4

Experiments and comparison

This chapter applies methods introduced in Chapter 3 to various datasets of mi-
croscopy images of human tissues and aims at assessing and validating these meth-
ods. The evaluation methodology and protocol regarding model selection and as-
sessment are first described in Section 4.1.

Then, Section 4.2 introduces the design of experiments, explaining in details how
the tests will be conducted while the associated obtained results are presented per
dataset and per method in Section 4.3. A comparison analysis between the different
approaches is given in Section 4.4. Finally, some implementation details are given
in Section 4.5.

4.1 Evaluation methodology

4.1.1 Model selection and assessment

Each method has a set of hyperparameters that can be tuned to influence model
performances. When it comes to estimate the performance of several models learned
from a dataset, the procedure takes place in two stages : model selection and model
assessment. Model selection is the task of selecting the model with the best per-
formance among a set of candidate models learned from a same dataset but with
different hyperparameters. Model assessment is the task of assessing the finally cho-
sen model by estimating the generalization error, i.e. a measure of the accuracy of
model predictions on new, unseen data.

4.1.1.1 Model assessment and test set

A typical approach to assess a supervised machine learning model is to split samples
from a dataset into a learning set on which the model is trained and a test set on
which the generalization error is evaluated. This procedure is also known as the
holdout set. The split must be performed in order to reach two objectives. Firstly,
the learning set should contain enough samples to be able to build relevant mod-
els. Secondly, the test set should contain enough samples so that the evaluation is
significant enough. A common strategy when the number of input samples is high
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enough is to keep approximately 70% of available data in the learning set and uses
the remaining 30% as test set.

Several scores can be computed for each model of each approach and for each
dataset. It allows to compare methods between them based on the scores obtained
by the best models.

4.1.1.2 Model selection and cross validation

Values of hyperparameters of the different cell detection or cell counting algorithms
have an influence on the model performance. To improve it, the best combination
of hyperparameters must be found among a set of hyperparameter combinations
provided by the experimenter. The procedure consists in the building of a set of
models, namely one for each parameter combination, and assessing them in order
to discover the best model and thus the best combination.

The assessment of each model is done through cross-validation. When it was
possible, we opted for a leave one slide out cross-validation strategy. Concretely,
given a learning set of N whole-slide images, N models are learned in turn where
the learning set consists in the samples of the N − 1 slides, the test set being the
samples of the slide taken out. The score associated to the model is the average of
the N scores generated by the process which is illustrated in Figure 4.1 with N = 4.
The usage of such a strategy produces almost unbiased estimates since removing
only one slide from the learning set does not change too much its size. However,
the procedure is slow as it requires to train N distinct models. In the case where N
was too large for a leave one slide out CV, per-slide k-fold cross-validation had been
employed. It is a variation of traditional k-fold strategy which ensures that samples
belonging to the same slide are not represented in both testing and training sets.
The leave one slide out cross-validation is just a particular case of per-slide k-fold
cross-validation where k = N .

The choice of per-slide cross-validation aims at limiting an overestimation of
accuracy. Indeed, having objects coming from a same whole-slide image I both in
the learning and the test set could lead to an artificially increased score of a too
complex model learning some specific characteristics proper to I.

4.1.1.3 Full procedure

Eventually, the full assessment procedure (see Figure 4.1) consists in the following
steps:

1. split the dataset into a learning and a test set of whole-slide images so that
they respectively contain 70% and 30% of data.

2. determine the best hyperparameters through an hyperparameter optimization
strategy using per-slide k-fold cross-validation on the learning set.

3. learn a model on the entire learning set, using the combination of parameters
found in previous step.
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Figure 4.1: Model assessment using test set and model selection using leave one
slide out cross-validation.

4. assess the model on the test set.

The selection of best parameters and assessment is performed using some defined
metrics. It is the object of the next section.

4.1.2 Metrics

Methods yielding to cell detections ([Kai+15], [Sir+16]) are typically evaluated in
terms of a binary classification. Results can be summed up in a confusion matrix, a
N × N matrix (N being the number of classes) where its element mij corresponds
to the number of objects that are actually associated to the ith class and that are
predicted to be the jth one by a model. In the case of a binary classification (N = 2),
one typically denotes by m00 the number of true positive (TP), m10 the number of
false positive (FP), m01 the number of false negative (FN) and m11 the number of
true negative (TN).

Four common metrics can be computed from this binary confusion matrix:

1. Accuracy : proportion of correct predictions among all predictions. It is a
simple criterion since it does not provide information about how errors are
distributed. Accuracy is given by

accuracy =
TP + TN

TP + FP + TN + FN
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2. Precision : proportion of correct predictions among positive predictions. It
is thus a measure of results relevancy and is given by

precision =
TP

TP + FP

3. Recall : proportion of positives that are correctly detected. Intuitively, it is
the ability of the classifier to find all the positive samples. It is given by

recall =
TP

TP + FN

4. F1-Score : harmonic mean of precision and recall. It can be interpreted as a
trade-off between precision and recall and is given by

F1-score =
2 · precision · recall

precision + recall

In accordance with [GMR10] who inspired the subsequent publications intro-
ducing methods we are studying, the confusion matrix is build using the following
guidelines:

1. Consider a distance threshold ε (in pixels) to decide if a detection actually
corresponds to a groundtruth dot annotation or not.

2. If the distance between a detection and a groundtruth annotation is less or
equal than ε, the detection is a true positive (TP).

3. If several detections have a distance to a same groundtruth annotation which
is less or equal than ε, the most confident one (i.e. the one with the highest
predicted score) is a true positive (TP) and others are false positives (FP).

4. Detections farther away than ε from any groundtruth dot annotation are false
positives (FP).

5. Groundtruth annotations without any close detections are false negatives (FN).

This new distance threshold ε is responsible of localization accuracy. A smaller
value of ε will increase the detection confidence since it is harder for a detection to be
considered as a true positive. The value of ε is application and dataset dependent.
As far as the position of cells is required, a rather strict value is intended.

For those cases where cell center position is significant, the mean Euclidean
distance between a true positive and its correctly assigned groundtruth is computed,
or equivalently, the mean absolute error (MAE) of the distance between a TP and
its correctly assigned groundtruth. Mathematically, if T P is the set of locations of
the true positives detections,

MAEdist =
1

|T P|
∑

(xi,yi)∈T P

√
(xi − xgti)2 + (yi − ygti)2
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where (xgti , ygti) is the location of the groundtruth annotation assigned to prediction
i. We might notice that we always have MAEdist < ε.

Methods are also evaluated on the total count of objects identified, computing
the absolute difference between the true number of objects and the number of ob-
jects found by the method [GMR10], independently of the distance threshold ε. In
mathematical terms,

MAEcount =
1

N

N∑
i=1

∣∣∣Ĉi − Ci∣∣∣
where N is the number of images, Ĉi =

∑
x Âi(x) and Ci =

∑
xAi(x) are respectively

the number of detected annotations and the number of ground truth annotations
for the image i.

In [Kai+15] this quantity is calculated as the absolute difference between the
number of true objects and the number of true positives. It is in fact the mean
of the number of false negatives per image which is computed and the number of
false positives is not taken into account. It is incorrect to refers to this quantity as
MAEcount.

It can also be helpful to express the counting mean absolute error in terms
of percentage, that can be easily compared, independently of the total number of
annotations. We have

MAEcount,% = 100

∑N
i=1

∣∣∣Ĉi − Ci∣∣∣∑N
i=1Ci

Methods based on density estimation only return a number which is the esti-
mated count of object in the images ([Fia+12], [XNZ15]) and use as metric the mean
absolute error on this number. Put differently, it is the mean absolute difference
between the estimated count of objects and the number of groundtruth annotations.
Mathematically,

MAEraw count =
1

N

N∑
i=1

∣∣∣Ĉrawi
− Ci

∣∣∣
where N is the number of images. Also a percentage version MAEraw count,%

can be computed.

As stated in Chapter 3, object locations can be inferred by extraction of local
maxima from the density map. Confusion matrix can then be computed and it
allows the MAE on the estimated count of object (MAEraw count) to be compared
with the MAE on the number of detected objects (MAEcount).

4.1.2.1 Optimization criteria

At the end of model selection, the best model is chosen among a set of candidate
models learned from a same dataset. This choice is made by selecting the model
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that has the best score according to one of the metrics presented before and is called
the optimization criterion. Typically, methods coming from the detection world use
the F1-score as optimization criterion while methods directly related to counting use
the MAEcount (or its equivalent in percentage). In our case, we are interest both
in detection and counting. However, it is not at all guaranteed that the model with
the best F1-score leads to the best MAEcount and inversely.

An example is shown in Figures 4.2 and 4.3 where F1-score and MAEcount,% are
drawn in function of the value taken by the hyperparameter κ, the post-processing
threshold. If we are in the case of Figure 4.2, we could expect good results in terms
of counting by choosing the κ that leads to the best F1-score. On the other hand,
choosing the κ with the best F1-score in the case of Figure 4.3 conducts to a very
poor counting performance.

Figure 4.2: The best F1-score leads to a
good counting performance

Figure 4.3: The best F1-score leads to a
poor counting performance

In order to overcome this issue, we propose a new optimization criterion (OC)
based on a weighted average between the normalized F1-score and counting mean
absolute error. In this way both criteria are taken into account.

OC = β F1-score + (1− β) (1−MAEcount,%)

where x = x
maxx

is the normalized score function whose definition domain is the
set of all trained models. β is a weight that allows to give more importance to the
detection performance (β > 0.5) or to counting performance (β < 0.5). We opted
for β = 0.5, which put on a same footing both criteria. It is worth to notice that
OC has no physical significance, it only provides a ranking between models.

4.2 Design of experiments

In order to make comparisons between methods, the procedure described in Sec-
tion 4.1.1.3 is applied for each method and each dataset. During model selection,
the hyperparameter optimization is typically performed using a grid search strategy
which consists in generating a set model candidates in order to make an exhaustive
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search across a subset of the hyperparameter space. However, this strategy leads to
a highly combinatorial number of experiments to conduct if the number of hyper-
parameters and their possible values is relatively large.

A possible alternative to overcome this problem is to define a default model
learned with hyperparameter values fixed either by suggestions from publications
proposing some methods, either by the knowledge and the intuition that the ex-
perimenter has on the behaviour of these hyperparameters in order to have a great
trade-off between computational complexity and model performance. Then, the set
of candidate models is completed by taking each hyperparameter and varying its
value while other remain fixed to their default value. This strategy has the draw-
back not to take into account hyperparameter dependencies. On the other hand, it
allows to detect trends in terms of model performance with respect to hyperparame-
ter values. This can be wisely used to define a smaller subset of the hyperparameter
space on which an exhaustive grid search can be performed.

We opted for a default model search for the hyperparameters, excepting the post-
processing hyperparameters for which a grid search strategy is adopted because these
hyperparameters do not imply any new model training and require thus low new
computation efforts. Other hyperparameters that have to be tuned are described
hereafter, each of them with a default value and a set of hyperparameter values to
test during model selection.

4.2.1 Pre-processing

When the construction of score map is based on the euclidean distance between cells,
a parameter α controlling the exponential shape of score peaks is set by default to 3
as in [Kai+15]. After some preliminary tests, we choose not to tune this parameter
as it has low influence on the performances. The mean distance of object is dataset
dependent and empirically determined.

When the score map is based on the density of cells per pixel, the standard
deviation σ of the Gaussian filter producing density scores is set by default to 1 as
suggested in [XNZ15]. Also [Fia+12] and [XNZ15] argue that the parameter does
not significantly influence the performances.

4.2.2 Randomized trees

Only squared subwindows have been used in input and output. The size w × h of
input subwindows has been tuned using the following set of values : {8 × 8, 16 ×
16, 24× 24, 32× 32} and setting the default case to 16× 16 input subwindows. The
intuition suggests that large subwindows can yield to better results as they capture
cell shapes and surrounding environment.

Multi-output regressors or classifiers can be used to predict subwindows larger
than 1× 1 that can be spatially averaged to produce stronger predictions. The size
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w′×h′ of output subwindows has been tuned among {1×1, 2×2, 4×4, 8×8, 16×16}.
1× 1 output subwindows have been used as default.

When subwindows extraction is constrained by the score map, t is the score
threshold so that all subwindows whose center has a score higher than t are ex-
tracted (positive subwindows). As suggested in [Kai+15], a default value of t = 0.4
has been fixed. The parameter is tuned with the set of values : {0.3, 0.4, 0.5} as it is
difficult to have an intuition regarding this parameter. Moreover, q is the proportion
of negative subwindows (i.e. whose center has a score lower than t) that are added.
By default q = 1.0, which correspond to a set of samples which an equal amount of
positive and negative samples) is used. In classification, a ratio q = 1.0 is ideal to
balance the set of samples. In the case of regression, a ratio lower than 1 could be
used to reduce the number of required samples to train the algorithm. The provided
values to be tested are {0.25, 0.5, 0.75, 1.0}.

When subwindows extraction is performed at random, Nsw is the number of
randomly chosen input subwindows. By default, it has been set to Nsw = 10000.
Values that have been tested comes from {10000, 50000, 100000}.

When randomized trees are involved in methods, the number of tree estimators
T in the ensemble has to be tuned. The intuition suggests that the higher T is, the
better performances are, as the predictions of T trees are averaged which reduces
variance. The number of tree estimators T had been set to 10, a moderate value,
and trends were estimated with the following set of values : {1, 10, 32, 64, 100} where
T = 1 comes down to a simple decision tree and T = 32 and T = 64 are determined
by cross-validation respectively by [Fia+12] and [Kai+15] for their respective meth-
ods and datasets.

The maximum number of features k to evaluate when the decision tree algo-

rithm is looking for the best split has been tuned using the set
{

1,
√
d, d/2

}
with

d = 13×w× h where w and h are the size of input subwindows and 13 corresponds
to the number of image planes (3 for RGB, 3 for Luv, 3 for HSV, 1 for grayscale,
2 for Sobel filter in x and y direction at first order and 1 for gradient magnitude)
as stated in Section 3.3. Moreover in the default case, the subwindow size has been
fixed to w = h = 16 so that the set of values for k is {1, 58, 1664} for a total number
of 3328 features. The default value has been set to

√
d = 58.

The minimum number of samples nmin required to split a node during tree build-
ing has also been tuned. It prevents the algorithm to learn features that are too
specific and aims at limiting overfitting. The set {2, 10, 100, 200, 600} has been used
to tune nmin, with a default value of 2 which is the smallest possible value for this
parameter and leads to fully developed trees.

It remains to choose the randomized trees algorithm A among standard ran-
dom forest and Extra-Trees. We chose Extra-Trees as default, in the same way as
[Fia+12].
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Table 4.1 gives a summary of randomized trees parameters to tune.

Parameter Description Default value Values to test
T number of tree estimators 10 {1, 10, 32, 64, 100}
k max features

√
d

{
1,
√
d, d/2

}
nmin min samples split 2 {2, 10, 100, 200, 600}

Table 4.1: Randomized trees parameters to tune

4.2.3 Convolutional neural networks

The number of epochs e is the number of entire passes over all the dataset during
training phase. We use by default e = 72 to speed up the computations compared to
[Sir+16] which uses 120 epochs and [XNZ15] which uses 192 epochs. These values
are nevertheless tested. The batch size b, which is the number of training samples
that are used for one gradient update has been tuned with the set {16, 32} which
are two values suggested in the Keras documentation. By default each batch has a
size of 32 samples.

Regarding the learning rate η, its initial value is set by default to 0.01 as sug-
gested by [XNZ15] and this value is tuned using the set {0.01, 0.001, 0.0001}. These
values correspond to the initial learning rate. Indeed, as explained in Section 3.1.2,
a common practice with CNN is to adjust the learning rate over epochs during train-
ing. In all tests, the learning rate is diminished by half its current value every 20
epochs.

The weight decay λ is a regularization term that allows to limit potential overfit-
ting. By default, no regularization is applied (λ = 0). The value λ = 0.0005 is also
tested. In all cases, the parameters in the network are initialized with an orthogonal
basis and no dropout is used as in [XNZ15].

For CNNs, a high number of training images is usually required. In that purpose,
the dataset is augmented with randomly flipped and rotated versions of training im-
ages. Also, a set of large subwindows is extracted at random from the initial images
and are used as training images. In that way, the amount of training data is drasti-
cally increased. By default, we use training subwindows of size w × h = 256× 256
and we test the values among {64×64, 128×128, 256×256, 512×512}. The number
of training subwindows per image is set by default to 500 and has been tuned using
the set {50, 500, 1000}.

Table 4.2 sums up the convolutional neural network hyperparameters to tune.
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Parameter Description Default value Values to test
e epochs 72 {24, 72, 120, 192}
b batch size 32 {16, 32}
η initial learning rate 0.01 {0.01, 0.001, 0.0001}
λ weight decay 0.0 {0.0, 0.0005}

w × h subwindow size (training) 256 {64, 128, 256, 512}
Nsw subwindow per image

(training)
500 {50, 500, 1000}

Table 4.2: FCRN parameters to tune

4.2.4 Post-processing

The parameters involved during prediction stage influence the performance of a
model without influencing the model itself. As previously stated, a grid search is
systematically performed to find the best post-processing parameters combination.
These parameters are

1. σ the standard deviation of an optional Gaussian kernel used before non max-
imum suppression in order to merge multiple peaks into a single one, even if
such a smoothing can merge together multiple peaks coming from different
cells though.

2. κ, the discarding threshold, which is a crucial parameter that influence per-
formance as it discards all local maxima lower than κ.

All discarding thresholds between 0 and 1 are tested by step of 0.02. Regarding
the Gaussian kernel the standard deviation is tested among 1.0 and 4.0 as well as
without this smoothing procedure. Table 4.3 recapitulates the prediction parameters
values tested through a grid search.

Parameter Description Values to test
σ std-dev of optional Gaussian filter {None, 1.0, 4.0}
κ discarding threshold {0.0, 0.02, ..., 0.98, 1.0}

Table 4.3: Parameters for post-processing non maximum suppression

4.3 Tests and results

The content of this section aims at presenting our results and discussing them. For
each dataset, we will adopt the following protocol:

1. The dataset is split into a learning set and a test set. Approximately, the
former will contain 70% of available data while the test set will receive the
remaining 30%. Except for the case where a distribution is already provided,
the construction of the two sets has been done empirically in order to achieve as
much as possible a 70-30 division in terms of whole slides, images and number
of ground truth annotations.
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2. Each method is then evaluated according to our design of experiments:

(a) A first model selection with cross-validation is performed with the default
model approach on the learning set, to detect the intuition and trends on
the behaviour of each hyperparameter. These are tested while the others
remain fixed to their default value. However, as the post processing
parameters are required to compute metrics, the results of a test are the
ones with the best post processing parameters, chosen from a grid search.

(b) From the observations of the previous step, a few set of hyperparameters
are tested with a grid search approach with cross-validation. It is the
model selection as such, returning the set of best hyperparameters.

(c) The model assessment is then performed on the test set, using the set of
best hyperparameters previously determined. It gives the performance
estimate for the dataset and the approach.

3. Finally, the different approaches can be compared thanks to the performance
estimates of each method. Moreover, they are compared to a simple baseline
which is expected to produce lower performance. The principle is simple.
First, the mean density of objects per squared pixel D is computed from the
learning set. A prediction of the number of objects for an image w × h is
simply Dwh.

The following Table 4.4 gives a summary of all the tests that have been con-
ducted per dataset and per method. The whole procedure has been respected for
the datasets BMGRAZ, ANAPATH and GANGLIONS. For the last dataset, CRC,
a simple assessment with two fold cross-validation on the whole dataset has been
done. The hyperparameters have been inferred from the results of previous experi-
ments and do not have been tuned. It allows to compare the scores with [Sir+16]
which has used the same protocol. The same two folds as in [Sir+16] have been used
to reduce result variability due to image heterogeneity.

BMGRAZ ANAPATH GANGLIONS CRC

SRTC LOO-CV MS LOO-CV MS LOO-CV MS 2-CV
+ [Kai+15]

PRTR LOO-CV MS LOO-CV MS LOO-CV MS 2-CV
+ [Kai+15]

DRTR LOO-CV MS LOO-CV MS LOO-CV MS 2-CV
FCRN-A 5-CV MS 2-CV MS 3-CV MS 2-CV
FCRN-B 5-CV MS 2-CV MS 3-CV MS 2-CV
SC-CNN - - - 2-CV [Sir+16]

Table 4.4: Our tests per method and per dataset. MS stands for Model Selection.

All experiments have been conducted on supercomputers. Especially, convolu-
tional neural networks have been tested on a Nvidia DGX-1 supercomputer, speeding-
up the deep-learning workflows with the usage of GPU-based computations. With 8
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GPUs of 16Gb of RAM each, it can gives a computation power equivalent to dozens
of CPU-based servers. For randomized trees approaches, the GIGA cluster has been
employed.

4.3.1 BMGRAZ dataset

Following what has been done in [Kai+15], the first eight images are used as learning
set which represent an amount of 3153 cell centers. The three remaining images make
the test set, i.e. 1052 cell centers (Table 4.5).

images cells
11 100% 4205 100%

LS 8 72.72% 3153 74.98%
TS 3 27.28% 1052 25.02%

Table 4.5: Learning set / Test set distribution for BMGRAZ

The mean radius of cells is set to 16 according to [Kai+15]. Also, the mini-
mum distance between two cells, i.e. the distance threshold in pixels for metrics
computation is ε = 8.

4.3.1.1 Experiments with SRTC

For model selection, the strategy is a leave-one-out cross-validation, that is a 8-fold
cross validation as the learning set has eight images. The trends of the studied
hyperparameters are given in Table 4.6. In second column, values in italic are those
used by the default model. For each line, the results of cross-validation model
selection that are given are those with the best post-processing hyperparameters (κ
and σ) according to our optimization criterion, required to compute metrics. From
this table, several observations can be made:

• As expected, the performance is not satisfying when the number of trees N is
small. It seems that N = 32 or N = 64 is a reasonable choice. N = 64 is used
in [Kai+15] with the same conditions. It is surprising to notice that the usage
of 100 estimators lead to a lower performance than N = 64.

• Better results are found when the trees in the forest are fully developed, i.e.
the minimum number of samples to split a node is nmin = 2.

• The maximum number of features when looking for the best split gives better
performance when it is set to 1.

• Regarding the size of input subwindows, it is more difficult to decide. We kept
sizes of 16 and 32 as possible choices.

• It can be noticed that, as expected, best results are obtained with a post-
processing treatment to merge multiple responses for a same object, as we
always have σ = 4.
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Param. Value κ σ F1 Count % Dist.
N 1 0.57 4 0.8226 52.38 13.71 3.17
N 10 0.60 4 0.8377 41.88 10.96 2.83
N 32 0.59 4 0.8412 38.62 10.11 2.80
N 64 0.58 4 0.8402 36.12 9.46 2.78
N 100 0.56 4 0.8396 41.00 10.73 2.78
nmin 2 0.60 4 0.8377 41.88 10.96 2.83
nmin 10 0.52 4 0.8342 43.50 11.39 2.81
nmin 100 0.51 4 0.8323 59.12 15.48 2.79
k 1 0.62 4 0.8421 39.12 10.24 2.78
k 58 0.60 4 0.8377 41.88 10.96 2.83
k 1664 0.58 4 0.8356 44.75 11.71 2.80
w × h 8 0.63 4 0.8390 43.12 11.29 2.80
w × h 16 0.6 4 0.8377 41.88 10.96 2.83
w × h 24 0.63 4 0.8415 45.75 11.98 2.78
w × h 32 0.63 4 0.8406 48.75 12.76 2.73
w × h 50 0.60 4 0.8417 45.12 11.81 2.76
w × h 64 0.62 4 0.8436 49.50 12.96 2.77

Table 4.6: STRC hyperparameters trends for BMGRAZ

From this analysis, the search space is reduced and a grid search can now be
performed in order to take into account possible dependencies between hyperparam-
eters. Four models are tested with the hyperparameters: N = {32, 64}, nmin = 2,
k = 1, w = h = {16, 32}. As for other tests, the Extra-Trees algorithm is used with
a single output classification. It follows that best model according to our optimiza-
tion criterion is found with N = 64, w = h = 16 and the post-processing parameters
κ = 0.58 and σ = 5. We obtain a F1-score of 0.843, a counting mean absolute error
of 36.12 (9.46%) and a mean distance error of 2.778. The model is retrained on the
whole learning set with this combination of hyperparameters and assessed on the
test set (see Section 4.3.1.6).

4.3.1.2 Experiments with PRTR

For PRTR, the hyperparameter trends are given in Table 4.7, acquired with a leave
one image out cross-validation. Again, we try to identify which parameters have an
influence on the performance in order to reduce the search space.

Especially, we can deduce that

• better performance is observed with a moderated number of trees (N = 32 or
N = 64), as stated by [Kai+15]. The remark relative to the number of trees
made for SRTC is also valid here.

• the minimum number of samples required to split a node nmin has a significant
influence here, and controls overfitting. Best results are obtained with nmin =
200.

54



Param. Value κ σ F1 Count % Dist.
N 1 0.60 1 0.6887 144.25 37.76 2.77
N 10 0.79 0 0.7910 68.62 17.96 3.32
N 32 0.80 0 0.8032 45.38 11.88 3.05
N 64 0.80 0 0.7904 44.00 11.52 2.91
N 100 0.79 0 0.7749 46.00 12.04 2.86
nmin 2 0.79 0 0.7910 68.62 17.96 3.32
nmin 10 0.80 0 0.8017 74.75 19.57 3.27
nmin 100 0.65 1 0.8518 32.00 8.38 2.63
nmin 200 0.78 1 0.8529 22.25 5.84 2.50
nmin 600 0.78 1 0.8406 23.12 6.10 2.53
k 1 0.78 0 0.7863 110.12 28.83 3.57
k 58 0.79 0 0.7910 68.62 17.96 3.32
k 1664 0.78 0 0.7798 103.42 27.02 3.42
w × h 8 0.77 0 0.7352 199.38 52.19 4.13
w × h 16 0.79 0 0.7910 68.62 17.96 3.32
w × h 24 0.80 0 0.8151 40.62 10.63 2.95
w × h 32 0.80 0 0.8227 39.12 10.24 2.87
w × h 50 0.79 0 0.8163 37.75 9.88 2.98
w′ × h′ 1 0.79 0 0.7910 68.62 17.96 3.32
w′ × h′ 2 0.80 0 0.7982 40.25 10.54 3.02
w′ × h′ 4 0.82 0 0.7708 40.88 10.70 2.75
w′ × h′ 8 0.82 0 0.7684 44.75 11.71 2.63
w′ × h′ 16 0.75 0 0.7767 21.75 5.69 2.56
t 0.2 0.53 1 0.8201 44.50 11.65 2.58
t 0.3 0.56 1 0.8372 34.25 8.97 2.61
t 0.4 0.79 0 0.7910 68.62 17.96 3.32
t 0.5 0.80 0 0.7822 142.62 37.34 3.37
q 0.25 0.79 0 0.7853 107.50 28.14 3.35
q 0.5 0.79 0 0.7939 98.25 25.72 3.35
q 0.75 0.79 0 0.7965 99.50 26.05 3.36
q 1 0.79 0 0.7910 68.62 17.96 3.32

Table 4.7: PRTR hyperparameters trends for BMGRAZ

• k =
√
d =
√

16 · 16 · 13 i.e. the square root of the number of features is the
best choice.

• larger input subwindows gives better results. We choose to keep the subwin-
dows’ sizes of 24 and 32 as subwindows of 50 × 50 gives small improvement
but also require much more time during training.

• surprisingly, slightly better results are obtained in terms of F1-score with a
single output regression. However, our improvement to the original method
with spatial averaging with multi-output regression clearly reduce the counting
and distance error. We notice a huge decrease of counting error between output
subwindows of size 8 and 16.
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• as expected, increasing the size of learning set improves the performance. In-
deed, by decreasing the threshold t, more subwindows are extracted and t = 0.3
gives best results. Also, balancing the dataset lead to better performance
(q = 1).

Thanks to these observations, we make a grid search over the following parame-
ters: N = {32, 64}, nmin = 200, k =

√
13wh, w = h = {24, 32}, w′ = h′ = {1, 16},

t = 0.3, q = 1 and Extra-Trees as learning algorithm. Among the four models
considered, it results that the best one takes N = 32, 24 × 24 input subwindows,
16 × 16 output subwindows, κ = 0.63 and σ = 1. In terms of performances, we
have a F1-score of 0.857, a counting mean absolute error of 29.97 cells per image
(7.64%) and a distance error of 2.534. The assessment of this model on the test set
is detailed in Section 4.3.1.6.

4.3.1.3 Experiments with DRTR

Param. Value κ σ F1 Count % Raw % Dist.
N 1 0.10 4 0.8520 46.62 12.21 45.01 11.78 2.66
N 10 0.10 4 0.8546 45.75 11.98 45.21 11.84 2.61
N 32 0.11 4 0.8559 50.00 13.09 45.08 11.80 2.59
N 64 0.10 4 0.8555 54.62 14.30 45.97 12.03 2.61
N 100 0.10 4 0.8563 54.38 14.23 46.09 12.07 2.60
nmin 2 0.10 4 0.8546 45.75 11.98 45.21 11.84 2.61
nmin 10 0.10 4 0.8549 54.25 14.20 45.46 11.90 2.61
nmin 100 0.13 4 0.8526 46.62 12.21 38.25 10.01 2.62
k 1 0.14 4 0.8553 46.00 12.04 45.67 11.96 2.64
k 58 0.10 4 0.8546 45.75 11.98 45.21 11.84 2.61
k 1664 0.11 4 0.8584 41.00 10.73 47.94 12.55 2.59
Nsw 10000 0.10 4 0.8546 45.75 11.98 45.21 11.84 2.61
Nsw 50000 0.11 4 0.8586 41.25 10.80 46.16 12.08 2.56
Nsw 100000 0.11 4 0.8575 38.62 10.11 47.11 12.33 2.52
w × h 8 0.12 4 0.8480 35.75 9.36 58.80 15.39 2.83
w × h 16 0.10 4 0.8546 45.75 11.98 45.21 11.84 2.61
w × h 24 0.11 4 0.8568 50.12 13.12 41.52 10.87 2.54
w × h 32 0.11 4 0.8538 47.12 12.34 40.68 10.65 2.52

Table 4.8: DRTR hyperparameters trends for BMGRAZ

A set of experiments is conducted to reduce the hyperparameter search space as
previously. With DRTR, it is difficult to detect what are the best hyperparameters.
Indeed, all metrics do not significantly vary. Moreover, choosing hyperparameters
improving raw count very often reduces the performance from a detection point of
view. However, we are particularly interested in the counting with visualization of
counted objects. Therefore, we try two models, either with subwindow size (input
and output) of 16× 16 either with 32× 32. Other parameters are fixed: nmin = 2,
k =

√
13wh and Nsw = 50000. The best model is finally the one with 32 × 32
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subwindows, according to our optimization criterion. The F1-score is 0.861 and the
counting error corresponds to 38.12 cells per image (10.05%). Contrary to what
might have been thought, the raw counting error is also decreased, and even better
than the counting error: 33.802 cells per image (8.23%). We also have a distance
error of 2.508.

4.3.1.4 Experiments with FCRN-A

Due to limited time slots on the GDX-1 supercomputer, we adopted a 5-fold cross
validation strategy for model selection. Although the method is initially designed
to count by density (assessed with the mean raw count absolute error), a first as-
certainment that can be made from Table 4.9 is the fact that the method tends
to produce better results in terms of cell detection (assessed with the F1-score and
the mean counting absolute error). As for PRTR, we made the optimization of
hyperparameters with detection performance in mind.

Param. Value κ σ F1 Count % Raw % Dist.
e 24 0.24 0 0.8380 19.38 4.96 93.24 29.65 2.47
e 72 0.18 0 0.8423 17.16 4.41 34.53 8.81 2.41
e 120 0.26 0 0.8415 12.00 3.04 56.98 19.32 2.37
e 192 0.24 0 0.8379 16.12 4.01 42.24 9.19 2.38
b 16 0.18 1 0.8461 15.75 4.03 45.57 10.99 2.36
b 32 0.18 0 0.8423 17.16 4.41 34.53 8.81 2.41
η 0.0001 0.20 1 0.8216 18.75 4.70 32.20 7.65 2.51
η 0.001 0.26 0 0.8404 14.62 3.70 34.43 8.79 2.35
η 0.01 0.18 0 0.8423 17.16 4.41 34.53 8.81 2.41
λ 0.0 0.18 0 0.8423 17.16 4.41 34.53 8.81 2.41
λ 0.0005 0.26 0 0.8388 17.25 4.42 43.15 9.38 2.44
Nsw 50 0.18 0 0.8220 23.00 5.86 135.59 34.33 2.57
Nsw 500 0.18 0 0.8423 17.16 4.41 34.53 8.81 2.41
Nsw 1000 0.18 1 0.8434 16.25 4.13 40.01 10.21 2.38
w × h 64 0.24 0 0.8475 20.38 5.04 85.20 28.99 2.44
w × h 128 0.24 0 0.8314 24.62 6.23 123.30 33.13 2.47
w × h 256 0.18 0 0.8423 17.16 4.41 34.53 8.81 2.41
w × h 512 0.24 0 0.8329 22.88 5.89 34.30 8.45 2.46

Table 4.9: FCRN-A hyperparameters trends for BMGRAZ

From these observations, we perform a grid search with four models built from
the four possible combinations of hyperparameters’ values that we have retained.
We set the number of epochs e to 120, the batch size b to 16 and no decay. The
initial learning rate η is tested among the set of values {0.01, 0.001}. For training
1000 subwindows are extracted per image, with a size either of 64 or 256 pixels. The
model with the best performance has a learning rate of 0.01 and uses subwindows of
size 64×64. The F1-score is 0.85, the mean count error is 17.5 cells per image (thus
4.37% of error per image). Regarding the raw count, the error is of 14.56 cells per
images (3.67% of error per image). It is worth to notice that even if we optimized
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on a criterion only based on detection performance, the raw count error is very low.
The assessment of the model on the test set is given in Section 4.3.1.6.

4.3.1.5 Experiments with FCRN-B

The tests have been conducted in the same way as with FCRN-A. The same obser-
vations can be made, and the same four combination of hyperparameters is tested
on this architecture, with the exception of the number of epochs e which is set
to 192 here. The major difference between FCRN-A and FCRN-B results is the
post-processing σ, which is essential to obtain acceptable performances. Indeed, we
noticed in our tests that with σ = 0, whatever the test, the F1-score drops to around
0.20.

Param. Value κ σ F1 Count % Raw % Dist.
e 24 0.20 1 0.8132 28.37 7.25 84.61 28.35 2.45
e 72 0.21 1 0.8301 17.84 4.52 67.40 16.93 2.42
e 120 0.22 1 0.8227 20.00 5.09 37.39 9.51 2.43
e 192 0.22 1 0.8366 17.25 4.39 27.68 7.04 2.39
b 16 0.22 1 0.8411 17.75 4.52 39.10 9.68 2.40
b 32 0.21 1 0.8301 17.84 4.59 67.40 16.93 2.42
η 0.0001 0.20 1 0.8151 23.88 6.07 63.4 16.06 2.59
η 0.001 0.20 1 0.8359 17.62 4.48 66.97 16.96 2.37
η 0.01 0.21 1 0.8301 17.84 4.52 67.40 16.93 2.42
λ 0.0 0.21 1 0.8301 17.84 4.52 67.4 16.93 2.42
λ 0.0005 0.22 1 0.8244 29.25 7.65 42.60 10.35 2.48
Nsw 50 0.22 1 0.7916 27.38 6.95 118.61 30.03 2.85
Nsw 500 0.21 1 0.8301 17.84 4.52 67.40 16.93 2.42
Nsw 1000 0.06 4 0.8441 17.12 4.36 20.14 5.14 2.37
w × h 64 0.22 1 0.8170 22.5 5.72 41.40 10.53 2.50
w × h 128 0.06 4 0.8265 26.00 6.63 140.33 35.83 2.47
w × h 256 0.21 1 0.8301 17.84 4.52 67.40 16.93 2.42
w × h 512 0.08 4 0.8309 23.00 5.85 74.96 19.02 2.46

Table 4.10: FCRN-B hyperparameters trends for BMGRAZ

The best model uses 256× 256 input subwindows and an initial learning rate of
0.001. A F1-score of 0.86 is achieved during model selection on the learning set, with
a counting error of 15.5 (3.89% of error per image) and slightly larger raw counting
error of 63.21 (16.83% of error per image).

4.3.1.6 Comparison

The comparison is done on the test set which is composed of new, unseen images.
In Table 4.12, each line presents the model selection performance on the learning
set and the model assessment performance on the test set, for a particular method.
The set of hyperparameters used to build models is given in Table 4.11. These
parameters (including post-processing ones) are determined by model selection and
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used to train the final model assessed on the test set. The area under curve (AUC)
on the test set for each method is shown in Figure 4.4. PR curves are obtained by
varying the post-processing threshold κ.

Method T nmin k e b η λ t q Nsw w = h w′ = h′ κ σ
SRTC 64 2 1 - - - - - - - 16 1 0.58 5
PRTR 32 200 87 - - - - 0.3 1 - 24 16 0.63 1
DRTR 32 2 115 - - - - - - 50000 32 32 0.10 4

FCRN-A - - - 120 16 0.01 0.0 - - 1000 64 - 0.22 0
FCRN-B - - - 192 16 0.001 0.0 - - 1000 256 - 0.06 4

Table 4.11: Best models for BMGRAZ

Model selection on LS Model assessment on TS
Method F1 Count % Raw % Dist. F1 Count % Raw % Dist.
Baseline - 35.06 8.90 35.06 8.90 - - 43.46 12.39 43.46 12.39 -
SRTC 0.8430 36.12 9.46 - 2.78 0.7926 68.00 19.39 - 2.64
PRTR 0.8570 29.97 7.64 - 2.53 0.8343 38.33 10.93 - 2.32
DRTR 0.8612 38.12 10.05 33.80 8.23 2.51 0.8495 37.33 10.65 88.56 25.27 2.34

FCRN-A 0.8471 17.50 4.37 14.56 3.67 2.36 0.8440 21.33 6.08 34.66 9.89 2.35
FCRN-B 0.8415 15.50 3.89 63.21 16.83 2.37 0.8441 36.33 10.36 178.28 47.87 2.30

Table 4.12: Comparison of best models performance for BMGRAZ

With the exception of SRTC, all methods have better performance than our
simple baseline, and yield to nearly similar results. However, we can especially
highlight the performance of FCRN-A which is able to reach a counting error of
6.08% and a raw counting error of 9.89%, always better than the counting error of
other methods. Also, it is the only model to not require smoothing post-processing
(σ = 0).
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Figure 4.4: PR curves for methods applied on BMGRAZ

4.3.2 GANGLIONS dataset

From the 11 whole slides, the first eight ones are used as learning set which represents
4716 dot annotations for 51 region of interest images. The three remaining slides
compose the test set, meaning 1680 dot annotations and 15 images, as shown in
Table 4.13.

slides images cells
11 100% 66 100% 6396 100%

LS 8 72.73% 51 77.27% 4716 73.73%
TS 3 27.27% 15 22.73% 1680 26.27%

Table 4.13: Learning set / Test set distribution for GANGLIONS

The mean radius of cells has been determined empirically and set to 2 pixels.
Also, the minimum distance between two cells, i.e. the distance threshold in pixels
for metrics computation is ε = 6.

For the sake of clarity, the results of model selection are not given here. The
interested reader can find them in Appendix A. Table 4.14 presents the hyperpa-
rameters that lead to the best models during the model selection. These are used
to train the final model which is assessed on the test set. Results are given in Table
4.15 and precision-recall curves are drawn in Figure 4.5.

SRTC is again the method with the lowest scores relative to cell localization
(AUC and F1-score). Contrary to BMGRAZ, FCRN-A is not the best except on
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Method T nmin k e b η λ t q Nsw w = h w′ = h′ κ σ
SRTC 32 10 58 - - - - - - - 16 1 0.68 1
PRTR 32 200 58 - - - - 0.3 1.0 - 16 16 0.42 0
DRTR 32 20 115 - - - - - - 50000 32 32 0.32 0

FCRN-A - - - 120 16 0.0001 0.0005 - - 500 256 - 0.26 0
FCRN-B - - - 72 16 0.0001 0.0005 - - 500 128 - 0.22 1

Table 4.14: Best models for GANGLIONS

Model selection on LS Model assessment on TS
Method F1 Count % Raw % Dist. F1 Count % Raw % Dist.
Baseline - 32.67 35.33 32.67 35.33 - - 40.44 36.11 40.44 36.11 -
SRTC 0.7681 18.04 19.01 - 4.00 0.7634 17.47 15.60 - 4.10
PRTR 0.7914 15.68 16.28 - 3.87 0.8285 14.67 13.10 - 3.62
DRTR 0.7729 15.82 16.31 16.32 17.32 3.92 0.8260 15.80 14.11 22.70 20.26 3.42

FCRN-A 0.8120 13.25 15.22 15.19 16.18 4.33 0.7930 25.67 22.92 10.57 9.44 4.19
FCRN-B 0.8009 13.58 15.95 14.11 16.01 3.90 0.8207 15.33 13.69 13.41 11.97 3.70

Table 4.15: Comparison of best models performance for GANGLIONS
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Figure 4.5: PR curves for methods applied on GANGLIONS

the raw counting error which drops to 9.44%. PRTR wins on the counting error
from detection and the detection F1-score (13.10% and 0.8285 repectively).
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4.3.3 ANAPATH dataset

From the six regions of interest extracted from the single whole slide, the four ones
are chosen as learning set and correspond to the ones that achieve at best the goal
of 70% of groundtruth annotations. 11328 annotations are in the learning set while
the 5086 remaining annotations make the test set (Table 4.16).

images cells
6 100% 16414 100%

LS 4 66.67% 10943 66.67%
TS 2 33.33% 5471 33.33%

Table 4.16: Learning set / Test set distribution for ANAPATH

The mean radius of cells has been determined empirically and set to 2 pixels.
Also, the minimum distance between two cells, i.e. the distance threshold in pixels
for metrics computation is ε = 8.

Again, detailed results regarding model selection on ANAPATH dataset can be
found in Appendix B. The parameters determined by this procedure are given in
Table 4.11 and the comparison of model performances is in Table 4.12.

Method T nmin k e b η λ t q Nsw w = h w′ = h′ κ σ
SRTC 32 200 87 - - - - - - - 24 1 0.70 4
PRTR 32 400 58 - - - - 0.4 1.0 - 16 8 0.52 4
DRTR 32 100 115 - - - - - - 50000 32 32 0.52 4

FCRN-A - - - 120 16 0.01 0.0005 - - 500 256 - 0.20 1
FCRN-B - - - 120 16 0.01 0.0005 - - 1000 64 - 0.24 5

Table 4.17: Best models for ANAPATH

Model selection on LS Model assessment on TS
Method F1 Count % Raw % Dist. F1 Count % Raw % Dist.
Baseline - 227.35 8.03 227.35 8.03 - - 394.88 15.53 394.88 15.53 -
SRTC 0.5833 234.75 8.58 - 5.78 0.4962 493.41 19.41 - 6.01
PRTR 0.6129 207.42 7.59 - 5.74 0.5312 301.16 11.85 - 5.81
DRTR 0.5985 203.13 7.44 347.47 12.71 5.76 0.5107 310.24 12.20 427.45 16.81 5.80

FCRN-A 0.4649 126.75 4.46 302.19 10.68 4.76 0.3973 226.50 8.91 274.94 10.81 4.81
FCRN-B 0.4388 95.75 3.38 475.02 16.84 4.79 0.3633 31.008 12.51 727.49 28.61 4.82

Table 4.18: Comparison of best models performance for ANAPATH

We can notice that all methods have lower counting error than the simple base-
line except for the standard classification with randomized trees (SRTC). Like for
BMGRAZ dataset, FCRN-A is the only one with a counting error lower than 10%.
In this case, a slight post-processing smoothing is performed (σ = 1). Other meth-
ods need a larger smoothing for this dataset.
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Figure 4.6: PR curves for methods applied on ANAPATH

However, localization results are disappointing, especially for CNN-based ap-
proaches. As for GANGLIONS dataset, the best F1-score is given by PRTR. In
Figure 4.6, we show the precision-recall curves for the CNN-based methods. For
others, we show the results with the best post-processing threshold κ, given from
Table 4.17.

4.3.4 CRC dataset

Here, a simple assessment with two fold cross-validation on the whole dataset has
been done. The hyperparameters have been inferred from the results of previous
experiments (especially GANGLIONS whose objects to detect have similar size) and
do not have been tuned, with the exception of post-processing parameters. It allows
to compare the scores with [Sir+16] which has used the same 2-fold CV protocol.
The same two folds as in [Sir+16] have been used to reduce result variability due
to image heterogeneity. The set of hyperparameters is shown in Table 4.19 and the
associated results in Table 4.20. The PR curves are in Figure 4.7.

We had been never able to reach the F1-score (0.8020) stated by [Sir+16] with
our methods. At best, PRTR shows a F1-score of 0.7365 (-6.55%). In terms of
counting, PRTR is the only one to report a error per image lower than 10%.

The results of convolutional neural networks are particularily low on this dataset.
We expect that our FCRN models are overfitting. Compared with GANGLIONS,
from which the hyperparameter’s values are inspired, CRC contains more samples
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Method T nmin k e b η λ t q Nsw w = h w′ = h′ κ σ
SRTC 32 100 58 - - - - - - - 16 1 0.54 4
PRTR 32 400 58 - - - - 0.35 1.0 - 16 16 0.46 4
DRTR 32 2 115 - - - - - - 10000 32 32 0.20 1

FCRN-A - - - 120 16 0.001 0.0005 - - 50 256 - 0.10 1
FCRN-B - - - 120 16 0.001 0.0005 - - 50 256 - 0.10 1

Table 4.19: Best models for CRC

2-fold CV assessment
Method F1 Count % Raw % Dist.
Baseline - 96.51 32.27 96.51 32.27 -
SRTC 0.6329 77.37 25.87 - 2.89
PRTR 0.7365 28.74 9.61 - 2.26
DRTR 0.6853 35.12 11.75 49.62 16.61 2.17

FCRN-A 0.6120 64.39 21.28 59.94 20.00 1.69
FCRN-B 0.6553 57.62 19.42 58.85 19.73 1.56

SCCNN (M=1) [Sir+16] 0.7910 - - 2.24
SCCNN (M=2) [Sir+16] 0.8020 - - 2.24

Table 4.20: Comparison of best models performance for CRC

in its learning set. In order to verfiy this hypothesis, a model selection should be
performed, especially on the decay parameters λ. Also, dropout could be used.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

CRC - Test set PR Curves

FCRN-A (AUC=0.6414)
FCRN-B (AUC=0.6911)
SRTC
PRTR
DRTR
SC-CNN (M=1)
SC-CNN (M=2)

Figure 4.7: PR curves for methods applied on CRC
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4.4 Overall comparison

From a per-dataset point of view, best results are reported for BMGRAZ and GAN-
GLIONS to a lower extent, while ANAPATH and CRC globally have mixed results.
For CRC, an explanation could be the weakness of the model selection protocol. For
ANAPATH, a possible source of error could come from approximative annotations
from experts. Indeed we noticed that two experts actually encoded annotations, but
these have not been reviewed. It should be investigated in more details but could
demonstrates the importance of correctly labelled annotations.

From a per-method perspective, it seems clear that SRTC can be discarded. It
never wins on any criteria and in two datasets out of four, a simple baseline is able
to do better.

CNN-based methods (FCRN-A and FCRN-B) report impressive results in terms
of counting. In two datasets, FCRN-A is the best for the two counting metrics. In
a third one, it is the best on the raw counting error. Generally, FCRN-A exhibits
slightly better performance than FCRN-B (with the notable exception of CRC,
where networks seems to overfit).

In terms of localization, the best F1-score is given by PRTR three times out four
and by DRTR once, but differences are not significant. In BMGRAZ and GAN-
GLIONS, convolutional networks also show similar F1-score.

Figure 4.8: Training time for LS from BMGRAZ dataset
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Finally, Figure 4.8 is a comparison of training times on the BMGRAZ dataset.
For SRTC, PRTR and DRTR, training has been done on 4 CPUs. For FCRN, one
CPU and one GPU have been used. It is clear that the training time of forest de-
pends on the depth of each estimator and explains the peaks for DRTR and SRTC
which fully develop the trees on this dataset. While the observation we are doing
here is empirical and cannot be used as a general conclusion, it shows the power of
neural networks training on GPUs. They are known to take several days of training
on CPUs. With only one GPU, we are able to observe training times lower than
randomized trees (trained on four CPUs).

From these observations, the best compromise seems to be FCRN-A, which shows
impressive counting results and reasonable detection performance and low training
time, provided that it is trained on GPU.

4.5 Implementation

4.5.1 Language and libraries

One of the purposes of this work is to provide new softwares in Cytomine (see Sec-
tion 2.3) answering the problem of cell counting and/or detection. The approaches
previously presented were very often provided with some pieces of code published
by their authors. For instance, [Kai+15] provides an hybrid C++/Matlab im-
plementation while [Art+12], [XNZ15] and [Sir+16] supplies a full Matlab imple-
mentation. Matlab is a commercial software providing a computing environment
and a programming language but suffers from some limitations. First, the built-in
algorithms are proprietary which makes impossible to know how these algorithms
are implemented. This proprietary nature puts also restrictions on the code porta-
bility of Matlab programs. Finally, the usage licence is quite expensive and its
commercial nature do not meet the requirements of an open-source project such as
Cytomine.

Beyond that, there exists no binding between Cytomine and Matlab in order
to communicate between the Cytomine back-end server and the actual software im-
plementation. However, such a binding is essential. Indeed, as the final goal is to
deal with multi-gigapixels images stored on Cytomine servers and to visualize cells
localization on the platform, it is required that the newly developed algorithms ex-
change images and metadata such as annotations through the Cytomine API. The
current Cytomine release provides API bindings for Python and Java. The decision
has thus been taken to (re-)implement the algorithms in one of these languages. The
choice ultimately focused on Python for a couple of reasons that will be expressed
below.

Python is a free, open-source, portable and powerful programming language.
It allows several programming paradigms such as imperative, object-oriented and
functional ones. Also, the built-in features gives manipulations for high-level data
structures such as lists, tuples and dictionaries. Moreover, it benefits of a large
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and reactive community of developers and comes with a lot of efficient third-party
libraries. First, the SciPy ecosystem which includes

• SciPy [Oli07], a fundamental library for scientific computing such as statistics

• NumPy [VCV11], a fundamental package for efficient representation and ma-
nipulation of multi-dimensional arrays, but also tools for random numbers

• Matplotlib [Hun07], a powerful library for 2D plotting

• pandas [McK10], a library to simplify data representation and data analysis

Scikit-learn [Ped+11] comes on top of the SciPy ecosystem and gives easy-of-use and
efficient tools for standard machine learning. These libraries have gain a large pop-
ularity among the scientific community and Python is now one of the languages of
choice for data sciences. The particular case of deep learning has seen the emergence
of specific libraries, such as Keras [Cho+15], a high-level API for neural network
built on top on TensorFlow [Mar+15], a CPU/GPU multidimensional array pro-
cessing tailored for deep learning.

Regarding image processing, the well-known OpenCV library [Bra00] is provided
with a Python binding. Scikit-image [Wal+14] is an alternative based on the SciPy
ecosystem which fills the gaps of the former. To complete the list, Joblib [Var10]
has been used to perform parallel computations and Shapely [Gil13] has been used
to represent geometrical objects.

4.5.2 Other details

The implementation itself was not often the main issue, the trick was to elegantly
combine the best of all libraries. However, we rapidly realized that methods with
randomized trees tend to consume a very high and significant amount of memory.
Each subwindow is stored as an array of floating numbers. In these methods, some
memory-consuming situations can occurs. It is the case for example if the sub-
window size is large, the number of subwindows to extract is high and the feature
extractor uses a lot of image filters. It was especially the case in the current release
of Scikit-learn (0.18) for the randomized trees implementation of prediction phase.
The development version (0.19) fixes the issue. The problem was that predictions
were done on each estimator of the forest and combined only at the end. The new
implementation substantially decreases the memory usage by directly summing each
output prediction1.

Also, it has been envisaged to use SLDC [Mor16], a framework which aims at
accelerating the development and execution of multi-gigapixel images analysis work-
flows. It would allow to reduce prediction time of our algorithms. However, the
integration of this framework has been set aside because it does not fully meet our
needs. Indeed, SLDC is designed to directly segment an image and to extract objects
(polygon) from it while our algorithms produce a map of real values and not always

1See https://github.com/scikit-learn/scikit-learn/pull/8672
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objects. For example, the approach taken by SLDC would not make it possible to
compute the counting by integration on the image domain.

The implementation of model selection and assessment is inspired from the code
of the Scikit-Learn module sklearn.model selection. Some adaptations were nec-
essary. First, the way our metrics are computed is particular. For example, the
generic implementation of metrics in Scikit-Learn restricts the usage of confusion
matrix to pure classification problems, while we estimate the performance of regres-
sion estimators as a binary classification (see Section 4.1.2).

Also, Scikit-Learn does not have the notion of post-processing parameters while
they are of great interest in our case. Our implementation allows to make a grid
search with post-processing parameters, which are seen as any hyperparameter in
the procedure, except that they do not involve to re-train a new model since post-
processing parameters only influence predictions.
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Chapter 5

Conclusion and perspectives

Through this work, we have been interested in the problem of cell counting and cell
localization within digitized pathological tissues. Especially, we investigated five
different supervised machine learning workflows on four datasets of tissue images.

First, we analyzed the problem in a end-user point of view. We opted for ground
truths annotations solely based on simple dot annotations to indicate the presence
of a cell, as it is the natural way of counting but also makes histopathological experts
less prone to errors due to its simplicity.

We performed then a survey of existing approaches with dot-marked annotations,
that we have (re-)implemented. Basically, two ways of counting are studied. Firstly,
counting can be done by cell detection, the counting trivially being the number of
detections. Secondly, counting can be estimated by density estimation, knowing
the density for each image’s pixel. We also proposed some methodological improve-
ments. In particular, we noticed that these two approaches are ultimately relatively
similar. By this way, we established that it is possible to retrieve locations of cells
from a pure counting by density approach.

A major part of this thesis involved the assessment of these algorithms on real-
case histopathological datasets. For this purpose, we defined some metrics: the
localization reliability is evaluated trough a F1-score, the counting error is obtained
with a mean absolute error as well as the average Euclidean distance error between
a detection and its correctly assigned ground truth annotation. For each method, a
rich model selection has been made in order to find their best model. We proposed a
two-objective optimization criterion based on the detection F1-score and the mean
absolute counting error, since we were interested to have performing models in de-
tection and counting, which was not have been done before.

Results are not conclusive but encouraging. In general, at least one algorithm
is able to reach a counting error less than 10% for each dataset. It would be in-
teresting to have an histopathological expert’s view regarding the expected allowed
percentage of error, even if we assume it is application dependent.
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This thesis mainly focused on the validation of these workflows such that there
is room for improvements. In the short term, our algorithms will be able to be
launched from the Cytomine, as all the implementation have been thought in that
sense. Moreover, the integration of the template module of Cytomine would allow
the user to directly run the prediction workflow from a region that he can define on
the image.

Also, the usage of SLDC framework would be welcome to drastically reduce
prediction times on large multi-gigapixel images and thus propose a more efficient
solution on real usages. Finally, our solution of detection and counting could be
integrated in larger workflows with the help of the SLDC framework. It would then
be possible to make classification of the detected cells, as done in [Sir+16].

After all, this study is a necessary starting point for future works related to
the development of generic counting methods. Indeed such a multi-method and
multi-dataset study had not yet been published in literature.
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Appendix A

Detailed results for GANGLIONS
dataset

This chapter gives the detailed results for GANGLIONS dataset regarding the pre-
liminary model selection with cross-validation and the default model approach on
the learning set, to detect trends on the behaviour of each hyperparameter. These
are tested while the others remain fixed to their default value. However, as the post
processing parameters are required to compute metrics, the results of a test are the
ones with the best post processing parameters, chosen from a grid search.

A.1 Experiments with SRTC

Param. Value κ σ F1 Count % Dist.
N 1 0.70 1 0.7352 18.55 19.12 4.42
N 10 0.67 1 0.7616 17.51 18.05 4.03
N 32 0.67 1 0.7792 16.37 16.88 4.02
N 64 0.66 1 0.7774 16.82 17.34 3.98
N 100 0.66 1 0.7800 16.67 17.18 4.00
nmin 2 0.67 1 0.7616 17.51 18.05 4.03
nmin 10 0.65 1 0.7683 17.08 17.61 4.00
nmin 100 0.49 1 0.7650 17.16 17.69 4.03
k 1 0.59 1 0.7594 18.88 19.47 4.21
k 58 0.67 1 0.7616 17.51 18.05 4.03
k 1664 0.70 1 0.7716 17.47 18.01 4.05
w × h 8 0.65 1 0.7524 19.20 19.79 4.14
w × h 16 0.67 1 0.7616 17.51 18.05 4.03
w × h 24 0.66 1 0.7546 17.98 18.54 4.03
w × h 32 0.63 1 0.7592 20.49 21.12 4.13
w × h 50 0.64 1 0.7550 19.41 20.01 4.23
w × h 64 0.63 1 0.7428 21.29 21.95 4.27

Table A.1: STRC hyperparameters trends for GANGLIONS
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A.2 Experiments with PRTR

Param. Value κ σ F1 Count % Dist.
N 1 0.53 1 0.6595 40.39 41.64 4.15
N 10 0.54 1 0.7749 19.71 20.32 4.09
N 32 0.57 1 0.7751 18.51 19.08 3.98
N 64 0.58 1 0.7694 18.88 19.47 3.97
N 100 0.58 1 0.7723 19.16 19.75 3.94
nmin 2 0.54 1 0.7749 19.71 20.32 3.96
nmin 10 0.56 1 0.7760 21.51 22.18 3.96
nmin 100 0.62 1 0.7646 22.49 23.19 3.94
nmin 200 0.56 1 0.7900 15.67 17.92 4.06
nmin 600 0.62 1 0.7800 14.55 16.91 4.02
k 1 0.52 1 0.7499 20.04 20.66 4.16
k 58 0.54 1 0.7749 19.71 20.32 3.96
k 1664 0.54 1 0.7777 19.73 20.34 3.98
t 0.2 0.44 1 0.7611 24.27 25.03 4.00
t 0.3 0.49 1 0.7606 23.16 23.87 3.98
t 0.4 0.54 1 0.7749 19.71 20.32 3.96
t 0.5 0.79 0 0.7641 16.43 16.94 4.48
t 0.6 0.82 0 0.7574 17.67 18.21 4.50
t 0.7 0.86 0 0.7533 18.92 19.51 4.62
q 0.25 0.79 0 0.7529 21.14 21.79 4.25
q 0.5 0.57 1 0.7686 18.41 18.98 4.11
q 0.75 0.56 1 0.7767 17.20 17.73 4.07
q 1 0.54 1 0.7749 19.71 20.32 3.96
w × h 8 0.75 0 0.7578 19.65 20.25 4.19
w × h 16 0.54 1 0.7749 19.71 20.32 3.96
w × h 24 0.54 1 0.7748 21.51 22.18 3.98
w × h 32 0.54 1 0.7823 17.22 17.74 4.07
w × h 50 0.55 1 0.7672 24.06 24.80 4.12
w′ × h′ 1 0.54 1 0.7749 19.71 20.32 3.96
w′ × h′ 2 0.57 1 0.7729 18.80 19.39 4.10
w′ × h′ 4 0.76 0 0.7624 18.51 19.08 4.01
w′ × h′ 8 0.73 0 0.7355 18.75 19.32 3.94
w′ × h′ 16 0.69 0 0.7484 18.43 19.00 3.89

Table A.2: PRTR hyperparameters trends for GANGLIONS

A.3 Experiments with DRTR
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Param. Value κ σ F1 Count % Raw % Dist.
N 1 0.35 0 0.7485 17.16 17.59 19.05 19.64 4.00
N 10 0.38 0 0.7700 14.82 15.28 19.14 19.74 3.91
N 32 0.39 0 0.7748 14.41 14.86 19.13 19.72 3.90
N 64 0.39 0 0.7725 15.31 15.79 19.10 19.69 3.91
N 100 0.38 0 0.7700 14.82 15.28 17.14 17.68 3.91
nmin 2 0.38 0 0.7700 14.82 15.28 19.14 19.74 3.91
nmin 10 0.25 1 0.7648 15.82 16.31 18.47 19.05 3.91
nmin 100 0.25 1 0.7678 17.25 17.79 16.14 16.64 3.93
k 1 0.39 0 0.7472 16.90 17.42 18.04 18.60 3.91
k 58 0.38 0 0.7700 14.82 15.28 19.14 19.74 3.91
k 1664 0.38 0 0.7786 14.16 14.59 19.05 19.64 3.90
Nsw 10000 0.38 0 0.7700 14.82 15.28 19.14 19.74 3.91
Nsw 50000 0.37 0 0.7722 16.55 17.06 16.27 16.78 3.91
Nsw 100000 0.37 0 0.7732 16.06 16.87 16.90 17.42 3.90
w × h 8 0.38 0 0.7494 14.67 15.12 23.69 24.42 4.10
w × h 16 0.38 0 0.7700 14.82 15.28 19.14 19.74 3.91
w × h 24 0.37 0 0.7618 16.98 17.51 17.95 18.51 3.91
w × h 32 0.38 0 0.7700 14.82 15.28 16.14 16.64 3.91

Table A.3: DRTR hyperparameters trends for GANGLIONS

A.4 Experiments with FCRN-A

Param. Value κ σ F1 Count % Raw % Dist.
e 24 0.06 0 0.76 14.22 16.76 22.55 22.91 4.18
e 72 0.04 0 0.77 13.09 15.79 26.17 25.08 4.46
e 120 0.04 0 0.77 12.16 13.98 26.24 25.12 4.45
e 192 0.04 0 0.77 11.36 13.49 26.17 25.08 4.47
b 16 0.04 0 0.77 11.30 13.46 31.43 30.81 4.55
b 32 0.04 0 0.77 13.09 15.79 26.17 25.08 4.46
η 0.0001 0.18 1 0.82 12.18 13.90 13.85 14.63 3.83
η 0.001 0.06 0 0.79 13.06 15.44 22.41 21.97 4.37
η 0.01 0.04 0 0.77 13.09 15.79 26.17 25.08 4.46
λ 0.0 0.04 0 0.77 13.09 15.79 26.17 25.08 4.46
λ 0.0005 0.14 0 0.80 11.38 13.50 11.90 13.29 3.86
Nsw 50 0.22 0 0.81 12.53 14.09 13.54 14.52 3.90
Nsw 500 0.04 0 0.77 13.09 15.79 26.17 25.08 4.46
Nsw 5000 0.02 0 0.76 14.86 16.51 49.40 50.06 4.72
w × h 32 0.04 0 0.76 13.51 15.28 33.83 31.36 4.31
w × h 64 0.06 1 0.79 12.35 14.13 15.27 15.89 4.14
w × h 128 0.04 0 0.77 13.09 15.79 26.17 25.08 4.46
w × h 256 0.06 1 0.77 14.69 16.49 22.88 22.00 4.09

Table A.4: FCRN-A hyperparameters trends for GANGLIONS
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A.5 Experiments with FCRN-B

Param. Value κ σ F1 Count % Raw % Dist.
e 24 0.06 1 0.79 12.65 15.11 49.26 44.93 4.09
e 72 0.04 1 0.77 14.61 16.96 28.12 28.07 4.26
e 120 0.04 1 0.77 12.75 15.18 20.79 22.43 4.34
b 16 0.04 1 0.77 15.38 17.08 30.54 28.90 4.49
b 32 0.04 1 0.77 14.61 16.96 28.12 28.07 4.26
η 0.0001 0.04 1 0.72 21.84 20.43 34.54 33.37 4.37
η 0.001 0.04 1 0.74 16.97 17.50 25.23 24.93 4.35
η 0.01 0.04 1 0.77 14.61 16.96 28.12 28.07 4.26
λ 0.0 0.04 1 0.77 14.61 16.96 28.12 28.07 4.26
λ 0.0005 0.12 1 0.80 10.89 13.67 12.96 14.28 3.94
Nsw 50 0.22 1 0.72 21.83 20.43 17.82 18.51 3.88
Nsw 500 0.04 1 0.77 14.61 16.96 28.12 28.07 4.26
Nsw 5000 0.02 1 0.66 36.75 35.70 43.25 42.13 4.55
w × h 32 0.06 1 0.79 12.55 14.74 16.63 16.86 4.28
w × h 64 0.04 1 0.78 14.20 16.55 19.86 20.13 4.24
w × h 128 0.04 1 0.77 14.61 16.96 28.12 28.07 4.26
w × h 256 0.04 1 0.78 14.59 16.95 24.11 24.18 4.26

Table A.5: FCRN-B hyperparameters trends for GANGLIONS
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Appendix B

Detailed results for ANAPATH
dataset

This chapter gives the detailed results for ANAPATH dataset regarding the prelim-
inary model selection with cross-validation and the default model approach on the
learning set, to detect trends on the behaviour of each hyperparameter. These are
tested while the others remain fixed to their default value. However, as the post
processing parameters are required to compute metrics, the results of a test are the
ones with the best post processing parameters, chosen from a grid search.

B.1 Experiments with SRTC

Param. Value κ σ F1 Count % Dist.
N 1 0.58 4 0.5238 735.50 26.88 5.91
N 10 0.70 4 0.5771 317.75 11.61 5.82
N 32 0.72 4 0.5833 234.75 8.58 5.78
N 64 0.72 4 0.5855 278.00 10.16 5.79
N 100 0.70 4 0.5862 275.75 10.08 5.78
nmin 2 0.7 4 0.5771 317.75 11.61 5.82
nmin 10 0.66 4 0.5754 267.50 9.78 5.82
nmin 100 0.57 4 0.5805 227.50 8.32 5.81
k 1 0.68 4 0.5502 284.25 10.39 5.83
k 58 0.70 4 0.5771 317.75 11.61 5.82
k 1664 0.66 4 0.5753 252.50 9.23 5.84
w × h 8 0.72 4 0.5574 530.00 19.37 5.86
w × h 16 0.70 4 0.5771 317.75 11.61 5.82
w × h 24 0.70 4 0.5783 259.00 9.47 5.79
w × h 32 0.72 4 0.5927 340.50 12.45 5.79

Table B.1: STRC hyperparameters trends for ANAPATH
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B.2 Experiments with PRTR

Param. Value κ σ F1 Count % Dist.
N 1 0.55 1 0.2408 4856.25 177.49 5.92
N 10 0.53 1 0.4743 2856.50 104.40 6.04
N 32 0.70 0 0.4377 4307.25 157.43 6.09
N 64 0.66 0 0.4538 3771.75 137.86 6.03
N 100 0.68 0 0.4438 2435.34 102.23 5.99
nmin 2 0.53 1 0.4743 2856.50 104.40 6.04
nmin 10 0.74 0 0.4141 4531.25 165.62 6.11
nmin 100 0.51 1 0.6085 370.00 13.52 5.74
k 1 0.74 0 0.3749 6215.25 227.17 6.23
k 58 0.53 1 0.4743 2856.50 104.40 6.04
k 1664 0.56 1 0.4832 3212.23 113.12 6.02
t 0.4 0.53 1 0.4743 2856.50 104.40 6.04
t 0.5 0.78 0 0.4021 5214.75 190.60 6.10
t 0.6 0.82 0 0.4080 4824.00 176.32 6.13
t 0.7 0.86 0 0.4071 4573.00 167.14 6.15
q 0.25 0.77 0 0.3538 7502.50 274.21 6.19
q 0.5 0.76 0 0.3784 6420.00 234.65 6.20
q 0.75 0.75 0 0.3995 5416.00 197.95 6.22
q 1 0.53 1 0.4743 2856.50 104.4 6.04
w × h 8 0.74 0 0.3436 7790.25 284.73 6.28
w × h 16 0.53 1 0.4743 2856.50 104.40 6.04
w × h 24 0.56 1 0.4845 2835.43 103.24 5.99
w × h 32 0.56 1 0.4889 2790.30 101.89 5.99
w′ × h′ 1 0.53 1 0.4743 2856.50 104.40 6.04
w′ × h′ 2 0.68 0 0.4293 4466.25 163.24 6.09
w′ × h′ 4 0.68 0 0.4573 3470.75 126.85 6.03
w′ × h′ 8 0.66 0 0.4680 2795.25 102.17 6.12

Table B.2: PRTR hyperparameters trends for ANAPATH

We clearly have overfitting here. As shown in Table B.2, limiting overfitting by
early stopping the three growths (increase nmin) improves the performances.

B.3 Experiments with FCRN-A
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Param. Value κ σ F1 Count % Raw % Dist.
e 24 0.16 4 0.40 265.75 9.45 556.59 19.44 4.91
e 72 0.16 4 0.42 242.88 8.57 624.04 21.77 4.86
e 120 0.14 4 0.42 203.25 7.27 628.65 21.87 4.85
e 192 0.16 4 0.42 201.33 7.21 625.43 21.87 4.85
b 16 0.16 4 0.43 236.00 8.14 652.97 22.49 4.87
b 32 0.16 4 0.42 242.88 8.57 624.04 21.77 4.86
η 0.0001 0.16 4 0.37 330.00 11.59 636.40 22.26 4.89
η 0.001 0.14 4 0.42 244.25 8.59 746.04 25.99 4.83
η 0.01 0.16 4 0.42 242.88 8.57 624.04 21.77 4.86
λ 0.0 0.16 4 0.42 242.88 8.57 624.04 21.77 4.86
λ 0.0005 0.14 4 0.41 197.00 6.96 626.59 21.97 4.83
Nsw 50 0.12 4 0.35 231.00 8.25 1194.05 41.90 4.93
Nsw 500 0.16 4 0.42 242.88 8.57 624.04 21.77 4.86
Nsw 1000 0.12 4 0.43 272.00 9.64 716.10 24.65 4.83
w × h 64 0.14 4 0.39 206.50 7.24 769.82 27.36 4.88
w × h 128 0.14 4 0.40 195.50 6.95 578.81 20.40 4.87
w × h 256 0.16 4 0.42 242.88 8.57 624.04 21.77 4.86
w × h 512 0.14 4 0.41 270.00 9.54 780.72 27.81 4.92

Table B.3: FCRN-A hyperparameters trends for ANAPATH

B.4 Experiments with FCRN-B

Param. Value κ σ F1 Count % Raw % Dist.
e 24 0.16 4 0.37 321.45 11.35 654.87 22.47 4.90
e 72 0.16 4 0.39 258.00 9.14 512.37 18.12 4.88
e 120 0.18 4 0.40 246.12 9.03 681.21 23.29 4.86
e 192 0.16 4 0.39 197.25 6.96 475.01 16.77 4.89
b 16 0.18 4 0.40 314.75 11.10 557.98 19.76 4.88
b 32 0.18 4 0.40 246.12 9.03 681.21 23.29 4.86
η 0.0001 0.18 4 0.38 172.50 6.09 542.65 19.20 4.83
η 0.001 0.16 4 0.41 214.75 7.57 578.58 20.49 4.87
η 0.01 0.18 4 0.40 246.12 9.03 681.21 23.29 4.86
λ 0.0 0.18 4 0.40 246.12 9.03 681.21 23.29 4.86
λ 0.0005 0.18 4 0.38 184.00 6.49 384.25 13.59 4.88
Nsw 50 0.18 4 0.40 169.50 5.99 612.18 21.59 4.88
Nsw 500 0.18 4 0.40 246.12 9.03 681.21 23.29 4.86
Nsw 1000 0.12 4 0.44 321.75 11.35 569.97 20.07 4.80
w × h 64 0.18 4 0.38 206.00 7.27 377.67 13.43 4.86
w × h 128 0.12 4 0.39 204.25 7.21 755.22 26.77 4.86
w × h 256 0.18 4 0.40 246.12 9.03 681.21 23.29 4.86
w × h 512 0.18 4 0.39 259.00 9.16 760.48 26.86 4.88

Table B.4: FCRN-B hyperparameters trends for ANAPATH
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